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In this paper we propose a very general de�nition of combi-

nation of logics by means of the concept of sheaves of logics.

We �rst discuss some properties of this general de�nition and

list some problems, as well as connections to related work. As

applications of our abstract setting, we show that the notion

of possible-translations semantics, introduced in previous pa-

pers by the �rst author, can be described in categorial terms.

Possible-translations semantics constitute illustrative cases,

since they provide a new semantical account for abstract log-

ical systems, particularly for many-valued and paraconsistent

logics.
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1 SEMANTICS FOR ABSTRACT LOGICAL SYSTEMS: LOCAL

AND GLOBAL LOGICS

The concept of possible-translations semantics (also called

non-deterministic semantics) was introduced and discussed in

(Carnielli (1990)) and (Carnielli (forthcoming)) as a new seman-

tic approach to general logical systems, based on the idea of de�n-

ing new forcing relations combining simple semantics by means

of translations. Although several ideas on combinations of log-

ics can be found in the literature, as described for example in

(Blackburn & Rijke (1997)) and (Caleiro, Sernadas & Sernadas

(manuscript)), this approach o�ers a di�erent perspective to the

question, which leads to new semantics for general logics, includ-

ing several many-valued, paracomplete and paraconsistent logics.

A special form of possible-translations semantics called society

semantics, which is particularly apt for many-valued logics, has

been presented in (Carnielli & Lima-Marques (1999)).

The idea behind possible-translations semantics is to encom-

pass two or more basic semantic models (of the same similarity

type) in such a way as to de�ne a new logic which depends upon

the basic ones by means of a collection of translations. The ba-

sic models can be distinct copies of classical models, or distinct

many-valued models, or even Kripke models (for intuitionistic or

modal logics). In this sense, the basic models can be regarded as

local logics, while the more complex logic de�ned upon the basic

ones via translations can be seen as a global logic.

In the present paper we intend to give a more abstract account

of possible translations semantics, considering the basic models

as organized through sheaf structures. Sheaves have been used

in mathematics as a powerful tool for investigating relationships

between local and global phenomena, and seem to be a very apt

framework for generalizing the idea of possible translations.

In the case where sheaf theory is viewed in the abstract set-

ting of category theory we can pro�t from the rich expressiv-

ity of categories, which includes diagrams, limits and co-limits,
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and which permits interesting interpretations of operations on

sheaves. A similar account has been o�ered by J. Goguen in

(Goguen (1992)) where he proposes a theoretical framework for

concurrency in object-oriented programming systems. The idea

of using categorial methods for modeling concurrent processes

has also been proposed by L. Monteiro and F. Pereira in (Mon-

teiro & Pereira (1986)), and the basic intuitions explaining the

connections between object-oriented programming systems and

sheaves go as follows:

1) objects can be viewed as sheaves,

2) inheritance relations between objects can be viewed as sheaf

morphisms,

3) the systems correspond to diagrams of sheaves.

One of the most interesting consequences of this approach is

that the limits of such diagrams correspond to the behavior of

systems, modeling the dynamics of the underlying process.

We intend to show that an analogous treatment can be further

generalized to the problem of providing semantics for abstract

logical systems. Though we are more concerned with de�nitions

and basic examples than with deep results, we hope to be able

to motivate and illustrate the possibilities of the idea of combin-

ing logics by means of translations in the case where the set of

translations are endowed with general sheaf structures.

In section 2 we review some generalities on abstract logical

systems and the translations between them, and in section 3 we

recall the main points on possible-translation semantics. Section

4 presents the main ideas of our approach, and is devoted to

treating logics as presheaves and sheaves. Sections 5, 6 and 7

carefully explain several examples and their signi�cance for our

theory, and in section 8 we list some problems and related ques-

tions.
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2 GENERALITIES ON LOGICAL SYSTEMS AND TRANSLA-

TIONS

We recall here a general de�nition of logic, which has been

used in previous articles (cf. (Carnielli & D'Ottaviano (1997))).

A consequence (closure) operator over a set A is any function C

A

:

P(A)�!P(A) satisfying the following conditions, for X;Y � A:

(i) X � C

A

(X)

(ii) If X � Y , then C

A

(X) � C

A

(Y )

(iii) C

A

(C

A

(X)) � C

A

(X).

A set is closed (or is a theory) if C

A

(X) = X. It follows

trivially from these clauses that, for every X � A, C

A

(C

A

(X)) =

C

A

(X).

A (monotonic) logic is a pair L = hA;C

A

i where A is a non-

empty set, called the domain or the universe of L, and C

A

is

a consequence operation. When clause (ii) does not apply, the

resulting logic is non-monotonic. We restrict our treatment to

monotonic logics.

The general notion of translation between logical systems re-

gards translations as functions preserving consequence relations.

Given two logics L = hA;C

A

i and L

0

= hB;C

B

i a translation

from the logic L into the logic L

0

is a map f : A�!B such that,

for any X � A,

f(C

A

(X)) � C

B

(f(X)):

We call the logic L the source of the translation, and L

0

the target.

The map f is also called a consequence-continuous map because,

if we regard closed sets as analogue to topologically closed sets,

then f can be seen as the analogue of closed functions.

