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In “Models and Reality”, Putnam sketched a version of his internal realism as it might arise in 

the philosophy of mathematics. The sketch was tantalising, but it was only a sketch. 

Mathematics was not the focus of any of his later writings on internal realism, and Putnam 

ultimately abandoned internal realism itself. As such, I have often wondered: What might a 

developed mathematical internal realism have looked like?  

I will try to answer that question here, by reflecting on a discussion between Putnam, 

Dummett, Parsons and McGee which spanned nearly five decades. This also builds on work 

I have co-authored with Walsh. For readability, I have abandoned many of the historical 

contours in favour of “rational reconstruction”, and I have relegated most of my commentary 

on the origins of various ideas to the footnotes of this paper. But I should like to make it 

perfectly clear that, without the work of the people just mentioned, this paper could scarcely 

have begun.  

1. Acquisition and manifestation 
I want to start by considering our NATURAL NUMBER concept. For clarity: I am not interested 

in specific number concepts, like THREE or TWENTY. I am interested in the general NATURAL 

NUMBER concept, as used within serious mathematics.  

We have to acquire our mathematical concepts. Even if we are born with the capacity 

to acquire mathematical concepts, we are not born with the concepts themselves. No infant 

has the general NUMBER concept.  

Equally, we must be able to manifest our mathematical concepts. Whilst 

mathematicians may sometimes work alone, mathematical practice is fundamentally 

communal. Mathematicians present each other with proofs and projects. 1  

In our early steps towards acquiring the NUMBER concept, we learn how to recite 

sequences like “1, 2, 3, 4, 5”, and learn how to use such sequences to count out small 

collections of objects (fingers, beads, cows, or whatever). Later, we graduate to more 

complicated tasks, like mastering algorithms for adding (or multiplying) numbers in decimal 

                                                                 
1 Manifestation and acquisition are deep themes throughout Dummett’s work (e.g. 1963: 188–90). 



notation. But my interest here is not in numerical cognition, infant or adult. It is in the 

NUMBER concept itself, as used in serious mathematics. And, whatever developmental-cum-

pedagogical steps we must take towards acquiring that concept, we have acquired it only 

when we have grasped some full-blown mathematical theory, such as Peano Arithmetic.2 

Equally, we manifest our grasp of the concept by using some such theory.  

So, for the rest of this paper I will assume both that mathematical concepts can be (and 

only can be) fully acquired by mastering a theory, and that mathematical concepts can be (and 

can only be) fully manifested by presenting a theory.3 

2. The modelist answer 
With all this assumed, I want to raise a question:4 

How precise is our NATURAL NUMBER concept? 

I want to show how the relationship of theories to (the acquisition and manifestation of) 

concepts threatens to constrain the precision of our mathematical concepts. To explain how 

the threat arises, I will introduce a specific philosophical character, the modelist. Her position 

is extremely tempting, but it is ultimately untenable.  

The modelist answers my initial question with a slogan:  

Modelist. The NATURAL NUMBER concept is precise up to isomorphism.  

But, of course, her slogan needs to be explained: 

Modelist. To consider the NATURAL NUMBER concept, we can simply consider the class of all 

natural-number sequences. After all, that class encodes everything we could ever want to know 

about the NATURAL NUMBER concept. So, when you ask, “How precise is our NATURAL NUMBER 

concept?”, I attack this by instead asking, “How refined is the class of arithmetical models?” 

Well, on the one hand: suppose we had two sequences that were not isomorphic. In that 

case, we would not allow that both were natural-number sequences, since they would differ in some 

arithmetically important respect. So: every model in the class must be isomorphic to every other.  

On the other hand: arithmetic does not really seem to care about the differences between 

isomorphic sequences. So: the class should be closed under isomorphism. 

Combining these two points: every model in the class must be isomorphic to every other, 

and the class must be closed under isomorphism. In short, the class of arithmetical models is an 

isomorphism type.5 

                                                                 
2 For an interesting discussion concerning the stage at which we (implicitly) come to grasp Peano Arithmetic 

(or something like it), see Rips et al (2008 and the subsequent ‘Open Peer Commentary’).  
3 In fact, I only require that this assumption holds for the concepts NUMBER and SET. Even those who are not 

yet convinced by this assumption may be interested to see where it leads.  
4 Dummett (1963) and Parsons (1990) ask roughly this question. Putnam (1980) raises very similar issues, but 

via questions which focus more on objects than on concepts. However, objectual and conceptual versions of the 

question are very similar (see Button & Walsh, 2018: chs.6–8); so, for simplicity, I will focus solely on the 

conceptual version.  



That is what I mean, when I say that the NUMBER concept is precise up to isomorphism. I 

mean: we can (and should) use an isomorphism type as a surrogate for the NUMBER concept.  

Note that many mathematical concepts are not this precise. As an example: the LINEAR 

ORDER concept is a perfectly decent concept, but plenty of linear orders are not isomorphic, so that 

the LINEAR ORDER concept is not precise up to isomorphism. My view is roughly that our 

foundational mathematical concepts are (or, aim to be) precise up to isomorphism. Admittedly, 

the idea of a “foundational” concept is a little imprecise, but I hope you get a sense of my ambition. 

That is modelism, in a nutshell. Modelism is obviously structuralist. However, modelism is 

just one version of structuralism. And its special reliance on model theory gives rise to its 

name, modelism.6 

 

Modelism is appealing. Unfortunately, as Putnam taught us, it succumbs to a model-theoretic 

argument. 7 

In §1, I insisted that mathematical concepts must be tied to theories, via manifestation 

and acquisition. So, if the NUMBER concept is precise up to isomorphism, as the modelist 

insists, then our arithmetical theory must pick out an isomorphism type. But formal theories 

are offered in formal languages, and formal languages have certain provable limitations. For 

example, we have: 

The Löwenheim–Skolem Theorem. If a (countable, first-order) arithmetical 

theory has any infinite models, then it has models of every infinite cardinality.  

A Corollary of Compactness. If a (first-order) arithmetical theory has any 

infinite models, then it has models containing non-standard elements. 

So – assuming we are limited to (countable) first-order theories – our theory cannot pick out 

an isomorphism type. But then, given that the NUMBER concept was supposed to be precise 

up to isomorphism, no theory will allow us (fully) to manifest or acquire our NUMBER 

concept. And that contradicts what I insisted upon in §1.  

This is the kernel of the model-theoretic argument against modelism. To make it stick, 

though, we must defend the assumption that the modelist is limited to considering formal, 

(essentially) first-order, theories.  

 

First, then, consider formality. Arithmetic, as a practice, is not just a list of axioms, but rather 

a “MOTLEY [of techniques and proofs”.8 So, a modelist might propose that this motley 

plays some role in picking out an isomorphism type. 9 

                                                                                                                                                                                       
5 Our modelist might do better to focus on definitional equivalence instead of isomorphism (see Button & Walsh 

2018: §§5.1–5.2); but this would not change the dialectic. 
6 Button & Walsh (2018: ch.6) coined the term, and go into more detail. 
7 The remainder of this section presents the central problem I extract from Putnam’s (1980) invocation of the 

Löwenheim–Skolem Theorem. (Admittedly, Putnam raised the issue in a more “objectual” than “conceptual” 

key; but see footnote 1, above.) Dummett (1963: 192) raised a similar problem, focussing on Gödelian 

incompleteness. For more, see Button & Walsh (2018: ch.7). 



