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Abstract. The visuospatial system integrates inner and outer functional processes, organizing 

spatial, temporal, and social interactions between brain, body, and environment. These 

processes involve sensorimotor networks like the eye–hand circuit, which is especially 

important to primates, given their reliance on vision and touch as primary sensory modalities 

and the use of the hands in social and environmental interactions. At the same time, 

visuospatial cognition is intimately connected with egocentric memory, self-awareness, and 

simulation capacity. In the present article, we review issues associated with investigating 

visuospatial integration in extinct human groups through the use of anatomical and 

behavioral data gleaned from the paleontological and archaeological records. In modern 

humans, paleoneurological analyses have demonstrated noticeable and unique 

morphological changes in parietal cortex, an area crucial to visuospatial management. 

Archaeological data provides information on hand-tool interaction, the spatial behavior of 

past populations and their interaction with the environment (e.g. in domains like landscape 

use and navigation, the spatial relations implicit in social networks, etc.). Visuospatial 

integration may represent a critical bridge between extended cognition, self-awareness, and 

social perception. As such, visuospatial functions are relevant to the hypothesis that human 

evolution is characterized by changes in brain–body–environment interactions and relations, 

which enhance possibilities for integrating inner and outer cognitive components through 

neural plasticity and a specialized embodiment capacity. We therefore advocate the 

investigation of visuospatial functions in past populations through the paleoneurological 

study of anatomical elements and archaeological analysis of visuospatial behaviors. 

 

Visuospatial evolution 

Visuospatial functions have been long considered to be strictly mechanical phenomena. 

Activities like “handling” and “walking,” for example, have been viewed as automatic 

processes involving sensory feedbacks and muscle adjustments (i.e., as processes that do not 

involve high-cognitive loads and which have only limited associations with more complex 

cognitive functions like memory, executive functions, and consciousness). This view of 

visuospatial functions has persisted, despite the famous “cybernetic paradox” that we can 

build computers capable of performing calculations that far exceed human computational 

powers, but we have not still been able to design a machine able to walk with fluidity. Interest 

in visuospatial processes has been renewed in the last decade because of an increasing 

attention towards parietal lobes, which include crucial areas for visuospatial management. 
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Converging evidence from evolutionary neuroanatomy, functional neuroimaging, brain 

modeling, and cognitive sciences, suggests that visuospatial integration may be profoundly 

intermingled with our most complex cognitive processes (Bruner and Iriki 2016). 

 The term “visuospatial integration” can be rather vague, since it embraces a variety 

of concepts and encompasses multiple functional aspects, and it can mean different things in 

neurobiological, psychological, and philosophical contexts. These subtle but relevant 

differences in definitions and concepts can generate misunderstandings or cultural barriers 

between disciplines, and this can be particularly detrimental for a topic which is clearly 

multidisciplinary. The word “visuospatial” conjoins concepts associated with visual 

perception, including the physiological mechanisms of vision and the associated neural codes 

and networks, with spatial perception, a basic perceptual relation between an organism and 

its environment. Both vision and spatiality have a physical component, as well as a “virtual” 

one involved in mental imagery. For its part, the word “integration” denotes functionality in 

combining multisensory inputs into a holistic perceptual experience. 

 Beyond any definition, visuospatial integration is generally something difficult to test 

in modern populations because of its involvement in very distinct tasks, ranging from basic 

spatial management to social perception. Visuospatial cognition in extinct human species is 

even more difficult to evaluate, because it must be detected and quantified indirectly through 

the partial and fragmentary information provided by the paleontological and archaeological 

records. Paleontology is concerned with the bones of past populations, archaeology with their 

material relics. Accordingly, visuospatial functions in human evolution must be inferred from 

the visuospatial elements and behaviors revealed by bone anatomy and cultural cues. 

Interpreting this indirect evidence can be challenging, as most biological and cultural 

processes leave no traces and thus remain largely invisible to the paleontological and 

archaeological records. Nonetheless, a proper evaluation of these biological and cultural 

remnants represents the only chance to test human cognitive evolution directly on the species 

involved in the phylogenetic process. As for other cognitive capacities, some visuospatial 

behavioral changes will remain silent to the paleontological and archaeological analysis, but 

others may have left some physical indications. Certainly, any cognitive evaluation on extinct 

species or populations must be framed into a broader context, in which neurobiological and 

behavioral data on extant groups support a general comparative and functional perspective. 

 Cognitive archaeology has directly addressed the evolution of spatial cognition since 

the late 1980s, through the pioneering work of Thomas Wynn (1989). Wynn suggested that 

bilateral symmetry in early Acheulean bifaces implied that the hominids who produced them 

about 1.8 million years ago (Mya) had developed an ability to coordinate shape and spatial 

information, “arguably the initial step in the evolutionary sequence of modern visuo-spatial 

integration” (Wynn 2014:291; also see Wynn 2002). Similarly, by roughly 500 thousand 

years ago (Kya), the use of complex prepared core techniques and the imposition of 3D 

symmetry in late Acheulean bifaces suggested that there were further evolutionary 

developments in visuospatial integration, including the capacities for “inner virtual space” 

(Bruner and Lozano 2014:274) and landscape mental mapping (Wynn 2000). By 50 Kya, 

behavioral and morphometric change in Homo sapiens included greater use of projectile 

weapons (Lombard and Haidle 2012) and possibly a more specialized eye–hand visuospatial 

interface (Bruner and Lozano 2014). More recently, following the idea that cognition is 
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embodied, embedded, extended, and enacted (see below), cognitive archaeology has begun 

evaluating whether such behavioral and morphological changes might signal the emergence 

of additional developments in visuospatial capacity, enabling in our species “a more 

pervasive prosthetic adaptation” (Overmann 2015:165). 