If f is a translation then, for any a 2 C

A

(X), one has that

f(a) 2 C

B

(f(X)), but the converse does not hold in general. In

the particular case in which `

L

and `

L

0

are syntactic consequence
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relations in the calculi L and L

0

, respectively, one has that f is

a translation if, and only if:

X `

L

' ) f(X) `

L

0

f('):

Several other interesting properties of translations have been de-

scribed in (Carnielli & D'Ottaviano (1997)).

In this paper we shall be concerned with logics regarded as

objects in a special category, whose arrows are in many cases

induced by translations between logical systems.

3 POSSIBLE-TRANSLATIONS SEMANTICS

Suppose we are given a logical system L = hA;C

A

i whose

semantics we are interested in investigating, and suppose that we

also have a class of systems L

�

= hB

�

; C

B

�

i (� 2 �), all having

the same type of similarity. Suppose that each L

�

is characterized

by a class of models M

�

2M , and that we would like to analyze

L in terms of fL

�

: � 2 �g. We de�ne a possible-translation

semantics for L as a pair

PT = hM;T i

where T is a class of translations � : A�!B

�

.

Given a particular translation � : A�!B

�

, the local forcing

relation j=

�

PT

for L over L

�

is de�ned by:

� j=

�

PT

� , �

�

`

�

�

�

;

read as \� forces � under the translation �" or \� is possibly

valid".

The concept of local forcing relation can be generalized con-

sidering not only one translation, but a collection of translations:

given a collection of translations T

�

� T , T

�

= f� : A�!B

�

: � 2

�g, the semi-global forcing relation j=

PT�

for L over fL

�

: � 2 �g

is de�ned by:

� j=

PT�

� , � j=

�

PT

�, for every � in T

�
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read as \� forces � under the translations in T

�

" or \� is neces-

sarily valid relative to T

�

".

Finally, the global forcing relation j=

PT

for L over the class

fL

�

: � 2 �g is de�ned by

� j=

PT

� , � j=

�

PT

�, for every � in T

read as \� forces � in PT" or \� is necessarily valid".

In intuitive terms, possible-translations can be seen as an ab-

straction of the possible-worlds in the usual Kripke semantics; in

the most simple case we do not consider any relations between

translations, but there are several possibilities of considering the

collections of translations subject to topological structures or spe-

cial relations (which we could see as an abstraction of accessibil-

ity relations between translations). In the most abstract form,

as we discuss in this paper, translations can be regarded as sheaf

morphisms.

We recall here some simple examples of possible-translations

semantics. As a particularly motivating example, possible-trans-

lations semantics PT = hM;T i, where M consists of two copies

fC

1

; C

2

g of classical logic, can be assigned to the many-valued

logics I

1

, P

1

and P

2

(cf. (Carnielli & Lima-Marques (1999)) and

(Marcos (1999))).

Other examples are the possible-translations semantics for

the paraconsistent calculi C

n

(cf. (Carnielli (1990)), (Carnielli

(forthcoming)) and (Marcos (1999))). In those cases, it can be

proven that, using certain three-valued logics as basic systems,

a new semantics can be given to these calculi. These semantics

are particularly interesting because, even granted that the global

(paraconsistent) logic is not truth-functional, the local (three-

valued) logics are truth-functional. Several other properties and

features of these paraconsistent logics are rendered clear by virtue

of their possible-translations semantics, as discussed in the above

mentioned papers.

We also recall the notion of society semantics, which are par-

ticular cases of possible-translations semantics. A society is a set
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of agents Soc = fAg

1

; Ag

2

; :::g, where each Ag

i

is a collection of

propositional variables V ar

i

in an underlying logical system S

i

.

An agent Ag

i

accepts a formula �, denoted by Ag

i

j= �, if �

is a semantical consequence of V ar

i

in S

i

.

We consider here, as a particular example, the case where the

logic of each agent is classical. A society is open (denoted by S

+

)

if it accepts � in case any of its agents accepts �.

A satis�ability relation for an open society S

+

is de�ned by:

(S1) S

+

j= p if there exists an agent Ag

i

in Soc s.t.

Ag

i

j= p;

(S2) S

+

j= :p if there exists an agent Ag

i

in Soc s.t.

Ag

i

6j= p;

(S3) S

+

j= :� if S

+

6j= �, for � non-atomic;

(S4) S

+

j= � ^ � if S

+

j= � and S

+

j= �;

(S5) S

+

j= � _ � if S

+

j= � or S

+

j= �;

(S6) S

+

j= �!� if S

+

6j= � or S

+

j= �.

It has been proven that society semantics also provides a char-

acterization for the three-valued systems P

1

(cf. (Carnielli &

Lima-Marques (1999))) and P

2

(cf. (Marcos (1999))). These sys-

tems are interesting three-valued logics because they are at the

same time paraconsistent and maximal, and have dual systems

with intuitionistic 
avor. They are however simple examples of

the possibilities of possible-translations semantics. In (Carnielli

(forthcoming)) and (Carnielli & Marcos (forthcoming)) it is also

shown how possible-translations semantics can be assigned to

other more complex systems, and the signi�cance of such seman-

tical accounts is discussed.

It should be remarked that possible-translations semantics

can be viewed as a procedure which works on two di�erent direc-

tions. First, analysing a logic system in terms of other systems,

as in the example we hove mentioned: we call this procedure

splitting logics. Second, possible translations semantics can also

be used to de�ne new systems, syntheting a new logic in terms

of combinations of other logics: we call this procedure splicing

logics.
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4 LOGICS AS SHEAVES

In this section we will introduce the de�nitions necessary to

achieve the main objective of this paper: to show that logics

satisfying certain properties can be seen as objects (actually, as

presheaves) in an appropriate category, and combinations of log-

ics can be represented as diagrams in this category. As already

mentioned, our approach is motivated by the paper of J. Goguen

on sheaves and concurrent objects (cf. (Goguem (1992))).