Now, insofar as model theory (as a branch of pure mathematics) considers theories, it 

considers only formal theories. So, if a modelist appeals to informal mathematics, then we 

cannot raise problems for her just by employing results from model theory. And this might 

seem like a strike in favour of an “informalist” modelism.  

However, this point really cuts both ways. The very notion of an ISOMORPHISM TYPE is 

something we define within model theory. So it is hard to see how anyone could even hope to 

explain how an informal theory could pin down an isomorphism type. Moreover, leaving this 

issue unexplained is not viable, since the following two responses seem equivalent, and hence 

equally absurd: 

(i) It is just a brute fact – a “primitive, surd, metaphysical truth”10 – that our 

informal mathematical practice pins down a particular isomorphism type. 

(ii) Luckily, everyone who wears this particular motley just happens to pick out a 

very specific thing, even though (a priori) any of us might have picked out 

different things, or indeed have failed to pick out anything at all. 

As such, I take it that modelists are restricted to using formal theories, and that they must 

explain how formal theories can pin down isomorphism types. 11 

 

The model-theoretic argument against modelism did not, though, just assume that the 

modelist’s favourite theory must be formal; it also assumed that the theory must be 

(essentially) first-order. 

A little technical background will help to explain this point. When we use the full 

semantics for second-order logic, we treat second-order quantifiers as ranging over the full 

powerset of the first-order domain. So, we gloss “X” roughly as “for any subset of the first-

order domain”. Now, neither the Löwenheim–Skolem nor the Compactness theorems hold 

for full second-order logic. On the contrary, we have the following: 12 

Dedekind’s Categoricity Theorem. Second-order Peano arithmetic is 

categorical in full second-order logic (i.e., all models of the theory are 

isomorphic).  

                                                                                                                                                                                       
8 Wittgenstein (1956: §46); “MOTLEY” is a translation of “buntes GEMISCH”. 
9 This seems to be Benacerraf’s (1985: 108–11) response to Putnam (1980). 
10 Putnam (1981: 46) 
11 Admittedly, mathematicians were discussing “the natural numbers” long before they had any formal theories 

(in the modern sense). So, to tell the historical story of how we (collectively) acquired the NUMBER concept, we 

would certainly need to talk at length about informal practice. I do not, though, think this affects the general 

point that, in terms of §1, the modelist should concede that she must employ a formal theory if she wants to 

manifest the concept in its full precision. 
12 For a modern proof, and references to plenty of others, see e.g. Button & Walsh (2018: §7.4). 



So, invoking this result, we can expect the modelist can reply to the model-theoretic 

argument as follows: 

Modelist. The theory of second-order Peano arithmetic allows us to acquire and manifest a 

NUMBER concept that is precise up to isomorphism. 

This reply is tempting, but fatally flawed.13 The flaw does not concern the use of second-order 

Peano arithmetic (there is nothing intrinsically wrong with concatenating quantifiers with 

upper-case letters). The flaw concerns the appeal to the full semantics for second-order logic.  

Our modelist wants to say that some (formal) theory allows us to acquire and 

manifest our NUMBER concept. Indeed, she has specified a particular theory: second order 

Peano arithmetic. However, if we approach second-order Peano arithmetic using the 

Henkin-semantics for second-order logic, then both the Löwenheim–Skolem and 

Compactness results return. So, the modelist must insist that we approach second-order 

Peano arithmetic using a particular semantics; the full semantics.  

At this point, we must ask her to explain how we acquire and manifest the concepts 

involved in that semantics. I expect this reply:14 

Modelist. The key concept, i.e. POWERSET, just comes down to the idea of ALL 

COMBINATORIALLY POSSIBLE SUB-COLLECTIONS OF A COLLECTION. 

This is true. But we are no more born with that general mathematical concept, than we are 

born with the general NUMBER concept; we must acquire it. Equally, we must be able to 

manifest it. The rules of §1 apply.15 

Now, in §1, I noted that counting out small collections of objects is probably an 

important step on the road towards acquiring the NUMBER concept. In the end, though, I 

insisted that we grasp the general concept only when we grasp some full-blown mathematical 

theory. Similarly: manipulating small collections of objects may be an important step on the 

road towards acquiring the notion of SET, but we grasp the general concept of POWERSET only 

when we grasp some full-blown mathematical theory. 

As above: allowing this theory to be informal will leave everything unexplained. So the 

modelist must accept that the theory which gives us the POWERSET concept is formal.  

Now, though, the modelist has begun on an infinite regress. To make it explicit:  

(1a) To explain how we come to grasp the NUMBER concept, the modelist presents 

us with a formal theory, T1. 

                                                                 
13 What follows is, in effect, one version of Putnam’s famous just-more-theory manoeuvre; see Putnam (1977: 

486–7; 1980: 477, 481) and references and discussion in Button (2013: chs.4–7) and Button & Walsh (2018: 

§§2.3, 7.7–8). 
14 Thanks to Mary Leng for suggesting this way of putting it. 
15 It is sometimes suggested that our grasp of plural logic will deliver the required combinatorial concept. But 

the same question arises: what allows us to grasp full plural logic, rather than Henkin plural logic? Florio and 

Linnebo (2016) develop this criticism elegantly. 



(1b) However, if T1 is to pin down the NUMBER concept up to isomorphism, T1 must 

be understood via some “intended” semantics. 

(1c) So, if T1 is to achieve what the modelist wants, we must understand the 

concepts involved in T1’s “intended” semantics before we are introduced to T1.  

(2a) To explain how we come to grasp those semantic concepts, the modelist 

presents us with a formal theory, T2. 

(2b) However, if T2 is to pin down those semantic concepts sufficiently precisely, T2 

must be understood via some “intended” semantics. 

(2c) So, if T2 is to achieve what the modelist wants, we must understand the 

concepts involved in T2’s “intended” semantics before being introduced to T2. 

 … 

So it goes. This is clearly a regress. Equally clear, it is a vicious regress. It simply cannot be a 

constraint, on acquiring or manifesting the concepts involved in one theory, that we must 

first acquire or manifest the concepts involved in the theory at the next meta-level. 16 For then 

we would never be able to acquire or to manifest our concepts at all.  

 

One final point. Earlier, our modelist moved straight from first-order logic to second-order 

logic with its full semantics. In fact, she might have invoked one of several alternative logics 

in a similar effort to rebut the model-theoretic argument. But there is a hard limit here. As 

noted, we can present a model-theoretic argument using just the Compactness Theorem. 

But Compactness holds for any logic with a finitary (sound and complete) proof system. 17 

So: if the modelist wants to use a logic which is strong enough to pin down an isomorphism 

type, then the logic cannot be fully articulated in terms of a proof system, but must be 

articulated semantically. And that suffices to set the modelist off on her vicious regress. 

