
Logic and Logical Philosophy
Volume 8 (2000), 115–152

Walter A. Carnielli
∗

João Marcos
†

Sandra de Amo
‡

FORMAL INCONSISTENCY AND

EVOLUTIONARY DATABASES

Abstract. This paper introduces new logical systems which axiomatize a
formal representation of inconsistency (here taken to be equivalent to contra-
dictoriness) in classical logic. We start from an intuitive semantical account
of inconsistent data, fixing some basic requirements, and provide two distinct
sound and complete axiomatics for such semantics, LFI1 and LFI2, as well
as their first-order extensions, LFI1* and LFI2*, depending on which ad-
ditional requirements are considered. These formal systems are examples of
what we dub Logics of Formal Inconsistency (LFI) and form part of a much
larger family of similar logics. We also show that there are translations from
classical and paraconsistent first-order logics into LFI1* and LFI2*, and
back. Hence, despite their status as subsystems of classical logic, LFI1*

and LFI2* can codify any classical or paraconsistent reasoning.

1. Introduction and motivation

Investigations of the formal possibilities of handling contradictions and incon-
sistencies are usually carried out under the common label of paraconsistent

‡ This research was initiated while the first author visited the Seminar für Logik und
Grundlagenforschung, Universität Bonn, granted by the Alexander von Humboldt Foun-
dation, Germany, and by CAPES, Brazil. This work is also supported by an individual
research grant from CNPq, Brazil.

‡ Supported by a CAPES graduate fellowship.
‡ Supported by an individual research grant from CNPq.

© 2001 by Nicolaus Copernicus University

116 Walter A. Carnielli, João Marcos, Sandra de Amo

logics. Although in principle it seems clear that logical mechanisms for han-
dling contradictions and inconsistencies can be applied to a wide variety of
problems, it is usually difficult to point out real applications, because the
extant syntax of the better developed paraconsistent systems is quite often
simply inappropriate to deal with them. The reader should be aware that the
concepts of contradiction and inconsistency are not necessarily to be identi-
fied, as argued in [CM01], and that distinct philosophical positions can be
taken according to whether or not one adopts such an identification. We
will here, however, identify inconsistency with contradiction throughout this
study, as it will be shown that inconsistent information (formalized as •A)
and contradictory information (in the form A ∧ ¬A) are identified in our
systems through the equivalence •A ↔ (A ∧ ¬A).

A general formal system apt to handle contradictions in informatics is
clearly of great interest, in particular for the management of databases. A
relational database (cf. [Cod70]) is a finite collection of finite relations in
which information is stored. In general, this information must verify some
conditions, the so-called integrity constraints, in order for it to be safely
introduced in the database. Integrity constraints are expressed by (fixed)
first-order sentences; so, for example, a database storing information about
flights may contain the requirement that no flight can have more than one
duration, a condition which could be expressed by the following first-order
formula:

∀x∀y∀z(Flight(x, y) ∧ Flight(x, z) → y = z,

where Flight(x, y) means that flight number x has a duration of y hours.
Traditionally, when a database is updated — that is, when some information
is added, modified or removed from its relations — the management system
verifies if the new upcoming database state satisfies the integrity constraints.
The update is only performed in the affirmative case, and, when refused, the
database maintains its previous state. So, in a traditional database system,
contradictory information is never really allowed into the database, due to
this kind of preventive control.

However, with the development of new network technology, information
was allowed to be accessed and updated from several sources, making the
updating process harder and harder to carry out. Local databases have their
inner integrity constraints, and are thus free of contradictions. Nevertheless,
two local databases can quite naturally be mutually contradictory, requiring
complex and costly procedures to restore or maintain consistency at a global
level.

© 2001 by Nicolaus Copernicus University

Formal inconsistency and evolutionary databases 117

Besides such inherent problems of databases, another very desirable fea-
ture of database systems which could produce an inconsistent situation is to
let integrity constraints themselves change in time, instead of remaining fixed
forever. We will call such evolving databases evolutionary databases. Tradi-
tionally, the integrity constraints are defined by the database designer and
cannot be modified by the users during the lifetime of the database. How-
ever, this is a rather restrictive requirement. Now, if one allows databases to
be evolutionary, then one is unable to guarantee that new constraints would
not be contradictory with previous ones. Thus, we are faced once more with
the possibility of inconsistency arising inside our informational environment.

Our logical foundations for evolutionary databases allow us to implement
several policy managements concerning storage and representation of infor-
mation. In case a piece of information “Inf ” is proposed by a source, it enters
the database either with the token ! or the token % appended to it. In case
“not-Inf ” is proposed, it enters with the token % or it does not enter at all.
In case there is no information about a subject “Inf ”, nothing in this respect
is added to the database. As a consequence, in case “Inf ” and “not-Inf ”
are simultaneously proposed (for instance, by different sources), then “Inf ”
enters the database with the token %.

Suppose, as an example, we have a database schema DS containing three
relations:
– author (Name,Country),
– wrote(Name,Book), and
– has been translated (Book ,Language).
Suppose also that two different sources, A and B, provide information to
our database, telling us that:

– Source A:

(1) Joaquim Maria Machado de Assis was born in Brazil.

(2) Gabriel García Marquez was born in Colombia.

(3) Machado de Assis wrote “Dom Casmurro”.

(4) “Dom Casmurro” has not been translated into Polish.

– Source B:

(5) García Marquez was not born in South America.

(6) García Marquez wrote “One Hundred Years of Solitude”.

(7) “One Hundred Years of Solitude” has been translated into Polish.

© 2001 by Nicolaus Copernicus University

118 Walter A. Carnielli, João Marcos, Sandra de Amo

Information (4) is negative, hence it is either stored in DS with a % token
or not stored at all. On the other hand, the information represented in (2)
and (5) is inconsistent, and in this case that fact is added with the token %
appended to it. The remaining positive information may be added having
either ! or % as suffix. What may result is the following:

author

Name Country status

JMMdA Brazil !
GGM Colombia % wrote

Name Book status

JMMdA DC !
GGM OHYoS !

has been translated

Book Language status

OHYoS Polish !
A query language can be used to infer new information from DS . By way

of an example, one can infer that has been translated (DC,Hungarian) is not

the case (expressing the fact that Dom Casmurro has not been translated
into Hungarian), since the sources have nothing to say about that. This kind
of negated assertion is known as default negation, and is connected to the
so-called closed world assumption, which presupposes complete knowledge
about a given subject.

Besides facts, sources can also add sentences, i.e. integrity constraints, to
our database. In traditional databases, constraints are fixed, but our model
allows constraints to be either added or deleted. For example, suppose that
source A adds the new constraint: ‘No South American author has ever
been translated into Polish’. After DS has been updated taking this new
constraint into consideration, the relation has been translated will also con-
tain inconsistent information. While traditional databases cannot support
this situation, our model permits to reason with this other type of incon-
sistency, even taking advantage of this controversy to get better knowledge
about the sources.

The predicament of inconsistency has been already tackled in the data-
base field by several articles, where a series of logical frameworks have been
proposed in order to reason in the presence of inconsistent data: many-
valued logics in [Bel77], annotated logics in [KL92] and [Fit91], traditional
paraconsistent logics in [CLM92], and also semi-formal treatments like the

© 2001 by Nicolaus Copernicus University

Formal inconsistency and evolutionary databases 119

one in [RM70]. In this paper we intend to discuss some of the underlying
questions of paraconsistency by means of proposing a database model based
on an axiomatic treatment of the basic properties of inconsistent information.
We argue that, in this way, it is possible to offer an alternative view of the
question of consistency of the updating process, which at the same time
permits one to consider also evolutionary databases. Our approach allows
not only inconsistent facts to be represented, but also new constraints to be
added which could change the state of already stored facts.

A logical system, consisting of a pair (S,S) formed by a set S of formu-
las endowed with a consequence relation S, is called paraconsistent when it
permits us to distinguish, on the one hand, between contradictory theories Γ
(in the sense that Γ S A and Γ S ¬A, for some formula A, where ¬A de-
notes the negation of A), theories which are at most inconvenient, and, on the
other hand, trivial theories ∆ (in the sense that every ∆ S B, for any for-
mula B), theories which are evidently uninteresting. Equivalently, if we call
explosive the logics in which the Principle of Explosion: A,¬A S B holds,
for any A and B, we can assert then that a logical system is paraconsistent
if, and only if, it is non-explosive (the equivalence of the two formulations
above holds at least for logics having a reflexive and transitive consequence
relation — see [CM01] — , like the ones we study here).

There exist many different systems of paraconsistent logic. The first to
be introduced (and perhaps the most influential) were the systems in the
hierarchy Cn, 0 < n < ω (see [dC74]). In the Cn systems, trivialization is
separated from contradictoriness (and yet contradiction and inconsistency
coincide) by means of a finer control of the inferential mechanisms of logic,
by assuming that:

(C1) not all formulas are necessarily subject to the Principle of Explosion,
but only some special formulas (in the case of C1, for instance, these
would be the formulas A which were such that ¬(A∧¬A) was provable);

(C2) if both A and B are subject to the Principle of Explosion, so are A∧B,
A ∨ B, and A → B.

Substituting only (C2) for:

(C3) if either A or B are subject to the Principle of Explosion, so are A∧B,
A ∨ B, and A → B,

one can easily formulate stronger versions of these paraconsistent logics,
namely those called C+

n , for 0 < n < ω (cf. [dCBB95]).

© 2001 by Nicolaus Copernicus University

120 Walter A. Carnielli, João Marcos, Sandra de Amo

Although the logics above are not many-valued, there may be found in
the literature several many-valued paraconsistent systems, known for a long
time, such as the three-valued paraconsistent systems P

1 (cf. [Set73]) and
J3 (cf. [DOdC70]), both of them constituting but special cases of the 8,192
three-valued paraconsistent logics studied in [Mar??].

Systems like P
1 and J3 are not appropriate for dealing with information,

as they have been designed with different motivations. The logics Cn and C+
n ,

on the other hand, are not fully appropriate for handling information, as
they are in some sense too weak — they are not maximal (in the sense that
they can be properly extended in arbitrarily many ways, yet remaining both
paraconsistent and fragments of classical logic). Some further semantical
considerations concerning these last systems were raised in [Mar99] (and in
[Car00]), where possible-translations semantics for (slightly stronger versions
of) them are proposed, in terms of combinations of some appropriate three-
valued logics, aiming to provide them with better interpretations.

We introduce here new logical systems to handle inconsistent data, ones
which are naturally motivated by our evolutionary database, and are at the
same time close enough to usual first-order logic so as to allow good control
of inconsistent data without renouncing the existent theory of traditional
databases. Moreover, we start from the semantical properties which would
seem desirable for a well-founded treatment of inconsistent data, and derive
the logics LFI1 and LFI2 from such desiderata. We then show that LFI1

and J3 are interdefinable, but LFI2 is independent of any other known three-
valued logic, and moreover both LFI1 and LFI2 are maximal systems. The
approaches towards LFI1 and J3, however, are totally distinct, as LFI1

axiomatizes a form of inconsistency by means of the connective •, while J3

axiomatizes a form of possibility by means of the connective ∇.
Differently from J3, which is intended to be related to the proposal of

Jaśkowski in [Jas68], and also differently from the proposal of da Costa in
[dC74], which identified consistency with the formula ¬(A ∧ ¬A) (though,
strangely enough, not with the similar formula ¬(¬A ∧ A) — cf. [Mar99]),
and from any other proposal currently known to the authors (cf. [PRN89] for
discussions about the nature and reach of several approaches to paraconsis-
tency), our approach regards contradictions and inconsistencies as phenom-
ena waiting to be formally treated. Indeed, the deductive proof system intro-
duced in this paper tries to formalize what an inconsistency should be from
the point of view of classical logic. That is the reason we call the systems de-
scribed here Logics of Formal Inconsistency — LFI (which constitute a very
large and interesting family of paraconsistent logics — cf. [CM01] for a thor-

© 2001 by Nicolaus Copernicus University

Formal inconsistency and evolutionary databases 121

ough discussion about such logics). These formal systems are shown to be
sound and complete with respect to some very natural semantics, appropri-
ate for monitoring linguistic inconsistencies (or contradictions), particularly
within those found in evolutionary databases. So, instead of refusing new
contradictory data arising from updates, each of these proof systems will act
as a kind of sensor by tracking down inconsistency and pointing out what
part of the data is likely to contain inconsistencies.