Here we will adopt the following point of view: given a propo-

sitional logic L as de�ned in section 2, with a sound and complete

semantics of valuations, the set of valuations over each U � V

(where V is the set of propositional variables) give us a local pic-

ture of L. That is: if we regard U as a set of basic facts in which

we are occasionally interested, then the set of L-valuations over

U provides an atlas of the true propositions and inference rela-

tions in L concerning the facts in U (since we assume that the

set of L-valuations is adequate).

This (semantic) approach de�nes a logic as sets of observa-

tions (each valuation v can be seen as an observation of the facts

in U). A desirable property of these logics would be coherence:

if two L-valuations v and v

0

over U and V , respectively, are com-

patible (that is, they coincide in U\V ), then we expect that both

v and v

0

could be extended to U[V , which we call a join of v and

v

0

. Logics satisfying this property will be called �nite sheaves in

this category. If every set of L-valuations compatible pairwise

have a join, then we have a sheaf. If, additionally, we require this

join to be unique, then we have, respectively, extensional �nite

sheaves and extensional sheaves. In all cases, these logics can be

seen metaphorically as coherent sets of observations. We will see

throughout this paper examples of logics of each type described

above.

Since the restriction of an L-valuation v over U to V � U is

again an L-valuation, then the logics considered are presheaves
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in the language of category theory. Morphisms, as expected,

are de�ned as natural transformations between the presheaves

or, more simply, as families of maps indexed by U � V which

take L-valuations over U into L

0

-valuations over U preserving

the restrictions to all the subsets V � U . Usually, translations

between logics will induce morphisms of logics.

Finally, combinations of logics will be represented as diagrams

in the category of logics, that is to say, typically a family of ob-

jects (logics) and arrows between them (relations). The behavior

of that diagram will be a new object of the category, that is, a

new logic, representing \the logic of the system of logics". This

behavior can arise as the categorial limit or the categorial col-

imit of the diagram representing the system of combined logics.

In general, the limit will represent the theorems of the resulting

logic, whereas the colimit will represent deductions.

De�nition 4.1 Let V = fp

i

j i 2 !g be a denumerable set

of propositional variables. The category L

V

of logics over V is

de�ned by the following:

� Objects: Let � be a propositional signature over V (that is,

a set of logical constants and a set of n-ary connectives, for each

n 2 !), and let F

�

(U) be the set of �-formulas over U � V.

F

�

(U) is a free algebra of type � generated by U . Let T be a

nonempty set (of truth-values) and D � T a nonempty set (of

designated values). An object O of L(V) is a family of sets

O(U) � T

F

�

(U)

(U � V).

Elements in O(U) are called valuations (or sections) over U . El-

ements in O(V) are called global sections of O. We will also

assume that, if U � V and v : F

�

(V )�!T is a valuation, then

v

jF

�

(U)

: F

�

(U)�!T

is also a valuation. Objects in L

V

will be called V-logics or simply

logics.
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�Morphisms: Let O and O

0

be logics. A morphism ' : O�!O

0

in L

V

from O to O

0

is a family of maps

'

U

: O(U)�!O

0

(U) (U � V)

satisfying:

'

V

(v)

jF

�

(U)

= '

U

(v

jF

�

(U)

)

for every v 2 O(V ) and U � V . The class of morphisms in

L

V

from O to O

0

will be denoted by hom

V

(O;O

0

), or simply

hom(O;O

0

).

�Composition: The composition of morphisms is de�ned point-

wise, that is: if ' : O

1

�!O

2

and  : O

2

�!O

3

are morphisms,

then  � ' : O

1

�!O

3

is de�ned by ( � ')

U

=  

U

� '

U

for each

U � V. 2

If v 2 O(V ) and U � V , then v

jU

will stand for v

jF

�

(U)

(provided

that the underlying signature � is clear). It is clear that we have

the following:

U

i

,!V induces a mapping O(i) : O(V )�!O(U) de�ned

via v 7! v

jU

satisfying the following condition:

U

j

,!V

i

,!W induces O(W )

O(i)

�!O(V )

O(j)

�!O(U)

in such a way that

O(i � j) = O(j) � O(i), O(id

U

) = id

O(U)

.

This means that each logic is a (contravariant) functorO : (V; � )

�!Set, that is, a presheaf. The morphisms in L

V

are simply

presheaf morphisms.
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De�nition 4.2 A logic O is a �nite sheaf if it satis�es: for a

given v 2 O(U) and v

0

2 O(V ) such that v

jU\V

= v

0

jU\V

, then

there exists w 2 O(U [ V ) such that w

jU

= v and w

jV

= v

0

. If

w is unique, then O is an extensional �nite sheaf. O is a sheaf

if it satis�es: for a given family fv

i

g

i2I

of valuations, v

i

2 O(U

i

)

(i 2 I), such that v

i

jU

i

\U

j

= v

j

jU

i

\U

j

(i; j 2 I) then there exists

w 2 O(

S

i2I

U

i

) such that w

jU

i

= v

i

for all i 2 I. If this w is

unique then O is an extensional sheaf. 2

Proposition 4.3 A logic O is a �nite sheaf i� for every �nite set

fv

1

; :::; v

n

g such that v

i

2 O(U

i

) and v

i

jU

i

\U

j

= v

j

jU

i

\U

j

(i; j =

1; :::; n) there exists w 2 O(

S

n

i=1

U

i

) such that w

jU

i

= v

i

for every

i = 1; :::; n.