 

Beyond neurons 

Ideas about how the physical body and material environment might influence, aid, and 

perhaps even constitute human cognition have been introduced in recent decades. Cognition 

has not remained localized in brain form and function (the neurocentric view of cognition) 

or viewed as a computational process involving perceptual inputs, computer-like 

manipulation, and motor outputs (the computational model of cognition). Rather, it has 

become embodied (the body has a role in cognition—Lakoff and Johnson 2008; Prinz 2009), 

situated (cognition is influenced or perhaps even constituted by things external to the brain—

Robbins and Aydede 2009), embedded in (cognition is influenced by aspects of the 

environment—Smith 1999) and distributed across (cognition involves resources and 

processes in networks of interacting agents and objects—Hutchins 1995) environments 

containing natural, social, and culturally modified material resources. Beyond distribution, 

cognition may be extended, the notion that physical, social, and material resources may be at 

least partially constitutive of cognition, perhaps even on par with psychological processing 

and neural activity, though the ways in which brain-external resources contribute 

undoubtedly differ from brain-internal ones (Clark and Chalmers 1998; Clark 2008). 

 The idea that physical and material elements may be included within the boundaries 

of cognition is especially relevant to human cognitive evolution, given the unparalleled 

degree and extent to which our species uses material culture. Historical ideas about brain 

functionality have also been updated with insights gained from research in Artificial 

Intelligence (AI). For example, traditional cognitive models have proposed that brains 

recreate the external world in the form of internal representations. However, breakthroughs 

in AI research have suggested that highly representational cognition would be inefficient and 

likely evolutionarily unsustainable; internal representations would also be redundant to the 

information-bearing capacity of the world itself, information that an organism obtains 

through interactivity with the world (Clark 1997). 

 The turn to anti-representationalism helped inspire the idea that cognition is enactive, 

constituted by the dynamic interactivity between brains, bodies, and material environments 

(Hutto and Myin 2013; Malafouris 2013). Thinking and doing are not separable. 

Performative skill, such as that involved in complex flintknapping techniques (e.g. 

Levallois), can therefore be viewed as mastering the enactivity of variable domains (i.e. 

psychological processes, motor movements, and material properties) to produce invariant 

results (Bril et al. 2010; Nonaka et al. 2010; Nonaka and Bril 2014; Nonaka 2011, 2013). 

This construct in particular highlights the importance of coordinating mechanisms like 

manuovisual and visuospatial integration. 

 As is common among primates, of all their senses, humans rely the most on haptic 

perception, active touch through the hand, and vision for their environmental interactions 

(Figure 1). As “one of the main perturbatory channels through which the world touches us, 
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[the hand] has a great deal to do with how this world is perceived and classified” (Malafouris 

2013:60). Haptic perception integrates sensory cues from what the fingers touch with internal 

sensory and positional cues about what the fingers feel and do (Hatwell et al. 2003). Its 

sensory dimensions are simultaneously internal and external, bipolarity that humans exploit 

(apparently, uniquely among animal species) in exploring their environments and making 

and using material culture (Mattens 2013). While sensing what objects are like by touching 

them undoubtedly supports the ability to explore and manipulate materiality, feeling what 

touches the body may be similarly important in helping broker interactions between human 

psychological abilities and the objects of material environments and cultures (Mattens 2013). 

 

Figure 1. Although the entire body operates as an active interface between the brain and the environment, 

the eye and the hand in primates represent the two main ports of information flow and management. 

 Haptic perception provides a relatively limited perceptual field—only what the 

fingers can touch—that demands the fingers explore to gain sufficient information; the need 

to explore, coupled with high finger mobility and control, creates in touch a degree of 

alterability and intentionality that other senses lack (Hatwell 2003; Helbig and Ernst 2008). 

Vision, in contrast, provides a wide perceptual field easily explored through saccades and 

attentional shifts, enabling visual acquisition of more information in less time than is possible 

through touch, especially for informational domains where touch is particularly limited (e.g. 

spatiality, shape, etc.). Proficiency in interacting with an environment thus depends upon the 

abilities to gain pertinent sensory information, particularly about the locations and properties 

of manipulated objects; coordinate the inputs of multiple sensory modalities, most 

importantly touch and vision; and exercise fine control over and coordination of motor 

movements, especially for the hands and eyes (Gallagher 2013; Tallis 2003, 2011). 
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 In the enactivist paradigm, change in interacting neural, behavioral, and material 

resources cannot easily be isolated to the individual cognitive components. That is, brain 

function and form do not change on their own, but rather, through and because of interactivity 

with behavioral–material stimuli, and vice versa. Further, the constant state of change in 

human becoming (i.e. the ongoing and unfinished evolutionary process of becoming human) 

relates to both the capacity for change (plasticity) and the interactivity among the components 

of cognition. This is metaplasticity, “the enactive constitutive intertwining between neural 

and cultural plasticity” (Malafouris 2010a). The term brain–artefact interface (BAI) has been 

used to recognize that “the functional structure and anatomy of the human brain is a dynamic 

construct remodeled in detail by behaviourally important experiences which are mediated, 

and often constituted, by the use of material objects and cultural artefacts which for that 

reason should be seen as continuous integral parts of the human cognitive architecture” 

(Malafouris 2008:404, italics original). 

 BAIs are “technological mediations (material structures, processes, objects or other 

socio-material apparatuses and practices) that enable the configuration of a dynamic 

alignment or tuning between neural and cultural plasticity” (Malafouris 2010b:265). 

Crucially, BAIs in the form of material structures provide “temporal anchoring and binding” 

that helps bridge the vastly different timescales on which neural and cultural resources 

operate (Malafouris 2010b:266). While psychological responses and ontogenetic 

development take milliseconds to decades, materiality spans centuries to millennia or longer. 

 The idea that materiality not only reflects but also influences and changes brain 

function and form, especially over cultural and evolutionary spans of time, is perhaps not 

intuitive. Yet many species use or modify their behaviors and aspects of their environments 

in ways that can be considered tool use and culture (Laland and Janik 2006), and it is well 

accepted that physical anatomy and material environments influence behavior and 

psychological processing in most (if not all) species. Certainly, embodiment with pentadactyl 

limbs has strongly canalized the organization of number systems in cycles of 10 (decimal, 

the world’s most prevalent numerical base), 5 (quinary), and 20 (vigesimal) (Comrie 2013; 

Menninger 1992), and manuovisual adeptness has been a primary enabler in allowing humans 

to use materiality to decompose tasks, collaboratively problem-solve, and—perhaps the most 

uniquely—accumulate cognitive effort that has been distributed over space and time (Beer 

2003; Hutchins 1995). 

