
Dr
aft

Making sense of ‘genetic programs’:

biomolecular Post–Newell production

systems

Mihnea Capraru

Abstract. The biomedical literature makes extensive use of the concept of a genetic

program. So far, however, the nature of genetic programs has received no satisfactory eluci-

dation from the standpoint of computer science. This unsettling omission has led to doubts

about the very existence of genetic programs, on the grounds that gene regulatory networks

lack a predetermined schedule of execution, which may seem to contradict the very idea

of a program. I show, however, that we can make perfect sense of genetic programs, if

only we abandon the preconception that all computers have a von Neumann architecture.

Instead, genetic programs instantiate the computational architecture of Post–Newell Pro-

duction Systems. That is, genetic programs are unordered sets of conditional instructions,

instructions that fire independently when their conditions are matched. For illustration I

present a paradigm Production System that regulates the functioning of the well-known lac

operon of E. coli. On close reflection it turns out that not only genes, but also proteins encode

instructions. I propose, therefore, to rename genetic programs to biomolecular programs.

Biomolecular and/or genetic programs, and the cellular computers than run them, are to be

1



Dr
aft

understood not as von Neumann computers, but as Post–Newell production systems.

1 Background

In the biomedical literature we often encounter the concept of a genetic program. We read,

for instance, that “dynamic and diverse genetic programs … assemble the human central

nervous system … during development and maintain its function throughout life” (Cherry et

al. 2020); “YTHDF2 suppresses the plasmablast genetic program” (2022); “microglia express a

conserved core gene program of orthologous genes from rodents to humans” (Geirsdottir et

al. 2019); “[t]ranscriptome analysis of mouse and human sinoatrial node cells” also “reveals

a conserved genetic program” (Van Eif et al. 2019); there is such a thing as “[t]he genetic

program of hematopoietic stem cells” (2000); there is an “altered genetic program in senescent

human fibroblasts” (1990), and also a “genetic program for wound healing in human skin

fibroblasts” (2001). On an interesting side note, genetic programs these days are not only

naturally evolved, but also created—or as it were written—intentionally: thus we can read

about the “[g]enetic programming of macrophages to perform anti-tumor functions using

targeted mRNA nanocarriers” (Zhang et al. 2019). Thinking of genomes as programs can

be enticing, because we know, or we think we know, what a computer program is. But we

do not yet know, as I will argue, what a genetic program is. This is not because nothing

responds to the concept, but rather because we have not been thinking clearly enough about

the question. In this article I will attempt to rectify this issue and and to illuminate the nature

of genetic programs.

According to a simplistic and unrealistic picture, onewhichwemay label ‘programmatic

determinism’, a genetic program is simply a list of step-by-step instructions for making an

organism. Programmatic determinism is perhaps correctly attributed to conceptual pioneers

Jacques Monod and François Jacob. The latter in particular says:

What are transmitted from generation to generation are the ‘instructions’ spec-

2



Dr
aft

ifying the molecular structures: the architectural plans of the future organism.

(Jacob 2022[1970])

Notice the casual transition frommolecules to organisms. Few, of course, would in fact agree

that a genetic program specifies an architectural plan for the whole organism. As Richard

Dawkins memorably put it, genomes are not blueprints but recipes; they do not specify the

finished organism, but rather the steps of its development (1986:294–96).

Even the recipe metaphor, however, does not do full justice to the functional complexity

of genetic programs. One and the same cake recipe results in one and the same cake, but one

and the same genetic recipe results in different cells in different tissues.1 As Dawkins, of

course, knew quite well, the same gene does not do the same thing in every context. What

the gene does depends on the place, time, and circumstance at which it is switched on. In

other words, genes are best seen as specifying conditional instructions. Such an instruction

first evaluates a condition, a condition that involves the combined presence or absence of the

protein types known as transcription factors. Then, if the condition matches, the instruction

performs a certain action. The action, in turn, may result in the production of mRNA and

proteins, and the latter may themselves function as transcription factors that trigger further

conditional instructions.