Proof: By a straightforward induction. 2

De�nition 4.4 A logic O over �, T and D � T is algebraic

if T is an algebra similar to F

�

(V) and each v 2 O(U) is a

homomorphism; therefore v is determined by fv(p) j p 2 Ug.

2

De�nition 4.5 Let O be a logic, and �[ f�g � F

�

(U). We say

that � is valid in O if v(�) 2 D for all v 2 O(U). We say that �

is a consequence of � in O if, for all v 2 O(U), v(�) � D implies

v(�) 2 D. j=

O

� and � j=

O

� will denote that � is valid in O

and � is a consequence of � in O, respectively. Of course j=

O

�

i� ; j=

O

�. 2

We now de�ne combinations of logics as (categorial) diagrams

in the category L

V

.

De�nition 4.6 A combination of logics is a diagram in L

V

, that

is, a pair D = hO;Mi where O = fO

i

g

i2I

is a (possibly empty)

family of objects in L

V

and M �

S

i;j2I

hom(O

i

;O

j

) is a (possi-

bly empty) family of morphisms. 2
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De�nition 4.7 Let D = hO;Mi be a diagram.

1) A limit for D is a logic O and a family of morphisms '

i

:

O�!O

i

(i 2 I) such that ' � '

i

= '

j

for each ' : O

i

�!O

j

in

M . Additionally, the limit hO; f'

i

g

i2I

i must satisfy the following

universal property: given hO

0

; f 

i

g

i2I

i such that  

i

: O

0

�!O

i

(i 2 I) and, for each ' : O

i

�!O

j

in M , ' �  

i

=  

j

, then there

exists an unique  : O

0

�!O such that '

i

�  =  

i

for all i 2 I.

This implies that the limit of a diagram D, if it exists, is unique

(up to isomorphisms).

2) Dually, a colimit for D is a logic O and a family of morphisms

�

i

: O

i

�!O (i 2 I) such that �

j

� ' = �

i

for each ' : O

i

�!O

j

in M . Additionally, the colimit hO; f�

i

g

i2I

i must satisfy the

following universal property: given hO

0

; f 

i

g

i2I

i such that  

i

:

O

i

�!O

0

(i 2 I) and, for each ' : O

i

�!O

j

in M ,  

j

� ' =  

i

,

then there exists an unique  : O�!O

0

such that  � �

i

=  

i

for all i 2 I. This implies that the colimit of a diagram D, if it

exists, is unique (up to isomorphisms). 2

Example 4.8 Let D = hfO

i

g

i2I

; ;i with an empty set of arrows.

It follows that the limit of D (if it exists) is the product

Q

i2I

O

i

in L

V

, and the colimit of D is the coproduct

`

i2I

O

i

in L

V

. 2

Proposition 4.9 Let D = hfO

i

g

i2I

;Mi be a diagram such that

�

i

= � for all i 2 I. Under these conditions, the limit O of D

exists, and moreover O is an extensional (respectively an exten-

sional �nite) sheaf if each logic O

i

is also an extensional (respec-

tively an extensional �nite) sheaf.

Proof: Let T =

Q

i2I

T

i

and D =

Q

i2I

D

i

� T (products com-

puted in Set). Let's consider, for each U � V, families v =

hv

i

i

i2I

satisfying:

(i) v

i

2 O

i

(U) (i 2 I);

(ii) if there exists ' : O

i

�!O

j

in M , then v

j

= '

U

(v

i

).
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Item (ii) implies that, if '; : O

i

�!O

j

in M , then v

i

satis�es:

'

U

(v

i

) =  

U

(v

i

). Let's de�ne

O(U) = fv : F

�

(U)�!T j v = hv

i

i

i2I

and v satis�es (i)-(ii)g

(thus O(U) is possibly empty). Observe that for all � 2 F

�

(U)

and v 2 O(U), v(�) = hv

i

(�)i

i2I

. Since v

jV

(�) = hv

i

jV

(�)i

i2I

then v

jV

2 O(V ) (V � U), and thus O is a logic. We will show

that O is the limit of D. De�ne '

i

: O�!O

i

, ('

i

)

U

(v) = v

i

. If

' : O

i

�!O

j

in M , then

'

U

(('

i

)

U

(v)) = '

U

(v

i

) = v

j

= ('

j

)

U

(v);

so ' � '

i

= '

j

. Let O

0

be a logic and let  

i

: O

0

�!O

i

be a

morphism for all i 2 I such that ' �  

i

=  

j

for all ' : O

i

�!O

j

in M . De�ne  : O

0

�!O as  

U

(w) = h( 

i

)

U

(w)i

i2I

. If ' :

O

i

�!O

j

in M , then '

U

(( 

i

)

U

(w)) = ( 

j

)

U

(w), thus  

U

(w) 2

O(U). Since ('

i

)

U

( 

U

(w)) = ( 

i

)

U

(w), then '

i

�  =  

i

for all

i 2 I. Suppose now that  

0

: O

0

�!O,  

0

U

(w) = hv

w

i

i

i2I

such

that '

i

�  

0

=  

i

for all i 2 I. Then

( 

i

)

U

(w) = (('

i

)

U

�  

0

U

)(w) = ('

i

)

U

( 

0

U

(w)) = v

w

i

for all i 2 I, whence  

0

=  . This shows that hO; f'

i

g

i2I

i is the

limit of D.