In other papers we concentrate on further technical details of showing
how logics of this kind can be used to handle evolutionary databases and to
update procedures. In [CdA99] we raised the main problems of evolutionary
databases and outlined the desirable features of an underlying logic suitable
for the management of evolutionary databases. Indeed, as we argue in the
present paper, several logical systems can be used to such an effect, and
in [dACM??] we show how the particular system LFI1 offers some good
perspectives on this question.

This paper is organized as follows: In Section 2, we introduce some basic
concepts and notations concerning our database model interpretation based
on LFI1* and discuss how its semantics is motivated and defined. In Sec-
tion 3 we show that the semantics we have introduced for LFI1, the propo-
sitional fragment of LFI1*, is equivalent to a three-valued semantics, and
present as well some results concerning the expressive capacity of this logic.
Section 4 presents an axiomatic system for LFI1 which formalizes its se-
mantics in precise terms, as shown by the completeness theorem proved in
details (via a constructive Kalmár-like procedure). In Section 5 we study
LFI1* and outline its completeness proof. Section 6 presents some conser-
vative translations from classical and paraconsistent logics into LFI1*, and
comment on translations in the opposite direction. Finally, in Section 7 we
present LFI2*, a competitor of LFI1*, and exhibit its main properties. Al-
though a large class of logics of formal inconsistency can be defined following
our approach, one should observe that LFI1 and LFI2, as well as their first-
order extensions, occupy, in a certain sense, diametrically opposite positions
in the spectrum of logical systems which formalize inconsistency: Indeed, we
shall argue that LFI1 can be seen as regarding inconsistency as an external

phenomenon, while for LFI2 inconsistency is an internal phenomenon. We
conclude in Section 8 by discussing some further perspectives related to our
present approach.

© 2001 by Nicolaus Copernicus University

122 Walter A. Carnielli, João Marcos, Sandra de Amo

2. A formal semantics for a theory
which supports contradictions

We assume the language L
+ of our logic to be defined in the usual way, as

in the classical first-order logic, with the addition of a new symbol • (read as
‘it is inconsistent’). So, all syntactical notions are the familiar ones, with the
obvious modifications. A formula B is called inconsistent in case it assumes
the form •A, for some formula A. A formula is called an extended literal if
it is either an atomic formula, or the negation of an atomic formula, or an
inconsistent atomic formula.

As to the semantical ground on which we base our study, we assume that
our structures (or models) are the same as in the classical case, with the
only difference that we reserve two distinguished non-standard constants, %
and !, present in the universe of every structure. The interpretation of terms
and predicates is defined in the expected way, straightforwardly adapted to
include those new constants. So, given an n-ary predicate R in L

+, the
standard interpretation RI of R in the structure I (with universe |I|) is an n-
ary relation RI ⊆ |I|n, and the extended interpretation of R is a new relation
RI+ ⊆ RI × {%,!}, where (r,%) and (r,!) do not occur simultaneously, for
r ∈ RI . Now, for LFI1:

Definition 2.1. The interpretation � for the sentences in LFI1, written
in the propositional fragment of L

+, in a given structure I, is inductively
defined as follows (we use 2 to denote the failure of a clause):

(1.1) I � A ∧ B ⇐⇒ I � A and I � B

(1.2) I � A ∨ B ⇐⇒ I � A or I � B

(1.3) I � A → B ⇐⇒ I 2 A or I � B

(2.0) I � ¬¬A ⇐⇒ I � A

(2.1) I 2 • •A

(2.2) I � •A =⇒ I � A

(2.3) I � ¬A ⇐⇒ I 2 A or I � •A

(3.1) I � •(A ∧ B) ⇐⇒ I � •A ∧ B or I � •B ∧ A

(3.2) I � •(A ∨ B) ⇐⇒ I � •A ∧ ¬B or I � •B ∧ ¬A

(3.3) I � •(A → B) ⇐⇒ I � A ∧ •B

© 2001 by Nicolaus Copernicus University

Formal inconsistency and evolutionary databases 123

And to interpret the sentences in LFI1*, i.e. the first-order sentences in L
+,

one just has to add:
– For extended literals, given c1, c2, . . . , cn closed terms:

(0.1) I � R(c1, c2, . . . , cn) ⇐⇒ (cI
1 , cI

2 , . . . , cI
n,%) ∈ RI+ or

(cI
1 , cI

2 , . . . , cI
n,!) ∈ RI+

(0.2) I � ¬R(c1, c2, . . .) ⇐⇒ (cI
1 , cI

2 , . . . , cI
n,%) ∈ RI+, or

both (cI
1 , cI

2 , . . . , cI
n,%) /∈ RI+ and (cI

1 , cI
2 , . . . , cI

n,!) /∈ RI+

(0.3) I � •R(c1, c2, . . . , cn) ⇐⇒ (cI
1 , cI

2 , . . . , cI
n,%) ∈ RI+

– Remaining clauses, for quantification:

(FO.1) I � ∀xA(x) ⇐⇒ I � A(t) for all t

(FO.2) I � ∃xA(x) ⇐⇒ I � A(t) for some t

(FO.3) I � ¬(∀xA(x)) ⇐⇒ I � ∃x¬A(x)

(FO.4) I � ¬(∃xA(x)) ⇐⇒ I � ∀x¬A(x)

(FO.5) I � •(∀xA(x)) ⇐⇒ I � ∀xA(x) and I � ∃x •A(x)

(FO.6) I � •(∃xA(x)) ⇐⇒ I � ∀x¬A(x) and I � ∃x •A(x)

The basic idea behind conditions (2.1)–(2.3) is that having an inconsis-
tent formula A is equivalent to having both A and ¬A, and an inconsistent
information cannot be itself inconsistent, by way of stipulation. As to con-
ditions (3.1)–(3.3), one may regard LFI1 as modelling inconsistencies as
external phenomena: Thus, having an inconsistency in a complex formula
(A # B), where # is a binary connective, would intuitively be the same as
having (A# B) and ¬(A# B), assuming furtherly that formulas can be rep-
resented in a sort of disjunctive normal form. As an example, in (3.1), the
conjunction of (A∧B) and ¬(A∧B) = (¬A∨¬B), produces (A∧B∧¬A) or
(A∧B∧¬B), what would result, following the intended intuition, in •A∧B
or •B ∧A. As to conditions (FO.5) and (FO.6), the idea is to regard ∀ and
∃, respectively, as an unbounded conjunction and an unbounded disjunction.

The interpretation above defines a consequence relation for the logic
LFI1*. All other usual semantical notions, such as validity, tautology, etc.
are similar to the classical notions. It is important to insist that our seman-
tics is in some sense an extension of the usual semantical notion, basically
differing from the classical one by the treatment given to negation.

© 2001 by Nicolaus Copernicus University

124 Walter A. Carnielli, João Marcos, Sandra de Amo

The following properties of an LFI1-interpretation are then easily veri-
fied:

Fact 2.2. Under the interpretation above, the following property obtains:

(3.0) I � •(¬A) ⇐⇒ I � •A

Proposition 2.3. (i) Clauses (2.1)–(2.3) may be substituted by:

(2.4) I � •A ⇐⇒ I � A ∧ ¬A

(2.5) I � ¬(•A) ⇐⇒ I 2 •A

(2.6) I 2 ¬A =⇒ I � A

(ii) And clauses (3.1)–(3.3) may be substituted by:

(1.4) I � ¬(A ∧ B) ⇐⇒ I � ¬A or I � ¬B

(1.5) I � ¬(A ∨ B) ⇐⇒ I � ¬A and I � ¬B

(1.6) I � ¬(A → B) ⇐⇒ I � A and I � ¬B

Remember from last section that a logic with a consequence relation

is called paraconsistent if it is non-explosive, that is, if there are formulas
A and B such that A, ¬A 1 B. Following [CM99], we say that a logic has
a strong negation if it has an operator ∼ such that A,∼A B, for any
formulas A and B. A paraconsistent logic in which all positive inferences
hold and a strong negation is present is said to constitute a C-system (see
[CM01] for sharper definitions of that). According to the requisite (C1)
of da Costa, in the last section, formulas such as ¬(A ∧ ¬A) should not be
theorems of some sort of paraconsistent logics, for these logics would not only
identify •A with A ∧ ¬A, but also their negations, through the equivalence
¬•A ↔ ¬(A∧¬A). Paraconsistent logics with a strong negation which make
this identification, or, in a wider sense, which identify both •A and ¬•A
with some other formulas in which the operator • does not occur, are called
dC-systems. Evidently:

Remark 2.4. LFI1 is a C-system, but not a dC-system.
To see that LFI1 is a C-system, just notice that, in general, I � (A∧¬A) →
B does not hold (though if A assumes the form •C or ∼C, for some C, it
does), but that, on the other side, I � (A∧¬A∧¬•A) → B do always hold,
for every structure I . To see that it is not a dC-system, in a strict sense,
hare a look at the matrics to see that • is not definable fromany combination
of the other connectives. Furthermore, notice that, even though I � ¬•A
does not hold, in general, I � ¬(A ∧ ¬A) do hold.

© 2001 by Nicolaus Copernicus University

Formal inconsistency and evolutionary databases 125

As we will see in the next section, the operator ∼ defined as ∼A
def
=

¬A∧¬•A, for every formula A, is indeed a strong negation — and, moreover,
has all the properties of classical negation. We will also see there, in Fact 3.1,
why ¬•A cannot be identified with any other formula in which • does not
occur. In Section 5 we show that this strong negation precisely formalizes the
notion of default negation, mentioned in the DS example of the introduction.

An underlying assumption of the interpretation above, reflected in (2.4),
was that an inconsistent formula •A is true iff A and ¬A are simultaneously
true, or, in other words, iff A is contradictory. The inconsistency (or contra-
dictory) operator • can be understood as a kind of linguistic modality, but
not coincident with usual alethic or deontic modalities. In fact, as we will
show in the next few sections, LFI1 is a three-valued logic, and LFI1* its
immediate first-order extension.

3. A three-valued logic in disguise

This section will show that the interpretation proposed in the last section
defines a three-valued logic, in the canonical sense, and some further seman-
tical properties of this logic will be exhibited. We assume the reader to be
familiar with the usual notions of matrix semantics for many-valued logics,
and recall only that a many-valued valuation is a homomorphism between
sentences and truth-values induced by the matrices. In the case of LFI1, the
truth-values are 1 and 1/2 (for “true” and “partially true”) and 0 (for “false”)
and the matrices are the following:

∧ 1 1/2 0

1 1 1/2 0

1/2
1/2

1/2 0

0 0 0 0

∨ 1 1/2 0

1 1 1 1

1/2 1 1/2
1/2

0 1 1/2 0

→ 1 1/2 0

1 1 1/2 0

1/2 1 1/2 0

0 1 1 1

¬ •

1 0 0

1/2
1/2 1

0 1 0

where 1 and 1/2 are the designated values.