This is why Eric Davidson has argued that ‘the regulatory genome’ “can be symbol-

ized, as in a computer program, by a series of conditional logic statements” (2006:54), as he

exemplifies:

if Runt and not (Myb or Z12) i1 = Runt(t)
else i1 = 0

if Oct i2 = i1
else i2 = 0

if P1 and not P3A2 i3 = P1(t)
else i3 = 0

1Goldschmidt 1927.

3



Dr
aft

if CBF i4 = 2⋄i3

else i4 = i3

i5=i2+i4

if TEF-1 i6 = 2⋄i5

else i6 = i5

(Davidson 2006:ED, p. 56)

In Davidson’s vision, the genetic program is thus a sequence of conditional instructions, to

which transcription factors function as inputs. A similar approach is proposed by Gary Mar-

cus (2004:60–66), who sees genetic programs as lists of conditional instructions executed “not

by a central processor but autonomously, by individual genes in individual cells” (2004:61).

If there are such things as genetic programs at all, then no doubt Davidson and Marcus

are moving in the right direction, because such programs must be sensitive to transcription

factors, and this sensitivity must be formalized by conditional instructions. Their approach,

however, is thus far incomplete, in a manner that opens it up to a significant objection. It is

this objection that will point our way forward.

2 Production systems and the missing schedule of

execution

In 2014 Ronald Planer argues against the very existence of genetic programs, on the grounds

that “there is no order in which these instructions can be properly said to be retrieved and

executed” (2014:39). Rather, says Planer, “the cell must simply be understood as retrieving

4



Dr
aft

and executing every one of these instructions simultaneously or in parallel” (2014:39). Ac-

cording to Planer, “[i]n a computer, the instructions in a program are contained in a memory

stack and are read by the central processor in a serial manner” (2014:39). As Planer correctly

points out, multi-threaded computing also executes instructions after a serial manner. Hence

we cannot simply reply to Planer that genetic programs are executed in parallel. More needs

to be said. As I contend, however, Planer’s objection is mistaken, and rests on an incom-

plete understanding of computational architectures. Furthermore, once we understand why

Planer is mistaken, we will also understand the correct architecture of genetic programs.

Planer’s mistake is this: He assumes as obvious the premise that all computer programs

are executed under the control of a central processing unit (CPU) according to a predeter-

mined schedule. In other words, he assumes that all computation proceeds according to

the von Neumann architecture. This assumption does correspond to the way that most of

us instinctively think about computer programs—the assumption, after all, is correct about

the kind of programs we usually write in C++, Java, Python, etc. But the assumption is not

correct in general. As we will see, computation can proceed according to non-von-Neumann

architectures without predetermined schedules of execution. Hence what Planer’s argumen-

tation tells us is not that genetic programs do not exist, but rather, that if genetic programs

exist then they are non-von-Neumann.

If not von Neumann, though, then what? Let us examine two possibilities. One was

raised by Roger Sansom in his excellent book of 2011. The other will constitute my proposal

in this article.

Sansom, to be clear, does not frame his argument in terms of genetic programs, but in

terms of gene regulatory networks (GRNs). A GRN is a set of genes some of which regulate

the rest, as well as each other, by producing transcription factors. What Sansom is concerned

with is to model the evolution of GRNs, and more importantly to prove their gradual, step-

by-step evolvability. To this end he argues that GRNs have the computational structure of

5



Dr
aft

artificial neural networks (ANNs). Genes receive inputs from other genes in the same way in

which ANN neurons receive inputs from other neurons. Furthermore, Sansom argues that

GRNs evolve in the same way in which ANNs are trained. Sansom’s objective is salutary,

and his proof of evolvability seems convincing. But while it is important to have evolvability

proofs, and to this end it may be useful to model GRNs as ANNs, ANN architecture does not

fully reflect the structure of genetic programs.