 Human manipulation of materiality into novel forms can also create new behavioral 

and psychological stimuli with the potential to change these cognitive components. Such 

interactivity opens up multiple cascading possibilities for further changes to the cognitive 

system, and over time may yield the kind of anatomical and behavioral differences that can 

be detected in the archaeological and fossil records. Examples include the change in spatial 

competence inferred from increasing symmetry in the shape of stone tools (Wynn 1989), as 

well as the intensification of the ability to incorporate materiality as a component of cognition 

inferred by comparing morphological change in brains and bodies in early H. sapiens and 

Neanderthals (Overmann 2015). 

 Given the importance of visuospatial integration to human becoming, a 

multidisciplinary approach is required to investigate the development of complexity in 

systemic behaviors arising from the interaction of brains (paleoneurology), bodies 
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(paleontology), and materiality (archaeology). In this paper, we introduce three main sources 

of evidence for making inferences about visuospatial functions in extinct populations: 

neuroanatomy, technology, and ecology. 

 

Evolving parietal lobes 

The first source of evidence for investigating visuospatial functions in extinct species comes 

from their cranial remains: morphological changes in the neuroanatomical regions involved 

in visuospatial integration, particularly the parietal lobes. This region of the brain has been a 

particular research focus in the last decades (Mountcastle 1995; Zilles and Palomero-

Gallagher 2001). Initial interest examined general parietal functions like visuospatial 

integration and attention (Andersen and Buneo 2002; Andersen et al. 1997; Rushworth et al. 

2001; Wardak et al. 2005), while more recently the analysis of the parietal cortex has been 

expanded to include more specialized processes like numbering (Ansari 2008; Cantlon et al. 

2006). Studying the functions of the parietal lobes is challenging, for several reasons. First, 

as previously mentioned, relatively little attention has been given to them until fairly recently 

because of the perception that visuospatial functions were only associated with simple, 

mechanical behaviors. Second, these regions are involved in many different functions, with 

consequent operational difficulties in the design of reliable and comprehensive experimental 

paradigms. A third limit comes from the anatomy of these areas. The parietal elements 

primary involved in visuospatial management are the intraparietal sulcus and precuneus, both 

of which lie hidden in the depths of the cerebral volume (Ebeling and Steinmetz 1995). Such 

internal folds are more difficult to analyze in extant brains because of their secluded position 

within the brain mass. Dealing with fossils species, paleoneurology largely concerns the 

morphological evaluation of the outer surface, and changes of the inner cortical areas can be 

only partially evaluated. Their position also restricted those traditional approaches 

associating brain anatomy and behavior after physical or vascular lesions. In fact, individuals 

experiencing injuries or pathologies in deep cortical regions are less likely to survive, relative 

to individuals injured in more superficial brain districts. As a result, there are less data 

available to correlate regional damage with functional impairment. Finally, these regions are 

phylogenetically diverse. Differences among primate species are often so apparent that direct 

comparisons between corresponding areas are not easily established. As a result, parietal 

homologies between humans and non-human primates have yet to be reliably established. 

 In humans, intraparietal sulcus is larger and more complex than in other primates 

(Grefkes and Fink 2005; Orban et al. 2006; Vanduffel et al. 2002). Its areas are critical for 

eye–hand coordination (Battaglia-Mayer et al. 2006; Orban and Caruana 2014; Sakata et al. 

1997). As might be expected, the intraparietal sulcus has been directly implicated in tool-

making (Stout and Chaminade 2007; Orban and Caruana 2014; Stout et al. 2015). The 

precuneus is a major functional and structural brain node, and it is involved in a wide array 

of behavioral processes. The precuneus appears to support two primary functions: it is a 

crucial node for visuospatial integration and a main connectivity hub for brain networks. As 

visuospatial node, it coordinates external and internal information to bridge the 

somatosensory cortex with vision and egocentric memory (Cavanna and Trimble 2006; 

Marguelis et al. 2009; Zhang and Li 2012). The precuneus has been implicated in generating 

self-centered mental representations, as well as coordinating spatial, chronological, and 
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social information (Freton et al. 2014; Land 2014; Peer et al. 2015). It is particularly 

connected with the frontal cortex, as a key element of a highly integrated fronto-parietal 

system (Caminiti et al. 2015; Jung and Haier 2007). It is part of a network found only in 

humans thus far that joins the frontal and upper parietal areas and which is thought to be 

essential to the shift from emulation (reproducing results, a primate ability) to imitation 

(reproducing processes, a human ability) (Hecht et al. 2013). Its upper areas are strongly 

involved in visuospatial managements, through direct connections with the intraparietal 

sulcus and with the supramarginal gyrus, while its lower areas are more integrated with a 

central hub of the Default-Mode Network (Bzdok et al., 2015; Utevsky et al. 2014), a system 

that coordinates resting (or default) neural activity in absence of specific cognitive tasks 

(Buckner et al. 2008; Hagmann et al. 2008; Meunier et al. 2010). Interestingly, the precuneus 

is also particularly active in metabolic terms (Cavanna and Trimble 2006; Sotero and Iturria-

Medina 2011), suggesting that its evolutionary changes may have been associated with 

thermal constraints due to the brain’s energy consumption and heat release (Bruner et al. 

2014a). Interestingly, Alzheimer’s disease, a pathology characterized by a combination of 

features found only in our species, is associated with early metabolic impairments in these 

deep parietal regions (Zhang and Li 2012; Bruner and Jacobs 2013). 

