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Abstract

It is well-known that systems of action deontic logic emerging from a stan-
dard analysis of permission in terms of possibility of doing an action without
incurring in a violation of the law are subject to paradoxes. In general, para-
doxes are acknowledged as such if we have intuitions telling us that things
should be different. The aim of this paper is to introduce a paradox-free
deontic action system by (i) identifying the basic intuitions leading to the
emergence of the paradoxes and (ii) exploiting these intuitions in order to
develop a consistent deontic framework, where it can be shown why some
phenomena seem to be paradoxical and why they are not so if interpreted in
a correct way.

Keywords: Action deontic logic; Ought-to-be logic; Ought-to-do logic; Choice
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1 Introduction

We use deontic logics for analysing deontic systems, that is, systems of norms that
allow for the preservation, as far as it is possible, of a certain ideal order in the
interactions of groups of agents. If we assume that groups of agents interacting in
a common environment constitute an action system, then we can simply say that
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deontic systems are introduced in order to regulate action systems. These in turn
can be modelled as dynamical systems where a set of possible stages and a set of
possible actions are initially defined in such a way that, at each stage, the set of
executable actions and the set of accessible stages are determined. Accordingly,
deontic systems can be modelled as dynamical systems where both possible stages
and possible actions can be deontically characterized as permitted, prohibited, or
obligatory, either in themselves or relative to certain constraints. In this view, a
basic framework for developing deontic logics is a framework in which at least the
basic theoretical concepts concerning actions and courses of actions in an action
system are interpretable. Our aim here is precisely to put forward sufficient re-
sources to introduce a framework of this kind, so as to be able not only to describe
one-step actions and sequences of actions but also to distinguish between absolute
prescriptions, characterizing stages and actions in themselves, and conditional pre-
scriptions, characterizing actions at specific situations or stages. Working within
this framework will enable us to introduce a first system of action deontic logic
where three significant distinctions can be characterized:

1. a distinction between prescriptions on states and on actions;

2. a distinction between prescriptions on actions and on courses of actions;

3. a distinction between abstract absolute norms and actual conditional norms.

As we will see, the first distinction will allow us to integrate an ought-to-be logic
and an ought-to-do logic, while the final distinction will allow us to cope with both
ideal global prescriptions and optimal local prescriptions on actions and states.
Given these distinctions, we will be able to develop an insightful analysis of some
important paradoxes and to provide intuitive solutions for them. The plan of the
paper is as follows. In the next section, we discuss the basic intuitions that our
system aims at capturing as they emerge from the analysis of a simple case. In
section 3, we introduce our system of deontic logic of states and actions. In the last
section, we define four groups of deontic concepts and provide solutions to some
of the classical deontic paradoxes.

2 Framing the system

Our proposal is based on the idea that, in order to account for the intuitions which
generate the paradoxes, more distinctions than those which can be drawn within
a standard dynamic deontic system are to be made both on the ontic and on the
deontic level. In order to motivate these distinctions, let us consider the following
simple case.
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2.1 A case study

In most Italian schools, kids are required to be at school before 8:00 in the morning
and they are strongly recommended to be in their classrooms 10 minutes before
8:00 in order to review their homework. Suppose that two kids, Sara and Luca,
have three ways to get to the school: α1, by car, with their dad; α2, by bike;
α3, on foot. If they go by car, it takes them 15 minutes to arrive at the school,
provided their dad respects the speed limit, and 10 minutes, if their dad decides not
to respect the speed limit. If they go by bike, it takes them 20 minutes to arrive
at the school. Finally, if they go on foot, it takes them 30 minutes to arrive at the
school. In addition, the kids need 2 minutes to go from the gate of the school to
their classroom, α4.

Step 1: Arriving Step 2: Being at the desk
Going by car 7:40 Going to the classroom 7:42
Going by car 7:45 Going to the classroom 7:47
Going by bike 7:50 Going to the classroom 7:52
Going on foot 8:00 Going to the classroom 8:02

Table 1: Luca and Sara leave their home at 7:30 am.

Table 1 illustrates what happens in a situation in which Sara and Luca leave
their home at 7:30. In the case under consideration, four action types are taken
explicitly into account and each of them can be instantiated in several ways. In
particular, two ways of instantiating the first type, α1, are highlighted, i.e. going
by car respecting the speed limit and going by car not respecting the speed limit.

Leaving Arriving Being at the desk

7:30

7:40

7:45

7:50

8:00

7:42

7:47

7:52

8:02

α1

α1
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α4

α4

α4

α4

Figure 1: Ontic concepts.
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Let us assume that a story is any, finite or infinite, sequence of stages such that
every successive pair in the sequence is connected by a transition. In figure 1, four
stories are displayed, each consisting of three stages connected by two transitions.
Transitions are instances of actions, intended as action types, and go from a certain
stage of a possible story to a different stage of the same story. In addition, different
states are realized at different stages.

Given a certain story, both actions and stages are classifiable according to the
deontic status of what is successively realized in that story. In our specific case,
an analysis of the deontic value of the relevant actions and stages leads to the
following result. As for the actions, all action types are permitted, since there are
ways of performing these actions in accordance with the given norms (even if some
of them, namely α1 and α4, have also prohibited instances). As for the stages, ideal
stages, where all norms are respected, can be distinguished from stages in which
some norm is violated. The latter include the stage where Luca and Sara arrive
at the school by car at 7:40 and the stage where they arrive at the school at 8:02,
since at these stages the norm on the speed limit and the norm of the school are
respectively violated. As shown in figure 2, all other stages are ideal from the point
of view of the norms we are focusing on (in the picture, the ellipses indicate the
stages where no violation occurs, that is, the stages that are ideal according to the
norms).
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Figure 2: Global deontic concepts.

Importantly, note that the stage where Luca and Sara arrive at the school by
car at 7:45 is not only ideal but also optimal, since in this case the two kids have
time to properly review their homework, and this is the best they can achieve under
circumstances. Furthermore, the deontic status of stage 7:40 is different from the
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deontic status of stage 8:02. To be sure, at 7:30 Luca and Sara have a way to avoid
the prohibited transition leading to stage 7:40 and still reach an ideal stage, while
at 8:00 there is no way for them to get to a stage where the norm of the school is
respected. At this stage, the best the kids can do is to go as quickly as possible
to their classroom and be there at 8:02. Hence, relative to stage 8:00, it is indeed
recommended to transit in 8:02, even if this transition leads to a stage where the
norm of the school is violated. Finally, observe that the norm of the school is
an ought-to-be prescription, since kids are required to be at school before 8:00,
while the norm on the speed limit is an ought-to-do prescription, since people are
required to drive at a certain speed.