Recall that genetic programs are best seen as collections of conditional instructions. In

the simplest case, such an instruction is encoded by a set of cis-regulatory elements (CREs)

together with a coding region. CREs are genomic sites at which transcription factors may

bind, or fail to.2 CREs encode the condition of the conditional instruction, while the coding

region encodes the action:

IF (the CREs’s condition is satisfied) THEN (produce mRNA)

The CREs’s condition, in turn, is best seen as a logical complex built up with the truth-

conditional functors of propositional logic, e. g., and, or, not, xor:

IF (transcription-factor1 AND NOT transcription-factor2) THEN …

IF (transcription-factor3 OR transcription-factor4) THEN …

Transcription factors, as we see, function as variables whose logical combinations control the

computer’s behavior. It is precisely this kind of logical–symbolic computation that is prima

facie at odds with ANN computation. Whereas symbolic computationmanipulates strings of

discrete, localized symbolic tokens, ANNs computematrix products that propagate activation

holistically, from all neurons in one layer to each neuron in the next. It is possible, to be sure,

to use an ANN as the base level on which to implement a higher-level symbolic machine. But

2Let us note that cis-regulatory elements are not the only genes that encode instructions in biomolecular pro-
grams. CREs are located next to the structural genes that they regulate. Conditional instructions, however,
may also be encoded by genes located in trans, i. e., relatively far fromwhat they regulate. A classic example
is transvection (Lewis 1954). Transvection occurs in diploid organisms in which a gene A is regulated by
another gene B, with B located on the chromosome homologous to A’s.

6



Dr
aft

in this case it is the latter, higher-level machine that performs the symbolic computations,

while the ANN becomes an optional, redundant, and over-engineered implementation detail.

This, then, is why genetic programs cannot be understood as ANNs: genetic programs

are logical or symbolic, in that they execute instructions based on propositional-logical com-

binations of transcription factors. ANNs are not logical in that way; at best, they can be used

to implement symbolic computers on top of them. Hence although it is possible that GRN

evolution is well analogized to ANN training, genetic programs must instantiate a different

computational architecture.

This computational architecture, I maintain, is that of the Post–Newell production sys-

tem (Post 1943; Newell and Simon 1972). Such systems were introduced by Emil Post to study

the foundations of mathematics. Newell and Simon wanted to create human-like AI. We will

use them to understand the structure of genetic programs.

A Post–Newell production system is an unordered set of mutually independent condi-

tional instructions, of the form ‘IF pattern THEN action.’ All of these instructions read and

write to a common memory; furthermore, all instructions constantly scan the memory for

matches to their patterns. Once the patterns match, production systems differ in whether

they execute the actions serially or in parallel. When the actions are executed serially, it is

possible for the programmer to assign priorities to specific instructions. In the case of the

genome, however, the actions are executed not serially but in parallel.

It is of paramount importance that these instructions are unordered. Even if the pro-

grammer types the instructions in the form of a list of IF–THEN sentences, we can shuffle

that list in any arbitrary order, and it will still constitute exactly the same program. In the

next section I will exemplify a genetic production system. I will introduce the instructions

one by one, in the order in which they are best explained. But I could have introduced them

in any other order, at a cost only to the ease of explanation.

Recall, now, that Planer argues that genomes cannot encode programs, because such

7



Dr
aft

programs would lack a schedule of execution. As I have explained, however, a schedule of

execution is not necessary for something to constitute a program. There is also the kind

of program that consists precisely of conditional instructions that are executed without a

schedule: to wit, a parallel production system. This, then, is the computational architecture

of genetic programs.

3 A paradigm genetic/biomolecular program: the lac

operon

So far we have seen that if there are such things as genetic programs, then they are best

regarded as Post–Newell production systems. Let us now proceed to describe a paradigm

production system for the E. coli lac operon, itself a paradigm gene regulatory network.3

The prokaryote E. coli can metabolize both glucose and lactose, but it prefers the former.

This preference manifests in the activity of the lac operon, which is customarily inactive, but

activates when the cell needs to metabolize lactose. When the operon activates, it produces

a single mRNA, which in turn is translated into three proteins frequently referred to as LacA,

LacY (beta-galactoside permease),4 and LacZ (or β-galactosidase). LacY has the function to

allow extra-cellular lactose to cross into the cell through the cellular membrane. LacZ splits

or cleaves lactose into glucose and galactose. Hence ceteris paribus more lac activity leads

to more lactose, glucose, and galactose within the cell.