Fact 3.1. The connectives ∨, ¬ and • may be taken as primitive in LFI1.
Just notice that A ∧ B and A → B may be defined, respectively, as ¬(¬A ∨
¬B) and B∨¬(A∨•A). The reader may also observe that one cannot define
the connective •, or its negation, ¬•, from the other connectives of LFI1,
once their output value is 1/2 whenever all the input values are 1/2.

© 2001 by Nicolaus Copernicus University

126 Walter A. Carnielli, João Marcos, Sandra de Amo

Observe also that the matrices above can be written in a functional way
as follows:

v(A ∨ B)
def
= max(v(A), v(B))

v(¬A)
def
= 1 − v(A)

v(•A)
def
= 1 − |2v(A) − 1|

Consider now the logic J3, which also has 1 and 1/2 as designated values, and
whose matrices of ∧, ∨, → and ¬ coincide with those of LFI1, but instead of
the (inconsistency) connective • it has the (possibility) connective ∇, whose
table is:

∇

1 1

1/2 1

0 0

Then we may prove:

Remark 3.2. LFI1 and J3 are inter-definable.
Notice that ∇A may be defined in LFI1 as A∨•A, and, conversely, •A may
be defined in J3 as ∇A ∧∇¬A.

As an obvious consequence, one obtains:

Corollary 3.3. LFI1 and J3 have the same theorems in the language L

of the Classical Propositional Logic.

Let us now prove in details that the three-valued matrices presented above
and the LFI1-interpretation defined in the last section really define the same
logic:

Theorem 3.4 (Convenience). Given an interpretation I of LFI1, there is
a three-valuation v obeying the matrices above and such that:

v(A) ∈ {1, 1/2} ⇐⇒ I � A, for every formula A.

Proof. Define v as:

v(A) =

1 if I 2 ¬A (i),
1/2 if I � •A (ii),

0 if I 2 A (iii).

The reader should observe that, in case (i), it follows from (2.6) that I � A;
in case (ii), it follows from (2.4) and (1.1) that I � A and I � ¬A; in

© 2001 by Nicolaus Copernicus University

Formal inconsistency and evolutionary databases 127

case (iii), it follows from (2.6) that I � ¬A. We proceed to show that v is a
three-valuation.

If A is an atomic formula p, then v(p) ∈ {1, 1/2} ⇐⇒ I � p follows
immediately from definitions (i), (ii) and (iii). Let us now test the cases
where A is a complex formula, to check if the function v here defined really
obeys the three-valued matrices introduced above:

Case 1. A assumes the form C ∧ D.

Subcase 1.1. Suppose v(C) = 1 and v(D) = 1. By definition (i), v(C) = 1
and v(D) = 1 ⇐⇒ I 2 ¬C and I 2 ¬D. By clause (1.4) of the definition
of I, we have that I 2 ¬C and I 2 ¬D ⇐⇒ I 2 ¬(C ∧D) By definition (i)
again, I 2 ¬(C ∧ D) ⇐⇒ v(C ∧ D) = 1.

Subcase 1.2. Suppose v(C) = 1/2 and v(D) 6= 0. By (i) and (ii), v(C) = 1/2

and v(D) 6= 0 =⇒ I � •C and I � D. From clause (1.1), I � •C and
I � D ⇐⇒ I � •C ∧ D, and, from (3.1), I � •C ∧ D =⇒ I � •(C ∧ D).
By (ii), I � •(C ∧ D) ⇐⇒ v(C ∧ D) = 1/2.

Subcase 1.3. Suppose v(D) = 1/2 and v(C) 6= 0. As in Subcase 1.2.,
mutatis mutandis.

Subcase 1.4. Suppose v(C) = 0 or v(D) = 0. By (iii), v(C) = 0 or
v(D) = 0 ⇐⇒ I 2 C or I 2 D. From (1.1), I 2 C or I 2 D ⇐⇒ I 2 C∧D.
By (iii), I 2 C ∧ D ⇐⇒ v(C ∧ D) = 0.

Case 2. A assumes the form C ∨ D.

Subcase 2.1. Suppose v(C) = 1 or v(D) = 1. By (i), v(C) = 1 or
v(D) = 1 ⇐⇒ I 2 ¬C or I 2 ¬D. From clause (1.5), I 2 ¬C or
I 2 ¬D ⇐⇒ I 2 ¬(C ∨ D). By (i), I 2 ¬(C ∨ D) ⇐⇒ v(C ∨ D) = 1.

Subcase 2.2. Suppose v(C) = 1/2 and v(D) 6= 1. By (ii) and (iii), v(C) =
1/2 and v(D) 6= 1 =⇒ I � •C and I � ¬D. From (1.1), I � •C and
I � ¬D ⇐⇒ I � •C∧¬D, and, from (3.2), I � •C∧¬D =⇒ I � •(C∨D).
By (ii), I � •(C ∨ D) ⇐⇒ v(C ∨ D) = 1/2.

Subcase 2.3. Suppose v(D) = 1/2 and v(C) 6= 1. As in Subcase 2.2.

Subcase 2.4. Suppose v(C) = 0 and v(D) = 0. By (iii), v(C) = 0 and
v(D) = 0 ⇐⇒ I 2 C and I 2 D. From (1.2), I 2 C and I 2 D ⇐⇒ I 2

C ∨ D. By (iii), I 2 C ∨ D ⇐⇒ v(C ∨ D) = 0.

Case 3. A assumes the form C → D.

Subcase 3.1. Suppose v(C) = 0 or v(D) = 1. By (iii) and (i), v(C) = 0
or v(D) = 1 ⇐⇒ I 2 C or I 2 ¬D. From (1.6), I 2 C or I 2 ¬D ⇐⇒
I 2 ¬(C → D). By (i), I 2 ¬(C → D) ⇐⇒ v(C → D) = 1.

Subcase 3.2. Suppose v(C) 6= 0 and v(D) = 1/2. By (i) and (ii), v(C) 6= 0
and v(D) = 1/2 =⇒ I � C and I � •D. From (1.1), I � C and I � •D ⇐⇒

© 2001 by Nicolaus Copernicus University

128 Walter A. Carnielli, João Marcos, Sandra de Amo

I � C ∧ •D, and, from (3.3), I � C ∧ •D ⇐⇒ I � •(C → D). By (ii),
I � •(C → D) ⇐⇒ v(C → D) = 1/2.

Subcase 3.3. Suppose v(C) 6= 0 and v(D) = 0. By (i), (ii) and (iii),
v(C) 6= 0 and v(D) = 0 =⇒ I � C and I 2 D. From (1.3), I � C and
I 2 D ⇐⇒ I 2 C → D. By (iii), I 2 C → D ⇐⇒ v(C → D) = 0.

Case 4. A assumes the form ¬C.
Subcase 4.1. Suppose v(C) = 1. By (i), v(C) = 1 ⇐⇒ I 2 ¬C, and, by

(iii), I 2 ¬C ⇐⇒ v(¬C) = 0.
Subcase 4.2. Suppose v(C) = 1/2. By (ii), v(C) = 1/2 ⇐⇒ I � •C. From

(3.0), I � •C ⇐⇒ I � •(¬C) and, by (ii) again, I � •(¬C) ⇐⇒ v(¬C) =
1/2.

Subcase 4.3. Suppose v(C) = 0. By (iii), v(C) = 0 ⇐⇒ I 2 C. From
(2.0), I 2 C ⇐⇒ I 2 ¬¬C, and, by (i), I 2 ¬¬C ⇐⇒ v(¬C) = 1.

Case 5. A assumes the form •C.
Subcase 5.1. Suppose v(C) 6= 1/2. By (i) and (iii), v(C) 6= 1/2 ⇐⇒ I 2 C

or I 2 ¬C. From (2.4) and (1.1), I 2 C or I 2 ¬C ⇐⇒ I 2 •C. By (iii),
I 2 •C ⇐⇒ v(•C) = 0.

Subcase 5.2. Suppose v(C) = 1/2. By (ii), v(C) = 1/2 ⇐⇒ I � •C. From
(2.5), I � •C ⇐⇒ I 2 ¬(•C). By (i), I 2 ¬(•C) ⇐⇒ v(•C) = 1.

Theorem 3.5 (Representability). Given a three-valuation v obeying the ma-
trices above, the relation “I �” defined as:

I � A ⇐⇒ v(A) ∈ {1, 1/2}, for every formula A,

provides an interpretation I of LFI1.

Proof. Here one should show either that clauses (1.1)–(1.3), (2.0)–(2.3),
(3.1)–(3.3), or, alternatively, that clauses (1.1)–(1.6), (2.0), (2.4)–(2.6) are
respected by this definition. We leave this as an exercise to the reader.

It is now easy to see now that the strong negation ∼, defined for a formula
A as:

∼A
def
= ¬A ∧ ¬•A ,

has all the properties of classical negation. Its matrix can be seen at below:

∼

1 0

1/2 0

0 1

© 2001 by Nicolaus Copernicus University

Formal inconsistency and evolutionary databases 129

The corresponding clause, in terms of the interpretation I of LFI1, is:

(4.0) I � A ⇐⇒ I 2 ∼A.

Expressibility. One way of measuring the expressibility of a many-valued logic
is by tracking its capacity of defining, or ‘expressing’, different matrices, or
functions. Thus, for instance, the two-valued Classical Propositional Logic,
or the many-valued logics of Post are said to be functionally complete, for
one can define all n-ary matrices using their connectives.

Let’s say that a three-valued matrix is hyper-classical if the restriction
of its associated function to the classical domain (values 1 and 0) will have
its image in the classical codomain (values 1 and 0). Now we can state (cf.
[Mar99]):

Theorem 3.6 (Expressibility I). All hyper-classical three-valued matrices,
and only them, are definable in LFI1.