 The impression that visuospatial integration supports simple, mechanical behaviors 

has been significantly challenged by recent experimental evidence of neural change 

associated with interactions between body and tools (Iriki and Taoka 2012; Maravita and 

Iriki 2004). Tools induce different cognitive and neural responses when positioned outside 

the range of the body (extra-personal space) or when positioned within the range of physical 

interaction (peri-personal space). Most importantly, tools are incorporated into the body 

schemata when they are touched or handled: the brain interprets an object that is handled as 

an extension of the body. The classic example of this effect is the blind man’s stick, whose 

neural incorporation extends tactile perception to the tip (Malafouris 2008). In this sense, 

objects function as “extra-neural” elements of the cognitive system, with the deep parietal 

areas serving to integrate internal neural processes with external environment features and 

managing the body’s sensorimotor capacities as the interface between the two (Figure 2). 

 Although the whole body may act as an active interface, in primates the eye and the 

hand represent the main “ports” through which information is directed inward and outward, 

through an active integration of sensorimotor signals. In this process, the hand is not merely 

a biomechanical structure but also functions as a sensory device associated with neural 

feedback mechanisms that enables it to perform as an active biological interface, and not a 

mere passive anatomical component (Ingber 2008; Turvey and Carello 2011). It is interesting 

to note that handling processes (e.g. grasping objects, manipulating tools, and recognizing 

characteristics like size, texture, and quantity) are functionally subserved by distinct neural 

and cognitive mechanisms (Goodale et al. 1994). Therefore, “producing a tool” may rely on 

different processes than “using a tool” does, which in turn may only partially correspond to 

“feeling a tool” in terms of perception. Evolutionary changes in these processes have likely 

been complementary, but not necessarily identical or always integrated. 
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Figure 2. The upper and medial parietal areas (precuneus and intraparietal sulcus) are crucial for processes 

of visuospatial integration, generating a bridge between embodied experience and cognition. 

 Coordinating the outer and inner worlds is a main target in terms of ecology and 

adaptations, and it largely relies on visuospatial issues. The outer world is the environment 

and, for humans, environment means also culture, including technology. Tools enhance and 

influence our sensory and computational capacities, constrain and channel reasoning and 

decision-making processes, store information, and activate, catalyze, or induce responses in 

specific neural circuits. It is reasonable to believe that, among human populations, the less 

technological complexity the more the natural environment may be relevant in cultural terms. 

Conversely, the natural environment may lose importance as technology becomes a dominant 

mode of outer extension. 

 The inner world is the neural system, its organic extensions (somatosensory 

elements), and its intrinsic codes and representations. As previously mentioned, brains have 

historically been thought to recreate the external world internally, with the word 

representation used to describe the resultant stable and environment-independent 

simulations. However, there is no reason to think that representations are necessarily the 

result of disembodied processes (Prinz and Barsalou 2000). The current debate on this issue 

may be largely a matter of terminology, probably because the exact nature of such 

“representation” is not clear at all in biological or neurobiological terms. Physiologically, a 
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representation may simply be a neural map that encodes sensory information (e.g. gained 

through visual means). Such mapping is not necessarily complete and self-sufficient, as it 

may rely on external components engaged through interactivity. And it is not necessarily 

stable, since it may depend on constant inputs and feedbacks from the body and the 

environment. As a matter of fact, humans generally think in images and language. Images 

need a virtual space in which we can perform simulations and mental experiments. Such 

“imaged space,” whatever its actual biological background or neural substrate, is visuospatial 

in nature, largely self-centered, and based on spatial and chronological managements 

crucially coordinated by the precuneus (visual imagery; see Fletcher et al. 1995), that 

represent a functional bridge between body and vision. Interestingly, also regarding 

language, hypotheses concerning its evolution have associated its mechanisms with praxis, 

gesture, and movement (Binkofski and Buccino 2004; Buccino et al. 2005; Jirak et al. 2010; 

Marino et al. 2012), highlighting an additional importance of visuospatial managements. 

 Parietal growth and development have been associated with specific genetic factors 

(Chen et al. 2012), but they are also sensitive to training and behavioral effects (Hihara et al. 

2006; Iriki and Taoka 2012; Quallo et al. 2009). Therefore, observed anatomical, 

physiological, or behavioral differences between individuals or groups (species or 

populations) can be primarily due to specific genetic characters, or else be the secondary 

effects of cultural training. The integration between biological and cultural factors may also 

promote hybrid evolutionary processes. For example, at the end of the nineteenth century 

James Baldwin hypothesized that learned behaviors can change the selective environment, 

channeling the following genetic selection towards culture-based directions (Baldwin 1896; 

Crispo 2007; Sznajder et al. 2012). In other words, the “Baldwin effect” holds that “under 

some conditions, learned behaviors can affect the direction and rate of evolutionary change 

by natural selection” (Depew 2003:3). Taking into account all these possibilities, 

evolutionary changes of the parietal functions in general and visuospatial capacities in 

particular can have been influenced by genetic, epigenetic, environmental, and cultural 

factors, and the extent to which each of these may have contributed to observed neural and 

behavioral differences between humans and non-human primates is currently unclear. 

 Paleoneurological analyses have provided compelling evidence of evolutionary 

change in parietal morphology. Though paleoanthropologists have long observed parietal 

anatomical differences and variations in early hominids and between extant and archaic 

humans (Dart 1925; Holloway 1981; Weidenreich 1941), quantitative data on evolutionary 

changes in parietal shape, size, and volume were not available until the last decade (Figure 

3). Shape analyses suggest that the globularity of the modern human head is primarily related 

to an enlargement of the parietal bones (Bruner et al. 2004, 2011) that is in turn associated 

with an expansion of parietal lobes (Bruner 2004; Bruner et al. 2003). During development, 

this globularization takes place in an early stage present only in modern humans, and absent 

in Neanderthals and extant apes (Gunz et al. 2010; Neubauer et al. 2009, 2010; Scott et al. 

2014). Most studies suggest that this stage occurs after birth, although there is the possibility 

that it takes place during gestation (Ponce de León et al. 2016). 

