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PREFACE

It often seems that mathematicians regularly provide answers well before the rest of
the world finds reasons to ask the questions. The operation of the networks of relays
used in the first computers is exactly described by Boolean functions. George Boole
thereby made his contribution to computer science in the mid-1800s, and Boolean
algebra is used today to represent modern TTL (transistor-transistor logic) circuits.
In the 1930s, Alan Turing formalized the concept of an algorithm with his presen
tation of an abstract computing device and characterized the limitations of such
machines. In the 1950s, the abstraction of the concepts behind natural language
grammars provided the theoretical basis for computer languages that today guides
the design of compilers.

These three major foundations of computer science, the mathematical descrip
tion of computational networks, the limitations of mechanical computation, and the
formal specification of languages are highly interrelated disciplines, and all require
a great deal of mathematical maturity to appreciate. A computer science under
graduate is often expected to deal with all these concepts, typically armed only with
a course in discrete mathematics.

This presentation attempts to make it possible for the average student to
acquire more than just the facts about the subject. It is aimed at providing a rea
sonable level of understanding about the methods of proof and the attendant
thought processes, without burdening the instructor with the formidable task of
simplifying the material. The majority of the proofs are written with a level of detail
that should leave no doubt about how to proceed from one step to the next. These
same proofs thereby provide a template for the exercises and serve as examples of
how to produce formal proofs in the mathematical areas of computer science. It is

vii



viii Preface

not unreasonable to expect to read and understand the material presented here in a
nonclassroom setting. The text is therefore a useful supplement to those approach
ing a course in computation or formal languages with some trepidation.

This text develops the standard mathematical models of computational de
vices, and investigates the cognitive and generative capabilities of such machines.
The engineering viewpoint is addressed, both in relation to the construction of such
devices and in the applications of the theory to real-world machines such as traffic
controllers and vending machines. The software viewpoint is also considered, pro
viding insight into the underpinnings of computer languages. Examples andapplica
tions relating to compiler construction abound.

This material can be tailored to several types of courses. A course in formal
languages that stressed the development of mathematical skills could easily span two
semesters. At the other extreme, a course designed as a prerequisite for a formal
languages sequence might cover Chapters 1 through 7 and parts of Chapters 8
and 12. In particular, Chapter 8 is written so that the discussion of the more robust
grammars (Section 8.1) can be entirely omitted. Section 12.1 is exclusively devoted
to results pertaining to the constructs described in the earlier chapters, and Section
12.3 provides a natural introduction to the theory of computability by developing
the halting problem without. relying on Turing machine concepts.

Several people played significant roles in shaping this text. The book grew out
of a set of lecture notes taken by Jack Porter, a student in a one-semester course on
finite automata taught by Sara Baase at San Diego State in the 1970s. Baase's
course was based on five weeks of lectures by Richard M. Karp at the University of
California, Berkeley. The lecture notes were revised by William Root during the
semesters he taught the course at San Diego State. The authors are also indebted to
the many students who helped refine the presentation by suggesting clarifications
and identifying typos, inaccuracies, and sundry other sins. Special thanks to Jon
Barwise and John Etchemendy at Stanford University for their permission to incor
porate examples from their Turing's World Macintosh software package, available
from Kinko's Academic Courseware Exchange, 255 West Stanley Ave., Ventura,
CA 93001. Robin Fishbaugh was instrumental in shepherding the class notes
through their various electronic forms; her numerous contributions are gratefully
acknowledged.
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CHAPTER

PRELIMINARIES

This chapter reviewssome of the basic concepts used in this text. Many can be found
in standard texts on discrete mathematics. Much of the notation employed in later
chapters is also presented here.

0.1 LOGIC AND SETTHEORY

A basic familiarity with the nature of formal proofs is assumed; most proofs given in
this text are complete and rigorous, and the reader is encouraged to work the
exercises in similar detail. A knowledge of logic circuits would be necessary to
construct the machines discussed in this text. Important terminology and techniques
are reviewed here.

Unambiguous statements that can take on the values Trueor False (denoted by
1 and 0, respectively) can be combined with connectives such as and (1\), or (V), and
not (-,) to form more complex statements. The truth tables for several useful
connectives are given in Figure 0.1, along with the symbols representing the
physical devices that implement these connectives.

As an example of a complex statement, consider the assertion that two state
ments p and q take on the same value. This can be rephrased as:

Either (p is true and q is true) or (p is false and q is false).

As the truth table for not shows, a statement r is false exactly when -,r is true; the
above assertion could be further refined to:

Either (p is true and q is true) or (-,p is true and -'q is true).

1



2 Preliminaries Chap. 0

\'. ' ,

NOT gate AND gate OR gate NAND gate NOR gate

# p q pAq p q pVq p q p t q p q p~q

1 1 1 1 1 1 1 1 0 1 1 0
o 1 1 0 0 1 0 1 1 0 1 1 0 0

0 1 0 '0 1 1 0 1 1 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1

Figure 0.1 Common logic gates and their truth tables

In symbols, this can be abbreviated as:

(pA q) V (---,pA---,q)

The truth table covering the four combinations of truth values of p and q can be built
from the truth tables defining A, V, and ---', as shown in Figure 0.2. The truth table
shows that the assertion is indeed true in the two cases where p and q reflect the
same values, and false in the two cases where the values assigned top and q differ.
When the statement that rand s always take on the same value is indeed true, we
often write r iffs (r if and only if s). It can also be denoted by r~ s (r is equivalent
to s).

p q IP Iq IpA,q pAq (pAq)V(,pA,q)

1 1 0 0 0 1 1
1 0 0 1 0 0 0
0 1 1 0 0 0 0
0 0 1 1 1 0 1

Figure 0.2 Truth tables for various compound expressions

Consider the statement (pA q) V(p ~ q). Truth tables can be constructed to
verify that (p Aq) V(---,pA---,q) and (pA q) V(p ~ q) have identical truth tables, and
thus (pAq) V(---,pA---,q)~ (pAq) V(p ~ q).

EXAMPLE 0.1

Circuitry for realizing each of the above statements is displayed in Figure 0.3. Since
the two statements were equivalent, the circuits will exhibit the same behavior for
all combinations of input signals p and q. The second circuit would be less costly to
build since it contains fewer components, and tangible benefits therefore arise when
equivalent but less cumbersome statements can be derived. Techniques for min
imizing such circuitry are presented in most discrete mathematics texts.

Example 0.1 shows that it is straightforward to implement statement formulas
by circuitry. Recall that the location of the I, values in the truth table can be used to
find the corresponding principal disjunctive normal form (PDNF) for the expression
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p

q

.p

q

p

q

(pAq)V(pJ,q)

Figure 0.3 Functionally equivalent circuits

represented by the truth table. ·For example, the truth table corresponding to
NAND has 3 rows with 1 values (p = 1, q = 0; p = 0, q = 1; P = O,q = 0), leading to
three terms in the PDNF expression: (pA--,q)V(--,pAq)V(--,pA--,q). This for
mula can be implemented as the circuit illustrated in Figure 0.4, and thus a NAND
gate can be replaced by this combination of three ANDs and one OR gate. This
circuit relies on the assurance that a quantity of interest (such as p) will generally be
available in both its negated and un negated forms. Hence we can count on access to
an input line representing --,p (rather than feeding the input for p into a NOT gate).

p

-,p

q

-,p

-,q Figure 0.4 A circuit equivalent to a sin
gle NAND gate

In a similar fashion, any statement formula can be represented as a group of
AND gates feeding a single OR gate. In larger truth tables, there may be many
more 1 values, and hence more complex statements may need many AND gates.
Regardless of the statement complexity, however, circuits based on the PDNF of an
expression will allow for a fast response to changing input signals, since no signal
must propagate through more than two gates.

Other useful equivalences are given in Figure 0.5. Each rule has a dual,
written on the same line.

(p Vq) Ar~ (pAr) V(q /vr)
(pVq)Vr~pV(qVr)

p v q ee q vp
--,(p Vq) ~--,pA--,q
(pVq)Ap~p

pV--,p~True

(p zvq)Vr~ (p Vr) A(q Vr)
(pAq) Ar~ pA (q/vr)

p zvq eeq Ap
--,(pAq) ~--,pV--,q
(pAq)Vp~p

PA --,p~ False

(distributive laws)
(associative laws)
(commutative laws)
(De Morgan's laws)
(absorption laws)
(mutual exclusion)

Figure 0.5 Some usefuI equivalences and their duals

Predicates are often used to make statements about certain objects ,such as the
numbers in the set ~ of integers. For example, Q might represent the property of
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being less than 5, in which case Q(x) will represenf the statement "x is less than 5."
Thus, Q(3) is true, while Q(7) is false. It is often necessary to make global
statements such as: All integers have the property P, which can be denoted by
(Vx E ~)P(x). Note that the dummy variable x was used to state the concept in a
convenient form; x is not meant to represent a particular object, and the statement
could be equivalently phrased as (Vi E ~)P(i). For the predicate Q defined above,
the statement (Vx E ~)Q(x) is false, while when applied to more restricted domains,
(Vx E {I, 2, 3})Q(x) is true, since it is in this case equivalent to Q(l) AQ(2) AQ(3),
or (1 < 5) A(2 < 5) A(3 < 5).

In a similar fashion, the statement that some integers have the property P will
be denoted by (3i E ~)P(i). For the predicate Q defined above, (3i E {4,5, 6})Q(i) is
true, since it is equivalent to Q(4) VQ(5)VQ(6), or (4 < 5)V(5 < 5)V(6 < 5). The
statement (3y E {7,8, 9})Q(y) is false.

Note that asserting that it is not the case that all objects have the property P is
equivalent to saying that there is at least one object that does not have the property
P. In symbols, we have

---,(Vx E ~)P(x) ~ (3x E ~)(---,P(x))

Similarly,

---,(3x E ~)P(x) ~ (Vx E ~)(---,P(x))

Given two statements A and B, if B is true whenever A is true, we will say that
A implies B, and write A ~ B. For example, the truth tables show that pAq~ pV q,
since for the case where p.vq is true (p = 1, q = 1), PVq is true, also. In the cases
where pAq is false, the value of p Vq is immaterial.

A basic knowledge of set theory is assumed. Some standard special symbols
will be repeatedly used to designate common sets.

V Definition 0.1
The set of natural numbers is given by N = {O, 1,2,3,4, }.
The set of integers is given by ~ ={... -2, -1,0,1,2, }.

The set of rational numbers is given by Q = {alb Ia E ~,b E ~,b =1= O}.
The set of real numbers (points on the number line) will be denoted by R

The following concepts and notation will be used frequently throughout the text.

V Definition 0.2. Let A and B be sets. A is a subset of B if every element of A
also belongs to B; that is, A (;;,B iff (Vx) (x EA ~ x E B).
Ll

V Definition 0.3. Two sets A and B are said to be equal if they contain exactly
the same elements; that is, A = B iff (Vx) (x EA ~ x E B).
Ll
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Thus, two sets A and B are equal iffA ~ Band B ~ A. The symbol C will be used to
denote a proper subset: A C B iffA ~ B and A f B.

V Definition 0.4. For sets A and B, the cross product of A with B, is the set of
all ordered pairs from A and B; that is, A x B = {(a, b) la EA 1\ bE B}.
~

0.2 RELATIONS

Relations are used to describe relationships between members of sets of objects.
Formally, a relation is just a subset of a cross product of two sets.

V Definition 0.5. Let X and Y be sets. A relation R from X to Y is simply a
subset of X x Y. If (a, b) E R, we write aRb. If (a, b) ft. R, we write aRb. If X = Y,
we say R is a relation in X.
~

EXAMPLE 0.2

Let X ={I, 2, 3}. The familiar relation < (less than) would then consist of the
following ordered pairs: <: {(I, 2), (1,3), (2, 3)}, by which we mean to indicate that
1 < 2, 1 < 3, and 2 < 3. (3,3) ft. < since 31: 3.

Some relations have special properties. For example, the relation "less than"
is transitive, by which we mean that for any numbers x, y, and z, if x <y and y < z,
then x < z. Definition 0.6 describes an important class of relations that have some
familiar properties.

V Definition 0.6
A relation is reflexive iff (Vx)(xRx).

A relation is symmetric iff (Vx)(Vy)(xRy => yRx).

A relation is transitive iff (Vx) (Vy)( Vz)((xRy 1\ y Rz) => xRz).

An equivalence relation is a relation that is reflexive, symmetric, and transi
tive.

EXAMPLE 0.3

< is not an equivalence relation; while it is transitive, it is not reflexive since 31: 3.
(It is also not symmetric, since 2 < 3, but 31: 2.)

EXAMPLE 0.4

Let X =I\J. The familiar relation = (equality) is an equivalence relation.

= :{(O, 0), (1,1), (2,2), (3,3), (4,4), ... },
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and it is clear that ('v'x)('v'y)(x = y =? y = x). The equality relation is therefore sym
metric, and it is likewise obvious that = is also reflexive and transitive.

V Definition 0.7. Let R be an equivalence relation in X, and let hEX. Then
[h]R refers to the equivalence class consisting of all entities that are related to h by
the equivalence relation R; that is, [h]R = {y lyRh}.
~

EXAMPLE 0.5

The equivalence classes for = are singleton sets: [1]= = {I}, [5]= = {5}, and so on.

EXAMPLE 0.6

Let X = ~, and define the relation R in ~ by

tu, v)R(w,x) iff ux = vw

If (z , y) is viewed as the fraction xly, then R is the relation that identifies
equivalent fractions: 2/3 R 14/21, since 2·21 = 3·14. In this sense, R can be viewed as
the equality operator on the set of rational numbers Q.

Note that in this context the equivalence class [2/8]R represents the set of all
"names" for the point one-fourth of the way between°and 1; that is,

[2/8]R ={... , - 31-12, -2/-8, -11-4, 114,2/8,3/12,4/16,5/20, ...}

There are therefore many other ways of designating this same set; for example,

[1I4]R = { ... , -3/-12, -2/-8, -11-4, 114,2/8,3/12,4/16,5/20, ...}

EXAMPLE 0.7

Let X = N and choose an n EN. Define R, by

x Rny iff(3i E ~)(x - Y = i ·n)

That is, two numbers are related if their difference is a multiple of n. Equivalently, x
and y must have the same remainder upon dividing each of them by n if we are to
have x Rny.

R, can be shown to be an equivalence relation for each natural number n. The
equivalence classes of R2 , for example, are the two familiar sets, the even numbers
and the odd numbers. The equivalence classes for R3 are

[0]R
3

= {O, 3, 6, 9, 12, 15, }

[l]R3 ={I, 4, 7,10,13, }

[2]R3 ={2,5, 8, 11, 14, }

R, is often called congruence modulo n, and x Rny is commonly denoted by
X"" Y (modn) or x ""nY.

If R is an equivalence relation in X, then every element of X belongs to exactly
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one equivalence class of R. X is therefore comprised of the union of the equivalence
classes of R, and in this sense R partitions the set X into disjoint subsets. Con
versely, a partition of X defines an equivalence relation in X; the sets of the
partition can be thought of as the equivalence classes of the resulting relation.