Proof. First of all, let s define the connective ⊃ as: A ⊃ B
def
= (¬A ∨

B) ∨ (•A ∧ •B). It is straightforward to check that this connective is such
that: v(A ⊃ B) = min(1, 1 − v(A) + v(B)) (this is just the implication from
Łukasiewicz’s logic Ł3). We will now define a series of unary and binary
connectives, respectively ⊗k

i and ⊕k
ij , such that:

v(⊗k
i A) =

{

k if v(A) = i

0 otherwise

v(A ⊕k
ij B) =

{

k if v(A) = i and v(B) = j

0 otherwise

These connectives may be defined as follows:

⊗1
1A

def
= ¬(A ⊃ ¬A)

⊗1
1/2

A
def
= (A ⊃ ¬A) ∧ (¬A ⊃ A)

⊗
1/2
1/2

A
def
= A ∧ ¬A

⊗0
1/2

A
def
= ⊗1

1A ∧⊗1
1/2

A

⊗1
0A

def
= ⊗1

1(¬A)

A ⊕1
11 B

def
= ¬(A ⊃ (A ⊃ ¬⊗1

1 B))

A ⊕1

1
1/2

B
def
= ⊗1

1/2
(A ⊕

1/2
1
1/2

B)

© 2001 by Nicolaus Copernicus University

130 Walter A. Carnielli, João Marcos, Sandra de Amo

A ⊕
1/2
1
1/2

B
def
= ¬(A ⊃ (B ∨ ¬B))

A ⊕1
10 B

def
= A ⊕1

11 ¬B

A ⊕1
1/21

B
def
= ⊗1

1/2
(A ⊕

1/2
1/21

B)

A ⊕
1/2
1/21

B
def
= B ⊕

1/2
1
1/2

A

A ⊕1
1/2

1/2
B

def
= ⊗1

1/2
(A ⊕

1/2
1/2

1/2
B)

A ⊕
1/2
1/2

1/2
B

def
= ¬((A ⊃ B) ⊃ ((¬A ⊃ B) ⊃ B))

A ⊕0
1/2

1/2
B

def
= (A ⊕1

11 B) ∧ (A ⊕
1/2
1
1/2

B)

A ⊕1
1/20

B
def
= ⊗1

1/2
(A ⊕

1/2
1/20

B)

A ⊕
1/2
1/20

B
def
= ¬B ⊕

1/2
1
1/2

¬A

A ⊕1
01 B

def
= ¬A ⊕1

11 B

A ⊕1

0
1/2

B
def
= ⊗1

1/2
(A ⊕

1/2
0
1/2

B)

A ⊕
1/2
0
1/2

B
def
= ¬A ⊕

1/2
1
1/2

¬B

A ⊕1
00 B

def
= ¬A ⊕1

11 ¬B

Using now the disjunction to ‘sum up’ the connectives above, we can
easily build any hyper-classical unary or binary matrix. For example, if, for
any reason, we needed to build the following matrices:

% 1 1/2 0

1 1 1/2 1

1/2 1 0 1

0 0 1/2 1

$

1 1

1/2 0

0 1

then we should only write:

A % B
def
= (A ⊕1

11 B) ∨ (A ⊕
1/2
1
1/2

B) ∨ (A ⊕1
10 B) ∨

(A ⊕1
1/21

B) ∨ (A ⊕
1/2
0
1/2

B) ∨ (A ⊕1
00 B)

$ A
def
= ⊗1

1A ∨ ⊗1
0A

© 2001 by Nicolaus Copernicus University

Formal inconsistency and evolutionary databases 131

This shows that all unary and binary hyper-classical three-valued matri-
ces are definable in LFI1. To see that no other unary or binary matrix is
thereby defined, one should only observe that all connectives of LFI1 have
hyper-classical matrices.

This result can be easily adapted for any n-ary connective. For suppose
one needed to build a hyperclassical 3-ary matrix §. Let A, B and C be its
components. Fixing v(C) = 1, A and B will form a hyperclassical binary
matrix, that we may represent by §1(A,B), and the same will happen when
we fix v(C) = 1/2 and v(C) = 0, forming the hyperclassical matrices §1/2

(A,B)

and §0(A,B). Now it is immediate to check that §(A,B,C) may be written
as ⊗1

1(§1(A,B)) ∨ ⊗1
1/2

(§1(A,B)) ∨ ⊗1
0(§0(A,B)). And so on, for any n-ary

connective.

Evidently, the result in Theorem 3.6 holds equally good for J3 (by Re-
mark 3.2) and also for Ł3, the three-valued logic of Łukasiewicz, from which
we borrowed the connective ⊃ that we have defined and used above. In fact,
Ł3 is usually defined using but the matrix of ⊃, plus the matrix of ¬, the
same negation of LFI1 or J3. The (fundamental) difference between these
logics lies in the fact that Ł3 has only 1 as designated value.

Constrasting with the concept of functional completeness, we may say
now that a given many-valued logic is functionally pre-complete if, when we
add to the logic any n-ary function which is not definable in it, then this
logic turns to be functional complete. As pointed out in [Kar00], one may
easily prove:

Corollary 3.7 (Expressibility II). LFI1, as well as J3 and Ł3, are func-
tionally pre-complete.

Proof. The reader just has to notice that the addition of a new n-ary
function to LFI1 will immediately enable us to define the unary connectives

⊗
1/2
1

and ⊗
1/2
0

, as well as the binary connectives ⊕
1/2
11

, ⊕
1/2
10

, ⊕
1/2
01

and ⊕
1/2
00

,
which, together with the connectives in Theorem 3.6, will do the job.

4. LFI1: Axiomatization and maximality

Hereunder we shall use A ↔ B as an abbreviation for (A → B) ∧ (B → A),
and use also ◦A as an abbreviation for ¬•A. We will now show that LFI1

may be axiomatized by the following axioms:

(Ax1) A → (B → A)

© 2001 by Nicolaus Copernicus University

132 Walter A. Carnielli, João Marcos, Sandra de Amo

(Ax2) (A → B) → ((A → (B → C)) → (A → C))

(Ax3) A → (B → (A ∧ B))

(Ax4) (A ∧ B) → A

(Ax5) (A ∧ B) → B

(Ax6) A → (A ∨ B)

(Ax7) B → (A ∨ B)

(Ax8) (A → C) → ((B → C) → ((A ∨ B) → C))

(Ax9) A ∨ ¬A

(Ax10) ¬¬A ↔ A

(Ax11) ◦A → (A → (¬A → B))

(Ax12) •A → (A ∧ ¬A)

(Ax13) •(A ∧ B) ↔ ((•A ∧ B) ∨ (•B ∧ A))

(Ax14) •(A ∨ B) ↔ ((•A ∧ ¬B) ∨ (•B ∧ ¬A))

(Ax15) •(A → B) ↔ (A ∧ •B)

Having as rule: (MP) A,A → B/B

Remark 4.1. The Deduction Theorem: ∆,A ⊢ B ⇐⇒ ∆ ⊢ A → B, holds
for LFI1.
This is clear from the presence of (Ax1) and (Ax2), and the fact that (MP)
is the sole rule of LFI1.

Theorem 4.2 (Soundness). All axioms above are validated by the matrices
of LFI1, and the sole rule above, (MP), preserves validity.

The completeness of the above axiomatization of LFI1 with respect to
the matrix valuation proposed in the last section is but a special case of
the general completeness proof of a class of 213 three-valued paraconsistent
logics, presented in [Mar??]. We now proceed to give an alternative proof
of completeness of LFI1, adapting the well-known constructive method of
Kalmár for the Classical Propositional Logic. To this end, we first state two
auxiliary lemmas:

Lemma 4.3. The following schemas are provable in LFI1:

(T1) ◦A → ◦(¬A)

(T2) •A → •(¬A)

© 2001 by Nicolaus Copernicus University

Formal inconsistency and evolutionary databases 133

(T3) ◦(•A)

(T4) ((◦A ∧ A) ∧ (◦B ∧ B)) → (◦(A ∧ B) ∧ (A ∧ B))

(T5) ((◦A ∧ ¬A) ∨ (◦B ∧ ¬B)) → (◦(A ∧ B) ∧ ¬(A ∧ B))

(T6) ((◦A ∧ ¬A) ∧ (◦B ∧ ¬B)) → (◦(A ∨ B) ∧ ¬(A ∨ B))

(T7) ((◦A ∧ A) ∧ (◦B ∧ B)) → (◦(A ∨ B) ∧ (A ∨ B))

(T8) ((◦A ∧ ¬A) ∨ (◦B ∧ B)) → (◦(A → B) ∧ (A → B))

(T9) ((•A ∨ (◦A ∧ A)) ∧ (◦B ∧ ¬B)) → (◦(A → B) ∧ ¬(A → B))

(T10) (•A ∧ •B) → (•(A ∧ B) ∧ •(A ∨ B) ∧ •(A → B))

Lemma 4.4 (Kalmár-like). Given a three-valuation v of LFI1, in what fol-
lows we define for each formula A an associated formula Av :

Av =

◦A ∧ A if v(A) = 1 (i);

•A if v(A) = 1 (ii);

◦A ∧ ¬A if v(A) = 0 (iii).

Given a formula G whose set of atomic variables is {p1, p2, . . . , pn}, let’s
denote by ∆v the set {pv

1, p
v
2, . . . , p

v
n}. We state that the following holds:

∆v ⊢ Gv .

Proof. The proof is by induction on the complexity of G. If G is an atomic
variable itself, it is straight-forward, for pv ⊢ pv. If G is complex, we sup-
pose by induction hypothesis, (IH), that the lemma holds for any C and D
subformulas of G, and must prove that the result for G follows from this
supposition.

Case 1. G assumes the form C ∧ D.
Subcase 1.1. Suppose v(C) = 1 and v(D) = 1. By the matrices of LFI1,

v(G) = v(C ∧ D) = 1. From definition (i), we have that Cv = ◦C ∧ C,
Dv = ◦D ∧ D and Gv = ◦G ∧ G, and, by (IH), we have ∆v ⊢ Cv and
∆v ⊢ Dv. So, from (Ax3) and (T4), we conclude by (MP) that ∆v ⊢ Gv.

Subcase 1.2. Suppose v(C) = 1 and v(D) = 1/2. So, v(G) = 1, and, from
(i) and (ii), Cv = ◦C ∧ C, Dv = •D and Gv = •G. Now, from (Ax13),
we have in particular that (•D ∧ C) → •(C ∧ D). Therefore, sucessively
applying (Ax5), (Ax3) and (IH), with (MP), we conclude once more that
∆v ⊢ Gv .

Subcase 1.3. Suppose v(C) = 1 and v(D) = 0. So, v(G) = 0, and, from
(i) and (iii), Cv = ◦C ∧C, Dv = ◦D∧¬D and Gv = ◦G∧¬G. We now use
(Ax7), (T5), (IH) and (MP) to obtain the result.

© 2001 by Nicolaus Copernicus University

134 Walter A. Carnielli, João Marcos, Sandra de Amo

Subcase 1.4. Suppose v(C) = 1/2 and v(D) = 1. As in Subcase 1.2,
mutatis mutandis.

Subcase 1.5. Suppose v(C) = 1/2 and v(D) = 1/2. Use now (T10).

Subcase 1.6. Suppose v(C) = 1/2 and v(D) = 0. Exactly as in Subcase 1.3.

Subcase 1.7. Suppose v(C) = 0 and v(D) = 1. As in Subcase 1.3, but
now using (Ax6) instead of (Ax7).

Subcase 1.8. Suppose v(C) = 0 and v(D) = 1/2. As in Subcase 1.7.

Subcase 1.9. Suppose v(C) = 0 and v(D) = 0. As in Subcase 1.3 or
Subcase 1.7.

Case 2. G assumes the form C ∨ D. Here again there are nine subcases
but we may make do with them using the axioms of LFI1 and schemas (T6),
(T7) and (T10).

Case 3. G assumes the form C → D. Here we can get some help from
(T8), (T9) and (T10).

Case 4. G assumes the form ¬C.

Subcase 4.1. Suppose v(C) = 1. So, v(G) = 0, and hence Cv = ◦C ∧ C,
Gv = ◦G ∧ ¬G = ◦(¬C) ∧ ¬(¬C). We now use (T1) and (Ax10).

Subcase 4.2. Suppose v(C) = 1/2. Now v(G) = 1/2, Cv = •C, Gv = •G =
•(¬C). Use (T2).

Subcase 4.3. Suppose v(C) = 0. Now v(G) = 1, Cv = ◦C ∧ ¬C,
Gv = ◦G ∧ G = ◦(¬C) ∧ ¬C. Use (T1) once more.

Case 5. G assumes the form •C.