Leaving Arriving Being at the desk

7:30

7:40

7:45

7:50

8:00

7:42

7:47

7:52

8:02

α1

α1

α2

α3

α4

α4

α4

α4
Ideal

Ideal

Figure 3: Local deontic concepts.

The overall picture we have obtained is schematically represented in figure 3.
Here, the gray stages are the optimal ones. Note that a non-ideal stage can be
optimal relative to a previous stage only if no ideal stage is accessible from that
stage in one step.

2.2 Introducing the basic concepts: ontic level

Let us now make explicit the conceptual framework we have illustrated so far. On
the ontic level, we assume the following elements:

• stages; states;

• moves; actions; courses of actions.
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The ontic part of our system will include both a logic of states and a logic of
actions. We conceive of stages as elements constituting possible stories, and, as
usual, we model states as sets of stages, i.e. the sets of stages in which the states
are realized. In addition, we assume that actions are action types, modelled as
relations defined on the stages, and that courses of action are sequences of actions.
Thus, each instance of an action is a transition linking two stages and each instance
of a course of action is a path through stages. Furthermore, actions can be basic
or composite: moves are basic actions, while composite actions are obtained by
conjoining, disjoining, and negating moves. Finally, stories are sequences of stages
and actions.

Example 1. Consider figure 3: we can identify the story

Leaving Arriving Being at the desk

7:30

7:45 7:47α1

α4

consisting of three stages and two moves constituting the course of action
(α1, α4).

In this context, actions are to be intended as achievements and accomplish-
ments, in Vendler’s classification [17], or as acts and achievements in von Wright’s
conceptualization [19, 21]. On this conception, each action has a result, which is a
state that in principle can obtain without the action having been performed. Thus,
while the realization of the result of an action is essential to its performance, in
the sense that an action has not been performed unless its result has been accom-
plished, there is no perfect correspondence between stages to which an action leads
and stages where the result of that action obtains. Still, there is a perfect correspon-
dence between stages to which an action leads and stages where the state that the
action has been done is realized. Subsequently, we will use this correspondence in
order to define actions in terms of states.1 Schematically:

1In a previous paper [9], we have worked out a system of action deontic logic based on the
distinction between the possible end-stages of an action and the stages in which its result possibly
obtains.
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ontic part



static

{
stages

states : sets of stages

dynamic

{
short range : actions

long range : courses of action

It is worth noting that, in this framework, for each stage, we can single out the
set of moves which are executable at that stage. In addition, given the presence of
executable moves, we can introduce the following distinctions among stages that
are directly accessible by doing a specific action, stages that are directly accessible,
and stages that are accessible:

1. a stage v is directly α-accessible from w just in case there is an α-transition
starting at w and leading to v;

2. a stage v is directly accessible fromw just in case there is a transition starting
at w and leading to v;

3. a stage v is accessible from w just in case there is a sequence of transitions
starting at w and leading to v.

Thus, direct α-accessibility is a particular case of direct accessibility, which in
turn is a particular case of accessibility. Similarly, we can introduce the following
distinctions between states that are directly realizable and states that are realizable:

1. the state that φ is directlyα-realizable atw just in case there is anα-transition
starting at w which has φ as a consequence;

2. the state that φ is directly realizable at w just in case there is a transition
starting at w which has φ as a consequence;

3. the state that φ is realizable atw just in case there is a sequence of transitions
starting at w and leading to a stage where φ is realized.

As before, direct α-realizability is a particular case of direct realizability, which in
turn is a particular case of realizability. In conclusion, at the ontic level, what we
need is (i) a set of stages, states being subsets of stages, (ii) a function fixing what
is accessible at a given stage, and (iii) a set of functions fixing, for each action α,
what is α-accessible at a given stage.
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2.3 Introducing the basic concepts: deontic level

Turning to the deontic level, the fundamental distinction we assume is the distinc-
tion between

• what is ideal;

• what is optimal.

This distinction, which is primarily applied to stages, gives rise to a rich analysis
of deontic concepts not only on stages but also on actions and courses of action.
The basic general idea is as follows. An ideal stage is a stage in which the law is
fulfilled, while a non-ideal stage is a stage in which some norms are not fulfilled.
What ideally we should do is to ensure that our actions always lead us to an ideal
stage, so as to produce a course of action which is completely safe from the point
of view of the law. In those cases in which this is possible, the best we can do is
to perform an action leading us not merely to an ideal stage but to one ideal stage
which is among the optimal directly accessible stages. In those cases in which
this is not possible, we still have the opportunity to act in an optimal way given
the circumstances, that is, in a way allowing us to reach one of the optimal stages
among the directly accessible ones. Therefore, the first fundamental distinction is
the one between:

1. stages where the ideal is directly realizable;

2. stages where the ideal is not directly realizable.

In this regard, a fundamental deontic principle can be introduced in our system to
the effect that at any stage the ideal is realizable, either directly or indirectly. That
is, the deontic tragedy of being in a persistent condition of non-ideality is always
avoidable. This is a basic and intuitive deontic principle, since we are not usually
interested in past infractions: when a norm is violated, we land in a non-ideal stage,
but the future stages can still be ideal, provided no further norm is violated at them.

In order to account for the primitive distinction between ideal and optimal
stages, we develop both a logic of an abstract deontic ideal, represented by a set
of worlds satisfying the prescriptions of a set of norms, and a logic of an actual
deontic ideal, represented by a function picking out, for each action α and stage
w, the set of stages accessible from w by doing α which are optimal with respect
to what can be directly accessed from w. This distinction constitutes the most im-
portant novelty introduced in the present framework. Crucially, while it is possible
for an agent to be in a situation where no ideal stage is directly accessible, in every
situation the agent can select, among the directly accessible stages, those which
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are optimal with respect to that situation, so that it is always possible to perform an
action leading to an optimal stage. In particular, if there are actions leading from
a given world w to ideal stages, the optimal stages at w are the best ideal stages
directly accessible from w, that is, the best stages an agent who is complying with
the law can reach; if there are no actions leading from a given world w to ideal
stages, there are still optimal stages at w which are the best stages the agent can
access from w. In light of this, we may assume the following procedure as our
fundamental rule of conduct.

Rule. Ask yourself: are there executable actions leading to an ideal stage? If so,
perform one of these actions, possibly an action leading to an optimal stage.
If not, perform one of the actions leading to a stage which is optimal relative
to the current situation.

Our rule of conduct is thus based on the maxim: always act so as to land on a safe
stage, i.e., either on an ideal or on an optimal stage. Within this basic framework,
a fine-grained analysis of the deontic status of stages, actions and courses of action
can be carried out.