3. A Dummettian approach 
Modelism has failed. We need an alternative. An obvious thought is to approach matters 

proof-theoretically, rather than model-theoretically. Indeed, this was Dummett’s approach. 

His central thought is something like this:  

(a) Mathematical concepts are determined fully by their uses in proofs.  

The hope is that this will do better than modelism, in coping with the requirements of 

acquisition and manifestation from §1. After all, rules of proof are rather more tractable than 

isomorphism types, when it comes to teaching and learning mathematics. 

Unfortunately, there is an immediate barrier to this proposal. Let P be any computable 

system of proof, i.e. a system for which there is an algorithm which decides whether any 

                                                                 
16 Note that it is useless to suggest that Tn = Tn+k , for some n and all k, since there are guaranteed to be 

“unintended” Henkin-style interpretations of each Tn, and these will yield unintended interpretations of T1.  
17 See Button & Walsh (2018: §7.9). 



putative proof is a genuine proof. Now, suppose (for reductio) that P-provability exhausts 

the arithmetical facts; i.e. that, for any arithmetical sentence φ:  

φ iff there is a P-proof of φ 

Since being a P-proof is decidable, some computable function captures the idea that x is (a 

code of) a P-proof of (the code of) φ. Using this, we can formulate an arithmetical predicate, 

Tr, such that, for any arithmetical sentence φ: 

there is a P-proof of φ iff Tr(‘φ’) 

It follows that, for any arithmetical sentence φ:  

φ iff Tr(‘φ’) 

But this contradicts Tarski’s Indefinability Theorem.18 So, we must retract the assumption 

that P-provability exhausts the arithmetical facts. More generally, we must accept that 

(b) No computable system of proof exhausts the arithmetical facts.  

Dummett is aware of this sort of reasoning;19 but he does not take it to undermine (a). 

Instead, since he insists that the NUMBER concept is fully determined by its use in proofs, he 

takes (b) to show that “no formal system can ever succeed in embodying all the principles of 

proof that we should intuitively accept”.20 That is, in accordance with (a), the NUMBER 

concept is fully determined by its use in intuitively acceptable proofs; but, by (b), the notion 

of INTUITIVELY ACCEPTABLE PROOF is non-computable. From this, Dummett concludes that 

that the NUMBER concept itself “cannot be fully expressed by means of any formal system”.21 

Unfortunately, this leads to a rather unhappy conclusion. Following Dummett, I have 

insisted that our NUMBER concept must be both acquirable and manifestable. But machines, I 

take it, can only acquire concepts which can be fully expressed by means of some formal 

system.22 Given Dummett’s claim that the NUMBER concept “cannot be fully expressed by 

means of any formal system”, he must accept that machines cannot acquire the NUMBER 

concept, but only acquire some imprecise approximation to it. In short, Dummett’s position 

commits us to a startling disjunction: 

                                                                 
18 I have put the problem this way, rather than simply invoking the fact that the class of arithmetical truths is not 

computably enumerable, to emphasise that the problem does not depend on invoking a notion of arithmetical 

truth that is (somehow) “prior” to a notion of proof.  
19 Though Dummett (1963) focusses on Gödelian reasoning, rather than on Tarskian undefinability. 
20 Dummett (1963: 200). 
21 Dummett (1963: 186). 
22 Setting aside machines with access to oracles.  



(c) Either we are not machines, or we do not possess the NUMBER concept.23 

I cannot really take seriously the possibility that we do not possess the NUMBER concept. 

Equally, though, I do not want my philosophy of mathematics to require that we are not 

machines. Whilst much more could be said on both fronts, I ultimately have no option but to 

part ways with Dummett.  

4. The Skolem–Gödel Antinomy 
The previous three sections can be summarised as follows.  

We acquire and manifest our mathematical concepts via formal theories. Modelism 

treats such theories model-theoretically, but it succumbs to a model-theoretic argument. 

The obvious alternative is to treat formal theories proof-theoretically. If we want to allow for 

the possibility that we are machines, then the relevant system of proof must be computable. 

But our NUMBER concept is sufficiently precise and detailed that no computable system of 

proof exhausts the arithmetical facts. 

All told, we find ourselves in the following bind:  

The Skolem–Gödel Antinomy. Our mathematical concepts are perfectly precise. 

However, these perfectly precise mathematical concepts are manifested and acquired 

via a formal theory, which is understood in terms of a computable system of proof, 

and hence is incomplete. 

One might well worry that something must have gone wrong, because a NUMBER concept 

articulated in an incomplete theory must thereby be imprecise. I certainly feel the tension; 

indeed, that is why I call this predicament an “antinomy”.24 Still, I do not think that anything 

has gone wrong. This really is our predicament, and we need to face up to it. 

With that in mind, the rest of this paper outlines a position, internalism, which aims to 

resolve the Skolem–Gödel Antinomy. Moreover, I think that internalism provides a detailed 

development of the mathematical internal realism which Putnam sketched towards the end 

of his “Models and Reality”.25  

                                                                 
23 This is obviously similar to Gödel’s Disjunction (1951: 310). However, Dummett’s right disjunct (“we do 

not possess the NUMBER concept”) is much stronger than Gödel’s (“there exist absolutely unsolvable 
diophantine problems”).  
24 Cf. Putnam’s (1980: 464) use of “antinomy”. 
25 I should clarify my ambitions here, not least because the material in the second half of this paper has its basis 

in joint work with Sean Walsh (Button & Walsh 2018). In that book, Sean and I were not endorsing internalism; 

we simply wanted to articulate the best possible version of internalism. In this paper, I want to stick my neck out a 

bit (but only a bit) further. 

I am confident that the Skolem–Gödel Antinomy accurately describes our predicament. Moreover, 

internalism strikes me as the most promising line of response to the Antinomy. Indeed, at the moment, I see no 

other way to face up to the Antinomy.  



5. Internalism about arithmetic 
I will start by outlining a formal theory of arithmetic which articulates the NATURAL NUMBER 

concept incompletely, but still shows that concept to be perfectly precise.  

I do not want my theory to assume that everything is a number. So I need a primitive 

predicate, ‘N(x)’, to be read as ‘x is a natural number’. I also need a primitive function 

symbol, ‘s(x)’, to be read as ‘the successor of x’. To save some space in my formalisms, I will 

introduce two obvious abbreviations: 

(x : Ψ)φ abbreviates x(Ψ(x)  φ) 

(x : Ψ)φ abbreviates x(Ψ(x)  φ) 

And now, using these symbols and abbreviations, I can lay down four axioms:  

(1) (x : N) N(s(x)) 

i.e. the successor of any number is a number 

(2) (z : N)(x : N) s(x) ≠ z 

i.e. there is a ‘zero’ element 

(3) (x : N)(y : N)(s(x) = s(y)  x = y) 

i.e. successor is injective on the numbers 

(4) F({(z : N)[(x : N)s(x) ≠ z  F(z)]  (x : N)[F(x)  F(s(x))]}   

(x : N) F(x)) 

i.e. induction. More fully: for any property F, if every ‘zero’ element has F and F is 

closed under successor, then every number has F.  

