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Abstract. Putnam famously attempted to use model theory to draw
metaphysical conclusions. His Skolemisation argument sought to show
metaphysical realists that their favourite theories have countable models.
His permutation argument sought to show that they have permuted mod-
els. His constructivisation argument sought to show that any empirical
evidence is compatible with the Axiom of Constructibility. Here, I exam-
ine the metamathematics of all three model-theoretic arguments, and I
argue against Bays (2001, |2007)) that Putnam is largely immune to meta-
mathematical challenges.
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Hilary Putnam famously attempted to use model theory to draw metaphys-
ical conclusions. Specifically, he attacked metaphysical realism, a position
characterised by the following credo:

[T]he world consists of a fixed totality of mind-independent objects.
(Putnam 1981, p.49; cf. 1978, p. 125).

Truth involves some sort of correspondence relation between words
or thought-signs and external things and sets of things. (1981, p. 49;
cf. 11989, p. 214

[W]hat is epistemically most justifiable to believe may nonetheless
be false. (1980, p.473; cf.|1978, p. 125)

To sum up these claims, Putnam characterised metaphysical realism as
an “externalist perspective” whose “favorite point of view is a God’s Eye
point of view” (1981, p.49). Putnam sought to show that this externalist
perspective is deeply untenable. To this end, he treated correspondence
in terms of model-theoretic satisfaction. This enabled him to deploy re-
sults from model theory against metaphysical realism. In particular, he
presented two famous model-theoretic arguments: his Skolemisation argu-
ment and his permutation argument.

In this paper, I will investigate the metamathematical underpinnings
of both arguments. Since both arguments require only extremely weak
model-theoretic resources, it would seem that metaphysical realists cannot
reasonably object to Putnam’s metaphysical conclusions on purely meta-
mathematical grounds. Timothy Bays, however, has raised a challenge
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against Putnam on ezactly those grounds. Bays’ main target is Putnam’s
less famous constructivisation argument, which seeks to establish that any
empirical evidence is compatible with the Axiom of Constructibility. How-
ever, Bays thinks that his challenge applies equally well against the Skolemi-
sation argument.

I agree that Bays’ challenge poses considerable problems for the con-
structivisation argument. However, I shall show that it has no impact at
all on either the Skolemisation or the permutation arguments. Perhaps
Putnam’s arguments can be refuted on other grounds; but the metamath-
ematics at the heart of Putnams model-theoretic arguments is completely
secure.

1 A quick introduction to Bays’ dilemma

Putnam’s model-theoretic arguments usually have the following structure.
The metaphysical realist starts by outlining her favourite theory, Ty, hoping
to describe the world as its intended model. Putnam responds by using
some model theory, T4, to produce an apparently unintended model of T\,
The challenge is for the metaphysical realist to explain why this model of
Ty is, indeed, unintended.

Putnam’s three model-theoretic arguments—constructivisation, Skolemi-
sation and permutation—require different theorems from model theory. Ac-
cordingly, they can be presented using different model theories. Neverthe-
less, the arguments share the following general feature: the metaphysical
realist’s favourite theory, Ty, and Putnam’s model theory, Ty, will typically
be different theories. Unless T, is weaker than Ty, Bays thinks that this
causes serious problems for Putnam.

Putnam faces an inescapable dilemma. If he pitches his argument
toward philosophers who accept less set theory than he himself does,
then these philosophers will reject his argument simply because they
reject the set theory used in proving Putnam’s key theorem. If he
pitches his argument toward philosophers who accept the same set
theory that he does, then his argument cannot take care of these
philosophers’ [favourite theories]. (2001, p. 3405 cf. [2007, p. 122)

In short, Bays thinks that there are two absolutely general strategies for
dealing with Putnam’s argument:

(a) Rejection. A metaphysical realist who accepts T has not yet in-
curred any commitment to T;. So she can simply reject T1, and deny
that there are any nonstandard models of Tj.

(b) Nonchalance. A metaphysical realist who accepts Ty in addition to
Ty can react with nonchalance to the (mere) existence of nonstandard
models of Ty. She would only care about the existence of nonstandard
models of Ty + Ty, and Putnam has not (yet) shown that there are
any such models.



Bays thinks that any metaphysical realist will follow one strategy or the
other. Accordingly, these strategies present a dilemma for Putnam, which
I shall call Bays’ dilemma.*

At its best, Bays’ dilemma would show that Putnam cannot convince
the metaphysical realist that there definitely is an unintended model for
any theory she cares about. This allows space for Putnam to convince
the metaphysical realist that there might be such models. Perhaps this
mere possibility is enough to cause problems for metaphysical realism; if
so, we need not trouble ourselves much with Bays’ dilemma. Both Bays
himself (2001, pp. 3401|2007, pp. 128-32) and Luca Bellotti (2005, pp. 405—
8) suggest that this “fallback response” might be the best reaction to Bays’
dilemma.

I would prefer to attack Bays’ dilemma head-on. I shall agree that Bays
is on to something, in the case of the constructivisation argument. How-
ever, in the case of the Skolemisation and permutation arguments, I shall
argue that the metaphysical realist must accept that there are unintended
models for the theories she cares about. The prime reason for this is as
follows. To apply a Skolemisation or permutation argument against Ty,
it is normally sufficient for dialectical purposes to work in theories weaker
than Ty. Accordingly, neither rejection nor nonchalance is an option for
the metaphysical realist. That is the primary contention of this paper.

To show all this, I shall need to examine a handful of model-theoretic
results in close detail. Fortunately, most of the required definitions and
results are relatively elementary. Those which I assume as “background
knowledge” during the text are discussed at length in §8] which constitutes
a technical appendix.

2 The constructivisation argument

In this section, I shall outline Bays’ dilemma in more detail, focussing
specifically on the constructivisation argument. I agree that Bays’ dilemma
raises a serious problem for the constructivisation argument, but I shall
postpone the question of just how serious the problem is until §6]

2.1 Putnam’s constructivisation argument

The target of Putnam’s constructivisation argument is a metaphysical re-
alist about sets. The metaphysical realist in question endorses the theory
ZF, and is now considering whether or not “V =L" is true. (This is the
so-called Axiom of Constructibility, which is independent of ZFC.) Put-
nam aims to show that the metaphysical realist has no way even to explain
what she is considering.

Putnam begins his argument by being maximally concessive to the
metaphysical realist. In particular, he allows that empirical measurements
might seem to tell against the truth of “V =L". For example, we might



define a subset s C N from an w-sequence of tosses of an idealised utterly
random coin, by stipulating that n € s iff the n'" coin-toss lands heads.
Since s is generated by an utterly random procedure, we have no reason to
suppose that s must be a definable subset of N. So it seems that s could
end up being “genuinely nonconstructible”. In which case, the metaphys-
ical realist can imagine a situation in which empirical evidence seems to
establish that “V =L" is false.

Putnam’s aim is to show that, contrary to initial appearances, even this
evidence would have no bearing at all on the truth-value of “V =L". His
argument is based upon the following claim (Putnam 1980, p. 468):

Putnam’s Claim. For any s C N, there is an w-model, M, of ZF+V =L,
such that s is represented in M.

If this Claim is correct, then what are we to make of the metaphysical
realist’s thought that s is “genuinely nonconstructible”? Only that M is
an unintended model. But why is it unintended? M satisfies the central
core of our set theory, ZF, “and we have gone to great length to make
sure it satisfies all operational constraints as well”, since M represents s
(Putnam 1980, p.469). What more is required to make a model intended?
That is the initial challenge posed by the constructivisation argument.

2.2 Class-models and Putnam’s “proof”

The metaphysical realist might attempt to answer Putnam’s challenge di-
rectly, and explain why some feature of M renders it unintended. For
example, Bellotti (2005, pp.401-3) thinks that M is unintended because
it is not wellfounded. However, there is a more direct response. If we can
undermine Putnam’s Claim, the entire constructivisation argument will un-
ravel. And indeed, Bays (2001, pp. 335—6; 2007, pp. 119-23) and |Velleman
(1998) have noted a serious problem with Putnam’s “proof” of his Claim.
This problem depends on noting the crucial difference between set-models
and class-models.

Let Ty be any object theory the metaphysical realist might want to
advance. Let T; be Putnam’s model theory. T, is itself, strictly, a set
theory; that is, the basic objects that Ty talks about are sets. (If we like,
we can allow urelements into Ty; this will not change anything essential.)
When we say, in Ty, that there is a model of some theory Ty, we are saying
that T; entails the existence of a set with certain properties.

Set theories, like T;, can be harmlessly augmented with talk about
definable classes. To keep this harmless, these definable classes must not
be thought of as new objects, but “as abbreviations for expressions not
involving them” (Kunen 1980, p.24).2 For example, for some monadic
predicate “F”, we might define a class:

F = [z ] F(z)]



We can then treat class membership as an abbreviation for predication, so
that “z e F” abbreviates “F(z)”.