Deontic concepts on stages. Starting with stages, our rule of conduct allows us
to introduce a fourfold deontic classification of accessible stages.

1. Green! stages: ideal and optimal.

2. Green stages: ideal, either optimal or non-optimal.

3. Orange stages: optimal, but not ideal.

4. Red stages: neither ideal nor optimal.

Note that, among ideal stages, it is thus possible to distinguish between the
optimal and the non-optimal ones. Given this classification, our maxim becomes:
always act so as to never land on a red stage and, if you can, try to land on an
optimal green stage.

Deontic concepts on actions. The deontic status of an action is determined on
the basis of the deontic status of the stages to which it possibly leads. More specif-
ically, an action which possibly leads to an ideal stage is a permitted action, while
an action which possibly leads to an optimal stage is a recommended action. Since
it is possible that in certain situations no ideal stage is directly accessible and, yet,
in every situation there are directly accessible stages which are optimal with respect
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to that situation, it follows that it is possible that in certain situations no action is
permitted, although in all situations some actions are recommended. Crucially,
when an ideal stage is directly accessible, the recommended actions are the best
permitted actions; that is, those permitted actions which possibly lead to optimal
directly accessible stages. We can then introduce the following deontic classifica-
tion of actions.

1. Green! actions: recommended and permitted.

2. Green actions: permitted, either recommended or not recommended.

3. Orange actions: recommended, but not permitted.

4. Red actions: neither permitted nor recommended.

These four cases can then be illustrated as shown in figure 4, where the fan
originating at stage wi represents the set of possible transitions starting at wi.

w1

Optimal
Ideal

α

α is green!

w2

Optimal
Ideal

α

α is green

w3

Optimal
Ideal

α

α is orange

w4

Optimal
Ideal

α

α is red

Figure 4: Deontic concepts on actions.

In this framework our maxim becomes: never perform a red action, and, if
you can, perform an optimal green action. Hence, for an action α to be obligatory
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it is not necessary that its performance ensures that an ideal or optimal stage is
reached: the fact that α is obligatory does not exclude the possibility that certain
ways of doing α result in red stages. In this sense, our maxim encodes a notion of
obligation which allows for the possibility that obligatory actions are risky.

Deontic concepts on courses of action. Deontic concepts on stages and actions
allow us to introduce deontic concepts on courses of action. Unlike an action, a
course of action can be assessed under two perspectives, depending on whether
(i) it possibly leads to a safe stage, and whether (ii) it possibly corresponds to a
safe path, that is, to a sequence of transitions consisting only of safe steps. The
assumption of the former perspective gives rise to what in the literature has been
called goal norms, while the assumption of the latter to what has been called pro-
cess norms [3, 4].2 In light of the distinctions between ideal and optimal stages and
between ideal and optimal actions, the two perspectives can be further refined. In
particular, if we assess courses of action on the basis of their ending stages, we can
distinguish:

1. courses of action instantiated by some paths ending in an ideal stage
(possibly ending in green stages);

2. courses of action instantiated by some paths ending in an optimal stage
(possibly ending in green or orange stages).

If we assess courses of action on the basis of the transitions corresponding to
them, we can distinguish

1. courses of action instantiated by some paths entirely consisting of permitted
actions
(possibly passing through green stages only);

2. courses of action instantiated by paths entirely consisting of recommended
actions
(possibly passing through green or orange stages only).

In conclusion, at the deontic level, what we need is (i) a set that fixes what
is globally ideal; (ii) a set of functions fixing, for each action α, what is optimal
given what is α-accessible at a given stage.

We are now ready to introduce our basic system ADL of action deontic logic.
2The distinction between goal and process norms is already present in Van Der Meyden [16].
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3 The basic system ADL

The language L(ADL) of the system ADL of action deontic logic contains a
set Tm(L(ADL)) of terms and a set Fm(L(ADL)) of formulas. Assuming a
standard distinction between action types and individual actions, let A be a count-
able set of action types variables. Then Tm(L(ADL)) is defined according to the
following grammar:

α ::= ai | 1 | α | α t β | α u β

where ai ∈ A. Intuitively, the set Tm(L(ADL)) is the set of moves or one-step
actions. More specifically, 1 is the action type instantiated by any action whatso-
ever; α is the action type instantiated by any action which does not instantiate the
type α; αt β is the action type instantiated by any action which instantiates either
the type α or the type β or both; α u β is the action type instantiated by any action
which instantiates the types α and β in parallel. We assume that an individual ac-
tion can instantiate different action types. Accordingly, when we say that an action
is a token of ai we do not exclude the possibility of its being also a token of a
different type aj .

Turning to the set of formulas of L(ADL), let P be a countable set of proposi-
tional variables. Then Fm(L(ADL)) is defined according to the following gram-
mar:

φ ::= pi | ¬φ | φ ∧ φ | �φ | [F ]φ | done(α) | [1]φ | [!]φ | I

where pi ∈ P and α ∈ Tm(L(ADL)). The dual modalities ♦, 〈F 〉 , 〈1〉 , 〈!〉, are
defined in the standard way.

The intended interpretation of the modal formulas is as follows. � is a stan-
dard universal modality characterizing propositions that hold at all possible stages,
while [F ] is a standard modality characterizing propositions that hold at all the
stages that are accessible from the current stage. The introduction of these modal-
ities allows us to distinguish between the stages which are possible and the stages
which are both possible and accessible. The distinction is crucial because what
is no longer accessible from a given world cannot be optimal with respect to that
world. done is a modal property of actions such that done(α) holds at all the stages
where α has just been performed. [1] is a dynamic ontic modality such that [1]φ is
true when φ holds in all stages accessible by doing an action, while [!] is a dynamic
deontic modality such that [!]φ is true when φ holds in all optimal stages accessible
by doing an action. Finally, I is the deontic ideal, characterizing stages where no
norm is violated.
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3.1 Semantics

The conceptual framework we adopt is based on the following notion of frame.

Definition 1. (Frame) A frame forL(ADL) is a tupleF = 〈W,R,D,R1, S1, Ideal〉
such that

1. W 6= ∅
2. R : W → ℘(W )
3. D : Tm(L(ADL))→ ℘(W )
4. R1 : W → ℘(W )
5. S1 : W → ℘(W )
6. Ideal ⊆W

Let us comment on each item in turn.

1. W is our set of possible stages.

2. R is the function that determines the set of stages which are accessible at a
given stage and is characterized by the following conditions.

Constraints on R:
(a) for each w ∈W , w ∈ R(w)
(b) for each w, v ∈W , v ∈ R(w)⇒ R(v) ⊆ R(w)

Thus, for each stage w ∈ W , R(w) is the cone containing the stages that are
accessible from w by performing any course of action.