Finally, let's suppose that every O

i

is an extensional �nite

sheaf; we will prove that O is, as well. In order to prove this,

let v 2 O(U) and v

0

2 O(V ) such that v

jU\V

= v

0

jU\V

; then

v

i

jU\V

= v

0

i

jU\V

for all i 2 I. Since each O

i

is an extensional

�nite sheaf, then there exists a unique w

i

2 O

i

(U [ V ) such

that w

i

jU

= v

i

and w

i

jV

= v

0

i

for all i 2 I. We will show that

w = hw

i

i

i2I

is in O(U [ V ). Let ' : O

i

�!O

j

in M ; then

v

j

= '

U

(v

i

) and v

0

j

= '

V

(v

0

i

). Thus

v

j

= '

U

(v

i

) = '

U

(w

i

jU

) = '

U[V

(w

i

)

jU

and

v

0

j

= '

V

(v

0

i

) = '

V

(w

i

jV

) = '

U[V

(w

i

)

jV

:

13



Therefore '

U[V

(w

i

) = w

j

, since O

j

is extensional, showing that

w 2 O(U[V ). It is clear that w

jU

= v, w

jV

= v

0

, and that w is the

unique valuation with this property, so O is an extensional �nite

sheaf. The proof for the case of extensional sheaves is similar.

2

Corollary 4.10 Let fO

i

g

i2I

be a family of logics over a signa-

ture �. Under these conditions the product O =

Q

i2I

O

i

exists,

and O is an extensional (respectively an extensional �nite) sheaf

provided that each O

i

is an extensional (respectively an exten-

sional �nite) sheaf. Moreover, � is valid in O i� � is valid in O

i

for all i 2 I.

Proof: By proposition 4.9 there exists the limit O of D =

hfO

i

g

i2I

; ;i. Clearly O =

Q

i2I

O

i

. By the construction de-

scribed in the proof of proposition 4.9 we have that

O(U) = fv : F

�

(U)�!

Y

i2I

T

i

j v = hv

i

i

i2I

and v

i

2 O

i

(U)

(i 2 I)g:

The rest of the proof is immediate. 2

Proposition 4.11 Consider �xed �, T and D � T . If I is a

linearly ordered set, consider a chain fO

i

g

i2I

of logics over �,

T , D such that, for all U , O

i

(U) � O

j

(U) if i � j. Let '

j

i

:

O

i

�!O

j

be the inclusion morphism (i � j), that is: ('

j

i

)

U

(v) =

v if i � j. Let D be the diagram hfO

i

g

i2I

; f'

j

i

g

i � j

i. It follows

that O(U) =

S

i2I

O

i

(U) is the coproduct of D, and O is a �nite

sheaf provided that every logic O

i

is a �nite sheaf. Moreover, if

every nonempty subset of I has an upper bound in I then O is

a sheaf (respectively, an extensional sheaf) provided that every

logic O

i

is a sheaf (respectively, an extensional sheaf).

Proof: O(U) =

S

i2I

O

i

(U) is a logic over �, T and D. In

fact, if v 2 O(U) then there exists i 2 I such that v 2 O

i

(U).

14



So, for all V � U , v

jV

2 O

i

(V ) and then v

jV

2 O(V ). For all

i 2 I let's consider �

i

: O

i

�!O, (�

i

)

U

(v) = v. We will prove

that hO; f�

i

g

i2I

i is the coproduct of D. It is not di�cult to see

that �

j

� '

j

i

= �

i

for all i � j. Suppose that O

0

is a logic and

 

i

: O

i

�!O

0

such that  

j

�'

j

i

=  

i

for all i � j. If v 2 O

i

(U) and

i � j then ( 

i

)

U

(v) = ( 

j

)

U

(('

j

i

)

U

(v)) = ( 

j

)

U

(v). Similarly, if

v 2 O

j

(U) and i � j then ( 

i

)

U

(v) = ( 

j

)

U

(v). It follows that

the maps  

U

: O(U)�!O

0

(U),  

U

(v) = ( 

i

)

U

(v) (if v 2 O

i

(U))

are well-de�ned for all U and produce a morphism  : O�!O

0

such that  � �

i

=  

i

for all i 2 I. Suppose that  

0

: O�!O

0

is

such that  

0

� �

i

=  

i

for all i 2 I, and let v 2 O

i

(U). It follows

that

 

0

U

(v) =  

0

U

((�

i

)

U

(v)) = ( 

0

U

� (�

i

)

U

)(v) = ( 

i

)

U

(v);

whence  

0

=  . This shows that hO; f�

i

g

i2I

i is the coproduct of

D.

Finally, we will prove that O is a �nite sheaf if every O

i

is

a �nite sheaf. Let v 2 O(U) and v

0

2 O(V ) such that v

jU\V

=

v

0

jU\V

. There exists i; j 2 I such that v 2 O

i

(U) and v

0

2 O

j

(V ).

