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Grassmann’s epistemology: multiplication and constructivism1 
Paola Cantù 

 
Introduction 

 
Grassmann’s epistemological insights have attracted less attention than his mathematical 
results. Mathematicians have considered him as a precursor of modern mathematical theories 
– vector algebra, exterior algebra, Clifford algebra, and geometric algebra –, paying attention 
to the development of mathematical results rather than to the philosophical differences 
between Grassmann’s own project and modern mathematical reconstructions [cf. Cartan 
1908; Hestenes 1986]. Historians of mathematics have analyzed the reception and influence 
of Grassmann (see for example the papers collected in [Schubring 1996]), and philosophers’ 
attention has been driven especially to the Introduction to the 1844 edition of 
Ausdehnungslehre, or to a comparison with other philosophers.2 

This paper will follow a different path, namely an inquiry on the reciprocal influences 
of Grassmann’s mathematical and philosophical insights, approaching Grassmann’s 
epistemology from the perspective of his mathematical work. The starting point will be an 
analysis of the notion of product between extensive magnitudes, to which the philosophical 
literature has paid insufficient attention. Several works of Grassmann will be examined, 
including the two editions of Ausdehnungslehre [A1, A2], Theorie der Ebbe und Flut 
[EBBE], Kurze Uebersicht über das Wesen der Ausdehnungslehre [Grassmann 1845], 
Geometrische Analyse [PREIS], Sur les différents genres de multiplication (SD) [Grassmann 
1855 seq.], and Der Ort der Hamilton’schen Quaternionen in der Ausdehnungslehre (HQ) 
[Grassmann 1877].3 

The second section of the paper will be devoted to a comparison with three vector-
based systems: vector analysis, exterior algebra, and geometric algebra. Considering 
similarities and differences with respect to these mathematical theories, the attention will be 
directed to some philosophical issues, such as the question of the homogeneity of the 
elements, the consideration of the domain as having a fixed or a variable number of 
dimensions, and the general properties of multiplicative operations. I will claim that there is a 
certain continuity in Grassmann’s epistemological program – contrary to the common 
tendency in the literature to emphasize the elements of discontinuity between A1 and A2.  

In the last section of the paper some aspects of Grassmann’s epistemology – the 
difference between numbers and magnitudes, the relation between geometry and extension 

                                                             
1 This work was completed with the support of ANR Chaire d’Excellence “Ideals of Proof”, Université de 

Nancy, Université de Paris 7 Diderot (France), but had its origin in my dissertation discussed at the University 
of Genova (Italy) in 2003. 

2 See for example the articles by A. C. Lewis on Schleiermacher [Lewis 1996] and M. L. Heuser on Schelling 
[Heuser 1996], or recent (yet unpublished) papers by S. Russ on Bolzano, A. C. Lewis on Cassirer, J. Riche on 
Whitehead, and M. Hartimo on Husserl. 

3 The 1844 and 1862 editions of the Ausdehungslehre and the latter two articles have been translated into 
English by L. C. Kannenberg [Grassmann 1995; 2000]. References are to the Grassmann’s Gesammelte Werke 
[HGW11-HGW32]; English quotations are taken (with some modifications) from the English translation. 
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theory, and the development of a constructivist approach to mathematics – will be related to 
the role played by the operation of multiplication in Grassmann’s mathematical theory.  
 
1  The product between extensive magnitudes 

 
To understand Grassmann’s notion of product between extensive magnitudes, one has first to 
introduce the concept of an extensive magnitude itself, which is not an easy task, especially if 
one wants to take into account the various definitions and names introduced by Grassmann in 
different works. Since I am interested here in the philosophical implications of the choice of 
characterizing extensional magnitudes by means of their product, I will only briefly 
summarize some relevant features of the definition of extensive magnitudes.4  

 
1.1  Extensive magnitudes 
In A1 Grassmann distinguished between a form (or thought form), which constitutes the 
general object of mathematics, and a concept of extensive magnitude which constitutes the 
object of extension theory, i.e. the mathematical theory that studies continuous forms 
generated by different elements. A form, or thought form, is defined as a “particular existant 
that has come to be by an act of thought” [Grassmann 1995, 24]. Each form is determined by 
its generating elements, which might be equal or different, and by its generating act, either 
continuous or discrete. Forms are thus classified according to opposite concepts: 
equal/different, discrete/continuous. On the basis of this partition of forms in four kinds, 
which is dependent on their laws of generation, Grassmann classified mathematics in four 
branches – Number Theory, Theory of Intensive Magnitudes, Combinatorial Theory, and 
Theory of Extensive Magnitudes –, and claimed that each one should be grounded 
independently. 