3. D is the function that determines the set of stages at which a given action has
just been performed and has to satisfy the following constraints:

Constraints on D:
(a) D(1) = W
(b) D(α) = W −D(α)
(c) D(α t β) = D(α) ∪D(β)
(d) D(α u β) = D(α) ∩D(β)

Thus, for each action α, D(α) is the set containing the stages in which α has just
been instantiated and the constraints provide a straightforward connection between
the algebra of actions and the algebra of states corresponding to the instantiations
of the action types. Hence: (a) some action is instantiated at any stage; (b) instan-
tiating the negation of an action coincides with not instantiating that action; (c)
instantiating the disjunction of two actions coincides with instantiating either the
first or the second action; (d) instantiating the conjunction of two actions coincides
with instantiating both the first and the second action.
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4. R1 is the function that determines the set of stages which are accessible in one
step at a given stage and is characterized by the following conditions.

Constraints on R1:
(a) for each w ∈W , R1(w) 6= ∅
(b) for each w ∈W , R1(w) ⊆ R(w)

Accordingly, it is assumed that some stage is always directly accessible to the agent
and that what is accessible in one step is accessible in general.

5. S1 is the function that determines the set of optimal stages which are accessible
in one step at a given stage and is characterized by the following conditions.

Constraints on S1:
(a) for each w ∈W , S1(w) 6= ∅
(b) for each w ∈W , S1(w) ⊆ R1(w)

Accordingly, it is assumed that some optimal stage is always accessible to the
agent and, of course, that what is optimally accessible in one step is accessible in
one step. The conditions on S1 ensure that condition (a) on R1 is always satisfied.

6. Ideal is the subset of W containing the best possible stages from the point of
view of the law, which are the stages where the law is wholly fulfilled.

Constraints on I:
(a) for each w ∈W , R(w) ∩ Ideal 6= ∅
(b) for each w ∈W , R1(w) ∩ Ideal 6= ∅⇒ S1(w) ⊆ Ideal

According to the conditions on Ideal, (a) the set of accessible stages always con-
tains some ideal stages and (b) only ideal stages are optimal, if some ideal stages
is directly accessible. Importantly, note that we allow for the possibility that the
set of ideal worlds directly accessible from a given stage is larger than the set of
optimal stages with respect to that stage. In this way, we can account for the idea
that some ideal stages may be better than others from a deontic perspective which
takes into account not only the current law but also other possible criteria.

Remark 1. We do not assume that R(w) coincides with R1(w), since, as clarified
in section 2.2, we allow for a difference between the stages which are accessible
and the stages which are directly accessible. This is crucial to account for the
fact that the ideal, although always accessible through some course of action, in
certain cases, for example at stage 8:00 in our case study, might not be realizable
by performing any action.

We are now able to introduce the definitions of the crucial functions of our
action deontic logic.
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Definition 2. (α-transitions) Rα is a map Rα : W → ℘(W ) such that, for each
w ∈W , Rα(w) = R1(w) ∩D(α).

Rα is a function that, for each possible stage w, returns the outcomes of the transi-
tions associated with α, when α is performed at w, so that Rα(w) is the set of all
stages that are accessible by doing α at w. What we assume is that at any stage an
agent is endowed with a set of actions and think of these actions as ways of getting
to further stages within a cone of accessible stages. Since actions are conceived of
as action types that can be instantiated in different ways, every action corresponds
to a set Rα(w) of transitions between stages. What is new in our approach is that
Rα(w) is identified with the set of transitions that lead from w to stages where α
has been instantiated.3

Definition 3. (Optimal α-transitions) Sα is a map Sα : W → ℘(W ) such that, for
each w ∈W , Sα(w) = S1(w) ∩D(α).

Sα is a function that, for each possible stage w, returns the outcomes of the optimal
transitions associated with α, when α is performed at w, so that Sα(w) is the set
of optimal stages that are accessible by doing α at w.

As it is not difficult to see, our notion of frame allows us to capture all the
distinctions concerning the deontic status of stages and actions we made in the
previous section.

Deontic status of stages. With respect to w, v is

Green!: v ∈ S1(w) ∩ Ideal Orange: v ∈ S1(w)− Ideal
Green: v ∈ R1(w) ∩ Ideal Red: v /∈ S1(w) ∪ Ideal

Deontic status of actions. With respect to w, α is

Green!: Sα(w) ∩ Ideal 6= ∅ Orange: Sα(w)− Ideal 6= ∅
Green: Rα(w) ∩ Ideal 6= ∅ Red: Sα(w) ∪ (Rα(w) ∩ Ideal) = ∅

Definition 4. (Model) A model for L(ADL) is a pair M = 〈F, V 〉, where

(i) F is a frame for L(ADL)
(ii) V is a function that maps propositional variables in ℘(W ).

Definition 5. (Truth in a model) The notion of truth in a model for L(ADL) is
inductively defined as follows:

M,w |= pi ⇔ w ∈ V (pi)

3We wish to thank Frederik Van De Putte for insightful discussions on this point.
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M,w |= ¬φ ⇔ M,w 6|= φ
M,w |= φ ∧ ψ ⇔ M,w |= φ and M,w |= ψ
M,w |= �φ ⇔ ∀v ∈W (M, v |= φ)
M,w |= [F ]φ ⇔ ∀v ∈W (v ∈ R(w)⇒M, v |= φ)
M,w |= done(α)⇔ w ∈ D(α)
M,w |= [1]φ ⇔ ∀v ∈W (v ∈ R1(w)⇒M,v |= φ)
M,w |= [!]φ ⇔ ∀v ∈W (v ∈ S1(w)⇒M,v |= φ)
M,w |= I ⇔ w ∈ Ideal

The main operators of standard action logic can now be explicitly defined.

Definition 6. Ontic and deontic dynamic operators.

(i) φ is a consequence of doing α: [α]φ := [1](done(α)→ φ);
(ii) φ is a consequence of optimally doing α: [!α]φ := [!](done(α)→ φ);

The dual notions 〈α〉 and 〈!α〉 are defined accordingly. Interestingly, given
these definitions, the following equivalences turn out to be valid:

• α is executable: 〈α〉> ↔ 〈1〉 done(α).

• α is executable and optimal: 〈!α〉> ↔ 〈!〉 done(α).

In particular, it is worth noting that there are two ways in which 〈!α〉> can fail.
First, because α is not executable. Second, because, despite being executable, α
does not result in optimal stages. Furthermore, the basic distinctions on actions and
courses of actions highlighted in section 2.3 are now expressible in our language.