Let PAint be the conjunction of these four axioms. The name abbreviates Peano Arithmetic, 

internalized, and PAint is just ordinary second-order Peano Arithmetic, with all the axioms 

relativized to ‘N’. This is the theory which I will wield in the face of the Skolem–Gödel 

Antinomy. 

 

                                                                                                                                                                                       
Still, there is more work to be done to clarify internalism (on which, see §9). And, though I hope 

otherwise, such further work may end up exposing deep flaws in internalism.  

So, the situation is this. If you forced me to declare for some position in the philosophy of mathematics, 

then I would declare myself an internalist, and hope that everything works out for the best. But, absent that 

compulsion, I hesitate to call myself an avowed internalist. For readability, though, I will keep these reservations 

buried in this footnote. In the main text of this paper, I will write as a straightforward advocate of internalism. 

Perhaps I am being absurdly cagey. But, I am mindful of Putnam’s (2000: 127–8) remark: “This 

identification of truth with superassertability is one that I myself found somewhat implausible, but at that time 

(the late 70s and early 80s) I did not see how to make sense of the notion of truth in any other way, given the 

failure of metaphysical realism.” 



To appreciate the virtues of PAint, I want you to imagine two people, Solange and Tristan, 

who have both learned PAint.26 They are now happily babbling away to each other, exploring 

its consequences.  

Although they will presumably use the same words as each other, to keep things clear, I 

will use ‘N1’ for Solange’s number-predicate and ‘s1’ for her successor-function, so that 

Solange advances PAint in this subscripted vocabulary. I will call her subscripted theory 

PA(N1, s1). Similarly, I will have Tristan advancing PA(N2, s2).  

In advancing PA(N1, s1) and PA(N2, s2), there is no guarantee that Solange and Tristan 

are talking about the same objects (if they even think of themselves as talking about objects at 

all). To take a trivial example: maybe “Solange’s zero element” is Solange herself, and 

“Tristan’s zero element” is Tristan, so that Solange can rightly say “zero is hungry”, whilst 

Tristan rightly says “zero is not hungry”. But this is trivial, and for an obvious reason: 

mathematicians basically only care about arithmetical features of the natural numbers, and 

not (for example) whether the numbers are hungry. We philosophers should probably do the 

same.  

In that case, the important question is this:  

Is there any guarantee that Solange’s numbers and Tristan’s numbers share the same 

arithmetical structure? 

In fact, PAint is just strong enough to give us this guarantee. We have:27 

Internal Categoricity of PA.  

⊢ N1s1N2s2([PA(N1, s1)  PA(N2, s2)]  

R [vy(R(v, y)  [N1(v)  N2(y)])  

(v : N1)!y R(v, y)   

(y : N2)!v R(v, y)   

vy(R(v, y)  R(s1(v), s2(y)))])  

Roughly, this says the following: given that Solange’s number-property and successor-

function behave PAint-ishly, and so do Tristan’s number-property and successor-function, 

there is some relation, R, which takes us from Solange’s numbers to Tristan’s, and is 

bijective, and preserves successor (and hence also preserves zero-hood). Or, more briefly: 

                                                                 
26 The idea here is inspired by Parsons’s (1990; 2008) discussions of Kurt and Michael. For more on the 

similarities and differences between this approach and Parsons’s, see Button & Walsh (2018: §10.B). 
27 See Button & Walsh (2018: §10.B) and Väänänen & Wang (2015, Theorem 1). For the sake of exposition, I 

have moved freely between treating e.g. “N1” as a predicate and treating it as a relation-variables, leaving it to 

context to individuate what treatment is appropriate. For a rigorous treatment, see Button & Walsh (2018: 

chs.10–12). 



Provably, all of Solange’s arithmetical structure is mirrored in Tristan’s numbers, 

and vice versa. 

This internal categoricity result bears a family resemblance to Dedekind’s categoricity result, 

mentioned in §2, that all models of second-order Peano arithmetic are isomorphic. But it is 

worth spelling out the extremely important differences between these results.  

Dedekind’s result is model-theoretic. It is stated and proved in a semantic 

metalanguage. The internal categoricity result, by contrast, amounts to metamathematics 

without semantic ascent. It involves no semantic considerations at all. The turnstile ‘⊢’ which I 

used in stating the result indicates that the proof takes place in the ordinary deductive system 

for (impredicative) second-order logic. The proved sentence is in the same language as PAint 

itself (or, more austerely, in the “purely logical” fragment of PAint). So it is an internal 

categoricity theorem, in precisely the sense that it does not take us beyond the object 

language itself, or outside that object-language’s deductive system.  

Sticking with (mere) deduction has a benefit. In §2, our modelist attempted to invoke 

Dedekind’s categoricity result. As such, she needed to invoke a semantic theory, and this set 

her off on a vicious regress. Since no semantic theories are involved in the Internal 

Categoricity Theorem, no similar regress can arise.  

However, sticking with (mere) deduction also comes with a cost. Inevitably, PAint fails 

to prove its own Gödel-sentence. Since we are viewing PAint deductively, we must therefore 

regard it as incomplete.  

 

All of this, of course, was promised us by the Skolem–Gödel Antinomy. Nonetheless – and 

to address that Antinomy – I now want to insist that PAint succeeds in introducing a perfectly 

precise NUMBER concept.  

To explain why, I want to revisit Solange and Tristan, respectively affirming PA(N1, s1) 

and PA(N2, s2). Suppose that Solange affirms an appropriate formalisation of “every even 

number is the sum of two primes”, to which Tristan shakes his head and affirms an 

appropriate formalisation of “some even number is not the sum of two primes”. Ask yourself: 

Is there any guarantee that Solange and Tristan are in genuine disagreement? 

We already noted that Solange and Tristan need not agree about what the numbers are. Still, 

Goldbach’s Conjecture is purely arithmetical. So, since all of Solange’s arithmetical structure 

is mirrored in Tristan’s numbers (and vice versa), we might expect there to be genuine 

disagreement here. And that is exactly what we find. More precisely, we have the following 

corollary of PAint’s internal categoricity:28 

                                                                 
28 For a full statement and proof, see Button & Walsh (2018: §§10.5, 10.B). Note the schematic character of this 

result. This might lead us to ask the internalist questions about the syntactic theory (as we asked the modelist 

questions about the semantic theory), but I think these can be addressed (see Button & Walsh, 2018: §10.8). 



Intolerance of PA. For each second-order formula φ, whose only free variables 

are N and s, and whose quantifiers are all restricted to N: 

⊢ Ns(PA(N, s)  φ)  Ns(PA(N, s)  ¬φ) 

And, if you stare at this for a minute or so, you should see that this can be informally glossed 

as follows: 

On pain of provable inconsistency, no two PAint-ish NUMBER concepts can diverge 

over any arithmetical claim. 