 The pattern of parietal expansion observed in modern humans is comparable to the 

pattern of enlargement of the precuneus observed in extant individuals, which is a major 

source of intra-specific variation in human brains (Bruner et al. 2014a, 2014b, 2015). This 
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same pattern also represents a key difference between human and chimpanzee midsagittal 

brain morphology, because of a noticeable enlargement of the precuneus in our species 

(Bruner et al. 2016a). Interestingly, early modern humans may have lacked the parietal 

bulging that characterizes H. sapiens (Bruner and Pearson 2013), with some later specimens 

displaying an intermediate phenotype (Bruner et al. 2016b). This evidence is still based on 

very few individuals but, if confirmed, it separates the origin of the modern human lineage 

from the origin of the modern human brain form. This raises once more the question of 

whether such changes where gradual or discrete, and whether associated with genetic 

selection or environmental feedback (Bruner and Iriki 2016). 

 

Figure 3. A general enlargement of the parietal areas represents the main morphological difference between 

modern humans and other hominids (a). Parietal bone enlargement is the main cranial feature differentiating 

modern and non-modern skulls (b,c) (red: expansion; blue: reduction) and endocasts (d). Such geometric 

dilation is associated with the upper parietal surface (e) and an early ontogenetic stage that has been described 

only in Homo sapiens (f). In modern humans, a major source of variability is the size of the precuneus (g,h), 

which is also the main midsagittal brain difference between humans and chimpanzees (i). Images after Bruner 

2004, 2010; Bruner et al. 2004, 2014a, 2015, 2016a; Gunz et al. 2010. 
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 Apart from these gross neuroanatomical differences dealing with size and 

proportions, comparative analyses to date have failed to localize any specific structural or 

functional difference of the parietal cortex between humans and other primates (Caminiti et 

al. 2015; Caspers et al. 2011; Mars et al. 2011; Scheperjans et al. 2008). Also, its role in the 

Default-Mode Network seems comparable in different species (Barks et al. 2015; Rilling et 

al. 2007). All these results suggest that the general organization, connectivity, and processes 

of the parietal lobes are generally conserved. Therefore, we must evaluate whether 

differences in human parietal anatomy and functions have been a matter of new elements and 

mechanisms (i.e. derived characters), the reuse of primitive traits (exaptation), or simply a 

matter of the degree of expression of shared abilities (a plesiomorphic scheme enhanced in 

terms of capacity, possibly with threshold effects). 

 Although the parietal surface displays the most noticeable morphological change 

between modern and non-modern humans, other brain areas represent important nodes for 

functions associated with spatial behavior. For example, spatial mapping relies on medial 

temporal elements, and there is direct quantitative evidence of larger temporal lobes in our 

species compared to extant apes (Rilling 2006; Rilling and Seligman 2002). Actually, the 

temporal poles in extant humans are also more projected relative to those of other human 

species, at least when the morphology and position of the middle endocranial fossa are 

considered (Bastir et al. 2008). 

 In sum, we should consider three distinct issues: (1) H. sapiens is characterized by a 

unique morphological expansion of the parietal bones and lobes; (2) the intraparietal sulcus 

and the precuneus, implicated in a number of critical functions related to visuospatial 

behaviors, are localized in those same areas, and represent a relevant source of variability 

both within and between extant and extinct species; and (3) the possibility that these two 

facts are somehow related. It remains to be established to what extent these morphological 

changes are the result of genetic, selection, and environmental influences. In all cases, taking 

into consideration the conspicuous parietal changes and the importance of culture and tooling 

in our species, the exploration and analysis of visuospatial functions merits attention in 

evolutionary anthropology and behavioral neuroanatomy. 

 

Tools and tooling: changing perspectives 

The second line of evidence for investigating visuospatial functions in past populations 

comes from their tools and the elements and processes associated with tooling. Extant 

humans evolved from ancestors who had the ability to make and use tools, and material 

culture plays a major role in current evolutionary theories: behaviors with materiality are an 

essential part of hominid evolution, bridging adaptive responses, natural selection, and 

cognitive capacities (Foley and Lahr 2003). Technology and tooling are thus hallmarks of 

human evolution, and there is no doubt that we provide the most complex example of 

technology-based species. Because stone was an essential resource for Paleolithic groups, 

and because it has the property to persist sometimes over million years, we largely rely on it 

to make inferences about the behavior of extinct prehistoric populations. 

 The interaction between the brain and body is a focal point for thinking about the 

change in tool form and use over time, and about the interaction between hominids and 
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artefacts. Because they are made of a material whose durability makes them more likely to 

preserve, lithics are the most common archaeological objects. Lithics are often the only 

vestige of past behavior for an extinct population or species. The stone tool archaeological 

record also covers an enormous span of time: from over 3 Mya to virtually the present (Figure 

4). Thus the interaction of brains and tools through the interface of hands and eyes 

fundamentally underpins and pervades the evolutionary history of our species. As Robert 

Foley (1987:381) noted, “covariation between hominid fossil morphology and artefact 

variability is an essential starting-point for understanding the evolution of human behavior,” 

with visuospatial integration offering a behavioral bridge between evolutionary neuroscience 

and prehistoric archaeology. 

 

Figure 4. Approximate chronology of major lithic groups (Key: My, million years; Ky, thousands years). 

Drawings show (from left to right) examples of the Oldowan, Acheulean, Mousterian, and Aurignacian 

industries (images of the tools redrawn after Didier Descouens, Creative Commons License). 

 An attempt to account for the evolution of tooling is the “mode” model (Clark 1969), 

based on the relation between the core and the product. Mode 1 represents the simplest 

flaking technology, linked to the Oldowan industry. Mode 2 corresponds to Acheulean 

(shaping and producing larger flakes), Mode 3 to the prepared core technologies of the 

Middle Palaeolithic sensu lato. Finally, modes 4 and 5 are associated with, respectively, the 

production of blades and microliths. The sympatric coexistence of different hominids species 

sharing the same technocomplex, challenges the one-to-one relations between particular 

species and the cultural innovation represented by specific lithic technologies. Nonetheless, 

the mode division enables an initial tentative identification of distinct cognitive schemes with 

different evolutionary and adaptive implications. Most importantly, the model enables 
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plausible associations between particular cognitive processes and the adaptive behaviors 

producing specific technocomplexes (Foley and Lahr 2003). 

