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Preface

This dissertation is divided into three major parts: a general introduction or 

literature review (chapter 1), a presentation of the results and a discussion of the results 

(chapters 2, 3, and 4), and some concluding statements and suggestions for future 

studies (chapter 5). Chapters 2, 3, and 4 form the core of the dissertation. Each of these 

three chapters is presented in the form of a manuscript consisting of Introduction, 

Materials and Methods, Results, and Discussion sections. Chapter 2 has been published 

(Byrnes, M„ Zhu, X., Younathan, E. S., & Chang, S. H. (1994) Biochemistry 33, 3424- 

3431), chapter 3 has been accepted for publication in the Journal o f  Biological 

Chemistry, and chapter 4 is currently being submitted to Biochemistry. Some of the 

kinetic results presented in Tables 4.2, 4.3, and 4.4— those for the E. coli PFK 

mutants— were obtained by Dr. Isabelle Auzat, who came from the Laboratoire 

d'Enzymologie-CNRS in France to visit the Chang laboratory in March, 1994. There 

may be some overlap in the introductory sections of the three core chapters. Chapter 1 

is designed to be an "umbrella" introduction that will hopefully provide a 

comprehensive review of the bacterial PFK literature, including information not 

included in the core chapter introductions. Finally, chapter 5 sums up the whole body 

o f work and proposes some specific future experiments. Hopefully, one or more of the 

suggested future experiments in chapter 5 will ignite someone’s interest in pursuing 

further studies of bacterial PFK.
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Abstract

The fructose 6-phosphate (Fru-6P) saturation curve for phosphofructokinase 

(PFK) from E. coli is sigmoidal in the presence of saturating MgATP levels, while the 

corresponding curve for B. stearothermophilus PFK is essentially hyperbolic. 

Sigmoidality can be due to apparent cooperativity arising from the kinetic mechanism of 

an enzyme. We have determined the kinetic mechanism of B. stearothermophilus PFK 

(BsPFK). BsPFK was found to obey a non rapid-equilibrium random mechanism 

similar to the one E. coli PFK (EcPFK) follows. Substrate inhibition by MgATP was 

observed. We propose that substrates bind to BsPFK through two alternative pathways, 

one of which is slower. The substrate inhibition arises in part from reaction flux 

through the slower pathway.

Although EcPFK and BsPFK obey similar kinetic mechanisms, they are 

inhibited differently by MgATP: EcPFK is profoundly inhibited, BsPFK only weakly. 

The structural basis for this difference could be closure of the active site via a 

conformational transition that occurs in EcPFK, but not BsPFK. To investigate the 

importance of this transition for MgATP inhibition of EcPFK, we have constructed a 

chimeric enzyme (ChiPFK) that contains the "rigid" ATP-binding domain of BsPFK 

grafted onto the remainder of the EcPFK subunit. Our results indicate that ChiPFK is 

locked in an "open" structure resembling the activated form of EcPFK. It is insensitive 

to heterotropic regulation. Nevertheless, ChiPFK exhibits residual cooperativity. 

Possible explanations for the cooperativity are discussed.

The 6F loop is proposed to be important in PFK allosteric behavior. Residues 

along the loop are largely conserved between BsPFK and EcPFK, except for 161, which 

is a glutamate in BsPFK, and a glutamine in EcPFK. Using site-directed mutagenesis, 

Glu 161 of BsPFK has been changed to glutamine and alanine. Similarly, Gin 161 of

x



EcPFK has been changed to glutamate, arginine and alanine. Of the five mutants, one, 

QA161, was particularly interesting. Though activated normally by GDP, it was 

completely insensitive to PEP inhibition. This indicates that the hydrogen-bonding 

ability of residue 161 is critical for PEP inhibition of EcPFK, and that GDP activation 

and PEP inhibition follow different structural pathways.

xi



Chapter 1 

General Introduction

1



2

Phosphofructokinase (PFK, ATP: (3-D-fructose 6-phosphate 1- 

phosphotransferase, EC 2.7.1.11) is a key regulatory enzyme o f glycolysis. Positioned 

near the top o f the glycolytic pathway (Fig. 1.1), PFK catalyzes the first committed step 

of the pathway, the MgATP-dependent phosphorylation o f fructose 6-phosphate (Fru- 

6P) to produce MgADP and fructose 1,6-bisphosphate (Fru-1,6BP):

MgATP + Fru-6P > MgADP + Fru-1,6BP.

A divalent Mg++ ion, as well as a monovalent NH4 + or K+ ion, is required for the 

catalysis. The enzymatic activity o f PFK, hence flux through the glycolytic pathway, is 

regulated by a number o f metabolites. In mammalian cells, the regulation is complex, 

with ATP and citrate serving as inhibitors o f the enzyme, and Fru-6P, ADP, AMP and 

Pi as well as fructose 2,6-bisphosphate, serving as activators (see Uyeda, 1979 for a 

review). In bacteria, however, regulation o f PFK is simpler, involving the activator 

ADP (or GDP) and the inhibitor phosphoenolpyruvate (PEP). Exceptions to this are the 

PFKs from the bacteria Lactococcus bulgaricus and Spiroplasma citri, which are 

regulated by PEP but not ADP (Auzat et al., 1994). ATP also inhibits bacterial PFK, 

but the potency of the inhibition varies from one bacterial species to another. For 

example, ATP inhibits Escherichia coli PFK strongly at low Fru-6P concentration, but 

Bacillus stearothermophilus PFK only weakly.

The genes for both E. coli PFK and B. stearothermophilus PFK have been 

cloned (Hellinga & Evans, 1985; French & Chang, 1987), and the three-dimensional 

structures o f the two enzymes have been determined from X-ray diffraction studies 

(Shirakihara & Evans, 1988; Evans et al., 1981). The cloning o f the genes has made 

possible not only a deduction of the primary structures (amino acid sequences) of the 

enzymes, but also high-level expression o f the enzymes in PFK-deficient E. coli cells 

(Hellinga & Evans, 1985; French et al., 1987), and site-directed mutagenesis for the
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FIGURE 1.1. The Glycolytic Pathway. (Taken with permission from Shyer (1988) 
Biochemistry . 3rd. ed„ W. H. Freeman and Co., New York. Copyright 1988 W. H. 
Freeman and Co.).



purpose o f structure-function studies. High-level expression has resulted in purer, more 

homogeneous crystals o f B. stearothermophilus PFK, which has in turn allowed a 

higher-resolution X-ray structure (Schirmer & Evans, 1990). The availability o f high- 

resolution structures o f the proteins has in turn spawned structure-function studies using 

site-directed mutagenesis and recombinant DNA, which confirm or deny predictions 

made from the crystal structures. Thus, recombinant DNA technology and site-directed 

mutagenesis on one hand, and X-ray crystallography on the other, have been used 

together to unravel the intricacies o f PFK catalysis and regulation. Furthermore, the 

combination o f site-directed mutagenesis, recombinant DNA methods, and X-ray 

crystallography with classical enzymology and ligand binding studies allows one to 

undertake a very comprehensive study of the structure and function o f PFK, and indeed 

any regulatory enzyme.

Bacterial PFK Structure

The primary structures o f E. coli PFK (EcPFK) and B. stearothermophilus PFK 

(BsPFK) are shown in Fig. 1.2. These structures were deduced from the nucleotide 

sequences o f their genes (Hellinga & Evans, 1985; French & Chang, 1987), but a partial 

amino acid sequence o f BsPFK had been determined some time earlier (Kolb et al., 

1980) from an analysis o f cyanogen bromide and other peptic fragments. Examination 

of the two sequences in Fig. 1.2 reveals that EcPFK and BsPFK share 55% amino acid 

identity. Moreover, a comparison among the amino acids that bind substrates in the 

active site (Table 1.1) and effectors in the regulatory site (Table 1.2) o f the two enzymes 

shows that most of the residues are either identical or conserved between the two. This 

close homology between EcPFK and BsPFK is in contrast to the complete lack of 

homology observed between EcPFK and the non-allosteric PFK from E. coli (the two 

are designated PFK 1 and PFK 2, respectively), whose gene has also been cloned and 

sequenced (Daldal, 1984). (PFK 2 accounts for about 10% of the total PFK activity in 

wild-type E. coli cells). The PFK 2 enzyme has been purified and studied in terms of
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FIGURE 1.2. Sequences of the PFKs from E. coli and B. stearothermophilus. The
residues o f EcPFK are numbered from 0 to 319, while those o f BsPFK are from 1 to 
320. Residues identical between the two are bolded. A gap at position 302 o f BsPFK 
allows alignment o f the C-termini. Positions a-helices and p-strands are indicated by 
horizontal lines. Corrections o f the BsPFK sequence due to French & Chang (1987) are 
in italics.



TABLE 1.1
Active Site Residues

A. Fru-1,6BP Binding.

Residue No. Ec Bs Interactions

125 Thr Thr H bond to 1-phosphate

127 Asp Asp Catalytic residue, H bond to 0(3)
129 Asp Asp Binds water attached to Mg++
162* Arg Arg Binds 6-phosphate
169 Met Met Hydrophobic contact to 0(2), 0(3)
170 Gly Gly Main-chain H bond to 0(3)

171 Arg Arg Near 1-phosphate
222 Glu Glu H bond to 0(4)

243* Arg Arg Binds 6-phosphate

249 His His Binds 6-phosphate
252 Arg Arg H bond to 6-phosphate and 0(2)

B. ADP Binding.

Residue No. Ec Bs Interactions

11 Gly Gly Main-chain amide H bond to fl-P
41 Tyr Tyr Contact with ribose
72 Arg Arg Bridges ADP oP and Fru-1,6BP P's

73 Phe Cvs Main-chain bonds to ribose OH
77 Arg Lvs Hydrophobic contact with adenine
103 Asp Asp Binds to Mg++
104 Gly Gly Main-chain amide bond to (3-P
105 Ser Ser H bonds to Jl-P from OH and NH
107 Met Gin Hydrophobic contact with adenine
108 Gly Gly Contacts adenine

Ec, E. coli PFK; Bs, B. stearothermophilus PFK. Residues indicated are those 
that interact with products because the crystal structure was determined with products in 
the active site. *, from another subunit. Underlined residues are different between Ec 
and Bs. (From Shirakihara, Y., & Evans, P. R. (1988) J. Mol. Biol. 204, 973-994).
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TABLE 1.2
Effector Site Residues

ADP Binding.

Residue No. Ec Bs Interactions

21* Arg Arg H bond to p-P and M g4-*- via water

25* Arg Arg H bond to p-phosphate
54* Arg m H bind to a-P and C terminus
55* Tyr Gly Stacks against adenine ring
58* Ser GIv H bond to 1-P and Arg 25
59* Asp Asp Main chain to p-P, bond to 0(3)
154 Arg Arg Two H bonds to p-P

185 Gly Gly Main chain carbonyl bond to Mg++

187 Glu Glu Carboxyl binds to Mg++
211 Lys Arg Alternative to Arg 54

213 Lys Lys H bond to C-terminus and Glu 187
214 Lys Lys Main chain amide H bond to 0(4)
215 His His Bond to Mg++ via water

C terminus Tyr Ik H bond to Arg 54 in E. coli

Ec, E. coli; Bs, B. stearothermophilus. The effector site is formed between the 
two subunits o f the rigid PFK dimer. The asterisks indicate residues from one o f the 
two subunits. Note that Arg 54 o f  E. coli PFK is replaced by Arg 211 in B. 
stearothermophilus PFK. (From Shirakihara, Y., & Evans, P. R. (1988) J. Mol. Biol. 
204, 973-994).



its enzymology (Babul, 1978), its regulation by ATP (Kotlarz & Buc, 1981; Guixe & 

Buc, 1985), its dimer-tetramer equilibrium (Kotlarz & Buc, 1989), its kinetic 

mechanism (Campos et al, 1984), and its possible physiological function (Daldal et al., 

1982; Daldal & Fraenkel, 1983; Torres & Babul, 1991). Because o f its apparent 

unrelatedness to EcPFK and BsPFK, however, PFK 2 will not be discussed further.

Both BsPFK and EcPFK are tetramers o f four identical subunits, each composed 

of 319 amino acids (320 for BsPFK). The subunit molecular mass is 35,000 ±  1,000 

daltons. The subunit structures o f the two enzymes are remarkably similar; they share 

the same secondary structural elements, and their a-carbon traces are nearly 

superimposable. Fig. 1.3 is a schematic representation o f the bacterial PFK tetramer. 

Each subunit has two domains, a large one and a small one. The catalytic site is located 

within the cleft formed between the two domains: it binds the substrates Fru-6P and 

ATP, as well as the essential Mg++ ion. (The binding site o f the NH4 + ion has not been 

located yet). Movement of the two domains relative to each other in EcPFK allows the 

active site to open and close, a process that is important for catalysis (Evans, 1992) and 

may be important for allosteric regulation as well. Three of the residues important for 

catalysis (see Table 1.1) lie on a polypeptide loop (residues 125 to 129) connecting the 

two domains. All of the residues that bind ATP are from the large domain, while those 

that bind Fru-6P are from the small domain, but include two residues, Arg 162 and Arg 

243, from across the dimer-dimer inteiface. As will be shown below, Arg 162 is 

directly involved in the allosteric transition.

The bacterial PFK tetramer can be thought o f as a dimer o f rigid dimers A:B and 

C:D (Fig. 1.3). The A-B and C-D interfaces (there are two in the tetramer) are called 

regulatory interfaces because they form the four effector sites. The A:B-C:D dimer- 

dimer interface is called the active interface because it forms part of the four Fru-6P 

sites. The regulatory interface has more contact area than the active interface (about 

twice as much), so it is considerably more stable. Subunit A has no contact with subunit
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FIGURE 1.3. The Bacterial PFK  Tetramer. The A, B, C, and D subunits are 
indicated, as are the locations o f the ATP and Fru-6P sites, and the effector sites, r, p, 
and q are the axes o f symmetry. The directions o f rotation in the T— > R and R— > T 
transitions are indicated. (Taken with permission from Evans, P. R. (1992) Proc. 
Robert A. Welch Found. Conf. on Chem. Res. XXXVI. Regulation o f  Proteins by 
Ligands, pp. 39-54).



C; likewise B has no contact with D. J.-R. Garel and co-workers have studied the 

dissociation (Le Bras et al., 1989; Deville-Bonne et al., 1989) and re-association 

(Martel & Garel, 1984; Teschner & Garel, 1989) o f EcPFK in the chaotropic agents 

potassium thiocyanate, guanidinium hydrochloride, and urea. The protein is found to 

dissociate in an ordered, stepwise, and reversible manner according to the following 

scheme

N — > 2 D — > 4 M — > 4 U  

where N represents native EcPFK, D a dimeric species, M a monomeric species, and U  

the unfolded monomer. Reassociation proceeds by the reverse scheme

slow
4 M — > 2 D ---------- > N

involving two bimolecular events, the second of which is the slower, rate-limiting step. 

The species "D" was shown to be the regulatory dimer (A:B or C:D above) since its 

disappearance or appearance was correlated with the enhancement or quenching, 

respectively, o f the intrinsic fluorescence o f a unique tryptophan (Trp 311) that is 

situated along the regulatory interface. Saturating levels o f Fru-6P were found to retard 

dissociation o f the native tetramer into dimers, presumably because interactions o f Fru- 

6P with Arg 162 and Arg 243 across the active interface serve to "cross-link" the dimers 

together. The strength o f the interaction is so strong, in fact, that the pathway o f urea- 

induced dissociation is modified, causing the regulatory interface to become distorted 

first. The weakened tetramer then falls apart into monomers in an all-or-none process 

(Teschner et al., 1990). Fru-6P also prevents inactivation and dissociation o f a 

proteolyzed EcPFK tetramer which is not stable in its absence (Le Bras & Garel, 1985). 

It is interesting that several features o f bacterial PFK geometry, i.e., that the tetramer is 

a dimer o f dimers having two kinds o f interfaces (regulatory and active) and that Fru-6P 

interacts with residues across the active interface, have been predicted by these 

dissociation/reassociation studies independent of other structural data.
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The tetramer o f the PFK from rabbit muscle is about twice the size o f the 

bacterial one (subunit molecular masses are 82,000 versus 35,000 daltons), and its bl

and C-halves show clear homology to BsPFK and to each other (Poorman et al., 1984; 

Lee et al., 1987). Because o f this, Poorman et al. (1984) have proposed that eucaryotic 

PFK arose from a procaryotic progenitor by series gene duplication and divergence. 

Furthermore, because the N-half o f rabbit muscle PFK has a higher homology to BsPFK 

than does the C-half, and because it has key catalytic residues that the C-half does not 

have, Poorman et al. (1984) have suggested that the N-half contains the catalytic site, 

while the C-half contains the regulatory site(s). Alignment o f amino acid sequences 

based on the Poorman model has been used as a guide for site-directed mutagenesis of 

rabbit muscle PFK cDNA (Li et al., 1993), which has been cloned and sequenced (Li et 

al., 1990).

The Active Site and Catalysis

X-ray diffraction studies have identified the amino acid residues that bind ATP 

and Fru-6P in the active sites o f EcPFK and BsPFK (Evans et al., 1981; Shirakihara & 

Evans, 1988). These are listed in Table 1.1. As can be seen from the table, all o f the 

residues that bind Fru-6P are the same between EcPFK and BsPFK, while those that 

bind A IT  are almost all the same. Those that are different are Phe 73 (Cys in BsPFK), 

Arg 77 (Lys), and Met 107 (Gin). These differences are probably not significant since 

residue 73 interacts with the ribose hydroxyl group via its main chain amide and 

carbonyl groups, Lys is similar to Arg, and residue 107 interacts with the adenine ring 

of ATP by hydrophobic contact. The strict conservation o f active site residues between 

EcPFK and BsPFK is surprising given their very different responses to Fru-6P when the 

MgATP level is high: sigmoidal for EcPFK versus hyperbolic for BsPFK.

Two different kinds o f studies have been done to determine the reaction 

mechanism of PFK, i.e., the manner in which the phosphoryl group is transferred from 

ATP to Fru-6P in the PFK-catalyzed reaction. First, 31P-NMR has been used to
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determine the stereochemical course o f phosphoryl transfer in both the BsPFK- and 

rabbit muscle PFK-catalyzed reactions. It was found that the transfer involves an 

inversion o f configuration at the phosphorous atom of the transferred phosphoryl group, 

which is indicative of an in-line nucleophilic attack o f the 1-hydroxyl group o f Fru-6P 

on the y-phosphate of ATP (Jarvest et a t,  1981). Second, site-directed mutagenesis has 

identified Asp 127, which is conserved among all known PFKs, as the key catalytic 

residue (Hellinga & Evans, 1987). When Asp 127 was mutated to Ser in EcPFK, the 

catalytic rate constant kcat dropped 18,000-fold for the forward reaction, and 3,100-fold 

for the reverse reaction, indicating that Asp 127 is critical for catalysis. From these 

results, and from the proximity o f Asp 127 to the attacking 1-hydroxyl of Fru-6P, 

Hellinga & Evans (1987) have proposed that it acts as the general base to increase the 

nucleophilicity of the Fru-6P 1-hydroxyl group. Studies of the pH-dependence of 

EcPFK activity have confirmed the important role of Asp 127 in catalysis, and have 

suggested a secondary role for Asp 129 ( Auzat & Garel, 1992; Laine et al., 1992).

Site-directed mutagenesis in conjunction with X-ray crystallography has 

identified the residues important for stabilizing the EcPFK transition state and 

coordinating the Mg++ ion in the active site. Fig. 1.4 depicts the pentacoordinate 

transition state complex proposed by Berger & Evans (1992). Residues important for 

stabilizing the transition state include Arg 72, Thr 125, and possibly Gly 11. Arg 72 is 

proposed to help neutralize the negative charge o f the transferring phosphate. Mutation 

o f Arg 72 to His changes the pH-dependence of enzyme activity (Zheng & Kemp, 1994) 

and lowers the kcat 100-fold. This result indicates that Arg 72 plays a role in catalysis; 

it also suggests that phosphoryl transfer is associative rather than dissociative since an 

associative mechanism would be helped by a positive charge in the vicinity, while a 

dissociative mechanism would be hindered. An interaction with Thr 125 is also 

proposed to help stabilize the transition state since mutation of Thr 125 to Ala decreases 

kcat 900-fold in the forward reaction, and 3,200-fold in the reverse reaction (Berger &
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Evans, 1992). Thr 125 also interacts with the neutral oxygen o f the y-phosphate o f ATP 

before transfer (Auzat et al., 1994a). Gly 11, which is proposed to hydrogen-bond to an 

oxygen o f the transferred phosphoryl group via  its main chain amide group (Fig. 1.4), 

has not yet been mutated and studied. Finally, site-directed mutagenesis has identified 

residues Asp 103 and Asp 129 as important for catalysis; they are involved in 

coordination o f the essential Mg++ ion (Berger & Evans, 1992). A list o f the residues 

involved in catalysis and their roles is presented in Table 1.3.

The Kinetic M echanism

The kinetic mechanism o f an enzyme is a description o f the way that substrates 

bind to and products are released from the active site before and after catalysis. The 

kinetic mechanism o f several PFKs including rabbit muscle PFK (Bar-Tana & Cleland, 

1974a,b), Ascaris suum PFK (Rao et al., 1987), E. coli PFK (Deville-Bonne et al., 

1991b), and a non-allosteric PFK from Lactobacillus plantarum  (Simon & Hofer,

1978) as well as others, e.g., PFKs from heart and liver, the PFK from Dictyostelium  

discoideum, and E. coli PFK 2, have been determined. Generally, the methodology 

used to determine the kinetic mechanism of an enzyme is the one formulated by W. W. 

Cleland (1963, 1979). The method involves constructing double-reciprocal plots for 

initial velocity studies, as well as product and dead-end (non-reactive substrate analog) 

inhibition studies. The patterns o f lines obtained identify the kinetic mechanism, and 

fitting the data to the appropriate initial velocity equations generates a set o f parameters 

that quantitatively describe the kinetic mechanism.

Initial velocity plots are double-reciprocal plots o f data obtained by varying the 

concentration of one substrate while keeping the concentration o f the other constant at 

different fixed levels near the Km value. Two families o f double-reciprocal lines are 

obtained for a bi-substrate reaction: one family for each substrate. Convergence o f both 

families o f lines indicates that the kinetic mechanism is sequential, meaning that both 

substrates must bind to the enzyme before catalysis can occur. If one family o f lines



TABLE 1.3
Residues Important fo r  Catalysis

Residue Mutation Fold Drop in kcat Function

Asp 127 — >Ser 18,000 general base

Asp 129 — >Ser 960 binds Mg++

Thr 125 — >Ala 890 binds y-phosphate

Arg 72 — >His 100 binds y-phosphate

Asp 103 — >Ala 28 binds Mg++

Arg 171 — >Ser 3 binds Fru-1,6BP 1-P
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does not converge, but the lines are parallel, then the mechanism is ping-pong, meaning 

that one substrate binds and is released before the second binds . Actually, PFK must 

necessarily follow a sequential rather than a ping-pong kinetic mechanism because the 

reaction mechanism o f PFK involves in-line nucleophilic attack, not a phosphoenzyme 

intermediate that would be formed if  a ping-pong mechanism were involved. It comes 

as no surprise, then, that the kinetic mechanisms o f all the PFKs mentioned above are 

proposed to be sequential.

However, differences are present among the PFKs listed above in terms of 

whether the kinetic mechanism is ordered or random, whether rapid-equilibrium or 

steady-state. The patterns o f lines obtained from product and dead-end inhibition plots 

generally establish whether the mechanism is random or ordered: if random, the plots 

will converge; if ordered, one of the inhibition plots with respect to the substrate that 

binds first will contain parallel lines. If the substrates do not bind in rapid-equilibrium, 

i.e., if  their binding and/or release is slow relative to catalysis, then initial velocity and 

inhibition plots will have curved lines. However, the degree o f curvature may be small; 

under these conditions, the curvature may not be evident and lines that would normally 

converge may appear to be parallel. This was the case for rabbit muscle PFK (Bai -Tana 

& Cleland, 1974a,b).