Once we augment T; with talk about classes, it becomes possible to
say, in T, that A is a class-model of Ty. This is to say that, for every
sentence ¢ of T:

T, F ¢

where ¢ is the relativisation of ¢ to A. The relativisation of a formula is
defined recursively (see Kunen 1980, p. 112); in the special case where T
is a pure set theory, we simply specify a domain A, and then define:

(x=y)"is (x=y)
(zey)is (z €9)
(@A)t is (7 Ay
(=) is —=(¢™)
((3x))* is 3z e A)g™

So, if ¢ is a formula in the austere language of set theory, ¢ is obtained
from ¢ just by restricting all of the quantifiers of ¢ to A. In §4.3] I shall
show how to define the relativisation of a formula when Ty is not a pure
set theory. However, in discussing how Bays’ dilemma applies to the con-
structivisation argument, it does no harm to assume that the metaphysical
realist’s favourite theory, Ty, is just the pure set theory ZF.

There are now two types of model on the table: set-models and class-
models. In what follows, when I say “model”, I invariably mean “set-
model”, and when I want to talk about class-models, I shall explicitly
mention that they are class-models. The difference between (set-)models
and class-models is absolutely crucial. To see this, consider the Skolem
Hull Theorem: for any model A, there is a countable submodel, B, which
is elementarily equivalent to A (see §8.2). Disaster ensues if we forget that
“model” here means “set-model”, and suppose that the theorem holds for
class-models. To see this, note that ZFC trivially entails the existence of a
class-model of ZFC, by defining the class-sized domain as [z | x = z]. If we
could apply the Skolem Hull construction to class-models, then we would
have a countable class-model, A, of ZFC. Since the domain of A would be
countable, it would be a set (because there is no cofinal map from w to the
class of all ordinals). So we would have proved, in ZFC, the existence of a
set-model of ZFC. By Godel’s Second Incompleteness Theorem, we would
have proved that ZFC is inconsistent. The clear moral is that the Skolem
Hull Theorem does not apply to class-models.

With all this in mind, we shall now consider the core of Putnam’s
“proof” of his Claim:?

#Proof: Putnam’s Claim amounts to the following I1,-sentence:

¢:=Vs)AM)(sCN— (se MAMEZF+V=L))



Shoenfield’s Absoluteness Lemma states that )% <+ ¢, for any Il,-sentence
1. So to prove ¢, it suffices to prove its relativisation to L:

" = (VseL)(AM e L)(sCN— (s€e MAMEZF + V=L))

For every seLi, “there is a model-—namely L itself—which satisfies “V =L"
and contains s. By the [Skolem Hull] Theorem, there is a countable sub-

model|, M,] which is elementary equivalent to L and contains s.... By
[Godel’s Condensation Lemma, M] itself lies in L” (Putnam 1980, p. 468).
This establishes ¢, as required. O

As Bays and Velleman note, the problem here is that L is a proper class,
not a set. We just saw that the Skolem Hull Theorem can only be applied
to sets, and not to proper classes. So the “proof” fails.

2.3 Applying Bays’ dilemma to the constructivisa-
tion argument

To repair the fallacious “proof”, we might present the argument in a theory
in which “the L of ZF” (so to speak) can be treated as a set, for then the
Skolem Hull Theorem could be applied to it after all. One option is to offer
the proof in ZFK, which adds to ZF the claim that there is some inaccessible
cardinal k; and Velleman (1998), Bays (2001, pp. 338, n.6; 2007, pp. 123—4))
and Bellotti (2005, p. 396)| all consider repairing the proof in this way. Now
we can argue thus:

Constructivisation Theorem (ZFK). Let s be a subset of N. There is
a model, M, of ZF + V =L, such that for each n € s, M E (n € s).

Proof Sketch. The core of the argument is that, by Shoenfield’s Absolute-
ness Lemma, it suffices to prove:

¢t = (Vs€ L,)BM € L,)(sCN— (s€ MAMEZF + V=L))

Given any s € L., let M be a countable Skolem Hull of L, containing s.
Then M = L, EZF + V =L (see [Kunen 1980, pp. 132, 169-70). Moreover
M C L, so M € L,, by Gédel’s Condensation Lemma. n

The parenthetical remark after the theorem’s name indicates that this is a
theorem of ZFK. However—and this is crucial—this proof cannot be given
in ZF, since ZF cannot prove the existence of L,. This gives the metaphys-
ical realist two options. On the one hand, since ZFK is strictly stronger
than ZF, the metaphysical realist can avoid Putnam’s argument by simply
rejecting ZFK. On the other hand, she might accept ZFK and so accept
that there are nonstandard models of ZF, but she could remain nonchalant
about the existence of nonstandard models of ZF, for only a nonstandard



model of ZFK would worry her. Bays’ dilemma thus successfully applies
to the argument just given.

This is already a fair criticism of Putnam’s [1980-argument. However,
it is worth asking whether the applicability of Bays’ dilemma is an intrin-
sic feature of the constructivisation argument, or whether it is merely a
contingent artefact of the particular proof we just considered. Bays argues
that it is intrinsic, for the following reason: Putnam’s Claim entails the
existence of a model of ZF, but Godel’s Second Incompleteness Theorem
shows that ZF cannot itself prove the existence of any such model; so Put-
nam’s Claim cannot be proved in ZF or any weaker theory. Consequently,
Bays’ dilemma can be applied whenever we try to argue for something like
Putnam’s Claim. For this reason, Bays calls his dilemma “inescapable”
(2001, pp. 338-40).

I entirely agree with Bays that the constructivisation argument faces
difficulties. However, I am less certain about Bays’ diagnosis that these
difficulties are “inescapable”. To explain why, it will help to set aside the
constructivisation argument for now (until , and turn my attention to
the Skolemisation and permutation arguments. These arguments are, in
any case, of wider philosophical interest than the constructivisation argu-
ment, because they are much more central to Putnam’s model-theoretic
assault on metaphysical realism.

3 The Skolemisation Argument

Bays (2001, pp. 338-40, n.7)) claims that his dilemma hamstrings the Skolemi-
sation argument in just the same way that it hamstrings the constructivi-
sation argument. In this section, I shall show that Bays is mistaken. The
Skolemisation argument uses a theorem which can be proved, with full gen-
erality, in very weak model theories. Accordingly, Bays’ dilemma does not
threaten the argument.

3.1 The Skolemisation argument

Putnam’s target is a metaphysical realist who has advanced a theory, Ty,
whose intended interpretation is uncountable.* Putnam’s Skolemisation
argument proceeds by invoking the Completeness Theorem of first-order
logic.

Completeness Theorem. Let T be any consistent countable set of sen-
tences of a first-order language. There is a model N' E T whose domain is

N. ]

Accordingly, if the metaphysical realist’s theory Ty has any models, it has
an unintended countable model Ny. From a sufficiently broad perspective,
this Skolemisation argument and the constructivisation argument raise the
same challenge for the metaphysical realist. The metaphysical realist must
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explain why Nj is an unintended model, even though Ny models the meta-
physical realist’s theory, To. (Putnam 1980, pp.465—6; also see Skolem
1922, [Putnam 1980| actually uses the Skolem Hull Theorem, rather than
the Completeness Theorem; I discuss this version of the argument in )
The metaphysical realist has a number of lines of response to this argu-
ment. She might attempt to explain that Ty is a theory expressed in “full”
second-order logic, in which case, the Completeness Theorem for first-order
logic does not apply to it. More generally, she might attempt to explain
why some feature of ANy renders it unintended. These kinds of reactions
are well-explored elsewhere—perhaps most famously in [Lewis 1984}—and I
shall not discuss them here. I wish to investigate whether Bays’ dilemma
offers a new line of response to Putnam’s model-theoretic arguments.

3.2 Raising and finessing Bays’ Dilemma

The Completeness Theorem is a theorem of WKL (Simpson 1999, pp. 139—
41)).5 If the metaphysical realist rejects WKLg, she may be able to reject
the Completeness Theorem too. In that case, we will not be able to run
the Skolemisation argument against her. However, WKL is an extremely
weak mathematical theory; it is much weaker than Z, for example. So, in
what follows, I shall assume that the metaphysical realist’s theory, Ty, is
stronger than WKL, and so that she accepts the Completeness Theorem.
That is, I shall assume that Putnam’s opponents are metaphysical realists
about a reasonable chunk of mathematics. I shall also assume, for the
whole of this subsection, that Ty is an effectively axiomatisable theory. (I
shall consider negation-complete theories in the next subsection.)