Without loss of generality we can suppose that i � j, thus v 2

O

j

(U). Hence there exists w 2 O

j

(U [V ) such that w

jU

= v and

w

jV

= v

0

. Since w 2 O(U [ V ) we have that O is a �nite sheaf.

The proofs for the cases of sheaves and extensional sheaves are

similar. This concludes the proof. 2

5 FIRST EXAMPLE: BIASSERTIVE SOCIETIES

In this and the subsequent section we will give categorial ex-

amples of the process we have called splitting logics.

As a �rst application of our categorial approach to logics, we

will rephrase in categorial terms the (open and closed) biassertive

societies introduced in (Carnielli & Lima-Marques (1999)). In

this example, an agent Ag can be identi�ed with a set C � V,

viewed as the set of variables accepted by Ag; moreover, we sup-

pose that Ag is endowed with classical logic. Throughout this
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section, � will denote the signature of the classical propositional

calculus over V. We can de�ne an extensional sheaf O represent-

ing Ag as follows:

O(U) = fv

U

g; v

U

: F

�

(U)�!2 is a classical valuation s.t.

v

U

(p) = 1 i� p 2 U \C:

Given a closed biassertive society S

�

= fC

i

g

i2I

(cf. (Carnielli

& Lima-Marques (1999))), where C

i

represents an agent Ag

i

, we

have that

S

�

j= p i� p 2

T

i2I

C

i

,

S

�

j= :p i� p 62

S

i2I

C

i

, and

S

�

j= � is de�ned classically if � 6= p, � 6= :p.

In our setting, the systems S

�

and S

+

can be presented as

O

S

�(U) = fv

U

�

g; v

U

�

: F

�

(U)�!2; v

U

�

(�) = 1 i� S

�

j= �;

O

S

+(U) = fv

U

+

g; v

U

+

: F

�

(U)�!2; v

U

+

(�) = 1 i� S

+

j= �:

Moreover, the fact that the internal logic of open (respectively

closed) biassertive societies is P

1

(respectively I

1

) is represented

as follows: for all U � V set

O

+

(U) = fv : F

�

(U)�!2 j v = v

U

+

for some S

+

g

=

[

fO

S

+
(U) j O

S

+
is open biassertiveg;

O

�

(U) = fv : F

�

(U)�!2 j v = v

U

�

for some S

�

g

=

[

fO

S

�
(U) j O

S

�
is closed biassertiveg:

Thus, if OS is the family of open biassertive societies and CS is

the family of closed biassertive societies, thenO

+

is the coproduct

of D

+

= hOS; ;i and O

�

is the coproduct of D

�

= hCS; ;i .

Proposition 5.1 O

+

and O

�

are extensional sheaves.
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Proof: Let fv

�

g

�2�

be a compatible family of valuations in O

+

,

that is, v

�

2 O

+

(U

�

) (� 2 �) such that, for each �; � 2 �,

v

�

jU

�

\U

�

= v

�

jU

�

\U

�

:

Let U =

S

�2�

U

�

. The map w(p) = v

�

(p) if p 2 U

�

, and

w(:p) = v

�

(:p) if p 2 U

�

, is well-de�ned. Extend w to a map

w : F

�

(U)�!2 as follows:

w(:�) = 1 i� w(�) = 0, if � 62 U ;

w(� ^ 
) = 1 i� w(�) = w(
) = 1;

w(� _ 
) = 1 i� w(�) = 1 or w(
) = 1;

w(�!
) = 1 i� w(�) = 0 or w(
) = 1.

Let fC

�

i

g

i2I

�

be the agents associated to v

�

; note that C

�

i

� U

�

(i 2 I

�

) for each � 2 �. For s 2

Q

�2�

I

�

let C

s

=

S

�2�

C

�

�

�

(s)

,

where �

�

:

Q

�2�

I

�

�!I

�

is the canonical projection. It is easy

to see that w is the valuation associated to the family fC

s

j s 2

Q

�2�

I

�

g. Thus w 2 O

+

(U) such that w

jU

�

= v

�

for all � 2 �.

Obviously w is unique. The proof for O

�

is analogous. 2

From the theorems of soundness and completeness given in (Lima-

Marques (1992)) and (Carnielli & Lima-Marques (1999)) we ob-

tain sheaf isomorphisms

' : O

P

1�!O

+

;  : O

I

1�!O

�

where O

P

1
and O

I

1
are the sheaf canonical representations of

the logics P

1

(cf. (Sette (1973))) and I

1

(cf. (Carnielli & Lima-

Marques (1999))), respectively. SinceO

+

andO

�

are the colimits

of the limits O

S

+ and O

S

� , we see the categorial realization of

the fact that the internal logic of open societies is P

1

and I

1

,

respectively. Each O

S

+
is a limit, that is, the behavior of a

system (of agents). It follows that D

+

= hOS; ;i is a diagram

of system diagrams. According to (Goguen (1992)), the behavior
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of a diagram of system diagrams is the colimit of the diagram,

therefore

O

P

1 ' O

+

= colim D

+

;

says that P

1

is the (internal) logic of open biassertive societies.

Dually,

O

I

1
' O

�

= colim D

�

expresses the fact that I

1

is the (internal) logic of closed bi-

assertive societies.

The generalization of this technique to triassertive societies

is straightforward, and analogous results can be obtained.