Grassmann introduced an extensive formation as the totality of elements obtained by 
variation of the generating element [HGW11, 28]. He then defined an extensive magnitude as 
the class of extensive forms that are generated according to the same law by means of equal 
variations [Grassmann 1995, 47], in other words, the class of all extensive formations that 
have the same direction, the same orientation and the same size. In modern parlance, an 
extensive magnitude of first grade is a vector, while an extensive formation of first grade is a 
bound vector. Continuous numbers are numerical magnitudes, obtained as the quotient of 
magnitudes of the same grade [HGW11, 130]. 

In A2 Grassmann seems to drop his former plan to build extension theory 
independently from all other mathematical branches, as he assumes from the beginning a 
continuous system of numbers, and he defines extensive magnitudes by means of them.5 The 

                                                             
4 I developed a more detailed analysis in the second part of my PhD thesis [Cantù 2003, 153–345], where the 

accent was put on the discontinuities between the two editions, and on Grassmann’s criticism of the 
‘traditional’ definition of mathematics as a theory of magnitudes. 

5 “I define as an extensive magnitude any expression that is derived from a system of units (none of which need 
to be the absolute unit) by numbers, and I call the numbers that belong to the units the derivation numbers of 
that magnitude; for example the polynomial a1e1 + a2e2 + … or Σ ae  or Σ
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use of numbers to define magnitudes seems to contradict A1, where numbers were introduced 
as quotients of magnitudes, but it is to be noted that Grassmann added that “the presentation 
chosen here very closely follows arithmetic, but in the sense that it assumes the numerical 
magnitude as a continuous magnitude”[Grassmann 2000, XIV], i.e. as one of the extensive 
magnitudes introduced in A1. Besides, the following passage – omitted without explanation in 
the English translation – shows that Grassmann still considered numerical magnitudes as 
derivable from the definition of extensive magnitudes: “If the system [of units, i.e. an 
extensive magnitude] consists only of the absolute unity (1), then the derived magnitude is not 
an extensive but a numerical magnitude” [HGW12, 12]. 
 
1.2  The product between extensive magnitudes 
Magnitudes of second, third, …and n-th grade were obtained by means of the introduction of 
a multiplication of the generating elements or units. In A2 for example v=a1e1+a2e2 is a 

quantity of first grade, while w=a1e1+a2e1e2 is a quantity of second grade.  

In EBBE, the inner (linear) product of two segments was defined as the algebraic 
product of a segment by the orthogonal projection of the second on the first [HGW31, 40, 
212]. A similar definition was maintained in A1, although the product was only briefly 
mentioned in the Introduction [HGW11, 11]. In A2 the inner product of two arbitrary 
magnitudes was defined by means of the outer product: it is equal to the outer product of the 
first by the supplement of the second, that is, [A|B] is the inner product of the magnitudes A 
and B. If the grade of A is a and the number of dimensions of the system is n, the grade of the 
supplement of A is n−a [HGW12, 93–94]. This definition thus includes in some sense the 
previously defined notion of inner product. 

In EBBE the ‘geometric’ product of two segments was the oriented surface of the 
parallelogram thereby delimited [HGW31, 30]. The definition of the ‘outer’ product in A1 
was analogous [HGW11, 80–81]. In SD [HGW21, 214–15] and in A2 [HGW12, 37–38] the 
definition was based on two axiomatic conditions: the outer product is anti-commutative: 
eres=eser, and it is equal to 0 when the magnitudes are linearly dependent: erer=0. 

In A1 Grassmann introduced another notion of product, which he called regressive 
product or ‘eingewandt’ (a sort of counter-product) [HGW11, 206]. The regressive product is 
relative to the system that the two extensive magnitudes have in common (e.g. the intersection 
of the systems they belong to), and the grade of the resulting magnitude depends on the 
number of dimensions of such a system. This system might vary, and the grade of the result 
varies according to the system. But the product of two magnitudes can also be considered as 
relative to a fixed system, e.g. to a system of dimension 3, as in the case of geometry 
[HGW11, 243], where the product can be considered as applied.6 If the grade of the result of 

                                                                                                                                                                                              
numbers and e1, e2 …form a system of units, is an extensive magnitude, specifically the one derived from the 
units e1, e2 … by the numbers a1, a2, …belonging to them” [Grassmann 2000, 4]. 