Being stronger than WKL, T contains more than enough arithmetic
to formalise talk about any effectively axiomatisable theory. So Ty can
formalise talk about itself: where .Z is the language of Ty, there is an Z-
sentence which formalises such English expressions as “T is a consistent
countable set of sentences”. Now consider this proposition:

To-conditional (Ty). If T is a consistent countable set of sentences, then
there is a model Ny E Ty whose domain is N. O

We ought to think of the Ty-conditional as a long formal sentence in the
language .Z. Crucially, this .Z-sentence is a theorem of Ty (as indicated
by the parenthetical remark after the theorem’s name). Recall that the
Completeness Theorem is a theorem of WKLy, and so is a theorem of Ty;
the Ty-conditional is then obtained simply by instantiating (the formal code
for the effective axiomatisation of) Ty into the Completeness Theorem. So
the metaphysical realist must think that the Ty-conditional is true.

Of course, the Ty-conditional does not tell us that Ty has some non-
standard model V. To show that, we would need to discharge the condi-
tional’s antecedent. On pain of Godel’s Second Incompleteness Theorems,
the metaphysical realist cannot prove, in T, that Ty is a consistent count-
able set of sentences. To prove that Ty is consistent, she would have to



move to some other theory, Ty, such as Ty + Con(Ty). This is where Bays’
dilemma is supposed to arise (recall §2.3). On the one hand, the meta-
physical realist may reject T;. She will then accept the conditional, but
can happily reject the consequent. On the other hand, she may accept Ty,
and so accept that there is an unintended model of Ty, but treat this result
with nonchalance, since she would only care about an unintended model of
Tl.

We can immediately rule out the strategy of rejecting T;. A metaphys-
ical realist about Ty thinks that T is true. Since truth entails consistency;,
she must accept both Ty and Con(Ty). That is just to accept T, asBellotti
(2005, p.405)| has noted.

The metaphysical realist must therefore attempt to remain nonchalant;
Bays must emphasise that Putnam has shown nothing yet about T;. How-
ever, Putnam can run exactly the preceding argument against T;. Ty is
strictly stronger than WKLy, and is still effectively axiomatisable. So we
have:

T;-conditional (Ty). If T, is a consistent countable set of sentences, then
there is a model N, E T; whose domain is N. O

Again, this formal .Z-sentence is a theorem of Ty. And again, the meta-
physical realist thinks that T is true, so she can hardly deny that T is con-
sistent. So she must accept a strictly stronger theory, Ty = T; + Con(T),
and attempt to remain nonchalant. But by exactly the same argument,
involving the Ty-conditional (another theorem of Ty), she must ascend to a
stronger theory, T3 = Ty + Con(Ty). ... In short, the metaphysical realist
is forced to commit to every theory in an iterated consistency-sequence.
This is an ordinal sequence of theories such that:”

Tyt := To + Con(T,) for some appropriate definition of “Con(X)”
Ty = U Ts when « is a limit ordinal

B<a

No matter how far the metaphysical realist runs along this consistency-se-
quence, Putnam’s model-theoretic arguments are waiting for her. At every
stage «, T, is an effectively axiomatised theory and the T,-conditional is
a theorem of Ty. And at every stage «, she is committed to the antecedent
of the T,-conditional. So, every time she moves from one theory to the
next in the consistency-sequence, she merely steps out of the frying pan
and into another, very slightly larger, frying pan.

The crucial point is this. The metaphysical realist herself always sup-
plies the assumption that her favourite theory has a model. So Putnam’s
argument only requires the conditional: If a theory has any models, then it
has an unintended model. This is the fundamental reason why the Skolemi-
sation argument resists Bays’ dilemma.

In desperation, the metaphysical realist might make the following ar-
gument. The Skolemisation argument starts with the metaphysical realist



presenting some theory, T, and Putnam then uses the Completeness The-
orem to generate a countable model Ny F Ty. Now, if the metaphysical
realist is allowed to add new sentences to her theory, moving from Ty to T},
we have no guarantee that Ny F T;. For this reason, it seems important
to keep the metaphysical realist’s theory fized. However, the metaphysical
realist has just agreed that she is committed to every theory in an infinite
sequence of theories. She may then claim that no single fixed theory cap-
tures all of her commitments. In which case the metaphysical realist might
object that “Putnam’s argument goes wrong at a very early point”, be-
cause the “whole apparatus of (fixed) theories and models seems decidedly
inappropriate.”®

I cannot see how this response would help the metaphysical realist. The
metaphysical realist has simply pointed out that she cannot articulate all of
her commitments. This is just another problem for her position, and it does
not help her to deal with the Skolemisation argument. Whatever claims
the metaphysical realist manages to make, Putnam can show her that those
claims have a countable model. This is all that the Skolemisation argument
requires.

3.3 A detour through negation-complete theories

We have seen that the Skolemisation argument is untouched by Bays’
dilemma. However, it is worth noting that Putnam’s “apparatus of (fixed)
theories and models” is entirely unobjectionable in the present context.
To show this, I shall embark on a brief but interesting detour, concerning
negation-complete theories.

Recall the credo of metaphysical realism, as explained at the start of
this paper. The credo states: there is some fixed totality of objects, which
we hope that our best theory truly describes, where truth consists of some
sort of correspondence relation. So let £ be the language of T. Since
the world is some structure, W, we can introduce T, as the set of all -Z-
sentences satisfied by WW. More briefly: T contains every truth expressible
in .Z.

Putnam (1983, p.ix,n) maintained that we can run a Skolemisation
argument even against a metaphysical realist who advances T,. It would
not matter much if Putnam were wrong about this: since T, is negation-
complete, and hence not effectively axiomatisable, no metaphysical realist
could ever actually advance T,. However, the purpose of this detour is to
show that Putnam is, indeed, correct here. The detour is interesting, in
the present context, because it vindicates the “apparatus of (fixed) theories
and models”.

In §3.2] T showed how to run an argument against a metaphysical realist
who advocates an effectively axiomatisable theory, T,: simply note that
Ty entails the T,-conditional, and then sit back and allow the metaphys-
ical realist’s own assumptions to do the rest. So, to run a Skolemisation
argument against T, we might want to start by asking whether Ty entails
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the following sentence:

#T,-conditional. If T, is a consistent countable set of sentences, then
there is a model N, F T, whose domain is N.

This question is a trick-question. T, is negation-complete, sound and
stronger than WKL,. Accordingly, T, is not effectively axiomatisable,
and so no formula of .Z defines (the axiom base of) T,. So “T, is a con-
sistent set of sentences” is not even a sentence of £. A fortiori, “the
T,-conditional” (scare-quotes needed) is not even an .#-sentence. If we
want to convince the metaphysical realist that T, has a countable model,
we clearly cannot follow the route pursued in §3.2

Here is an alternative route. No Z-sentence expresses that T, is con-
sistent, but nothing stops the metaphysical realist from expanding her lan-
guage. Let £ be a language in which one can express that T, is consistent
(perhaps % contains a truth predicate for .Z’). Once she can express the
thought that T, is consistent, the metaphysical realist must immediately
accept that T, is consistent, since she thinks that T, is true. An appro-
priate completeness theorem will now force her to accept that T, has a
countable model, as required.

However, the argument just given took place neither within Ty nor
T,, but within some wider formal semantic theory. So our metaphysical
realist may respond to this argument as follows. She first claims that she
cannot talk about models for T, at all while using (the language of) T,.
She explains that, if she wants to talk about models for T,, then she must
move to some wider formal semantic theory, S (given in the richer language,
). However, she continues, once she has accepted S, she no longer cares
that T, has unintended models; she would only care if the theory T, + S
had unintended models, and she has not yet been shown that it does.

The response we are imagining resurrects Bays’ strategy of moncha-
lance, in the special case where the metaphysical realist’s favourite theory
is negation-complete. Here, though, the metaphysical realist’s nonchalance
rests upon the following:

(¢) Model-formalism. The metaphysical realist maintains that talking
about models only makes sense within the context of some formal
model theory, given in some formal language.

Unfortunately for this metaphysical realist, such model-formalism is abso-
lutely incompatible with metaphysical realism. I shall spend the remainder
of this subsection explaining why.

We must again recall the metaphysical realist’s credo that truth in-
volves some sort of correspondence. Putnam suggested that we discuss
the correspondence relation in terms of model-theoretic satisfaction. If the
metaphysical realist had some other way to explain the correspondence re-
lation, she should have spoken up much earlier. It would have saved us
all a lot of time, since if we can discuss correspondence without invoking
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model theory, model-theoretic arguments will just be irrelevant to meta-
physical realism. So, we must suppose that the metaphysical realist agrees
that correspondence is to be explained via models.