For the lac operon to activate, two conditions must be met: 1) the intracellular glucose

level must be low, and 2) the cell must contain some amount of lactose.5 For one thing, if there

is sufficient glucose, then the cell feeds on glucose, and it doesn’t matter whether lactose is

available or not. For another thing, even when glucose is absent, if no lactose is present

3Monod 1942; Monod and Cohn 1978[1952]; Jacob, Perrin, Sánchez, Monod, et al. 1960; Jacob and Monod
1961a; Jacob and Monod 1961b.

4Abramson et al. 2003.
5Monod 1942; Novick and M. Weiner 1957.

8



Dr
aft

either, then making LacY and LacZ would be a waste, so the operon does not activate. Only

when glucose is insufficient, but lactose is available, is the operon activated.

These rules are embodied in a conditional of the type we have discussed:

(1) IF there is no glucose but there is lactose THEN activate the lac operon

Let us pursue the details. The relevant Boolean variables are implemented by the transcrip-

tion factors cAMP–CRP and LacI.The cAMP–CRP complex6 is produced when glucose is low.

This complex is a lac activator; in its absence, lac remains inactive. LacI7 is a repressor; it

is usually bound to one or to several operator sites, so that RNA polymerase cannot bind to

the operon’s promoter. When lactose is absorbed into the cell, a small amount of its isomer

allolactose results. Allolactose binds to LacI and disables it either partially or completely.

When LacI is thus disabled, RNA polymerase can bind to the promoter. More formally:

(2) IF is-bound(cAMP-CRP) AND NOT is-bound(LacI)

THEN IF (rand() ≤ plac)

THEN bind RNApolymerase to lac

(3) IF is-bound(RNApolymerase, lac)

THEN produce(LacA) AND produce(LacY) AND produce(LacZ)

Let us explain the above. Logical constants are typeset in capitals: ‘IF’, ‘AND’, etc. Actions are

bold-faced. rand() is a function that returns a random real number between 0 and 1, while

plac is the probability that RNA polymerase will attach to lac when cAMP-CRP is present

and LacI absent. In English: if the relevant attachment sites contain cAMP-CRP but not

LacI, then bind RNA polymerase to lac; but do so only a certain percentage of the time (plac).

Furthermore, when RNA polymerase binds to lac, produce the three proteins LacA, LacY,

and LacZ.
6Perlman, Crombrugghe, and Pastan 1969; Beckwith, Grodzicker, and Arditti 1972; McKay and Steitz 1981;

Aiba, Fujimoto, and Ozaki 1982; Cossart and Gicquel-Sanzey 1982; Schultz, Shields, and Steitz 1991.
7Gilbert and Müller-Hill 1966; Beyreuther, Adler, Geisler, and Klemm 1973; Farabaugh 1978.

9



Dr
aft

Let us take a more detailed look at the operation of LacI. The lac operon is controlled

by three distinct operators, O1,8 O2, and O3.9 When LacI binds only to O1, it reduces lac

activity by 95%. Thus the operon is still somewhat active, and the cell retains a limited ability

to metabolize lactose. But when LacI binds to O1 and also to O2 or to O3, then the operon

loops and its activity is reduced by more than 99.9%.10

Therefore to the instruction (2) we will add (4), (5), and (6):

(4) IF is-bound(cAMP–CRP) AND is-bound(LacI, O1)

AND NOT is-bound(LacI, O2) AND NOT is-bound(LacI, O3)

THEN IF (rand() ≤ 0.95)

THEN block RNApolymerase at lac

ELSE IF (rand() ≤ plac)

THEN bind RNApolymerase to lac

(5) IF is-bound(cAMP–CRP) AND is-bound(LacI, O1) AND is-bound(LacI, O2)

AND NOT is-bound(LacI, O3)

THEN IF (rand() ≤ 0.999986)

THEN block RNApolymerase at lac

ELSE IF (rand() ≤ plac)

THEN bind RNApolymerase to lac

(6) IF is-bound(cAMP–CRP) AND is-bound(LacI, O1) AND is-bound(LacI, O3)

AND NOT is-bound(LacI, O2)

THEN IF (rand() ≤ 0.999978)

THEN block RNApolymerase at lac

ELSE IF (rand() ≤ plac)

THEN bind RNApolymerase to lac
8Gilbert and Maxam 1973.
9Reznikoff, Winter, and Hurley 1974.