By application of the methodology outlined above, Bar-Tana & Cleland 

(1974a,b) established that the kinetic mechanism of rabbit muscle PFK involves 

sequential, random, non-rapid equilibrium binding o f substrates Fru-6P and ATP. Rao 

et a/.(1987) found that the mechanism of A. suum PFK is predominantly steady-state 

ordered with MgATP binding first to the enzyme, but there exists some degree of 

randomness, i.e., Fru-6P can bind first to a small extent. The kinetic mechanism o f E. 

coli PFK, like that of rabbit muscle PFK, is steady-state random (Deville-Bonne et al., 

1991b; Johnson & Reinhart, 1992; Zheng & Kemp, 1992), while the kinetic mechanism 

o f the PFK from L. plantarum is proposed to be ordered with Fru-6P binding first, but a
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random mechanism is not ruled out (Simon & Hofer, 1978). All but the last o f these 

four PFKs are allosteric. Therefore, determination o f their kinetic mechanisms is 

complicated by their cooperative behavior. It is o f interest to unequivocally determine 

the kinetic mechanism o f PFK. As stated by Uyeda (1978): "The final determination of 

the [kinetic] mechanism may come from the use o f non-allosteric PFK." B. 

stearothermophilus PFK is non-allosteric in the absence o f inhibitor PEP. Thus, it is a 

good candidate for finally laying to rest the kinetic mechanism of PFK.

The Open-to-Closed Conformational Change o f E. coli PFK

The crystal structure of the EcPFK tetramer complexed with its reaction 

products MgADP and Fru- 1,6BP (Shirakihara & Evans, 1988) was found to contain an 

asymmetrical unit composed o f two subunits: one "open", the other "closed." 

Superimposition o f the a-carbon traces o f the open and closed subunits reveals that they 

have substantially different conformations in the outer helical layer o f their large 

domains, around the ATP-binding site (Fig. 1.5). The regions that are different include 

residues 41 to 49 (helix 2), 71 to 95 (helices 4a and 4), and 101 to 118 (helix 5) o f the 

large domain. In addition, residues 303 to 309 near the C-terminal end appear to be in 

different positions in the open versus closed subunit structures. Presumably, an open- 

to-closed conformational change can occur within the EcPFK subunit. One effect o f the 

conformational change is closure o f the active site, which brings the two substrates Fru- 

6P and MgATP, which are too far apart in the open structure, closer together so that 

reaction can occur (Evans, 1992). The closing and opening of the active site is 

postulated to be an integral part of the catalytic cycle, as shown in Fig. 1.6. Substrates 

bind to the open subunit, it closes, phosphoryl transfer takes place, products are formed, 

the subunit opens, and products are released.

Evans (1992) does not attribute any allosteric significance to the open-to-closed 

conformational change. Nevertheless, it may be important for the mechanism by which 

ATP "allosterically" inhibits EcPFK, and Fru-6P overcomes that inhibition (discussed in
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more detail below). It may also be involved in GDP activation o f the ATP-inhibited 

enzyme. Garel and co-workers have identified a region near the C-terminus o f EcPFK 

that acts as a "built-in" effector; its removal by proteolysis makes the enzyme dependent 

upon Fru-6P for stability, and destroys the sensitivity o f the enzyme to allosteric 

effectors PEP and GDP (Le Bras & Garel, 1982; Le Bras & Garel, 1986). Removal of 

this C-terminal region also causes the cooperativity o f the enzyme with respect to Fru- 

6P to drop two-fold (the Hill number falls from 4.0 to 2.0). The position o f the 

proposed built-in effector has been localized to a stretch o f 30 amino acid residues 

(between 280 and 310) near the C-terminal end (Serre & Garel, 1990). An examination 

o f Fig. 1.5 shows that the residues at the C-terminus that move during the open-to- 

closed transition are squarely within this 30-amino acid region. Furthermore, the loop 

between p-strands J and K (the J-K loop) which is found to move between the 

unliganded (Rypniewski & Evans, 1989) and open liganded (Shirakihara & Evans,

1988) forms of the EcPFK subunit, is also within the region identified by Serre & Garel 

(1990). Rypniewski & Evans (1989) have shown that the J-K loop o f EcPFK moves 

toward the catalytic loop composed o f residues 125 to 138 as the subunits go from 

unliganded to substrate-liganded structures. Specific hydrogen bonds are formed 

between residues in the J-K loop and those in the catalytic loop, and others hydrogen 

bonds are broken, during this process. The importance o f the C-terminal "effector" 

region (residues 280 to 310) for EcPFK allosteric behavior can be explored using site- 

directed mutagenesis, and also by constructing chimeric Bs/Ec PFKs (see chapter five).

X-ray crystallography shows that, unlike EcPFK, the large (ATP-binding) 

domain o f BsPFK remains rigid during the allosteric transition o f the enzyme (Schirmer 

& Evans, 1990). There is no evidence that the BsPFK subunit undergoes on open-to- 

closed conformational change. The lack of this conformational change in BsPFK, along 

with the corresponding lack of allosteric inhibition o f BsPFK by MgATP suggests that



the two phenomena— the conformational change and inhibition— may be associated in 

EcPFK.

The Effector Site

The effector sites o f EcPFK and BsPFK lie in deep clefts between subunits 

related by the molecular p axis, i.e., between subunits o f the rigid dimer (Fig. 1.3). The 

effector site residues that bind the activator MgADP and the inhibitor PEP have been 

identified by X-ray crystallography (Evans et al., 1981; Shirakihara & Evans, 1988).

As can be seen from Table 1.2, half o f the residues in the site are contributed by one 

subunit o f the rigid dimer, the other half by the other subunit. Schematic diagrams of 

the effector site o f EcPFK with MgADP bound, as well as with PEP bound, are shown 

in Figs. 1.7A and 1.7B, respectively. Using site-directed mutagenesis, several effector 

site mutants have been created, and analyzed for their ability to bind GDP and PEP. 

Truncation o f each o f the positively-charged residues Arg 21, Arg 25, Arg 54, Arg 154, 

and Lys 213 to Ala in EcPFK weakens the binding o f both MgGDP and PEP by 2 to 3 

kcal/mole, a result consistent with the disruption o f charged hydrogen bonds important 

for effector binding (Lau & Fersht, 1989). Mutation of Tyr 55 to Gly has no effect on 

the Kt(PEP) and only a small effect on Kr(GDP), indicating that the proposed 

hydrophobic interaction between residue 55 and the purine ring o f ADP or GDP is not 

critical (Lau et al., 1987). Thus, the key interactions for effector binding appear to be 

with the phosphates o f GDP (or ADP), or the phosphate and carbonyl o f PEP, as 

indicated in Fig 1.7.

In BsPFK, Arg 211 replaces Arg 54, and residue 54 is a valine in BsPFK (Table 

1.2). Valdez et al. (1988) have mutated Arg 25, Asp 59 and Arg 211 in BsPFK. As 

expected, both arginine residues were found to be important for effector binding. Asp 

59, on the other hand, was found not to be essential, probably because its interaction 

with effector is via its main-chain amide and carbonyl groups. Interestingly, the Arg 25
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— > Ala mutant had a two-fold higher S i/2Fru'6P value, and exhibited sigmoidality 

(n=2.0). Thus, a mutation at the effector site can affect the active site.

Glu 187 in another residue at the effector site whose mutation affects the active 

site. Glu 187 is proposed to help coordinate the Mg++ ion essential for GDP (or ADP) 

binding. Its mutation to Ala causes PEP to activate the enzyme rather than inhibit it 

(Lau & Fersht, 1987). The mutation also affects the homotropic interactions o f Fru-6P 

binding. At low Fru-6P concentration, the mutant enzyme is more than 100-fold more 

active than wild-type in the presence of 10 mM PEP, and the cooperativity with respect 

to Fru-6P drops from 3.7 to 1.1. Auzat et al. (1994b) have found that the mutation Glu 

187 — > Asp destroys PEP inhibition, but not GDP activation, at pH 8.2. However, 

mutation o f Glu 187 to Leu destroys both inhibition and activation. Thus, the function 

of Glu 187 is to discriminate between PEP and GDP binding in the effector site.

PFK and the Allosteric Model of Monod, Wyman and Changeux

Bacterial PFK is allosterically inhibited by PEP and activated by ADP (or GDP). 

In addition, the substrate MgATP apparently "allosterically" inhibits E. coli PFK when 

Fru-6P concentrations are low, causing the Fru-6P saturation curve to be highly 

sigmoidal in the presence of a saturating concentration o f MgATP. (MgATP does not 

inhibit B. stearothermophilus PFK by the same mechanism. The Fru-6P saturation 

kinetics o f BsPFK are essentially hyperbolic). The word "allosteric" refers to an effect 

on the binding of a ligand that results from the binding o f the same or another ligand at 

a distinct, specific site (Monod et al., 1965). An allosteric interaction can be either 

homotropic or heterotropic. It is homotropic when between identical ligands, 

heterotropic when between different ligands. According to these definitions, the 

positive cooperativity observed in the Fru-6P saturation curve of EcPFK would be the 

result o f homotropic allosteric interactions between Fru-6P molecules binding to distinct 

sites on the protein. On the other hand, the effects o f PEP and GDP in decreasing and
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increasing, respectively, the cooperativity o f Fru-6P binding would be due to 

heterotropic allosteric interactions between the effectors and Fru-6P.

E. coli PFK was one o f the first enzymes shown to obey the concerted model of 

Monod, Wyman, and Changeux (the MWC model; 1965). Many of the regulatory and 

structural properties o f the enzyme have since been interpreted in terms o f  the model. 

Therefore, it is useful to present its basic tenets and show how it has been applied to 

EcPFK (Blangy et al., 1968). The MWC model is simple and elegant; it assumes that a 

symmetry o f allosteric effects due to ligand binding is correlated to protein molecular 

symmetry. A number of regulatory enzymes besides PFK, including E. coli aspartate 

transcarbamylase (Kantrowitz & Lipscomb, 1988) and rabbit muscle glycogen 

phosphorylase (Barford & Johnson, 1989), obey the MWC model.

Paraphrasing Monod eta l.(  1965), the MWC model makes the following 

statements: (1) the protomers (subunits) o f oligomeric allosteric proteins are 

symmetrically arranged relative to an axis o f symmetry, (2) the distinct ligand binding 

sites (one per protomer) are also symmetrically arranged, (3) the conformation o f one 

protomer is constrained by its association with the others, i.e., protomers are 

allosterically-linked, (4) the allosteric oligomer can reversibly exist in two (at least) 

conformational states, (5) because of this, the affinity of the binding site for its ligand is 

altered when a transition occurs from one state to the other, and (6) molecular symmetry 

is conserved in the allosteric transition.

Suppose F is a ligand with differential affinity toward two states o f the oligomer. 

In the absence of F, the oligomer is in equilibrium between the two states R0 and T0; the 

equilibrium constant for the R0 <— > T0 transition is L, the "allosteric constant" (L= 

To/Ro)- We define Kr and Kp as the microscopic dissociation constants for ligand F 

from a specific binding site in the R and T states, respectively. After writing 

equilibrium equations for the binding of F to the R and T states, the following
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expression, which describes the fraction o f sites on the oligomer actually occupied by 

ligand F, i.e., the "saturation function" Yp , can be written:

Lea (1 + ca)11'1 + a(l + a)n l 
Y F =  — -----------------    (eqn. 1)

L(1 + c a)n + (1 + a)n

where L= Tq/Ro is the allosteric constant; c= K r/K j is the non-exclusive binding 

constant, a measure o f the affinity o f ligand F for the R state versus the T state; a =  F/Kr 

is the normalized concentration o f ligand F; and n is the number o f homologous binding 

sites on the protein for F. Equation 1 describes homotropic interactions among ligands

F. The cooperativity o f the response o f the oligomer to F depends on the values o f L 

and c. Cooperativity is pronounced when L is large, i.e., when T0 is strongly favored in 

the R0 <— > T0 equilibrium, and when c is small. When c is very small, as is proposed 

to be the case for EcPFK (Blangy et al., 1968), the saturation function reduces to

a(l + a)”'1
Yp =    (eqn. 2)

L + (1 + a)n

When the ligand F has no preference for either the T or the R state, i.e., when c= 1, and 

L is small, the equation reduces to Y f = F/(Kr + F),which is the Michaelis-Menten 

equation.

The MWC model also describes heterotropic interactions between different 

ligands. Assume that a substrate S has significant affinity for its binding site in only 

one state, e.g., R, and that o f two other allosteric ligands I and A, I has affinity only for 

the T-state while A has affinity only for the R-state. The effects o f ligands I and A will 

be to displace the equilibrium between R and T states, so that L becomes L', a new 

apparent allosteric constant. L' = L[(l + P)n /  (1 +y)n], where P= l/K \, and y= A /K a • Ki
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and Ka  are the microscopic dissociation constants for I and A from the T and R states, 

respectively. Finally, the saturation function for S, Y s, is given by:

oc(l + a)""1 
Y s =  -------------  (eqn. 3)

r (1 +  P )n „  ^L ------ —— + (1 + ex)
(1 + Y)

Using the MWC model, we can distinguish two kinds o f allosteric systems involving a 

substrate S and an effector F: (1) a K system. Both F and S have differential affinities 

toward the T and R states, i.e., both are allosteric, and (2) a V system. S has the same 

affinity for both states. In this case, F does not affect binding o f S, and vice-versa. But, 

F can affect the catalytic rate, either as an activator (positive V system) or as an 

inhibitor (negative V system).

Blangy, Buc and Monod (1968) have shown that E. coli PFK obeys the MWC 

model, at least in the presence of an ATP concentration close to its Km. From a 

thorough analysis of steady-state kinetic data in terms o f the model, the kinetic and 

allosteric parameters in Table 1.4 were obtained. Based on these parameters, one can 

conclude that (i) unliganded EcPFK exists overwhelmingly in the T state (only one 

molecule in 4 million will be in the R state since L= 4 x 106), (ii) the oligomer contains 

4 protomers, (iii) ATP has no preference for either T or R and thus is not an allosteric 

ligand (K r = K j), (iv) Fru-6P prefers the R state by a ratio o f 2,000 to 1( c= 5 x 10^), 

(v) GDP binds almost exclusively to the R-state, and (vi) PEP binds almost exclusively 

to the T-state.

Several of the afore-mentioned predictions about EcPFK based on the MWC 

model have been shown to be untrue over the course o f time. First, X-ray diffraction 

studies o f unliganded EcPFK (Rypniewski & Evans, 1989) have shown that the 

unliganded enzyme resembles the form that has a high affinity for Fru-6P, i.e., the
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TABLE 1.4
Kinetic and Allosteric Parameters fo r  E. coli PFK  

Ligand Kr (mM) KT (mM)

ATP 0.06 0.06

Fru-6P 0.0125 25

ADP 0.025 1.3

GDP 0.04 >40

PEP >750 0.75

n = 4 L = 4 x 106 c = 5 x 10-4
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R-state form. Using equilibrium dialysis, Deville-Bonne et al. (1992) have shown that 

L=2. Second, ATP is now known to be involved in the allosteric response o f EcPFK. It 

profoundly inhibits the enzyme when Fru-6P concentration is low (Kundrot & Evans,

1991). Fluorescence studies show that the ATP analog AMPPCP causes the Fru-6P 

binding profile to become sigmoidal (Deville-Bonne et al., 1992). This result suggest 

that antagonistic interactions between MgATP and Fru-6P are involved in EcPFK 

homotropic cooperativity. ATP has been termed an "allosteric" inhibitor o f EcPFK 

(Evans, 1992). Third, GDP can super-activate EcPFK that is already saturated by Fru- 

6P, increasing kcat 10 to 20% (Deville-Bonne et al., 1991a). Thus, GDP affects not only 

the binding o f Fru-6P, but also the catalytic rate, and indicates (at least) that EcPFK is 

not a perfect K-system enzyme. Finally, the observations that (i) both kcat and the Hill 

number for Fru-6P saturation are pH-dependent and (ii) Hill numbers can be as high as 

6.0, suggests that the cooperativity of EcPFK has a kinetic origin. Hill numbers higher 

than the number o f binding sites (4 for Fru-6P binding to EcPFK) are not predicted by 

the MWC model; they arise when the enzyme does not operate at equilibrium. Such 

non-equilibrium conditions, which can result in kinetic cooperativity, are present when 

catalysis is fast relative to either substrate binding and/or release, or an essential 

structural transition. The resulting kinetic cooperativity can then add to the binding 

cooperativity, causing the Hill number to increase to values beyond the number of 

binding sites.

Blangy et al. (1968) were not the first to investigate the regulation o f E. coli 

PFK. Atkinson & Walton (1965) studied the mutual effects o f Fru-6P, ATP, AMP, and 

M g++ on the rate o f the EcPFK-catalyzed reaction. Their results show clearly that ATP 

negatively regulates the enzyme when its concentration is saturating (above 1.0 mM). 

The complex patterns of curved lines that Atkinson and Walton obtained stand in stark 

contrast to the graceful patterns obtained by Blangy et al. (1968), which fit the MWC
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model so perfectiy, albeit under a very limited set o f experimental conditions (0.1 mM

ATP). One must wonder if Blangy et al. (1968) read the 1965 paper, which states:

". . .  the whole kinetic picture [for PFK] depends on the initial assay conditions. 
Thus, if a relatively high concentration o f ATP were used in determining rate as 
a function of Fru-6P and Mg++ concentrations, and if  just saturating levels of 
Fru-6P and Mg++ were used in turn to study the rate versus ATP concentration 
. . .  a self-consistent set o f [kinetic parameters] would be obtained. If, however, 
the same procedure were repeated with a lower initial concentration o f ATP, a 
completely different but equally self-consistent set o f values would result. More 
intensive kinetic analysis o f either set o f results could obviously not yield 
generally applicable parameters."

In conclusion to this section, the MWC model does partially describe the 

regulation o f EcPFK (and BsPFK). However, it is inadequate and too simple to account 

completely for PFK cooperative behavior. Other models, such as those involving 

kinetic cooperativity arising from a slow transition (Frieden, 1970; Ainslie et al., 1972) 

or from the kinetic mechanism (Ferdinand, 1966; Sweeny & Fisher, 1968) may prove to 

be important.

The Hill Equation

Because the concerted model is not valid for PFK under many conditions, its 

equation (equation 2) was not used to fit the sigmoidal substrate saturation data obtained 

for EcPFK or BsPFK. Rather, the Hill equation (Hill, 1910), which assumes no 

particular model and is more empirical, was used. The general form of the Hill equation 

that is used to describe saturation o f a protein by a ligand is:

Y
log T~y = h log "log K (eqn-4)

where Y is the degree o f saturation o f the protein by ligand, [A] is the concentration of 

free ligand, and K is a constant. A plot of log (Y /(l-Y )) versus log [A] gives a straight 

line, the slope o f which is the Hill number h (or nn)- The Hill number describes the 

cooperativity o f the response o f the protein to ligand. The ligand concentration at
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half-saturation, [A] 1/2 , is equal to K1/". The form of the Hill equation generally used in 

studying the sigmoidality o f saturation curves obtained from kinetic data is:

V™* [A]h 
v  =  ------------ -------- —  (eqn. 5)

[A]h + A1/2h

In this form, the binding term Y /(l-Y ) has been replaced by the kinetic term v/(Vmax-v). 

A Structural Model for the PFK Allosteric Transition

Although the MWC model is now known to be too simple to explain the 

regulation o f bacterial PFK, it has been used extensively to make sense o f differences in 

protein conformation found to exist in X-ray structures obtained under different 

conditions (Evans & Hudson, 1979; Evans et al., 1981; Evans et al., 1986; Shirakihara 

& Evans, 1988; Schirmer & Evans, 1990). Schirmer & Evans (1990) have proposed a 

structural model for the allosteric transition o f B. stearothermophilus PFK based on X- 

ray diffraction data obtained from crystals under two different conditions: (a) in the 

presence o f the inhibitor 2-phosphoglycolate (an analog o f PEP), when the enzyme is 

presumably in its T-state, and (b) in the presence o f the substrate Fru-6P and activator 

MgADP, when BsPFK is in the R-state. A comparison of the T-and R-state structures 

of the tetramer reveals that the structural changes accompanying an ostensible T-to-R 

transition can be described as three separate events that occur simultaneously: (1) 

rotation o f the two rigid dimers A:B and C:D by 7° relative to each other, (2) a passive 

change along the "active" dimer-dimer interface that allows an ordered layer o f water 

molecules to come in between the two dimers, and (3) the coordinated back-and-forth 

movement of a pair o f loops, the 8H and 6F loops, that are situated between the effector 

and active sites. This last change involves the switching o f two residues, Glu 161 and 

Arg 162, into and out o f the active site. It is described in more detail below.



31

The 8H loop (residues 211 to 216) lines one edge o f the effector cleft (Fig. 1.8). 

In the absence o f effector, the cleft is open. Binding o f inhibitor PEP pulls the 8H loop 

inward, closing the cleft and placing the enzyme in the T-state. Binding o f ADP (or 

GDP), on the other hand, pushes the 8H loop away from the effector site and places 

BPFK in the R-state. Movement o f the 8H loop is coordinated with a reorganization o f  

the 6F loop (residues Thr 156 to Arg 162) along the dimer-dimer interface. In the T-to- 

R transition, Glu 161, which points into the active site across the dimer-dimer interface 

in the T-state, rotates away. At the same time, Arg 162 swings around into the active 

site, occupying the position formerly occupied by Glu 161 (Fig. 1.9). The positively- 

charged guanidinium groups of Arg 162 and Arg 243 favorably interact with the 

negative charges o f the phosphate of the incoming Fru-6P, thereby increasing its 

binding affinity. The R-to-T transition involves the reverse sequence o f events, with 

Glu 161 swinging back into the active site and Arg 162 rotating away. In this way, the 

binding o f GDP and PEP at the effector site trigger the heterotropic allosteric transition 

and alter the affinity o f the active site for Fru-6P.

An interaction important for stabilizing the T-state structure of BsPFK is the salt 

bridge between Arg 72 and Glu 241. This salt bridge is absent in the R-state but 

present in the T-state (Fig. 1.9). Thus, Arg 72, which is critical for catalysis, is 

sequestered away by Glu 241 when the enzyme undergoes the R-to-T transition.

The Active Site, Cooperativity, and the Role o f ATP

Site-directed mutagenesis has identified a number o f residues in the active site of 

EcPFK (and one in BsPFK) important for the enzyme's cooperative response to Fru-6P. 

These residues are listed in Table 1.5. As mentioned above, Arg 162 and Arg 243 bind 

the phosphate group o f Fru-6P from across the dimer-dimer interface (Shirakihara & 

Evans, 1988). When these two residues are changed to Ser, the cooperativity drops 

significantly (Berger & Evans, 1990) The same happens when Arg 72 is changed to a



FIGURE 1.8. Co-ordinated M ovement o f the 8H and 6F Loops. The region between 
the effector site and active site that undergoes large structural change between the T- 
state (solid lines) and R-state (open lines). 8H loop: residues 211-216; 6F loop: 
residues 156-162. **, residues from the same dimer. *, residues from the other dimer. 
PGC, the inhibitor 2-phosphoglycolate, which binds to the T-state. ADP and Fru-6P 
bind to the R-state. R-state residues are primed. (Taken with permission from Schirmer, 
T., & Evans, P. R. (1990) Nature 3 4 3 ,140-145. Copyright 1990 Macmillan Magazines, 
Limited).
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TABLE 1.5
Residues Important fo r  Homotropic Cooperativity ofE . coli PFK

Mutation Fold Increase in S i/2 Fru‘6P Hill Number*

R 162— >S 7 2 . 1

R  243— >S 30 2.7

R 72— >S 1 2 . 2

S 159— >N > 1 0 0 0 ( 1 )

T 156—>(GS) > 1 0 0 ( 1 )

D 129— >S 4 2.7

T 125— >A 1 . 6 1

D 127— >Y 1.5 1

R 252— >A** 1500 N. A.