Suppose, now, that our metaphysical realist has adopted the strategy of
model-formalism, in an attempt to resurrect the strategy of nonchalance.
As a model-formalist, she thinks that all talk about models must take place
within a formal model theory. If she is dealing with a negation-complete
theory, such as T, she must think that she cannot talk about models for T,
within T, (for if she could do that, then she would have to accept that T
has a countable model, about which she could not remain nonchalant.) So
if she wants to talk about correspondence for T, she must move to a wider
formal semantic theory, S. But it is not indicative of metaphysical realism
to discuss, in a formal theory S, the models of some formal theory T,; it
simply indicates a willingness to engage in a certain branch of mathematics,
namely, model theory. Nor is it indicative of metaphysical realism to talk
in S about correspondence for T,; even the most ardent anti-realist can do
that, so long as they are antirealists about S itself (or about some yet-wider
theory). So, how is the metaphysical realist to indicate her metaphysical
realism?

This question reveals an essential tension between metaphysical real-
ism and model-formalism. Metaphysical realism demands that there is
an externalist perspective on formal theories. Model-formalism demands
that any perspective concerning correspondence must be internal to some
formal theory. Model-formalism, then, yields an even stronger internalist
conclusion than Putnam himself drew from his model-theoretic arguments:
Model-formalism denies that metaphysical realists can even give any content
to the picture of an externalist perspective (cf.|[Putnam 1992, pp.353—4).

Evidently, the metaphysical realist cannot hope to resurrect Bays’ dilemma
by appealing to model-formalism. More generally, the metaphysical realist
must avoid model-formalism entirely. She must maintain that her central
credo “can only be stated with ‘typical ambiguity’—i.e. it transcends com-
plete formalization in any one theory” (Putnam 1978, p.125). She must
treat metaphysical realism as an intuitive picture, rather than as some-
thing totally formalisable. She might attempt to flesh out this picture via
a theological parable (cf. Putnam 1983, pp. ix—x|). The metaphysical realist
imagines God establishing a correspondence relation between the theories
of Earthbound humans and the objects of the world. As she sits by God’s
side and watches God at work, she sees that God is engaged in a practice
much like that of building a model for a formal theory. She sees that cer-
tain features of God’s correspondence relation behave like model-theoretic
satisfaction. Of course, this is a metaphor: she is not really watching God
build a model of her theory; she is simply wusing that theory and hoping
that she is thereby saying true things (she is hoping that God is smiling
on her). Nonetheless, outside the metaphor, she can retain the insight that
certain features of correspondence behave like model-theoretic satisfaction.
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In short, the metaphysical realist should hold that formal model theory
helps explicate her claim that truth consists in some sort of correspondence
relation. (This is to be contrasted with the model-formalist’s mantra that
talk about models is only meaningful at all within the context of some for-
mal model theory.) However, this explication comes with a price: when the
metaphysical realist sat with God, she saw that God had many possible
correspondence relations to choose from. In particular, she saw that T,
has a model which is countable from God’s perspective, and many other
“unintended” models besides. She must tackle Putnam’s model-theoretic
arguments head-on.

3.4 Two metamathematical properties

The detour of the previous subsection was illuminating, but it is liable to
distract attention from the central point of this paper. Allow me to repeat
that central point. The Skolemisation argument avoids Bays’ dilemma
thanks to two metamathematical properties of the Completeness Theorem:

1) It tells us that any consistent set of sentences has an “unintended”
Y
model.

(2) It is provable in an extremely weak model theory.

Of course, these properties do not allow Putnam to offer a formal proof that
the metaphysical realist’s favourite theory has a countable model. Fortu-
nately, Putnam is not arguing with a theorem-prover; he is arguing with
a philosopher with substantial prior metaphysical commitments. All Put-
nam needs to do is convince the metaphysical realist that her theories have
countable models. He can do this by virtue of the two metamathematical
properties just mentioned. By property , any theory which is any good
has a countable model. By property , the metaphysical realist can see
this with full generality—and so for any theory which she might ever be
right to accept—on the basis of an extremely weak model theory, which
she already does accept.

4 The permutation argument

I now turn to Putnam’s permutation argument. Bays does not discuss the
permutation argument in the context of his “dilemma”; my talk of “Bays’
dilemma”, in the context of the permutation argument, is by analogy with
Bays’ treatment of the Skolemisation and constructivisation arguments.
However, the permutation argument can finesse Bays’ dilemma in just the
same way as the Skolemisation argument. The reason for this is that the
permutation theorem exhibits the two crucial metamathematical features
just mentioned.

13



4.1 Putnam’s permutation argument

Intuitively, the permutation argument allows us to generate an unintended
model by “shuffling” the reference and correspondence relations of the in-
tended model. Formally, we employ the following theorem (see §8.1)):

Permutation Theorem. Let T be a theory with a non-trivial model. T
has multiple distinct isomorphic models. O

So, if YW models the metaphysical realist’s favourite theory Ty, then there
is some permuted model, P which, by construction, is isomorphic to W. A
fortiori, both models make exactly the same sentences of Ty true. Further-
more, since they are isomorphic, no possible sentence of the object language
can be added to Ty to tell them apart. So we have absolutely free choice
as to whether to treat correspondence as given by model-theoretic satis-
faction in W, or by model-theoretic satisfaction in P. This is Putnam’s
permutation argument (1981, pp. 32-8,217-8).

4.2 Finessing Bays’ dilemma

The question we need to address is familiar. When we permute the meta-
physical realist’s favourite theory, Ty, must we work in a theory that is
strictly stronger theory than Ty, or can we work in some weaker theory?

It should come as no surprise to learn that the Permutation Theorem is
provable in an extremely weak set theory. In particular, one can present the
Permutation Theorem in theories much weaker than Z-1I, that is, Zermelo
set theory without an Axiom of Infinity (see §8.1)). If the metaphysical
realist does not accept some such theory, she cannot do much mathematics
at all. So, as in my discussion of the Skolemisation argument, I shall
assume that the metaphysical realist accepts enough mathematics to prove
the Permutation Theorem.

The same key factors are now in place for the permutation argument
as they were for the Skolemisation argument. In particular:

The Permutation Theorem tells us that any set of sentences with a
model has a permuted model.

The Permutation Theorem can be proved, with complete generality,
in extremely weak model theories.

Accordingly, if Bays attempted to deploy his dilemma against the permu-
tation argument, we could reply with exactly the same argument as we
considered in the case of the Skolemisation argument. By , any the-
ory which is any good has a permuted model. By , the metaphysical
realist can see this with full generality—and so for any theory which she
might ever be right to accept—on the basis of an extremely weak model
theory, which she already does accept. In short, the permutation argument
absolutely resists Bays’ dilemma.
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The Permutation Theorem comes with an added bonus. The Complete-
ness Theorem produces an “unintended” model from a given theory. Hypo-
thetically at least, this allows the metaphysical realist space to respond by
rejecting the “apparatus of (fixed) theories and models”, and such thoughts
occupied much of §§3.2H3.3] When considering the Permutation Theorem,

we can streamline this discussion considerably, since

(3) The Permutation Theorem generates an “unintended” model from a
given model.

The metaphysical realist thinks of the world as the intended model of some
theory (perhaps “God’s theory”). Accordingly, the Permutation Theorem
immediately shows the metaphysical realist the following: If there is a
world at all, then there is a permuted world.

4.3 A detour through permuted class-models

We have seen that the permutation argument resists Bays’ dilemma ad-
mirably. Before moving on, I would like to embark on a second brief detour.
This time, I would like to explore how the permutation argument applies
to class-models.”

In §2.2] T explained how to relativise a sentence, ¢, to a class-model, A.
There, I assumed that A was a class-model of pure set theory. However, we
can liberalise the definition of the relativisation of a sentence, to allow class-
models of any theory. As before, we first define the domain of A as a class,
A. We next define an interpretation class-function, I* : [z | 2 = 2] — A,
whose primary role is to assign “interpretations” to the individual constants
of the language of Ty. For each atomic predicate “R” in the language of
Ty, we also define a suitable class RA. Now we define ¢ recursively:

(z=y)*is I (z) =T4(y))
Ais ((TA(zy), ..., T4(x,)) e RY)
s (ot Ay

Armed with this apparatus, we could run a class-level version of the per-
mutation argument. We would start by fixing some non-trivial class-sized
bijection 7 on the class-domain [z | z = x]. We would then define two
class-models, W and P, as follows:

W= [z ]|z =1] P:=[z|z=1]
™= [(z,7) |z = 1] " ==
RWY = [(z1,...,2,) | R(zy...2,)] R” = [(m(z1),...,w(x,)) | R(x1...13,)]

for each predicate “R”. Now, as long as Ty is powerful enough to talk
about class-models and to prove the Permutation Theorem (which is not
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to ask very much), we can prove the existence of these class-models for T
within Ty itself. In which case, we can simply ask the metaphysical realist,
within her favourite theory, why she thinks that “R” refers to R", rather
than R”. When the question is put this way, Bays’ dilemma never even
gets a foot in the door.