V' Definition 0.8. Given a set X and sets A1>Az, .. . ,An' P = {A1>Az, . . . ,An}
is a partition of X if the sets in P are all subsets of X, they cover X, and are pairwise
disjoint. That is, the following three conditions are satisfied:

(Vi E {I, 2, ... , n})(Ai ~ X)

(Vx EX)(3i E {1,2, ... ,n} ~ x EAi)

(Vi,j E {I, 2, ... ,n})(i -+ j => Ai n A j = 0)

V' Definition 0.9. Given a set X and a partition P = {AI, A z, ... ,An} of X, the
relation R(P) in X induced by P is given by

(Vx E X)(Vy E X)(x R(P)y ¢::> (3i E {I, 2, ... , n} ~ x EAi 1\ Y E Ai»

R(P) thus relates elements that belong to the same subset of P.

EXAMPLE 0.8

Let X = {I, 2, 3, 4, 5} and consider the relation Q = R(S) induced by the partition
S ={{I, 2},{3, 5},{4}}. Since 1 and 2 are in the same set, they should be related by Q,
while 1<;D4 because 1 and 4 belong to different sets of the partition. Q can be
described by

Q = {(I, I), (I, 2), (2, I), (2, 2), (3, 3), (3, 5), (4, 4), (5, 3), (5, 5)}

It is straightforward to check that Q satisfies the three properties needed to qualify
as an equivalence relation, and the equivalence classes of Q are

[l]Q= {I, 2}

[2]Q = {I, 2}

[3]Q = {3,5}

[4]Q = {4}

[5]Q = {3,5}

The set of distinct equivalence classes ofQ can be used to partition X; note that
these three classes comprise P. In a similar manner, the three distinct equivalence
classes of R3 in Example 0.7 form a partition of N.

A "finer" partition of X can be obtained by breaking up the equivalence
classes of Qintosmaller (and hence more numerous) sets. The resulting relation is
called a refinement of Q.
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V Definition 0.10. Given two equivalence relations Rand Q in a set X, R is a
refinement of Q iffR c;;;, Q; that is, ('fix EX)('fIy EX)«x,y) E R ~ (x,y) E Q).
a

EXAMPLE 0.9

Consider Q = {(I, 1), (1,2), (2,1), (2,2), (3,3), (3,5), (4,4), (5,3), (5,5)} and
S = {(I, 1), (2,2), (3,3), (3,5), (4,4), (5,3), (5,5)}. S is clearly a subset of Q, and
hence S refines Q. Note that the partition induced by S, {{I}, {2}, {3,5},{4}}, indeed
splits up the partition induced by Q, which was {{1,2},{3,5},{4}}. While it may at
first seem strange, the fact that S contained fewer ordered pairs than Q guarantees
that S will yield more equivalence classes than Q.

0.3 FUNCTIONS

A function f is a special type of relation in which each first coordinate is associated
with one and only one second coordinate, in which case we can use functional
notationf(x) to indicate the unique element f associates with a given first coordinate
x. In the previous section we concentrated on relations in X, that is, subsets of
X x X. The set of first coordinates of a function f (the domain X) is often different
from the set of possible second coordinates (the codomain Y), and hence fwill be a
subset of X x Y.

V Definition 0.11. Afunctionf: X ~ Yis a subset of X x Yfor which

1. ('fix E X)(3y E Y , xfy).
2. ('fix E X)«XfYl /\ xfyz) ~ Yl = yz).

a

When a pair of elements are related by a function, we will writef(a) = b instead of
afb or (a, b) Ef. The criteria for being a function could then be rephrased as
('fix E X)(3y E Y , f(x) = y), and ('fIXl E X) ('fIxz E X)(Xl = Xz ~ f(Xl) = f(xz)).

EXAMPLE 0.10

Let n be a positive integer. Define fn : ~~ ~ by fnU ) = the smallest natural number
i for which j == i modn. hU), for example, is a function and is represented by the
ordered pairs h: {(O, 0), (1,1), (2, 2), (3, 0), (4,1), ... }. This implies that /3(0) = 0,
N1) = 1, f3(2) = 2, f3(3) = 0, and so on.

Note that f3 is a subset of the relation R3 given in Example 0.7. If R3 were
presented as a function, it would not be well defined; that is, R3 does not satisfy
Definition 0.11. For example, 2 R35 and 2 R38, but 5 =1= 8, and so R3(2) is not a
meaningful expression, since there is no unique object that R3 associates with 2. In
this case, R3 violated Definition 0.11 by associating more than one object with a
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given first coordinate; in general, a proposed relation may also fail to be well
defined by associating no objects with a potential first coordinate.

EXAMPLE 0.11

Consider the "function" g:Q~ N defined by g(mln) = m. This apparently straight
forward definition is fundamentally flawed. According to the formula, g(2/8) = 2,
g(7/9) = 7, g(5/10) = 5, and so forth. However, 2/8= 5/20, but g(2/8) = 2 =f. 5 =
g(5/20), and Definition 0.11 is again violated; g(0.25) is not a well defined quantity,
and thus the "function" g is not well defined. Had g truly been a function, it would
have passed the test: if x = y, then g(x) = g(y).

The problem with this seemingly innocent definition is that 0.25 is actually an
equivalenceclassof fractions (recall Example 0.6), and the definition of g was based
on just one representative of that class. We observed that two representatives (2/8
and 5120) of the same class gave conflicting answers (2 and 5) for the value that g
associated with their class (0.25). While it is possible to define functions on a set of
equivalence classes in a consistent manner, it will always be important to verify that
such functions are single valued.

Selection criteria, which determine whether a candidate does or does not
belong to a given set, are special types of functions.

V Definition 0.12. Given a set A, the characteristic function XA associated with
A is defined by

XA(X) = 1 ifx E A and XA(X) = 0 ifx etA
A

EXAMPLE 0.12

The characteristic function for the set of odd numbers is the function fz given in
Example 0.10.

To say that a set is well defined essentially means that the characteristic
function associated with that set is a well-defined function. A set of equivalence
classes can be ill defined if the definition is based on the representatives of those
equivalence classes.

EXAMPLE 0.13

Consider the "set" of fractions that have odd numerators, whose characteristic
"function" is defined by:

XB(mln) = 1 if m is odd
and

XB(mln) = 0 if m is even
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This characteristic function suffers from flaws similar to those found in the function
g in Example 0.11.1/4 = 2/8and yet XB(1/4) = 1 while XB(2/8) = 0, which implies that
the fraction 1/4belongs to B, while 2/8 is not an element of B. Due to this ambiguous
definition of set membership, B is not a well-defined set. B failed to pass the test: if
x =y, then (x E B iffY E B).

The definition of a relation requires the specification of the domain, co
domain, and the ordered pairs comprising the relation. For relations that are func
tions, every domain element must occur as a first coordinate. However, the set of
elements that occurs as second coordinates need not include all the codomain (as
was the case in the function j, in Example 0.10).

V Definition 0.13. The range of a function f: X ---? Y is given by

{y E YI3x EX "3f(x) = y}.

Conditions similar to those imposed on the behavior of first coordinates of a
function may also be placed on second coordinates, yielding specialized types of
functions. Functions for which the range encompasses all the codomain, for exam
ple, are called surjective.

V Definition 0.14. A function f: X ---? Y is onto or surjective iff

(Vy E Y)(3x EX"3 f(x) = y); that is,

a set of ordered pairs representing an onto function must have at least one first
coordinate associated with any given second coordinate.
A

EXAMPLE 0.14

The function g: {I, 2, 3}---? {a, b} defined by g(l) = a, g(2) = b, and g(3) = a is onto
since both codomain elements are part of the range of g. However, the function
h: {I, 2, 3}---? {a, b, c}defined by h (1) = a, h (2) = b, and h (3) = a is not onto since no
domain element maps to c.

The function [: !\J---?!\J defined by f(i) = i + 1 (Vi = 0, 1,2, ... ) is not onto
since there is no element x for whichf(x) = 0.

V Definition 0.15. A functionf: X ---? Yis one to one or injective iff

(VXl E X)(VX2 E X) (f(Xl ) = f(X2) ~ Xl = X2); that is,

an injective function must not have more than one first coordinate associated with
any given second coordinate.
A
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".

EXAMPLE 0.15

The function f: N~ N defined by f(i ) = i + 1 (Vi = 0, 1,2, ... ) is clearly injective
since iff(i ) =f(j) then i + 1 =j + 1, and so i must equalj.

The function g: {1,2, 3}x {a,b} defined by g(l) =a, g(2) =b, and g(3) =a is
not one to one since g(l) =g(3), but 1 =13.

,V Definition 0.16. A function is a bijection iffit is one to one and onto (injec-
tive and surjective); that is, it must satisfy

1. (VXI E X)(VX2E X)(f(XI) = f(X2) ::} Xl = X2)'
2. (Vy E Y)(3x EX ~ f(x) = y).

!::.

A bijective function must therefore have exactly one first coordinate associated with
any given second coordinate.

EXAMPLE 0.16

The functionf: N~ N defined by f(i) = i + 1 (Vi =0, 1,2, ... ) is injective but not
surjective, so it is not a bijection. However, the function b: D~ 0 defined by
b(i) = i + 1 (Vi = ... , -2, -1,0,1,2, ... ) is a bijection. Note that while the rule
for b remains the same as for t. both the domain and range have been expanded,
and many more ordered pairs have been added to form b.

It is often appropriate to take the results produced by one function and apply
the rule specified by a second function. For example, we may have a list associating
students with their height in inches (that is, we have a function relating names with
numbers). The conversion rule for changing inches into centimeters is also a func
tion (associating any given number of inches with the corresponding length in
centimeters), which can be applied to the heights given in the student list to produce
a new list matching student names with their height in centimeters. This new list is
referred to asthe compositionof the original two functions.

V Defmition 0.17. The composition of two functions f: X ~ Y and gi. Y~ Z
is given by

gof={(x,z)13yEY~(x,y)Ef and (y,z)Eg}

Note that the composition is not defined unless the codomain of the first function
. matches the domain of the second function. In functional notation, gof =
{(x, z)13y E Y ~ f(x) =y andg(y) =z}, and therefore wheng ofis defined, it can be
described by the rule g 0 f(x) =g(f(x».
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EXAMPLE 0.17

Consider the functions f3 from Example 0.10 and f from Example 0.14, where
/3 :~ ---7 ~ was defined by f3(j) = the smallest natural number i for which I a i mod 3,

- and the function f: ~ ---7 ~ is defined by f(i ) = i + 1. f'13 consists of the ordered
pairs {(O,1),(1,2),(2,3),(3,1),(4,2),(5,3), ... } and is represented by the rule
fo!J(j ) =!J(j ) + 1, which happens to be the smallest positive number that is con
gruent to j + 1 mod 3. Note that f3 0 f(j ) =f3(j + 1), which happens to be the
smallest natural number that is congruent to j + 1mod 3. This represents the differ
ent set of ordered pairs {(O, 1), (1, 2), (2, 0), (3, 1), (4, 2), (5, 0), ... }. In most cases,
i-s r s-).

V Theorem 0.1. Let the functions f: X ---7 Y and g: Y ---7 Z be onto. Then
g of is onto.

Proof. See the exercises.

V Theorem 0.2 Let the functions f: X ---7 Y and g: Y ---7 Z be one to one. Then
g of is one to one.

Proof. See the exercises.

V Definition 0.18. The converse of a relation R, written -R, is defined by

-R = {(y,x)\(x,y)E R}

The converse of a function f is likewise

-f={(Y,x)l(x,y) Ef}

If -f happens to be a function, it is called the inverse of I and is denoted by
t '.
!:i

When the inverse exists, itis~ppropriate to usefunctional ~otation for I-I also, an~
we therefore have, for any elements a and b;rJ(b) =a iffI(a) = b. Note that If
I: X ---7 Y then j"' I: Y ---7 X.

EXAMPLE 0.18

Consider the ordered pairs for the relation <: {(1,2), (l, 3), (2, 3)}. The converse is
then -<: {(2,1), (3,1), (3,2)}. Thus, the converse of "less than" is the relation "greater
than. "

The function b: 0---7 ~ defined by b(i) = i + 1 (Vi = , -2, -1,0, 1,2, )
has the inverse b -I: 6---76 defined by b -'(i) = i - 1 (Vi = , -2, -1,0,1,2, ).
The inverse of the function that increments integers by 1 is the function that
decrements integers by the same amount.
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The function f: 0-') 0defined by f(i ) = i2 ('Vi = ... , - 2, -1,0, 1,2, ... ) has a
converse that is not a function over the given domain and codomain; the inverse
notation is inappropriate, sincer 1(3) is not defined, nor isr 1

( -4),
Not surprisingly, if the converse of f is to be a function, the codomain of f

(which will be the new domain of f-l) must satisfy conditions similar to those
imposed on the domain off. In particular:

v Theorem 0.3. Let f: X -') Y be a function. The converse of f is a function
iff f is a bijection.

Proof. See the exercises.

Iff is a bijection.j"? must exist and will also be a bijection. In fact, the compositions
f of -1 andr:ofare the identity functions on the domain and codomain, respectively
(seethe exercises).

0.4 CARDINALITY AND INDUCTION
...

The size of various sets will frequently be of interest in the topics covered in this
text, and it will occasionally be necessary to consider the set of all subsets of a given
set.

v 'Defmition 0.19. Given a set A, the power set of A, denoted by p(A) or 2A, is

p(A)={XIXkA}

EXAMPLE 0.19

p({a, b, c})= {0, {a}, {b},{c}, {a,b},{a,c},{b, c},{a,b, cH
and

p({ })= {0}.

Note that {0} -+ 0.

y Defmition 0.20. Tho sets X and Yare equipotent if there exists a bijection
f: X -') Y, and we wiIlwrite IIxii = II YII. IIXII denotes the cardinality of X, that is, the
number of elements in X.
6.

That is, sets with the same cardinality or "size" are equipotent. The equipotent
relation is reflexive, symmetric, and transitive and is therefore an equivalence
relation.
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EXAMPLE 0.20

The function g: {a,b,'c}--+{x,y,z} defined by g(a)=z, g(b) =y, and g'(c)=x is a
bijection, and thus II{a, b, cHI = II{x,y, zj]. The equivalence class consisting of all sets
that are equipotent to {a, b,c} is generally associated with the cardinal number 3.
Thus, l1{a, b, cHI = 3; II{ }II = O. {a, b, c}is not equipotent to { }, and hence 3 =1= O.

The subset relation allows the sizes of sets to be ordered: IIA II ::511 B II iff
(3C)(C cBAliA II = IICII)· We will write IIA II < IIBII iff<llA II ::5IIBII and IIA II =1= liB II)·
The observations about {a, b, c}and { } imply that 0 < 3.

For N ={O, 1,2,3,4,5,6, ... } and IE ={0,2,4, 6, ... }, the function f: M~ IE,
defined by f(x) =2x, is a bijection. The set of natural numbers N is countably
infinite, and its size is often denoted by Xo= IINII. The doubling functionfshows that
IINII = 111E11~ Similarly, it can be shown that 0 and Nx Nare also countably infinite
(see the exercises). A set that is equipotent to.one of its proper subsets is called an
infinite set. Since II NII = II IE II and yet IE eN, we know that N must be infinite. No
such correspondence between {a, b, c} and any of its proper subsets is possible, so
{a, b, c}is a finite set. 3 is therefore a finite cardinal number, while Xorepresents an
infinite cardinal number.

Theorem 0.4 compares the size of a setA with the number of subsets of A and
. shows that IIA II < II p(A) II. For the sets in Example 0.19, we see that 3 < 8 and 0 < 1,
which is not unexpected. It is perhaps surprising to find that the theorem will also
apply to infinite sets, for example, liN" < II p(N) II. This means that there are cardinal
numbers larger than Xo; there are infinite sets that are not countably infinite.
Indeed, the next. theorem implies that there is an unending progression of infinite
cardinal numbers.· . . .