*, the Hill numbers in parentheses are only estimates since saturation with 
respect to Fru-6P was not achieved. **, from B. stearothermophilus PFK. N. A., not 
applicable.



Ser (Table 1.5). Threonine 156 and Ser 159 are within the 6 F loop o f EcPFK (as is Arg 

162), which becomes reorganized during the allosteric T-to-R transition. Mutation of 

either o f these residues severely affects Fru-6 P binding, and the mutant enzymes appear 

to be locked in the T-state since their catalytic rate constants are very low (about 100- 

fold lower than wild-type) and their Fru-6 P saturation profiles are hyperbolic (Kundrot 

& Evans, 1991). Arg 252 is proposed to bind to the ribose hydroxyl o f Fru-6 P. 

Mutation of Arg 252 to Ala in BsPFK severely lowers the affinity o f the enzyme for 

Fru-6 P and also lowers the cooperativity o f its response to Fru-6 P when inhibited by 

PEP (Valdez et al., 1989). Finally, Thr 125 binds the y-phosphate o f ATP and helps 

stabilize the transition state, v/hile Asp 129 helps coordinate the Mg++ ion. Mutation o f  

Thr 125 and Asp 129 to Ala and Ser, respectively, both cause a 100-fold drop in kcat 

and a moderate increase in S i/2 Fru"6P, but have somewhat different effects on 

cooperativity. The mutation Thr 125— >Ala completely abolishes cooperativity (Hill 

number is 1.0), while the Asp 129— >Ser mutation reduces it (nn drops from 4 to 2.7). 

Thus, Thr 125 appears to be critical for cooperativity, but Asp 129 is less important. 

Auzat et al. (1994a) have further shown that an interaction between Thr 125 and the y- 

phosphate o f ATP is involved not only in the cooperative response o f EcPFK to Fru-6 P, 

but also in its response to PEP. The observation that mutation o f a residue that interacts 

directly with the y-phosphate of ATP, e.g., Thr 125, abolishes cooperativity, while 

mutation of other active site residues, e.g., Asp 129, simply lowers cooperativity, 

suggests that the y-phosphate itself is essential for the cooperative response.

A growing body of experimental evidence indicates that antagonistic 

interactions between ATP and Fru-6 P in the active site o f EcPFK trigger the 

conformational change associated with the homotropic allosteric transition. Deville- 

Bonne et al. (1991b) have found that MgATP antagonizes the binding o f Fru-6 P in the 

active site of EcPFK, and vice-versa. Fluorescence studies support this finding. 

Whereas titration of the intrinsic fluorescence of EcPFK with Fru-6 P gives a hyperbolic
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binding curve, titration with Fru-6 P in the presence o f AMPPCP (Deville-Bonne et al.,

1992) gives a sigmoidal curve (nn is above 2). A Lys 213— > Ala mutant EcPFK 

enzyme that is insensitive to heterotropic regulation but retains homotropic 

cooperativity has also been used to study the effect o f ATP on Fru-6 P binding (Berger 

& Evans, 1991). As with the wild-type enzyme, ATP induces positive cooperativity in 

the Fru-6 P binding curve of the mutant. Thus, ATP (or AMPPCP) can induce positive 

cooperativity in the Fru-6 P binding curve of EcPFK. Interestingly, the converse is also 

true: Fru-6 P induces positive cooperativity (nH is 2.0) in the AMPPCP binding curve 

(Deville-Bonne et al., 1992). Zheng & Kemp (1992) propose that antagonistic 

interactions between ATP (via  its y-phosphate group) and Fru-6 P are important for 

"allosteric" ATP inhibition and cooperativity, but suggest a purely kinetic origin for the 

cooperativity. In contrast, Johnson & Reinhart (1992) maintain that an inter-active site 

interaction mediated through protein conformational change is partly responsible for the 

antagonism between Fru-6 P and MgATP. Interestingly, Johnson & Reinhart (1994) 

found that MgADP in the effector site requires the presence of MgATP in the active site 

to activate the enzyme; in its absence, MgADP actually inhibits Fru-6 P binding. Thus, 

whatever the mechanism of ATP inhibition, it appears that Fru-6 P cannot act as a 

cooperative substrate by itself, but requires the presence of MgATP beside it in the 

active site in order to fulfill its role as a "cooperative" ligand.

The mechanism by which MgATP inhibits EcPFK has been investigated (Zheng 

& Kemp, 1992) but has not been conclusively determined. An intriguing possibility for 

the mechanism is that ATP inhibition is mediated by closure o f the active site. If 

subsequent Fru-6 P binding, i.e., Fru-6 P binding after MgATP, causes re-opening o f the 

active site via a transition that is slow relative to catalysis, the result could be 

sigmoidality in the Fru-6 P saturation curve.
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Mutation of Leucine 178 to Tryptophan

Leu 178 is close to neither the active site nor the effector site, yet it appears to be 

involved in the heterotropic allosteric response o f E. coll PFK. Its mutation to Trp 

causes specific suppression o f heterotropic cooperativity but allows retention of 

homotropic cooperativity. In other words, the mutant enzyme cannot be inhibited by 

PEP or activated by GDP, but its Fru-6 P saturation curve is highly sigmoidal (Serre et 

al., 1990). This result is important because it shows that heterotropic and homotropic 

effects can be uncoupled: thus, they probably involve different conformational changes. 

Such a result is not predicted by the MWC model, which assumes a common 

conformational change for both homotropic and heterotropic allosteric responses. 

Presumably, Leu 178 lies along the structural pathway for transmission o f heterotropic, 

but not homotropic, signals.

Fluorescence Studies

Both BsPFK and EcPFK have a unique tryptophan residue. It is at position 179 

in BsPFK and position 311 in EcPFK. The intrinsic fluorescence o f Trp 179 o f BsPFK 

is largely insensitive to the binding o f substrates or allosteric effectors (Kim e t al.,

1993). Thus, it is not possible to use intrinsic fluorescence to probe conformational 

changes associated with allostery in BsPFK. It may be possible, however, to use site- 

directed mutagenesis to strategically place a tryptophan residue in the right place in 

BsPFK, allowing the fluorescence to be sensitive to conformational changes without 

disrupting protein structure This would open up a whole new set o f binding studies for 

BsPFK (discussed in chapter five).

Unlike Trp 179 o f BsPFK, Trp 311 of EcPFK is responsive to conformational 

changes induced in the enzyme by the binding o f substrates and effectors. Saturation of 

the enzyme with Fru-6 P causes a 20% decrease in intrinsic fluorescence. ADP causes a 

similar 20% decrease, but ATP (or AMPPCP) causes a 10% increase and PEP binding 

results in a 5 to 10% increase (Berger & Evans, 1991; Deville-Bonne et al., 1992).
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Thus, Fru-6 P and ADP appear to place the enzyme in a low-fluorescence state, while 

ATP (or AMPPCP) and PEP place the enzyme in a high-fluorescence state. A  number 

of fluorescence studies have been performed on wild-type and mutant EcPFK enzymes 

(Berger & Evans, 1991; Deville-Bonne e ta l., 1992; Johnson & Reinhart, 1992; Johnson 

& Reinhart, 1994; Auzat et al., 1994a). These studies have contributed significantly to 

our knowledge o f the regulation o f EcPFK, especially in regard to the role that ATP 

plays (see discussion above).

Objectives of Dissertation Research

The objectives are threefold: (1) to determine the kinetic mechanism of B. 

stearothermophilus PFK using initial velocity and inhibition studies, (2) to investigate 

the role of the open-to-closed conformational transition in allosteric regulation o f E. coli 

PFK by constructing a chimeric PFK that contains the "rigid" large (ATP-binding) 

domain o f B. stearothermophilus PFK grafted onto the remainder o f the E. coli PFK 

subunit, and (3) to uncover the importance o f residue 161 in the allosteric transitions of 

both B. stearothermophilus PFK and E. coli PFK using site-directed mutagenesis.



Chapter 2

Kinetic Characteristics of Phosphofructokinase from Bacillus 
stearothermophilus'. MgATP Non-allosterically Inhibits the Enzyme

(Reprinted with permission from Byrnes, M., Zhu, X., Younathan, E. S., and 
Chang, S. H. (1994) Biochemistry 33 ,3424-3431. Copyright 1994 American

Chemical Society.)
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Phosphofructokinase (PFK, EC 2.7.1.11) catalyzes the first committed step of 

glycolysis, the transfer of a terminal phosphate from ATP to (3 J>-fructose 6 -phosphate 

(Fru-6 P) to form ADP and (3-fructose 1,6-bisphosphate (Fru-1,6BP):

MgATP + Fru-6 P  > MgADP + Fru-1,6BP.

The allosteric PFK from the thermophilic bacterium B. stearothermophilus , like its 

counterpart from E. coli, is a tetramer o f identical subunits, each composed o f 319 

amino acids (320 for E. coli PFK). Fifty-five percent of the amino acids are identical 

between the two bacterial enzymes (French and Chang, 1987). Both B. 

stearothermophilus PFK (BsPFK) and E. coli PFK (EcPFK) are allosterically inhibited 

by phospho(enol)pyruvate (PEP). This inhibition is reversed by the activators 

adenosine diphosphate (ADP) and guanosine diphosphate (GDP) (Valdez e ta l., 1989; 

Blangy et al., 1968).

A comparison between the crystal structures o f BsPFK and EcPFK (Evans et al., 

1981; Shirakihara and Evans, 1988) reveals striking structural similarity. The two 

enzymes have all the same secondary structural elements, and their subunit a-carbon 

traces are nearly superimposable. In both enzymes, the subunit is divided into a large 

and a small domain, with the active site located within the subunit in a cleft between the 

two domains. The active site residues that bind substrates are either the same or similar 

between the two enzymes.

Despite the high degree of structural similarity between BsPFK and EcPFK, 

there is a significant kinetic difference between them. Steady-state initial velocity 

studies reveal that whereas saturation o f EcPFK by Fru-6 P is highly cooperative in the 

presence of saturating MgATP (Blangy eta l., 1968), saturation o f BsPFK by Fru-6 P 

shows little or no cooperativity under the same conditions (Valdez et al., 1989).

Fructose 6 -phosphate saturation o f BsPFK is cooperative, however, in the presence of
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PEP (Valdez et al., 1989). Thus, BsPFK resembles the PFK from the extreme 

thermophilic bacterium Flavobacterium thermophilum (Yoshida, 1972), which likewise 

displays a hyperbolic Fru-6 P saturation profile that becomes sigmoidal in the presence 

of PEP. Schirmer and Evans (1990) have proposed a structural model for the allosteric 

transition of BsPFK based on X-ray diffraction data.

Although the structure o f BsPFK has been extensively investigated, its kinetic 

characteristics have remained largely unstudied. For example, although the amino acid 

residues involved in binding the substrates MgATP and Fru-6 P have been known for 

some time (Evans et al., 1981), the kinetic mechanism has not been studied. Several 

observations suggest that there are differences between the active site regions o f BsPFK 

and EcPFK: (i) the active site structure o f BsPFK is more open than that o f EcPFK 

(Shirakihara and Evans, 1988), (ii) significant binding o f GDP occurs in the active site 

of BsPFK (Valdez e t al., 1989), but not in the active site o f EcPFK (Blangy et al.,

1968), and (iii) the large (ATP-binding) domain of EcPFK moves as the enzyme 

changes conformation from a "closed" to an "open" subunit structure (Shirakihara and 

Evans, 1988), whereas the large domain o f BsPFK remains essentially rigid during the 

allosteric transition o f the enzyme (Schirmer and Evans, 1990).

These observations have stimulated our interest in studying the kinetic 

characteristics o f the BsPFK-catalyzed reaction in both the forward and reverse 

directions. Initial velocity, product inhibition, and mixed alternate substrate studies o f  

the reverse reaction indicate that the kinetic mechanism is sequential random. Product 

and dead-end inhibition studies of the forward reaction corroborate this result.

However, initial velocity studies o f the forward reaction indicate that MgATP is a non- 

allosteric substrate inhibitor, and the binding of MgATP is a non rapid-equilibrium 

process. Based on these results, it is proposed that substrate binding proceeds via two 

alternative steady-state pathways, with one pathway kinetically favored over the other.



Substrate inhibition by MgATP is proposed to result from both abortive binding o f  

MgATP in the Fru-6 P site and reaction flux through the disfavored pathway.

Materials and Methods

Enzymes and Chemicals—NADH, NADP+, Fru-6 P, ATP, Fru-1,6BP, ADP, 

PEP, Ara-5P, AMPPCP, and the auxiliary enzymes for the coupled PFK activity assays 

were all obtained from Sigma Chemical Co. (St. Louis, MO). The Cibacron Blue 3GA- 

agarose (type 3000-CL-L) resin was also obtained from Sigma. Restriction 

endonucleases used for cloning were obtained from either New England Biolabs 

(Beverly, MA) or United States Biochemical (Cleveland, OH).

Expression and Purification o f PFK—BsPFK was expressed in PFK-deficient E. 

coli cells (DF1020 cells) from a recombinant plasmid constructed by cloning the bspfk 

gene (French and Chang, 1987) into the EcoRI/Hindlll sites o f pUC18. The enzyme 

was subsequently purified by a three-step procedure (Valdez et al., 1989) involving (1) 

sonication, (2) heat-treatment at 70°C, and (3) chromatography on a Cibacron blue 3GA 

affinity column. The purified enzyme preparation had a specific activity o f 160 

units/mg. Its purity was demonstrated by the presence o f a single band on an SDS- 

polyacrylamide gel stained with Coomassie Brilliant Blue dye. The purified enzyme 

solution was dialyzed at 4°C  in 100 mM Tris-Cl, pH 7.4, containing 1 mM 

dithiothreitol and 50% glycerol, and stored at -20°C. Protein concentration was 

determined using the Bio-Rad (Richmond, CA) protein assay.

Site-directed Mutagenesis, and Expression and Purification of Mutant BsPFK—  

The site-directed mutagenesis procedure to mutate the bspfk gene, as well as the 

procedures for expression and purification o f the mutant enzyme, are to be described 

separately (Zhu et al., manuscript in preparation).

Kinetic Assays—The initial velocity of the PFK-catalyzed reaction in the 

forward direction was measured at 30°C in 100 mM Tris-Cl, pH 8.2, containing 10 mM 

MgCU and 5 mM NH4 CI by coupling the production o f either Fru-1,6BP or ADP to the
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oxidation o f NADH (0.20 mM.) (The saturation curves with respect to substrates Fru- 

6 P and MgATP obtained at 30°C were similar to those obtained at 60°C, except that the 

kcat was lower at 30°C. Fru-6 P saturation was non-cooperative at both temperatures, 

and substrate inhibition was apparent with high MgATP at both temperatures). The 

Fru-1,6 BP-coupled assay utilized the auxiliary enzymes aldolase (20 pg/ml), 

triosephosphate isomerase ( 1 0  (ig/ml) and a-glycerophosphate dehydrogenase ( 1 0  

|ig/ml), while the ADP-coupled assay utilized pyruvate kinase (10 pg/ml), 

phospho(enol)pyruvate (PEP, 200 (iM) and lactate dehydrogenase (10 pg/ml.) The 

ADP-coupled assay system could not be used for Fru-6 P saturation studies since PEP is 

an allosteric inhibitor with respect to Fru-6 P; however, PEP at this concentration (200 

|iM ) does not alter MgATP saturation behavior. The ATP-regenerating system that 

utilizes creatine kinase and creatine phosphate, which is required for the EcPFK activity 

assay, was found to be unnecessary since ADP has little or no activating effect on 

BsPFK (in the absence o f PEP). In all forward reaction assays, the free Mg++ 

concentration was kept 5 to 10 mM in excess o f the ATP concentration to avoid 

inhibition by free ATP. Typically, assays were initiated by the addition o f 0.10 ug of 

PFK. Since the BsPFK assay generally involved an initial nonlinear phase, a 1- or 2- 

minute lag period was allowed prior to recording the Abs3 4o change over time, which 

was done for at least one minute. A thermostatted Hitachi UV-2000 spectrophotometer 

was used for these measurements. Duplicate assays were run for each data point. Initial 

velocities are expressed in units o f umole o f product formed per minute.

Initial velocity measurements in the reverse direction were similar to those in the 

forward direction, except that the production o f either Fru-6 P or ATP was coupled to the 

reduction of NADP+ (0.20 mM). Assays were run at pH 8.2, and Mg++ concentration 

was kept 9 to 10 mM in excess of the ADP concentration. For the Fru-6 P-coupled 

assay, the auxiliary enzymes phosphoglucoisomerase ( 1 0  fig/ml) and glucose 6 - 

phosphate dehydrogenase (10 pg/ml) were used, whereas for the ATP-coupled assay,
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hexokinase (20 |ig/ml), glucose (3 mM) and glucose 6 -phosphate dehydrogenase (10 

p,g/ml) were used. Typically, assays were initiated with the addition o f 2.0 ug o f  PFK.

Treatment o f Kinetic Data—Initial velocity data for the forward reaction were fit 

to either the Michaelis-Menten equation (eqn. 6 ), the Hill equation (eqn. 7), the initial 

velocity equation for a rapid-equilibrium sequential mechanism (eqn. 8 ; Cleland, 1963), 

or the initial velocity equation for a sequential random mechanism assuming steady- 

state (non rapid-equilibrium) conditions (eqn. 9; Ferdinand, 1966). In equations 6-12 

below, [A] and [B] represent the concentrations o f substrates A  and B, and Vmax is the 

maximum velocity. In equation (6 ), Km is the Michaelis constant, whereas in eqn. (7), 

[A] 1 /2  is the concentration o f substrate at half-saturation and n is the Hill coefficient. In 

equation (8 ), Kja is the equilibrium constant for dissociation o f substrate A from the 

binary complex EA (E represents enzyme). There is an analogous constant, Kfc, for 

dissociation o f B from EB. Ka and Kb are equilibrium constants for dissociation o f A  

and B, respectively, from the ternary complex EAB. In equation (9), the terms i, j, k, 1, 

and m are complex functions of [B] and the rate constants for the various steps in 

Scheme I (see Discussion section). As such, i-m have no physical significance.

v V max [A ]

[A] + K m

V
(eqn. 6)

v (eqn. 7)
[A ] 1 / 2  + [A ]n

V max [A] [B] (eqn. 8)v
K |a K b + K b [A ] + K a [B ] + [A ] [B ]

i [A ] 2  + j [A]
(eqn. 9)v

k + 1 [A ] 2  + m [A ]
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Initial velocity data for product inhibition, dead-end inhibition and alternate 

substrate studies were first plotted graphically as double-reciprocal plots. On the basis 

of these primary plots, the inhibition patterns were identified, and each data set was fit 

to the equation for either linear competitive (eqn. 1 0 ), linear non-competitive (eqn. 1 1 ), 

or linear uncompetitive (eqn. 12) inhibition (Cleland, 1979). In equations 10-12, the 

constant K is the equilibrium constant for dissociation of varied substrate A from the 

ternary complex EAB, whereas Kjs and Kjj are equilibrium constants for dissociation of 

inhibitor I from its inhibitory complex, as determined from slope and intercept replots, 

respectively.

^Biax f A]
V = K (1 + [I] /Kis) + [A] ( e q n * 10)‘■isx

v max [A]
v =

K (1 + [I] /Kis) + [A] (1 + [I]/K„)

V mas [A ]

(eqn. 11)

v =
K + [A] (1 + [I]/K,j)

(eqn. 12)

All curve-fitting to equations 6-12 was performed by non-linear regression analysis 

using the program INPLOT (GraphPad, Inc., San Diego, CA).

Results

The Reverse Reaction: Initial Velocity, Product Inhibition and Mixed Alternate 

Substrate Studies—Because the kinetic behavior o f BsPFK in the forward direction is 

more complex than in the reverse direction, studies on the latter are presented first. The 

turnover number kcat of the reverse reaction (3.2 s-1) was about 35-fold lower than that 

of the forward reaction ( 1 12 s 1). This compares well to the 40-fold lower value for the 

reverse reaction o f EcPFK relative to its forward reaction (Hellinga and Evans, 1987).
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Initial velocity studies were performed on the reverse reaction by varying Fru- 

1,6BP concentration while keeping MgADP concentration constant at different fixed 

levels, and vice-versa. Double-reciprocal plots were constructed for both sets o f data. 

The families of lines obtained for both (Figs. 2.1 A & 2. IB) intersect to the left o f the 

ordinate, a result which denotes a sequential kinetic mechanism. The initial velocity 

data were fit to the equation for a rapid-equilibrium random or ordered bireactant 

mechanism (eqn. 8 ), assuming that A is MgADP and B is Fru-1,6BP. The following 

parameters were obtained by performing nonlinear regression analysis o f the initial 

velocity data (Cleland, 1979) using eqn. (8 ): kcat= 3.2 ±  0.2 s_1, Ka= 0 .11± 0.01 mM, 

Kb= 0.44 ±  0.05 mM, Kia= 0.33 ±  0.04 mM, and Kib= 0.19 ±  0.08 mM.

Product inhibition studies were also performed on the reverse reaction to further 

distinguish whether its mechanism is random or ordered. For these studies, the 

concentration o f one substrate (Fru-1,6BP or MgADP) was varied while the other was 

kept constant at a fixed level in the absence or presence of different amounts o f one of 

the two products (Fru-6 P or MgATP). Four sets o f product inhibition data were 

obtained. The data from each inhibition study were fit to the equation for either linear 

competitive (eqn. 1 0 ), linear noncompetitive (eqn. 1 1 ), or linear uncompetitive (eqn. 1 2 ) 

inhibition. Table 2.1 lists the pertinent kinetic parameters obtained, and the patterns of 

lines observed in double-reciprocal plots. The results are consistent with a rapid- 

equilibrium random mechanism in the reverse direction. The noncompetitive product 

inhibition by Fru-6 P with respect to MgADP indicates the formation o f a dead-end E- 

MgADP-Fru-6 P complex. However, the equations for both competitive and 

noncompetitive inhibition fit equally well to the data for inhibition by MgATP with 

respect to Fru-1,6BP, a result which indicates that the dead-end E-MgATP-Fru-l,6 BP 

complex probably does not form readily, if  it forms at all.

Additional evidence that the mechanism in the reverse direction is random was 

obtained from studies using GDP, which can function as an alternate substrate for the
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FIGURE 2.1. Initial Velocity Patterns for the Reverse Reaction. (A) Plot o f the 
reciprocal o f initial velocity versus the reciprocal o f Fru-1,6BP concentration at 
different fixed levels o f MgADP: (A) 0.05 mM, (■ ) 0.10 mM, (O) 0.20 mM, and (®) 
0.5 mM MgADP. (B) Plot o f the reciprocal o f initial velocity versus the reciprocal of 
MgADP concentration at different fixed levels o f Fru-1,6BP: (O) 0.20 mM, (A) 0.50 
mM, (□ ) 1.0 mM, and (®) 2.0 mM. The lines were drawn using linear equations 
containing parameters generated from direct curve-fitting to equation (8 ). Initial 
velocities (units/ug) were measured using the Fru-6 P-coupled assay.
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TABLE 2.1
Product Inhibition Patterns fo r  the Reverse Reaction

[Fru-1,6BP]
(mM)

[MgADP]
(mM) inhibitor pattern3

Kis
(\iM )

Kii
()tM)

varied 0.91 MgATpb NC (or C) 5 2 + 4 676 ± 4 7

0.50 varied MgATP C 1 4 + 1 N.A.