Sadly, the question itself is illegitimate, since it treats “R"” and “R””
as names for genuine objects. Of course, there are theories, such as MK
(Morse—Kelley class theory), which have bona fide objects called “classes”.
But, if MK is consistent, it obviously cannot prove the existence of a class-
model for MK, where “class” is used in the sense employed by MK itself.
So MK, and other theories like it, are irrevelant to this attempt to finesse
Bays’ dilemma. In the present context, as in §2.2] we must not think of
classes as bona fide objects. Given this, there is literally no question of
whether “R” refers to R"Y or R”. The question simply dissolves.

In slightly more detail: to consider the truth of a sentence ¢ in the class-
model P is to consider the relativised sentence ¢¥. Logical connectives are
unaffected by their relativisation and, in the case of P, the relativisation of
quantifiers to the domain P has no effect, since P is [z | x = z]. So it suf-
fices to consider the relativisation of each atomic sentence (R(a; .. .ay))7,
namely:

(R(ay...a,))" is 0% (a1),..., 1 (a,)) e R
is (mw(ay),...,m(a,)) e R
is R(ay . ..ap)

That is, the relativised sentence simply abbreviates the unrelativised sen-
tence. In short, once we remove all talk about classes—as we are honour-
bound to do, since classes are not bona fide objects—it becomes clear that
class-models pose no problems for metaphysical realists.

For exactly the same reason, though, class-models provide no comfort
for metaphysical realists. The metaphysical realist was happy to talk about
set-models in order to explicate talk about correspondence (see . It
is easy to explicate correspondence in terms of a set-model: there is a set
which is the world, and a set of words, and an interpretation function (also
a set) between the two, which is to be thought of as reference. In the case
of a class-model, properly speaking, there i¢s no domain, nor is there any
function from the words to the world, since there are (speaking strictly)
no classes. Talk of “correspondence” between a theory and a class-model
must be treated in an utterly deflationary sense.

In short, class-models—permuted or otherwise—have no interesting
bearing on metaphysical realism. This concludes our second detour.

5 The Skolemisation argument again

We have seen that Bays’ dilemma affects neither the most straightforward
version of the Skolemisation argument, nor the permutation argument.
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These form the mainstay of Putnam’s model-theoretic arguments against
metaphysical realism. Before I pass final judgment on the constructivisa-
tion argument, it is worth briefly commenting on three variations of Put-
nam’s Skolemisation argument.

The Skolemisation argument raises problems for metaphysical realists
who want their favourite theory to have an uncountable model. In §3] we
based this argument on the Completeness Theorem. But there are many
other “Skolemising” results which we could use instead, such as (see :

Skolem Hull Theorem (ZD,,). Given any structure A and any countable
set S C A, there is a countable structure H < A with S C H. H

The Skolem Hull Theorem is a theorem of ZD,, (that is, Zermelo set theory
with the Axiom of Countable Dependent Choice). And, as with the Com-
pleteness Theorem, if the metaphysical realist’s favourite theory is at least
as strong as ZD,, then the metaphysical realist must accept the Skolem
Hull Theorem. Moreover, unlike the Completeness Theorem, the Skolem
Hull Theorem has property : it generates a countable submodel from a
given model. Accordingly, it immediately shows the metaphysical realist
the following: if there is a world at all, then there is a countable world.

Now, when considering a Skolemisation argument against a metaphys-
ical realist about the pure sets, we only need to worry about the inter-
pretation of “€”. However, it is reasonably common to insist that any
intended interpretation of “€” must be transitive.l If it is legitimate for
the metaphysical realist to do this, then we face a difficulty: neither the
Completeness Theorem nor the Skolem Hull Theorem generate transitive
models, so the Skolemisation arguments depending upon them collapse.*!

However, this difficulty can be dealt with by moving from the Skolem
Hull Theorem to the following result (see §8.3)):

Transitive Skolem Theorem (ZD,,). Given any transitive model of pure
set theory, B, there is a countable transitive model A = B. O]

If we generate A using the Transitive Skolem Theorem, then €4 is transi-
tive. Accordingly, if we rely upon the Transitive Skolem Theorem, we can
dodge altogether the question of whether it is legitimate to insist that the
intended interpretation is transitive. As a further bonus, the Transitive
Skolem Theorem retains property .

The Skolem Hull and Transitive Skolem Theorems are obviously very
powerful weapons against a metaphysical realist. However, more powerful
weapons come with higher price-tags. The proofs of these theorems depend
(essentially) on the Axiom of Countable Dependent Choice (see §8.4). By
contrast, the Completeness Theorem can be proved without any choice
principle. Accordingly, for all their virtues, we might doubt whether these
two flashier theorems have property .

More specifically, we might worry that a metaphysical realist may be
able to avoid Putnam’s Skolemisation argument as follows. She first argues
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that the intended interpretation of “€” is transitive. She then rejects the
model-theoretic resources needed to prove Transitive Skolem’s Theorem; for
example, she may accept ZF, but accept no choice principles. She finally
maintains that she has been given no reason to believe that her favourite
set theory, ZF, has any countable transitive interpretations.

In practice, I cannot imagine many contemporary metaphysical realists
making this argument. Rightly or wrongly, most self-defined “realists” now
seem to accept ZFC. Since ZFC is much stronger than ZD,,, such meta-
physical realists must accept Transitive Skolem’s Theorem. That said, I
must leave the ultimate decision on this point to the conscience of individ-
ual metaphysical realists.

However, even if the metaphysical realist accepts no choice principles,
there is some mileage in the Transitive Skolem Theorem. In ZF, we can
prove that ZFC is consistent if ZF is consistent (see Kunen 1980, p. 175). So
if a metaphysical realist accepts that ZF is true, we can convince her that
it is consistent to believe that there is some transitive countable model of
her favourite theory. This raises the possibility that there is some countable
transitive model, and this mere possibility may be sufficient to cause the
metaphysical realist some worries. (In some sense, this recalls the “fallback
response” to Bays’ dilemma, mentioned in §I])

Michael Potter has suggested that we may be able to do better still
against metaphysical realists who are chary of choice. Potter draws atten-
tion to a close relative of the Transitive Skolem Theorem:

Submodel Skolem Theorem (ZF). For any transitive model B F ZF,
there is a countable transitive model A F ZF such that A C B. O

Unlike the Transitive Skolem Theorem, the Submodel Skolem Theorem can
be proved without any choice principles (see . But, Potter suggests,
we can use the Submodel Skolem Theorem in any philosophical argument
where we might have wanted to use the Transitive Skolem Theorem. For
this reason, Potter claims that “the issue about the use of choice here is a
red herring” (2004, p. 241]).

I think that this may be mistaken. The Submodel Skolem Theorem is
certainly often mentioned in the literature on Skolem’s paradox (though see
my cautionary comments at the end of and . However, the Sub-
model Skolem Theorem has some obvious drawbacks. Recall that we want
to base our model-theoretic arguments on theorems with nice metamath-
ematical properties. In particular, we want to show that any consistent
set of sentences has an unintended model. The Submodel Skolem Theo-
rem does not show this. Given any theory T which extends ZF and has a
transitive model B, the Submodel Skolem Theorem guarantees that there
is some countable model A E ZF such that A C B. It does not, though,
prove that A E T. Accordingly, the metaphysical realist may be able to
make statements in the object language that rule out A as an intended
model. To illustrate this: for the proof of the Submodel Skolem Theorem
given in §8.4) AF V =L; so if T contains “V #L”, then A ¥ T.
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The Submodel Skolem Theorem therefore lacks one of the crucial meta-
mathematical properties that enabled us to defend the model-theoretic ar-
guments against Bays’ dilemma; unlike the Skolem Hull Theorem and the
Transitive Skolem Theorem, it lacks property . Accordingly, the status
of the Axiom of Countable Dependent Choice is not a “red-herring”.

6 The constructivisation argument again

With these lessons in mind, I shall end by returning to the constructivisa-
tion argument. In §2] I noted that the Constructivisation Theorem could
be proved, for models of ZF, in the strong system ZFK. I explained why
this was problematic, and asked whether the problem was intrinsic to the
constructivisation argument, or an artefact of the particular proof of the
Constructivisation Theorem. I can now answer that question.

The proof of the Constructivisation Theorem that we considered was
not given, with complete generality, in a weak model theory. Accordingly,
the Theorem may lack property . However, it is still not clear whether
or not this is an intrinsic defect of the constructivisation argument. For all
I know, a hitherto-undiscovered but cunning proof of a suitable theorem
might exhibit property , whilst allowing us to run some constructivisa-
tion argument.

We cannot, though, show that any consistent set of sentences has a
constructible model for, quite obviously, ZF 4+ V £ L does not have a con-
structible model. Accordingly, any theorem upon which Putnam could
base a constructivisation argument must lack property . As with the
Submodel Skolem Theorem, then, we could always in principle show that
Putnam’s models are unintended simply by making statements in the ob-
ject language. For example, we could simply insist that “V # L” must be
satisfied. This is Bellotti’s reaction to the constructivisation argument: he
objects that “among our best axioms there is presumably some axiom (e.g.,
the existence of a measurable cardinal) ruling out V.=L" (2005, p. 406)).