10Oehler, Eismann, Krämer, and Müller-Hill 1990; Santillán and Mackey 2008; Narang 2007.

10



Dr
aft

In English, here is what the instructions above are saying: If there is too little glucose (if

cAMP–CRP is bound), and if the repressor LacI is bound only to O1, resp. both to O1 and

O2, resp. both to O1 and O3, then block RNA polymerase 95% of the time, resp. 99.9986%

of the time, resp. 99.9978% of the time. Otherwise, bind RNA polymerase plac × 100% of the

time.

Our instructions so far tell the cellular computer what to do depending on whether LacI

is bound to nothing, or to O1 alone, or to O1 as well as to one of the other operators O2 and

O3. What, though, determines whether LacI is likely to do one of these or another? It is the

presence and concentration of allolactose, which furnishes information on whether lactose

is available.

Interestingly, LacI and lac do not work on a simple on/off principle; rather, lac is best

described as having three modes: on, mostly-off, and almost-fully-off. This allows the cell to

modulate lac activity depending on the allolactose concentration: the more allolactose, the

more LacY and LacZ are worth producing.

Let us now ask: Which part of the computer is it that performs this adjustment? It is

not the genes themselves that do so. Instead, it is LacI, a protein. This brings us to a some-

what surprising conclusion: in order to make sense of ‘genetic programs’, we should perhaps

replace this very expression with a more extensive or inclusive one, to wit, biomolecular

programs.

Consider for illustration the following two instructions:

(7) IF neighbors(LacI, allolactose)

THEN bind(LacI, allolactose) into LacI+1allolactose

(8) IF neighbors(LacI+1allolactose, allolactose)

THEN bind(LacI+1allolactose, allolactose) into LacI+2allolactose

According to instruction (7), if a LacI molecule meets one allolactose molecule, they will

bind into a complex we may label LacI+1allolactose. This complex can no longer bind two

11



Dr
aft

operators at once, but it can still bind O1. Recall that if only O1 is bound, then lac activity

is only reduced by 95%; it is only when one of O2 and O3 is also bound, that lac turns off

almost completely.

According to instruction (8), if the LacI+1allolactose complex meets yet another allo-

lactose molecule, it now binds the second allolactose and becomes what we have labeled

LacI+2allolactose. This new compound can no longer bind even one single operator. lac is

therefore completely active:11

(9) IF neighbors(LacI, O1, O2) THEN bind(LacI, O1, O2)

(10) IF neighbors(LacI, O1, O3) THEN bind(LacI, O1, O3)

(11) IF neighbors(LacI, O1) THEN bind(LacI, O1)

(12) IF neighbors(LacI+1allolactose, O1) THEN bind(LacI+1allolactose, O1)

(13) IF neighbors(LacI+2allolactose, O1) THEN continue

Likewise for the activator cAMP–CRP:

(14) IF neighbors(CRP, cAMP) THEN bind(CRP, cAMP) into (cAMP–CRP)

(15) IF neighbors(cAMP–CRP, lac-promoter) THEN bind(cAMP–CRP, lac-promoter)

4 Further elucidation

Let us take a more explicit look at the way in which the lac operon instantiates the fea-

tures of a production system. First, recall that in a production system, all the conditional

instructions access the same common memory store, which they search for matches to their
11At the level of chemical hardware, the implementation is slightly more complex than our functional software

description above. LacI is a tetramer that can bind allolactose at each of its four constituent parts. If one
or two allolactose molecules bind on the same side of the tetramer (on the same dimer), what results is
functionally what we have labeled LacI+1allolactose. If two allolactose molecules bind on opposite sides of
the tetramer, then we obtain LacI+2allolactose.

12



Dr
aft

conditions. Within the cell, the memory store is implemented by the chemical landscapes of

the cytoplasm for prokaryotes, the nucleoplasm for eukaryotes, or once again the cytoplasm

for prokaryote-like organelles such as mitochondria and chloroplasts. Memory searching is

implemented in multiple ways. The simplest search consists of transcription factors diffus-

ing three-dimensionally through the intracellular soup. But transcription factors often bind

much faster than 3D diffusion would predict. This is because of additional search mecha-

nisms, of which one involves transcription factors sliding one-dimensionally down the DNA,

until they meet a gene they can bind to (Elf, Li, and Xie 2007).