0.50 varied Fru-6 PC NC 7 ±  2 55 ±  11

varied 0.91 Fru-6 P C 6  ± 0 .5 N.A.

aNC= noncompetitive; C=competitive inhibition. ^When MgATP was the 
product inhibitor, the Fru-6 P-coupled assay was used. cWhen Fru-6 P was the product 
inhibitor, the ATP-coupled assay was used. N.A., not applicable.
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reverse reaction. When GDP is added to a PFK assay in which NADP+ reduction is 

coupled to ATP via hexokinase (see Methods section), which will not accept GTP as a 

substrate, the GTP produced in the reverse PFK reaction is not detected and “inhibition” 

results. The curvature or linearity of double-reciprocal plots for initial velocity studies 

in the presence o f GDP can provide evidence as to whether the mechanism is ordered 

with ADP (GDP) binding first (curved plots), or random (linear plots). As expected, the 

plots obtained showed that GDP is a competitive "inhibitor” with respect to MgADP 

and a noncompetitive “inhibitor” with respect to Fru-1,6BP, indicating that ADP (or 

GDP) can bind first to the enzyme in either an ordered or a random mechanism. More 

significantly, the plots were linear. This result is consistent with a random mechanism, 

since nonlinear inhibition would have been observed had the mechanism been ordered.

A similar result has been reported for rabbit muscle PFK (Hanson e t al., 1973). 

Altogether, the results o f both the product inhibition and the mixed alternate substrate 

studies in the reverse direction are consistent with a rapid-equilibrium random 

mechanism that includes the formation o f an abortive E-MgADP-Fru-6 P complex.

The Forward Reaction: Fructose 6-phosphate Saturation o f  BsPFK—Valdez 

and coworkers (1989) showed that Fru-6 P saturation o f BsPFK is hyperbolic. Our 

findings confirm this result, and further indicate that simple Michaelis-Menten kinetics 

cannot fully explain the saturation behavior of BsPFK. As shown in Fig. 2.2A (dashed 

curve), in the presence of varied Fru-6 P concentrations that are less than about one-third 

the fixed MgATP concentration, the Fru-6 P saturation data fit the Michaelis-Menten 

equation well (R2 =0.994). A Km(Fru-6 P) o f 0.03 mM is obtained under these 

conditions. However, when the [Fru-6 P]/[MgATP] ratio is greater than about one-third 

(Fig. 2.2A, upper curve), a flattening is observed. Thus, when analyzed over the entire 

0.01 to 1.0 mM range, the saturation data fit the Michaelis-Menten equation less well 

(R2=0.988).
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FIGURE 2.2. Saturation Curves and Initial Velocity Plots with Respect to Fru-6 P.
(A) Fru-6 P Saturation Curves. Dependence o f the velocity o f the BsPFK-catalyzed 
reaction on Fru-6 P concentration in the presence o f ( • )  0.5 mM or (O) 10.0 mM 
MgATP. The upper curve was generated by fitting the data to eqn. (9), whereas the 
lower curve was generated by curve-fitting to eqn. (6 ). The dashed line was generated 
by fitting the data between 0.01 and 0.2 mM Fru-6 P in the upper curve to eqn. (6 ). 
(inset) Double-reciprocal plots o f the same data. The lines were drawn using linear 
equations containing parameters generated from fitting the data between 0 . 0 1  and 0 . 2  

mM Fru-6 P to eqn (6 ). Initial velocities (units/ug) were measured using the Fru-1,6BP- 
coupled assay. (B) Initial velocity plot. Reciprocal o f initial velocity versus reciprocal 
o f Fru-6 P concentration between 0.01 and 0.20 mM Fru-6 P in the presence o f (A) 0.05, 
(A)0.  10, and (O) 0.20 mM MgATP. The lines were drawn using linear equations 
containing parameters generated by direct fitting o f a selected range o f data points to 
eqn. (8 ). (C) Initial velocity p lot Reciprocal o f initial velocity versus reciprocal of 
Fru-6 P concentration between 0.033 and 5.0 mM Fru-6 P in the presence o f different 
fixed low levels o f MgATP: (□ ) 0.04, (■*-) 0.05, (O) 0.067, and ( • )  0.10 mM. Lines 
were generated by linear regression analysis.
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In the presence o f high levels o f MgATP (greater than 30 x Km) Fru-6 P 

saturation curves do not flatten within the normal 0.01 to 1.0 mM Fru-6 P concentration 

range. Rather, saturation follows Michaelis-Menten kinetics (Fig. 2.2A, lower curve) 

throughout the entire range. Inhibition by MgATP is apparent, and this inhibition 

appears competitive with respect to Fru-6 P (Fig. 2.2A, inset). Indeed, when Fru-6 P 

saturation data collected in the presence o f fixed levels o f MgATP equal to 0.5 mM, 5.0 

mM and 10.0 mM are analyzed according to the method of Cleland (1979), the data fit 

the equation for linear competitive inhibition (eqn. 1 0 ) well, yielding a linear slope 

replot and a Kis o f 5.2 ±  0.5 mM. A Hill coefficient o f 1.05 ±  0.05 is obtained for each 

of the three saturation curves. Thus, MgATP inhibition is not associated with 

cooperative Fru-6 P binding as it is for EcPFK, where Hill coefficients increase from 1.4 

to 3.6 in the presence o f fixed MgATP concentrations ranging from very low levels to 

above-saturating levels (Johnson and Reinhart, 1992).

The flattening effect observed in the Fru-6 P saturation curve when the [Fru- 

6 P]/[MgATP] ratio is greater than about one-third is seen in double-reciprocal plots as a 

leveling-off o f the slope near the 1/v axis. This leveling-off effect is evident in Fig. 

2.2B, which shows initial velocity plots with respect to variable Fru-6 P concentration at 

different fixed levels o f MgATP near its Km value. These results indicate that MgATP 

concentration is rate-limiting when the [MgATP]/[Fru-6 P] ratio is less than two or 

three. The effect is more apparent in Fig. 2.2C, which shows that the reaction rate 

remains steady and independent o f Fru-6 P concentration between 0.033 and 5.0 mM in 

the presence o f fixed MgATP concentrations at or below its Km value (0.1 mM). 

Overall, these studies suggest that MgATP binds to BsPFK under non rapid-equilibrium 

conditions, and that the rate o f catalysis is faster than the rate o f MgATP binding. [The 

deviation from linearity at low Fru-6 P concentration in the presence of 0.1 and 0.2 mM 

MgATP in Fig. 2.2B is most likely the result o f substrate binding via a kinetically- 

disfavored pathway (see Discussion section)].
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The linear regions of the plots in Fig. 2.2B can be fit to the initial velocity 

equation for a sequential bireactant mechanism in rapid-equilibrium (eqn. 8 ), assuming 

A is MgATP and B is Fru-6 P. When this is done, the following kinetic parameters are 

obtained: kcat= 112 ±  7 s 1, Ka= 40 ±  27 (iM, Kb= 2± 18 |lM, and Kib= 6 8  ±  43 pM. 

The double-reciprocal lines generated from curve-fitting to eqn. (8 ) intersect to the left 

of the ordinate and on the abscissa, a result consistent with a sequential mechanism in 

the forward direction.

MgATP Saturation and Substrate Inhibition—The Michaelis-Menten equation 

fits the MgATP saturation data well (R2  =0.996) in the presence o f saturating Fru-6 P as 

long as the varied MgATP concentration is below ten-fold the fixed Fru-6 P 

concentration (Fig. 2.3, thick dashed line). A  Km(MgATP) o f 0.1 mM is obtained 

under these conditions. However, inhibition becomes apparent at high MgATP 

concentrations (Fig. 2.3), and this inhibition is more pronounced at the lower Fru-6 P 

concentration (lower curve). Furthermore, as the fixed level o f Fru-6 P is decreased, the 

inhibition becomes apparent at a lower MgATP concentration. The saturation curves 

tend to rise to a maximum, then decrease to a plateau.

The inhibition by high levels of MgATP results in non-linear double-reciprocal 

plots with respect to variable MgATP concentration. A s shown in Figure 2.3 (inset), the 

double-reciprocal plots pass through a minimum, then bend upward as they approach 

the 1/v axis. This initial velocity pattern is indicative o f substrate inhibition (Segel, 

1975a) by high levels o f MgATP. Because o f their upward curvature, the lines do not 

intersect to the left of the ordinate. Thus, the initial velocity data with respect to 

MgATP do not fit the equation for a sequential bireactant mechanism in rapid 

equilibrium (eqn. 8 ).

MgATP Saturation o f the GV212 BsPFK Mutant—It is conceivable that the 

inhibition exhibited by MgATP results from the binding o f MgATP in a site other than 

the active site, e.g., the effector site. In order to address this possibility, the ability of
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MgATP to inhibit a mutant BsPFK enzyme that has the glycine at position 212 replaced 

with a valine (GV212) was investigated. Glycine 212 is located at the hinge o f the 8 H 

loop, which has been proposed to be important in the BsPFK allosteric transition 

(Schirmer and Evans, 1990). Residue 212 is situated along the border o f the effector 

binding cleft near the site where the purine ring o f a bound ADP or GDP molecule 

would be located.

We have found that PEP inhibition o f the GV212 mutant cannot be reversed by 

GDP or ADP, and that neither ADP nor GDP bind well to the effector site (Zhu et al., 

manuscript in preparation). Presumably, binding o f MgATP in the effector site would 

likewise be disrupted. Figure 2.4 shows that the ability o f MgATP to inhibit the 

enzyme is unaffected by the mutation (the curves appear nearly identical). This 

observation suggests that the inhibition is not due to the binding of MgATP in the 

effector site.

Alternative Nucleoside Triphosphate (NTP) Substrates—In addition to ATP, the 

nucleoside triphosphates GTP, UTP and CTP can all serve as phosphoryl donors in the 

BsPFK-catalyzed reaction. All four NTPs display saturation profiles similar to those in 

Fig. 2.3, which tend to rise to a maximum, then drop to a plateau at high MgNTP 

concentrations. Surprisingly, although the four NTPs have different Michaelis constants 

(Table 2.2), they all give the same relative velocity (v/Vmax) at a concentration o f 10 

mM (not shown). Thus, they inhibit BsPFK to essentially the same extent when present 

at high (10 mM) concentration.

Product and Dead-end Inhibition Studies o f the Forward Reaction—Product 

inhibition studies as well as dead-end inhibition studies using the non-reactive ATP 

analogs P/y-methyleneadenosine 5 ’triphosphate (AMPPCP) and 5' 

adenylimidodiphosphate (AMPPNP), and the non-reactive Fru-6 P analog arabinose 5- 

phosphate (Ara-5P), were performed on the forward reaction in order to further 

delineate the kinetic mechanism. As with the reverse reaction, primary
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TABLE 2.2
Alternative Nucleoside Triphosphate (NTP) Substrates

NTP
Km(NTP)a
(mM)

Percent of 
k cat (ATP)

Km(Fru-6 P)*>

(M-M)

ATP 0.07 ± 0 .01 1 0 0 33 ± 5

GTP 0.18 ± 0 . 0 1 73 28 ± 4

CTP 2 . 6  ± 0 . 2 98 146 ± 1 9

UTP 2 . 8  ±  0 . 2 93 6 8  ± 7

aFru-6 P concentration was kept fixed at 1.0 mM (saturating) for these 
determinations. bNTP concentration was kept fixed at 5 x Km(NTP). In each assay, 
Mg++ was present in excess of the NTP concentration.



double-reciprocal plots were constructed to determine the nature of the inhibition, and 

the saturation data were fit directly to equations for linear competitive, linear 

noncompetitive, and linear uncompetitive inhibition. The patterns obtained in the plots 

and the parameters obtained from curve-fitting are shown in Table 2.3.

The product and dead-end inhibition results for the forward reaction are 

somewhat more difficult to interpret than are the product inhibition results for the 

reverse reaction. The double-reciprocal plots for inhibition by both Fru-1,6BP and Ara- 

5P with respect to MgATP (up to 1 mM) yield nearly parallel yet divergent lines (Table 

2.3). In both o f these inhibition studies, when the MgATP concentration is extended to 

10 mM, the plots bend upward as they approach the 1/v axis, indicating substrate 

inhibition at high (>2 mM) MgATP concentration. Because o f the curvature, it is not 

possible from these plots alone to establish whether the inhibition is uncompetitive 

(parallel lines) or noncompetitive (convergent lines). An uncompetitive inhibition 

pattern would be expected in these studies if  the kinetic mechanism were ordered with 

MgATP binding first, whereas a noncompetitive pattern would be expected if the 

mechanism were random. However, the ordered mechanism under consideration here is 

incompatible with the competitive nature o f the inhibition by MgATP with respect to 

Fru-6 P seen in Fig. 2.2A. Competitive substrate inhibition by MgATP would be 

possible for an ordered mechanism only when Fru-6 P is the first substrate to bind to the 

enzyme; it is not possible for an ordered mechanism in which MgATP binds first to the 

enzyme (Segel, 1975a). On the other hand, competitive substrate inhibition by MgATP 

with respect to Fru-6 P is consistent with a random mechanism. In this case, inhibition 

can occur in several ways, including the two being proposed here: ( 1 ) abortive binding 

of MgATP in the Fru-6 P site, and (2) reaction flux through a kinetically-disfavored 

substrate binding pathway (see below). Thus, taking the substrate inhibition into 

account, the most likely interpretation o f the product and dead-end inhibition results is 

that Fru-6 P and MgATP bind to the enzyme in random order.



TABLE 2.3
Product and Dead-end Inhibition Patterns fo r  the Forward Reaction

A. Product Inhibition Patterns.

[Fru-6 P] [MgATP] product Kis Kii
(mM) (mM) inhibitor pattern3 (mM) (mM)

0 . 2 varied MgADP C 0.50 ±0 .01 N.A.

varied 0.87 MgADPb NC 2 2  ± 2 3 .9 2 1 0 .0 5

1 . 0 varied Fru-1,6BP° UC (NC)d N.A. 1 4 1 2

B. Dead-end Inhibition Patterns.^

[Fru-6 P] [MgATP] dead-end Kis Kii
(mM) (mM) inhibitor pattern (mM) (mM)

0 . 2 0 varied AMPPCP C 1 .1 2 1 0 .0 4 N.A.

varied 0.87 AMPPCP NC 1 0 .2 1 0 .9 9 .8 1 0 .8

0 . 2 0 varied AMPPNP C (or NC) 0 .0 5 1 0 .0 2 1 .5610 .81

varied 0.87 AMPPNP NC 0 .2 9 1 0 .0 9 0 .4 0 1 0 .1 2

varied 0.87 Ara-5P C 1 .2 1 0 . 2 N.A.

0 . 2 0 varied Ara-5P UC (NC)d N.A. 6 .2 1 0 .5

aNC=noncompetitive; C=competitive; and UC=uncompetitive. ^The Fru- 
l , 6 BP-coupled assay was used for these studies. cWhen Fru-1,6BP was the product 
inhibitor, the ADP-coupled assay system was used. Fru-1,6BP inhibition with respect 
to Fru-6 P could not be determined since the phospho(enol)pyruvate required for the 
assay is an allosteric inhibitor o f BsPFK at low Fru-6 P concentration. ^Parallel lines 
were observed in the double-reciprocal plots. See the text for further discussion. The 
pattern in parentheses is that expected in the absence o f substrate inhibition. N.A., not 
applicable.
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An examination o f the AMPPCP and AMPPNP inhibition patterns (Table 2.3) 

sheds light on the mechanism by which ATP inhibits BsPFK. Although AMPPCP 

inhibition with respect to ATP is purely competitive, AMPPNP inhibition with respect 

to ATP, though mostly competitive, nevertheless has some noncompetitive character.

In the latter case, the lines in the double-reciprocal plot (Fig. 2.5A) clearly converge just 

to the left o f the 1/v axis. The simplest interpretation o f this result is that AMPPNP 

(and presumably ATP) binds abortively in the Fru-6 P site, forming a dead-end E- 

MgATP-AMPPNP [or E-(MgATP)2 ] complex. Further evidence for the formation of 

this complex is seen in the double-reciprocal plot for AMPPNP inhibition with respect 

to Fru-6 P (Fig. 2.5B), which gives an essentially noncompetitive (mixed-type) pattern 

composed o f lines that intersect progressively closer to the 1/v axis as AMPPNP 

concentration is increased. This effect is not seen for AMPPCP. AMPPCP apparently 

does not bind abortively as does AMPPNP, most likely because the orientation o f its y- 

phosphate group is quite different from that of AMPPNP, which is similar to that of 

ATP (Yount et al„ 1971; Larsen et al., 1969). These results suggest that ATP binds in 

the Fru-6 P site via its y-phosphate group. Thus, abortive binding at least partially 

explains the inhibition seen at high MgATP concentration.

Discussion

The intersecting patterns o f lines obtained in the double-reciprocal initial 

velocity plots for the reverse reaction indicate that the kinetic mechanism is sequential 

rather than ping-pong. Further, the patterns o f lines obtained in the reverse reaction 

product inhibition (Table 2.1) and mixed alternate substrate (GDP) studies indicate that 

the kinetic mechanism of the reverse reaction is rapid equilibrium random. The results 

of product inhibition and dead-end inhibition studies of the forward reaction (Table 2.3) 

are also consistent with a random mechanism, after taking into account the effect of 

substrate inhibition by MgATP. The binding of MgATP to the enzyme was found to be 

rate-limiting when its concentration is low. Thus, the kinetic mechanism o f BsPFK in
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were measured using the Fru-l,6 BP-coupled assay.
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the forward direction can best be described as sequential random with binding o f  

MgATP being rate-limiting, i.e., the rate o f its binding is lower than the catalytic rate.

h i g h  [A]  

l o w  [B]

h i g h  [B]  

l o w  [A]

SCHEME I

The kinetic mechanism in the forward direction is depicted in Scheme I, where E is free 

enzyme, A and B are substrates MgATP and Fru-6 P, respectively, E-A and E-B are their 

binary complexes, and E-A-B is the reactive, ternary complex. The constants ki 

through kio are rate constants for the steps indicated. It is assumed that the binding of 

MgATP is slow relative to the catalytic step, i.e., k i, k6 «  k9 . The curved arrows in 

Scheme I indicate that different substrate binding pathways are followed in the presence 

of different relative amounts o f the substrates, assuming non rapid-equilibrium 

conditions.

The MgATP saturation results for the mutant GV212 enzyme (Fig. 2.4) indicate 

that the substrate inhibition observed is not due to MgATP binding in the effector site. 

Thus, inhibition by MgATP occurs as a result o f its binding in the active site. Within
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this context, there are several possible mechanisms by which MgATP inhibition can 

occur: (1) binding o f MgATP to the binary product complex E-Fru-1,6BP to form a 

dead-end ternary complex E-Fru-1,6 BP-MgATP, from which Fru-1,6BP dissociates 

more slowly than it does from the normal product ternary complex. [Inhibition o f liver 

alcohol dehydrogenase by ethanol occurs via a similar mechanism (Dalziel and 

Dickinson, 1966)]. (2) abortive binding o f MgATP in the Fru-6 P site (linear substrate 

inhibition; Cleland, 1979), or (3) the existence o f two alternative pathways to the 

reactive ternary complex, with one pathway kinetically-favored (Dalziel, 1957; 

Ferdinand, 1966). In this last mechanism, inhibition by MgATP would result from the 

binding o f substrates via the disfavored pathway.

A mechanism for MgATP inhibition that involves formation o f a dead-end 

complex E-Fru-l,6 BP-MgATP is shown to be unlikely from the results o f product 

inhibition studies. Specifically, inhibition by MgATP with respect to Fru-1,6BP in the 

reverse direction (Table 2.1), indicates that the complex E-Fru- 1,6BP-MgATP does not 

form readily.

The results o f the dead-end inhibition studies in the forward direction using 

AMPPNP (Table 2.3 and Fig. 2.5) give evidence for abortive binding o f AMPPNP, and 

presumably ATP, in the Fru-6 P site via their 7 -phosphate groups. Such abortive binding 

at least partially explains the observed inhibition by MgATP. However, the 

experimental evidence suggests that this is not the only mechanism involved.

Dalziel (1957) has shown that substrate inhibition (and activation) are inherent 

in an altemative-pathways mechanism when the binding or release o f substrates is rate- 

limiting and the rate constants for the steps involved are such that one o f the two 

pathways is kinetically-disfavored. Ferdinand (1966) presented the theoretical basis 

(eqn. 9) for this mechanism, which can give rise to a variety o f non-hyperbolic initial 

velocity curves (Segel, 1975b), the shapes o f which depend on the relative magnitudes 

of the rate constants for the steps o f the mechanism. There is evidence that BsPFK
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obeys such a mechanism: (1) The binding o f MgATP is clearly rate-limiting when its 

concentration is low, i.e., when it is less than about three times the Fru-6P 

concentration. This indicates that catalysis is fast relative to the rate o f  MgATP 

binding. (2) The observed substrate inhibition by MgATP when its concentration is 

greater than 10-fold the Fru-6P concentration (Fig. 2.2B and Fig. 2.3) is consistent with 

the binding o f substrates through a kinetically-disfavored pathway when MgATP 

concentration is relatively high. Thus, the upper binding pathway in Scheme I, with 

MgATP binding first and Fru-6P binding second, is the disfavored pathway for BsPFK. 

(3) The initial velocity equation for the altemative-pathways mechanism (eqn. 2.4) fits 

the Fru-6P saturation data well (R2 is 1.000 for the upper curve in Fig. 2.2A) with the 

assumption that im=jl and kicmj, and it fits the MgATP saturation data well (Revalues 

are 0.99S and 0.984 for the curves in Fig. 2.3) with the assumption that imcjl and kicmj. 

Thus, a steady-state altemative-pathways mechanism is consistent with not only the 

observed substrate inhibition by MgATP, but also with other aspects o f BsPFK kinetic 

behavior in the forward direction.

Substrate activation can be observed in a steady-state altemative-pathways 

mechanism. Typically, this activation is evident as sigmoidicity in saturation curves 

with respect to the first substrate to bind the enzyme in the kinetically-favored pathway. 

However, whether or not activation (hence, sigmoidicity) is observed depends on the 

various rate constants involved, and the extent to which one pathway is kinetically- 

favored (or disfavored). Thus, the reason sigmoidicity is not observed in the Fru-6P 

saturation curve for BsPFK is probably because the extent to which the lower pathway 

in Scheme I is favored (or the upper pathway is disfavored) is not great.

Altogether, the results discussed above provide evidence that BsPFK in the 

reverse direction obeys a rapid-equilibrium random mechanism. In the forward 

direction, it obeys an altemative-pathways kinetic mechanism that involves (1) non 

rapid-equilibrium binding o f MgATP (k^ k6 « k 9  in Scheme I), evident when MgATP
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concentration is low, and (2 ) substrate binding through a kinetically-disfavored pathway 

(the upper pathway in Scheme I) evident when MgATP concentration is high. In 

addition, abortive binding o f the y-phosphate o f ATP in the Fru-6 P site contributes to 

some extent to the inhibition seen at high MgATP concentration. As such, the kinetic 

mechanism of BsPFK shares features in common with the kinetic mechanisms o f other 

PFKs, including those from rabbit muscle, Ascaris suum, and E. coli. Using initial 

velocity, product inhibition and dead-end inhibition studies, Bar-Tana and Cleland 

(1974a,b) have shown that the kinetic mechanism of rabbit muscle PFK is sequential 

random, being rapid-equilibrium in the reverse direction but not in the forward 

direction, where the rate constants for the release o f substrates are lower than the 

catalytic constant. Although the kinetic mechanism o f Ascaris suum PFK in the 

forward direction is predominantly steady-state ordered (Rao et al., 1987), it 

nevertheless involves some randomness in the order o f substrate binding. In the reverse 

direction, the mechanism is essentially rapid-equilibrium random.