V Theorem 0.4. Let A be any set. Then IIA II < IIp(A)II.
Proof. There is a bijection between A and the set of all singleton subsets of A,

as shown by the function s: A --+ {{x}lx EA} defined by s(z) ={z} for each z EA.
Since {{x}lx EA}r;,p(A), we have IIAII::5llp(A)II. It remains to show that
IIA II =1= IIp(A)II· By definition of cardinality, we must show that there cannot exist a
bijection between A and p(A). The following proof by contradiction will show this.

Assume f: A --+ p(A) is a function; we will demonstrate that there must exist a
set in p(A) that is not in the range off, and hence f cannot be onto. Consider an
element z of A and the set f(z) to which it maps. f(z) is a subset of A, and hence z
mayor may not belong to f(z). Define B to be the set {y E A Iy E;tf(y)}. B is then
the set of all elements of A that do not appear in the set corresponding to their
image under f. It is impossible for B to be in the range of f, for if it were then there
would be an element of A that maps to this subset: assume w E A and f( w) = B.
Since w is an element of A, it might belong to B, which is a subset of A. If wEB,
then w Ef(w), sincef(w) = B; but the elements forwhichy Ef(y) were exactly the

. ones omitted from B, and thus we would have w E;t B, which is a contradiction. Our
speculation that w might belong to B is therefore incorrect. The only other option is
that w does not belong to B. But if w E;t B = f(w), then w is one of the elements that
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are supposed to be in B and we are again faced with the impossibility that w f/:. Band
wEB. In all cases, we reach a contradiction if we assume that there exists an
element w for whichf(w) == B. Thus, B was a member of the codomain that is not in
the range off, and f is therefore not a bijection.
A

Sets that are finite or are countably infinite are called countable or denumer
able because their elements can be arranged one after the other (enumerated). We
will often need to prove that a given statement is true in an infinite variety of cases
that can be enumerated by the natural numbers 0, 1,2, .... The assertion that the
sum of the first n positive numbers can be predicted by multiplying n by the number
one larger than n and dividing the result by 2 seems to be true for various test values
of n:

1 + 2+ 3 == 3(3 + 1)/2

1 + 2 + 3 + 4 + 5 == 5(5 + 1)/2

and so on. We would like to show that the assertion is true for all values of
n == 1,2,3, ... , but we clearly could never check the arithmetic individually for an
infinite number of cases. The assertion, which varies according to the particular
number n we choose, can be represented by the statement

P(n): 1 + 2 + 3 + ... + (n - 2) + (n - 1) + n adds up to (n + 1)n/2.

Note that P(n) is not a number; it is the assertion that two numbers are the same and
therefore will only take on the values True and False. We would like to show that
P(n) is true for each positive integer n; that is, ('v'n)P(n). Notice that if you were to
attempt to check out whether P(101) was true your work would be considerably
simplified if you already knew how the first 100 numbers added up. If the first 100
summed to 5050, it is clear that 1 + 2 + ... + 99 + 100 + 101 = (1 + 2 + ... +
99 + 100) + 101 = 5050 + 101 = 5151; the hard part of the calculation can be done
without doing arithmetic with 101 separate numbers. Checking that (101 + 1)101/2
agrees with 5151 shows that P(101) is indeed true [that is, as long as we are sure that
our calculations in verifying P(100) are correct]. Essentially, the same technique
could have been used to show that P(6) followed from P(5). This trick of using the
results of previous cases to help verify further cases is reflected in the principle of
mathematical induction.

V Theorem 0.5. Let P(n) be a statement for each natural number n EN. From
the two hypotheses

i. P(O)
ii. ('v'm E N)(P(m) =i> P(m + 1))

we can conclude ('v'n E N)P(n).
A
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The fundamental soundness of the principle is obvious in light of the following
analogy: Assume you can reach the basement of some building (hypothesis i). If
you were assured that from any floor m you could reach the next higher floor
(hypothesis ii), you would then be assured that you could reach any floor you wished
«"In E N)P(n)).

Similar statements can be made from other starting points; for example,
beginning with P(4) and ("1m> 4)(P(m)~ P(m + 1)), we can derive the conclusion
("1m> 4)P(n); had we started on the fourth floor of the building, we could reach
any of the higher floors.

EXAMPLE 0.21

Consider the statement discussed above, where P(n) was the assertion that
1 + 2 + 3 + ... + (n - 2) + (n - 1) + n adds up to (n + l)n/2. We will begin with
P(I) (the basis step) and note that 1 = (1 + 1)1/2, so P(I) is indeed true. For the
inductive step, let m be an arbitrary (but fixed) positive integer, and assume
P(m + 1) is true; that is, 1 + 2 + 3 + ... + (m - 2) + (m - 1) + m adds up to
(m + l)m/2. We need to show P(m + 1): 1 + 2 + 3 + ... + (m + 1 - 2) +
(m + 1 - 1) + (m + 1)) adds up to (m + 1 + 1)(m + 1)/2. As in the case of pro
ceeding from 100 to 101, we will use the fact that the first m integers add up
correctly (the induction assumption) to see how the first m + 1 integers add up. We
have:

1 + 2 + 3 + ... + (m + 1 - 2) + (m + 1 - 1) + (m + 1)

= (1 + 2 + 3 + ... + (m + 1 - 2) + (m + 1 - 1)) + (m + 1)

= (m + l)m/2 + (m + 1)

= (m + l)m/2 + (m + 1)2/2

= «m + l)m + (m + 1)2)/2

= (m + 1)(m + 2)/2

= (m + 1 + 1)(m + 1)/2

P(m + 1) is therefore true, and P(m + 1) indeed follows from P(m). Since m was
arbitrary, (Vm)(P(m)~ P(m + 1)) and, by induction, ("In;::: I)P(1i'). The formula is
therefore true for every positive integer n. It is interesting to note that, with the
usual convention of defining the sum of no integers to be zero, the formula also
holds for n = 0, and P(O) could have been used as the basis step to prove
("In E N)P(n).

EXAMPLE 0.22

Consider the statement

Any statement formula using the n variables Pi- pz, ... -P» has an equivalent
expression that contains less than n ·2" operators.

This can be proved by induction on the statement
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P(n): Any statement formula using n or fewer variables has an equivalent
expression that contains less than n ·2n operators.

Basis step: A statement formula in one variable must be either be p, -,p, T, or
F, each of which requires at most one operator, and since 1 < 1.21

, P(l) is true.
Inductive step: Assume P(m) is true; we need to prove that P(m + 1) is true,

which is to say that we need to ensure that the statement holds not just for formulas
with m or fewer variables, but also for formulas with m + 1 variables. Thus, choose
an expression S containing the variables Pi> P2,... ,pm, Pm+1' Consider the principal
disjunctive normal form (PDNF) of S. This expression is equivalent to S and has
terms that can be separated into two categories: (1) those that contain the term
pm+i> and (2) those that contain the term -'pm+l' While the PDNF may very well
contain more than the desired number of terms, the distributive law can be used to
factor pm+l out of all the terms in (1), leaving an expression of the form CA pm+i>
where C is a formula containing only the terms Pi> P2,... 'Pm' Similarly, -'Pm+l can
be factored out of all the terms in (2), leaving an expression of the form D A-,pm+i>
where D is also a formula containing only the terms Pi> P2,... ,pm'

S can therefore be written as (CAPm+l)V(DA-'Pm+l)' which contains the
four operators A, V, A, and -, and the operators that comprise the formulas for C
and D. However, since both C and D only contain the m variables PI, P2,... 'Pm' the
induction assumption ensures that they each have equivalent representations using
no more than m ·2m operators. S can therefore be written in a form containing at
most 4 + m ·2m + m ·2m operators, which can be shown to be less than (m + 1)·
2m+1 for all positive numbers m. Since S was an arbitrary expresson with m + 1
operators, we have shown that any statement formula using exactly m + 1 variables
has an equivalent expression that contains no more than (m + 1)· 2m+1 operators.

Since P(m) was assumed true, we likewise know that any statement formula
using m or fewer variables also has an equivalent expression that contains no more
than m ·2m operators. P(m + 1) is therefore true, and P(m + 1) indeed follows from
P(m). Since m was an arbitrary positive integer, ('fIm > l)(P(m)~ P(m + 1» and by
induction ('fin> l)P(n). The formula is therefore true for every natural number n.

0.5 RECURSION

Since this text will be dealing with devices that repeatedly perform certain oper
ations, it is important to understand the recursive definition of functions and how to
effectively investigate the properties of such functions. Recall that the factorial
function (f(n) = n!) is defined to be the product of the first n integers. Thus,

f(l) = 1

f(2)=1·2=2

f(3) = 1·2·3 = 6

f(4) = 1·2·3·4 = 24
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and so on. Note that individual definitions get longer as n increases. If we adopt the
convention thatf(O) = 1, the factorial function can be recursively defined in terms of
other values produced by the function.

yo Definition 0.21. For x E ~, define

f(x) = 1,

f(x) = x ·f(x -1),

if x =0

ifx >0

This definition implies thatf(3) = 3'f(2) = 3·2'f(1) = 3·2·1 'f(0) = 3·2·1·1 = 6.

0.6 BACKUS-NAUR FORM

The syntax of programming languages is often illustrated with syntax diagrams or
described in Backus-Naur Form (BNF) notation.

EXAMPLE 0.23

The constraints for integer constants, which may begin with a sign and must consist
of one or more digits, are succinctly described by the following productions
(replacement rules):

<sign> :: = + 1-

<digit>:: =0111213141516171819

<natural> :: = <digit> 1<digit> <natural>

<integer> :: = <natural> [<sign><natural>

The symbol [ represents "or," and the rule

<sign> :: = + [-

should be interpreted to mean that the token <sign> can be replaced by either the
symbol + or the symbol -. A typical integer constant is therefore +12, since it can
be derived by applying the above rules in the following fashion:

<integer>~ <sign> <natural>

<sign><natural>~ + <natural>

+ <natural>~ + <digit> <natural>

+ <digit> <natural>~ + 1<natural>

+ 1<natural>~ + 1<digit>

+1<digit>~+12
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Syntax diagrams for each of the four productions are shown in Figure 0.6. These can
be combined to form a diagram that does not involve the intermediate tokens
<sign>, <digit>, and <natural> (see Figure 0.7).

(b) natural

t )digit )

(a) sign

(d) integer
(c) digit

--...-+) 0 --=-~

1

2

3

4

5

6

7

8

9

( )
--..;.....~) sign ) natural ---~

Figure 0.6 Syntax diagrams for the components of integer constants

integer

o --=--~

1

2

3

4

5

6

7

8

9
Figure 0.7 A syntax diagram for integer
constants
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EXERCISES

Preliminaries Chap. 0

0.1. Construct truth tables for:
(a) -lr V (--,p ~ --,q)
(b) (p!\--,q)V--,(p t q)

0.2. Draw circuit diagrams for:
(a) --,(rV(--,p ~ --,q)) t (s!\p)
(b) (p!\--,q)V--,(p t q)

0.3. Show that the sets {l, 2}x {a, b} and {a, b} x {l, 2}are not equal.
0.4. Let X = {l, 2, 3, 4}.

(a) Determine the set of ordered pairs comprising the relation <.
(b) Determine the set of ordered pairs comprising the relation =.
(c) Since relations are sets of ordered pairs, it makes sense to union them together.

Determine the set = U <.
(d) Determine the set of ordered pairs comprising the relation es.

0.5. Let n be a natural number. Show that congruence modulo n, =n, is an equivalence
relation.

0.6. Let X = N. Determine the equivalence classes for congruence modulo O.
0.7. Let X = N. Determine the equivalence classes for congruence modulo 1.

0.8. Let X = IR. Determine the equivalence classes for congruence modulo 1.

0.9. Let R be an arbitrary equivalence relation in X. Prove that the distinct equivalence
classes of R form a partition of X.

0.10. Given a set X and a partition P = {A l ,A2 , ••• ,An} of X, prove that X equals the union
of the sets in P.

0.11. Given a set X and a partition P = {A l ,A2 , ••• ,An} of X, prove that the relation R(P)
in X induced by P is an equivalence relation.

0.12. Let X = {l, 2, 3, 4}.
(a) Give an example of a partition P for which R(P) is a function.
(b) Give an example of a partition P for which R(P) is not a function.

0.13. The following "proof' seems to indicate that a relation that is symmetric and transitive
must also be reflexive:

By symmetry, xRy ~ yRx.

Thus we have (xRy !\yRx).

By transitivity, (xRy!\y Rx) ~xRx.

Hence (Vx)(xRx).

Find the flaw in this "proof" and give an example of a relation that is symmetric and
transitive but not reflexive.

0.14. Let R be an arbitrary equivalence relation in X. Prove that the equality relation on X
refines R.

0.15. Consider the "function" t: IR~ IR defined by pairing x with the real number whose
cosine is x.
(a) Show that t is not well defined.
(b) Adjust the domain and range of t to produce a valid function.

0.16. Consider the function s': IR~ IR defined by s'(x) = x 2
• Show that the converse of s' is

not a function.
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0.17. Let IP' be the set of nonnegative real numbers, and consider the function s: IP'~ IP'
defined by s(x) = x 2

• Show that s -I exists.

0.18. Letf: X x Y be an arbitrary function. Prove that the converse offis a function ifftis a
bijection.

0.19. (a) Let -A denote the complement of a set A. Prove that -(-A) = A.
(b) Let - R denote the converse of a relation R. Prove that -(- R) = R.

0.20. Let the functions f: X ~ Y and g: Y ~ Z be one to one. Prove that g of is one to one.
0.21. Let the functions f: X ~ Y and g: Y~ Z be onto. Prove that g of is onto.
0.22. Define two functions for which fog = g of.

0.23. Define, if possible, a bijection between:
(a) Nand D

(b) Nand N x N
(c) Nand Q
(d) N and {a, b, c}

0.24. Use induction to prove that the sum of the cubes of the first n positive integers adds up
to n\n + 1)2/4.

0.25. Use induction to prove that the sum of the first n positive integers is less than n 2 (for
n > 1).

0.26. qse induction to prove that, for n > 3, n! > n".
~. 0.27. U'se-induction to prove that, for n > 3, n! > 2n

.

0.28. Use induction to prove that 12 + 22 + ... + n 2 = n(n + 1)(2n + 1)/6.
0.29. Prove by induction that X n (Xl U X 2 U ... U x, ) = (X n XI ) U (X n X 2 ) U ... U

(X nxn ) .

0.30. Let -A denote the complement of the setA. Prove -(XI UX2 U··· UXn ) = (-Xd n
/ _~-.<;X2) n··· n (-Xn ) by induction.
0.31. Use induction to prove that there are 2n subsets of a set of size n; that is, for a finite set

A, IIp(A II = 211AII•

0.32. The principle of mathematical induction is often stated in the following form, which
requires (apparently) stronger hypotheses to reach the desired conclusion: Let P(n) be
a statement for each natural number n EN. From the two hypotheses

I, P(O)

ii. ('tim eN)«('tIi $m)P(i»~P(m+ 1»
we can conclude ('tin E N)P(n). Prove that the strong form of induction is equivalent to
the statement of induction given in the text. Hint: Consider the restatement of the
hypothesis given in Example 0.22.