Deontic status of actions. We can see actions as being coloured.

α is green!: 〈!α〉 I α is orange: ¬ 〈1〉 I ∧ 〈!α〉>
α is green: 〈α〉 I α is red: ¬ 〈1〉 I ∧ ¬ 〈!α〉>

Deontic status of courses of actions. We can distinguish between process and
goal permissions.

Process permissions Goal permissions

Ideal 〈α〉 (I ∧ 〈β〉 I) → 〈α〉 〈β〉 I
Optimal 〈!α〉 〈!β〉> → 〈α〉 〈!β〉>

The distinction between process and goal norms has been presented only relative
to courses of action consisting of two actions, but the definition can be extended to
longer courses of action in a straightforward manner.
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3.2 Axiomatization

The axiom system ADL consists of the following groups of axioms and rules.
The first two groups take into account the static part of the system, while the other
groups take into account the dynamic part, both from an ontic and from a deontic
point of view.

Group 1: axioms and rules for � Group 2: axioms for [F ]

A1.1 �(φ→ ψ)→ (�φ→ �ψ) A2.1 [F ](φ→ ψ)→ ([F ]φ→ [F ]ψ)

A1.2 �φ→ φ A2.2 [F ]φ→ φ

A1.3 ¬�φ→ �¬�φ A2.3 [F ]φ→ [F ][F ]φ

R1.1 φ/�φ A2.4 �φ→ [F ]φ

Group 3: axioms for done Group 4: axioms for [1] and [!]

A3.1 done(1) A4.1 [1](φ→ ψ)→ ([1]φ→ [1]ψ)

A3.2 done(α)↔ ¬done(ᾱ) A4.2 [F ]φ→ [1]φ

A3.3 done(α t β)↔ done(α) ∨ done(β) A4.3 [!](φ→ ψ)→ ([!]φ→ [!]ψ)

A3.4 done(α u β)↔ done(α) ∧ done(β) A4.4 [1]φ→ [!]φ ∧ 〈!〉φ

Group 5: axioms for I

A5.1 〈F 〉 I
A5.2 〈1〉 I → [!]I

The crucial deontic axioms are A4.4, A5.1 and A5.2. From A4.4 it follows
that, for every situation, it is possible to single out a set of directly accessible
stages which are optimal with respect to that situation; that is, 〈!〉> is derivable
in ADL. The first axiom on I ensures that we can always reach an ideal stage
through an appropriate course of action, while the second axiom on I ensures that,
whenever an ideal stage is directly accessible, the optimal stages are among the
ideal stages. The presence of I and � in the language allows us to introduce the
following deontic concepts on states.

Definition 7. Andersonian deontic operators on states based on � and I .
[I]φ := �(I → φ) and 〈I〉φ := ♦(I ∧ φ).

[I]φ is a standard concept of obligation for states, as proposed in [1]. It is not
difficult to see that [I] is a KD45 modality, since we can derive:4

4The choice of an S5-based logic gives us theorems like Oφ → �Oφ and Pφ → �Pφ. These
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(i) [I](φ→ ψ)→ ([I]φ→ [I]ψ)
(ii) [I]φ→ 〈I〉φ
(iii)[I]φ→ [I][I]φ
(iv) 〈I〉φ→ [I] 〈I〉φ
(v) φ/[I]φ

The fundamental distinction we want to highlight here concerns 〈I〉φ and 〈!〉φ.
While 〈I〉φ states that φ holds in some ideal worlds, 〈!〉φ states that φ holds in
some stages which are optimal with respect to the current situation. As we will
see, this distinction gives rise to two different operators of permission.

Corollary 1. Given the definitions of [α] and [!α] the following propositions are
derivable.

C1.1 [α]φ↔ [α]φ C1.7 [!α]φ↔ [!α]φ

C1.2 [α]φ ∨ [β]φ→ [α u β]φ C1.8 [!α1 ]φ ∨ [!α2 ]φ→ [!α1uα2 ]φ

C1.3 [α t β]φ↔ [α]φ ∧ [β]φ C1.9 [!α1tα2 ]φ↔ [!α1 ]φ ∧ [!α2 ]φ

C1.4 [α u β]φ↔ [α]φ ∧ [β]φ C1.10 [!α1uα2
]φ↔ [!α1 ]φ ∧ [!α2 ]φ

C1.5 [α]φ ∨ [β]φ→ [α t β]φ C1.11 [!α1 ]φ ∨ [!α2 ]φ→ [!α1tα2
]φ

C1.6 〈α〉> ↔ 〈1〉 done(α) C1.12 [!]φ→ [!α]φ

Since C1.1 to C1.5 are derivable, our system is powerful enough to interpret
the system proposed by Meyer in [11], except for the axiom on the negation of se-
quential actions. In addition, due to C1.6, the executability of an action, expressed
by 〈α〉>, is to be distinguished from the abstract possibility of an action, expressed
by ♦done(α). In fact, while 〈α〉> → ♦done(α), it is possible for ♦done(α) to
hold even if α is currently not executable.

Corollary 2. The following propositions on I are derivable.

C2.1 〈α〉 I → [!α]I

C2.2 〈1〉 I ∧ 〈!α〉> → 〈α〉 I

C2.1 is a formalization of the basic principle that, if an ideal stage is directly
α-accessible, then α is recommended only if its performance leads to an ideal

principles are justified by the intended interpretation of a formula like [I]φ. To be sure, I is an
ideal state determined by a specific legal code, and we assume that the distinction between what is
prescribed and what is not prescribed is also fixed by that same code. In light of this, given thatOφ is
interpreted as φ is prescribed by the code that fixes I , the previous principles turn out to be intuitive,
since it is impossible to change what is prescribed according to the code without changing that code
as well.
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stage. C2.2 is a formalization of the basic principle that, if an ideal stage is directly
accessible, then α is recommended only if it is permitted. Since 〈α〉 I → 〈!α〉>
is not derivable (in fact, recall that we allow for the possibility that not all directly
accessible ideal stages are also optimal), C2.2 also tells us that, even when the ideal
is accessible, Meyer’s concepts of permitted action, which is 〈α〉 I , is weaker than
our concept of a green action. In fact, when the ideal is directly accessible, 〈!α〉>
says that α is not only permitted but also recommended.

Remark 2. Although we have focused on the deontic part of our axiom system,
a brief note on the operator done is here in order. In [11], Meyer suggests the
possibility of introducing the modality done, which is interpreted as stating that an
action has been performed and which is characterized by the axioms in group 3.
Meyer also suggests that it would be of interest to go through the logic of done.
What we have shown is not only how to develop the logic of done, but also that,
once done is at our disposal, the entire system of dynamic modalities proposed
by Meyer can be introduced in terms of [1] and done. With respect to other recent
proposals of developing a logic of done [6, 14], our proposal has also the advantage
of being based on a simple semantics, which does not presuppose the apparatus of
temporal logic.