6 My use of the term ‘applied’ should not be confused with Grassmann’s use of the term ‘eingewandt’ to denote 
the regressive product as opposed to the outer or progressive product. An applied product, as I intend it, is a 
regressive product whose result is univocally determined, since it is relative to a fixed system. 
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the product is > n, < n, or = n, the product increases, decreases, or either increases or 
decreases the grade of the magnitudes. Geometry is an application of extension theory, 
exactly because of the 3-dimensionality of space: the product is always relative to it. In A2 the 
regressive product was not abandoned, as a general notion of a product relative to a system of 
given dimension was developed: the grade of the result of the product of two magnitudes A 
and B of grade q and r respectively in a domain of dimension n is defined as q+r (mod n) 
[HGW12, 66]. Progressive and regressive products correspond to the outer and to the inner 
product. The latter is generalized by means of the notion of the supplement of a given 
magnitude in a domain of fixed dimension, so as to decrease the grade of magnitudes, but still 
expresses orthogonality. It is precisely in A2 that the idea of introducing products as a means 
to increase but also decrease the dimension of the magnitudes themselves becomes fully 
explicit. It is exactly because this fact went generally unnoticed that a huge discontinuity 
between the two editions has been defended in the philosophical and mathematical literature. 
On the contrary, the general notion of product considered in A1 as relative to a variable 
domain is restricted in A2 to the case of what we have called an applied product, i.e. a product 
that is relative to a system of fixed dimension. This seems to be a consequence of 
Grassmann’s aim at unifying the two products under the name of a ‘product relative to a 
principal domain’. 

Finally, in HQ, a late writing that Grassmann published in order to prove the 
originality of his own theory with respect to Hamilton’s quaternions, a third kind of operation 
is considered: the median product, which is defined as the sum of the inner and the outer 
product [HGW21, 268]: ab= Λ[a|b]+µ[ab]. This notion of product has been later developed 
by Clifford, and by the defenders of geometric algebra [Hestenes 1986]. 
 
2  A comparative philosophical analysis 
 
In order to appreciate the philosophical interest of Grassmann’s ideas, I will briefly ccompare 
it to three other vector systems based on the notion of product: vector analysis, multivector 
algebra and geometric algebra.  

 
2.1  The product between vectors and multivectors 
The first approach has been developed by Gibbs and Heaviside in the case of a three-

dimensional space. They considered the case V=R3 and defined two products. The dot product 
of two vectors V × V → R is the product of the moduli of the vectors by the cosine of the 
angle between them: since the resultant is a scalar and not itself a vector, it is also called a 
scalar product. The cross product of two vectors V × V → V is defined as the vector that is 
perpendicular to both vectors, so directed that the triple of vectors might be a right triple, and 
whose modulus is equal to the product of the moduli by the sine of the angle between them. 
The cross product is thus itself a vector. The algebra generated by the dot product is different 
from the algebra generated by the cross product: the former is commutative, and not 
associative; the latter is anti-commutative and not associative. 
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The second approach, exterior algebra, is based on an operation of multiplication – the 

wedge product – defined as ∧ : Vn → Λ(V ), , which generates multivectors of different grade. 
Scalars are multivectors of grade 0: K = Λ0 (V). The domain of this algebra, which is 
associative and anti-commutative, is the direct sum of the subspaces containing the entities of 
a given grade k. V is thus itself a subspace of Λ(V ). 

Geometric algebra, first presented by D. Hestenes as a foundation for classical 
mechanics [cf. Hestenes and Sobczyk], was inspired by Clifford’s and Grassmann’s works. 
The main difference with respect to exterior algebra consists in the definition of a single 
notion of multiplication that allows the construction of a unique algebra for inner and outer 
product. The basic idea is to introduce a general product to explain – like Grassmann’s 
median product – both the increase and the decrease of a magnitude’s grade. The inner 
product a⋅b of two vectors a and b is considered as a product that decreases the grade, 
whereas the outer product a∧b is conceived as a product that increases the grade. As in 
multivector algebra, there are magnitudes of various grade, which are called scalars if K = 0, 
and k-blades if k > 0, to emphasise the fact that unlike scalars they have directional features. 

The geometric product is defined as the sum of the inner and outer product: 
ab=a⋅b+a∧b, where a and b are magnitudes of any grade. If a and b are 1-blades, i.e. vectors, 
the definition implies for example the addition of a scalar and a 2-blade, i.e. a bivector: 
geometrically interpreted, this means that one should add a number and an oriented plane 
segment. 