Naturally, this raises the question of whether it is legitimate simply
to state in the object language something which entails or contradicts
“V=L". I do not know how to settle this question, without embarking
on the question of what legitimates set-theoretic statements in general. Is
the Axiom Scheme of Replacement legitimate? What about the Axiom of
Powersets? What, if anything, justifies Choice rather than Determinacy?
What about other candidate axioms? These are extremely difficult ques-
tions, but until we have some general method for answering them, I do not
see how we can address whether or not it is legitimate to add some axiom
which either entails or contradicts “V =L".

Strikingly, though, the Skolemisation and permutation arguments do
not require this prior discussion. This is why property is so important.
It guarantees that, whatever theory the metaphysical realist advances, she
will have to deal with unintended models of that theory.
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7 Concluding Remarks

Bays presented a dilemma against Putnam’s model-theoretic arguments.
I have shown that the dilemma has no purchase, so long as we can base
the argument in question on a theorem with two key metamathematical
properties:

The theorem must tell us that any worthwhile set of sentences has
an unintended model of the required kind.

The theorem must be provable, with full generality, in a weak model
theory.

Other properties may be desirable; for example, the ability to generate
unintended models from a given model, or the ability to generate transitive
models. But whenever our theorem has properties and , the dialectic
kicks in against the metaphysical realist. She must accept that her favourite
theory has an unintended model.

Ultimately, then, the metaphysical realist must attempt to specify in
general what makes a model (un)intended. Of course, there are many
things that the metaphysical realist might say at this point. Indeed, this
paper leaves open the possibility that the metaphysical realist can decisively
refute Putnam’s arguments. All I have shown is that metaphysical realists
cannot question the metamathematics of the mainstay of Putnam’s model-
theoretic arguments. The Skolemisation and the permutation arguments
are immune to metamathematical challenge.

8 Technical appendix

In this appendix, I state (and prove) most of the results discussed in the
main paper. The main exception to this is the Completeness Theorem.
The specific proof of the Theorem in WKL, (discussed in appears in
Simpson 1999, and I have nothing to add to Simpson’s presentation.

Before hitting the proofs, we need some notational conventions. Z is
standard Zermelo set theory. That is to say that Z has the axioms: Ex-
tensionality, Powersets, Pairs, Union, Infinity, Regularity, Purity and all
Separation instances. Two of these axioms require comment.

First: Regularity guarantees that the sets are wellfounded. This is
easily achieved by coupling Replacement with some axiom of Foundation.
However, Z lacks Replacement. So, I shall sometimes (silently) assume that
the set theory is presented as a theory of levels, as in [Potter 2004. (Potter
also shows how to develop a Replacement-free theory of ordinals.)

Second: most metaphysical realists about sets do not think that ewv-
erything is a set. So it is obviously unreasonable to lumber metaphysical
realists with the Axiom of Purity. If we were to drop the assumption of Pu-
rity, we could obtain (essentially) the same results; however, the Appendix
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would become longer and some of the proofs would become less clear. This
is why I include the Axiom of Purity among my assumptions.

I shall work in Z and related theories, and I shall also discuss models
of Z and related theories. To discuss the related set theories, we require
some naming-conventions. The conventions I employ are best illustrated
by example. The theory ZF-IP is Zermelo set theory (“Z”), with the Ax-
iom scheme of Replacement (“F”), but without Infinity (“~I”) and without
Powersets (“~P”). To further illustrate these conventions, here is a triv-
ial result, provable in both ZF-IP and Z-1 (Zermelo set theory without
Infinity):

Proposition 1 (ZF-IP and Z-1). For any z and y, both of the following
exist: (z,y) = {{z},{z,y}} and z x y = {(s,t) | s€ x At € y}.

Proof. By Extensionality, note the following identities:

<$ay> = {{x,x},{x,y}}
exy =it | sea}|tey)

rxy={(s,t) e P(P(xUy)) | s€x Nt ey}

The first construction involves Pairs. The second involves Replacement
and Union. The third involves Powersets, Union and Separation. O

The theory (or theories) in which the proof is given are stated in parentheses
after the theorem’s name. The following (standard) notational conventions
are also employed:

e Calligraphic fonts are used for models: A, B, ...

e [talicised fonts are used for that model’s set-sized domain: A, B, ...

e Arbitrary finite sequences of objects, such as ai, ..., a,, or by, ..., by,
are indicated by overlining: @, b, . ..

e Suppose a € A, and that A satisfies the atomic sentence “F(a)”,

[P}

where “a” is the name of a. In this case, we write A F F(a), or
a€ FA

8.1 The Permutation Theorem

Lemma 2 (ZF-IP and Z-I). Let A be any non-trivial structure. That is,
suppose A contains at least two objects and:

e an object picked out by an individual constant of the signature; or
e a relation that is non-empty and non-universal; or
e a function that is non-empty and non-universal.

Then there is a structure B = A, such that B = A but B # A.
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Proof. First, we define a bijection m : A —> A other than identity. Let
ag, ...,a; € A be distinct objects, and define a predicate of the model
theory:

Fy = (EIS)(EIt)((s,t> =y A (/\2:0(3 Fap) = s=1)A
Ni_o(s =ap —t = ai,k))

By Separation in the model theory, (Vz)({y € = | Fy} exists). Instantiate
x with A x A, using Proposition [I} This set is the required bijection, 7.

For each individual constant symbol “c”, each n-place predicate “R”
and each n-place function symbol “f” of £, define:

B(R) = R = {(n(x1), ..., 7(x) | {x1,...,20) € R4}
Bf) = 1P = {{m(@r), . ow(@n), w()) | (21, w0, y) € fA)

If these objects all exist, then (® defines a model, B, by setting B = A.
Moreover, B = A, by definition. Finally, because A is non-trivial, an
appropriate bijection 7 can easily be chosen so that (% # +* and hence
B # A.

It remains to prove that every ¢, R® and f? exists. The case of the
constants is trivial. To deal with relations (the same method works for
functions), given R4, define a predicate of the model theory:

Gy = (3x1) ... (32)3p1) - Fa) (1, -, 0) = Y A
(x1,...,2,) € RAN /\Zle(xk,pk»

n times
——
By Separation, (Vz)({y € x | Gy} exists). Instantiate with A" = A x ... x A,
using Proposition , and we have {y € A" | Gy} = RP. O]

This immediately yields:

Permutation: Theorem 3 (ZF-IP and Z-I). Let T be a theory with a
non-trivial model. T has multiple distinct isomorphic models. O]

Note that none of this requires an axiom stating the existence of any set; the
model A itself supplies the basic sets we need to work with. Furthermore,
to reach Theorem |3 the use of Replacement /Powersets was confined to the
proof of Proposition (I So, if we want to prove the Permutation Theorem
in a really minimal model theory, we could do away with Replacement
and Powersets, and simply take Proposition (1] itself as an axiom. That
is, we could prove the Permutation Theorem in a model theory containing
just: Proposition [I} the Axiom of Extensionality; appropriate Separation
instances; and whatever other resources are required to develop standard
model-theoretic notions (in particular, to define “F”).
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I leave it to the reader to determine her favourite balance of strength
against naturalness. My aim is merely to show that the Permutation The-
orem can be offered in model theories which are both extremely weak and
natural.

Finally, note that nothing in Lemma [2] depends upon A being a set-
model rather than a class-model (see §4.3)). All that changes is the notation:
if the domain of A is a class A, then we define a class-sized bijection 7r,
and each relation or function of A is a class RA or fA.

8.2 The Skolem Hull Theorem

In the Permutation Theorem, we start with a model and construct an
isomorphic model. In the various Skolemising theorems, we shall construct
elementarily equivalent models. Accordingly, we first require a criterion for
when two structures are elementarily equivalent.

Tarski—Vaught: Theorem 4 (Z). Let A, B be Z-structures such that
A C B. A = B iff for every Z-formula ¢ and every a € A, if B F
(3y)¢(@, y), then (3b € A)B F ¢(a,b). O

For a proof, see [Hodges (1993, pp. 48, 55) Hodges’ proof is officially given
in ZFC, but invokes very little background theory.

Our first Skolemising theorem will be the Skolem Hull Theorem. Many
standard proofs of the Skolem Hull Theorem employ Skolem functions (e.g.
Hodges 1993, pp. 88-90). I shall follow a different strategy, though, since I
want to emphasise the role of Countable Dependent Choice:

Definition 5. The following principle is Countable Dependent Choice: 1If
A# @ and (Vo € A)(Jy € A)zRy, then for any a € A, there is a sequence
(an) such ay = a and for all n < w, a, Ra, ;. O

In my naming-conventions for theories, taking Countable Dependent Choice
as an axiom is indicated by “D,”. Thus, ZD, is Zermelo set theory with
the Axiom of Countable Dependent Choice. Countable Dependent Choice
has some immediately useful consequences:

Proposition 6 (ZD,,). Every countable set of non-empty sets has a choice
set. Moreover, every countable union of countable sets is countable. O]

For a proof, see Potter (2004, pp. 161-2, 243). (A choice set for A is any
set {f(a) | a € A}, for some function f such that f(a) € a for every a € A.)