3.3 Characterization

The previous axiomatic system is sound and complete with respect to the class of
all models for L(ADL). The proof of soundness is straightforward. The proof of
completeness follows from the proof of the fact that any ADL-consistent set of
formulas X is satisfiable in a model for L(ADL), which in turn derives from the
construction of a canonical model based on an ADL-complete set x extending X .

Definition 8. (Canonical model) Let x be an ADL-complete set of formulas of
L(ADL). The canonical model forL(ADL) is the tuple 〈W,R,D,R1, S1, Ideal, V 〉
such that

– W = {w | w is ADL-complete and x/� ⊆ w}, where x/� = {φ | �φ ∈
x}

– R is such that v ∈ R(w)⇔ w/F ⊆ v, where w/F = {φ | [F ]φ ∈ w}

– D is such that D(α) = {v | done(α) ∈ v}

– R1 is such that v ∈ R1(w)⇔ w/1 ⊆ v, where w/1 = {φ | [1]φ ∈ w}

– S1 is such that v ∈ S1(w)⇔ w/! ⊆ v, where w/! = {φ | [!]φ ∈ w}
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– Ideal = {v | I ∈ v}

The proof of the fact that this is indeed a model for L(ADL) that verifies every
formula in x is not difficult to carry out and is left to the reader.

4 Deontic Concepts and Paradoxes

Having introduced a basic system of action deontic logic which encodes the con-
ceptual framework introduced in section 2, we can finally provide an explicit char-
acterization of the fundamental deontic concepts on states and actions we will use
in order to clarify the intuitions that will help us to solve some of the main para-
doxes in deontic logic. Before going into the details, we present here the general
schema of the relevant concepts and the basic intuitions underlying them. Impor-
tantly, in what follows, we will provide definitions only of permission and obliga-
tion; the notion of prohibition will always be intended as the negation of permis-
sion.

1. Deontic concepts on states.

(a) Permission
(Intuition: we are allowed to be in a state)

(b) Obligation
(Intuition: we are not allowed to exit a state)

2. Deontic concepts on actions.

(a) Plain permission
(Intuition: we are allowed to perform an action)

(b) Plain obligation
(Intuition: we are required to perform an action)

3. Deontic concepts on actions.

(a) Choice permission
(Intuition: we are given a choice and we are allowed to choose)

(b) Choice obligation
(Intuition: we are given a constraint and we are allowed to choose)

4. Deontic concepts on courses of actions.
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(a) Sequential permission
(Intuition: we are allowed to tread a path)

(b) Sequential obligation
(Intuition: we are not allowed to exit a path)

5. Deontic concepts on actions after a violation.

(a) Compensatory obligation
(Intuition: after a violation, we are required to compensate)

As we will see, within our framework compensatory obligations will allow us to
model contrary to duty obligations in an intuitive sense.

4.1 Deontic Concepts on States

Starting with the logic of the ought-to-be, within our system it is possible to in-
troduce three main concepts of obligation and permission on states, which further
articulate the intuition beyond the Andersonian notions of obligation and permis-
sion introduced in section 3.2. The idea is that, under circumstances, it is possible
for an agent both to be obliged to do something that, with respect to the set of ideal
stages, is merely permitted and to be recommended to do something that, with
respect to the set of ideal stages, is not obligatory.

Definition 9. Basic prescriptions on states.

Basic permission Basic obligation

Global 〈I〉φ := ♦(I ∧ φ) [I]φ := �(I → φ)

Local P (φ) := 〈1〉 (I ∧ φ) O(φ) := 〈1〉 I ∧ [1](I → φ)

Optimal 〈!〉φ [!]φ

The relations among these concepts are displayed in figure 5.

[I]φ
provided 〈1〉I//

��

O(φ) //

��

[!]φ

��
〈I〉φ P (φ)oo 〈!〉φ

provided 〈1〉Ioo

Figure 5: Global, local and optimal deontic concepts on states.
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Note that, even when the ideal is accessible, [!]φ does not entail O(φ). This
depends on the fact that, under our interpretation, it is possible that the stages which
are optimal with respect to w are fewer than the ideal stages which are directly
accessible from w, as shown in the model below (where arrows corresponding to
R and reflexive arrows are omitted). This is interesting because it suggests that
local and optimal notions of obligations are in line with those consequentialist
approaches to obligation which allow for the thesis that what we ought to do is
to obtain an acceptable amount of positive consequences instead of a maximum
amount thereof.5

v1 : I, p1

w : [!]p1,¬Op1 :

R1,S1

44

R1 //

R1
**

v2 : I

v3

As final, but extremely significant operators on states, we introduce the follow-
ing effective operators.

Definition 10. Effective prescriptions on states.

(i) Effective permission: P(φ) := P (φ) ∨ 〈!〉φ;
(ii) Effective obligation: O(φ) := O(φ) ∨ (¬ 〈1〉 I ∧ [!]φ).

These operators have two pleasant properties: (i) if something is either permit-
ted or obligatory at a given stage, then it is so regardless of whether or not the ideal
is directly realizable at that stage (this is not true in many systems of deontic logic,
where everything becomes obligatory whenever ideal stages are not (directly) ac-
cessible); (ii) it is always true that O(φ) → P(φ), since O(φ) → P (φ), by the
definition of O, and [!]φ → 〈!〉φ, by the axioms on [!]. Using these operators, we
can now introduce our main deontic concepts on actions.

4.2 Deontic concepts on actions

Moving from the ought-to-be to the ought-to-do perspective, let us start by spelling
out the distinction between global, local and optimal deontic notions on actions.
Global deontic notions are defined in terms of the global modality and give rise to
formulas that hold in all possible stages, while local deontic notions give rise to

5See [12] for an introduction to these approaches.
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formulas that might hold at a stage without being globally true. Finally, optimal
deontic notions express what the agent is recommended to do at a given stage.

Definition 11. Basic prescriptions on actions.