Studies by Deville-Bonne et al. (1991a) have indicated that the kinetic 

mechanism of EcPFK is sequential random, and that the binding o f one substrate 

antagonizes the binding of the other. Johnson and Reinhart (1992) have further studied 

the interactions between MgATP and Fru-6 P in the active site o f EcPFK by 

thermodynamic linked-function analysis. Their results indicate that all the observed 

features o f substrate interaction can be explained by two independent couplings: an 

antagonistic MgATP/Fru-6 P coupling extending between active sites, and a MgATP- 

induced Fru-6 P/Fru-6 P coupling. Zheng and Kemp (1992) have recently proposed that 

ATP inhibition o f EcPFK involves substrate antagonism coupled with a steady-state 

random mechanism in which the rate o f catalysis is too high to permit rapid 

equilibration o f substrates. It is interesting to note that the kinetic behavior o f 3-deoxy- 

D-araZ?mo-heptulosonate 7-phosphate synthetase from Rhodomicrobium vannielii,
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which is proposed to follow an altemative-pathways mechanism (Jensen and Trentini, 

1970), closely resembles that o f EcPFK (Zheng and Kemp, 1992).

Despite similarities between the kinetic mechanisms o f EcPFK and BsPFK, the 

mechanisms by which MgATP inhibits the two enzymes are clearly different. 

Specifically, MgATP inhibition appears to be allosteric for EcPFK (Berger and Evans,

1991) but not for BsPFK. The reason for this difference has only recently begun to be 

understood. Steady-state fluorescence studies show that MgATP and Fru-6 P each bind 

to EcPFK non-cooperatively in the absence o f the other (Deville-Bonne and Garel,

1992). In these studies, cooperative Fru-6 P binding was induced by the presence of 

AMPPCP (and presumably ATP), although the Hill coefficient for the cooperative 

binding was not as high as that observed in steady-state kinetic measurements (2 . 0  

versus 3.8-4.0). Based on studies showing that both kcat and n (the Hill coefficient) 

vary with pH, Deville-Bonne et al. (1991b) have suggested that catalysis and 

cooperativity are linked in EcPFK. Thus, it is the superimposition o f (1) “kinetic 

cooperativity” resulting from non-equilibrium conditions and (2 ) concerted binding 

cooperativity (Monod et al., 1965) that fully explains the allosteric behavior o f EcPFK.

The lack o f allosteric regulation o f BsPFK by MgATP suggests that, unlike 

EcPFK, catalysis and cooperative Fru-6 P binding are not linked. Cooperative binding 

of Fru-6 P does occur, but only in the presence o f PEP. The data presented in this paper 

indicate that MgATP inhibition o f BsPFK occurs entirely within the active site by 

means o f (1) abortive MgATP binding and (2) reaction flux through the kinetically- 

disfavored substrate binding pathway. Thus, inhibition o f BsPFK by MgATP is a 

process distinct from allosteric inhibition by PEP.

Finally, the nature o f the regulation by MgATP and PEP of BsPFK is compatible 

with the thermostability o f the enzyme. Large conformational changes, which could 

lead to structural destabilization, are apparently not part o f the response o f the enzyme 

to inhibitors. The allosteric transition (Schirmer and Evans, 1990) involves minimal



movement: a rotation by 7 °  o f one pair o f rigid dimers relative to the other, along with 

a coordinated back-and-forth movement of a pair o f loops (the 8 H and 6 F loops) across 

the dimer-dimer interface. Likewise, inhibition by ATP apparently involves little if  any 

conformational change.



Chapter 3

A Chimeric Bacterial Phosphofructokinase Exhibits Cooperativity in 
the Absence of Heterotropic Regulation
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Phosphofructokinase (PFK, EC 2.7.1.11) catalyzes the transfer o f the y- 

phosphate from MgATP to fructose-6 -phosphate (Fru-6 P) in the first committed step of 

glycolysis. In bacteria, PFK is regulated heterotropically by the activator ADP (or 

GDP) and the inhibitor phosphoenolpyruvate (PEP). The PFKs from the bacteria 

Escherichia coli and Bacillus stearothermophilus are remarkably similar in structure 

(Evans et al., 1981; Shirakihara & Evans, 1988). The enzymes are both tetramers of 

identical subunits, their subunit a-carbon traces are nearly superimposable, and they 

share 55% amino acid identity. They can be viewed as dimers o f rigid dimers. In each 

enzyme, the subunit is divided into a large and a small domain, with the active site 

located in a cleft between the two domains. There are thus four active sites. There are 

also four effector sites into which PEP and ADP (or GDP) bind; these are located in 

deep clefts between subunits o f the rigid dimer. Within the active site, the amino acid 

residues that bind ATP are almost entirely from the large domain, while those that bind 

Fru-6 P are mostly from the small domain, but include two arginines (arginines 162 and 

243) from across the dimer-dimer interface. Coordination o f the Mg++ ion as well as 

transfer o f the y-phosphate o f ATP involves residues from both domains.

Despite the remarkable structural similarity between E. coli PFK (EcPFK) and 

B. stearothermophilus PFK (BsPFK), there is a significant kinetic and allosteric 

difference between them. Whereas Fru-6 P saturation of BsPFK is hyperbolic in the 

presence o f saturating MgATP levels (Valdez et al., 1989), Fru-6 P saturation o f EcPFK 

is highly cooperative (Hill number around 4.0) under the same conditions (Blangy et al., 

1968). ATP has been termed an "allosteric" inhibitor o f EcPFK (Evans, 1992) because 

of its ability to profoundly inhibit the enzyme at low Fru-6 P concentration (Kundrot & 

Evans, 1990). On the other hand, ATP only slightly inhibits BsPFK, and the inhibition 

is clearly non-allosteric. Blangy et al. (1968) have shown that EcPFK obeys the 

Monod-Wyman-Changeux (MWC) model o f allosteric behavior (Monod et al., 1965), 

in which the protein exists in an equilibrium involving two conformational states, a
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low-activity T-state and a high-activity R-state. The allosteric behavior o f EcPFK has 

been explained in terms o f this model. Recent studies, however, suggest that the MWC 

model cannot fully account for the cooperativity o f EcPFK (Deville-Bonne et al.,

1991a; Berger & Evans, 1992).

X-ray diffraction studies indicate that two different subunit structures are present 

in the EcPFK tetramer: "open" and "closed" (Shirakihara & Evans, 1988). Therefore, an 

open-to-closed transtition may be taking place within the EcPFK subunit. A  

comparison between the a-carbon traces o f the open and closed subunit structures 

reveals that most o f the movement occurs within a region o f the large (ATP-binding) 

domain. The transition apparently does not occur within the large domain o f BsPFK 

(Schirmer & Evans, 1990).

We have constructed and studied a chimeric PFK, composed o f parts o f BsPFK 

and EcPFK, in order to investigate the structural basis for their different regulation by 

ATP. The chimeric enzyme (ChiPFK) contains a portion o f the "rigid" large domain of 

BsPFK (the ATP-binding domain) grafted in-frame onto the remainder o f the EcPFK 

subunit. The active site of ChiPFK is thus composite: residues that bind ATP are from 

BsPFK while those that bind Fru-6 P are from EcPFK. Steady-state kinetics and 

fluorescence studies were performed on the chimeric PFK and the two native enzymes. 

The results indicate that active site o f ChiPFK is locked in an "open" conformation that 

resembles that of the activated form of EcPFK. Nevertheless, the enzyme displays 

sigmoidal Fru-6 P saturation kinetics (Hill number 1.7 ±  0.2). The absence o f regulation 

by PEP despite its ability to bind in the effector site indicates that the structural 

pathways of allosteric PEP inhibition are different between the two native enzymes. In 

many respects, ChiPFK resembles a proteolyzed derivative o f EcPFK (Le Bras & Garel, 

1982) that is cooperative yet insensitive to allosteric effectors. The possible origins of 

ChiPFK sigmoidal saturation kinetics are discussed.
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Materials and Methods

Enzymes, Chemicals and Oligonucleotides—Restriction endonucleases, T4 DNA  

ligase and T4 polynucleotide kinase were either from New England Biolabs, Inc. 

(Beverly, MA) or U. S. Biochemical (Cleveland, OH). NADH, NAD+, Fru-6 P, ATP 

(and other NTPs), GDP, PEP, AMPPNP, and the auxiliary enzymes aldolase, 

triosephosphate isomerase and a-glycerophosphate dehydrogenase were all from Sigma 

Chemical Co. (St. Louis, MO), as was the Cibacron Blue 3GA-agarose resin (type 

3000-CL-L). Oligonucleotides were either purchased from DNA International, Inc. 

(Lake Oswego, OR) or synthesized on an Applied Biosystems 380A DNA Synthesizer.

Construction o f  the Chimeric Gene: PCR, Cloning and Sequencing—The 

chimeric gene was constructed by ligating together two polymerase chain reaction 

(PCR) amplification products: one from bspfk, the other from ecpfk. The two PFK 

genes (French & Chang, 1987; Hellinga & Evans, 1985) had previously been cloned 

into pUC18 plasmids, and were oriented in opposite directions. Three oligonucleotide 

primers were used in the PCR amplification: 

limner
1 5'a g g a a a c a g c ta tg a c c a tg a tta c3’

2 5'CGTCCCCGGGGCCCCGACGCACG3’

3 5'cgtgcatcggggcccc ggg cactatc3’

Primer 1 was designed to hybridize to pUC18 itself just beyond the Eco RI cloning site, 

which is located upstream of the bspfk promoter in recombinant bspfkjp\JC\%, and 

located downstream of the ecpfk termination sequence in recombinant ecpfk/p\5C\%. In 

both cases, primer 1 points into the pfk insert. Primer 2 was designed to hybridize to the 

bspfk coding strand with its 3' end located at the codon for Pro 118, pointing upstream. 

Primer 2 contains an internal Apa I restriction site (underlined above) that also causes 

the mutation Val 122 — > Ala. (It was reasoned that this mutation would not 

significantly alter the properties o f the chimeric enzyme since ( 1 ) the amino acid change
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is not a drastic one, and (2 ) there is already a degree o f variation between the native 

enzymes at this position, i.e., valine versus leucine). Primer 3 was designed to hybridize 

to the ecpfk complementary strand with its 3' end located at the codon for lie 126, 

pointing downstream. Like primer 2, it contains an internal Apa I site. PCR using 

primers 1 and 2  amplifies a region o f bspfk stretching from beyond its promoter to 

codon 125. PCR using primers 1 and 3 results amplifies a region o f ecpfk stretching 

from codon 118 to beyond its termination sequence. PCR was performed using a 

Perkin Elmer-Cetus (Norwalk, CT) DNA thermal cycler, a GeneAmp™  PCR kit, and 

Am pliTaq™  DNA polymerase. The procedure suggested in the kit was followed.

The chimeric gene was created by digesting the two PCR products with Apa I, 

then ligating the fragments together with T4 DNA ligase. In this way, the BsPFK gene 

up to codon 122 was grafted in-frame onto the EcPFK gene beginning at codon 123.

The chimeric gene was cloned into pUC18 via its Hind III and Eco RI restriction sites. 

The integrity o f the chimeric gene was verified by directly sequencing the entire coding 

region using a Sequenase™  kit (U. S. Biochemical, Inc., Cleveland, OH). No 

unintentional mutations were found.

Expression and Purification ofPFKs—Both the chimeric PFK and the two 

native PFKs were expressed in PFK-deficient E. coli cells (DF1020 cells) that had been 

transformed with recombinant pUC18 plasmids containing the PFK genes. BsPFK was 

purified as described by Valdez et al. (1989), and EcPFK was purified as described by 

Kundrot & Evans (1991), but on a 40-fold larger scale. The enzymes were shown to be 

pure by electrophoresis on a 12% SDS-polyacrylamide gel (see Fig. 3.2A) using the 

method o f Laemmli (1970).

Expression o f ChiPFK was performed as follows: recombinant chipfk/pUC18 

plasmid DNA was transformed into competent DF1020 cells. The cells were plated 

onto Luria broth (LB) agar containing 50 jig/ml ampicillin, and the plates were 

incubated overnight at 30°C. Six transformants were picked, directly inoculated into
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3-ml volumes o f LB-ampicillin (50 (ig/ml) medium, and grown at 30°C with agitation. 

The cultures reached stationary phase after about 60 hours. A 1-ml aliquot o f the 

culture having the highest PFK activity was inoculated into 500 ml of LB-ampicillin (50 

|lg/ml). This large culture was grown at 30°C, reaching stationary phase after about 24 

hrs. The cells were harvested by centrifugation at 4°C. Cell pellets were brought up in 

buffer A (50 mM Tris-Cl, pH 7.9, 1 mM EDTA and 8  mM DTT) containing 1 mM 

phenylmethyl sulfonyl fluoride (PMSF), frozen in liquid nitrogen, and stored at -20°C 

until ready for use.

The frozen cell suspension was thawed, then sonicated and centrifuged. The 

resulting clear supernatant was loaded onto a Cibacron Blue 3GA-agarose column that 

had been equilibrated with buffer A. The loaded column was washed with 10 volumes 

of buffer A, and ChiPFK was then eluted with 2 mM ATP/10 mM MgCl2  in buffer A. 

(The column was not washed with salt prior to elution with ATP because NaCl 

concentrations as low as 100 mM caused elution o f ChiPFK). The most active fractions 

were pooled and dialyzed against buffer A to remove the ATP and Mg++. SDS-PAGE 

analysis o f the PFK preparation at this point revealed the presence o f several 

contaminating bands. The column was regenerated by washing it first with several 

volumes o f 1.5 M NaCl, then extensively with buffer A. The dialyzed pool containing 

PFK activity was re-loaded, the column was washed with 5 volumes o f buffer A, and 

ChiPFK was then eluted with 0.5 mM Fru-6 P in buffer A. PFK activity came off in a 

broad peak. Fractions having the highest activity were pooled. The enzyme was shown 

to be pure by electrophoresis on a 12% SDS-polyacrylamide gel (Fig. 3.2A) using the 

Laemmli method (1970). Half o f the pool was concentrated using an Amicon (Beverly, 

MA) pressure cell, then stored at 4°C as a 55% ammonium sulfate suspension. The 

other half was first dialyzed in buffer A to remove the Fru-6 P, then concentrated in 50% 

glycerol/50% buffer A containing 2 mM ATP/10 mM MgCl2 , and stored at -20°C.
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Sedimentation Studies—Sucrose gradient sedimentation was performed 

according to the method o f Martin & Ames (1961). Each 5 to 20% sucrose gradient 

was buffered with 100 mM Tris-Cl, pH 8.2, containing 10 mM MgCl2 , 5 mM NH4 CI, 

0.25 mM EDTA, 2.0 mM DTT, and 0.5 mM Fru-6 P (buffer B). An aliquot o f a stock 

solution o f PFK containing 2 to 5 pg was dialyzed at 4°C against buffer B containing 

2 % sucrose, combined with a similarly-dialyzed solution o f yeast alcohol 

dehydrogenase (ADH; 10 pg), then layered between the gradient (about 4 ml) and a 

volume o f buffer B (about 1.4 ml) placed over the gradient just prior to sample layering. 

The ADH was used as an internal reference standard for determining the molecular 

weight o f the sedimenting PFK species. Sedimentation was performed at 4°C in a 

Beckman SW 50.1 rotor spun at 44,000 rpm for 13 hours. After sedimentation, 

fractions were collected by puncturing the bottom of the tube, then analyzed for PFK 

activity as described below. Fractions were analyzed for ADH activity by measuring 

the increase in absorbance at 340 nm in 1-ml assays that contained 100 mM Tris-Cl, pH 

8 .6 ,1  mM NAD+, and 8.4 pmoles (50 ul) o f ethanol.

Enzyme Activity Assays—Initial velocities were measured at 30°C in 100 mM 

Tris-Cl, pH 8.2, containing 10 mM MgCl2  and 5 mM NH4 CI by coupling the 

production o f fructose 1,6-bisphosphate to the oxidation o f NADH (0.2 mM). The 

coupled assay (Kotlarz & Buc, 1982) utilized the auxiliary enzymes aldolase (20 

pg/ml), triosephosphate isomerase ( 1 0  pg/ml) and a-glycerophosphate dehydrogenase 

(10 pg/ml). Auxiliary enzymes were dialyzed at 4°C against 100 mM Tris-Cl, pH 8.2, 

prior to use. ADP produced in the EcPFK-catalyzed reaction was regenerated to ATP 

using creatine phosphate (1 mM) and creatine kinase (10 pg/ml). However, this 

regenerating system was found to be unnecessary for the BsPFK- and ChiPFK- 

catalyzed reactions. In all assays, the free Mg++ concentration was kept 5 to 10 mM in 

excess o f the ATP concentration to avoid inhibition by free ATP. Assays were initiated 

by addition o f PFK. The change in absorbance at 340 nm was measured for at least one
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minute following an initial nonlinear phase. A thermostatted Hitachi UV-2000 

spectrophotometer was used for the measurements.

Fluorescence Measurements—The binding o f various substrates or effectors can 

either enhance or quench the intrinsic fluorescence o f the single tryptophan, Trp 311, of 

EcPFK (Berger & Evans, 1991). Trp 311 is located near the C-terminus o f the EcPFK 

subunit within the large subunit-subunit interface o f the rigid dimer. ChiPFK also has a 

tryptophan at position 311. (The intrinsic fluorescence o f the single tryptophan of 

BsPFK, Trp 179, is largely insensitive to ligand binding (Kim et al., 1993)).

Steady-state fluorescence measurements were made at 25°C using either a SPEX 

1680 or an SLM 8000C fluorescence spectrometer. The excitation source was a Xenon 

arc lamp. Intrinsic fluorescence emission due to the single tryptophan, Trp 311, of 

EcPFK or ChiPFK was measured at 340 nm following excitation at 295 nm. Slit widths 

were set at 8  nm. Protein concentrations were 5 to 25 pg/ml (below 1 pM), which is 

low enough to avoid the inner-filter effect. The enzyme was buffered in 100 mM Tris- 

Cl, pH 8.2, containing 10 mM M gCh, 5 mM NH4 CI, 0.25 mM EDTA, and 2 mM DTT. 

Two types of experiments were performed: (1) addition o f a saturating amount of 

ligand, and (2 ) addition of increments of ligand to the enzyme solution. Corrections 

were made to compensate for volume change, enzyme dilution, and nonspecific 

quenching. This was done by performing parallel experiments in which phosphate o f 

the same concentration was added to the enzyme.

Data Analysis—Parameters were obtained from steady-state kinetic or 

fluorescence studies by fitting the substrate saturation data to either the Michaelis- 

Menten equation for hyperbolic kinetics or the Hill equation for sigmoidal kinetics. 

Kinetic data for MgATP saturation at low Fru-6 P concentration (Figure 3.4B) were fit 

to the initial velocity equation for a sequential random kinetic mechanism assuming 

non rapid-equilibrium conditions (Segel, 1975; Ferdinand, 1966). The GDP and 

AMPPNP inhibition data were analyzed as follows: first, the inhibition pattern was



identified (competitive, noncompetitive, etc.). Based on this identification, the 

inhibition data were fit, using nonlinear regression analysis, to the equation for either 

competitive or noncompetitive inhibition (Cleland, 1979). The parameters generated 

were used to construct linear equations for the double-reciprocal plots. Finally, slopes 

and/or intercepts o f the inhibition lines were plotted against inhibitor concentration to 

determine the values for Kjs and/or Kjj. All inhibition data were corrected for loss of 

activity due to enzyme instability. Curve-fitting was performed using the program 

INPLOT (GraphPad, Inc., San Diego, CA).

Results

The Chimeric Subunit—X-ray crystallography has revealed that the amino acid 

residues that bind Fru-6 P are the same between the active sites o f  the two native 

enzymes (Evans et al., 1981; Shirakihara & Evans, 1988). Three o f the residues that 

bind ATP are different between the two active sites. They are, for BsPFK versus 

EcPFK: Cys instead o f Phe 73, Lys instead o f Arg 77, and Gin instead o f Met 107. In 

the chimeric subunit (Fig. 3.1), the BsPFK/EcPFK junction is at residue 122. The 

residues that bind ATP are from the BsPFK portion of the subunit, while those that 

bind Fru-6 P are from the EcPFK portion. Since residues 118 to 130 (except residue 

122) are conserved between BsPFK and EcPFK, Thr 125, Asp 127, and Asp 129 can be 

considered as being from either enzyme portion. The region o f the ATP-binding 

domain o f EcPFK that moves (residues 71-95 and 101-118) during the open-to-closed 

transition (Shirakihara & Evans, 1988) has been replaced with the corresponding "rigid" 

region o f BsPFK (Schirmer & Evans, 1990).

The residues that comprise the effector sites o f the two native enzymes differ at 

several positions : Val instead of Arg 54, Gly instead o f Tyr 55, Gly instead o f Ser 58, 

Arg instead o f Lys 211, and lie 320 instead o f Tyr 319 for BsPFK versus EcPFK, 

respectively. Because o f these differences, the effector site o f the chimeric enzyme is 

different from that of either native enzyme. In EcPFK, there are five positively-charged



FIGURE 3.1. Molecular Graphics Image o f the Chimeric Subunit. The portion o f the subunit in blue is from B. 
stearothermophilus PFK, while the portion in purple is from E. coli PFK. ATP and Fru-6 P molecules are in red. Amino acid 
residues that bind ATP are in yellow, while those that bind Fru-6 P are in green. The lone tryptophan, Trp 311, is in yellow- 
orange. The image was generated fromB. stearothermophilus PFK atomic coordinates using SYBYL (Tripos Associates, St. 
Louis, MO) on an Evans and Sutherland ps390 graphics terminal.
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residues that bind the phosphate groups of GDP and PEP: Args 21, 25, 54 ,154  and Lys 

213 (Shirakihara & Evans, 1988; Lau & Fersht, 1989). In BsPFK, these residues are 

Arg's 2 1 ,2 5 ,2 1 1 ,1 5 4  and Lys 213 (Evans e ta l., 1981; Valdez e ta l., 1988). Thus, in 

BsPFK, Arg 211 substitutes for Arg 54. In ChiPFK, however, neither Arg 54 nor Arg 

211 is present. The presence of only three arginines in the ChiPFK effector site may 

explain its lower affinity for GDP (see below).

Structural Properties — It is important to know something about the structural 

properties o f the chimeric enzyme before investigating its kinetic and allosteric 

properties. SDS-PAGE analysis (Fig. 3.2A) indicates that the subunit molecular 

weights o f the three enzymes are similar, being 36,000 ± 1,000 daltons. The results o f a 

sucrose gradient sedimentation study (Fig. 3.2B) show that ChiPFK exists as a tetramer 

137,000 daltons in size. Sedimentation experiments performed under the same 

conditions for BsPFK and EcPFK give similar molecular weights o f 139,000 and 

136,000, respectively. Thus, the three enzymes exist as tetramers similar in size. 

Analysis o f the ChiPFK sucrose gradient fractions by SDS-PAGE followed by silver 

staining (not shown) reveals that no dimers or monomers were present within the 

gradient. About 75% of the total enzyme activity loaded was recovered from the 

fractions collected in the sedimentation study.

Stability—The chimeric enzyme, once diluted to a concentration appropriate for 

activity assays, began to lose activity over time. Specifically, about 15% of its original 

activity was lost over a period o f 2 hours. The instability is an intrinsic property o f 

ChiPFK since the diluted enzyme was unstable under a variety o f buffer and 

temperature conditions. Instability was also observed in the fluorescence experiments 

in which Trp 311 fluorescence was titrated by incremental addition o f ligand solution.

A saturable quenching o f fluorescence was observed in these experiments regardless of 

whether ligand or buffer was added. Even MgATP, which caused an increase in 

fluorescence when added in saturating amounts, caused a saturable decrease in
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A
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66.0

45.0
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FIGURE 3.2. Structural Properties of the Chimeric PFK. (A) SDS-PAGE Analysis. 
M, molecular mass markers; A, native B. stearothermophilus PFK; B, the chimeric 
PFK; C, native E. coli PFK. Marker sizes are indicated in kilodaltons. (B) Sucrose 
Gradient Sedimentation. Plot o f Percent o f PFK Activity Loaded versus Fraction 
Number. The position o f the yeast ADH marker (144,000 daltons) is indicated with a 
downward arrow. The sedimentation origin was at fraction 29.
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fluorescence in titration experiments. Thus, both activity and fluorescence 

measurements gave evidence that ChiPFK is somewhat unstable.