My strategy for proving the Skolem Hull Theorem is now as follows (cf.
Hodges 1993, pp. 87-88). Given a model A, we start by defining a partial
ordering on countable subsets of A. We then use Countable Dependent
Choice to select a sequence of these subsets. The union of this sequence
forms the domain for our countable Hull, H. We treat H as a submodel of
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A, and then demonstrate that H = A using Theorem 4] Here is the full
proof (which silently invokes Proposition @ several times):

Skolem Hull: Theorem 7 (ZD,,). For every structure A and any count-
able set S C A, there is a countable structure H < A with S C H.

Proof. Define a relation on the set A = {X C A | X is countable} as
follows:

X<aYif X CY A
(Vo) (vz € X)((Ba € A)AF ¢(Z,a) = (3a € Y)AF ¢(Z, a))

To see that A and < have the property required by Countable Dependent
Choice, fix X € A and define:

D:={ZCA|(3)3Fr € X)(Vac A)(a€ 2 AF (T a)}

As X is countable, there are only countably many finite tuples T € X.
Furthermore, there are only countably many formulae ¢ in our language.
So D is countable. Let C' be a choice set for D; then:

(Vo)(vz € X)((Fa € A)AE ¢(T,a) = (3a € C)AF ¢(z,a))

Let Y = X UC; then Y € A and X <Y. So, by Countable Dependent
Choice, given any countable subset S C A there is a sequence starting
with S = Hy such that H, < H,,1, for each n < w. That is, each H,
contains witnesses (from A) for every true (in A) existential formula with
parameters drawn from H,. Now define H explicitly as a submodel of A
as follows:

H:=U,..Hn the domain

=t for each constant “c”
R" .= R*n H" for each n-place relation symbol “R”
*= fAn for each n-place function symbol “f”

H is a countable union of countable sets, so H is countable.

We must check that H C A. Given T € H, there is some least n such
that * € H,,. Fix a function symbol “f” of £. Where a € A is the unique
object such that A F f(Z) = a, by construction, a € H,;; C H. Hence by
definition of f*, f*(z) = fA(Z) = a. Generalising, H C A.

Suppose now that A F (3y)o(Z,y), for some T € H. Again, there is
some least n such that T € H,, and so some h € H,,; C H such that
A E ¢(Z,h). Hence, for any formula ¢ and any sequence T € H:

if A F (3y)6(Z,y), then (3h € H)AF ¢(z, )

So H = A, by Theorem [4 O

24



8.3 The Transitive Skolem Theorem

The Skolem Hull Theorem is sufficient to run a Skolemisation argument
against any theory. However, if we are interested in Skolemising set theory,
we can go even further, as discussed in §5] We first need some definitions:

Definition 8. A is a pure-set-structure iff the only symbol in A’s signature
is a binary relational predicate, “€”, which is extensional in A; that is,
Ve e A)Vye A)(Vze A)(z ety 2 et a) o =1).

A pure-set-structure A is transitive iff both (Vo € A)(Vy € z)y € A
and (Vz € A)(Vy € A)(y € v +» y €4 2).

A pure-set-structure A is wellfounded iff every subset of A has an €-
minimal member; that is, (VX C A)(3z € X)(Vy € X)y ¢ . O

When A is transitive, it is easy to see that we can can replace “€4”
with “€”. Indeed, everything that A “says” about membership relations
is “true”; membership-in-A is “really” membership. (Scare quotes are
needed, since a sceptic might claim that transitivity only ensures that ac-
cording to the model theory, membership-in-A is really membership.) It
follows that:

Proposition 9 (Z). If A is a transitive pure-set-structure, A is well-
founded.

Proof. The Axiom of Regularity (in the model theory) guarantees that
there is no infinite descending €-chain. Since A is transitive, there is no
infinite descending €“-chain either. O]

Our strategy now follows McIntosh (1979, pp. 321-2; though see comments
below). We start with a transitive pure-set-structure, and take its Skolem
Hull, which is a countable submodel of the initial model. We then apply
a fresh result, the Mostowski Collapse, which yields a countable, transitive
model, as desired. So the only significant task ahead of us is to prove
(a special case of) the Mostowski Collapse. This first requires the set-
theoretic notion of rank. (For a definition of this notion which makes use
of Replacement, see Kunen 1980, ch.3} for a definition which does without
Replacement, see Potter 2004, ch.3.)

Definition 10 (Z). The rank of a set is defined by recursion on €:

( 0 if z is €-minimal
T) =
¢ sup{o(y) + 1|y € z} otherwise

Since € is wellfounded (by the Axiom of Regularity), if there is any x such
that o(x) is not defined, then there is some ¢ such that, for all y € t, o(y)
is defined, but such that o(t) is not defined. This is absurd; so rank is a
well-defined notion.
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For each von Neumann ordinal o, the a'" level of the set-hierarchy is:
Vo :i={z]o(z) <a}
The entire set-hierarchy is then the class V := [z | (3a)x € V,]. O

Armed with this, we prove our new result:

Mostowski Collapse (instance): Theorem 11 (Z). Let B be a tran-
sitive pure-set-structure. For any A C B, there is a transitive pure-set-
structure M = A.

Proof. We first define a notion of rank that is relative to a model, X

x 0 if x is € -minimal
o™ () =
sup{o¥(y) + 1|y € 2} otherwise
Since B is transitive, B is wellfounded, by Proposition[d Since A C B, A is
wellfounded too. So () is well-defined for every = € A, by the argument

given in Definition [10] (applied to € instead of €).
We next define a collapse function, ®, such that o*(y) = o(®(y)):

o(e) = {@ it oA(z) =0
' {®(y) |y €t 2} if ®(y) is defined whenever o*(y) < o ()

This definition seems to require Replacement, but this is only for clarity.
To see this note the following, for any y € A:
o(®(y)) = o™ (y) by definition
< B(y) since A C B
) since B is transitive
(A) since € is wellfounded (in the model theory)

It follows we could have defined ®(x) using Separation, instead of Replace-
ment, with the following recursion clause:

O(x) == {z € Vyuy | Gy €' 2)(y) = 2}
We now use ® to define a model M, the Mostowski collapse of A:
M :={®(z) |z € A} M’s domain
M= {{z,y) |z cy} M’s single relation

Again, the use of Replacement is easily eliminable. To see that M is
transitive, suppose y € ¥ € M. Then x = ®(a) = {®(2) | z €* a}, for
some a. So y = ®(b), for some b €* a; hence y € M.

To prove that A = M., it suffices to prove that ® is an isomorphism. P is
obviously a surjection; to check that it is an injection we proceed by induc-
tion on ¢*. For induction, suppose that whenever max(o*(z), 0*(y)) < 7,

26



we have ®(z) = ®(y) — v = y. Let max(o”(z), 0*(y)) = 7, and suppose
(x) = ®(y). For any s € z, ®(s) € ®(x) = O(y ) ={®(2) | z € y}. So
there is some ¢ €4 y such that ®(s) = ( ); but max(g”(s), 0(t)) < 7,
so by the induction hypothesis, s = t €4 y. Similarly, if t €4 vy, then
t €4 2. So x =y, by extensionality in .A. Thus @ is injective, and hence
bijective. Moreover, ® preserves the structure of €4 by definition, so ® is
an isomorphism. O

The proof of this instance of Mostowski’s Collapse follows Mostowksi’s
(1969, pp.20-1) own general proof very closely. The only real difference
is that I eliminate Replacement in this special case. The pay-off is that
Transitive Skolem’s Theorem does not require Replacement.

Transitive Skolem: Theorem 12 (ZD,). For any transitive pure-set-
structure B, there is a countable transitive pure-set-structure A = B.

Proof. Using Theorem [7] define a countable Skolem Hull # = B. Since
H C B, let A be the Mostowski Collapse of H, using Theorem [I1] O

To repeat myself: I have followed McIntosh’s proof-strategy in proving the
Transitive Skolem Theorem (1979, pp.321-2). However, two points are
worth noting. First, McIntosh is not clear that A = B, so sells his result
somewhat short. Second, McIntosh claims that A C B. This last claim
has not been proved in general (so far as I can tell), but it does hold in
the special instance that McIntosh considers (where B is to be a ‘standard’
model of ZF, i.e. a model of ‘full” second-order ZF).

8.4 The Submodel Skolem Theorem
The proof of Theorem [12[ employs the Skolem Hull Theorem. Sadly:

Proposition 13 (Z). Countable Dependent Choice and the Skolem Hull
Theorem are equivalent.