As I emphasized, in a production system the conditional instructions are independent of

each other, in the sense that it only matters what the instructions say, but not in which order

they say it. For instance, (16) and (17) are two ways to write one and the same program:

(16) (a) IF condition1 THEN perform action1

(b) IF condition2 THEN perform action2

(17) (a) IF condition2 THEN perform action2

(b) IF condition1 THEN perform action1

In a cellular computer, the conditional instructions are also independent of each other.

Each instruction is triggered as soon as its condition matches, with no regard to whatever

may be going on elsewhere in the genome. There is no such thing in the cell as ‘the next

instruction,’ and no instruction needs to wait its time before another one has completed.

When an instruction is triggered, this is not because it comes next in some scheduled order:

it could just as well have been triggered sooner, if only the right transcription factors had

been present or absent at the right places.

I have also mentioned that a parallel production system is disanalogous from a multi-

threaded algorithm. But a multi-threaded algorithm is also executed in parallel. What, then,

is the disanalogy? While a multi-threaded algorithm does run on parallel threads, each such

13



Dr
aft

thread has its own schedule of execution. A production system, on the other hand, does

not have parallel schedules of execution: it has no schedules at all. Hence the disanalogy

between production systems and multi-threaded algorithms is the same as that between zero

schedules and multiple schedules.

In an irenic spirit, production systems may perhaps be conceptualized as trivially multi-

threaded, in the sense that each conditional instruction constitutes its own thread, on which

it ceaselessly scans for matches to its own condition.12 Perhaps; but a schedule with only

one entry is a schedule in name only. When Planer points out that genetic programs lack a

schedule of execution, he is implicitly referring to schedules that contain at least two entries,

of which one is executed simply because it is next, and because the other entry has completed.

This nontrivial kind of schedule is what von Neumann computation executes, whether it is

single-threaded or not. By contrast, in a cellular production system, instructions don’t wait

their turn.

Finally, programs running on a computer often engage in so-called inter-process com-

munication. This can take sundry forms, from ordinary files to locks, sockets, pipes, etc.

Interestingly, biomolecular programs possess the same ability, in the guise of cell signaling.

Conditional instructions in one cell can produce hormones, pheromones, or neurotransmit-

ters that activate further instructions in another cell. This plays a crucial coordinating role

during development, and helps to solve Goldschmidt’s problem of how one and the same

genome can produce all the different cells at all the right places within an organism.

5 Conclusion

Numerous cellular processes function according to computer-like programs. Such programs

are instantiated by basic building blocks as old as life itself. Unlike regular computer pro-

12It is also true that if we want to implement a production-system virtual machine on top of an ordinary von
Neumann computer, then it is an excellent idea to make the virtual machine multi-threaded. But this is an
implementation detail.

14



Dr
aft

grams, which are written by intelligent programmers, cellular programs result from the same

kind of undirected self-organization and natural selection as other biological adaptions. (An

exception, perhaps, is provided by certain products of genetic engineering.)

As we see in our paradigm description of a production system for the lac operon, it is

not only genes, but also proteins such as LacI that sense and process information within the

cell. I reiterate therefore my proposal to relabel genetic programs as biomolecular ones. At

the same time, I admit that one may prefer the old label, not because it is more descriptive,

but because it is more easily recognized.

Be that as it may, I have argued that genetic or biomolecular programs are disanalo-

gous from the kind of programming that is most frequently taught in schools and used in

real-world technological applications. Since our programs lack a predetermined schedule

of execution, they do not instantiate the von Neumann computational architecture. Rather,

they have turned out to be Post–Newell production systems. This latter architecture has been

created originally not to investigate genetic programs, but rather to model human cognition

and to create human-like AI. As it sometimes happens, however, fertile cross-polination be-

tween fields is now possible.