Subcase 5.1. Suppose v(C) = 1. Here, v(G) = 0, and then Cv = ◦C ∧C,
Gv = ◦G ∧ ¬G = ◦(•C) ∧ ¬(•C). But, by (T3), ◦(•C) is a theorem of
LFI1, and, by the definition of ◦, ⊢ ◦C → ¬(•C), and so it follows once
more, by (Ax4), (IH) and (MP), that ∆v ⊢ Gv.

Subcase 5.2. Suppose v(C) = 1/2. Now v(G) = 1, Cv = •C, Gv =
◦G ∧ G = ◦(•C) ∧ •C. Use (T3) again, and the result follows trivially.

Subcase 5.3. Suppose v(C) = 0. As in Subcase 5.1, mutatis mutandis.

Theorem 4.5 (Completeness). Every tautology of LFI1 is a theorem ac-
cording to the axiomatic presented above.

Proof. Let G be a tautology whose atomic variables are, say, p1, p2, . . . ,
pn. So, by Lemma 1.12, ∆v ⊢ G for any valuation v. Denote by ∆v

1 the set
∆\{pv

1}. We now choose three distinct valuations, differing exactly in p1, i.e.

such that ∆v1

1 = ∆v2

1 = ∆v3

1 (
def
= ∆1), but: (a) v1(p1) = 1; (b) v2(p1) = 1/2;

and (c) v3(p1) = 0.

© 2001 by Nicolaus Copernicus University

Formal inconsistency and evolutionary databases 135

In case (a), pv
1 = ◦ p1∧p1, so we have ∆1, ◦ p1∧p1 ⊢ G, or, what amounts

to the same, by the Deduction Theorem:

(i) ∆1, ◦ p1 ⊢ p1 → G .

But, in case (c), pv
1 = ◦ p1 ∧ ¬p1, so we have ∆1, ◦ p1 ∧ ¬p1 ⊢ G, or, what

amounts to the same:

(ii) ∆1, ◦ p1 ⊢ ¬p1 → G .

From (i) and (ii), by (Ax8) and (Ax9) — the proof by cases — we conclude:

(iii) ∆1, ◦ p1 ⊢ G .

Now, in case (b), pv
1 = • p1 = ¬(◦ p1), and so we have:

(iv) ∆1,¬(◦ p1) ⊢ G .

At last, from (iii) and (iv), using once more the proof by cases, we conclude:

∆1 ⊢ G .

And so we got rid of the variable p1. We may now recursively define the set
∆v

i as the set ∆v
i−1 \ {p

v
i }, 1 < i ≤ n, and then repeat the procedure above

n− 1 times. In the end of this process we obtain the empty set ∆n, which is
such that ∆n ⊢ G, and the proof is over.

Maximality. A logic L1 is said to be maximal relative to the logic L2, when
both logics are written in the same language, L2 proves all the theorems
of L1, and, given a theorem G of L2 which is not a theorem of L1, if we add
G to L1 as new axiom schema, then all theorems of L2 turn to be provable.

Here we understand the Classical Propositional Logic, CPL, as the logic
written from the connectives ∧, ∨, → and ¬, with their usual classical inter-
pretations. If we enrich CPL with a new connective, •, whose interpretation
is the one below:

•

1 0

0 0

we get what we shall call the Extended Classical Propositional Logic, ECPL.
Axiomatically, this corresponds to adding ¬•A to CPL as a new axiom
schema. It is easy to see that ECPL is a conservative extension of CPL, that
is, if one restricts ECPL to the language of CPL, deleting the tautologies of
ECPL in which the connective • intervenes, one gets no more (and certainly
no less) tautologies than one already had in CPL.

© 2001 by Nicolaus Copernicus University

136 Walter A. Carnielli, João Marcos, Sandra de Amo

Theorem 4.6 (Maximality). LFI1 is maximal relative to the ECPL.

Proof. Let g(p1, p2, ..., pn), where p1, p2, . . . , pn are its atomic variables,
be a theorem of ECPL which is not a theorem of LFI1. We may assume,
with no loss of generality, that v(g(p1, p2, ..., pn)) = 0 iff v(pi) = 1, for all pi,
1 ≤ i ≤ n. For if a given formula h(p1, p2, ..., pn, pn+1) assumes the value 0
for a valuation v such that v(pi) = 1/2, for 1 ≤ i ≤ n, and v(pn+1) 6=

1/2, we
may fix the value of the variable pn+1 substituting it for p1 ∧ ¬p1 ∧ ¬• p1 or
for p1 ∨¬p1 ∨ • p1, respectively if v(pn+1) = 0 or v(pn+1) = 1, obtaining this
way a formula of the form g(p1, p2, ..., pn).

Let us now consider another theorem of ECPL, say t(q1, q2, ..., qm),
equally non-provable in LFI1. We must show that this formula is a the-
orem of LFI1 plus g(p1, p2, ..., pn) (this last formula added to LFI1 as a
new axiom schema). For all qj, 1 ≤ j ≤ m, we build the formula g(qj),
by substituting each variable in g(p1, p2, ..., pn) for qj. Hence, for all three-
valuation w in LFI1, we have w(g(qj)) = 0 iff w(qj) = 1/2. Besides, for all
such w, two situations may occur:

– w(t(q1, q2, ..., qm)) 6= 0;

– w(t(q1, q2, ..., qm)) = 0. This situation must occur, for some w, once
t(q1, q2, ..., qm) is not a theorem of LFI1. But, in this case, there must be
a qj, 1 ≤ j ≤ m, such that w(qj) = 1/2, once t(q1, q2, ..., qm) is a theorem of
ECPL. And so we conclude that the conjunction g(q1)∧g(q2)∧· · ·∧g(qm)
must assume the value 0 under this valuation.

In both cases above, the formula

(g(q1) ∧ g(q2) ∧ · · · ∧ g(qm)) → t(q1, q2, ..., qm)

will assume a designated value in LFI1. By the completeness of LFI1,
this formula is provable in LFI1. But in LFI1 plus g(p1, p2, ..., pn) the
conjunction at the antecedent of the formula above is equally provable and
so, by (MP), we prove t(q1, q2, ..., qm) in LFI1 plus g(p1, p2, ..., pn).

Being maximal means that there is no ‘non-trivial’ way of strengthening
a given system. So far have we proved LFI1 (and thus, J3 as well) to be
maximal relative to the ECPL, and we come to know this way that LFI1 has
as much rules and schemas of ECPL as it could, without becoming ECPL

itself. Now, what about the fragment of LFI1 written in the language of the
CPL, that is, without the contradictory connective •? This propositional
system built on the connectives ∧, ∨, → and ¬, but no •, with the three-
valued interpretation above, was studied in [Bat80] and in [Avr86], where

© 2001 by Nicolaus Copernicus University

Formal inconsistency and evolutionary databases 137

it received respectively the names PI s and RM
∼
⊃

3 . In those papers, Batens
and Avron have shown how to axiomatize their system, and proved it to be
maximal relative to the CPL.

The next result helps characterizing a certain aspect of the expressive
power of LFI1, showing which instances of interdefinability of its connectives
are valid.

Proposition 4.7. The following formulas are theorems of LFI1:

(DM1) ¬(A ∧ B) → (¬A ∨ ¬B)

(DM2) ¬(A ∨ B) → (¬A ∧ ¬B)

(DM3) (¬A ∨ ¬B) → ¬(A ∧ B)

(DM4) (¬A ∧ ¬B) → ¬(A ∨ B)

(ID1) (A → B) → (¬A ∨ B)

(ID2) ¬(A ∨ B) → ¬(¬A → B)

(ID3) ¬(A → B) → ¬(¬A ∨ B)

(IC1) (A → B) → ¬(A ∧ ¬B)

(IC2) (A ∧ B) → ¬(A → ¬B)

(IC3) ¬(A → B) → (A ∧ ¬B)

The fact that schemas (DM1)–(DM4), plus (Ax10) ¬¬A ↔ A, are prov-
able in LFI1 makes its negation qualify as a De Morgan negation. It is easy
to see why schemas (A∨B) → (¬A → B) and ¬(A∧B) → (A → ¬B) cannot
be provable in LFI1. First, note that ¬(C∧¬C) is provable in LFI1 (it is, in
fact, equivalent to (Ax9) C ∨ ¬C, by (DM1), (Ax10) and (MP)). Hence, by
(Ax6), ¬(C ∧ ¬C) ∨ D is also provable. Now, if (A ∨ B) → (¬A → B)
were provable, taking A as ¬(C ∧ ¬C) and B as D, one would obtain
¬¬(C ∧ ¬C) → D. By (Ax10), (C ∧ ¬C) → ¬¬(C ∧ ¬C), and so one
would prove (C ∧ ¬C) → D in LFI1, and it would not be paraconsistent.
The result for ¬(A ∧ B) → (A → ¬B) follows from (DM3) and from the
previous result.

The reader should notice as well that (ID1) is the only one of the schemas
in Proposition 4.7 that holds for logics as weak as the one built from (Ax1)–
(Ax9) plus ¬¬A → A and A ∨ (A → B) (this last formula being deduced
only when one adds (Ax11) to the logic). This pretty weak paraconsistent
logic was studied in [CM99], where it was called Cmin .

Remark 4.8. The connective ↔ does not define a congruence in the algebra
of LFI1. In particular, one has, for instance, that •A ↔ (A ∧ ¬A) holds

© 2001 by Nicolaus Copernicus University

138 Walter A. Carnielli, João Marcos, Sandra de Amo

in LFI1, while ¬•A ↔ ¬(A ∧ ¬A) does not (for ¬(A ∧ ¬A) → ¬•A is not
valid in LFI1).

5. The quantified case: LFI1*

LFI1*, the first-order extension of LFI1, can be axiomatized by adding to
the axioms of LFI1 the following schemas:

(Ax16) A(t) → ∃xA(x), where t is term

(Ax17) ∀xA(x) → A(t), where t is term

(Ax18) ¬∀xA(x) ↔ ∃x¬A(x)

(Ax19) ¬∃xA(x) ↔ ∀x¬A(x)

(Ax20) • ∀xA(x) ↔ (∃x •A(x) ∧ ∀xA(x))

(Ax21) • ∃xA(x) ↔ (∃x •A(x) ∧ ∀x¬A(x))

And the rules:
(∃-introduction) A(x) → B/∃xA(x) → B, where x is not free in B
(∀-introduction) B → A(x)/B → ∀xA(x)

As mentioned in Definition 2.1, the interpretation for a sentence of L
+

in a structure I is defined by the following clauses on the case of extended
literals (and inductively extended to all first-order sentences through the
other clauses, including (FO.1)–(FO.6)):

(0.1) I � R(c1, c2, ..., cn) ⇐⇒ (cI
1 , cI

2 , ..., cI
n,%) ∈ RI+

or (cI
1 , cI

2 , ..., cI
n,!) ∈ RI+

(0.2) I � ¬R(c1, c2, ..., cn) ⇐⇒ (cI
1 , cI

2 , ..., cI
n,%) ∈ RI+,

or both (cI
1 , cI

2 , ..., cI
n,%) /∈ RI+ and (cI

1 , cI
2 , ..., cI

n,!) /∈ RI+

(0.3) I � •R(c1, c2, ..., cn) ⇐⇒ (cI
1 , cI

2 , ..., cI
n,%) ∈ RI+

Recalling that ◦A is an abbreviation for ¬•A, and using clause (2.5) of
Proposition 2.3, we obtain:

(0.4) I � ◦R(c1, c2, ..., cn) ⇐⇒ (cI
1 , cI

2 , ..., cI
n,!) ∈ RI+,

or both (cI
1 , cI

2 , ..., cI
n,%) /∈ RI+ and (cI

1 , cI
2 , ..., cI

n,!) /∈ RI+

as a consequence of (0.1)–(0.3). Now, the strong negation of A, denoted as

∼A and defined by ∼A
def
= ¬A ∧ ¬•A, gives immediately:

(0.5) I � ∼R(c1, c2, ..., cn) ⇐⇒ (cI
1 , cI

2 , ..., cI
n,%) /∈ RI+

and (cI
1 , cI

2 , ..., cI
n,!) /∈ RI+

© 2001 by Nicolaus Copernicus University

Formal inconsistency and evolutionary databases 139

The reader is invited to compare this last clause with the notion of default
negation, discussed in the introduction, just after the DS example, so as to
convince themselves that the strong and the default negations coincide.