Basic permission Basic obligation

Global 〈I〉 done(α) [I]done(α)

Local P (done(α)) O(done(α))

Optimal 〈!〉 done(α) [!]done(α)

Basic prescriptions on actions are thus specific instances of basic prescriptions
on states, the instance being done(α). It is worth noting that our definition of local
permission agrees with Meyer’s definition of permission, while our local obligation
is stronger than Meyer’s notion of obligation (cf. [11]). To be sure, it is not difficult
to check that the following equivalences hold:

• P (done(α))↔ 〈1〉 (I ∧ done(α))↔ 〈α〉 I

• O(done(α))↔ 〈1〉 I ∧ [1](I → done(α))↔ 〈α〉 I ∧ [α]¬I

As in the case of deontic notions on states, local and optimal deontic notions on
actions can be used to define operators for effective prescriptions. These can be
subdivided into absolute and conditional prescriptions, where conditional prescrip-
tions are to be intended as giving rise to permissions or obligations that only hold
once a certain action has been performed.

Definition 12. Effective prescriptions on actions.

ABSOLUTE:
(i) α is permitted: P(α) := P(done(α));
(ii) α is obligatory: O(α) := O(done(α)).

CONDITIONAL:
(i) α is permitted given φ : P(α | φ) := 〈1〉φ ∧ [1](φ→ P(α));
(ii) α is obligatory given φ: O(α | φ) := 〈1〉φ ∧ [1](φ→ O(α)).

Hence, in accordance with our maxim, i.e. never perform a red action and, if
you can, perform a green action, we are always allowed to perform non-red actions
and required to perform either green or orange actions. It is easy to see that, since
in every situation there are actions leading to optimal stages, it is always permitted
to do something and it is never obligatory to do everything, not even when no ideal
stage is directly accessible. That is, our concept of permission is never empty and
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our concept of obligation never undergoes trivialization. Furthermore, and impor-
tantly, the notions of effective permission and obligation are such that performing
a prescribed action is always possible and may be risky: for an action to be either
permitted or obligatory, it is in fact not necessary that all ways of doing it are either
green or orange. Lastly, the distinction between the absolute and the conditional
notion of obligation is crucial for the subsequent interpretation of compensatory
and contrary-to-duty obligations (but more on this later).

Looking at the properties of O and P more closely, we can see that our con-
cepts of effective permission and obligation satisfy the so-called Paradox of Choice
Permission and the Ross’s Paradox:

• P(α t β)↔ P(α) ∨P(β)

• O(α)→ O(α t β)

These principles are not problematic once we focus on their intended interpretation.
In fact, recall that α t β is a type that is instantiated just in case either α is instan-
tiated or β is instantiated. Then, the first principle just states that it is permitted
to instantiate an action type like α t β precisely when it is permitted to instantiate
α or to instantiate β. Similarly, the second principle just states that every required
instance of α is a required instance of αtβ, since every instance of α is an instance
of αtβ. Surely, it may be observed that what we have proposed is not the standard
interpretation of statements of permission and obligation. We agree, noting that,
within our system, we can still capture the standard interpretation in two different
ways. Firstly, we can opt for using notions of strong prescriptions, along the lines
of Meyer [11]. Secondly, and more interestingly, we can define specific notions of
choice prescriptions.

Definition 13. Choice prescriptions on actions.

(i) The choice between α and β is permitted: P(α+ β) := P(α) ∧P(β).
(ii) The choice between α and β is obliged: O(α+β) := O(αtβ)∧P(α+β).

Definition 13 tells us that a choice between α and β is permitted if and only if
either one of the following cases obtains:

1. P (done(α)) ∧ P (done(β)), i.e. 〈α〉 I ∧ 〈β〉 I

2. P (done(α)) ∧ 〈!〉 done(β), i.e. 〈α〉 I ∧ 〈!β〉>

3. 〈!〉 done(α) ∧ P (done(β)), i.e. 〈!α〉> ∧ 〈β〉 I

4. 〈!〉 done(α) ∧ 〈!〉 done(β), i.e. 〈!α〉> ∧ 〈!β〉>
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Thus, in full accordance with our maxim, a choice is permitted if and only if,
whatever alternative we choose, we will do at least an orange action. In addition,
our definitions agree with the intuition that being permitted to make a specific
choice coincides with (i) being presented with a number of alternatives and (ii)
being allowed to select one of them. Similarly, being obliged to make a specific
choice coincides with (i) being presented with a number of permitted alternatives
and (ii) being required to select one of them. More specifically, a choice is required
if and only if any action not instantiating at least one of the alternatives is red and,
whatever alternative we choose, we will do at least an orange action. As before,
what is interesting is that choosing may be risky, even when the choice is in fact
required. Yet, unlike before, once definition 13 is adopted, the Paradox of Choice
Permission and Ross’s Paradox are no longer derivable, as it is not difficult to
check.

Definition 14. Prescriptions on courses of action.

(i) A path is permitted: P(α;β) := P(done(α) ∧P(β));
(ii) A path is obligatory: O(α;β) := O(α) ∧O(done(α)→ O(β)).

Corollary 3. P(α;β)→ P(α) and O(α;β)→ O(α).

Hence, a path is permitted just in case either one of the following cases obtains:

1. 〈α〉 (I ∧ 〈β〉 I): the path is wholly green;

2. 〈α〉 (I ∧ 〈!β〉>): the path is green and then green/orange;

3. 〈!α〉 〈β〉 I: the path is green/orange and then green;

4. 〈!α〉 〈!β〉>: the path is wholly green/orange.

Our notion of permission of a course of action is thus a notion of process permis-
sion, in the sense of sections 2.3 and 3.1. In a similar way, our notion of obligation
of a course of action is a notion of process obligation. In fact, a course of action is
obliged if and only if either one of the following cases obtains:

1. 〈1〉 I ∧ [1](I → done(α)) ∧ [1](I ∧ done(α)→ O(β));

2. ¬ 〈1〉 I ∧ [!]done(α) ∧ [!](done(α)→ O(β)).

That is, if ideal stages are directly accessible, then doing α-and-then-β is obligatory
just in case ideal stages are accessible from the current situation only by doing α
and, in all such stages, β is effectively obligatory; if no ideal stage is directly
accessible, then doing α-and-then-β is obligatory just in case optimal stages are

25



accessible from the current situations only by doing α and, in all such stages, β is
effectively obligatory.