 Considered in total, the rate of change in lithic technologies is relatively slow, with 

very long periods without significant innovations followed by apparent changes associated 

with novel patterns. These innovations often seem the outcome of the combination of 

technical ideas already existing and other generated independently (Beaune et al. 2009), and 

in this sense they could be considered a form of exaptation (sensu Gould and Vrba 1982). 

 The shift from tool-assisted to tool-dependent foraging, may signal an important 

cognitive change in hominds (Plummer 2004), moreover one that would have introduced 

culture ipso facto into their cognitive and neural niches (Iriki and Taoka 2012). During 

handling, tools are included in the “body schemata” of the brain, and thus are integrated 

within the neurological mechanisms that affect the way we move and we perceive the space 

around us (Maravita and Iriki 2004). The cognitive foundations connected with tool making 

are controversial, involving many distinct areas and processes (Stout and Chaminade 2007), 

and lithic studies have often been used to provide different order of understanding about 

hominid cognitive capacities, from mental imagery to plan specific knapping goals. 

However, exactly what that cognitive change may have consisted of has been difficult to 

define. Lithic production has been decomposed into sequences of steps and decisions (the 

chaîne opératoire approach) in attempts to understand, among other aspects, its cognitive 

underpinnings. For example, the concept of “method” in lithic studies implies the repeated 

organization of the knapping operation, traditionally linked to a “mental preparation” before 

the knapping itself (Tixier 1967). To illustrate this point, Pelegrin (2009) compared the 

knapping process to a game of chess, in which many preparatory steps are aimed at producing 

the conditions needed for the desired outcome. Such analyses have been used to argue for 

different understandings of hominid cognitive capacities, from mental imagery to planning 

specific knapping goals, and indeed, the full extent of the cognitive foundations of tool 

making remain unsettled, as they involve multiple, distinct brain regions and processes (Stout 

and Chaminade 2007). Further, cognitive models of lithic production have not fully 

incorporated yet insights like the neurological incorporation of tools, when they are handled, 

into mechanisms affecting movement and spatial perception (Maravita and Iriki 2004). 

 However, if we interpret mind as an integrated between brain, body, and environment, 

the analogy of a computer-like process performed by activity in the brain, becomes too 

reductive. If the body and the material culture are indeed implicit components of cognition, 

both hands and tools must be the target of a more comprehensive behavioral and cognitive 

analysis. Certainly, the hand/tool relationship is not unidimensional: the hand not only 

produces but also uses the tool, actions that may be managed by complementary but distinct 

cognitive processes. Hand and tool variation can be the result of reciprocal influence 

channeling their properties through information that is external to the brain and central 

nervous system but which is necessary to and implicit in the cognitive responses. 

 Managing relationships between brain, body, and tools, relies on visuospatial 

processes, and for this reason changes associated with the body and material culture can 

reveal underlying differences in visuospatial behavior, allowing inferences about change in 

visuospatial functions. Evidence of visuospatial behaviors can be direct or indirect. 
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 Direct information providing evidence of visuospatial behaviors can be obtained from 

tool manufacture and use and from hand morphology, as well as the integration of the two. 

Behaviours associated with tools and tooling can be investigated through experimental 

replication of prehistoric tools, observation of stone making in contemporary human groups, 

and observation of the tool-use in apes (Marzke and Shackley 1986; Toth et al. 1993a; Toth 

et al. 1993b; Schick et al. 1999). 

 Following Napier (1956), hand morphology and tool evolution have been major 

topics in anthropology and functional anatomy (Marzke 2013; Marzke and Marzke 2000). 

Bipedalism, which freed the hands and upper limbs from locomotion, set the basic conditions 

for the evolutionary emergence of tooling, with locomotor and manipulation abilities 

evolving in mosaic fashion rather than following a gradual trend (Kivell et al. 2011). 

Morphological advantages of the human hand with respect to apes include precision grip 

(Napier 1956) and “squeeze” grip (Marzke 1997), facilitating the ability to handle a stone 

hammer. Precision movements of the wrist are also considered significant. However, the 

presence of pad-to-pad precision grasping in the genus Orrorin suggests that some of the 

basic features of the human-like hand may be plesiomorphic for hominids (Almecija et al. 

2015). 

 Grasping patterns can be classified in terms of hand–tool interaction (Feix et al. 

2015), and the hand’s functional morphology can be analyzed within a specific 

archaeological context (Williams et al. 2012). This physical interaction requires a proper 

integration between the motor system, the properties of the object, and the action itself 

(Vankof and Kokinov 2013). These kinds of studies can be modeled by using different 

quantitative (Liu and Zhan 2013) and comparative (Pouydebat et al. 2009; Rolian et al. 2011) 

approaches, and their applications range from evolution to robotics (Kappassov et al. 2015). 

Interestingly, Neanderthals and coeval modern humans in the Levant may have differed in 

their hand anatomy while using similar technology (Churchill 2001; Niewoehner 2001). 

 Although precision and hand dexterity are crucial for tooling, nonetheless they are 

not a necessary requisite for cognitive extension. A machine (e.g., a mechanic arm) can be 

far more precise than a human hand, but its close program prevents any cognitive 

mechanisms. Therefore, we should consider whether precision is a cause or else an 

evolutionary consequence of prostethic capacity. As previously mentioned, beyond purely 

mechanical issues, the body responds to tactile stimulations according to a system of tensions 

and stresses in which the process of converting mechanical signals into biochemical 

responses is synchronized with perceptive feedback, and hence directly with behavioral and 

cognitive experience (Ingber 2008; Turvey and Carello 2011). How such relationships might 

influence tool manufacture and use, however, remains to be investigated. 