0.33. Determine what types of strings are defined by the following BNF:
<sign>:: =+ 1-
<digit>:: =0111213141516171819

<natural>:: = <digit> I<digit><natural>
<integer>": = <natural> 1 <sign><natural>

<real constant>': = <integer> I
<integer>. I
<integer>. <natural> I
<integer>. <natural>E<integer>

0.34. A set X is cofinite if the complement of X (with respect to some generally understood
universal set) is finite. Let the universal set be D. Give an example of
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(a) A finite set
(b) A cofinite set
(c) A set that is neither finite nor cofinite

0.35. Consider the equipotent relation, which relates sets to other sets.
(a) Prove that this relation is reflexive.
(b) Prove that this relation is symmetric.
(c) Prove that this relation is transitive.

0.36. Define a function that will show that II N II = II N x Nil.
0.37. Show that N is equipotent to N.

0.38. Show that N is equipotent to Q.

0.39. Show that p(N) is equipotent to {f: N~ {Yes,No}lfis a function}.

0.40. Show that p(N) is equipotent to ~.

0.41. Draw a circuit diagram that will implement the function q given by the truth table
shown in Figure 0.8.

0.42. (a) Draw a circuit diagram that will implement the function q, given by the truth table
shown in Figure 0.9.

(b) Draw a circuit diagram that will implement the function q2given by the truth table
shown in Figure 0.9.

(c) Draw a circuit diagram that will implement the function q3given by the truth table
shown in Figure 0.9.

PI pz P3 P4 ql q2 q3

0 0 0 0 1 1 1
0 0 0 1 0 1 0
0 0 1 0 1 0 0
0 0 1 1 1 1 0
0 1 0 0 0 1 1
0 1 0 1 1 0 0
0 1 1 0 1 1 0

PI pz P3 q 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 1 0 1
0 0 1 0 1 0 0 1 1 0 0
0 1 0 1 1 0 1 0 0 1 0
0 1 1 0 1 0 1 1 0 0 0
1 0 0 1 1 1 0 0 1 1 1
1 0 1 0 1 1 0 1 0 1 0
1 1 0 0 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 0 0 0

Figure 0.8 The truth table for Exercise 0.41 Figure 0.9 The truth table for Exercise 0.42



CHAPTER

INTRODUCTION and BASIC
DEFINITIONS

This chapter introduces the concept of a finite automaton, which is perhaps the
simplest form of abstract computing device. Although finite automata theory is
concerned with relatively simple machines, it is an important foundation of a large
number of concrete and abstract applications. The finite-state control of a finite
automaton is also at the heart of more complex computing devices such as finite
state transducers (Chapter 7), pushdown automata (Chapter 10), and Turing ma
chines (Chapter 11).

Applications for finite automata can be found in the algorithms used for string
matching in text editors and spelling checkers and in the lexical analyzers used by
assemblers and compilers. In fact, the best known string matching algorithms are
based on finite automata. Although finite automata are generally thought of as
abstract computing devices, other noncomputer applications are possible. These
applications include traffic signals and vending machines or any device in which
there are a finite set of inputs and a finite set of things that must be "remembered"
by the device.

Briefly, a deterministic finite automaton, also called a recognizer or acceptor, is
a mathematical model of a finite-state computing device that recognizes a set of
words over some alphabet; this set of words is called the language accepted by the
automaton ..For each word over the alphabet of the automaton, there is a unique
path through the automaton; if the path ends in what is called a final or accepting
state, then the word traversing this path is in the language accepted by the auto
maton.

Finite automata represent one attempt at employing a finite description to
rigorously define a (possibly) infinite set of words (that is, a language). Given such a

23
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description, the criterion for membership in the language is straightforward and
well-defined; there are simple algorithms for ascertaining whether a given word
belongs to the set. In this respect, such devices model one of the behaviors we
require of a compiler: recognizing syntactically correct programs. Actually, finite
automata have inherent limitations that make them unsuitable for modeling the
compilers of modern programming languages, but they serve as an instructive first
approximation. Compilers must also be capable of producing object code from
source code, and a model of a simple translation device is presented in Chapter 7
and enhanced in later chapters.

Logic circuitry can easily be devised to implement these automata in hard
ware. With appropriate data structures, these devices can likewise be modeled with
software. An example is the highly interactive Turing's World, developed at
Stanford University by Jon Barwise and John Etchemendy. This Applev Macintosh
graphics package and the accompanying tutorial are particularly useful in experi
menting with many forms of automata. Both hardware and software approaches will
be explored in this chapter. We begin our formal treatment with some fundamental
definitions.

1.1 ALPHABETS AND WORDS

The devices we will consider are meant to react to and manipulate symbols. Differ
ent applications may employ different character sets, and we will therefore take care
to explicitly mention the alphabet under consideration.

V Definition 1.1. I is an alphabet if/I is a finite nonempty set of symbols.
a

An element of an alphabet is often called a letter, although there is no reason
to restrict symbols in an alphabet to consist solely of single characters. Some
familiar examples of alphabets are the 26-letter English alphabet and the ASCII
character set, which represents a standard set of computer codes. In this text we will
usually make use of shorter, simpler alphabets, like those given in Example 1.1.

EXAMPLE 1.1

i. {O, I}
ii. {a, b, c}
iii. {(O, 0), (0,1), (1, 0), (1, I)}

It is important to emphasize that the elements (letters) of an alphabet are not
restricted to single characters. In example (iii) above, the alphabet is composed of
the ordered pairs in {O, I} x {O, I}. Such an alphabet will be utilized in Chapter 7
when we use sequential machines to construct a simple binary adder.
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Based on the definition of an alphabet, we can define composite entities called
words or strings, which are finite sequences of symbols from the alphabet.

V Definition 1.2. For a given alphabet l and a natural number n, a sequence of
symbols 8,82 ... a, is a word (or string) over the alphabet l of length n ifffor each
i = 1,2, ... .n, 8iEl.
~

As formally specified in Definition 1.5, the order in which the symbols of the
word occur will be deemed significant, and therefore a word of length 3 can be
identified with an ordered triple belonging to l x l x l. Indeed, one may view the
three-letter word bC8 as a convenient shorthand for the ordered triple (b, C,8). A
word over an alphabet is thus an ordered string of symbols, where each symbol in
the string is an element of the given alphabet. An obvious example of words are
what you are reading right now, which are words (or strings) over the standard
English alphabet. In some contexts, these strings of symbols are occasionally called
sentences.

EXAMPLE 1.2

Let l = {O, 1, 2, 3, 4, 5, 6, 7, 8, 9}; some examples of words over this alphabet are

i, 42

ii. 242342

Even though only three different members of l occur in the second example,
the length of 242342 is 6, as each symbol is counted each time it occurs. To easily
and succinctly express these concepts, the absolute value notation will be employed
to denote the length of a string. Thus, 1421 = 2, 12423421 = 6, and 18,8283841 = 4.

V Definition 1.3. For a given alphabet l and a word x = 8,82 ... a, over l, Ixl
denotes the length of x. That is, 18J82' .. a, 1= n,
~

It is possible to join together two strings to form a composite word; this
process is called concatenation. The concatenation of two strings of symbols pro
duces one longer string of symbols, which is made up of the characters in the first
string, followed immediately by the symbols of the second string.

V Definition 1.4. Given an alphabet l, let x = 81 .. . a, and y = b, ... bm be
strings where each a, Eland each bj E l. The concatenation of the strings x and y,
denoted by x .y, is the juxtaposition of x and y; that is, X'y = 81' .. a.b, ... bm •

~
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Note in Definition 1.4 that [x·YI=n+m=lxl+IYI. Some examples of string
concatenation are

i, aaa·bbb = aaabbb
ii, home· run = homerun
iii. a2

•b3 = aabbb

Example (iii) illustrates a shorthand notation for denoting strings. Placing a
superscript after a symbol means that this entity is a string made by concatenating it
to itself the specified number of times. In a similar fashion, (ac)" is meant to express
acacac. Note that an equal sign was used in the above examples. Formally, two
strings are equal if they have the same number of symbols and these symbols match,
character for character.

V Definition 1.5. Given an alphabet ~, let x = a1 ••• an and Y = b1 .•. bm be
strings over S. x and yare equal iffn = m and for each i = 1,2, ... .n, a, = b..
~

The operation of concatenation has certain algebraic properties: it is associa
tive, and it is not commutative. That is,

i, ('Ix E~*)(Vy E~*)(Vz E~*)x'(Y'z) = (x·y)·z.
ii. For most strings x and y, x .y =1= y .x.

When the operation of concatenation is clear from the context, we will adopt the
convention of omitting the symbol for the operator (as is done in arithmetic with the
multiplication operator). Thus xyz refers to z -y ·z. In fact, in Chapter 6 it will be
seen that the operation of concatenation has many algebraic properties that are
similar to those of arithmetic multiplication.

It is often necessary to count the number of occurrences of a given symbol
within a word. The notation described in the next definition will be an especially
useful shorthand in many contexts.

V Definition 1.6. Given an alphabet S, and some b E~, the length ofa word w
with respect to b , denoted 1w Ib , is the number of occurrences of the letter b within
that word.
~

EXAMPLE 1.3

i, [abb Ib =2
ii, 1abb Ie = 0

iii. 1100000000111888188888811 = 5
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V Definition 1.7. Given an alphabet ~, the empty word, denoted by A, is
defined to be the (unique) word consisting of zero letters.
d

The empty word is often denoted by E in other formal language texts. The empty
string serves as the identity element for concatenation. That is, for all strings x,

X'A=A'X=X

Even though the empty word is represented by a single character, Ais a string but is
not a member of any alphabet: Af/=.~.

A particular string x can be divided into substrings in several ways. If we
choose to break x up into three substrings u, v, and w, there are many ways to
accomplish this. For example, if x = abeedbe, it could be written as ab-ccd-bc; that
is, x = uvw, where u =ab, v = eed, and w = be. This x could also be written as
abc-x-cdbc, where u = abc, v = A, and w = edbe. In this second case, Ixi = 7 =

3+0+4=lul+lvl+lwl·
A fundamental structure in formal languages involves sets of words. A simple

example of such a set is ~\ the collection of all words of exactly length k (for some
kEN) that can be constructed from the letters of S.

V Definition 1.8. Given an alphabet ~ and a nonnegative integer kEN, we
define

~k= {x Ix is a word over ~ and Ixl = k}

EXAMPLE 1.4

If

~ = {O, I}

then

~o = {A}

~1 = {O, I}

~2 = {OO, 01,10, 11}

~3 = {OOO, 001, 010,011,100,101,110, 111}

Ais the only element of ~o, the set of all words containing zero letters from ~. There
is no difficulty in letting Abe an element (and the only element) of ~o, since each ~k

is not necessarily an alphabet, but is instead a set of words; A, according to the
definition, is indeed a word consisting ofzero letters.



28 Introduction and Basic Definitions Chap. 1

yo Definition 1.9. Given an alphabet I, define
cc

I* = U Ik=IouI1UI2UI3U ...
k=O

and
co

I+= U I k=I1uI2uI3u ...
k=l

I* is the set of all words that may be constructed from the letters of an alphabet I.
I+ is the set of all nonempty words that may be constructed from I .

. I*, like the set of natural numbers, is an infinite set. Although I* is infinite,
each word in I* is of finite length. This property follows from the definition of I*
and a property of natural numbers: any kEN must by definition be a finite number.
I* is defined to be the union of all Ik, kEN. Since each such k is a finite number
and every word in I k is of length k, then every word in I k must be of finite length.
Furthermore, since I* is the union of all such I k

, every word in I* must also be of
finite length. While I * can contain arbitrarily long words, each of these words must
be finite, just as every number in N is finite.

Since I* is the union of all I kfor kEN, I* must also contain IO. In other
words, besides containing all words that can be constructed from one or more letters
of I, I* also contains the empty word A. While A$. I, AE I*. Arepresents a string
and not a symbol, and thus the empty string cannot be in the alphabet I. However,
A is included in I *, since I * is not just an alphabet, but a collection of words over
the alphabet I. Note, however, that I+ is I* - {A}; I+ specifically excludes A.

1.2 DEFINITION OF A FINITE AUTOMATON

We now have the building blocks necessary to define deterministic finite automata.
A deterministic finite automaton is a mathematical model of a machine that accepts a
particular set of words over some alphabet I.

A useful visualization of this concept might be referred to as the black box
model. This conceptualization is built around a black box that houses the finite-state
control. This control reacts to the information provided by the read head, which
extracts data from the input tape. The control also governs the operation of the
output indicator, often depicted as an acceptance light, as shown in Figure 1.1.

There is no limit to the number of symbols that can be on the tape (although
each individual word must be of finite length). As the input tape is read by the
machine, state transitions, which alter the current state of the automaton, take place
within the black box. Depending on the word contained on the input tape, the light
bulb either lights or remains dark when the end of the input string is reached,
indicating acceptance or rejection of the word, respectively. We assume that the
input head can sense when it has passed the last symbol on the tape.

In some sense, a personal computer fits the finite-state control model; it reacts
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Finite State
Control

29

Figure 1.1 A model of a finite-state ac
ceptor

to each keystroke entered from the keyboard according to the current state of the
CPU and its own internal memory. However, the number of possible bit patterns
that even a small computer can assume is so astronomically large that it is totally
impractical to model a computer in this fashion. Finite-state machines can be
profitably used to describe portions of a computer (such as parts of the arithmetic!
logic unit, as discussed in Chapter 7, Example 7.15) and other devices that assume a
reasonable number of states.

Although finite automata are usually thought of as processing strings of letters
over some alphabet, the input can conceptually be elements from any finite set. A
useful example is the "brain" of a vending machine, which, say, dispenses 30et candy
bars.

EXAMPLE 1.5

The input to the vending machine is the set of coins {nickel, dime, quarter}, repre
sented by n, d, and q in Figure 1.2. The machine may only "remember" a finite
number of things; in this case, it will keep track of the amount of money that has
been dropped into the machine. Thus, the machine may be in the "state" of
remembering that no money has yet been deposited (denoted -in this example by
<Oet», or that a single nickel has been inserted (the state labeled <Se>), or that
either a dime or two nickels have been deposited «1Oet», and so on. Note that
from state <Oet> there is an arrow labeled by the dime token d pointing to the state
<10et> , indicating that, at a time when the machine "believes" that no money has
been deposited, the insertion of a dime causes the machine to transfer to the state
that remembers that ten cents has been deposited. From the <Oet> state, the arrows
in the diagram show that if two nickels (n) are input the machine moves through the
<Se> state and likewise ends in the state labeled <Iue>.

The vending machine thus counts the amount of change dropped into the
machine (up to 50et). The machine begins in the state labeled <Oet> and follows the
arrows to higher-numbered states as coins are inserted. For example, depositing a
nickel, a dime, and then a quarter would move the machine to the states <Se> ,
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Figure 1.2 An implementation of a vending machine

<15¢>, and then <40¢>. The states labeled 30¢ and above are doubly encircled to
indicate that enough money has been deposited; if 30¢ or more has been deposited,
then the machine "accepts," indicating that a candy bar may be selected.

Finite automata are appropriate whenever there are a finite number of inputs
and only a finite number of situations must be distinguished by the machine. Other
applications include traffic signals and elevators (as discussed in Chapter 7). We now
present a formal mathematical definition of a finite-state machine.