Other geometrical properties such as coplanarity or perpendicularity are expressed by 
means of the commutative or anti-commutative property of the product: vectors are collinear 
if and only if their geometrical product is commutative, and they are orthogonal if and only if 
the geometrical product is anti-commutative. Apart from the non-commutativity of 
multiplication, which of course has some consequences on the definition of division, the 
algebra thus obtained is very similar to the algebra of scalar quantities (numbers), and 
“facilitates the transfer of skills in manipulations with scalar algebra to manipulations with 
geometric algebra” [Hestenes 1986, 36]. 
 
2.2  Domain and homogeneity 
A comparison of the different ‘vector algebras’ raises some questions concerning the nature of 
the domain of extensive magnitudes. Is it closed under multiplication?  Is it possible to define 
addition between non homogeneous elements?  

In the Gibbs-Heaviside approach, the domain is closed under the additive and the 
multiplicative operation: the cross product of two vectors is again a vector, i.e. a magnitude of 
the same dimension. Besides, only homogeneous magnitudes are added or multiplied.  

Grassmann’s product on the contrary might produce magnitudes of higher or smaller 
grade; besides, it can be defined between magnitudes of different grade. Addition on the 
contrary is generally defined between homogeneous elements in such a way that the result is 
again an element of the same dimension [HGW12, 49]. Yet homogeneity properly applies 
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only to ‘real’ addition, and not to ‘formal’ addition.7 A kind of addition can be defined even 
between non homogeneous magnitudes, as it is the case in A1, where the addition of a 
segment and a point gives a point. But here the addition is just ‘formal’, and the symbol of 
addition has to be interpreted as a movement from one point to another point rather than as a 
concatenation of magnitudes [HGW11, 166]. The ‘formal’ addition is not a sum of extensive 
magnitudes, but an operation that shares the same algebraic properties.  

Exterior algebra similarly admits that the product might generate elements of different 
grade, but does not introduce a geometrical interpretation of addition of entities of different 
grade. Besides, the multivector space is generated by the wedge product from an n-tuple of 
one-dimensional vectors, so the multiplication is primarily introduced between homogeneous 
elements.  

The geometric product defined by Hestenes as the sum of an inner and an outer 
product is closed under the domain of k-blades. In other words the product is defined between 
any two graded magnitudes and is again a graded magnitude. Grassmann’s notion of a unique, 
applied product (i.e. relative to a principal domain) can be nicely described, yet the idea of a 
product of magnitudes relative to a variable domain can hardly be explained from this 
perspective, given the fact that the domain is closed under the product. Besides, geometric 
algebra explicitly refuses the law of homogeneity, arguing that it is not only possible but also 
useful to abandon this mathematical taboo [Hestenes 1986, 30]. 

This brief comparison between vector analysis, Grassmann’s extension theory, 
exterior algebra and geometric algebra has already shown that there are some differences, 
both from a technical and from a philosophical point of view with respect to Grassman’s own 
theory. On the one hand I have shown that modern algebras are not a complete description of 
Grassmann’s notion of extensive magnitude but rather capture only some aspects of a more 
general philosophical project. On the other hand I have directed attention to some 
philosophical questions that rise from the texts of Grassmann, as he distinguishes between the 
generation of a magnitude of grade n by means of a n-tuple of one-dimensional generators and 
an applied product, or between a non homogeneous formal addition and a homogeneous real 
addition.  
 
3  Conclusion 
 
As a conclusion, I will now claim that the product between extensive magnitudes is related to 
Grassmann’s non reductionist interpretation of the relation between numbers and magnitudes, 
to a new way of introducing the distinction between abstract and applied mathematics, and to 
the development of a constructivist approach in mathematics. 

In A1 continuous numbers are defined in the Newtonian’s way as the quotient of 
extensive magnitudes; in A2 they are used to define the notion of extensive magnitude, and 
they are introduced themselves as numerical magnitudes. In SD, the article written after 
Cauchy’s presentation at the French Academy of Sciences of his work on the ‘clefs 