6 SECOND EXAMPLE: POSSIBLE-TRANSLATIONS SEMAN-

TICS FOR C

1

The second application of our language is the possible-transla-

tions semantics for the paraconsistent calculus C

1

given in (Car-

nielli (forthcoming)) and (Marcos (1999)). In these papers it is

shown that C

1

can be explained by a family TR of translations

from C

1

to a three-valued logicW

3

which has a matrix semantics,

in the framework of possible-translation semantics. Let's consider

�

0

, T = fT;T

�

;Fg and D = fT;T

�

g as the components of W

3

;

therefore

O

3

(U) = fw : F

�

0

(U)�!T j w is a homomorphism g

(for all U � V) is an extensional sheaf in L

V

that represents W

3

.

If � is the (classical) signature for C

1

, then

O

1

(U) = fv : F

�

(U)�!2 j v is a C

1

-valuation g

(for all U � V) is a logic in L

V

that represents C

1

, where T = 2

and D = f1g.

Proposition 6.1 O

1

is a sheaf.
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Proof: Let fv

�

g

�2�

be a compatible family of valuations in O

1

,

that is, v

�

2 O

1

(U

�

) (� 2 �) such that, for each �; � 2 �,

v

�

jU

�

\U

�

= v

�

jU

�

\U

�

:

Let U =

S

�2�

U

�

. The map w(�) = v

�

(�), if � 2 F

�

(U

�

), is

well-de�ned. Extend w to a map w : F

�

(U)�!2 as follows:

if � 62

S

�2�

F

�

(U

�

) then w(:�) = 1 i� w(�) = 0;

w(� ^ 
) = 1 i� w(�) = w(
) = 1;

w(� _ 
) = 1 i� w(�) = 1 or w(
) = 1;

w(�!
) = 1 i� w(�) = 0 or w(
) = 1.

It is straightforward to prove that w satis�es the axioms of C

1

-

valuation. We obtain therefore w 2 O

1

(U) such that w

jU

�

= v

�

.

This concludes the proof. 2

In (Carnielli (forthcoming)) and (Marcos (1999)) it is shown that,

given a translation � 2 TR and w 2 O

3

(V), the map

v

�

w

: F

�

(V)�!2; v

�

w

(�) = 1 i� w(�

�

) 2 D

is a C

1

-valuation; moreover, every v is of the form v = v

�

w

for

some � and w. This is the adequacy theorem of the possible-

translations frame for C

1

. This theorem still holds locally (i.e.,

in all U � V), because p

�

= p for all p 2 V. We will show how

this representation theorem can be expressed in L

V

.

For each � 2 TR we de�ne a sublogic O

�

of O

1

as follows:

O

�

(U) = fv 2 O

1

(U) j v = v

�

w

for some w 2 O

3

(U)g:

For each � 2 TR and U � V let's de�ne a map

('

�

)

U

: O

3

(U)�!O

�

(U); ('

�

)

U

(w) = v

�

w

:

It is clear that this produces a morphism '

�

: O

3

�!O

�

for each

� 2 TR.
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Proposition 6.2 The diagram D = hfO

3

g [ fO

�

g

�2TR

;

f'

�

g

�2TR

i has a limit O

lim

. The limit O

lim

is a sheaf, and O

lim

validates the same formulas which are theorems of C

1

, that is:

j=

O

lim

� i� `

C

1

�.

Proof: For U � V, de�ne the set

O

lim

(U) = fhv

�

w

i

�2TR

j w 2 O

3

(U)g:

By considering the restriction pointwise, it is easy to see that

O

lim

is a logic over �, T = 2

TR

and D = f1g

TR

. Let's consider

the maps

 

U

: O

lim

(U)�!O

3

(U);  

U

(hv

�

w

i

�2TR

) = w;

( 

�

)

U

: O

lim

(U)�!O

�

(U); ( 

�

)

U

(hv

�

w

i

�2TR

) = v

�

w

:

It is easy to see that these maps produce sheaves morphisms

 : O

lim

�!O

3

and  

�

: O

lim

�!O

�

such that '

�

� =  

�

for all

� 2 TR. Let O be a logic and let � : O�!O

3

, �

�

: O�!O

�

be

morphisms (� 2 TR) such that '

�

� � = �

�

for all � 2 TR. For

v 2 O(U) set '

U

(v) = h�

�

(v)i

�2TR

. Observe that

�

�

(v) = '

�

(�(v)) = v

�

�(v)

for all � 2 TR

therefore '

U

(v) 2 O

lim

(U), de�ning a morphism ' : O�!O

lim

such that  � ' = � and  

�

� ' = �

�

for all � 2 TR. It is clear

that ' is the unique morphism from O to O

lim

that commutes

these triangles, therefore hO

lim

; f g [ f 

�

g

�2TR

i is the limit of

D. We now prove that O

lim

is a sheaf. Let v

�

= hv

�

w

�

i

�2TR

in

O

lim

(U

�

) (� 2 �) such that v

�

jU

�

\U

�

= v

�

jU

�

\U

�

. This implies

that (v

�

w

�

)

jU

�

\U

�

= (v

�

w

�

)

jU

�

\U

�

for all � 2 TR. Thus w

�

(�

�

) 2 D

i� w

�

(�

�

) 2 D for all � and all � 2 F

�

(U

�

\U

�

). Suppose (with-

out loss of generality) that there exists p 2 U

�

\ U

�

such that

w

�

(p) = T and w

�

(p) = T

�

. Let � 2 TR such that (:p)