Kinetic Parameters—The chimeric enzyme was studied using steady-state 

kinetics, and the kinetic parameters obtained were compared to those for the two native 

enzymes. The results (Table 3.1) indicate that the chimeric enzyme is two-fold less 

catalytically active than either o f the native enzymes. However, its affinity for ATP as 

measured by KmATP is similar. The larger value o f KmATP for EcPFK (103 pM) is 

most likely the result o f substrate antagonism between MgATP and Fru-6 P in the active 

site (Deville-Bonne et al., 1991b) since, when Fru-6 P concentration is 50 pM instead of 

1.5 mM, KmATP drops to 70 |iM. The Fru-6 P saturation curves in the presence of 

saturating MgATP concentration vary in degree o f sigmoidicity among the three 

enzymes. Whereas Fru-6 P saturation o f EcPFK is highly sigmoidal (nn is 5.8), it is 

hyperbolic for BsPFK (nn is 1.1), and somewhat sigmoidal for ChiPFK (nn is 1.7). The 

S i/2 Fru'6p-value for ChiPFK is closer to the value for BsPFK than that for EcPFK. 

However, when EcPFK is activated by GDP (2 mM), the Fru-6 P saturation curve 

becomes hyperbolic and Si/2 Fru'6P falls to 50 pM, which is close to the value for either 

BsPFK or ChiPFK. These results show that, in terms o f its kinetic parameters, ChiPFK 

is remarkably similar to BsPFK and the activated form of EcPFK.

Fru-6P Saturation Kinetics—Figure 3.3 displays more clearly the differences 

among the three enzymes in terms of their saturation by Fru-6 P in the presence o f 1.0 

mM MgATP. Whereas saturation of EcPFK is highly sigmoidal, saturation o f ChiPFK 

is nearly hyperbolic. Thus, cooperativity has been largely destroyed in ChiPFK. Some 

remains, however (nn is 1.7; Fig. 3.3, inset). The residual cooperativity persists (nn is 

1.8) even for Fru-6 P saturation o f ChiPFK in the presence of less-than-saturating 

MgATP concentration (50 pM; not shown). It is also present (nH is 1.5) when other 

nucleoside triphosphates (NTPs) such as GTP or CTP serve as the phosphate donor. 

Together, these results suggest that ChiPFK cooperative behavior is independent o f the



TABLE 3.1
Kinetic Parameters fo r  ChiPFK and the Native Enzymes

Enzyme
kcat
(s-1)

KmATP

(ixM)
S l/2Fru'6P

(M-M) nn

ChiPFK 60 ± 2 85 ± 2 34 ±  1 1.7 ± 0 .2

BsPFK 139 ± 2 4 70 ±  3 28 ± 7 1 . 1  ± 0 . 1

EcPFK 127 +  5 103 ± 2 445 ± 3 5.8 ±  0.2

The conditions for the assays are described under "Materials and Methods." 
kcat, the catalytic rate constant; KmATT>, the MgATP concentration at half-maximal 
velocity; S i/2 Fru'6P, the Fru-6 P concentration at half-maximal velocity; and nn, the Hill 
number. In determining KmATP, the Fru-6 P concentration was 0.3 mM for BsPFK and 
ChiPFK, and 1.5 mM for EcPFK. In determining S i/2 Fru-6P and nn, the MgATP 
concentration was 1.0 mM.
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absolute amount o f ATP present and the identity o f the NTP. What appears to be 

important is the amount o f  MgATP (or other NTP) relative to the amount o f Fru-6 P 

present. When MgATP concentration was low (50 jiM), ChiPFK activity did not 

increase with Fru-6 P concentration beyond 50 pM. This result indicates that MgATP 

binding and/or release is not a rapid-equilibrium process for ChiPFK. Similar results 

showing non rapid-equilibrium binding and/or release o f MgATP were obtained for 

BsPFK and the activated form o f EcPFK.

MgATP Saturation in the Presence o f Low Fru-6P Concentration—  MgATP 

saturation curves for ChiPFK and the two native enzymes obtained in the presence o f 

saturating Fru-6 P concentration are hyperbolic and yield similar KmATP-values (Table 

3.1). However, when Fru-6 P concentration is low (50 pM), differences become 

apparent between the MgATP saturation curves o f EcPFK and ChiPFK (Figs. 3.4A & 

B). Under these conditions, significant substrate inhibition o f EcPFK by MgATP is 

evident (Fig. 3.4A; Kundrot & Evans, 1991; Johnson & Reinhart, 1992). The left-most 

portion of the curve in Fig. 3.4A can be fit to the Michaelis-Menten equation (inset), 

yielding a KmATP o f 0.5 ± 0 .1  pM. As shown in Fig. 3.4B, MgATP also inhibits 

ChiPFK at low Fru-6 P concentration (open circles), but the inhibition is much less 

severe. Furthermore, the data for ChiPFK can be fit to the equation for a steady-state 

random Bi Bi kinetic mechanism (Segel, 1975b) but those for unactivated-EcPFK (Fig. 

3.4A) cannot. The results suggest that the mechanisms o f ATP inhibition o f ChiPFK 

and unactivated-EcPFK are different. However, whereas MgATP saturation curves at 

low Fru-6 P concentration for ChiPFK and unactivated-EcPFK are dramatically 

different, those for ChiPFK and EcPFK activated by 2 mM GDP (Fig. 3.4B, closed 

circles) are similar. Their profiles, and the extent o f inhibition relative to V max at 10 

mM MgATP— 25% for ChiPFK and 20% for activated-EcPFK— are similar. These 

results suggest that the ChiPFK subunit is locked in a conformation that resembles the 

activated EcPFK subunit.
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Heterotropic Regulation—The abilities o f PEP to allosterically inhibit, and GDP 

to allosterically activate ChiPFK were investigated using steady-state kinetics. The 

results obtained indicate that ChiPFK activity is insensitive to regulation by either 

effector. Fig. 3.5A shows that both native enzymes are inhibited by PEP, although the 

sensitivity and cooperativity o f their responses differ. The inhibition profile for EcPFK 

is highly sigmoidal with a Hill number o f 4.3 (I1 /2  is 1.17 ±  0.01 mM), while the profile 

for BsPFK is much less sigmoidal with a Hill number o f 1.6 (11 /2  is 0.28 ±  0.01). 

However, PEP has essentially no effect on the chimeric enzyme. ChiPFK likewise 

cannot be activated by GDP. As shown in Fig. 3.5B, GDP strongly activates EcPFK 

when MgATP concentration is saturating and the Fru-6 P concentration is equal to the 

S 1/2 -value (0.45 mM). The KactGDP for the activation, which is hyperbolic, is 13 ±  0.4 

uM. On the other hand, GDP can either activate or inhibit BsPFK, depending on the 

concentration o f GDP. In the presence o f Fru-6 P at a concentration equal to the S 1/2 - 

value (30 uM), as GDP concentration increases, it first activates BsPFK weakly to about 

20% (KactGDP is 90 ±  10 uM), then begins to inhibit (Fig. 3.5B). Since the inhibition by 

GDP is competitive with respect to MgATP (Kis= 1.5 ±  0.2 mM; not shown), it is due 

to binding in the active site. The chimeric enzyme cannot be activated by GDP but, like 

BsPFK, is inhibited by it. However, the inhibition pattern is mixed-type noncompetitive 

with respect to MgATP (Kis= 4.3 ±  0.9 mM; Kii= 26 ±  6  mM) rather than competitive. 

The origin of the inhibition is not clear.

Thermal Inactivation Studies—A possible explanation for the lack of 

heterotropic regulation o f ChiPFK by PEP and GDP is that these ligands cannot bind the 

effector site o f the enzyme. To address this possibility, thermal inactivation 

experiments were performed in which ChiPFK was heated in the absence or presence of 

ligand. The results show that both Fru-6 P and MgGDP protect native EcPFK against 

thermal inactivation at 60°C (Fig. 3.6A). PEP also protects EcPFK, but the protection is 

partial, with 6 8 % o f activity remaining after 1 hour. Similar experiments were
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Remaining versus PEP Concentration. [MgATP] was saturating at 1.0 mM. [Fru-6 P] 
was 0.3 mM for BsPFK and ChiPFK, and 1.5 mM for EcPFK. (B), Effect o f  GDP. 
Percent Activation versus GDP Concentration. [MgATP] was saturating at 1.0 mM. 
[Fru-6 P] was equal to the S 1/2 -value, which was 0.03 mM for ChiPFK and BsPFK, and 
0.45 mM for EcPFK.
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performed on ChiPFK. (50°C was used instead of 60°C because o f the lower stability 

o f ChiPFK). As shown in Fig. 3.6B, Fru-6 P at 5 mM protects ChiPFK against thermal 

inactivation. This result contrasts with the inability o f a 10-fold lower concentration o f  

Fru-6 P to stabilize ChiPFK diluted for activity assays (above). It suggests that ChiPFK 

dissociates along its "active" interface, and that Fru-6 P prevents dissociation by 

interacting with Arg 162 and Arg 243 across it (Teschner et al., 1990). PEP also 

protects ChiPFK to about the same extent it protects native EcPFK (64% versus 6 8 % for 

EcPFK). Thus, PEP binds as well to ChiPFK as it does to EcPFK. In contrast, MgGDP 

offers little protection. Only 15% o f activity remains after a 1-hour incubation, 

compared to 9% in the absence o f ligand (Fig. 3.6B). The simplest interpretation o f this 

result is that MgGDP binds poorly in the effector site o f ChiPFK. The structural basis 

for poor binding could be the presence o f three rather than four arginine residues in the 

effector site.

AMPPNP Inhibition Studies—Inhibition o f both activated-EcPFK and ChiPFK 

by AMPPNP with respect to MgATP was competitive (Kjs= 24 + 2 and 20 ±  2 (iM, 

respectively), as was AMPPNP inhibition o f BsPFK with respect to MgATP (Kjs o f 50 

± 20 pM; Byrnes et al, 1994). Thus, as expected, AMPPNP competes with MgATP for 

binding in the active site. Interestingly, AMPPNP inhibition o f both activated-EcPFK 

and ChiPFK with respect to Fru-6 P gave similar competitive-like patterns o f lines that 

intersected just to the right o f the 1/velocity axis in double-reciprocal plots. (KiS-values 

of 7 ±  7 and 9 ±  6  pM were obtained for activated-EcPFK and ChiPFK, respectively.)

In contrast, AMPPNP inhibition o f BsPFK with respect to Fru-6 P is noncompetitive 

(Kjs = 0.29 ±  0.09 mM and Kii = 0.40 ±  0.12 mM; Byrnes et al., 1994). Thus,

AMPPNP binding to activated-EcPFK and ChiPFK is different from its binding to 

BsPFK. The competitive-like inhibition with respect to Fru-6 P could be due to 

antagonism of Fru-6 P binding by AMPPNP in the active site (ATP shows a similar 

effect that is less pronounced). In addition, as shown in Figure 3.7, the Hill number for
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the Fru-6 P saturation curve obtained in the presence o f AMPPNP decreases with 

increasing AMPPNP concentration until it reaches 1.0 at 200 pM AMPPNP. Thus, 

AMPPNP abolishes the sigmoidicity o f the Fru-6 P saturation curve o f ChiPFK.

Effect o f Ligand Binding on Trp 311 Intrinsic Fluorescence—Two types of 

steady-state fluorescence experiments were performed. In the first type, the intrinsic 

fluorescence o f EcPFK was titrated by addition o f small volumes o f ligand to the 

enzyme solution. (These experiments could not be done on ChiPFK because o f its 

instability). The results are presented in Table 3.2. In the second type o f experiment, a 

saturating amount o f ligand was added to the enzyme solution, and the change in 

fluorescence intensity measured (Table 3.3). Titration o f EcPFK fluorescence with Fru- 

6 P, with AMPPNP, and with AMPPNP after incubation in the presence o f Fru-6 P 

(Table 3.2) gave results similar to those previously reported (Deville-Bonne & Garel, 

1992; Johnson & Reinhart, 1992). The results in Table 3.3 show that AMPPNP (or 

ATP) binding cause the same fluorescence increase (12%) in both ChiPFK and EcPFK, 

but the fluorescence decrease induced in ChiPFK upon Fru-6 P binding (8 %) was less 

than that induced in EcPFK (19%). ChiPFK can thus exist in two conformational states: 

a high fluorescence state and a low fluorescence state. Addition o f Fru-6 P to EcPFK 

incubated in the presence of AMPPNP at concentrations as low as 5 pM  resulted in no 

fluorescence change (Table 3.3; AMPPNP concentrations below 2 p.M did allow Fru-6 P 

(500 jiM) to bind, however). This dramatic blockage o f Fru-6 P binding by AMPPNP, 

which may indicate closure o f the EcPFK active site upon AMPPNP binding, was not 

seen in ChiPFK (Table 3.3). Finally, in order to investigate the effect o f interactions 

between Fru-6 P and AMPPNP on the fluorescence of ChiPFK, experiments were done 

in which a saturating amount of one ligand was added to the enzyme in the presence of 

increasing amounts o f the other. Fig. 3.8A shows that Fru-6 P (500 p M ) cannot bring 

ChiPFK completely to the low-fluorescence state when AMPPNP is present, even at 

low levels, and Fru-6 P is increasingly less effective in bringing ChiPFK to this
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TABLE 3.2
Dissociation Constants and Maximum Fluorescence Changes fo r  Fru-6P and AMPPNP

Binding to E. coli PFK

Ligand K d(pM )
w<

1

Fru-6 P 9.6 ±  1.2 - 2 0  ± 1 1 .0 (h)

AMPPNP 0 . 1  ± 0 . 0 1 +16.6 ± 0 .3 1 .0 (h)

AMPPNP/Fru-6 P 0.20 ± 0 .03 +35.6 ± 1 .0 1.9 ± 0 .1

Small increments o f the indicated ligand were added to the enzyme solution, and 
the changes in fluorescence measured. After correction, the fluorescence change was 
plotted against ligand concentration. The resulting curves were fit to either the 
Michaelis-Menten equation or the Hill equation. Kd, equilibrium dissociation constant; 
AFmax, maximum fluorescence change; np, Hill number, h, hyperbolic. AMPPNP/Fru- 
6 P indicates incremental addition o f AMPPNP to EcPFK in the presence o f Fru-6 P (100
pM).



TABLE 3.3
Changes in Intrinsic Fluorescence Induced by Ligand Binding to E. coli PFK and the Chimeric PFK

Ligand Added

Enzyme Fru-6 P
Fru-6 P after 
AMPPNPfl ATP AMPPNP

AMPPNP 
after Fru-6 P^ ADP PEP

(500 pM) (500 pM) (20 pM) (20 pM) (20 pM) (100 pM) (2 mM)

EcPFK -18.8 ±0.5 no change +11.6 ±0.5 +12.2± 0.3 +35.5 ±4.8 -13.9 ±0.1 +3.6 ±0.2

ChiPFK -8.4 ±0.6 -9.5 ± 0.8 +11.5 ±2.5 +13.4 ±1.0 +6.3 ±0.5 no change no change

The change in steady-state fluorescence was measured upon addition of the indicated ligand at the indicated concentration, as 
described under "Materials and Methods". Each value is the average o f two measurements. Based on the dissociation constants in 
Table 3.2, concentrations of 500 pM and 20 pM were assumed to be saturating for Fru-6 P and AMPPNP, respectively. flThe enzyme 
was incubated with AMPPNP (20 pM), then Fru-6 P (500 pM) was added. ^The enzyme was incubated with Fru-6 P (500 pM), then 
AMPPNP (20 pM) was added.
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conformational state as AMPPNP levels increase. Fig. 3.8B shows that AMPPNP (20 

jiM) can bring ChiPFK to the high-fluorescence state when Fru-6 P levels are low to 

moderate, but is less effective in doing so at high Fru-6 P levels.

Discussion

Here we report studies on a chimeric bacterial phosphofructokinase (ChiPFK), 

which has been successfully purified after high-level expression in PFK-deficient E. coli 

cells. ChiPFK exists as an active tetramer similar in size to tetramers o f the native 

enzymes from which it is derived. Its catalytic rate constant is about half that o f either 

of the two native enzymes. Its affinities for substrates, as measured by the KmATP- and 

S i/2 Fru'6 P-values, are similar to those of BsPFK and the activated form of EcPFK. 

Although hybrid EcPFK tetramers have been studied before (Lau & Fersht, 1989), this 

is the first time a chimeric PFK, containing parts o f two different PFKs grafted together, 

has been constructed and studied. Our results attest to the great structural and functional 

similarity between BsPFK and EcPFK, especially at their active sites. However, the 

results also emphasize differences in their mechanisms o f heterotropic regulation.

Though stable as a tetramer in the sucrose gradient sedimentation experiment, 

ChiPFK is somewhat unstable under the conditions o f the activity assay. The two 

native enzymes are stable under these conditions. The loss o f ChiPFK activity over 

time is paralleled by a quenching o f its Trp 311 fluorescence in titration experiments. 

The fact that similar quenching profiles were observed in the titration experiments 

irrespective o f the ligand added suggests that the effect is time-dependent rather than 

ligand-dependent. It most likely reflects dissociation o f the active tetramer when 

present in dilute solutons. This dissociation is to monomers rather than dimers since 

quenching o f Trp 311 fluorescence occurs when the EcPFK tetramer dissociates into 

monomers, but not dimers (Deville-Bonne e ta l., 1989; LeBras et al., 1989).

Phosphoenolpyruvate does not inhibit ChiPFK. PEP binds to the enzyme, but 

the binding causes no measurable change in Trp 311 intrinsic fluorescence. This
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suggests that conformational changes normally associated with allosteric inhibition are 

absent in ChiPFK. The observation that GDP inhibits ChiPFK noncompetitively with 

respect to MgATP indicates that GDP binds to ChiPFK. This binding may occur in 

both the active and effector sites. The inability of GDP to protect ChiPFK against 

thermal inactivation suggests that GDP does not bind the effector site. However, GDP 

binding in the active site o f BsPFK has been shown to destabilize BsPFK in thermal 

inactivation experiments (Zhu et al., manuscript in preparation). Thus, such binding in 

the active site o f ChiPFK could destabilize the enzyme and mask the stabilization 

offered by its binding in the effector site. The inability of GDP to induce a fluorescence 

decrease in ChiPFK could thus be due either to poor binding in the effector site or to an 

inability o f  the ChiPFK tetramer to transmit allosteric changes. A third possibility is 

that the ChiPFK tetramer is already locked in an activated state and cannot be further 

activated by GDP.

The active site o f EcPFK appears to close when AMPPNP binds to it, while the 

active site o f ChiPFK is locked in an "open" conformation. EcPFK bound tightly to the 

Cibacron Blue affinity column during purification, and AMPPNP strongly inhibited 

subsequent Fru-6 P binding to EcPFK in fluorescence studies. The latter result suggests 

that closure of the active site when AMPPNP binds in the absence o f Fru-6 P blocks 

subsequent binding of Fru-6 P. Unlike EcPFK, ChiPFK associated loosely with the 

column during purification, and Fru-6 P could bind to and cause a fluorescence decrease 

in ChiPFK after the enzyme had bound AMPPNP (20 pM). The active site o f ChiPFK 

is thus locked open. Our results also suggest that the ChiPFK active site resembles that 

o f the activated form of EcPFK. This is shown by similarities between ChiPFK and 

activated-EcPFK in their kinetic parameters (Table 3.1), their saturation by MgATP in 

the presence o f low Fru-6 P (Fig. 3.4B), and their AMPPNP versus Fru-6 P inhibition 

patterns. Thus, the active site o f ChiPFK is locked in an open structure similar to that of 

the activated form of EcPFK.
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The results in Table 3.3 indicate that ChiPFK can exist in two conformational 

states: a high-fluorescence state induced by the binding o f ATP or AMPPNP, and a 

low-fluorescence state induced by Fru-6 P binding. The smaller fluorescence decrease 

seen when Fru-6 P binds to ChiPFK compared to EcPFK ( 8 % versus 19%, respectively) 

suggests that the conformational change is less, and perhaps different, in ChiPFK. As 

revealed in Figs. 3.8A & B, the balance between high- and low-fluorescence 

conformational states depends on the relative amounts o f AMPPNP and Fru-6 P present. 

Furthermore, AMPPNP is more potent than Fru-6 P in its ability to reverse the 

fluorescence state (low versus high) o f the ChiPFK molecule. These binding results 

parallel the kinetic results showing that the relative amounts o f Fru-6 P and ATP present 

determine the reaction rate.

There are at least three possible explanations for the sigmoidal Fru-6 P saturation 

kinetics o f ChiPFK: (1) the sigmoidicity is due to apparent cooperativity arising from 

the kinetic mechanism. Both of the native enzymes from which ChiPFK is derived 

obey a steady-state random Bi Bi kinetic mechanism (Byrnes et al., 1994; Zheng & 

Kemp, 1992). This mechanism can allow two kinetically-distinct pathways, and 

sigmoidal saturation curves (Ferdinand, 1966). Although we have not rigorously 

determined the kinetic mechanism o f ChiPFK, our results suggest that ChiPFK also 

obeys a steady-state random mechanism. (2 ) a slow isomerization occurs in the active 

site when Fru-6 P binds in the presence o f AIT. If the isomerization is slower than the 

catalytic rate, cooperativity can result (Ainslie et al., 1972). (3) only two of the four 

active sites o f ChiPFK are allosterically-linked by a cooperative structural transition 

(Monod et al., 1965) that is triggered by interactions between ATP and Fru-6 P in the 

active site.

The fact that two conformational states exist for ChiPFK casts doubt on the 

notion that its cooperativity is entirely kinetic in origin. Presumably, the ChiPFK 

molecule goes through a conformational transition as it moves from one state to the
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other according to the balance o f substrate concentrations. Regarding this transition, the 

questions are: ( 1 ) is it a rapid and concerted one, involving more than one active site? or 

(2) is it slow relative to catalysis? Although one would expect homotropic linkage to be 

absent in ChiPFK since it is not heterotropically-regulated, this may not be the case. 

Indeed, a mutant EcPFK enzyme (Leu 178— >Trp) has been reported to exhibit a highly 

sigmoidal Fru-6 P saturation profile in the absence o f heterotropic regulation (Serre et 

al., 1990). A determination o f whether the conformational transition is fast or slow 

relative to catalysis will have to await stopped-flow fluorescence measurements.

The mechanism by which AMPPNP abolishes the cooperativity o f ChiPFK 

(Fig. 3.7) is not known. However, it could be related to an interaction between the 

imidophosphate group of AMPPNP and Arg 72, an active site residue important in the 

cooperative behavior o f EcPFK (Berger & Evans, 1990). Arg 72 is involved in 

neutralizing the negative charge on the transferred y-phosphate o f ATP in the transition 

state o f EcPFK (Zheng & Kemp, 1994). The imidophosphate group o f AMPPNP is less 

acidic than the y-phosphate o f ATP (Yount et al., 1971). As a result, at pH 8.2 the Arg 

72-imidophosphate interaction may be weakened relative to the Arg 72-phosphate 

interaction. A strengthening o f the interaction with Arg 72 has been proposed to occur 

when the ATP analog adenosine 5'-[y-thio] triphosphate (ATP-y-S) is used instead of 

ATP, in this case by perturbation o f an interaction with Thr 125 (Auzat et al., 1994). 

Whether the conformational transition associated with ChiPFK cooperativity is 

concerted or involves slow isomerization, the altered interaction with Arg 72 could be 

important in explaining the effect o f AMPPNP on ChiPFK cooperative behavior.

In conclusion, we have found that the active site of the the chimeric enzyme is 

locked in an "open" conformation similar to that o f the activated form of E. coli PFK. 