Proof. Theorem [7| shows that Countable Dependent Choice entails the
Skolem Hull Theorem, so we now prove the opposite entailment. Let A
be a set where (Vx € A)(Jy € A)xRy; treat this as a structure A F
(Vz)(Jy)zRy. Fix an element a € A; by the Skolem Hull Theorem, there is
a countable substructure H < A such that a € H. As H is countable, we
can enumerate all the elements h; € H, with hy = a = ag. Now we define
our sequence (a,) by recursion:

an41 = the h; such that H F (a,Rh;) and (VE < i)H ¥ (a,Rhy) O

This proof is from |Boolos & Jefirey 1989, pp. 155-6. I repeat it here only
because it has vanished from more recent editions of that book.
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To obtain a Skolemising theorem that does not require any choice prin-
ciple, we need a special (choice-free) instance of the Skolem Hull Theorem.
This makes use of an idea from Hodges (1993, pp. 91-2):

Definition 14. A is a Skolem-defined structure iff for every .Z-formula
¢(T,y) with T not empty, there is an Z-formula ¢*(Z,y) such that:

é F (V) (Fy)o(T,y) = (Bly)e*(T,y) A (Vy) (6" (T, y) = ¢(T,9))))

The idea is that, given a Skolem-defined structure A4, we can construct
a Skolem Hull from A by selecting witnesses for each existential formula
explicitly. Formally:

Skolem-Defined Hull: Theorem 15 (Z). Let A be Skolem-defined. For
any finite subset S C A, there is a countable structure H < A with S C H.

Proof. Enumerate the formulse ¢*, giving each an index m < w. Now
define:

HO =9
Hyy =H,U{a€A|(3m <n)(IT € H,)AF ¢, (Z,a)}
H:=U,.,Hn

Note that each H, is finite, so H is countable. Define the model H exactly
as in Theorem [7} we must check that H C A. Given T € H, there is some
least n < w such that * € H,. For each function symbol “f”, the formula
“f(z) = y”, or some logical equivalent, has some place in the enumeration
of formulee; let it be ¢%,. So by construction, fA(Z) = a € Huyax(mm+1 S H.
So by definition, for any 7 € H, f*(Z) = f4(Z) = a. Generalising, H C A.

To check that H = A, suppose A F (Jy)o(Z,y), for some ¢ and some
T € H,. As A is Skolem-defined, for some m < w:

AFE(BY)on (@, y) A (Vy)(0,(Z,y) = 6(Z,y)))

So there is some h € A such that A E ¢F (Z,h); by construction, h €
Hoax(mm+1 € H. Furthermore, A F ¢(Z,h). Thus H = A, by Theorem
(Al ]

The explicit construction of H is, in one sense, easier than the construction
of a Skolem Hull with Countable Dependent Choice: we did not need to
define a partial ordering, <, on the subsets of A. However, abandoning
(all forms of) choice introduces a new complexity. Suppose we had started
with a countably infinite set S C A. Then each H, would be countably
infinite, and H would be a countably infinite union of countably infinite
sets.  Without any form of choice, we cannot prove that such a set is
countable, so we would have no guarantee that our model H is countable.
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This is why S is finite in Theorem The same thought motivates the
indexing of each formula ¢*.

Skolem-defined models are relatively rare, in general, but every con-
structible pure-set-structure is Skolem-defined. In more detail:

Definition 16 (Z). Where “D,(z)” formalises “x is definable by some
formula whose quantifiers range only over L,”:

LO =g
Lot1:={x C Ly | Da(z)}
L, = s<als for limit ordinals «

L:=[z]| (3a)x € L,]

Since V. = [z | (Ja)xr € V,], “V=L" abbreviates “(Vz)(3a)z € L,"
(see Definition [10). A model is constructible iff it satisfies the first-order
sentence “V =L". ]

Kunen (1980, ch.6)| offers a thorough discussion of constructibility. The
following Lemma is due to Hodges (1993, p.92):

Lemma 17. If AE ZF 4+ V =L, then A is Skolem-defined.

Proof. ZF entails that there is a definable well-ordering, <, of L (see|Kunen
1980, pp. 173-4). So define:

*(T,y) = o(T,y) A (V2 < y)—9(T, 2)

Uniqueness is immediate from the fact that < is a well-ordering. ]
We need just one more result:

Godel Condensation: Lemma 18 (ZF). If M F ZF + V=L is a
transitive pure-set-structure, then M = L., for some ordinal ~. O]

For a proof, see [Kunen (1980, p. 172). Putting all this together, we arrive
at the desired choice-free result:

Submodel Skolem: Theorem 19 (ZF). For any transitive pure-set-
structure B F ZF, there is a countable transitive model A F ZF such that
ACB.

Proof. Take B’s constructible inner model, C C B (so C' = L5, as it were).
Since C F ZF + V=L (see e.g. Kunen 1980, pp. 169-70)), C is Skolem-
defined, by Lemma [I7] We can therefore use Theorem [I5 to form a count-
able Hull # < C, and then use Theorem to generate H’s countable
Mostowski Collapse A = H =C.

As B is a transitive pure-set-structure, C is too. So by Lemma [18]
C = L, for some v. Likewise, since A F ZF + V=L and A is transitive,
A = Ls for some §. As A is countable, § <~. So A CC C B. O
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Potter (2004, p. 241) states this can be proved without any choice principle
and without Replacement, but he does not give a proof.

The role of the Submodel Skolem Theorem in discussions of Skolem’s
paradox is slightly unclear. Benacerraf (1985, p.101)| and [Wright (1985,
p. 118)| discuss the result: “Any transitive model for ZF has a transitive
countable submodel” (see also Bays 2009, §2.3). As stated, this is precisely
the Submodel Skolem Theorem. However, we should be slightly cautious.
The result is not proved in Benacerraf’s paper and, given a footnote appear-
ing later in that paper (1985, p. 103, n.9), we might guess that Benacerraf
is relying on McIntosh’s [1979targument. And Mclntosh, too, seems to
claim to have proved the Submodel Skolem Theorem. However, as shown
at the end of §8.3] McIntosh’s argument actually establishes the Transitive
Skolem Theorem, rather than the Submodel Skolem Theorem.
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Notes

'Note that Bays does not think that Bays’ dilemma is the only problem that Putnam’s
arguments face; nor, perhaps, that it is the main problem.

2There are various ways to add classes “harmlessly” to set theories; for an excellent
philosophical and technical summary, see [Potter 2004, Appendix Bl Our classes are what
Potter calls “virtual classes”. I follow Potter’s typographical distinction between classes
and sets: when talking about classes, I use square-brackets rather than curly-brackets,
and “e” rather than “€”.

3This core omits details about coding and w-models. There is some exegetical con-
troversy over whether Putnam himself had this fallacious “proof” in mind; see [Bellotti
2005, pp-404-5 and Bays 2007, pp. 1234}

4In fact, Putnam has another use for the Completeness Theorem: to argue that the
metaphysical realist cannot make sense of the claim that an ideal theory might be false
(1978, p. 126:; (1980, pp. 472-4; (1989, p. 215). In the interests of brevity, I do not discuss
this use of the Completeness Theorem directly.

WKL is a subsystem of second-order arithmetic which contains Weak Ko6nig’s
Lemma as an axiom, i.e.: “every infinite subtree of the full binary tree has an infi-
nite path”. The other axioms of WKL are those of RCAg. RCAq contains the basic
axioms of arithmetic, i.e. the existence of 0, and axioms governing + and x. RCAg also
has X{-induction (i.e. induction for any :¢-formula), and AY-comprehension (i.e. for
any Af-formula ¢, “{n € N | ¢(n)} exists” is an axiom). See [Simpson 1999, pp. 234,
923l

SFor technical details, see [Franzen 2004, pp. 1726

"For technical details, see [Franzen 2004, pp. 187-97]

8Bays 2007, pp.126-7. I should emphasise that Bays does not commit himself to
this thought; he merely suggests it as a possible response on behalf of the metaphysical
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realist. Furthermore, Bays is not here considering iterated consistency sequences, but
sequences of theories formed by adding increasingly large axioms of infinity of at each
stage (in response to the constructivisation argument). So the response that I am here
considering is an adaptation of a suggestion made by Bays.

9Bays suggested something like this to me in conversation on 7.xi.2008. I am not
certain that he had exactly this in mind but, even if he did not, I wish to thank him for
making me consider the idea.

10T his is the gist of a remark made by Tarski (Skolem 1958, p. 638)). Benacerraf (1985,
pp. 101-4)| endorses this response, as (perhaps) does [Wright (1985, p. 118)!

UTnsisting that the intended interpretation is transitive would also undermine Put-
nam’s constructivisation argument, since Putnam’s constructible models are not well-
founded, and so are not transitive (Putnam 1980, p.467; [Bellotti 2005, pp. 401-3).
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