 Indirect information of visuospatial behaviors can be obtained from remains that 

imply specific activities. For example, Neanderthals and their common ancestor with H. 

sapiens displayed frequent and multiple scratches on their anterior teeth, suggesting they 

used their mouths as “third hand” to a larger extent than found in contemporary H. sapiens 

or any extant human population (Lozano et al. 2008). Because Neanderthals relied more 

extensively on the mouth for handling and also lacked the upper parietal expansion 

characteristic of contemporary H. sapiens, Bruner and Lozano (2014, 2015) have 

hypothesized that Neanderthals may have lacked specialized visuospatial system and 



Visuospatial integration        15 

 

embodying capacity possessed by modern humans. The hypothesis can be evaluated through 

expanded analyses of the paleontological and archaeological information, investigation of 

mouth–hand exploratory behaviors during ontogenetic development, examination of 

ethnographic parallels in living populations of hunter gatherers, and functional analyses of 

mouth–hand integrative relationships. 

 Since making stone tools is a social behavior (i.e. learned and reproduced through 

social processes of observation, reproduction, practice, and perhaps language), it depends on 

cognitive capacities, processes, and skills that exceed those of the individual (e.g. Lycett 

2011; Tostevin 2013). Even expedient tooling implies accumulated knowledge, social 

transmission and learning, and an understanding of the mineral environment, factors that 

become more critical as tool complexity increases. These features suggest that tooling as a 

cognitive issue is intimately connected with the social environment. Since tools and social 

systems can exert reciprocal influences, the archaeological record may be able to detect and 

relate change in both components. 

 About tooling and social structure, handling capacities have often been associated 

with language (Binkofski and Buccino 2004; Leroi-Gourhan 1964). In extant populations, 

language appears to play an active role in learning and teaching manufacturing techniques 

(Uomini and Meyer 2013). As mentioned, it has been recently hypothesized that language 

comprehension may be strongly embodied, requiring a response of the motor system to code 

words and actions (Corballis 1999; Gentilucci and Corballis 2006; also see Buccino et al. 

2005; Marino et al. 2012). This possibility suggests that we should consider a scenario 

involving the hand–tool circuit, language, and the social system, with visuospatial capacity 

integrating and managing the relations between brain, body, and environment. 

 

Evolving spaces 

A third way to investigate visuospatial functions is to examine the spatial behavior of past 

human populations. Complex patterns of landscape use can be reconstructed through the 

distribution of archaeological sites, archaeozoological evidence of seasonal patterns of 

occupation, and evidence for the circulation of raw materials and finished artifacts which act 

as proxies for human mobility. Patterns of mobility and the maintenance of social networks 

within settlement systems are activities that rely upon spatial cognition and wayfinding 

ability. 

 Wayfinding, the ability to plan and carry out navigation tasks, implies an ability to 

create abstract mental representations of space. Two distinct representations of the world are 

linked by a process of translation: first, an egocentric representation that involves “transient 

action-oriented egocentric self-object associations” and second, an allocentric representation 

with a “more enduring … object-object or environment-object association” (Burgess 

2006:555). The allocentric representation implies the adoption of a “survey” perspective, also 

known as a “bird’s-eye view.” The translation process, known as spatial updating, allows 

agents to translate their current position onto an enduring, allocentric representation of space 

which functions as a “cognitive map,” an internal representation of the world that acts as a 

framework for planning further action and is used metaphorically during memory recall 

(Golledge 2003:30). 
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 The hippocampal formation plays an important role in generating spatial 

representations Roche et al. 2005; Nadel and Hardt 2004; Spiers and Maguire 2006; Maguire 

et al. 1999, 2000, 2003; Etienne and Jeffery 2004). The parahyppocampal and perirhinnal 

cortices are the main links between the hippocampal formation and the sensory systems 

(Roche et al. 2005) thus playing a critical role in path integration (Whitlock et al. 2008). The 

posterior parietal cortex integrates the sensory and motor systems and plays a key role in 

planning specific actions and enabling goal-directed movement (Spiers and Maguire 2006; 

Whitlock et al. 2008). Together, these different regions of the brain contribute to the creation 

of the spatial representations used during wayfinding. 

 Spatial representations imply the motivated and deliberate encoding of environmental 

information, they are built up from direct experience of the world (or from external aids, such 

as maps) and constantly updated as an agent moves through space. There are two distinct 

strategies used during this process: path integration and landmark recognition (Foo et al. 

2005). Path integration (aka “dead reckoning”) is the ability to update one’s position on the 

allocentric representation using inertial signals processed by the vestibular system (Etienne 

and Jeffery 2004) and Euclidian geometrics (bearings and path lengths, or distance and 

direction). Landmark recognition (the ability to select relevant features of the landscape and 

remember their position) is used when adopting an egocentric perspective and also comes 

into play during the process of translating between spatial perspectives to create an integrated 

cognitive map. Path integration and landmark recognition are not mutually exclusive 

processes since external, location-based cues can be combined with inertial signals during 

wayfinding; humans (and other animals) use these wayfinding strategies contextually and 

individual preferences are also evident. 

 Individual differences in spatial ability may reflect differences in cognitive style or 

underlying differences in cognitive ability (Bosco et al. 2004; Burke et al. 2012; Saucier et 

al. 2002). A link between spatial ability and navigation outcomes is apparent, and tests of 

mental rotation, visualization, and memory are good predictors of successful wayfinding 

(Allen 1999). A training effect has also been demonstrated (Feng et al. 2007), with structural 

changes to the brain observable in highly trained individuals (e.g. the well-known case study 

involving London cab drivers; see Maguire et al. 2000). In other words, the brain is capable 

of responding physiologically to the demands of regularly performed spatial tasks. 

 The archaeological record suggests that modern humans developed complex, 

spatially extensive social networks during the course of the Middle Stone Age (280-50 Kya) 

and developed the tools and social conventions necessary to maintain them (d’Errico et al. 