We will now show that clauses (0.1)–(0.3) are equivalent to defining the
interpretation RI of a relation R as a function:

χ : |I|n → {1, 1/2, 0},

such that the relation “I �” obeys the matrices of LFI1 for extended literals,
that is, given an atomic sentence R(c1, c2, ..., cn), then: (i) I � R(c1, c2, ..., cn)
iff χ(cI

1 , cI
2 , ..., cI

n) is designated; (ii) I � ¬R(c1, c2, ..., cn) iff ¬χ(cI
1 , cI

2 , ..., cI
n)

is designated; (iii) I � •R(c1, c2, ..., cn) iff •χ(cI
1 , cI

2 , ..., cI
n) is designated.

Indeed, given RI+, the extended interpretation of R, define:

χ(cI

1
, cI

2
, ..., cI

n
) =

1 if (cI
1
, cI

2
, ..., cI

n
,%) /∈ RI+ and (cI

1
, cI

2
, ..., cI

n
,!) ∈ RI+

1/2 if (cI
1
, cI

2
, ..., cI

n
,%) ∈ RI+

0 if (cI
1
, cI

2
, ..., cI

n
,%) /∈ RI+ and (cI

1
, cI

2
, ..., cI

n
,!) /∈ RI+

Then, clearly the function χ does what it was proposed to do, and thus
our structure I provides us with a way of talking about a relation being
true (value 1), partially true (value 1/2) or false (value 0) in a strictly set-
theoretical way. Hence, the following result is immediate from the definition
above and the truth-tables of LFI1:

Theorem 5.1 (Representability for relations). Given a structure I , then for
any atomic sentence R(c1, c2, ..., cn) it holds that:

(i) I � R(c1, c2, ..., cn) ⇐⇒ χ(cI
1 , cI

2 , ..., cI
n) ∈ {1, 1/2},

(ii) I � ¬R(c1, c2, ..., cn) ⇐⇒ ¬χ(cI
1 , cI

2 , ..., cI
n) ∈ {1, 1/2},

(iii) I � •R(c1, c2, ..., cn) ⇐⇒ •χ(cI
1 , cI

2 , ..., cI
n) ∈ {1, 1/2}.

A many-valued interpretation for the quantifiers may be obtained, for
instance, by means of the concept of distribution quantifiers, introduced in
[Car87]. Using our basic intuition that a universal quantifier should work
as a kind of unbounded conjunction, and an existential quantifier as an un-
bounded disjunction, the matrices of the conjunction and the disjunction of
LFI1 will give Table 1 on p. 140).

Now completeness for LFI1* can be proved extending the traditional
Henkin’s proof for classical first-order logic (on what would constitute an
easy adaptation of the proof found in [DOt85] for J3), as follows:

Theorem 5.2 (Soundness and completeness of LFI1*). Given any set ∆ ∪
{A} of sentences in LFI1*, we have ∆ ⊢ A ⇐⇒ ∆ � A.

© 2001 by Nicolaus Copernicus University

140 Walter A. Carnielli, João Marcos, Sandra de Amo

distribution of
instances x ∀xA(x) ∃xA(x)

0, 1/2, 1 0 1

0, 1/2, 0 1/2

0, 1 0 1

1/2, 1 1/2 1

0 0 0

1/2
1/2

1/2

1 1 1

– So we have, for example:

this line means that there are instances
of A(x) assuming the values 0, 1/2 and 1

this line means that all instances of A(x)
assume the value 0

Table 1.

Proof. As usual, the non-trivial part of the proof is to prove that ∆ � A =⇒
∆ ⊢ A. This can be done using the contrapositive form: ∆ 0 A =⇒ D 2 A,
via the Henkin construction of maximal consistent theories, by inductively
extending the valuations starting from extended literals, whose interpretation
will be defined by way of the function χ presented above, and defining then
the interpretation of more complex propositions according to the clauses
found on Definition 2.1. This is quite a standard procedure (though not free
of encumbrances) and we will omit the details here.

6. Comparing LFI1* with classical logic and
with other paraconsistent logics

Given two logical systems LS1 = (S1,1) and LS2 = (S2,2), where S1

and S2 are sets of formulas, and 1 and 2 are consequence relations defined
on them, what we call a translation from LS1 into LS2 is simply a morphism
between these two structures, i.e. a function between their universes pre-
serving their consequence relations. Formally, a translation Tr from LS1

into LS2 is a mapping Tr : S1 → S2 such that, given Γ ∪ {A} ⊆ S1,
we have Γ 1 A =⇒ Tr(Γ) 2 Tr(A). If the converse also holds, i.e. if
Γ 1 A ⇐⇒ Tr(Γ) 2 Tr(A), we call the translation a conservative trans-

lation. (Conservative) Translations have proved to be a powerful tool on the
study of some meta-theoretical properties of logics, for their mere existence
allows us to talk about one logic inside some other logic, reproducing the in-
ferential mechanisms of one inside the other. A well-known translation, the

© 2001 by Nicolaus Copernicus University

Formal inconsistency and evolutionary databases 141

‘quantifier-forgetful functor’, is used, for instance, to prove the consistency
of the first-order classical logic from the consistency of propositional classi-
cal logic. General motivation and results about translations can be found in
[CD98] and [dSDS98].

This section shows that the First-Order Classical Logic, FOCL, and the
paraconsistent first-order logic C∗

1 can be (conservatively) translated into
LFI1*. Thus, all first-order classical proofs and all proofs in C∗

1 can be
reproduced (up to a translation) inside LFI1*.

We will first present two distinct translations from FOCL into LFI1*.
Note first that FOCL can be axiomatized by (Ax1)–(Ax10) (Section 4),
(Ax16)–(Ax19) (Section 5), plus A → (¬A → B) and (MP). For the first
translation we define the mapping Tr1 from FOCL into LFI1* as follows
(recalling that ◦A is an abbreviation for ¬•A):

(Tr1.1) Tr1(p) = ◦ p, if p is an atomic sentence or literal

(Tr1.2) Tr1(¬A) = ¬Tr1(A)

(Tr1.3) Tr1(A # B) = Tr1(A)#Tr 1(B), for # a binary connective

(Tr1.4) Tr1(@ xA(x)) = @ xTr1(A(x)), for @ a quantifier

Now one may prove:

Theorem 6.1. Tr1 is a conservative translation from FOCL into LFI1*.

Proof. For most cases it is obvious that, if A is an axiom of FOCL, then
Tr1(A) is provable in LFI1*. The only crucial case is the translation of
A → (¬A → B), since this formula is not valid in LFI1* (compare it with
(Ax11) ◦A → (A → (¬A → B))). However, Tr1(p → (¬p → q)) = ◦ p →
(¬◦ p → ◦ q) is provable in LFI1*. The converse is straightforward.

For the second translation, Tr2, define it as follows (recall that ∼A is
the strong negation of A):

(Tr2.1) Tr2(p) = p, if p is an atomic sentence

(Tr2.2) Tr2(¬A) = ∼Tr2(A)

(Tr2.3) Tr2(A # B) = Tr2(A) # Tr 2(B), for # a binary connective

(Tr2.4) Tr2(@ xA(x)) = @xTr2(A(x)), for @ a quantifier

From which follows:

Theorem 6.2. Tr2 is a conservative translation from FOCL into LFI1*.

© 2001 by Nicolaus Copernicus University

142 Walter A. Carnielli, João Marcos, Sandra de Amo

Proof. Just note that Tr2(p → (¬p → q)) = p → (∼ p → q) is provable
in LFI1*, and ∼ has all the properties of classical negation. Again, the
converse is straightforward.

Theorem 6.1 and Theorem 6.2 tell us that all forms of classical reasoning
can, in a certain sense, be embedded and reproduced inside (a fragment of)
LFI1*, even though LFI1* (restricted to the language L of classical logic,
that is, avoiding all formulas where the operator • occurs) is, strictly speak-
ing, only a subsystem of classical logic. Furthermore, note that the above
translations have a ‘grammatical’ aspect — they copy also the structure of
the formulas being translated — which should not be overlooked. Now, if our
task had been only that of finding translations, not necessarily conservative
nor grammatical, between those logics, then it would have been quite trivial:
indeed, any logic can be translated inside any other logic having at least one
theorem G — just pick the constant function with output G.

Now, another question is: What is the relationship of LFI1* to the
(first-order) paraconsistent logic C∗

1 (cf. [dC74])? This question is not triv-
ial, and we treat first only the propositional part of C∗

1 , namely C1, which
we mentioned in Section 1 as part of the hierarchy Cn, 0 < n < ω. Ax-
iomatically, each Cn can be axiomatized by (Ax1)–(Ax9) (Section 4), plus
¬¬A → A (part of (Ax10)), plus (Ax11), (MP) and the following further
axiom: (◦A ∧ ◦B) → (◦(A ∧ B) ∧ ◦(A ∨ B) ∧ ◦(A → B)), which is based
on clause (C2), presented in Section 1. The reader should only notice that
in C1, in particular, the formula ◦A is in fact an abbreviation for the more
complex formula ¬(A ∧ ¬A), which clause (C1) takes as distinguished —
whereas the remaining systems of the hierarchy will take different formulas
as being abbreviated by ◦A (cf. [CM99]).

In [Mar99] (and [Car00]), it has been proved that a possible-translations
semantics for the Cn systems (and slightly stronger versions of them) can be
semantically characterized by way of a combination of an infinite number of
translations of Cn into a three-valued logic called W3 (and LCD), having
three conjunctions, three disjunctions, three implications and two negations.
This logic W3 turned to be in fact equivalent to J3 and so, transitively,
to LFI1. Therefore, we have already at our disposal an infinite number of
(grammatical and meaningful) translations from C1 into LFI1. Now, C∗

1

is obtained by adding to C1 the axioms (Ax16)–(Ax19) (Section 5), plus
∀x ◦A(x) → ◦∀xA(x) ∧ ◦ ∃xA(x). To extend the translations mentioned
above from C1 into LFI1 to translations from C∗

1 into LFI1* one could use
the ‘quantifier-forgetful functor’, but this would perhaps not produce very

© 2001 by Nicolaus Copernicus University

Formal inconsistency and evolutionary databases 143

meaningful translations. So, we shall leave at this point as an open problem
the task of producing more interesting such translations from C∗

1 into LFI1*.
Are there any ‘meaningful’ converse conservative translations from LFI1*

into FOCL and into C∗

1? We also cannot fully answer this question at this
time, but we should note that a partial answer has already been presented
in [BDCK99]. This paper shows how a conservative translation from LFI1

(called CLuNs in that paper) into CPL may be produced by an ingenious
procedure which could be quickly summarized like this: first, the formulas of
CPL are injectively mapped into an enhanced version of CPL, obtained by
the addition of a denumerable set of new propositional variables; second, a
bijection between the models of LFI1 (suitably preprocessing its formulas)
and the models of this enhanced version of CPL is presented (considering
the negations of propositional variables as primitive elements, and mapping
them into the new variables which have been added to CPL). A rearrange-
ment of the propositional variables of enhanced CPL will of course transfer
this translation into the original version of CPL. The task of extending
this translation into the first-order version of those logics rests open, but
the whole procedure seems feasibly generalizable for a much wider class of
non-classical logics.