I call this an intolerance theorem, since it shows that PAint does not tolerate different ways of 

pursuing arithmetic. If Solange affirms Goldbach’s Conjecture whilst Tristan denies it (in 

their respective languages), then Solange cannot just shrug and say: “that might hold in your 

numbers, but it doesn’t hold in mine!” If they share a logical language, then – on pain of 

inconsistency – they must hold that one of them is wrong. 

This observation is the key to my claim that PAint articulates the NUMBER concept 

precisely. To spell out the final steps, I propose that we should think about precision in 

roughly the way that supervaluationists think about determinacy, i.e. via this heuristic:  

If we can equally well render a claim right or wrong, just by sharpening up the 

concepts involved in the claim in different ways, then that claim is indeterminate 

(prior to any sharpening of concepts). Otherwise, it is determinate.  

Now let φ be any arithmetical claim. If φ holds for every PAint-ish NUMBER concept, then we 

cannot render φ right or wrong, just by considering Solange’s number concept rather than 

Tristan’s, or whatever. So, by the above heuristic, it is determinate that φ. More generally, this 

suggests that we should gloss Ns(PA(N, s)  φ) as ‘it is determinate that φ’. And this 

allows us to restate the Intolerance Theorem as follows: 

Glossed Intolerance. For each second-order formula φ, whose only free 

variables are N and s, and whose quantifiers are all restricted to N: 

⊢ Ns(PA(N, s)  φ)  Ns(PA(N, s)  ¬φ) 

i.e.:  either it is determinate that φ or it is determinate that ¬φ 

i.e.:  it is determinate whether φ 

In sum: thanks to its intolerance, PAint articulates our NATURAL NUMBER concept sufficiently 

precisely, that every arithmetical claim is determinate. 

 

Allow me to summarise this section. The theory PAint has just four “axioms” – its conjuncts – 

so that there is no difficulty in acquiring or manifesting either the theory itself or the concepts 

it articulates. Plenty of arithmetical claims are not decided by PAint; it articulates the NUMBER 



concept incompletely. But PAint articulates our NUMBER concept sufficiently precisely, that 

(provably) every arithmetical claim is determinate. 

In short, PAint gives us a way to respond to the Skolem–Gödel Antinomy of §4, in the 

specific case of the NUMBER concept. That is the response I want to offer. And here is a 

statement of my position, more generally:  

Internalist (about arithmetic). I affirm PAint unrestrictedly and unreservedly. With Dummett, I 

agree that the NUMBER concept is given to us primarily in terms of proof. Unlike Dummett, though, 

I rely upon a computable system of proof. Then, with the modelist, I aim to prove the precision of 

my NUMBER concept, by proving the categoricity of my arithmetical theory. But, unlike the 

modelist, I am successful; and I succeed, because my categoricity result is internal.  

6. Internalism about set theory 
There is much more to say about internalism about arithmetic. I will say some of it in §9. 

First, I want to consider internalism about set theory. In brief, I want to lift the story of §5 

over from the NUMBER concept to the SET concept.  

As in the previous section, I will start by introducing an “internalized” theory of pure 

sets. Rather than using a Zermelo–Fraenkel-style theory, I will use a set theory which 

captures the “minimal core” of the cumulative iterative notion of set, namely, Scott–Potter 

set theory.29 (I will explain this talk of the “minimal core” in a moment.) 

Mine will be a theory of pure sets. So, if there is a set of the cows in the field, then I will 

simply ignore it. To restrict attention to pure sets in this way, I need a predicate, ‘P(x)’, to be 

read as ‘x is a pure set’. Unsurprisingly, I will also need a membership predicate, ‘’. And, 

using these symbols, and the abbreviations of §5, I can write down some axioms: 

 

(1) xy(x  y  (P(x)  P(y))) 

 i.e. we restrict our attention to membership facts between pure sets 

(2) (x : P)(y : P)[z(z  x  z  y)  x = y] 

 i.e. pure sets are extensional entities 

(3) F((x : P)z(z  x  F(z))  (y : Level)(z : F)z  y) 

i.e. for any property F: there is a pure set whose members are exactly the instances of F iff 

there is some “level” such that every instance of F is a member of that “level”. Or, more 

punchily: a property determines a pure set iff all its instances are members of some “level”.  

 

As written, principle (3) uses an undefined expression, “Level”. However – and this is the 

neat trick about the Scott–Potter approach – we can explicitly define “Level” in terms of set-

                                                                 
29 This is the core of the set theory presented by Potter (2004, especially ch.3). For a brief presentation of all 

that is required for the purposes of this paper, see Button & Walsh (2018: §§8.B–C, 11.C–D). 



membership.30 As such, the only primitives we need are “P” and “”. Let SPint, (for Scott–

Potter, internalized) be the conjunction of these three axioms.  

Crucially, SPint proves: the levels are well-founded by membership. Combining this 

with principle (3), this is why SPint gives us the “minimal core” of the cumulative iterative 

conception of sets. It is the “core”, since it tells us that sets are stratified into well-ordered 

levels. It is “minimal”, because it makes no comment at all about how far the sequence of 

levels runs. (There is no powerset axiom; no axiom of infinity; no axiom of replacement.) 

Indeed, thinking model-theoretically, the “pure parts” of the full second-order models 

of SPint are (up to isomorphism) exactly the (arbitrary) stages of the cumulative hierarchy, as 

described by second-order Zermelo–Fraenkel set theory.31 But I mention this fact, only to 

make SPint feel a bit more familiar. I will treat SPint deductively, as I treated PAint in §5. 

Working deductively, then, we can recover an “internal” counterpart of Zermelo’s 

quasi-categoricity theorem. Roughly, this says: if both Solange’s and Tristan’s pure sets 

behave SPint-ishly, then their sets are isomorphic as far as they go, but Solange’s might go 

further than Tristan’s (or vice versa). However, to keep this paper short, I will leave the 

details of internal quasi-categoricity for elsewhere,32 and skip straight ahead to a set theory 

which is internally (totally) categorical. I call this theory CSPint, for Categorical Scott–Potter 

set theory. We obtain it by adding a fourth conjunct to SPint: 

(4) f (x P(f(x))  y(P(y)  !x f(x) = y)) 

i.e. there are exactly as many pure sets as there are objects simpliciter, i.e. as objects 

which are either pure sets or not. (The quantifier “f” here is second-order.) 

In the deductive system for impredicative second-order logic, we can then prove internal 

categoricity for CSPint. Informally, this is the result that there is a membership-preserving 

bijection from Solange’s pure sets to Tristan’s. Formally: 33 

Internal Categoricity of CSP. 

⊢ P11P22([CSP(P1, 1)  CSP(P2, 2)]  

R [vy(R(v, y)  [P1(v)  P 2 (y)])  

(v : P1)!yR(v, y)   

(y : P2)!vR(v, y)   

vxyz([R(v, y)  R(x, z)]  [v 1 x  y 2 z])]) 

                                                                 
30 I omit the definition; for details, see Potter (2004: 24, 41) and Button & Walsh (2018: §§8.5, 8.B).  
31 See Button & Walsh (2018: §8.C). 
32 Interested readers should look to Button & Walsh (2018: §§11.2, 11.C). 
33 See Button & Walsh (2018: §§11.4, 11.D).  