V Definition 1.10. A deterministic finite automaton or deterministic finite ac-
ceptor (DFA) is a quintuple <I., S, so, 3, F>, where

i, I. is the input alphabet (a finite nonempty set of symbols).
ii. S is a finite nonempty set of states.

iii. So is the start (or initial) state, an element of S.
iv. 3 is the state transition function; 3: S x I.--i> S.

v. Fis the set oi final (or accepting) states, a (possibly empty) subset of S.
~

The input alphabet, I., for any deterministic finite automaton A, is the set of
symbols that can appear on the input tape. Each successive symbol in a word will
cause a transition from the present state to another state in the machine. As
specified by the 3 function, there is exactly one such state transition for each
combination of a symbol a E I. and a state s E S. This is the origin of the word
"deterministic" in the phrase "deterministic finite automaton."

The various states represent the memory of the machine. Since the number of
states in the machine is finite, the number of distinguishable situations that can be
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remembered by the machine is also finite. This limitation of the device's ability to
store its past history is the origin of the word "finite" in the phrase "deterministic
finite automaton." At any given time during processing, if the previous history of
the machine is considered to be the reactions of the DFA to the letters that have
already been read, then the current state represents all that is known about the
history of the machine.

The start state of the machine is the state in which the machine always begins
processing a string. From this state, successive input symbols from!' are used by the
I') function to arrive at successive states in the machine. Processing stops when the
string of symbols is exhausted. The state in which the machine is left can either be a
final state, in which case the word is accepted, or it can be anyone of the other states
of S, in which case the word is rejected.

To produce a formal description of the concepts defined above, it is necessary
to enumerate each part of the quintuple that comprises the DFA. !', S, so, and Fare
easily enumerated, but the function I') can often be tedious to describe. One device
used to display the mapping I') is the state transition diagram. Besides graphically
displaying the transitions of the 8 function, the state transition diagram for a deter
ministic finite automaton also illustrates the other four parts of the quintuple.

A finite automaton state transition diagram is a directed graph. The states of
the machine represent the vertices of the graph, while the mapping of the 8 function
describes the edges. Final states are denoted by a doubly encircled state, and the
start state is identified by a straight incoming arrow. Each domain element of the
transition function corresponds to an edge in the directed graph. We formally define
a finite automaton state transition diagram for <!" s, so, 8, F> as a directed graph
G = (V, E), as follows:

I, V=S,
ii. E ={(s, t, a) Is, t E S, a E!, 1\ 8(s, a) = t},

where V is the set of vertices of the graph, and E is the set of edges connecting these
vertices. Each element of E is an ordered triple, ts, t, a), such that s is the origin
vertex, t is the terminus, and a is the letter from!' labeling the edge. Thus, for any
vertex there is exactly one edge leaving that vertex for each element of!,.

EXAMPLE 1.6

In the DFA shown in Figure 1.3, the set of edges E of the graph G is given by
E = {(so, S1, a), (so, S2, b), (S1, S1, a), (S1, S2, b), (S2' S1, a), (S2' so, b)}. The figure also
shows that So is the designated start state and that Slis the only final state. The state
transition function for a finite automaton is often represented in the form of a state
transition table. A state transition table is a matrix with the rows of the matrix
labeled and indexed by the states of the machine, and the columns of the matrix
labeled and indexed by the elements of the input alphabet; the entries in the table
are the states to which the DFA will move. Formally, let T be a state transition table
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Figure 1.3 The DFA described in Ex
ample 1.6

for some deterministic finite automaton A = <I, S, sO, 8, F>, and let s E Sand
a E I. Then the value of each matrix entry is given by the equation

("Is E S)('Va E I)T.. =8(s, a)

For the automaton in Example 1.6, the state transition table is

8 a b

So SI S2

SI SI S2

52 S1 So

This table represents the following transitions:

8(so, a) = Sl 8(so, b) = S2

8(s}, a) = Sl 8(s}, b) = S2

8(S2' a) = Sl 8(S2' b) = So

State transition tables are the most common method of representing the basic
structure of an automaton within a computer. When represented as an array in the
memory of the computer, access is very fast and the structure lends itself easily to
manipulation by the computer. Techniques such as depth-first search are easily and
efficiently implemented when the state transition diagram is represented as a table.
Figure 1.4 illustrates an implementation of the 8 function via transition tables in
Pascal.

type
Sigma = 'a' .. 'c:
State= (sO, 51, 52);

var
TransitionTable=array [State, Sigma] of State;

function Delta(S: State; A: Sigma) : State;
begin

Delta : = TransitionTable [S, A]
end ; {Delta}

Figure 1.4 A Pascal implementation of a state transition function
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With 8, we can describe the state in which we will find ourselves after proces
sing a single letter. We also want to be able to describe the state at which we will
arrive after processing an entire string. We will extend the 8 function to cover entire
strings rather than just single letters; 8(s, x) will be the state we wind up at when
starting at s and processing, in order, all the letters of the string x. While this is a
relatively easy concept to (vaguely) state in English, it is somewhat awkward to
formally define. To facilitate formal proofs concerning DFAs, we use the following
recursive definition.

V Definition 1.11. Given a DFA A = <~, S, SO ,8, F>, the extended statetransi
tion function for A, denoted 8, is a function 8: S x ~*~ S defined recursively as
follows:

I, (Vs E S)(Va E~)
ii, (Vs E S)
iii. (Vs E S)(Vx E ~*)(Va E~)

~

8(s, a) = 8(s, a)
8(s,~) = s

8(s,ax) = 8(8(s,a),x)

The 8 function extends the 8 function from single letters to words. Whereas
the 8 function maps pairs of states and letters to other states, the 8 function maps
pairs of states and words to other states. (i) is the observation that 8 and 8 treat
single letters the same; this fact is not really essential to the definition of 8, since it
can be deduced from (ii) and (iii) (see the exercises).

The 8 function maps the current state s and the first letter a, of a word
w = a, ... an via the 8 function to some other state 1. It is then recursively applied
with the new state t and the remainder of the word, that is, with a2' .. an' The
recursion stops when the remainder of the word is the empty word ~. See Examples
1.7 and 1.11 for illustrations of computations using this recursive definition.

Since the recursion of the 8 function all takes place at the end of the string, 8 is
called tail recursive. Tail recursion is easily transformed into iteration by applying
the 8 to successive letters of the input word and using the result of the previous
application of 8 as an input to the current application.

Figure 1.5 gives an implementation of the 8 function in Pascal. Recursion has
been replaced by iteration, and previous function results are saved in an auxiliary
variable T. The function Delta, the input alphabet Sigma, and the state set State
agree with the definitions given in Figure 1.4.

It stands to reason that if we start in state s and word y takes us to state r, and
if we start in state r and word x takes us to state t, then the word yx should take us
from state s all the way to 1. That is, if 8(s, y) = rand 8(r, x) = t, then 8(s, yx) should
equal t, also. We can indeed prove this, as shown with the following theorem.

V Theorem 1.1. Let A = <~, S, so, 8, F> be a DFA. Then

(Vx E~*)(Vy E~*)(VSES)(8(s,yx) =8(8(s,y),x))

Proof. Define P(n) by

(Vx E ~*)(Vy E ~n)(vs E S)(8(s,yx) = 8(8(s,y),x))
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Basis step: P(O): Let y E "J} (::;,Y = A).

Chap. 1

(since y = A)

(by Definition 1.llii) .

(since x = A'x)

(since y = A)

= 8(8(s,y),x)

= 8(8(s, A),x)

= 8(s, x)

= 8(s, Ax)

=8(s,yx)

Inductive step: Assume P(m):

(Vx E I*)(Vy E Im)(vs E S)(8(s,yx) =8(8(s,y),x)).

For any z E Im+l, (3a E I 1)(3y E Im) ~ z =ay. Then

8(s, zx) (by definition of z)

= 8(s, ayx) (by Definition 1.11iii)

= 8(8(s, a),yx) (since (3t E S) ~ 8(s, a) = t)

= 8(t,yx) (by the induction assumption)

= 8(8(t,y),x) (by definition oft)

= 8(8(8(s,a),y),x) (by Definition 1.11iii)

= 8(8(s, ay), x) (by definition of z)

= 8(8(s,z),x)

Therefore, P(m)::;, P(m + 1), and since this implication holds for any nonnegative
integer m, by the principle of mathematical induction we can say that P(n) is true for
all n EN. Since the statement therefore holds for any string y of any length, the
assertion is indeed true for all y in I *. This completes the proof of the theorem.
a

Note that the statement of Theorem 1.1 is very similar to the rule iii of the
recursive definition of the extended state transition function (Definition 1.11) with
the string y replacing the single letter a. We will see a remarkable number of
situations like this, where a recursive rule defined for a single symbol extends in a
natural manner to a similar rule for arbitrary strings.

As alluded to earlier, the state in which a string terminates is significant; in
particular, it is important to determine whether the terminal state for a string
happens to be one of the states that was designated to be a final state.

V Definition 1.12. Given a DFA A = <I, S, sO, 8, F>, A acceptsa word wE I*
iff 8(so, w) E F.
a
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const
MaxWordLength = 255; {anarbitrary constraint}

type
Word = record

Length : 0 .. MaxWordLength ;
Letters: packed array [0 .• MaxWordLengthj of Sigma

end; {Word}

function DeltaBar(S: State; W: Word) : State;
{uses the function Delta defined previously}
var

T: State;
I : 0 .. MaxWordLength;

begin
T:= S;
if W. Length> 0

then
for I : = 1 to W. Length do

T :=Delta(T, W.Letters[I]);
Del taBar : = T

end; {DeltaBar}

Figure 1.5 A Pascal implementation of the extended state transition function

We say a word w is accepted by a machine A= <I, S, sO, 8,F> iff the extended
state transition function "8 associated with A maps to a final state from So when
processing the word w. This means that the path from the start state ultimately leads
to a final state when the word w is presented to the machine. We will occasionally
say that A recognizes w; a DFA is sometimes referred to as a recognizer.

V Definition 1.13. Given a DFA A = <I, S, sO, 8, F>, A rejects a word wEI*
iff 8(so, w) $. F.
Ll

In other words, a word w is rejected by a machine A = <I, S, sO, 8, F> iff the "8
function associated with A maps to a nonfinal state from So when processing the
word w.

EXAMPLE 1.7

Let

where

A = <I, S, sO, 8, F>

I = {O, I}

S ={qo,qd

So = qo

F={qd
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and 8 is given by the transition table
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II 0 1

The structure of this automaton is shown in Figure 1.6.
To see how some of the above definitions apply, let x = 0100:

S(qo, x) = S(qo, 0100)

=S(8(qo,0),100)

= S(qo,100)

= S(8(qo, 1), 00)

= S(qI, 00)

= S(8(qI, 0), 0)

= S(ql'O)

= 8(qI, 0)

=q!

Thus, 8(qo,x) = ql E F, which means that x is accepted by A; A recognizes x.
Now let y = 1100:

S(qo,Y) = S(qo,1100)

= S(8(qo, 1), 100)

= S(q!, 100)

= S(8(qI, 1), 00)

= S(qo,OO)

= S(8(qo, 0), 0)

= S(qo, 0)

=8(qo,0)

= qo

Therefore, S(qo, y) = qo f/=. F, which means that y is not accepted by A.

Following the Pascal conventions defined in the previous programming frag
ments, the function Accept defined in Figure 1.7 tests for acceptance of a string by
consulting a FinalState set and using DeltaBar to refer to the TransitionTable.
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1

Figure 1.6 The DFA discussed in Ex
ample 1.7

The functions Delta, DeltaBar, and Accept can be combined to form a
Pascal program that models a DFA. The sample fragments given in Figures 1.4,1.5,
and 1.7 rightly pass the candidate string as a parameter. A full program would be
complicated by several constraints, including the awkward way in which strings must
be handled in Pascal. To highlight the correspondence between the code modules
and the automata definitions, the program given in Figure 1.8 handles input at the
character level rather than at the word level. The definitions in the procedure
Initialize reflect the structure of the DFA shown in Figure 1.9. Invoking this
program will produce a response to a single input word. For example, a typical
exchange would be

cba
Rejected

Running this program again might produce

ecce
Accepted

This behavior is essentially the same as that of the C program shown in Figure 1.10.
The succinct coding clearly shows the relationship between the components of the
quintuple for the DFA and the corresponding code.

V Definition 1.14. Given an alphabet :S, L is a language over the alphabet :s iff
L c:S*.
~

A language is a collection of words over some alphabet. If the alphabet is
denoted by :S, then a language Lover :s is a subset of :s*. Since L C :s*, L may be
finite or infinite. Clearly, the words used in the English language are a subset of

function Accept (W : Word) : Boolean;
{returns TRUE iff Wis accepted by the DFA}
begin

Accept :=DeltaBar(sD, W) in FinalState
end; {Accept}

Figure 1.7 A Pascal implementation of a test for acceptance
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program DFA(input, output);

Introduction and Basic Definitions Chap. 1

{This program tests whether input strings are accepted by the
{automaton displayed in Figure 1.9. The program expects input
{from the keyboard, delimited by a carriage return. No error
{checking is done; letters outside ['a' .. 'c'] cause a range
{error.

type
Sigma = 'a' .. 'c' ;
State= (sO, s r , s2);

var
TransitionTable
FinalState

array [State, Sigma] of State;
set of State;

function Delta(s State; c : Sigma)
begin

Delta: =TransitionTable[s,c]
end; { Delta}

State;

function DeltaBar(s
var

t : State;
begin

t : =s;

State) State;

{ Step through the keyboard input one letter at a time. }

while not eoln(input) do
begin

t : =Delta(t, input");
get(input)

end;
DeltaBar : = t

end; { Del taBar }

function Accept: boolean;

begin
Accept :=DeltaBar(So) in FinalState

end; { Accept }

procedure Initialize;
begin

FinalState : = [s2];

{ Set up the state transition table.

TransitionTable [sO, 'a'] : =s1;
TransitionTable [sO, fbi] : =so;
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TransitionTable [sO, Ie'] : =s2;
TransitionTable [s1, la'] : =s2;
TransitionTable [s b , Ib l] : =sO;
TransitionTable [s1, lei] : =sO;
TransitionTable [s2, 'a l ] : =sO;
TransitionTable [s2, 'b l ] : =sO;
TransitionTable [s2, Ie'] : =s1;

end; { Initialize

begin { DFA }

Initialize;
if Accept then

writeln(output, 'Accepted')
else

writeln(output, I Rejected')

end. { DFA }

Figure 1.8 A Pascal program that emulates the DFA shown in Figure 1.9

Figure 1.9 The DFA emulated by the
programs in Figures 1.8 and 1.10

words over the Roman alphabet and this collection is therefore a language accord
ing to our definition. Note that a language L, in this context, is simply a list of
words; neither syntax nor semantics are involved in the specification of L. Thus, a
language as defined by Definition 1.14 has little of the structure or relationships one
would normally expect of either a natural language (like English) or a programming
language (like Pascal).

EXAMPLE 1.8

Some other examples of valid languages are

i, 0
ii, {WE{O,1}*llwl>5}

iii. {A}
lv. {A, bilbo, frodo, samwise}

v. {xE{a,b}*llxl.=lxjb}
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# include <stdio.h>

# define «int) c~(int) la l )

# define

.
This table implements the state transition function and is indexed by
the current state and the current input letter.

enum state
/*
**
**
*/

enum state transition_table[3][3)={ s_1, s_O, s_2 },
s_2, s.,n. s_O },
s_O, s_O, s_1 }

};

enum
enum
char
{

state delta(s, c)
state s;

c;

return transition_table[ (int) s][ to_int(c»);

enum state delta_bar(s)
enum state s;

enum state t;
char c;

t=s;

/*
** Step through the input one letter at a time.
*/

while «char) (c = getchar(» != I\n')
t=delta(t, c);

return t;

main() {
if (delta_bar(s_O) == FINAL_STATE)

printf("Accepted\n");
else

printf("Rejected\n");
exit( 0) ;

Figure 1.10 A C program that emulates the DFA shown in Figure 1.9
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The empty language, denoted by 0 or { }, is different from {A}, the language
consisting of only the empty word A. Whereas the empty language consists of zero
words, the language consisting of A contains one word (which contains zero letters).
The distinction is analogous to an example involving sets of numbers: the set {OJ,
containing only the integer 0, is still a larger set than the empty set.