7. A competitor: the logic LFI2*

As remarked in the introduction, there is not just one single solution to the
problem of providing formal systems to treat inconsistencies (or contradic-
tions) with applications to databases. Indeed, with slight modifications on
the semantical clauses of the interpretation in Section 2 we may obtain a
second logic LFI2 and its quantified extension LFI2*. The modifications in
order are shown below:

Definition 7.1. The interpretation � for the sentences in LFI2, written
in the propositional fragment of L

+, in a given structure I , is inductively
defined by clauses (1.1)–(1.3), (2.0)–(2.3), as in Definition 2.1 for LFI1, plus:

(3.4) I � •(A ∧ B) ⇐⇒ I � •A ∧ •B

(3.5) I � •(A ∨ B) ⇐⇒ I � •A ∧ •B

(3.6) I � •(A → B) ⇐⇒ I � •A ∧ •B

instead of (3.1)–(3.3). And for LFI2*, the first-order version of LFI2, con-
ditions (0.1)–(0.3) are once more used to interpret the extended literals, and

© 2001 by Nicolaus Copernicus University

144 Walter A. Carnielli, João Marcos, Sandra de Amo

the clauses for quantification (FO.1)–(FO.4) remain, but instead of (FO.5)
and (FO.6) the following clauses are used:

(FO.7) I � • ∀xA(x) ⇐⇒ I � ∀x •A(x)

(FO.8) I � •(∃xA(x)) ⇐⇒ I � ∀x •A(x)

The main intuition here is that a complex formula should be inconsistent
exactly when all of its subformulas are inconsistent, independently of the
connectives being considered. As a consequence, the intended semantical
account for LFI2 is totally uniform, in the sense that it does not come from
the particular structure of a given formula — and that’s why we say that the
logic LFI2 models inconsistencies as internal phenomena.

The property in Fact 2.2 still holds good for LFI2, as well as part (i) of
the succeeding Proposition 2.3, but part (ii) of that same proposition should
here be slightly modified, as follows:

Proposition 7.2. (ii) Clauses (3.4)–(3.6) may be substituted by:

(1.7) I � ¬(A ∧ B) ⇐⇒ (I 2 A or I 2 B) or I � •(A ∧ B)

(1.8) I � ¬(A ∨ B) ⇐⇒ (I 2 A and I 2 B) or I � •(A ∨ B)

(1.9) I � ¬(A → B) ⇐⇒ (I � A and I 2 ¬B) or I � •(A → B)

The reader might observe that if the rightmost disjunct in (1.7)–(1.9)
is omitted, one obtains exactly the Extended Classical Propositional Logic,
i.e. the Classical Propositional Logic written in a language enriched with an
operator •, interpreted as always false (see Section 4, Maximality).

The analogue of Remark 2.4 still holds good for LFI2.

Three-valued matrices for LFI2. We will now show that the interpretation
above for LFI2 also defines a three-valued logic, one which is represented by
the matrices below:

∧ 1 1/2 0

1 1 1 0

1/2 1 1/2 0

0 0 0 0

∨ 1 1/2 0

1 1 1 1

1/2 1 1/2 1

0 1 1 0

→ 1 1/2 0

1 1 1 0

1/2 1 1/2 0

0 1 1 1

¬ •

1 0 0

1/2
1/2 1

0 1 0

where 1 and 1/2 are the designated values.

© 2001 by Nicolaus Copernicus University

Formal inconsistency and evolutionary databases 145

Fact 7.3. The connectives ∨, ¬ and • may be taken as primitive in LFI2.

Proof. Notice that A ∧ B and A → B may be defined, respectively, as
¬(¬(A ∨ ¬(A ∨ B)) ∨ ¬(B ∨ ¬(A ∨ ¬B))) and B ∨ ¬(A ∨ B).

The analogues of Remark 3.2 and its Corollary 3.3 do not apply to LFI2:
The matrices above define a brand new three-valued logic, different from J3

and from any other logic we have heard of (but define, once more, only a
special case of the 213 logics studied in [Mar??]).

One can now easily adapt the proofs of convenience and representabil-
ity (Theorem 3.4 and Theorem 3.5) to LFI2, in terms of the three-valued
matrices presented above.

The strong negation for LFI2 is defined as in LFI1, and evidently has
the same properties.

It is also to be noted that the results on expressibility of Theorem 3.6 do
not obtain for LFI2. Indeed, it is easy to see that all matrices definable in
LFI2 are hyper-classical, but not all hyper-classical matrices are expressible
by LFI2.

An axiomatization for LFI2 is obtainable as in LFI1, from (Ax1)–(Ax12)
and the rule of (MP) (Section 1), plus:

(Ax13′) •(A ∧ B) ↔ (•A ∧ •B)

(Ax14′) •(A ∨ B) ↔ (•A ∧ •B)

(Ax15′) •(A → B) ↔ (•A ∧ •B)

instead of (Ax13)–(Ax15).

The Deduction Theorem and the soundness of the axioms of LFI2 rela-
tive to the matrices above are immediately verifiable, as in the case of LFI1

(Remark 4.1 and Theorem 4.2). One of the main distinguishing features of
LFI2 is that its metaproofs are in general much easier to produce, due to the
homogeneous semantical treatment given to all its connectives. To construc-
tively show its completeness, for instance, one can make use of the following
simpler lemmas (analogues of Lemma 4.3 and Lemma 4.4):

Lemma 7.4. The following schemas are provable in LFI2:

(T1) ◦A → ◦(¬A)

(T2) •A → •(¬A)

(T3) ◦(•A)

© 2001 by Nicolaus Copernicus University

146 Walter A. Carnielli, João Marcos, Sandra de Amo

(T10) (•A ∧ •B) → (•(A ∧ B) ∧ •(A ∨ B) ∧ •(A → B))

(T11) (◦A ∨ ◦B) → (◦(A ∧ B) ∧ ◦(A ∨ B) ∧ ◦(A → B))

Proof. Schemas (T1)–(T3) and (T10) come from Lemma 4.3, and to prove
schema (T11) one should use the new axioms, (Ax13′)-(Ax15′).

Notice that from (T2), and its converse (which is also provable in both
LFI1 and LFI2), and from (Ax13′)–(Ax15′), one can easily conclude that
•A is provable in LFI2 iff • p is provable, for every atomic variable p which
intervenes in A. Now to the constructive lemma (where definitions (i) and
(iii) are simplified, compared to Lemma 4.4):

Lemma 7.5 (Kalmár-like). Given a three-valuation v of LFI2, in what fol-
lows we define for each formula A an associated formula Av :

Av =

◦A if v(A) = 1;

•A if v(A) = 1/2;

◦A, if v(A) = 0.

Given a formula G whose set of atomic variables is {p1, p2, . . . , pn}, let’s
denote by ∆v the set {pv

1, p
v
2, . . . , p

v
n}. We state that the following holds:

∆v ⊢ Gv .

Proof. The proof for the atomic case and the case where G assumes the
form ¬C or the form •C is identical to the one given before, in Lemma 4.4.
Now, for the cases where G assumes the form C ∧ D, C ∨D or C → D, one
should use (T10) and (T11).

Completeness itself is also easier to prove for the propositional case:

Theorem 7.6 (Completeness). Every tautology of LFI2 is a theorem ac-
cording to its axiomatic.

Proof. We proceed as in Theorem 4.5, but now using Lemma 7.5. Now, in
both the cases where v1(p1) = 1 and where v3(p1) = 0, we have ∆1, ◦ p1 ⊢ G.
But in the case where v2(p1) = 1, we have ∆1, • p1 ⊢ G, which is the same
as ∆1,¬(◦ p1) ⊢ G. Using the proof by cases, we get ∆1 ⊢ G.

Finally, one may also prove:

Theorem 7.7 (Maximality). LFI2 is maximal relative to the ECPL.

Proof. The proof follows exactly the same path as the proof of maximality
of LFI1 (Theorem 4.6).

© 2001 by Nicolaus Copernicus University

Formal inconsistency and evolutionary databases 147

What about the maximality of the fragment of LFI2 in the language of
the CPL relative to the same CPL — does it hold? We cannot answer this
question at this time.

As to the interdefinability of the connectives of LFI2:

Proposition 7.8. The following formulas are theorems of LFI2: (DM1),
(DM2), (ID1), (ID2) and (IC3), as in Proposition 4.7, plus the schema:

(IC4) ¬(A ∧ B) → (A → ¬B)

The (counter-)argument offered just after Proposition 4.7 is still valid for
LFI2, but one should only notice that the proof of ¬(C ∧ ¬C) in LFI2 is
not as immediate as the proof in LFI1, where this formula was equivalent
to C ∨¬C, an axiom of both these logics. In fact, in LFI2, this formula is a
little bit harder to prove, and it is instructive to show how this can be done.
First note that (Ax1)–(Ax11) are sufficient to prove ¬•C → ¬(C ∧ ¬C).
Now, from (Ax10), more specifically from C → ¬¬C, one may prove •C →
•¬C, and from this it immediately follows that •C → (•C ∧ •¬C). From
(Ax13′), it follows that (•C ∧ •¬C) ↔ •(C ∧ ¬C), and from (Ax12) follows
•(C ∧ ¬C) → ((C ∧ ¬C) ∧ ¬(C ∧ ¬C)), and so •(C ∧ ¬C) → ¬(C ∧ ¬C).
Therefore, by transitivity, •C → ¬(C ∧ ¬C). Using the proof by cases, one
may at last prove ¬(C ∧ ¬C).

In some sense, one could say that the ‘cost’ of accepting (IC4), for LFI2,
which was not accepted by LFI1, was that of losing half of de Morgan’s
laws — (DM3) and (DM4) — and also schemas (ID3), (IC1) and (IC2), once
provable in LFI1. Notwithstanding, the maximality of both LFI1 and LFI2

prevents us from asserting that LFI1 is in any sense ‘stronger’ than LFI2:
They are simply different logics, though much similar in many aspects — for
example, the analogue of Remark 4.8 also holds good for LFI2, which means
that both systems are equally hard to algebrize. However, both these logics
are certainly solutions to the same problem.

In [Bez?a], Béziau introduces a propositional paraconsistent logic he
called Z, based on the possible-worlds semantics for the modal logic S5, in
which the paraconsistent negation ¬A of a formula A is equated with ♦∼A,
the possibility of the (classical) strong negation of A (cf. also [Bez?b]). The
maximal three-valued logic LFI2 and the modal logic Z plus the axiom
schema A → ¬¬A seem extremely close to each other, and we shall leave as
an interesting open problem that of characterizing the exact relation between
these two logics.