From internal categoricity, we can also obtain intolerance. Informally, this result says that, on 

pain of inconsistency, no two CSPint-ish set concepts can diverge over any pure set-theoretic 

claim. Formally: 34 

Intolerance of CSP. For each second-order formula φ, whose only free 

variables are P and , and whose quantifiers are all restricted to P: 

⊢ P(CSP(P, )  φ)  P(CSP(P, )  ¬φ) 

The situation, then, is as with PAint. The theory CSPint gives internalists about set theory a 

concrete response to the Skolem–Gödel Antinomy of §4, in the specific case of the SET 

concept. It explains how creatures like us can acquire and manifest a SET concept which is so 

precise, that any purely set-theoretic claim is determinate.35 

7. Internalism about model theory 
I will say more about set theory in §9. But I now turn from set theory to model theory.  

I dismissed modelism in §2. Now, it would certainly be a disaster, if this forced me to 

dismiss model theory itself.36 Fortunately, it does not; my complaint against modelism is a 

complaint against a philosophical misuse of model theory. But this merits some explanation. 

Modelists insist on using model theory to explicate the acquisition and manifestation 

of mathematical concepts. That is a mistake. Having recognised this, we must follow Putnam 

in “foreswear[ing] reference to models in [our] account of understanding” mathematical 

theories and concepts. But the modelist’s mistake is no part of model theory itself, as a 

branch of pure mathematics. So, as Putnam notes, we do not “have to foreswear forever the 

notion of a model.”37 In fact, an internalist can introduce the MODEL concept quite easily.  

In common with almost every branch of mathematics, model theory is largely carried 

out “informally”: the proofs are discursive and they omit tedious steps. But we can easily 

make sense of the idea that, “officially”, model theory is implemented within set theory. After 

all, model-theorists freely use set-theoretic vocabulary and set-theoretic axioms to describe 

and construct models, and all of the definitions from ordinary model theory could (in 

principle) be rewritten in entirely set-theoretic terms. 

                                                                 
34 See Button & Walsh (2018: §11.5). 
35 The approach, and invocation of a technical result, is similar to McGee (1997). For more on the similarities 

and differences, see Button & Walsh (2018: §11.A). 
36 Cf. Lewis (1991: 58) “To reject mathematics for philosophical reasons would be absurd.” 
37 Putnam (1980: 179). See also Dummett (1963: 191, 193). 



So, in what follows, MTint (for Model Theory, internalised) will be a suitable set theory 

which I will use for model-theoretic purposes. There is no need to go into great detail about 

MTint; I only need to explain how it relates to CSPint. There are three crucial points: 38 

(1)  MTint deals with a pure set property, P, and a membership relation, .  

It might have other predicates too, but it has at least those.  

(2) MTint proves CSPint.  

This means that MTint is internally categorical with respect to pure sets.  

(3) MTint proves that there are infinitely many pure sets.  

This gives MTint the resources to carry out basic reasoning concerning arithmetic 

and (arithmetized) syntax. 

With these assumptions in place, MTint has all the basic vocabulary and conceptual resources 

for developing model theory as a branch of pure mathematics. Working model-theorists will 

almost certainly want to add more axioms to the underlying set theory, such as Replacement, 

but I will leave that to them (though I revisit the point in §8). 

Internalists about model theory affirm MTint and insist that model theory is “officially” 

carried out deductively within MTint. The payoff is as follows: via the internal categoricity 

and intolerance of CSPint, we have an explanation of how we can acquire and manifest a 

MODEL concept which is so precise, that any purely model-theoretic claims are determinate.  

(At some point, of course, we might well want to consider impure models, such as a 

model whose domain includes the cows in the field. However, this will not really affect 

much. The specifically model-theoretic features of an impure model can be determined by 

considering isomorphic models with pure domains.) 

8. Internal realism, revisited 
I have outlined internalist approaches to arithmetic, set theory and model theory. I now want 

to consider the interactions between internalism about these three branches of mathematics, 

with an aim to illuminating Putnam’s mathematical internal realism.  

 

Suppose that Sebastian has mastered arithmetic, in the form of PAint, but that he knows no 

model theory. Still, we – who know some model theory – can pose a question:  

Are any particular models of arithmetic “intended”, from Sebastian’s perspective?  

The short answer is:  

                                                                 
38 If we want to develop an account of truth for MTint itself, then we should also insist that MTint be a single 

formula, so that we can continue to use it in the course of internal categoricity results, in the form of 

conditionals like P(MT(P, )  φ). For details, see Button & Walsh (2018: §§12.4, 12.A). 



Yes; Sebastian’s use of PAint makes certain models “intended”. This is because our 

model theory essentially proves that PAint picks out a unique isomorphism type. So, it 

makes sense to say that the models of that type are “intended” for Sebastian.  

But I should spell this out carefully.  

I will work within MTint. For any number property, N, and any successor function, s, I 

will write ||N, s|| for the model (as the notion is defined in MTint) whose domain is the set 

whose members are exactly the instances of N, and whose interpretation of the successor-

symbol is the set whose members are similarly determined by s.39 Now suppose we augment 

MTint with the principle “any countable property determines a set”;40 call the resulting theory 

MTint
+.Then we can easily obtain:41 

MTint
+ ⊢ N1s1N2s2 ([PA(N1, s1)  PA(N2, s2)]   

||N1, s1|| is isomorphic to ||N2, s2||) 

Roughly, the point is that all PAint-ish number concepts determine isomorphic models. So, 

within our model theory, we get to say: “the [deductive] use [of PAint] already fixes the 

‘interpretation’” of PAint.42  

 

Now, the internalist about model theory affirms that model theory. So she affirms, 

unreservedly, that PAint pins down a model up to isomorphism. And she can therefore agree 

with the modelist, of §2, that the NATURAL NUMBER concept is precise up to isomorphism.  

In a sense, then, one might say that internalism employs “a similar picture” to 

modelism, only “within a theory”.43 But this does not vindicate modelism itself. For, to show that 

the NUMBER concept is precise up to isomorphism, the internalist works within model 

theory. And she claims to understand model theory deductively, rather than semantically.  

This observation enables me to make sense of Putnam’s cryptic but beautiful closing 

remarks in “Models and Reality”. Since modelists always insist working semantically, they 

embark on a futile regress, and end up treating models as “lost noumenal waifs looking for 

someone to name them”. (That was the point of §2.) However, by working deductively, 

internalists are able to treat models as “constructions within our theory itself, [which] have 

names from birth.”44 But saying this does not require any constructivist metaphysics. Rather, 

                                                                 
39 So, with standard abbreviations, ||N, s|| = ({x : N(x)}, {x, y : s(x) = y} 
40 This is easily formulable in second-order logic, and is entailed by e.g. second-order ZFC. This principle is 

needed, just because MTint itself says so little about how many sets there are. So, MTint itself proves a slightly 

weaker claim, which adds the conditional “provided all the required sets exist”. However, I do not think this 

technical nicety materially much affects the philosophical point. 
41 This follows almost immediately from the internal categoricity of PAint. 
42 Putnam (1980: 482). 
43 Putnam (1977: 484), commenting on how to regard the relationship between internal realism (in general) 

and metaphysical realism (in general).  
44 Putnam (1980: 482). Cf. also Dummett (1963: 191). 



it simply rolls together some simple observations, namely that:45 the definition of a model is 

offered within our deductively understood model theory; all talk of “construction” of models 

is just an heuristic shorthand for deductive work carried out within that model theory; and 

we work within our model theory when we prove that all models of PAint are isomorphic, and 

when we say that Sebastian’s use of PAint picks out a particular isomorphism type. 