                                                             
7 I thank Dominique Flament for directing my attention to this point. 
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algébriques’, the analysis of multiplication allows to better distinguish the main algebraic 
difference between numbers and magnitudes, i.e. the commutativity or anticommutativity of 
the product [HGW11, 214–15]. So, continuous numbers are defined by means of magnitudes, 
and not viceversa. Natural numbers are independently defined in the Lehrbuch der Arithmetik, 
as the result of a discrete generation from equal elements [LA, 2–3]. The independent 
foundation of arithmetic and extension theory has the aim of bringing attention to the 
structural similarities based on the analogy in the construction process. The product between 
extensive magnitudes is analogous to the operation of addition in arithmetic, because they are 
both generating laws. The product is used in the axiomatic definition of numbers and 
magnitudes: both are characterized by linearity, but the product of the former commutes, thus 
making the operations simpler, while the product of the latter does not, which makes it easier 
to “grasp the gradually emerging magnitudes in their simplest concepts” [Grassmann 
2000, 27]. Geometric algebra best explains Grassmann’s idea that numerical magnitudes can 
be indifferently defined as the quotient of two magnitudes of the same grade, or as the only 
magnitudes whose product commute, as it defines scalars as vectors of grade 0 that satisfy 
commutativity. The notion of product is thus essential in all works of Grassmann to grasp the 
difference between numbers and magnitudes, and also the reasons why he refuses a 
reductionist foundation of the former on the latter, or viceversa.  

Such a reductionism was quite widespread in analysis and in the development of 
algebra as a universal mathesis, but Grassmann developed a new notion of extensive 
magnitudes, based on abstract constraints concerning their multiplicative generation rather 
than on a definition of magnitude based on addition, order, and homogeneity conditions (as in 
the generalized theory of proportions). Besides, he classified the branches of mathematics 
according to their different operational rules, rather than on empirical criteria of abstraction or 
on the distinction of different species belonging to a common genus [cf. Cantù 2008]. In the 
case of extensive magnitudes the fundamental operational rule is exactly the product. Finally, 
considering geometry as an application of extension theory, and geometrical figures as 
multivectors generated by vectors rather than sets of points generated by a point, he suggested 
a radical alternative to analytical geometry. Grassmann’s epistemological shift in 19th century 
geometry is due to the previously mentioned factors, which are all connected to the 
introduction of a new notion of product between extended magnitudes: that’s the reason why 
the originality of Grassmann’s philosophical project cannot be appreciated without driving 
attention to the notion of product.  

In particular, the product is related to Grassmann’s constructivism, which is based on 
a different notion of generalization, and on the fact that the knowledge of mathematical forms 
relies on the understanding of the rules of generation of the forms themselves. Parting from 
the traditional definition of mathematics as a science of magnitudes, Grassmann considers 
mathematical forms as particulars rather than universals. Generalization is not conceived as an 
enlargement of a given domain by means of the addition of new elements; it is rather obtained 
by modifiying the defining conditions of the fundamental operations. In particular, the 
ambivalent role played by geometry in A1 and often reproached to Grassmann as an 
incapacity of achieving a truly abstract perspective, should be considered in the light of the 
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distinction between the ‘general’ notion of product defined in A1 for two magnitudes with 
respect to the domain generated by the magnitudes themselves (regressive product in its 
general formulation), and the ‘particular’, regressive, applied product defined both in A1 and 
in A2 with respect to a system of n dimensions. Geometry is an application of extension 
theory, essentially because multiplication in space is relative to the fixed number of 
dimensions of the space itself. This is the primary sense in which geometrical magnitudes are 
‘embodied’ extensive forms: the operations on geometrical figures are relative to a fixed 
system, the 3-dimensional space.  

The idea of considering as more ‘general’ the product relative to a variable domain – a 
domain that is not closed under the operation but rather a result of our carrying out the 
operation itself –, is one of Grassmann’s most interesting philosophical ideas that lacks an 
adequate representation in the mentioned mathematical theories. One could claim that the 
general notion of product (relative to a variable domain) was substituted in A2 by a general 
notion of product (relative to a principal domain) because of technical mathematical 
difficulties. The problem with this answer is that it does not take into account the fact that 
Grassmann never really abandoned the idea of considering operations as determined 
independently from the domain they are applied to. Firstly, both in SD and A2 Grassmann 
developed an axiomatic definition of the multiplication that is not relative to a principal 
domain. Besides, the refusal to admit a domain of elements given prior to, or independently 
from the generation of the elements themselves, is an idea that Grassmann never abandons, 
and a basic assumption of his epistemological “constructivism”. The latter is grounded on the 
distinction between formal sciences – where no constraint on the domain is taken as granted, 
and the forms are one and the same with their construction –, and real sciences, where some 
constraints are accepted from the onset, and forms are thus ‘embodied’ in a fixed domain. 
Grassmann’s constructivism is based on the idea that there are some fixed fundamental 
operations rather than a fixed domain; besides, a general notion is particularized when further 
conditions are fixed, as in the case of the regressive product which is less general, if 
considered as relative to a unique domain.  
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