�

= :

c

p,
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where :

c

is one of the negations of W

3

(cf. (Carnielli (forthcom-

ing)) or (Marcos (1999))). Consequently

w

�

((:p)

�

) = :

c

w

�

(p) = :

c

T = F;

w

�

((:p)

�

) = :

c

w

�

(p) = :

c

T

�

= T

�

;

a contradiction. Thus w

�

jU

�

\U

�

= w

�

jU

�

\U

�

and thus the map

w(p) = w

�

(p) if p 2 U

�

, is well-de�ned over U =

S

�2�

U

�

. Now

we can extend w to a valuation w 2 O

3

(U) such that w

jU

�

= w

�

for each � 2 �. Then, v = hv

�

w

i

�2TR

is a valuation in O

lim

(U)

such that v

jU

�

= v

�

for each � 2 �. Thus, O

lim

is a sheaf.

Finally, we observe that, for all U � V and � 2 F

�

(U),

j=

O

lim

� i� (8 w)(8 �)(v

�

w

(�) = 1) i� (8v)(v(�) = 1)

i� j=

O

1

�:

However j=

O

1

� i� � is a theorem of C

1

, by the adequacy of the

semantics of C

1

-valuations. This completes the proof. 2

This shows that the possible-translations framework for C

1

is

represented as a limit in L

V

. On the other hand, we can obtain

the whole logic O

1

(including deductions) as a colimit.

Proposition 6.3 Consider, for each � and w, the sheaf O

�

w

given

by O

�

w

(U) = f(v

�

w

)

jU

g. Let D be the diagram

D = hfO

�

w

j � 2 TR; w 2 O

3

(V)g; ;i:

Then O

1

= colim D, that is: O

1

=

`

�;w

O

�

w

.

Proof: Straightforward. 2

7 THIRD EXAMPLE: THE LIMIT OF C

n

(n 2 !)

The results in the previous sections about the possibility of

representing possible-translations semantics by means of catego-

rial constructions can be generalized to the whole hierarchy of
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paraconsistent logics C

n

. On the other hand we can use possible-

translations semantics to de�ne a limit C

min

of the C

n

(n 2 !) in

the directium of what we have called splicing logics. This exam-

ple has been proposed in (Marcos & Carnielli (manuscript)). The

calculus C

min

is a kind of minimal paraconsistent logic which pre-

serves positive classical logic and can be characterized by a simple

semantics of valuations and by means of a possible-translation

semantics hW; TR

0

i (for further details see (Marcos & Carnielli

(manuscript))). Using the same methods as in the last section we

can prove that the logic O

W

associated to W is an extensional

sheaf, and

O

min

(U) = fv : F

�

(U)�!2 j v is a min-valuation g

is a sheaf. Let's consider the sublogics of O

min

O

�

(U) = fv 2 O

min

(U) j v = v

�

w

for some w 2 O

W

(U)g:

For each � 2 TR

0

and U � V consider the map

('

�

)

U

: O

W

(U)�!O

�

(U); ('

�

)

U

(w) = v

�

w

:

It is clear that this produces a morphism '

�

: O

W

�!O

�

for each

� 2 TR

0

.

Proposition 7.1 The diagram D = hfO

W

g [ fO

�

g

�2TR

0

;

f'

�

g

�2TR

0

i has a limit O

lim

. The limit O

lim

is a sheaf, and

O

lim

validates the same formulas which are valid in C

min

, that

is: j=

O

lim

� i� j=

C

min

�. 2

Proposition 7.2 Consider, for each � and w, the sheaf O

�

w

given

by O

�

w

(U) = f(v

�

w

)

jU

g. Let D be the diagram

D = hfO

�

w

j � 2 TR

0

; w 2 O

W

(V)g; ;i:

Then O

min

= colim D, that is: O

min

=

`

�;w

O

�

w

. 2
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Finally, we recall that the limit C

lim

of the hierarchy C

n

(n 2

!) is characterized in terms of theories by

Th(C

lim

) =

\

n2!

Th(C

n

)

(cf. (Marcos & Carnielli (manuscript))). It is interesting to note

that this system C

lim

has not yet been de�ned axiomatically, but

even so can be characterized naturally in our categorial approach.

Observe that, if O

n

is the sheaf corresponding to C

n

(n 2 !) then

O

n

'

m

n

,!O

m

if n �m, where each '

m

n

is the inclusion morphism. By

proposition 4.11 we obtain:

Corollary 7.3 The logic O

1

associated to C

lim

is the colimit

of the diagram hfO

n

g

n2!

; f'

m

n

g

n � m

i. The logic O

1

is a �nite

sheaf. 2

This shows that the conception of C

lim

as a limit of theories (in

a certain sense) is adequate, because the categorial counterpart

of this fact is precisely a colimit.

8 CONCLUDING REMARKS

The results and examples we have obtained strongly suggest

the interest of using categorial constructions and methods of the

sheaf theory as conceptual tools for combining logical systems in

general. As explained in the introduction, our principal motiva-

tion in this paper is to de�ne the most abstract setting where the

fruitful idea of possible-translations semantics can be generalized.

Many problems and questions are still to be explored, and

further development to be done, but our examples highlight the

interest of this approach. We have not yet treated, for instance,

the question of computing products and coproducts of logics with

heterogeneous signatures, neither quanti�ed languages. Those

seem to be natural questions to be investigated.
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