Every DFA differentiates between words that do not reach final states and
words that do. In this sense, each automaton defines a language.

V Definition 1.15. Given aDFA A = <I, S, sO, 8, F>, the language accepted by
A, denoted L(A), is defined to be

L(A) = {w E I* 18(so, w) E F}

L(A), the language accepted by a finite automaton A, is the set of all words w from
I* for which 8(so,w) E F. In order for a word w to be contained in L(B), the path
through the finite automaton B, as determined by the letters in w, must lead from
the start state to one of the final states.

For deterministic finite automata, the path for a given word w is unique: there
is only one path since, at any given state in the automaton, there is exactly one
transition for each a E I. This is not necessarily the case for another variety offinite
automaton, the nondeterministic finite automaton, as will be seen in Chapter 4.

V Definition 1.16. Given-an alphabet I, a language L ~ I* is finite automaton
definable (FAD) qJthere exists some DFA B = <I, S, sO, 8, F>, such that L = L(B).
d

The set of all words over {O, I} that contain an odd number of Is is finite automaton
definable, as evidenced by the automaton in Example 1.7, which accepts exactly this
set of words.

1.3 EXAMPLES OF FINITE AUTOMATA

This section illustrates the definitions of the quintuples and the state transition
diagrams for some nontrivial automata. The following example and Example 1.11
deal with the recognition of tokens, an important issue in the construction of
compilers.

EXAMPLE 1.9

The set of FORTRAN identifiers is a finite automaton definable language. This
statement can be proved by verifying that the following machine accepts the set of
all valid FORTRAN 66 identifiers. These identifiers, which represent variable,
subroutine, and array names, can contain from 1 to 6 (nonblank) characters, must
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begin with an alphabetic character, can be followed by up to 5 letters or digits, and
may have embedded blanks. In this example, we have ignored the difference
between capital and lowercase letters, and 0 represents a blank.

~ = ASCII

r = ASCII - {a, b,c, ... x, y,z,O, 1,2,3,4,5,6,7,8,9,O}

S = {so, SbS2, S3, S4, S5, S6, S7}

So = So

B a b c ... y z 0 1 ... 8 9 0 r
80 81 81 81 ... 81 81 87 87 ... 87 87 80 87
81 82 82 82 ... 82 82 82 82 ... 82 82 81 87
82 83 83 83 .•. 83 83 83 83 ... 83 83 82 87
83 84 84 84 ... 84 84 84 84 ... 84 84 83 87
84 85 85 85 ... 85 85 85 85 ... 85 85 84 87
85 86 86 86 ... 86 86 86 86 ... 86 86 85 87
86 87 87 87 ... 87 87 87 87 ... 87 87 86 87
87 87 87 87 ... 87 87 87 87 ... 87 87 87 87

F = {S1 ,S2, S3, S4, S5 ,S6}

The entries under the column labeled r show the transitions taken for each member
of the set r. The state transition diagram of the machine corresponding to this
quintuple is displayed in Figure 1.11. Note that, while each of the 26 letters
transition from So to S1 , a single arrow labeled a-z is sufficient to denote all these
transitions. Similarly, the transition labeled ~ from S7 indicates that every element
of the alphabet follows the same path.

Figure 1.11 A DFA that recognizes valid FORTRAN identifiers
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Figure 1.12 The DFA M discussed in
Example 1.10

EXAMPLE 1.10

The DFA M shown in Figure 1.12 accepts only those strings that have an even
number of bs and an even number of as. Thus,

L(M)={xE{a,b}*llxl.=Omod2/\ Ixlb=Omod2}

The corresponding quintuple for M = <~, S, SO , 8, F> has the following compo
nents:

~ == {a, b]

S = {<O,0>, <0, 1>, <1,0>, <1, 1>}

so=<O,O>

S a b

<0,0> <1,0> <0,1>
<0,1> <1,1> <0,0>
<1,0> <0,0> <1,1>
<1,1> <0,1> <1,0>

F= {<O,O>}

Note that the transition function can be succinctly specified by

8(<i,j>, a) = <1- i,j> and 8(<i,j>, b) = <i, 1- j> for all i,j E {O, I}

See the exercises for some other problems involving congruence modulo 2.

EXAMPLE 1.11

Consider a typical set of all real number constants in modified scientific notation
format described by the BNF in Table 1.1.
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TABLE 1.1

<sign>:: =+ 1-

<digit>:: =0111213141516171819

<natural>:: =<digit> 1<digit> <natural>

<integer> :: = <natural> I<sign> <natural>

<real constant>:: =<integer>

<integer>.

<integer>. <natural> I
<integer>.< natural>E<integer>

Chap. 1

This set of productions defines real number constants like + 192., since

<real constant> =? <integer>.

<integer>. =? <sign><natural>.

<sign> <natural>. =? +<natural>.

+ <natural>. =? +<digit><natural>.

+ <digit> <natural>. =? +1<natural>.

+ 1<natural>. =? + 1<digit> <natural>.

+ 1<digitc-cnaturalc-ic> + 1<digit><digit>.

+1<digit><digit>. =? +1<digit>2.

+ 1<digit>2. =? + 192.

Other possibilities are

1
3.1415
2.718281828
27.
42.42
1.0E-32

while the following strings do not qualify:

.01
1. + 1
8.E·I0
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The set of all real number constants that can be derived from the productions given
in Table 1.1 is a FAD language. Let R be the deterministic finite automaton defined
below. The corresponding state transition diagram is given in Figure 1.13.

I = {O, 1, 2,3,4,5, 6, 7,8, 9, +, - ,E,.}

S = {so, S1>~, S3, S4, S5, 8(" 8-), ss}

SO=SO

B 0 I 2 3 4 5 6 7 8 9 + E

So S2 S2 82 82 82 82 S2 82 82 82 81 SI 87 87

81 82 82 82 82 S2 82 82 82 82 82 87 S7 87 87

82 S2 82 82 82 82 82 82 82 82 82 87 S7 87 83

83 88 88 88 88 88 88 Sa 88 S8 88 S7 S7 S7 87

84 Ss 8s Ss 8s 8s 8s 8s s, s, S5 S6 86 S7 87

8s 8s 8s 8s 8s 8s 8s Ss 8s Ss 85 87 87 S7 87

Sa s, 8s Ss Ss 8s 8s Ss Ss 8s Ss S7 87 87 S7

S7 S7 87 87 S7 87 S7 87 S7 87 S7 87 87 S7 87

88 88 S8 88 88 88 S8 S8 S8 88 88 87 S7 84 S7

F = {~, S3, S5 , ss}

The language accepted by R, that is L (R), is exactly the set of all real number
constants in modified scientific notation format described by the BNF in Table 1.1.

+ E

Figure 1.13 A DFA that recognizes real number constants
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For example, let x = 3.1415:

B(so, x) = B(so, 3.1415)

= B(8(so, 3), .1415)

= B(S2' .1415)

= B(8(S2' .), 1415)

= B(S3' 1415)

= B(8(S3' 1),415)

= B(S8' 415)

= B(8(S8' 4),15)

= B(S8' 15)

= B(8(S8' 1),5)

= B(S8' 5)

= 8(S8' 5)

= S8

S8 E F, and therefore 3.1415 E L (R).
While many important classes of strings such as numerical constants (Example

1.11) and identifiers (Example 1.9) are FAD, not all languages that can be de
scribed by BNF can be recognized by DFAs. These limitations will be investigated
in Chapters 8 and 9, and a more capable type of automaton will be defined in
Chapter 10.

1.4 CIRCUIT IMPLEMENTATION OF FINITE AUTOMATA

Now that we have described the mathematical nature of deterministic finite
automata, let us turn to the physical implementation of such devices. We will
investigate the sort of physical components that actually go into the "brain" of, say,
a vending machine. Recall that the basic building blocks of digital logic circuits are
logic gates; using 0 or False to represent a low voltage (ground) and 1 or True to
represent a higher voltage (often +5 volts), the basic gates have the truth tables
shown in Figure 1.14.

Since our DFA will examine one letter at a time, we will generally need some
type of timing mechanism, which will be regulated by a clock pulse; we will read one
letter per pulse and allow enough interim time for transient signals to propagate
through our network as we change states and move to the next letter on the input
tape. The clock pulse will alternate between high and low voltages, as shown in
Figure 1.15. For applications such as vending machines, the periodic clock pulse
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P~ :~:~ :~ :~
NOT gate AND gate OR gate NAND gate NOR gate

:t: p q p/\q P q pVq P q pi q p q p ~ q

1 0 1 1 1 1 1 1 1 1 0 1 1 0
o 1 1 0 0 1 0 1 1 0 1 1 0 0

0 1 0 0 1 1 0 1 1 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1

Figure 1.14 Common logic gates and their truth tables

volts

+5 ,.... ,....

0

tim e

Figure 1.15 A typical clock pulse pattern for latched circuits

would be replaced by a device that pulsed whenever a new input (such as the
insertion of a coin) was detected.

We need to retain the present status of the network (current state, letter, and
so forth) as we move on to the next input symbol. This is achieved through the use of
a D flip-flop (D stands for data or delay), which uses NAND gates and the clock
signal to store the current value of, say, p', between clock pulses. The symbol for a
D flip-flop (sometimes called a latch) is shown in Figure 1.16, along with the actual
gates that comprise the circuit.

. The output, p and ~p, will reflect the value of the input signal p' only after
the high clock pulse is received and will retain that value after the clock drops to low
(even if p' subsequently changes) until the next clock pulse comes along, at which
time the output will reflect the new current value of p'. This is best illustrated by
referring to the NAND truth table and tracing the changes in the circuit. Begin with
clock =P =p' = 0 and ~p = 1, and verify that the circuit is stable. Now assume
that p' changes to 1, and note that, although some internal values may change, p
and -'p remain at 0 and 1, respectively; the old value of p' has been "remembered"
bythe D flip-flop. Contrast this with the behaviorwhen we strobe the clock: assume
that the clock now also changes to 1 so that we now have clock =p , =~p = 1, and
p = O. When the signal propagates through the network, we find that p and -,p
have changed to reflect the new value of p'; clock = p =p' = 1, and ~p = O.

We will also have to represent the letters of our input alphabet by high and low
voltages (that is, combinations of Os and Is). The. ASCII alphabet, for example, is
quite naturally represented by 8 bits, 313z33343s36373s, where B, for example, has the
bit pattern 01000010 (binary 66). One of these bit patterns should be reserved for
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p'---I

clock ---I

p'---f-Il'-_--1

clock ---+-6-~--l
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I---p

t---""p

(a)

P-...-t--- P

~.......-+---...,p

(b)

Chap. 1

Figure 1.16 (a) A data flip-flop or latch (b) The circuitry for a D flip-flop

indicating the end of our input string <EOS>. Our convention will be to reserve
binary zero for this role, which means our ASCII end of string symbol would be
00000000 (or NULL). In actual applications using the ASCII alphabet, however, a
more appropriate choice for <EOS> might be 00001101 (a carriage return) or
00001001 (a line feed) or 00100000 (a space).

Our alphabets are likely to be far smaller than the ASCII character set, and we
willhence need fewer than 8 bits of information to encode our letters. For example,
if ~ =[b, c}, 2 bits, 31 and 32, will suffice. Our choice of encoding could be
00 = <EOS>, 01 = b, 10 = c, and 11 is unused.
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In a similar fashion, we must encode state names. A machine with
S = {ro, r., r2,r3, r4, rs} would need 3 bits (denoted by t l, t2, and t3) to represent the six
states. The most natural encoding would. be ro = 000, rl = 001, r2 = 010, r, == 011,
r, == 100, and r, == 101, with the combinations 110 and 111 left unused.

Finally, a mechanism for differentiating between final and nonfinal states
must be implemented (although this need not be engaged until the <EOS> symbol
is encountered). Recall that we must illuminate the "acceptance light" if the ma
chine terminates in a final state and leave it unlit if the string on the input tape is
instead rejected by the DFA. A second "rejection light" can be added to the
physical model, and exactly one of the two will light when <EOS> is scanned by the
input head.

EXAMPLE 1.12

When building a logical circuit from the definition of a DFA, we will find it con
venient to treat <EOS> as an input symbol, and define the state transition function
for it by (Vs E S)(8(s, <EOS» == s). Thus, the DFA in Figure 1.17a should be
thought of as shown in Figure 1.17b. As we have only two states, a single state bit
will suffice, representing So by t l = 0 and Sl by t l = 1. Since I ={b, e}, we will again
use 2 bits, 31 and 32, to represent the input symbols. As before, 00 = <EOS>,
01 =b, 10 = e, and 11 is unused.

(a) (b)

Figure 1.17 (a) The DFA discussed in Example 1.12 (b) The expanded state
transition diagram for the DFA implemented in Figure 1.18

Determining the state transition function will require knowledge of the cur
rent state (represented by the status of t l) and the current input symbol (repre
sented by the pair of bits 31 and 32' These three input values will allow the next state
t{ to be calculated. From the 8 function, we know that

8(so,b) = So

8(so,c) = Sl

8(Sh b) = So

8(Shc) = So

These specifications correspond to the following four rows of the truth table for t;:
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tt at a2 t; t1 a[ a2 t;

0 0 1 0 So O. l=b So
0 1 0 1 which represents So 1 o=c sl
1 0 1 0 sl 0 l=b So

sl -- So1 1 0 0 1 o=c

Adding the state transitions for <EOS> and using * to represent the outcome for
the two rows corresponding to the unused combination 818z = 11 fills out the eight
rows of the complete truth table, as shown in Table 1.2.

TABLE 1.2

tt at az t;

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 *
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 *

If we arbitrarily assume that the two don't-care combinations (*) are zero, the
principle disjunctive normal form of t; contains just two terms: (----,tl /\ 81/\ ----'8z) V
(t1/\ ----,81/\ ----'8z). It is profitable to reassign the don't-care value in the fourth row to
1, 'since the expression can then be shortened to (----,t j/\8j)V(tl/\----'81/\----'8z) by
applying standard techniques for minimizing Boolean functions. Incorporating this
into a feedback loop with a D flip-flop provides the heart of the digital logic circuit
representing the DFA, as shown in Figure 1.18.

t, f---+-+---l

T,f--.-+--f--l
clock

accept

reject

-'3"-'a,
.. ---.10---->,

..----/ <EGS>

Figure 1.18 The circuitry implementing the DFA discussed in Example 1.12



Sec. 1.4 Circuit Implementation of Finite Automata 51

The accept portion of the circuitry ensures that we do not indicate acceptance
when passing through the final state; it is only activated when we are in a final state
while scanning the <BOS> symbol. Similarly, the reject circuitry can only be
activated when the <BOS> symbol is encountered. When there are several final
states, this part of the circuitry becomes correspondingly more complex. It is in
structive to follow the effect a string such as bee has on the above circuit. Define
8i(j) as the jth value the bit a, takes on as the string bee is processed; that is, 8;(j) is
the value of a, during the jth clock pulse. We then have

81(1)=0 82(1)=1 :::}b

81(2) = 1 82(2) = 0 :::} e

81(3) = 1 82(3) = 0 :::} e

81(4) = 0 82(4) = 0 :::} <BOS>

Trace the circuit through four clock pulses (starting with t 1 = 0), and observe the
cutrent values that t 1 assumes, noting that it corresponds to the appropriate state of
the machine as each input symbol is scanned.