 

The preceding few paragraphs can be summarised as follows: model theory itself does not 

demand a model-theoretic treatment. But, for exactly this reason, I expect the modelist to 

raise a complaint: 

Modelist. By working semantically, I can point out that MTint has many models if it has any. And if 

you insist on only ever working deductively, then you cannot do anything to guard against the 

worry that we are “trapped in” a non-standard model of MTin itself. But, you must rule out this 

worry, if you want to say that Sebastian (who knows no model theory) pins down the standard 

model by using PAint. For, suppose we are all trapped in a non-standard model of MTint. Then the 

claim “all PAint-ish number properties determine the same model (if they determine one at all)” 

would still hold true for us. But what we happened to call the “intended model of arithmetic” might 

look grotesque, as viewed from the outside.46 

Now, there is certainly something to this complaint. In discussing Sebastian’s situation, I 

implicitly assumed that “the metalanguage”, i.e. the model theory MTint, “is completely 

understood” by us.47 After all, if we could reasonably sharpen our MODEL concept in various 

different ways, then we might indeed find ourselves dealing with multiple different “models 

of arithmetic”. And that would be a bad thing. Fortunately, MTint’s intolerance precludes 

precisely this sort of situation: given rival sharpenings, only one of them can be right.  

 Furthermore, there is an easy reply to the modelist’s worry. Suppose, for reductio, that 

we are “trapped” in some non-standard model, M, of MTint. Working in MTint, I can trivially 

prove: every model’s domain omits some element. So now – if I can understand the modelist’s 

worry that I am “trapped” in M at all – then I know, specifically, that M’s domain omits some 

elements. And if I can grasp that point, then I know that I am not “trapped” in M after all, 

since I just managed to quantify over the supposedly omitted elements.48 

So: we are not “trapped in a non-standard model”. But we should not infer from this 

that we “inhabit the standard model” of MTint. Indeed, the same line of thought which shows 

that I am not “trapped” in M generalises to show that I do not “inhabit” any particular model 

of MTint. Or, to drop the homely metaphors: no model of MTint is the “intended” model.49  

                                                                 
45 Cf. Button (2013, 217). 
46 Cf. Meadows (2013, 539–40). 
47 Putnam (1980: 482). 
48 At this point, the modelist might start to say things like: maybe I don’t even understand (at all) the worry that I 

am “trapped” in M! At that point, I feel we have earned the right to walk away from the modelist. Of course, 

there is more to say about such ineffable scepticism; but for more, see Button & Walsh (2018: ch.9, §11.6). 
49 Cf. Button & Walsh (2018: §11.6) on “indefinite extensibility” in this context. 



If that initially sounds shocking, it really should not. Once we have abandoned 

modelism, there is no reason to think that our theory needs an “intended” model.    

 

In this section, I have considered what internalists (in general) should say about models of 

PAint and MTint. The overarching moral is encapsulated in a single quote from Putnam: for 

any theory, “[e]ither the use already fixes the ‘interpretation’, or nothing can.”50 But I read 

this, not as a rhetorical flourish, but as a genuine disjunction.  

In the case of PAint, the use already fixes the interpretation. That is what we saw when 

we considered Sebastian.  

In the case of MTint, by contrast, we have seen that nothing can, for there is no intended 

interpretation. For all that, though, our model theory is not “uninterpreted syntax”. We 

know how to use it – deductively – and our use manifests perfectly precise concepts. What 

more could we want or need?51 

9. Coda 
In this coda, I want to offer a few more remarks concerning how internalism might be further 

developed. This material is relegated to a mere coda, though, because it is even more 

speculative than the material in the previous sections. I am less committed to it, and I also 

suspect that aspects of it are genuinely optional extras. 

Intersubjectivity, objectivity, and objects 
One moral of §5 can be put as follows: intolerance yields intersubjectivity. More specifically: 

when a theory is intolerant, the parties who use that theory are not just deploying private 

concepts, but can (and must) be drawn into real (dis)agreement with each other. Still, whilst 

this yields a story about mathematical intersubjectivity, it delivers nothing (yet) about 

mathematical objectivity, or even about mathematical objects. I want to address that now. For 

simplicity, I will just focus on arithmetic, but I would say the same about sets.  

The issue of objects can be settled almost immediately. As an internalist, I am 

committed to PAint. I affirm it without reservation. And, in affirming it, I affirm that there are 

numbers. That is an end to it. 

Moreover, this existential claim is crucial to the story of §5. There, I implicitly 

assumed that there are PAint-ish number properties, i.e. that Ns PA(N, s). After all, if that 

existential claim were false, then we would vacuously have that both Ns(PA(N, s)  φ) 

and Ns(PA(N, s)  ¬φ). Then, catastrophically, I would be forced to say, (for each 

relevant φ): it is determinate that φ and also determinate that ¬φ. So, my account of 

determinacy (and hence intersubjectivity) implicitly depends upon the existence of 

numbers.  

                                                                 
50 Putnam (1980: 482). 
51 Cf. Putnam’s (1977: 489) “Internal realism is all the realism we want or need.” 



To repeat, then: I am committed to the existence of numbers. But I have said very little 

about their nature. I have said that my numbers behave PAint-ishly, but I have been silent 

about: whether the numbers are mind-independent or theory-independent; whether the 

number 2 is a Gallic emperor, or a set (and, if so, which); and, returning to the trivial 

illustration in §5, even whether the numbers are (capable of being) hungry.  

I believe that I could say whatever I like about such matters. As such, I would really 

prefer to say nothing at all. Fortunately, there seems to be a principled way for an internalist 

to insist that all such matters are indeterminate.52  

In §5, I glossed ‘Ns(PA(N, s)  φ)  Ns(PA(N, s)  ¬φ)’ as ‘it is determinate 

whether φ’. At the time, I restricted this gloss to sentences of a particular form (second-order 

formulas with only N and s free, and whose quantifiers are all restricted to N). But if I extend 

this gloss to cover sentences in richer languages, then I will get to say that it is indeterminate 

whether 2 is equal to Julius Caesar, or is hungry, or is (in)tangible. For if there are any PAint-

ish number properties, then there will be a number property which takes 2 to be a hungry, 

tangible, Caesar, and another which takes it to be a satiated, abstract, singleton set. More 

generally, on this approach, all questions about the “metaphysical nature” of numbers will 

have indeterminate answers. They can simply be ignored. 