Presumably, a conformational change responsible for closure o f the active site has been 

disrupted in the chimeric enzyme, whose ATP-binding domain is from BsPFK. Yet, 

despite the "openness" of its active site, ChiPFK exhibits sigmoidal kinetics with respect
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to Fru-6 P. We propose that the lower cooperativity of the chimeric PFK is related to its 

inability to undergo the open-to-closed transition involving its ATP-binding domain. 

Furthermore, the fact that some cooperativity remains in ChiPFK suggests that 

mechanisms in addition to one involving closure and opening o f the active site are 

important for E. coli PFK cooperative behavior. Indeed, the complete mechanism for 

allosteric regulation o f E. coli PFK is probably complex, involving binding 

cooperativity (Blangy et al., 1968), cooerativity due to slow transitions (Deville-Bonne 

et al., 1991a), and kinetic cooperativity arising from the kinetic mechanism (Zheng & 

Kemp, 1992).



Chapter 4

The Role of Residue 161 in the Allosteric Transitions of Two Bacterial
Phosphofructokinases
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Phosphofructokinase (PFK, EC 2.7.1.11) catalyzes the first committed step o f 

glycolysis, the transfer o f the y-phosphate o f ATP to fructose 6 -phosphate (Fru-6 P) to 

produce ADP and fructose 1,6-bisphosphate. A divalent Mg++ ion, as well as a 

monovalent NH4 + or K+ ion, is required for catalysis. In bacteria, PFK is allosterically 

inhibited by phosphoenolpyruvate (PEP) and activated by ADP (or GDP). Bacterial 

PFK is a tetramer o f identical subunits each 36,000 daltons in size. There are four 

active sites, and four effector sites into which both PEP and ADP (or GDP) bind.

The PFKs from the two bacteria Escherichia coli and Bacillus 

stearothermophilus are remarkably similar in structure (Evans e ta l., 1981; Shirakihara 

& Evans, 1988): their subunits have all the same secondary structural elements, their 

subunit a-carbon traces are nearly superimposable, and they share 55% amino acid 

identity. Nevertheless, PEP and GDP regulate the two enzymes somewhat differently. 

For example, the PEP inhibition profile for EcPFK is highly sigmoidal, while the profile 

for BsPFK is only slightly sigmoidal. In addition, whereas GDP strongly activates 

EcPFK in the presence of saturating MgATP and a Fru-6 P concentration equal to the 

S i/2 -value, it weakly activates BsPFK under these conditions (Byrnes e ta l., manuscript 

submitted). This difference is related to the fact that MgATP "allosterically" inhibits 

EcPFK (Evans, 1992), but not BsPFK, at low Fru-6 P concentration (Byrnes et al.,

1994). However, GDP strongly activates BsPFK when the enzyme is inhibited by PEP 

(Valdez et al., 1989). Finally, GDP can super-activate EcPFK in the presence of 

saturating Fru-6 P levels, raising the kcat 10-20% higher than its value without GDP 

(Deville-Bonne et al., 1991a), but it cannot super-activate BsPFK.

The heterotropic regulation o f EcPFK by PEP and GDP has been explained in 

terms o f the concerted two-state model o f Monod, Wyman, and Changeux (MWC 

model, Monod et al., 1965), in which the protein molecule exists in equilibrium 

between two states: a low-activity tense (T) state that binds PEP, and a high-activity 

relaxed (R) state that binds GDP (Blangy et al., 1968). We will assume that BsPFK
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also obeys the MWC model, although recent evidence suggests it does not (Zhu et al., 

manuscript submitted). Schirmer & Evans (1990) have uncovered the structural basis 

for the allosteric transition o f BsPFK by comparing crystal structures o f the enzyme 

obtained in the presence o f inhibiting versus activating conditions. The BsPFK tetramer 

can be viewed as a dimer o f rigid dimers. During the transition from the T- to the In

state, the rigid dimers rotate 7° relative to each other. This rotation is coupled with a 

coordinated movement o f two loops, the 8 H and 6 F loops, located between the effector 

and active sites. At the effector site, the major movement involves a change in the 

position o f the 8 H loop, which lines one edge o f the effector cleft. In the absence of 

effector, the cleft is open. Binding o f the smaller molecule PEP closes the cleft, shifting 

the enzyme to its T-state. On the other hand, binding of the larger ADP (or GDP) 

molecule pushes the 8 H loop away from the effector site, causing it to contact the 6 F 

loop which transmits a structural change to the active site. This structural change 

involves reorganization o f the 6 F loop, which is composed or residues Thr 156 to Arg 

162 (Fig. 4.1). Arg 162, which points away from the active site in the T-state, swings 

back into the active site during the T-to-R transition, and binds the phosphate group of 

Fru-6 P in the R-state. At the same time, Glu 161 which projects across the dimer-dimer 

interface into the active site in the T-state, has rotated away in the R-state. The 6 F loop 

and residues Arg 162 and Glu 161 within it are thus proposed to be important in the 

allosteric transition of BsPFK. Most of the residues within the 6 F loop, including Arg 

162, are conserved between BsPFK and EcPFK (French & Chang, 1987; Hellinga & 

Evans, 1985), but Glu 161 is not. In EcPFK, residue 161 is a glutamine (Fig. 4.2).

How important is Glu 161 for PEP inhibition and GDP activation o f BsPFK? 

Does Gin 161 of EcPFK play a role in its regulation by either PEP or GDP? Can any 

differences between the two enzymes be traced to the difference at position 161, i.e.,

Glu versus Gin? To answer these questions, we have constructed a set o f mutants of 

both BsPFK and EcPFK with changes at position 161. Glu 161 of BsPFK has been
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changed to glutamine, and to alanine which lacks hydrogen bonding ability and is 

smaller. Gin 161 o f EcPFK has been changed to glutamate, to alanine, and to arginine 

in order to have a positively-charged residue at position 161. The abilities o f PEP and 

GDP to inhibit and activate, respectively, the five mutant and the two wild-type 

enzymes were studied using steady-state kinetics. The results o f these studies are 

presented.

M aterials and Methods

Enzymes, Chemicals, and Oligonucleotides—Restriction endonucleases, T4 

DNA Ligase, DNA Polymerase (Klenow fragment), T4 Polynucleotide Kinase, and 

other enzymes used for cloning or in vitro mutagenesis were from New England Biolabs 

(Beverly, MA), Gibco-BRL (Grand Island, NY), or United States Biochemical 

(Cleveland, OH). X-gal and IPTG were from Gibco-BRL. The auxiliary enzymes 

aldolase, a-glycerophosphate dehydrogenase, and triosephosphate isomerase were from 

Sigma Chemical Co. (St. Louis, MO). Substrates ATP and Fru-6 P, and effectors PEP 

and GDP, as well as the Cibacron Blue 3GA agarose (type 3000-CL-L) were also from 

Sigma. The mutagenic oligonucleotides and the sequencing primers were synthesized 

on an Applied Biosystems 380A DNA Synthesizer. All oligonucleotides were purified 

in a two-step procedure involving (1) reverse-phase chromatography on an Oligo- 

Pak™  (Millipore, Milford, MA) purification column and (2) preparative 20% 

polyacrylamide gel electrophoresis. The purity and length o f each oligonucleotide was 

verified by first 5' end-labeling the oligo using [3 2 P] y-ATP and T4 polynucleotide 

kinase, then subjecting it to electrophoresis on an analytical 2 0 % polyacrylamide gel 

and autoradiography.

Site-directed Mutagenesis—The EcPFK gene was excised from a recombinant 

ecpfk/pUCl&  plasmid (Hellinga & Evans, 1985), and subcloned into M 13m pl9 via its 

Nar I and Kpn I restriction sites. Similarly, the BsPFK gene contained within a 2.5 

kilobase EcoR 1/ Cla I fragment that had been cloned into pBR322 (French & Chang,
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1987) was subcloned into M 13mpl8 via its EcoR I and Acc I sites. The single-stranded 

DNA produced from either M13 vector contained the coding strand of the pfk  gene.

Competent D H 5aF  E. coli cells (Gibco-BRL) were transformed with the 

recombinant M l3 RF DNA, then plated by the top-agar method onto YT (yeast 

extract/tryptone) agar plates containing X-gal and IPTG, which allow blue/white color 

selection. After overnight incubation at 37°C, a clear (turbid) plaque harboring the 

ecpfk or bspfk insert was picked and used to infect DH5ocF cells. The infected cells 

were grown in liquid YT medium for 6  hours at 37°C. After centrifugation, the 

supernatant o f the cell culture, which contained M13 phage particles, was used to infect 

fresh E. coli BW313 cells. (BW313 cells are du r ung~). The infected BW313 cells 

were grown overnight at 37°C in YT containing uridine at 25 (ig/ml. Uracil-containing 

single-stranded DNA was then prepared from the supernatant o f the infected cell culture 

(Kunkel et al„ 1987), and used as a template for in vitro mutagenesis as described by 

Zoller & Smith (1983). The mutagenic oligonucleotides were designed to change codon 

161 in bspfk from that for a glutamate (GAG) to that for either a glutamine (CAG) or an 

alanine (GCG). In ecpfk, the mutagenic oligos were designed to change codon 161 from 

that for a glutamine (CAG) to that for a glutamate (GAA), an arginine (CGT), and an 

alanine (GCT). Table 4.1 lists the oligos and their sequences. After mutagenesis, 

competent DH5aF' cells were transformed with the reaction mixture containing the 

mutated DNA, then plated onto YT agar plates. Transformants were screened for the 

mutation by ( 1 ) plaque hybridization using the mutagenic oligonucleotide labeled with 

32P as a probe (Seong & RajBhandary, 1987), and (2) partial sequencing o f the single

stranded DNA from positives identified in the plaque hybridization. A single positive 

transformant was then selected, single stranded DNA was prepared from it, and the 

entire coding region of the mutated gene was sequenced by the dideoxy method 

(Sanger, 1977) using a Sequenase™  kit (United States Biochemical) and a battery of
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TABLE 4.1
Mutagenic Oligonucleotides

Oligo
Designation

Position o f 3' End 
(codon number)

Sequence
cs'->y)

BsE161Q 157
*

CGTACGTCCGCTGGTGCGACGTCGC

BsE161A 157
4c

cgtacgtccgcgcgtgcgacgtcgc

Ec Q161E 156
Jic *

CGGAAATACGTTCGTGAGAAGAAGAGG

Ec Q161R 156
* *

CGG AAAT ACG ACGGTG AG AAG AAG AGG 

* * *
Ec Q161A 156 CGGAAATACGACCGTGAGAAGAAGAGG

Bs, B. stearothermophilus', Ec, E. coli. The mutagenic oligonucleotides are 
complementary to the bspfk or ecpfk coding strands. Oligos Bs E161Q and E161A are 
designed to change the codon for glutamate 161 o f bspfk (GAA) to those for a 
glutamine (CAG) and an alanine (GCG), while oligos Ec Q161E, Q161R, and Q161A 
are designed to change the codon for glutamine 161 o f ecpfk (CAG) to those for a 
glutamate (GAA), an arginine (CGT), and an alanine (GCT). The underlined 
nucleotides are those complementary to codon 161. The nucleotides with asterisks 
above them are the ones that are different in the mutated gene.
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intragenic primers to verify that no unintentional mutations had been introduced. This 

was done for all five mutated genes.

Expression and Purification ofPFKs—The mutated BsPFK genes were excised 

from M 13m pl8 and inserted into the EcoR V Hind III sites of the plasmid pUC18. 

Similarly, the mutated EcPFK genes were excised from M 13mpl9 and inserted into the 

Hind HI site o f pUC18. The recombinant pUC18 plasmids were then transformed into 

competent cells o f a PFK-deficient E. coli strain (DF 1020) for expression. The 

transformed DF 1020 cells were grown to stationary phase in Luria Broth containing 

ampicillin (50 |ig/ml) and the cells were pelleted, resuspended in 50 mM Tris-Cl, pH 

7.4, 1 mM DTT, 1 mM EDTA, and 1 mM phenylmethylsulfonyl fluoride (Buffer A), 

and sonicated. The procedures used to purify BsPFK and EcPFK were somewhat 

different. BsPFK and its mutants were purified from the crude extract in a two-step 

procedure that involved heat-treatment at 70°C followed by affinity chromatography on 

a Cibacron Blue 3GA agarose column (Valdez et al., 1989). The wild-type and two 

mutant BsPFK enzymes were eluted from the column with a 0.25 to 1.5 M NaCl 

gradient; all three eluted at approximately 1.1 M NaCl. Like wild-type BsPFK, the 

EQ161 and EA161 mutant enzymes were both stable when incubated at 70°C during the 

heat step. Heat-treatment was not used in purifying the wild-type and mutant EcPFK 

enzymes since they are not thermostable. Rather, the crude extract obtained after 

sonication was loaded directly onto a Cibacron Blue 3GA agarose column and purified 

essentially as described (Hellinga & Evans, 1987). The column was washed with 1 M 

NaCl, then with Buffer A, and the native or modified EcPFK was eluted with 2 mM 

ATP/ 10 mM MgCl2  in Buffer A. For all enzymes, column fractions having the highest 

PFK activity were pooled. Each enzyme preparation was shown to be pure by the 

presence o f a single band on a 12% SDS-polyacrylamide gel stained with Coomassie 

Brilliant Blue. Purified wild-type or mutant BsPFK enzymes were concentrated by 

dialysis against 50% glycerol in Buffer A at 4°C. Purified wild-type or mutant EcPFK
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enzymes, on the other hand, were concentrated by either (1) dialysis at 4°C against 50% 

glycerol in Buffer A containing 2 mM ATP/10 mM MgCl2 , or (2) ultrafiltration in an 

Amicon cell (Beverly, MA). The enzymes concentrated in 50% glycerol were stored at 

-20°C, and the enzymes concentrated by ultrafiltration were precipitated with 55% 

ammonium sulfate, then stored at 4°C.

Activity Assays—PFK activity was measured at 30°C using an assay system 

(Kotlarz & Buc, 1982) that coupled the production o f fructose 1,6-bisphosphate to the 

oxidation o f NADH. The assay solution contained 100 mM Tris-Cl, pH 8 .2 ,10  mM 

MgCl2 , 5 mM NH4 CI, 0.20 mM NADH, and the coupling enzymes aldolase (20 pg/ml), 

triosephosphate isomerase ( 1 0  jig/ml) and a-glycerophosphate dehydrogenase ( 1 0  

pg/ml). An ATP-regenerating system that utilizes creatine phosphate (1 mM) and 

creatine phosphokinase (10 pg/ml) was used in all EcPFK-catalyzed reactions to 

prevent activation by ADP produced in the reaction. When studying GDP-activation, 

the regenerating system was not used. It was found to be unnecessary for BsPFK and 

its mutants since they are not activated to any significant degree by GDP except in the 

presence o f PEP. For each assay, the change in absorbance at 340 nm was measured for 

at least 1-minute using an Hitachi UV-2000 spectrophotometer. Reactions were 

initiated by addition o f PFK. One initial velocity unit is defined as the number of 

pmoles o f fructose 1,6-bisphosphate formed per minute; there are 12.4 initial velocity 

units per AA3 4 o/min. unit. In order to obtain kinetic parameters, initial velocity data 

were fit to either the Michaelis-Menten equation for hyperbolic kinetics, or the Hill 

equation for sigmoidal kinetics. All curve-fitting was performed by nonlinear 

regression analysis using the program INPLOT (GraplxPad, Inc., San Diego, CA). 

Results

Steady-state Kinetic Parameters—Substrate saturation o f the wild-type and 

mutant enzymes was studied using steady-state kinetics. Fig. 4.3 shows that the two 

wild-type enzymes have different Fru-6 P saturation curves: whereas the curve for
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EcPFK is highly sigmoidal (Hill number 5.6) in the presence o f saturating MgATP 

concentration, the curve for BsPFK is essentially hyperbolic (Valdez e t a i ,  1989), 

though not perfectly so (Bymes et al., 1994). Table 4.2 presents the kinetic parameters 

for the five mutant PFKs as well as the two wild-type enzymes. The kcat, KmATP, and 

KmFru"6P values for the two BsPFK mutants (EQ161 and EQ161) are similar to the 

values for wild-type BsPFK. The three EcPFK mutants (QE161, QR161, and QA161) 

have kinetic parameters similar to those for wild-type EcPFK, but show some variation 

in the sensitivity and cooperativity o f their responses to Fru-6 P (Table 4.2). These 

differences between the mutants and the wild-type enzyme are not great, however. 

Thus, alteration o f residue 161 does not significantly affect the response o f either 

BsPFK or EcPFK to substrates Fru-6 P and MgATP, indicating that this residue is not 

involved in substrate binding and catalysis.

PEP Inhibition—Fig. 4.4 shows that both EcPFK and BsPFK are subject to 

inhibition by PEP. However, the sensitivity and cooperativity o f their responses differ. 

EcPFK is both less sensitive (Ii/2 PEP is 1.17 mM) and more cooperative (n is 4.3) in its 

response to increasing PEP concentration than is BsPFK (Ii/2 PEP is 0.28 and n is 1.6). 

Table 4.3, which presents the values for Ii/2 PEP and n for the five mutant enzymes as 

well as the wild-type ones, shows that mutation o f Glu 161 in BsPFK to either Gin or 

Ala decreases the sensitivity and increases the cooperativity o f the response to PEP. 

These changes, though significant, are not drastic. They suggest that residue 161 is 

involved in PEP inhibition o f BsPFK, but neither its hydrogen-bonding ability nor its 

size is critical. Mutation of Gin 161 in EcPFK to either Glu or Arg decreases the 

sensitivity and also decreases the cooperativity o f the response. It is interesting that 

mutants EQ161 o f BsPFK and QE161 o f EcPFK, in which residue 161 o f one enzyme 

has been replaced with that o f the other, have similar responses to PEP: both are less 

sensitive to PEP than their respective wild-type enzymes, and both display similar 

cooperative responses to PEP that are in-between those o f the two wild-type enzymes,



TABLE 4.2
Steady-state Kinetic Parameters fo r  Wild-type and Mutant PFKs

Enzyme kcat (S’ 1 ) 0 KmATP (jiM) KmFru'6P OiM)* S i/2 Fru'6 P(inM)c n

WT BsPFK 206 70 ±  3 36 ± 2 N.A. h

BsEQ161 208 1 1 2 ± 8 35 ± 3 N. A. h

Bs EA161 168 123 ± 6 41 ± 3 N. A. h

WT EcPFK 127 103 ± 2 N. A. 0.48 ±0.01 5.8 ± 0 .2

Ec QE161 126 77 ± 4 N. A. 1.87 ± 0 .0 4 5.6 ±  0.2

Ec QR161 133 47 ± 4 N. A. 0.91 ± 0 .03 5.0 ± 0.4

Ec QA161 134 55 ± 3 N. A. 0.92 ±  0.02 4.4 ± 0 .3

The kinetic parameters were obtained by fitting substrate saturation data to either the Michaelis-Menten equation or the Hill 
equation, kcat, the catalytic rate constant; KmATP, the ATP concentration at half-maximal velocity; KmFru"6p and S i/2 Fru‘6p, the Fru- 
6 P concentration at half-maximal velocity for Fm-6 P saturation data fit to the Michaelis-Menten and Hill equations, respectively; n, 
the Hill coefficient; N.A., not applicable; h, hyperbolic. KmATP was obtained in the presence o f saturating Fru-6 P concentration, and 
KmFru-6 P was obtained in the presence of saturating MgATP concentration, ‘H'he kcat-values for BsPFK and its mutants appear to be 
higher than the values for EcPFK and its mutants, but this is a function o f their different Fru-6 P saturation profiles, i.e., hyperbolic 
versus sigmoidal. In the presence of GDP, their k^t values are similar. ^KmFru'6P is appropriate only for BsPFK and its mutants, 
which follow Michaelis-Menten Fru-6 P saturation kinetics. cSi/2 Fru'6p is appropriate only for EcPFK and its mutants.
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TABLE 4.3
PEP Inhibition o f Wild-type and Mutant PFKs

Enzyme [Fru-6 P] (mM)fl I l/2 PEP (mM) n

WT BsPFK 0.3 0.28 ± 0 . 0 1 1 . 6  ± 0 . 1

BsEQ161 0.3 3.9 ± 0 .1 3.0 ± 0 .2

Bs EA161 0.3 0.70 ± 0 .01 2 . 6  ± 0 . 1

WT EcPFK 1.5 1.17 ±0 .01 4.3 ±  0.2

Ec QE161 5.0 6.3 ± 0 .6 2.4 ±  0.5

Ec QR161 2.5 9.8 ± 0 .2 3.7 ± 0 .2

Ec QA161 5.0 NO INHIBITION

Bs, B. stearothermophilus; Ec, E. coli;WT, wild-type; Ii/2 PEP, the PEP 
concentration at half-maximal (50%) inhibition; n, the Hill coefficient. The values for 
Il/2 PEP and n were obtained by fitting data from Activity versus PEP Concentration 
plots to the Hill equation. aThe Fru-6 P concentration used was a saturating amount 
chosen by inspection o f individual Activity versus Fru-6 P Concentration plots. The 
MgATP concentration was 1 mM for all assays.
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i.e., the Hill coefficients are between 1.6 and 4.3. Most importantly, Table 4.3 shows 

that mutation o f Gin 161 to Ala completely abolishes PEP inhibition o f EcPFK. This 

indicates that the hydrogen-bonding ability o f residue 161 is required for the inhibition. 

The fact that the hydrogen-binding ability o f residue 161 is crucial for PEP inhibition o f  

EcPFK but not BsPFK suggests that the mechanisms by which PEP inhibits the two 

enzymes are somewhat different.

GDP Activation o f  EcPFK and Its Mutants—GDP activation o f EcPFK and its 

mutants was studied in two different ways: (1) by examining the ability o f GDP to 

"super-activate" the enzymes, i.e., by comparing Fru-6 P saturation curves in the absence 

and presence o f 2 mM GDP, and (2) by looking at GDP activation o f the ATP-inhibited 

enzymes, i.e., by plotting activity versus GDP concentration for the enzymes in the 

presence of saturating MgATP, and a Fru-6 P concentration equal to S i/2 Fru‘6P. Fig. 4.5 

and its inset show GDP activation o f EcPFK analyzed in these two ways. From plots 

such as those in Fig. 4.5, one can obtain the extent to which GDP increases the kcat 

beyond its value in the absence of GDP, i.e., the extent to which it super-activates. For 

wild-type EcPFK, the super-activation is 11% . On the other hand, from activation 

profiles such as the one in the inset o f Fig. 4.5,which is hyperbolic, one can obtain the 

GDP concentration at half-maximal activation, KactGDP. For wild-type EcPFK, the 

value is 13 ±  4 |iM. Table 4.4 presents the results of GDP activation studies of the three 

mutant enzymes QE161, QR161, and QA161, as well as wild-type EcPFK, analyzed in 

the two ways described above. All three mutant enzymes were super-activated by GDP 

to an extent similar to wild-type EcPFK, but their sensitivities to GDP activation, as 

measured by KaclGDP, were lower.

Activation o f  BsPFK and Its Mutants by GDP and Fru-6P—Unlike EcPFK, 

BsPFK is not subject to GDP activation to any significant extent unless the enzyme is 

already inhibited by PEP. Furthermore, GDP does not super-activate BsPFK.