It is worth noting that the proposed concept of path permission is not subject
to Van Der Meyden’s paradox [16], according to which, if there is a way of killing
someone after which it is permitted to confess the crime, then it is permitted to
kill-someone-and-then-confess-the-crime. Formally: 〈α〉P(β) → P(α;β). Van
Der Meyden’s paradox follows from neglecting the difference between the fact that
a course of action ends in an ideal stage and the fact that the transitions leading to
this stage are permitted, in the sense that no step in the path infringes the law, or
fails to be what is recommended to the agent in the present circumstances. Our
notion of path permission allows us to avoid the paradox precisely because this
notion is defined by taking into account the way the path is: what is permitted is
not merely what possibly leads to a safe stage but what possibly leads to a safe
stage in a safe way. Thus, in the following model, 〈α〉P(β) → P(α) fails (as
above, arrows representing R and reflexive arrows are omitted).

v1 : I u1 : I

w : ¬P(α),¬P(α;β)

R1,S1

44

Rα // v2 : P(β)
R1 //

Rβ ,S1

66

u2

Furthermore, it turns out that, if we consider the notions of prohibition cor-
responding to those of basic and path permission just introduced, we can avoid
Anglberger’s paradox [2], according to which everything becomes forbidden once
a red action has been performed: F(α) → [α]F(β). Intuitively, this paradox fol-
lows from neglecting the difference between the absolutely ideal stages, in which
no norm is violated, and the relatively ideal stages, in which the best conditions
realizable by the agent in the present situation are in fact realized. Let us then
consider the following notions of prohibition on actions and courses of action.

Definition 15. Prohibitions on action and courses of action.

(i) F(α) := ¬P(α), i.e. [1](I → done(α)) ∧ [!](done(α));
(ii) F(α;β) := ¬P(α;β), i.e. [1](I ∧ done(α) → F(β)) ∧ [!](done(α) →

F(β)).

Given (ii), it is clear that F(α) → F(α;β). Yet, this does not lead to the
paradox, precisely because the notion of prohibition is here defined by taking into
account the intuition that, even in non-ideal stages, it is possible to act in an op-
timal way, given the circumstances. Accordingly, although reaching a stage by
performing a prohibited action can only give rise to prohibited courses of action,
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the fact that a course of action is prohibited is, by itself, not sufficient to exclude
the possibility that the last step constituting it is the best the agent can do in the
relevant situation, nor that this step actually leads, from this situation, to an ideal
stage.

Definition 16. Compensatory obligation.
(i) α is obligatory as compensation: O(β) ∧O(α | done(β))

Thus, an obligation is compensatory when its being effective depends on the
violation of other obligations. We analyse this phenomenon by assuming that it is
obligatory to do α after the violation of O(β) when β is obligatory at the current
stage and, in all the stages where this obligation is violated, α is obligatory. The
emergence of a contrary-to-duty obligation can then be modelled as follows. Let us
consider cases of contrary-to-duty obligations instantiating this standard schema:

You have to do β, but you don’t do it.

It ought to be that if you do β then you have to do α.

It ought to be that if you don’t do β then you have not to do α.

In our framework, the most intuitive analysis is based on the distinction be-
tween two stages: a stage w1, where β has not been performed yet, and a stage w2,
where β has been performed. Then, cases of contrary to duty obligations are cases
where an obligation is violated, whose fulfillment would have required to perform
an action α, and a compensatory obligation to perform the opposite action α arises.
As shown in figure 6, we thus get:

At w1: At w2:

O(β); O(α | done(β)); O(α | done(β)) done(β); O(α)

• •
w1 : w2 :

O(β)

[β]O(α)

[β]O(α)

done(β)
O(α)

Ideal

β

β

Figure 6: Contrary-to-duty obligations
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According to this analysis, the principal duty is given by a local obligation,
while the contrary-to-duty obligation is a conditional local obligation.6 In this
case, no contradiction follows, since any situation in which α is prohibited agrees
with the law, while the obligation to perform α only arises at stages where the law
is violated.7

As a final observation, we note that our notion of conditional obligation satis-
fies dynamical versions of ontic and deontic detachment. This can be seen at the
semantic level, where we have

DFD: dynamic factual detachment DDD: dynamic deontic detachment

M,w |= O(α | ϕ) and v ∈ R1(w)

M, v |= ϕ

––––––––––

M, v |= O(α)

M,w |= O(α | ϕ) ∧O(φ) and v ∈ R1(w)

M,v |= I

––––––––––

M,v |= O(α)

Remark 3. Besides being fundamental as tools to consistently express contrary to
duty obligations, it is worth briefly noting that conditional prescriptions also relate
in an interesting way to path prescriptions. Focusing on the concept of permission
just to give an idea, consider in fact the following:

(1) P (α) ∧P(β | done(α)), which is 〈α〉 I ∧ [α]P(β);

(2) P (done(α) ∧P(β)), which is 〈α〉 (I ∧P(β));

(3) P(α;β), which is P(α;β).

It is then evident that (1) → (2) → (3), while the converse implications do not
hold.

5 Conclusion

In this paper, we have proposed a basic system of action deontic logic which cap-
tures the fundamental distinctions needed to model deontic systems, intended as
systems of norms introduced to regulate action systems, and in which the main de-
ontic paradoxes arising in a dynamic framework can be overcome. The solutions to

6The first condition can be relaxed when modeling nested contrary-to-duty obligations.
7In [11], Meyer proposes a similar solution of the contrary-to-duty problem. In [2], Anglberger

shows that, due to the fact that Meyer’s notion of prohibition satisfies F (α) → [α]F (β), this solution
contradicts a basic intuition concerning the structure of the problem. We can see that our solution is
immune to this criticism.
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the paradoxes we have advanced are based on the introduction of two new deontic
categories, namely the categories of optimal stages and of recommended actions.
As we have seen, the interaction between these new categories and the standard
categories of ideal stages and ideal actions gives rise to a particularly rich analysis
of deontic concepts on stages, actions and courses of actions, which allows us to
identify the basic maxim: never perform a red action and, if you can, perform a
green action. It is noteworthy that, despite having the expressive power to account
for many important distinctions and concepts both at the ontic and at the deontic
level, our system ADL, supplied with the crucial notions of effective prescriptions
we have defined in it, is ultimately based on this maxim exclusively. As we have
shown, it is in this way that within ADL it is possible to account for intuitions that,
if neglected, lead to paradoxical consequences. To be sure, given our maxim, it is
natural to define original notions of choice permission and choice obligation that,
besides not being subject to standard paradoxes, also take into account the riski-
ness of choices. Similarly, notions of path permission and path obligation based
on the sequential application of our maxim do not incur in well-known paradoxes
concerning the sequential execution of actions. Within this very same framework,
an interesting notion of a compensatory obligation can also be introduced which
can be used to provide a consistent analysis of cases involving contrary-to-duty
obligations. Finally, we wish to emphasize once again that, under the plausible
assumption that it is always possible to act in an optimal way, our maxim gives rise
to concepts of permission and obligation which are indeed effective: if an action is
either permitted or obligatory in certain circumstances, then it is so independently
of whether or not, in those circumstances, some ideal stages are directly accessi-
ble; as a consequence, the actions of the agent can be qualified in a non-trivial and
consistent way, even in those case in which she cannot act so as to reach the ideal.
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