A “hardcore realist” might complain that this approach simply trivialises some very 

important questions in the metaphysics of mathematics.53 So be it. My point is just that 

internalists get to say that all the facts about the numbers can be expressed in the language of 

arithmetic. And that strikes me, at least, as a nice additional point in favour of internalism.54 

Conceptual relativity 
I just discussed the significance of intolerance results; but I now want to come at their 

significance from a rather different angle.  

In §5, I stated the significance of the intolerance result as follows: If Solange and 

Tristan share a logical language, then they just have to say “one of us as wrong”, when one 

affirms Goldbach’s Conjecture and the other affirms its negation. However, in what 

followed, I basically acted as if the antecedent is guaranteed to hold, without any further 

comment. But I should come clean: I have no guarantee that Solange and Tristan share a 

logical language. Moreover, if Solange and Tristan do not share a logical language, then in 

principle Solange might affirm φ, and Tristan might affirm ¬φ, and both of them could be 

right in their own languages.55 

                                                                 
52 This line is developed in Button & Walsh (2018: §10.7). 
53 The “hardcore realist” is a character from Putnam (1977: 490); thanks to Wesley Wrigley for suggesting I 

address this point. 
54 And it at least once sounded good to Putnam; see his comments on “whether the number 2 is identical with a 

set, and if so, which set is identical with” (1994: 248–51).  
55 Thanks to Cian Dorr, Hartry Field, and Luca Incurvati for discussion on this issue.  



 That said, it is hard to see how such a situation could arise. An immediate barrier to 

comprehension arises from my internalism; after all, the logical language is to be understood 

deductively rather than semantically, and we can assume that Solange and Tristan accept 

exactly the same rules of proof, so it is hard to see what it could mean to say that they do not 

share a logical language. 

Still – and this is very speculative – I might just be able to illustrate the possibility, by 

drawing an analogy with Putnam’s discussions of mereology.56  

Imagine two characters, Stan and Rudy. Stan is a mereological universalist, and thinks 

that any things compose a fusion. Rudy is a nihilist, and thinks that there are no fusions. Stan 

and Rudy might argue vociferously about which of them gets the world right. But at least one 

reasonable response to their dispute is to see them not as disagreeing, but as operating with 

different conceptual schemes (or frameworks, or languages, or whatever). This response is 

reinforced by the idea – which Putnam affirmed – that we can translate back and forth 

between Stan and Rudy’s ways of talking. Roughly: Stan is to interpret all of Rudy’s 

quantifiers as restricted to what Stan calls “simples”; Rudy is to interpret Stan’s talk of 

“fusions, composed of simples” as talk of “plurals, among which there are simples”. 

On the specific issue of mereology, the devil will be in the details. But the details about 

mereology can be set aside for now. At a high level of description, the thought is just this: 

Rudy and Stan can offer deviant interpretations of each other’s “logical concepts”, and 

thereby dissolve their apparent disagreement. 

Returning to the case of arithmetic: I can see no reason in principle why a similar thing 

might not happen with Solange and Tristan. If they apparently disagree, we might (for all I 

know) be able to give them a suitable translation manual which smooths over the difference. 

And, in principle, that might be the right thing to do. But I emphasise: in principle. Rudy and 

Stan are equally successful in navigating their way around the world. Confronted with the 

same situation, they systematically give different – but wholly predictable – answers to the 

question “how many things are there?” So it is deeply reasonable to think that they are simply 

speaking different languages; just using different words in the same situations. It is vastly 

harder to see what would prompt a similar thought in the arithmetical case. Truth told, I 

cannot think of anything. But maybe this is just lack of imagination on my part.  

Having said all this, I should close with a simple, but important, point: admitting the 

(in principle) possibility of reinterpreting logical vocabulary is entirely compatible with my 

earlier discussion of objects and objectivity. Tolerance concerning reinterpretation “is not a 

facile relativism that says ‘Anything goes’.”57 I am allowing only that we might have some 

freedom to choose between two languages, such that φ is the right thing to say in one 

language and ¬φ is the right thing to say in the other. But if Solange has fixed a language and 

affirms φ, and if Tristan now affirms ¬φ, then Solange must either regard Tristan as saying 

                                                                 
56 See in particular Putnam (1987), and Button (2013, chs.18–19). 
57 Putnam (1981: 54). 



something false, or regard Tristan as speaking a different language. This disjunction yields no 

sacrifice of objectivity, for it is entirely commonplace. If Tristan says “I have a pet pink 

elephant”, I have the same two options: I must either regard him as saying something false, or 

regard his words as expressing something other than my own; but this does not make it “up 

to me” whether any pink elephants exist. 

In summary, then, here is how I should cautiously state the significance of an 

intolerance theorem. In principle, I am tolerant when it comes to choosing languages. But, 

within a language and in the presence of an intolerance theorem, divergence cannot be 

tolerated. Moreover – given what I just said about pink elephants – this level of intolerance 

secures all the objectivity – and all the realism – that anyone could either want or need. 

The continuum hypothesis 
Internalism about arithmetic delivers the verdict that every arithmetical claim is determinate. 

That is one of its main virtues. However, internalism about set theory also delivers the 

verdict that every pure-set-theoretical claim is determinate. And this is less clearly a virtue. 

No doubt many people will reply that it surely cannot be so easy, to arrive at the conclusion 

that the continuum hypothesis is determinate (for example). 

I fully feel the force of this concern. But I will close by saying a few things, to try to 

diminish its force a little. 

First: I am only claiming that the continuum hypothesis is determinate. I am not 

suggesting that we will ever be able to know whether it holds. Indeed, the existence of 

unknowable mathematical truths is perfectly compatible with internalism. 

Second: the Intolerance Theorem for CSP ineliminably requires a deductive system 

for impredicative second-order logic.58 So: maybe those who think that the continuum 

hypothesis is indeterminate should reject impredicative reasoning. If so, though, that would 

be a deeply interesting connection, but I cannot purse it here any further. 

Third: despite everything I have said, there may yet be a way to accept impredicative 

reasoning whilst making some sense of the “indeterminacy of CH”. The possibility arises 

given the speculative discussion of the previous subsection. There, I nuanced my claims 

about the intolerance of arithmetic, and I should nuance my claims about the intolerance of 

set theory in the same way. So: once you have fixed a logical language, the claim “there is no 

cardinal between the cardinality of the naturals and the cardinality of the reals” becomes 

determinate (if not decided by the theory); but, in principle, different logical languages may 

settle it differently. And perhaps the possibility of tolerance in choosing a logical language is all 

that is needed, for those who want to explore the “(in)determinacy of CH”.59 

                                                                 
58 For a demonstration of the need for impredicativity, see Button & Walsh (2018: §11.C) 
59 I wrote this paper during a period of research leave which was funded by a Philip Leverhulme Prize (awarded 

by the Levehulme Trust, PLP–2014–140). For comments and discussions on drafts of this paper (and earlier 

versions of these thoughts), I would like to thank Neil Barton, Sharon Berry, Cain Dorr, Hartry Field, Luca 

Incurvati, Mary Leng, Guy Longworth, Vann McGee, Charles Parsons, Michael Potter, Robert Trueman, Sean 
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