Note that a six-state machine would require more and substantially larger
truth tables. Since a state encoding would now need to specify tl> t2 , and t3, three
different truth tables (for ti, t2, and t3) must be constructed to predict the next state
transition. More significantly, the input variables would include tl> t2, t3, 81> and 82,
making each table 32 rows long. Three D flip-flop feedback loops would be neces
sary to store the three values tl> t2, and t3 .

Also, physical logic circuits of this type have the disconcerting habit of initial
izing to some random configuration the first time power is applied to the network. A
true working model would thus need a reset circuit to initialize each t, to 0 in order to
ensure that the machine started in state SQ. Slightly more complex set-reset flip-flops
can be used to provide a hardware solution to this problem. However, a simple
algorithmic solution would require the input tape to have a leading start-of-string
symbol <SOS>. The definition of the state transition function should be expanded
so that scanning the <SOS> symbol from any state will automatically transfer
control to SQ. We will adopt the convention that <SOS> will be represented by the
highest binary code; in ASCII, for example/ this would be 11111111, while in the
preceding example it would be 11. To promote uniformity in the exercises, it is
suggested that <SOS> should always be given the highest binary code and <BOS>
be represented by binary zero; as in the examples given here, the symbols in ~

should be numbered sequentially according to their natural alphabetical order. In a
similar fashion, numbered states should be given their corresponding binary codes.
The reader should note, however, that other encodings might result in less complex
circuitry.

EXAMPLE 1.13

As a more complex example of automaton circuitry, consider the DFA displayed in
Figure 1.19. Two flip-flops t 1 and t2 will be necessary to represent the three states,
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Figure 1.19 The DFA discussed in Ex
ample 1.13

most naturally encoded as So = 00, SI = 01, S2 = 10, with S3 = 11 unused. Employing
both <SOS> and <EOS> encodings yields the DFA in Figure 1.20.

Note that we must account for the possibility that the circuitry might be
randomly initialized to t1=1 and t2=1; we must ensure that scanning the <SOS>
symbol moves us back into the "real" part of the machine. Two bits of information
(81 and 82) are also needed to describe the input symbols. Following our con
ventions, we assign <EOS> = 00, 8 = 01, b = 10, and <SOS> = 11. The truth table
for both the transition function and the conditions for acceptance is given in Table
1.3.

In the first row, t1= 0 and t2= 0 indicate state So, while a1 = 0 and a2= 0 denote
the <EOS> symbol. Since 8(so,<EOS» = So, t; = 0 and t2= O. We do not want to
accept a string that ends in So, so accept = 0 also. The remaining rows are deter
mined similarly. The (nonminimized) circuitry for this DFA is shown in Figure 1.21.

TABLE 1.3

t1 t2 a1 a2 t; t2 accept

0 0 0 0 0 0 0
0 0 0 1 0 1 0
0 0 1 0 1 0 0
0 0 1 1 0 0 0
0 1 0 0 0 1 1
0 1 0 1 1 0 0
0 1 1 0 0 0 0
0 1 1 1 0 0 0
1 0 0 0 1 0 1
1 0 0 1 0 0 0
1 0 1 0 0 1 0
1 0 1 1 0 0 0
1 1 0 0 • • •
1 1 0 1 • • •
1 1 1 0 • • •
1 1 1 1 0 0 0
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<SOS>.<EOS>

Figure 1.20 The expanded state transi
tion diagram for the DFA implemented in
Figure 1.21
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Figure 1.21 The circuitry implementing the DFA discussed in Example 1.13
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1.5 APPLICATIONS OF FINITE AUTOMATA

Introduction and Basic Definitions Chap. 1

In this chapter we have described the simplest form of finite automaton, the DFA.
Other forms of automata, such as nondeterministic finite automata, pushdown
automata, and Turing machines, are introduced later in the text. We close this
chapter with three examples to motivate the material in the succeeding chapters.

When presenting automata in this chapter, we made no effort to construct the
minimal machine. A minimal machine for a given language is one that has the least
number of states required to accept that language.

EXAMPLE 1.14

In Example 1.5, the vending machine kept track of the amount of change that had
been deposited up to salt. Since the candy bars cost only 301t, there is no need to
count up to salt. In this sense, the machine is not optimal, since a less complex
machine can perform the same task, as shown in Figure 1.22. The corresponding
quintuple is <[n, d, q},{so, Ss, SIO, SIS, S20, S2S, S30}, so, 5, {S30}>, where for each state s.,
5 is defined by

5(s;,0) = Smin{30,; +S}

5(s;, d) = Smin{30,;+ IO}

5(s;, q) = Smin{30,i+2S}

Note that the higher-numbered states in Example 1.5 were all effectively
"remembering" the same thing, that enough coins had been deposited. These final
states have been coalesced into a single final state to produce the more efficient
machine in Figure 1.22. In the next two chapters, we develop the theoretical back
ground and algorithms necessary to construct from an arbitrary DFA the minimal
machine that accepts the same language.

As another illustration of the utility of concepts relating to finite-state ma
chines, we will consider the formalism used by many text editors to search for a
particular target string pattern in a text file. To find ababb in a file, for example, a

Figure 1.22 The automaton discussed in Example 1.14
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naive approach might consist of checking whether the first five characters of the file
fit this pattern, and next checking characters 2 through 6 to find a match, and so on.
This results in examining file characters more than once; it ought to be possible to
remember past values, and avoid such duplication. Consider the text string
aabababbb. By the time the fifth character is scanned, we have matched the first
four characters of ababb. Unfortunately, a, the sixth character of aabababbb, does
not produce the final match; however, since characters 4, 5, and 6 (aba) now match
the first three characters of the target string, it does allow for the possibility of

. characters 4 through 8 matching (as is indeed the case in this example). This leads to
a general rule: If we have matched the first four letters of the target string, and the
next character happens to be a (rather than the desired b), we must remember
that we have now matched the first three letters of the target string.

"Rules" such as these are actually the state transitions in the DFA given in the
next example. State s, represents having matched the first i characters of the target
string, and the rule developed above is succinctly stated as 8(S4' a) == S3'

EXAMPLE 1.15

A DFA that accepts all strings that contain ababb as a substring is displayed in
Figure 1.23. The corresponding quintuple is

<{a, b},{so, s., S2, S3, S4, s.}, so, 8, {ss}>,
where 8 is defined by

8 a b

50 51 50

51 51 52

52 53 50

53 51 54

54 53 55

55 55 55

Figure 1.23 A DFA that accepts strings containing ababb

It is a worthwhile exercise to test the operation of this DFA on several text
strings and verify that the automaton is indeed in state s, exactly when it has
matched the first i characters of the target string. Note that if we did not care what
the third character of the substring was (that is, if we were searching for occurrences
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of ababb or abbbb), a trivial modification of the above machine would allow us to
search for both substrings at once, as shown in Figure 1.24. The corresponding
quintuple is <{a, b},{so, Sll S2, S3, S4, s.}, so, 8, [s.]>, where 8 is defined by

8 a b

80 81 80

81 S1 82

82 83 83

83 S1 84

84 S3 85

85 85 85

a.b

Figure 1.24 A DFA that accepts strings that contain either ababb or abbbb

In this case, we required one letter between the initial part of the search string (ab)
and the terminal part (bb). It is possible to modify the machine to accept strings that
contain ab, followed by any number of letters, followed by bb. This type of machine
would be useful for identifying comments in many programming languages. For
example, a Pascal comment is essentially of the form (*, followed by most combi
nations of letters, followed by the first occurrence of *).

It should be noted that the machine in Example 1.15 is highly specialized and
tailored for the specific string ababb; other target strings would require completely
different recognizers. While it appears to require much thought to generate the
appropriate DFA for a given string, we will see how the tools presented in Chapter 4
can be used to automate the entire process.

Example 1.15 indicates how automata can be used to guide the construction of
software for matching designated patterns. Finite-state machines are also useful in
designing hardware that detects designated sequences. Example 4.7 will explore a
communications application, and the following discussion illustrates how these
concepts can be applied to help evaluate the performance of computers.

A computer program is essentially a linear list of machine instructions, stored
in consecutive memory locations. Each memory location holds a sequence of bits
that can be thought of as words comprised of Os and Is. Different types of in
structions are represented by different patterns of bits. The CPU sequentially
fetches these instructions and chooses its next action by examining the incoming bit
pattern to determine the type of instruction that should be executed. The sequences
of bits that encode the instruction type are called opcodes.

Various performance advantages can be attained when one part of the CPU
prefetches the next instruction while another part executes the current instruction.
However, computers must have the capability of altering the order in which instruc-
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tions are executed; branch instructions allow the CPU to avoid the anticipated next
instruction and instead begin executing the instructions stored in some other area of
memory. When a branch occurs, the prefetched instruction will generally need to be
replaced by the proper instruction from the new area of memory. The consequent
delay can degrade the speed with which instructions are executed.

Irrespective of prefetching problems, it should be clear that a branch instruc
tion followed immediately by another branch instruction is inefficient. If a CPU is
found to be regularly executing two or more consecutive branch instructions, it may
be worthwhile to consider replacing such series of branches with a single branch to
the ultimate destination [FERR]. Such information would be determined by moni
toring the instruction stream and searching for patterns that represented consecu
tive branch opcodes. This activity is essentially the pattern recognition problem
discussed in Example 1.15.

It is unwise to try to collect the data representing the contents of the instruc
tion stream on secondary storage so that it can be analyzed later. The volume of
information and the speed with which it is generated preclude the collection of a
sufficiently large set of data points. Instead, the preferred solution uses a specially
tailored piece of hardware to monitor the contents of the CPU opcode register and
increment a hardware counter each time the appropriate patterns are detected. The
heart of this monitor can be built by transforming the appropriate automaton into
the corresponding logic circuitry, as outlined in Section 1.4. Unlike the automaton
in Example 1.15, the automaton model for this application would allow transitions
out of the final state, so that it may continue to search for successive patterns. The
resulting logic circuitry would accept as input the bit patterns currently present in
the opcode register, and send a pulse to the counter mechanism each time the
accept circuitry was energized.

Note that in this case we would not want to inhibit the accept circuitry by
requiring an <EOS> symbol to be scanned. Indeed, we want the light on our
conceptual black box to flicker as we process the data, since we are intent on
counting the number of times it flickers during the course of our monitoring.

EXAMPLE 1.16

We close this chapter with an illustration of the manner in which computational
algorithms can profitably use the automaton abstraction. Network communications
between independent processors are governed by a protocol that implements a
finite state control [TANE]. The Kermit protocol, developed at Columbia Univer
sity, is widely employed to communicate between processors and is still most often
used for its original purpose: to transfer files between micros and mainframes
[DACR]. During a file transfer, the send portion of Kermit on the source host is
responsible for delivering data to the receive portion of the Kermit process on the
destination host. The receive portion of Kermit reacts to incoming data in much the
same way as the machines presented in this chapter. The receive program starts in a
state of waiting for a transfer request (in the form of an initialization packet) to
signal the commencement of a file transfer (state R in Figure 1.25). When such a
packet is received, Kermit transitions to the RF state, where it awaits a file-header
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Figure 1.25 The state transition dia
gram for the receive portion of Kermit, as
discussed in Example 1.16

packet (which specifies the name of the file about to be transferred). Upon receipt
of the file-header packet, it enters the RD state, where it processes a succession of
data packets (which comprise the body of the file being transferred). An EOF
packet should arrive after all the data are sent, which can then be followed by
another file-header packet (if there is a sequence of files to be transferred) or by a
break packet (if the transfer is complete). In the latter case, Kermit reverts to the
start state R and awaits the next transfer request. The send portion of the Kermit
process on the source host follows the behavior of a slightly more complex automa
ton. The state transition diagram given in Figure 1.25 succinctly describes the logic
of the receive portion of the Kermit protocol; for simplicity, timeouts and error
conditions are not reflected in the diagram. The input alphabet is {B, D, Z, H, S},
where B represents a break, D is a data packet, Z is EOF, H is a file-header packet,
and S is a send-intention packet. The state set is {A, R, RF, RD}, where A denotes
the abort state, R signifies receive, RF is receive jileheader, and RD is receive
data. Note that unexpected packets (such as a data packet received in the start state
R or a break packet received when data packets are expected in state RD) cause a
transition to the abort state A.

In actuality, the receive protocol does more than just observe the incoming
packets; Kermit sends an acknowledgment (ACK or NAK) of each packet back to
the source host. Receipt of the file header should also cause an appropriate file to be
created and opened, and each succeeding data packet should be verified and its
contents placed sequentially in the new file. A machine model that incorporates
actions in response to input is the subject of Chapter 7, where automata with output
are explored.

EXERCISES

1.1. Recall how we defined 8 in this chapter:
('Is E S)('1a E 1)
('Is ES)
('Is E S)('1x E 1 *)('1a E 1)

8.(s, a) = 8(s, a)
8.(s, A) = s
8.(s, ax) = 8,(8(s, a),x)
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B, here denoted B" was tail recursive. Tail recursion means that all recursion takes
place at the end of the string. Let us now define an alternative extended transition
function, Bh, thusly:

(Vs E S)(Va E I) Bh(s, a) = 8(s, a)
(VsE S) Bh(s, x) = s
(VsE S)(Va E I)(Vx E I*) Bh(s,xa) = 8(Bh(s,x), a)

It is clear from the definition of Bhthat all the recursion takes place at the head of the
string. For this reason, Bhis called head recursive. Show that the two definitions result
in the same extension of 8, that is, prove by mathematical induction that

(VsE S)(Vx E I*)(B,(s,x) = Bh(s,x»
1.2. Consider Example 1.14. The vending machine accepts coins as input, but if you change

your mind (or find you do not have enough change), it will not refund your money.
Modify this example to have another input, <coin-return>, which is represented by r
and which will conceptually return all your coins.

1.3. (a) Specify the quintuple corresponding to the DFA displayed in Figure 1.26.
(b) Describe the language defined by the DFA displayed in Figure 1.26.

~O'l
Figure 1.26 The automaton discussed in
Exercise 1.3

1.4. Construct a state transition diagram and enumerate all five parts of a deterministic
finite automaton A = <{a, b, c},S, so,8, F> such that

L(A) = {x I Ixl is a multiple of 2 or 3}.
1.5. Let I = {O, I}. Construct deterministic finite automata that will accept each of the

following languages, if possible.
(a) LI = {x I IxImod 7 = 4}
(b) Lz=I*-{wI3n~Bw=al ... an 1\ an= l }
(c) L3 = {y Ilylo = Iyll}

1.6. Let I = {a, b}.
(a) Construct deterministic finite automata AI> Az, A3 , and ~ such that:

I, L(AI ) = {x 1(lxls is odd)I\(lxlbis even)}

ii. L(Az) = {y I(Iy Is is even) V (Iy Ib is odd)}

iii. L(A3 ) ={z 1(lzls is even) V (14is even)} (V represents exclusive-or)

tv, L(~) = {z Ilzls is even}
(b) How does the structure of each of these machines relate to the one defined in

Example 1.lO?
1.7. Modify the machine M defined in Example 1.10 so that the language accepted by the

machine consists of strings x E {a, b}", where both IxIs and IxIb are even and IxI> 0,
that is, the new machine should accept L (M) - {x},

1.8. Let M = <I, S, So,8, F> be an (arbitrary) DFA that accepts the language L(M). Write
down a general procedure for modifying this machine so that it will accept L(M) - {x},
(Specify the five parts of the new machine and justify your statements.) It may be
helpful to do this for a specific machine (as in Exercise 1.7) before attempting the
general case.