Therefore, GDP activation o f BsPFK was analyzed differently. BsPFK and its mutants
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for EcPFK inhibited by MgATP. The Fru-6 P concentration was equal to S i/2 Fru‘6p (0.5 mM), and the MgATP concentration 
was saturating at 1.0 mM.
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TABLE 4.4
Activation o f  EcPFK and Its Mutants by GDP

Enzyme kcatsuper (s -l) % Activation KactGDP OiM)

WT EcPFK 140 (127) 1 1 1 3 ± 4

Ec QE161 89 (70) 28 51 ± 1 2

Ec QR161 147 (133) 1 0 84 ± 2 3

Ec QA161 157 (134) 17 95 ± 1 2

Ec, E. coli; WT, wild-type; kcalsuPer, the catalytic rate constant for the enzyme 
super-activated by 2 mM GDP (the number in parentheses is the kcat value for the 
enzyme in the absence o f GDP.); KactGDP, the concentration o f GDP at half-maximal 
activation. The values for kcatsuPer and the % Activation were obtained from plots such 
as the one in Fig. 4.5. KactGDP-values were obtained from plots such as the one in Fig. 
4.5, inset. The MgATP concentration was 1.0 mM in all assays. In determining 
KactGDP, the Fru-6 P concentration was equal to the S i/2 Fru'6 P-value. See the text for 
further details.
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were first inhibited by PEP, then the ability o f GDP to activate the PEP-inhibited 

enzyme was studied. (The PEP concentration was equal to its I i/2 PEP-value). Fig. 4.6A 

shows the activation profile obtained for wild-type BsPFK; it is hyperbolic and yields a 

KactGDP of 1 2 2  ±  1 1  jiM. The activation constants obtained from similar curves for the 

two mutant enzymes EQ161 and EA161 are presented in Table 4.5. Both are four-fold 

lower than the value for wild-type BsPFK, indicating that EQ161 and EA161 are more 

sensitive to GDP activation.

The ability o f Fru-6 P to activate the PEP-inhibited wild-type and mutant BsPFK 

enzymes was also investigated. The Fru-6 P saturation profile for wild-type BsPFK in 

the presence o f PEP at a concentration equal to its Ii/2 PEP value (Fig. 4.6B) is somewhat 

cooperative (n is 1.6), and gives an S i/2 Fru-6P value o f 0.34 ±  0.01 fiM. As shown in 

Table 4.5, the EQ161 and EQ161 mutants are as sensitive as the wild-type enzyme is to 

Fru-6 P, but the cooperativity o f their responses are higher. It is interesting that, for each 

PEP-inhibited enzyme (wild-type, EQ161, and EA161), the cooperativity o f its response 

to Fru-6 P matches the cooperativity o f its response to PEP (Table 4.3). This symmetry 

between PEP inhibition and Fru-6 P activation for BsPFK and its mutants strongly 

suggests that the two processes occur through a common structural pathway.

Discussion

Using steady-state kinetics, we have studied two site-specific mutants o f B. 

stearothermophilus PFK (EQ161 and EA161) and three mutants o f E. coli PFK (QE161, 

QR161, and QA161) in order to better understand the role o f residue 161 in the 

allosteric regulation o f the wild-type enzymes. In the T-state structure o f BsPFK, Glu 

161 is proposed to form a salt bridge with Arg 243, and to interact with Arg 252 across 

the dimer-dimer interface through a water molecule (Schirmer & Evans, 1990). The 

results of the PEP inhibition and GDP activation studies o f BsPFK presented here, 

however, show that neither the negative charge o f residue 161 nor its hydrogen-bonding 

ability is critical for allosteric inhibition and allosteric activation o f the enzyme. In view
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FIGURE 4.6. Activation o f PEP-inhibited B. stearothermophilus PFK. The enzyme 
was inhibited by PEP at a concentration equal to its Ii/2 PEP (0.28 mM). (A) Plot o f % 
Activation versus GDP concentration, showing the ability o f GDP to activate the PEP- 
inhibited enzyme to 100%. The Fru-6 P concentration was 0.3 mM. (B) Effect of 
increasing Fru-6 P concentration on the activity o f the PEP-inhibited enzyme. The 
MgATP concentration was 1.0 mM in both (A) and (B).
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TABLE 4.5
Activation o f BsPFK and Its Mutants by GDP and Fru-6P

Enzyme KactGDP(liM) S i/2Fru-6P (mM) n

WT BsPFK 1 2 2  ± 1 1 0.34 ±  0.01 1.58 ± 0 .05

BsEQ161 23 ±  1 0.28 ± 0 . 0 1 3.0 ±0 .1

BsEA161 29 ± 2 0.28 ± 0 . 0 1 2 . 8  ± 0 . 2

The kinetic parameters in this table describe the activation o f PEP-inhibited 
BsPFK and its mutants by GDP and Fru-6 P. Bs, B. stearotkermophilus; WT, wild-type; 
KactGDP> the GDP concentration at half-maximal activation obtained from plots such as 
the one in Fig. 4.6A; S i/2 Fru"6P, the Fru-6 P concentration at half-maximal velocity 
obtained from plots such as the one in Fig. 4.6B; n, the Hill coefficient for the Fru-6 P 
saturation curve. The PEP concentration was equal to its Ii/2 PEP-value. The MgATP 
concentration was 1.0 mM in all assays. In determining Kact001*, the Fru-6 P 
concentration was 0.3 mM.
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of these results, we propose that other interactions such as the one between Arg 72 and 

Glu 241 (Schirmer & Evans, 1990) are important in stabilizing the T-state o f BsPFK, 

and interactions among Arg 162, Arg 243, and Fru-6 P are important in stabilizing the In

state. In addition, it is significant that the EQ161 and EA161 mutants o f BsPFK were 

both less sensitive to PEP inhibition and more sensitive to GDP activation. These 

results indicate that in BsPFK the processes o f inhibition and activation are opposed to 

each other, and proceed through a common structural pathway, i.e., one that involves 

Glu 161. Our results are thus consistent with the model o f Schirmer & Evans (1990).

The kinetic parameters obtained for the mutant enzymes (Table 4.2) are similar 

to those for their respective wild-type enzymes. Thus, residue 161 is not directly 

involved in the binding o f substrates, or in catalysis. The residue is also not important 

for homotropic regulation o f EcPFK, i.e., it plays no important role in the sigmoidal 

response of the enzyme to Fru-6 P (at saturating MgATP levels). The mechanism by 

which ATP inhibits EcPFK, causing its Fru-6 P saturation kinetics to be sigmoidal, has 

been investigated (Zheng & Kemp, 1992), but has not been conclusively determined.

The mechanism is proposed to involve substrate antagonism between MgATP and Fru- 

6 P in the active site (Zheng & Kemp, 1992; Deville-Bonne, 1991b; Johnson & Reinhart, 

1992). There is evidence in the literature that the structural pathways by which ATP 

and PEP inhibit EcPFK are different. Several modified EcPFK enzymes have been 

reported to be insensitive to PEP inhibition but nevertheless have sigmoidal Fru-6 P 

saturation kinetics (Le Bras et al„ 1982; Serre et al, 1990; Byrnes et ah, manuscript 

submitted). Our results support the proposal that the mechanisms of ATP inhibition and 

allosteric PEP inhibition are distinct. Specifically, the cooperativity o f the EcPFK 

mutant QA161, which is insensitive to PEP inhibition, was not significantly different 

from the cooperativity o f wild-type EcPFK (Hill numbers 4.4 versus 5.6). This 

indicates that "allosteric" ATP inhibition is not affected by the mutation; therefore, its 

mechanism is distinct from PEP inhibition. The two processes, inhibition by ATP and
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by PEP, most likely occur via different structural pathways altogether. (This is not to 

say that there is no overlap between them. Indeed, both inhibition processes affect 

catalysis at the active site. Thus, certain residues at the active site, e.g., Arg 72, Arg 

162, and Arg 243, may participate in both).

The results above showing that Gin 161 o f EcPFK is not important for ATP 

inhibition o f the enzyme are in contrast to those obtained for the PFK from rabbit 

muscle (Li et al„ 1993). Based on the fact that rabbit muscle PFK is about twice the 

size o f bacterial PFK and has clear N- and C-half internal homology, Poorman et al. 

(1984) have proposed that the rabbit muscle PFK gene arose from its procaryotic 

progenitor by gene duplication and divergence. Mutation o f Gin 200 o f rabbit muscle 

PFK, which corresponds to residue 161 o f bacterial PFK, showed that Q200 plays an 

important role in Fru-6 P binding and homotropic regulation by ATP, but is less 

important for heterotropic regulation by the effectors fructose 2 ,6 -bisphosphate and 

citrate. The effects o f the mutation were pH-dependent. Thus, Q200 in rabbit muscle 

PFK has evolved to play an important role in pH-dependent regulation o f the enzyme by 

ATP. In E. coli PFK, on the other hand, the corresponding residue Q161 is important 

for heterotropic regulation by PEP, but not homotropic regulation by ATP. Regulation 

by ATP of the larger eucaryotic PFK therefore proceeds via a mechanism that is 

different from, and undoubtedly more complex than, the mechanism by which ATP 

regulates the simpler procaryotic enzyme.

Our results also suggest that GDP activation o f the ATP-inhibited EcPFK 

enzyme proceeds through a structural pathway different from the one followed when 

GDP activates the PEP-inhibited enzyme. Like BsPFK, activation o f EcPFK from its 

PEP-inhibited state most likely involves residue 161, and follows s mechanism similar 

to the one proposed by Schirmer and Evans (1990). However, the observation that the 

EcPFK mutant QA161 is activated by GDP despite its insensitivity to PEP inhibition 

indicates that activation o f EcPFK from its ATP-inhibited state does not involve residue
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161, and proceeds through an entirely different pathway. The structural elements 

involved in this second pathway of activation are unknown. It is interesting that BsPFK 

does show a small degree o f activation by GDP (20%) in the absence o f PEP when Fru- 

6 P is equal to S i/2 Fru‘6P (Byrnes et al., manuscript submitted). This subtle activation of 

the more "rigid" BsPFK enzyme may be a scaled-down version o f the activation 

observed in the "floppier" EcPFK molecule inhibited by ATP.

Four o f the seven residues along the 6 F loop o f EcPFK, which is comprised o f  

residues Thr 156 to Arg 162, have been previously mutated: Thr 156 has been changed 

to Gly/Ser, Ser 159 to Asn, His 160 to Asn (Kundrot & Evans, 1991), and Arg 162 to 

Ser (Berger & Evans, 1990). The mutation o f Q161 reported in this work now brings 

the number o f residues mutated to five. Each mutation has had a somewhat different 

effect on the enzyme. The T(GS)156 and SN159 mutants exhibit severely reduced 

catalytic rate constants and affinities for Fru-6 P, and linear kinetics (up to 100 mM) 

with respect to Fru-6 P. They are insensitive to GDP activation, have dissociation 

constants for PEP (KT(PEP)-values) similar to wild-type, and exhibit hyperbolic 

responses to PEP. T(GS)156 and SN159 are proposed to be locked in the T-state 

(Kundort & Evans, 1991). HN160 has a 10-fold lower affinity for Fru-6 P but retains 

full cooperativity. It has dissociation constants for GDP and PEP (Kr(GDP) and 

Kt(PEP), respectively) similar to those o f wild-type EcPFK, and gives a hyperbolic 

response to PEP. The RS162 mutant has a dramatically-reduced catalytic rate constant 

and affinity for Fru-6 P, has a two-fold lower cooperativity, and is inhibited by GDP 

even though GDP abolishes cooperativity. On the other hand, our results show that 

QA161 has a kcat and response to Fru-6 P similar to wild-type, is about 7-fold less 

sensitive to GDP activation, and is completely insensitive to PEP inhibition. It is 

difficult to correlate our results involving QA161 with those o f the other 6 F loop 

mutants, partly because of the different ways PEP inhibition and GDP activation were 

analyzed. Certainly, the major effect o f the Q161— >A mutation is to abolish PEP
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inhibition. The structural basis for this could be the loss o f one or more hydrogen bonds 

in the vicinity of the active site and along the dimer-dimer interface in the T-state 

structure of EcPFK.

In conclusion, our results show that the hydrogen-bonding ability o f residue 161 

is critical for PEP inhibition o f EcPFK. The identity o f residue 161 is less important for 

PEP inhibition o f BsPFK, and other residues are apparendy important for stabilizing its 

T-state structure. The fact that GDP can activate the Ec QA161 mutant from its ATP- 

inhibited state, despite the inability of the enzyme to be inhibited by PEP, suggests that 

a pathway o f activation that does not involve residue 161 exists in EcPFK. This second 

pathway o f GDP activation may be the one associated with super-activation. In 

contrast, the results showing that mutation o f residue 161 in BsPFK affects GDP 

activation as well as PEP inhibition suggests that the same structural elements are 

utilized in both processes, as suggested by Schirmer & Evans (1990). Finally, it appears 

that BsPFK, which has evolved to function at temperatures between 65° and 80°C, 

possesses a mechanism o f heterotropic regulation that involves minimal conformational 

change. Allosteric inhibition and activation utilize the same pathway. On the other 

hand, EcPFK, which has evolved under less stringent conditions, has a "floppier" 

structure, and more varied mechanisms o f heterotropic regulation. GDP activation and 

PEP inhibition follow divergent pathways.



Chapter 5 

Conclusions and Future Studies
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The structural basis for kinetic and allosteric differences between the PFKs from 

Bacillus stearothermophilus and Escherichia coli has been investigated, and partially 

uncovered, in the studies presented in this dissertation. An analysis o f the results in the 

context o f the existing literature suggests that many o f the differences between the two 

PFKs can be attributed to differences in their conformational flexibility. E. coli PFK 

has a more "floppy" structure, while B. stearothermophilus PFK is more "rigid." The 

reasons for this are undoubtedly evolutionary. The bacteria from which the enzymes are 

isolated have evolved to live in very different ecological niches: thermophilic B. 

stearothermophilus in hot springs where temperatures are around 70°C, and mesophilic 

E. coli in the mammalian gut, where temperature is constant at 37°C. One would expect 

that the enzyme from a thermophilic organism would be much more conformationally 

conservative in its response to regulatory effectors than one from a mesophilic 

organism. Why?— because large conformational changes would be more apt to 

destabilize it. Indeed, BsPFK is conformationally conservative. The allosteric 

transition involves little movement: a rotation o f two rigid dimers by 7° relative to each 

other, a slight opening o f the dimer-dimer interface, and the concerted movement o f two 

loops positioned between the effector and active sites (Schirmer & Evans, 1990).

On the other hand, EcPFK is more conformationally flexible than BsPFK despite 

the fact that the two enzymes are structurally nearly identical. Support for this 

conclusion comes from two lines o f evidence. First, EcPFK is allosterically inhibited 

by ATP, and the inhibition appears to be associated with closure o f the active site. The 

subunit o f the chimeric PFK (ChiPFK), which contains the rigid large domain of BsPFK 

grafted onto the remainder o f the EcPFK subunit (chapter 3), is locked in an open 

conformation. Correspondingly, ATP does not inhibit ChiPFK in the same manner it 

inhibits EcPFK: the inhibition is much less severe, and is more like that o f BsPFK.

Thus, in EcPFK, there appears to be an association between closure of the active site—  

presumably via the open-to-closed transition discovered by Shirakihara & Evans
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(1988)— and allosteric ATP inhibition. This association is absent in BsPFK, which 

apparently does not undergo the open-to-closed transition. ATP inhibition o f BsPFK 

occurs by a different mechanism. The inhibition is non-aliosteric, is much less 

pronounced, and arises out of the enzyme's steady-state alternative pathways kinetic 

mechanism (chapter 2). Thus, a conformational change that occurs in EcPFK apparently 

does not occur in BsPFK.

A second line o f evidence indicating that EcPFK is more conformationally 

flexible comes from the fact that GDP can activate the enzyme through more than one 

structural pathway. GDP activates BsPFK through only one pathway, the one proposed 

by Schirmer & Evans (1990). Both PEP inhibition and GDP activation are affected by 

mutation o f residue 161 o f BsPFK (chapter 4), indicating that the structural pathways 

for the two processes overlap. In contrast, there appear to be two pathways by which 

GDP can activate EcPFK: one similar to that o f BsPFK which overlaps with the 

pathway o f PEP inhibition, plus a second one. Evidence for the existence o f a second 

pathway comes from studies o f the QA161 mutant (chapter 4). QA161 is activated 

normally by GDP, but is completely insensitive to PEP inhibition. This suggests that 

PEP inhibition and GDP activation o f the ATP-inhibited enzyme proceed through 

different structural routes. The presence in EcPFK of a pathway of GDP activation that 

is absent in BsPFK highlights the greater conformational flexibility o f EcPFK compared 

to BsPFK. Thus, EcPFK can be thought o f as being more "conformationally liberal."

In conclusion, it appears that there are structural pathways o f inhibition (by 

ATP) and activation (by GDP) present in EcPFK that are absent in BsPFK. These 

processes may involve large conformational changes that cause cracking o f crystals 

grown for the purposes o f X-ray crystallography. Indeed, cracking appears to have been 

a problem for Evans and co-workers, who have been unable to obtain a "T" state 

structure o f EcPFK (Evans, 1992).



136

B. stearothermophilus PFK and E. coli PFK, once thought to be functionally 

indistinguishable because o f their similar structures, are now known to be quite different 

in their mechanisms o f regulation. The challenge at this point is to use structure- 

function studies to further uncover the structural basis for these differences. In order to 

do this, attention will need to be focused in particular on EcPFK, on the mechanisms by 

which ATP allosterically inhibits the enzyme and GDP activates the ATP-inhibited 

enzyme. Studies o f site-specific mutants as well as o f chimeric Bs/Ec PFK mutants will 

most likely play an important role in these future efforts.

In the following discussion, a collection o f possible future experiments is 

presented. Some o f these involve only BsPFK, some only EcPFK, and some both 

(chimeric PFKs). They are presented in order o f increasing time investment needed. 

Hopefully, they will stimulate future research on bacterial PFK.

1. Perform a pH study o f ChiPFK in an effort to determine the mechanism by 

which AMPPNP abolishes ChiPFK cooperativity (chapter 3). What effect does 

AMPPNP have on the sigmoidality o f the Fru-6 P saturation curve o f ChiPFK at 

different pHs, i.e., at pH 7.2 to pH 8.9? How does the kcat o f ChiPFK vary with pH? 

Does AMPPCP have an effect similar to that o f AMPPNP?

2. Could a high rate o f ATP hydrolysis be present in the active site o f ChiPFK 

because o f its openness? Is inorganic phosphate (Pi) produced by ATP hydrolysis, i.e.,

the reaction ATP > ADP + P^ responsible for the quenching observed when

ChiFPK is titrated with ATP? Note that both Pi and Fru-6 P bind Arg 162 and Arg 243 

(Evans eta l., 1986), and Fru-6 P binding to EcPFK causes quenching o f fluorescence. 

Could Pi also be causing quenching o f fluorescence by specifically binding in the Fru- 

6 P site after being produced by ATP hydrolysis? This question could be answered by 

studying the rate o f ATP hydrolysis in ChiPFK, and correlating the results with those 

from fluorescence titrations using Pj.
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3. Does PEP promote dissociation o f the BsPFK tetramer into dimers, as it does 

the thermostable PFK from Thermus thermophilus (Xu et al., 1990)? Note: as in B. 

stearothermophilus PFK, there is a glutamate at position 161 in T. thermophilus PFK.

Is the QE161 mutant o f EcPFK less stable along its active dimer-dimer interface than 

wild-type? These questions could be answered by performing sucrose gradient 

sedimentation or gel permeation HPLC (Xu et al., 1990) studies o f BsPFK and QE161 

in the absence and presence o f PEP. The resulting fractions could be analyzed for the 

presence o f tetramer or dimer using SDS-PAGE and silver staining.

4. Glutamate 241 has not been mutated in either EcPFK or BsPFK. Yet, this 

residue is very important for stabilizing the low-activity (T-state) forms o f the enzymes 

(see Fig. 1.9). But mutating Glu 241, it may be possible to obtain an altered enzyme 

that is locked in the "R" state, and is insensitive to PEP inhibition. Moreover, it would 

be very significant if  the results showed that PEP inhibition and ATP inhibition were 

affected differently. The following mutations would be appropriate: Glu 241 to Ala, to 

Asp, to Arg, and to Gin.

5. The fluorescence o f the unique tryptophan o f BsPFK, Tip 179, is not 

sensitive to ligand binding while that o f Trp 311 o f EcPFK is. It would be useful to 

construct a double mutant o f BsPFK, WA179/YW 311, in order to remove the Trp from 

position 179 and place it at position 311, which is hopefully the right place for 

observing fluorescence changes due to conformational changes in the enzyme molecule. 

Note that the residue at position 179 in EcPFK is an alanine. The single mutants 

WA179 and YW 311 would also have to be made in order to determine the effect that 

each individual mutation has on BsPFK kinetics and regulation.

6 . Valdez et al. (1988) constructed a mutant BsPFK enzyme, RA25, that 

exhibited sigmoidal Fru-6 P saturation kinetics (n was 2.0) in the absence o f PEP. This 

result is very interesting since the wild-type enzyme is cooperative only in the presence 

of PEP. Arg 25 is proposed to bind the phosphate o f PEP and the P-phosphate o f ADP
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in the effector site. It is located along the regulatory interface. Residue 25 should be 

further investigated by site-directed mutagenesis. By changing Arg 25 to other residues 

besides alanine, it may be possible to increase the Hill number beyond 2.0. The 

following mutations should be attempted: Arg 25— >Gln, — >Glu, and — >Lys.

7. Construct additional chimeric Bs/Ec PFK enzymes. By constructing a series 

of chimeras, it may be possible to define those regions o f EcPFK responsible for its 

sigmoidal Fru-6 P saturation kinetics. This could be done in a systematic way: one 

could move from the N-terminus to the C-terminus, grafting progressively longer N- 

terminal BsPFK segments onto the remainder o f the EcPFK subunit. Likewise, 

progressively longer N-terminal EcPFK segments could be grafted onto the BsPFK 

subunit Junctions between BsPFK and EcPFK portions o f the chimeric subunits could 

be carefully chosen to fall within loops between cc-helices and (3-strands so that the 

structure o f the enzyme is not disrupted. By examining Fru-6 P saturation profiles o f the 

resulting chimeric enzymes, those regions responsible for the sigmoidal Fru-6 P 

saturation kinetics could be identified.

8 . The regions responsible for sigmoidality in the Fru-6 P saturation curve of 

EcPFK may have already been fortuitously discovered; they may be the two regions that 

move during the open-to-closed transition. These two regions are: (i) a portion o f the 

large domain (residues 41 to 122; Shirakihara & Evans, 1988), and (ii) the 40-amino 

acid stretch between residues 280 and 319 near the C-terminus (Serre et al., 1990; 

Shirakihara & Evans, 1988). With this in mind, two chimeric PFKs can be constructed: 

(a) one in which the 40 amino acids near the C-terminus are replaced with the 

corresponding residues from BsPFK. Does the replacement abolish heterotropic 

regulation? Is homotropic cooperativity (n=2) retained? (b) a chimeric Bs/Ec PFK 

having residues 41 to 122 and 280 to 319 from EcPFK, and the rest from BsPFK. The 

goal here is to create a mutant BsPFK enzyme with the ability to undergo an open-to-
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closed transition. Possibly it will exhibit homotropic cooperativity, i.e., a sigmoidal 

Fru-6 P saturation curve.

9. The JK loop o f E. coli PFK moves between the unliganded and active site- 

liganded forms o f the enzyme (Rypniewski & Evans, 1989). Upon binding ligands, the 

JK loop shifts toward the catalytic loop and away from its symmetry-related equivalent 

across the molecular p axis (see Fig. 1.3). Hydrogen bonds are formed between residues 

in the JK loop and the catalytic loop during this process. On the other hand, these same 

hydrogen bonds are broken, and others are formed, when ligands are released from the 

active site. Movement o f the JK loop may be associated with the cooperativity o f the 

enzyme. The hydrogen bonds between residues in the JK and catalytic loops that are 

formed and broken are between Asn 288 and Asp 134, Glu 286 and Asp 134, and Glu 

286 and Thr 133. Therefore, Thr 133, Asp 134, Glu 286 and Asn 288 would all be good 

candidate residues for site-directed mutagenesis. Mutation o f these residues and 

subsequent kinetic analysis o f the mutants may allow one to determine the importance 

o f JK loop movement in EcPFK allosteric behavior.
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