References

Abramson, Jeff, Irina Smirnova, Vladimir Kasho, Gillian Verner, H Ronald Kaback, and So

Iwata (2003). “Structure and mechanism of the lactose permease of Escherichia coli.” In:

Science 301, pp. 610–615.

Aiba, Hiroji, Shinji Fujimoto, and Norihito Ozaki (1982). “Molecular cloning and nucleotide

sequencing of the gene for E. coli cAMP receptor protein.” In: Nucleic Acids Research

10, pp. 1345–1361.

Beckwith, Jon, Terri Grodzicker, and Rita Arditti (1972). “Evidence for two sites in the lac

promoter region.” In: Journal of molecular biology 69, pp. 155–160.

15



Dr
aft

Beyreuther, Konrad, Klaus Adler, Norbert Geisler, and Alex Klemm (1973). “The amino-acid

sequence of lac repressor.” In: Proceedings of the National Academy of Sciences 70,

pp. 3576–3580.

Chen, Chih-Chiun, Fan-E Mo, and Lester F. Lau (2001). “The Angiogenic Factor Cyr61 Acti-

vates a Genetic Program for Wound Healing in Human Skin Fibroblasts*.” In: Journal

of Biological Chemistry 276, pp. 47329–47337.

Cherry, Timothy J, Marty G Yang, David A Harmin, Peter Tao, Andrew E Timms, Miriam

Bauwens, RandoAllikmets, EvanM Jones, Rui Chen, Elfride De Baere, et al. (2020). “Map-

ping the cis-regulatory architecture of the human retina reveals noncoding genetic vari-

ation in disease.” In: Proceedings of the National Academy of Sciences 117, pp. 9001–

9012.

Cossart, Pascale and Brigitte Gicquel-Sanzey (1982). “Cloning and sequence of the crp gene

of Escherichia coli K 12.” In: Nucleic acids research 10, pp. 1363–1378.

Davidson, Eric H. (2006). The regulatory genome: gene regulatory networks in develop-

ment and evolution. Academic Press.

Dawkins, Richard (1986). The blind watchmaker: why the evidence of evolution reveals

a universe without design. W. W. Norton & Company.

Elf, Johan, Gene-Wei Li, and X Sunney Xie (2007). “Probing transcription factor dynamics at

the single-molecule level in a living cell.” In: Science 316, pp. 1191–1194.

Farabaugh, Philip J (1978). “Sequence of the lacI gene.” In: Nature 274, pp. 765–767.

Geirsdottir, Laufey, Eyal David, Hadas Keren-Shaul, Assaf Weiner, Stefan Cornelius Bohlen,

Jana Neuber, Adam Balic, Amir Giladi, Fadi Sheban, Charles-Antoine Dutertre, et al.

(2019). “Cross-species single-cell analysis reveals divergence of the primate microglia

program.” In: Cell 179, pp. 1609–1622.

Gilbert, Walter and Allan Maxam (1973). “The nucleotide sequence of the lac operator.” In:

Proceedings of the National Academy of Sciences 70, pp. 3581–3584.

16



Dr
aft

Gilbert, Walter and BennoMüller-Hill (1966). “Isolation of the lac repressor.” In: Proceedings

of the National Academy of Sciences 56, pp. 1891–1898.

Goldschmidt, R. (1927). Physiologische theorie der vererbung. J. Springer.

Grenov, Amalie, Hadas Hezroni, Lior Lasman, Jacob H. Hanna, and Ziv Shulman (2022).

“YTHDF2 suppresses the plasmablast genetic program and promotes germinal center

formation.” In: Cell Reports 39.

Jacob, François (2022[1970]). The logic of life: a history of heredity. Princeton University

Press.

Jacob, François and Jacques Monod (1961a). “Genetic regulatory mechanisms in the synthesis

of proteins.” In: Journal of Molecular Biology 3.3, pp. 318–356.

— (1961b). “On the regulation of gene activity.” In: Cold Spring Harbor symposia on

quantitative biology. Vol. 26. Cold Spring Harbor Laboratory Press, pp. 193–211.