© 2001 by Nicolaus Copernicus University

148 Walter A. Carnielli, João Marcos, Sandra de Amo

First-order. LFI2*, the first-order version of LFI2, can be axiomatized
by adding (Ax16)–(Ax19) to the axioms of LFI2, as in the case of LFI1*

(Section 5), plus:

(Ax20′) • ∀xA(x) ↔ ∀x •A(x)

(Ax21′) • ∃xA(x) ↔ ∀x •A(x)

instead of (Ax20)–(Ax21), and the rules of (∃-introduction) and (∀-intro-
duction).

The proofs of soundness and completeness of LFI2* follow that of
LFI1*, found in Section 5, suitably adapting the previous arguments. Here
one should just notice that, following the new matrices of conjunction and
disjunction, the adequate (distribution) quantifiers for LFI2* would have
distinct behaviors from those of LFI1*, and these new behaviors are pic-
tured below:

distribution of
instances x ∀xA(x) ∃xA(x)

0, 1/2, 1 0 1

0, 1/2, 0 1

0, 1 0 1

1/2, 1 1 1

0 0 0

1/2
1/2

1/2

1 1 1

Now the same translations Tr1 and Tr2 (Section 6) used to embed FOCL

into LFI1* will work as well to effectively embed FOCL into LFI2*. In
fact, these translations dispense (Ax13)–(Ax15) and (Ax20)–(Ax21), in both
versions. Stronger versions of the C∗

n logics, called C+∗

n , are obtained if one
only changes the axioms (◦A∧◦B) → (◦(A∧B)∧◦(A∨B)∧◦(A → B)) and
∀x ◦A(x) → ◦∀xA(x) ∧ ◦∃xA(x) of C∗

1 for their counterparts (◦A ∨ 1B) →
(◦(A∧B)∧◦(A∨B)∧◦(A → B)) and ∃x ◦A(x) → ◦∀xA(x)∧◦∃xA(x), based
on clause (C3), Section 1. A possible-translations semantics for the calculus
C+

1 based on a combination of an infinite number of translations of C+
1 into

LFI2 can be found either in [Mar99] or in [CM??]. The method devised in
[BDCK99] for conservatively translating CPL inside of LFI1 seems easily
adaptable for the case of LFI2.

© 2001 by Nicolaus Copernicus University

Formal inconsistency and evolutionary databases 149

8. Concluding remarks

We have presented the logics of formal inconsistency LFI1 and LFI2 and
their first-order extensions, LFI1* and LFI2*. These systems are but two
representatives of the possibilities of axiomatizing the notions of consistency
(and inconsistency), which help to clarify philosophical positions with re-
spect to contradictions and inconsistencies in logic. LFI1* and LFI2* have
been introduced for the special purpose of founding an approach to the treat-
ment of information in evolutionary databases, and have several interesting
features: (i) they have a Hilbertian-style proof theory; (ii) they have been
proved to be sound and complete with respect to three-valued semantics; (iii)
the propositional fragment of LFI1 is maximal; (iv) LFI1* and LFI2* are
new paraconsistent first-order logics (although LFI1* is in fact equivalent to
the first-order extension of the three-valued logic J3); and, finally, (v) it has
been proved, via translations, that all classical and traditional paraconsistent
reasoning can be reproduced inside LFI1*.

As we observed, LFI1* and LFI2* represent two radically different ap-
proaches concerning inconsistent formulas: for LFI1*, inconsistency is an
external phenomenon, while for LFI2* it is internal. The present approach
to the logics of formal inconsistency and their uses in evolutionary databases
is a solution to the problem introduced in [CdA99] concerning the search for
a useful, conceptually clear and feasible logic for treating inconsistent or con-
tradictory data. Although these are not the only solutions, we believe them
to be fully adequate and specially meaningful ones. We would like to notice
that, in the present case, we are dealing with general relations (not necessar-
ily finite), contrary to what is adopted in the database field. We can rather
safely conjecture, however, that Trakhtenbrot’s Theorem, which proves that
the set of sentences of first-order classical logic which are valid in all finite
structures is not recursively enumerable (cf. [Tra50]), is also provable for the
LFI logics. In such cases, what is usual is to consider certain special classes
of integrity constraints, for which completeness can be attained. We believe
this can be also done for LFI logics. A more detailed treatment of databases
using LFI1* will be given in [dACM??].

We wish to thank the referees of WoLLIC’99 and the audience of the
Jaśkowski Memorial Symposium, in Toruń, who encouraged us to pursue
this research.

© 2001 by Nicolaus Copernicus University

150 Walter A. Carnielli, João Marcos, Sandra de Amo

References

[Avr86] A. Avron, “On an implication connective of RM,” Notre Dame Journal of
Formal Logic 27(2), 201–209, 1986.

[Bat80] D. Batens, “Paraconsistent extensional propositional logics,” Logique et
Analyse 90–91, 195–234, 1980.

[BDCK99] D. Batens, K. De Clercq and N. Kurtonina, “Embedding and interpo-
lation for some paralogics. The propositional case,” Reports on Mathematical
Logic 33, 29–44, 1999.

[Bel77] N. D. Belnap, “A useful four-valued logic,” pp. 7–37 in Modern Uses of

Multiple-Valued Logic, J. M. Dunn and G. Epstein (Eds.). D. Reidel Publishing
Co, Boston, 1977.

[Bez?a] J.-Y. Béziau, “The paraconsistent logic Z. A possible solution to Jaśkow-
ski’s problem,” submitted to publication.

[Bez?b] J.-Y. Béziau, “S5 is a paraconsistent logic and so is classical first-order
logic,” submitted to publication.

[Car87] W. A. Carnielli, “Systematization of finite many-valued logics through the
method of tableaux,” The Journal of Symbolic Logic 52(2), 473–493, 1987.

[Car00] W. A. Carnielli, “Possible-translations semantics for paraconsistent logics,”
pp. 149–63 in Frontiers in Paraconsistent Logic: Proc. of the I World Congress
on Paraconsistency, Ghent, Belgium, D. Batens et alia (Eds.), King’s College
Publications, 2000.

[CD98] W. A. Carnielli, W. A. and I. M. L. D’Ottaviano, “Translations between log-
ical systems: a manifesto,” Logique et Analyse 157, 67–81, 1997.

[CdA99] W. A. Carnielli and S. de Amo, “A logic-based system for controlling in-
consistencies in evolutionary databases,” pp. 89–101 in Proc. of the VI Work-

shop on Logic, Language, Information and Computation (WoLLIC’99), Itati-
aia, Brazil, 1999.

[CLM92] W. A. Carnielli and M. Lima-Marques, “Reasoning under inconsistent
knowledge,” Journal of Applied Non-Classical Logics 2(1), 49–79, 1992.

[CM99] W. A. Carnielli and J. Marcos, “Limits for paraconsistent calculi,” Notre
Dame Journal of Formal Logic, 40(3), 375–390, 1999.

[CM01] W. A. Carnielli and J. Marcos, “A taxonomy of C-systems,” in W. A. Car-
nielli, M. E. Coniglio, and I. M. L. D’Ottaviano, editors, Paraconsistency: The

logical way to the inconsistent. Proceedings of the II World Congress on Para-
consistency (WCP’2000), pp. 1–94. Marcel Dekker, 2001.

[CM??] W. A. Carnielli and J. Marcos, “Semantics for C-systems,” forthcoming.

© 2001 by Nicolaus Copernicus University

Formal inconsistency and evolutionary databases 151

[Cod70] E. F Codd, “A relational model of data for large shared data banks,” Com-
munications of the ACM 13(6), 377–387, 1970.

[dACM??] S. de Amo, W. A. Carnielli, and J. Marcos, “A logical framework for inte-
grating inconsistent information in multiple databases,” to appear in Proceed-
ings of the Second International Symposium on Fundations of Information and
Knowledge Systems (FoIKS 2002), Schloß Sulzan, Germany, February 2002.

[dC74] N. C. A. da Costa, “On the theory of inconsistent formal systems,” Notre
Dame Journal of Formal Logic 11, 497–510, 1974.

[dCBB95] N. C. A. da Costa, J.-Y. Béziau and O. Bueno, “Aspects of paraconsistent
logic,” Bulletin of the IGPL 3(4), 597–614, 1995.

[dSDS98] J. J. da Silva, I. M. L. D’Ottaviano, and A. M. Sette, “Translations be-
tween logics,” pp. 435–48 in Models, Algebras and Proofs: Proceedings of the X

Latin American Symposium on Mathematical Logic, X. Caicedo, C. H. Mon-
tenegro (Ed.), Lecture Notes in Pure and Applied Mathematics, Marcel
Dekker, New York, 1998.

[DOt85] I. M. L. D’Ottaviano, “The completeness and compactness of a three-valued
first-order logic”, in Proceedings of the V Latin American Symposium on Math-

ematical Logic, Bogotá, 1981. Revista Colombiana de Matemáticas 19(1–2),
77–94, 1985.

[DOdC70] I. M. L. D’Ottaviano and N. C. A. da Costa, “Sur un probleme de Jaś-
kowski,” Comptes Rendus de l’Academie de Sciences de Paris sér. A–B 270,
1349–1353, 1970.

[Fit91] M. Fitting, “Bilattices and the semantics of logic programming,” Journal of
Logic Programming 11, 91–116, 1991.

[Jas68] S. Jaśkowski, “Rachunek zdan dla systemów dedukcyjnych sprzecznych,”
Studia Soc. Scient. Torunensis sec. A1(5), 55–77, 1948 (English translation in
Studia Logica 24, 143–157, 1969.)

[Kar00] A. S. Karpenko, “A maximal paraconsistent logic: the combination of two
three-valued isomorphs of classical propositional logic,” pp. 181–187 in Fron-

tiers in Paraconsistent Logic: Proc. of the I World Congress on Paraconsis-
tency, Ghent, Belgium, D. Batens et alia (Eds.), King’s College Publications,
2000.

[KL92] M. Kifer and E. L. Lozinskii, “A logic for reasoning with inconsistency,”
Journal of Automated Reasoning 9(2), 179–215, 1992.

[Mar99] J. Marcos, Possible-Translations Semantics (in Portuguese), Thesis,
State University of Campinas, IFCH, 1999. (ftp://www.cle.unicamp.br/pub/
thesis/J.Marcos/)

© 2001 by Nicolaus Copernicus University

152 Walter A. Carnielli, João Marcos, Sandra de Amo

[Mar??] J. Marcos, “8K solutions and semi-solutions to a problem of da Costa,”
forthcoming.

[PRN89] G. Priest, R. Routley, and J. Norman (Eds.), Paraconsistent Logic: essays

on the inconsistent, Philosophia Verlag, München, 1989.

[RM70] N. Rescher and R. Manor, “On inference from inconsistent premises,” The-
ory and Decision 1, 179–219, 1970.

[Set73] A. M. Sette, “On the propositional calculus P
1,” Mathematica Japonicae

18, 173–80, 1973.

[Tra50] B. A. Trakhtenbrot, “The impossibility of an algorithm for the decision
problem for finite domains” (in Russian), Doklady Akademii Nauk SSSR (N.S.)
70, 569–572, 1950.

Walter A. Carnielli

Group for Theoretical and Applied Logic CLE/IFCH
State University of Campinas, Brazil
carniell@cle.unicamp.br

João Marcos

IFCH
State University of Campinas, Brazil
vegetal@cle.unicamp.br

Sandra de Amo

Department of Computer Sciences
Federal University of Uberlândia, Brazil
deamo@ufu.br

© 2001 by Nicolaus Copernicus University