2003, 2005; Gamble 1998 (Wadley 2001). The symbolic use of material culture to define 

social relationships is considered typical of modern human behaviour and is thought to 

emerge during the Middle Stone Age (Henshilwood and Marean 2003; Wadley 2001). The 

ethnographic record shows that the reciprocal exchange of artefacts functions to maintain 

social networks (Weissner 1984) and the manufacture of items of personal adornment (e.g., 

beads, pendants) during the Palaeolithic could signal the symbolic use of material culture as 

a marker of social identity, used to cement social relationships and maintain social networks. 

Supporting evidence for the development of more spatially extensive networks during the 

Upper Palaeolithic of Europe includes the long-distance circulation of “exotic” raw materials 

(Feblot-Augustin 1993; Feblot-Augustin 1997). 
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 Hunter-gatherers use social networks to collect information about resource 

availability (Whallon 2006; Whallon et al. 2011). They also act as a form of “social safety 

net” since the social obligations engendered through reciprocal exchanges between members 

of a network can be exploited in times of resource stress (Kelly 2013; Cashdan 1985; 

Weissner 1982; Smith 1988). Keeping track of dynamic, spatially extensive social networks 

would have placed additional cognitive demands on the brain and may have enhanced spatial 

ability, as well as contributing to the dispersibility of modern human populations (Burke 

2012). 

 While the development of complex, spatially extensive social networks might have 

selected for enhanced spatial cognition, the reverse may also be true. That is, it is possible 

that structural changes in the human brain, such as the enlargement of the parietal and 

temporal regions described earlier, enhanced spatial cognition and facilitated the 

development of dynamic, long-distance social networks. Similarly, it has been hypothesized 

that enhanced working memory (associated with neurological changes in the frontal lobes) 

is a key aspect of modern human cognition that promoted planning skills and the 

development of managed foraging systems, albeit at a much later date (Wynn and Coolidge 

2003). Whether or not structural changes to the brain translated into more efficient 

wayfinding remains to be seen, but it is possible that the role of the parietal and temporal 

regions in coordinating goal-directed movement and encoding environmental signals was 

enhanced with implications for path integration and wayfinding ability. This would have 

permitted modern humans to travel and explore new regions with greater ease, facilitating 

the development of modern human social networks and enhancing the ability of human 

groups to disperse widely – a phenomenon observable in the archaeological record of the 

Late Pleistocene. 

 

Spaces and minds: visuospatial cognition and social aspects 

If humans experienced a change or a specialization for extending their cognitive capacities 

beyond the brain, then visuospatial functions may well represent a focal point for future 

investigation in anthropology and archaeology (Bruner and Iriki 2016). The visuospatial 

system can be partially investigated in paleoanthropology taking into account evolutionary 

changes in the anatomical elements involved in visuospatial functions (Bruner et al. 2016c). 

Visuospatial integration can be studied in physical and cultural anthropology by using the 

comparative approach, and by testing differences in visuospatial behaviors associated with 

specific tools or environments. Following a traditional approach in human ethology (Eibl-

Eibesfeldt 1989), universal visuospatial behaviors (i.e., those considered to be independent 

of culture) can reveal shared human capacities channeling the cognitive experience. In terms 

of neurobiology, visuospatial processes can be investigated in extant human populations 

through functional imaging and psychometrics. Taking into account that modern humans rely 

on dental manipulation less than other hominids did, it may be interesting to evaluate in 

greater detail the neurological mechanisms involved in the ontogenetic transition from 

mouth-based to hand-based exploration in infants (Haggard and De Boer 2014; Rochat 1989, 

1993). Regarding cognitive performance, preliminary psychometric analyses have thus far 

not revealed correlations between precuneus dimensions and standard visuospatial cognitive 

tests (Bruner et al. 2015). Nonetheless, there is a possibility that psychometric evaluation of 
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parietal functions should be based on batteries tailored to integrative aspects of visuospatial 

cognition or embodiment capacities. In archaeology, visuospatial functions can be 

investigated by interpreting visuospatial behaviors, following the principle of cognitive 

archaeology (Coolidge and Wynn 2005, 2009; Coolidge et al. 2015). Tool forms and 

structures, as well as activities like hunting, visual arts, and land use, can provide direct and 

indirect evidence of specific behaviors, which may yield variables and parameters that can 

quantitatively support specific cognitive hypotheses. 

 We are now realizing that the body and material culture may play a major role within 

human cognition (Byrge et al. 2014; Haggard 2005). This relationship may become even 

more complex when different bodies interact (i.e. when dealing with interpersonal and social 

relationships). In fact, the spatial and chronological perception associated with the self and 

others strongly influences how social structures are perceived (Hills et al. 2015; Maister et 

al. 2015). The individual self may think of sociality in terms of a “social space” with spatial 

and chronological properties. Through autonoetic perspectives based on the recognition of 

the self in time and space, we manage our representations of relationships between persons, 

environments, and objects (Peer et al. 2015). Probably not by chance, there is a special link 

in primates between brain dimension, social structure, and touch (Dunbar 1998, 2008): brain 

size appears proportional to group size, which in turn appears proportional to grooming 

activity. These three factors exert a reciprocal influence in the sense that they can promote 

or constrain each other. Whatever the actual causes and effects, brain size, social structure, 

and physical contact are profoundly associated. Interestingly, the relationship between touch 

and group behaviors is mediated by endorphins, representing an organic bridge between 

touch, brain, and society (Dunbar 2010; Machin and Dunbar 2011; Suvilehto et al. 2015; 

Nummenmaa et al. 2016). 

 Because of the limited information available on the mechanisms of visuospatial 

integration and embodiment, the first priority will be to identify experimental paradigms that 

will enable the exploration of these functional networks, and the evaluation of specific 

cognitive hypotheses. Although many evolutionary processes cannot be tested, and although 

cognition cannot be directly investigated in fossil species, an effort must be done to assess 

the consistency of hypotheses in cognitive archaeology through quantitative comparisons and 

multidisciplinary convergence. The second priority is to look for evidence of possible change 

in the paleontological and archaeological records that relate to visuospatial behaviors. The 

evolutionary perspective can reveal gradual or discontinuous variations in the way we 

perceive and interact with the external environment, integrating and enhancing our neural 

processes with additional extended resources. 
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