Jacob, François, David Perrin, Carmen Sánchez, Jacques Monod, et al. (1960). “The operon: a

group of genes whose expression is co-ordinated by an operator.” In: Compte Rendu de

l’Academie des Sciences 250, pp. 1727–1729.

Marcus, Gary (2004). The birth of the mind: how a tiny number of genes creates the

complexities of human thought. Basic Books.

McKay, David B andThomas A Steitz (1981). “Structure of catabolite gene activator protein at

2.9 Å resolution suggests binding to left-handed B-DNA.” In: Nature 290, pp. 744–749.

Monod, Jacques (1942). “Recherches Sur La Croissance Des Cultures Bactériennes.” In.

Monod, Jacques and Melvin Cohn (1978[1952]). “La biosynthèse induite des enzymes (adap-

tation enzymatique).” In: Selected Papers in Molecular Biology by Jacques Monod.

Academic Press, pp. 220–272.

Narang, Atul (2007). “Effect of DNA looping on the induction kinetics of the lac operon.” In:

Journal of theoretical biology 247, pp. 695–712.

Newell, A. and H.A. Simon (1972). Human Problem Solving. Prentice-Hall.

17



Dr
aft

Novick, Aaron andMiltonWeiner (1957). “Enzyme induction as an all-or-none phenomenon.”

In: Proceedings of the National Academy of Sciences 43, pp. 553–566.

Oehler, Stefan, Elisabeth R Eismann, Helmut Krämer, and Benno Müller-Hill (1990). “The

three operators of the lac operon cooperate in repression.” In: The EMBO journal 9,

pp. 973–979.

Perlman, Robert L, Benoit de Crombrugghe, and Ira Pastan (1969). “Cyclic AMP regulates

catabolite and transient repression in E. coli.” In: Nature 223, pp. 810–812.

Phillips, R. L., R. E. Ernst, Ivanova Brunk B., M. A. N. Mahan, J. K. Deanehan, K. A. Moore,

G. C. Overton, and I. R. Lemischka (2000). “The genetic program of hematopoietic stem

cells.” In: 288, pp. 1635–40.

Planer, Ronald J. (2014). “Replacement of the ‘Genetic Program’ Program.” In: Biology and

Philosophy 29, pp. 33–53.

Post, Emil (1943). “Formal reductions of the general combinatorial decision problem.” In:

American Journal of Mathematics 65, pp. 197–215.

Reznikoff, William S, Robert B Winter, and Carolyn Katovich Hurley (1974). “The location

of the repressor binding sites in the lac operon.” In: Proceedings of the National

Academy of Sciences 71, pp. 2314–2318.

Sansom, Roger (2011). “Ingenious genes: how gene regulation networks evolve to control

development.” In.

Santillán, Moisés and Michael C Mackey (2008). “Quantitative approaches to the study of

bistability in the lac operon of Escherichia coli.” In: Journal of the Royal Society In-

terface 5, pp. 29–39.

Schultz, Steve C, George C Shields, and Thomas A Steitz (1991). “Crystal structure of a CAP-

DNA complex: the DNA is bent by 90.” In: Science 253, pp. 1001–1007.

Seshadri, Tara and Judith Campisi (1990). “Repression of c-fos Transcription and an Altered

Genetic Program in Senescent Human Fibroblasts.” In: Science 247, pp. 205–209.

18



Dr
aft

Van Eif, Vincent WW, Sonia Stefanovic, Karel Van Duijvenboden, Martijn Bakker, Vincent

Wakker, Corrie De Gier-de Vries, Stéphane Zaffran, Arie O Verkerk, Bas J Boukens, and

Vincent M Christoffels (2019). “Transcriptome analysis of mouse and human sinoatrial

node cells reveals a conserved genetic program.” In: Development 146, dev173161.

Zhang, Fan, NN Parayath, CI Ene, SB Stephan, AL Koehne, ME Coon, EC Holland, and MT

Stephan (2019). “Genetic programming of macrophages to perform anti-tumor functions

using targeted mRNA nanocarriers.” In: Nature communications 10, p. 3974.

19


	1 Background
	2 Production systems and the missing schedule of execution
	3 A paradigm genetic/biomolecular program: the lac operon
	4 Further elucidation
	5 Conclusion