1.9. Let M = <I, S, so,8, F> be an (arbitrary) DFA that accepts the languageL(M). Write
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down a general procedure for modifying this machine so that it will accept L(M) U {A}.
(Specify the five parts of the new machine and justify your statements.)

1.10. Let I = {a, b, d} and 'IJf = {x E I* I(x begins with d) V (x contains two consecutive bs)}.
(a) Draw a machine that will accept 'IJf.
(b) Formally specify the five parts of the DFA from part (a).

1.11. Let I = {a, b, c}and <I> = {x E I* 1every b in x is immediately followed by c}.
(a) Draw a machine that will accept <1>.
(b) Formally specify the five parts of the DFA from part (a).

1.12. Let I = {O, 1, 2, 3, 4, 5, 6, 7,8, 9}.Consider the base 10 numbers formed by strings from
I*: 14 represents fourteen, the three-digit string 205 represents two hundred and five,
and so on. Let n = {x E I *Ithe number represented by x is evenly divisible by 7}=
{A, 0, 00, 000, ... ,7,07,007, ... ,14,21,28,35, ... }.
(a) Draw a machine that will accept n.
(b) Formally specify the five parts of the DFA from part (a).

1.13. Let I={0,1,2,3,4,5,6,7,8,9}. Let r={xEI*lthe number represented by x is
evenly divisible by 3}.
(a) Draw a three-state machine that will accept r.
(b) Formally specify the five parts of the DFA from part (a).

1.14. Let I={0,1,2,3,4,5,6,7,8,9}. Let K={xEI*lthe number represented by x is
evenly divisible by 5}.
(a) Draw a five-state DFA that accepts K.
(b) Formally specify the five parts of the DFA from part (a).
(c) Draw a two-state DFA that accepts K.
(d) Formally specify the five parts of the DFA from part (c).

1.15. Let I = {O, 1,2,3,4,5,6,7,8, 9}. Draw a DFA that accepts the first eight primes.
1.16. (a) Find all ten combinations of u, v, and w such that uvw = cab (one such combina

tion is u = c, v = A, w = ab).
(b) In general, if x is oflength n, and uvw = x, how many distinct combinations of u, v,

and w will satisfy this constraint?
1.17. Let I = {a, b} and E = {x E I* Ix contains (at least) two consecutive bs 1\ x does not

contain two consecutive as}. Draw a machine that will accept E.
1.18. The FORTRAN identifier in Example 1.9 recognized all alphabetic words, including

those like DO, DATA, END, and STOP, which have different uses in FORTRAN.
Modify Figure 1.11 to produce a DFA that will also reject the words DO and DATA
while still accepting all other valid FORTRAN identifiers.

1.19. Consider the machine defined in Example 1.11. This machine accepts most real
number constants in scientific notation. However, this machine does have some
(possibly desirable) limitations. These limitations include requiring that a 0 precede
the decimal point when specifying a number with a mantissa less than 1.
(a) Modify Figure 1.13 so that it will accept the set of real-number constants described

by the following BNF.
<sign>:: =+ 1-
<digit>:: =0111213141516171819

<natural>:: = <digit> I<digit> <natural>
. <integer> :: = <natural> I<sign> <natural>

<real constant> :: = <integer>
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<integer>. I
. <natural> I
<sign>.<natural> I
.<natural>E<integer> I
<sign>. <natural>E<integer> I
<integer>. <natural> I
<integer>. <natural>E<integer>

(b) Write a program in your favorite programming language to implement the automa
ton derived in part (a). The program should read a line of text and state whether or
not the word on that line was accepted.

1.20. Show that part (i) of Definition 1.11 is implied by parts (ii) and (iii) of that definition.
1.21. Develop a more succinct description of the transition function given in Example 1.9

(compare with the description in Example 1.10).
1.22. Let the universal set be {a, b]". Give an example of

(a) A finite set.
(b) A cofinite set.
(c) A set that is neither finite nor cofinite.

1.23. Consider the DFA given in Figure 1.27.
(a) Specify the quintuple for this machine.
(b) Describe the language defined by this machine.

a

Figure 1.27 The DFA discussed in Exercise 1.23

1.24. Consider the set consisting of the names of everyone in China. Is this set a FAD
language?

1.25. Consider the set of all legal infix arithmetic expressions over the alphabet
{A,B, +, -, *,1} without parentheses (assume normal procedence rules apply). Is this
set a FAD language? If so, draw the machine.

1.26. Consider an arbitrary deterministic finite automaton M.
(a) What aspect of the machine determines whether AE L(M)?
(b) Specify a condition that would guarantee that L (M) = I*.
(c) Specify a condition that would guarantee that L (M) = 0.
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1.27. Construct deterministic finite automata to accept each of the following languages.
(a) {x E {a, b, c]" Iabc is a substring of x}
(b) {x E {a, b, c}*Iacaba is a substring of x}

1.28. Consider Example 1.14. The vending machine had as input nickels, dimes, and quar
ters. When 30e had been deposited, a candy bar could be selected. Modify this
machine to also accept pennies, denoted by p, as an additional input. How does this
affect the number of states in the machine?

1.29. (a) Describe the language defined by the following quintuple (compare with Figure
1.28).

~ ={a,b] 8(to,a) = to
S = {to, t1} 8(to,b) = t1

So = to 8(t!, a) = t 1

F ={t1} 8(t!, b) = to
(b) Rigorously prove the statement you made in part (a). Hint: First prove the in

ductive statement
pen): ("Ix E In)((8(to,x) = to~ Ix Ib is even) A(8(to,x) = t1 ~ Ix Ib is odd».

b

Figure 1.28 The DFA discussed in Ex
ercise 1.29

1.30. Consider a vending machine that accepts as input pennies, nickels, dimes, and quarters
and dispenses Wecandy bars.
(a) Draw a DFA that models this machine.
(b) Define the quintuple for this machine.
(c) How many states are absolutely necessary to build this machine?

1.31. Consider a vending machine that accepts as input nickels, dimes, and quarters and
dispenses Wecandy bars.
(a) Draw a DFA that models this machine.
(b) How many states are absolutely necessary to build this machine?
(c) Using the standard encoding conventions, draw a circuit diagram for this machine

(include <EOS> but not <SOS> in the input alphabet).
1.32. Using the standard encoding conventions, draw a circuit diagram that will implement

the machine given in Exercise 1.29, as follows:
(a) Implements both <EOS> and <SOS>.
(b) Uses neither <EOS> nor <SOS>.

1.33. Using the standard encoding conventions, draw a circuit diagram that will implement
the machine given in Exercise 1.7, as follows:
(a) Implements both <EOS> and <SOS>.
(b) Uses neither <EOS> nor <SOS>.

1.34. Modify Example 1.12 so that it correctly handles the <SOS> symbol; draw the new
circuit diagram.

1.35. Using the standard encoding conventions, draw a circuit diagram that will implement
the machine given in Example 1.6, as follows:
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(a) Implements both <EOS> and <SOS>.
(b) Uses neither <EOS> nor <SOS>.

1.36. Using the standard encoding conventions, draw a circuit diagram that will implement
the machine given in Example 1.10, as follows:
(a) Implements both <EOS> and <SOS>.
(b) Uses neither <EOS> nor <SOS>.

1.37. Using the standard encoding conventions, draw a circuit diagram that will implement
the machine given in Example 1.14 (include <EOS> but not <SOS> in the input
alphabet).

1.38. Using the standard encoding conventions, draw a circuit diagram that will implement
the machine given in Example 1.16; include the <SOS> and <EOS> symbols.

1.39. Let ~ = {a, b, c}. Let L = {x E {a, b, c}* I Ix Ib = 2}.
(a) Draw a DFA that accepts L.
(b) Formally specify the five parts of a DFA that accepts L.

1.40. Draw a DFA accepting {x E {a, b, c}* Ievery b in x is eventually followed by c};that is, x
might look like baabacaa, or bcacc, and so on.

1.41. Let ~ = {a, b]. Consider the language consisting of all words that have neither
consecutive as nor consecutive bs.
(a) Draw a DFA that accepts this language.
(b) Formally specify the five parts of a DFA that accepts L.

1.42. Let ~ ={a, b, c}. Let L = {x E {a, b, c}* Ilxl.;;0 mod 3}.
(a) Draw a DFA that accepts L.
(b) Formally specify the five parts of a DFA that accepts L.

1.43. Let ~ = {a, b, (, *, )}. Recall that a Pascal comment is essentially of the form: (* fol
lowed by most combinations of letters followed by the first occurrence of *). While the
appropriate alphabet for Pascal is the ASCII character set, for simplicity we will let
~ = {a, b, (, *, )}. Note that (*b(*b(a)b*) is a single valid comment, since all characters
prior to the first *) (including the second (* ) are considered part of the comment.
Consequently, comments cannot be nested.
(a) Draw a DFA that recognizes all strings that contain exactly one valid Pascal

comment (and no illegal portions of comments, as in aa(*b*)b(*a).
(b) Draw a DFA that recognizes all strings that contain zero or more valid (that is,

unnested) Pascal comments. For example, a(*b(*bb*)ba*)aa and a(*b are not
valid, while aOa(**)b(*ab*) is valid.

1.44. (a) Is the set of all postfix expressions over {A,B, + , -, *, I} with two or fewer oper
ators a FAD language? If it is, draw a machine.

(b) Is the set of all postfix expressions over {A,B, +, -, *, I}with four or fewer oper
ators a FAD language? If it is, draw a machine.

(c) Is the set of all postfix expressions over {A,B, +, -, *, I}with eight or fewer oper
ators a FAD language? If it is, draw a machine.

(d) Do you think the set of all postfix expressions over {A,B,+,-,*,I} is a FAD
language? Why or why not?

1.45. Let ~ = {a, b, c}. Consider the language consisting of all words that begin and end with
different letters.
(a) Draw a DFA that accepts this language.
(b) Formally specify the five parts of a DFA that accepts this language.
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1.46. Let I = {a, b, c}.
(a) Draw a DFA that rejects all words for which the last two letters match.
(b) Formally specify the five parts of the DFA.

1.47. Let I = {a, b, c}.
(a) Draw a DFA that rejects all words for which the first two letters match.
(b) Formally specify the five parts of the DFA.

1.48. Prove that the empty word is unique; that is, using the definition of equality of strings,
show that if x and yare empty words then x = y.

1.49. For any two strings x and y, show that Ixy 1= Ixl + Iy I.
1.50. (a) Draw the DFA corresponding to C = <{a, b, c},{to, t.l,qo,8, {h}>, where

8(to, a) = to 8(t!, a) = to
8(ta, b) = h 8(t!, b) = t l

8(to, c) = t l 8(h, c) = to
(b) Describe L(C).
(c) Using the standard encoding conventions, draw a circuit diagram for this machine

(include <EOS> but not <SOS> in the input alphabet).
1.51. Let I = {I, V, X, L, C, D, M}. Recall that VVI is not considered to be a Roman

numeral.
(a) Draw a DFA that recognizes strict-order Roman numerals; that is, 9 must be

represented by VIllI rather than IX, and so on.
(b) Draw a DFA that recognizes the set of all Roman numerals; that is, 9 can be

represented by IX, 40 by XL, and so on.
(c) Write a Pascal program based on your answer to part (b) that recognizes the set of

all Roman numerals.

1.52. Describe the setof words accepted by the DFA in Figure 1.9.

1.53. Let I = {O, 1, 2, 3, 4,5,6,7,8, 9}. Let
L, = {x E I *1 the sum of the digits of x is evenly divisible by n}. Thus,
L7 = {A, 0, 7, 00, 07,16,25,34,43,52,59,61,68,70,77,86,95,000,007, ... }.
(a) Draw a machine that will accept L7 •

(b) Formally specify the five parts of the DFA given in part (a).
(c) Draw a machine that will accept L3 .

(d) Formally specify the five parts of the DFA given in part (c):
(e) Formally specify the five parts of a DFA that will recognize Ln.

1.54. Consider the last row of Table 1.3. Unlike the preceding three rows, the outputs in this
row are not marked with the don't-care symbol. Explain.



CHAPTER

CHARACTERIZATION of FAD
LANGUAGES

Programming languages can be thought of, in a limited sense, as conforming to the
definition of a language given in Chapter 1. We can consider a text file as being one
long "word," that is, a string of characters (including spaces, carriage returns, and
so on). In this sense, each Pascal program can be thought of as a single word over the
ASCII alphabet. We might define the language Pascal as the set of all valid Pascal
programs (that is, the valid "words" are those text files that would compile with no
compiler errors). This and many other languages are too complicated to be repre
sented by the machines described in Chapter 1. Indeed, even reliably matching an
unlimited number of begin and end statements in a file is beyond the capabilities of
aDFA.

The goals for this chapter are to develop some tools for identifying these
non-FAD languages and to investigate the underlying structure of finite automaton
definable languages. We begin with the exploration of the relations that describe
that structure.

2.1 RIGHT CONGRUENCES

To characterize the structure of FAD languages, we will be dealing with relations
over I*, that is, we will relate strings to other strings. Recall that an equivalence
relation must be reflexive, symmetric, and transitive. The identity relation over I*, in
which each string is related to itself but to no other string, is an example of an
equivalence relation.

The main tool we will need to understand which kinds of languages can be

65
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represented by finite automata is the concept of a right congruence. If we allow the
set of all strings that terminate in some given state to define an equivalence class, the
states of a DFA naturally partition !,* into equivalence classes (as formally pre
sented later in Definition 2.4). Due to the structure imposed on the machine, these
classes have special relationships that are not found in ordinary equivalence rela
tions. For example, if &(s, a) = t, then, given any word x in the class corresponding
to the state s, appending an a to this word to form xa is guaranteed to produce a
word listed in the class corresponding to the state 1. Right congruences, defined
below, allow us to break up E" in the same fashion that a DFA breaks up!'*.

V Definition 2.1. Given an alphabet !', a relation R between pairs of strings
(R C!'* x !,*) is a right congruence in!'* iff the following four conditions hold:

(Vx E !,*)

(Vx,y E!'*)

(Vx,y,z E!'*)

(Vx,y E !,*)

(xRx)

(xRy =?yRx)

(xRy /\yRz =?xRz)

(x Ry =? (Vu E !, *)(xu Ryu))

(R)

(S)

(T)

(RC)

Note that if P is a right congruence then the first three conditions imply that P must
be an equivalence relation; for example, if!, = {a, b}, aa P aa by reflexivity, and if
(abb, aba) E P, then by symmetry (aba, abb) E P, and so forth. Furthermore, if
abb P aba, then the right congruence property guarantees that

abba P abaa if u = a

abbbPabab

abbaa P abaaa

abbbbaabb P ababbaabb

if u = b

ifu=aa

if u = bbaabb

and so on. Thus, the presence of just one ordered pair in P requires the existence of
many, many more ordered pairs. This might seem to make right congruences rather
rare objects; there are, however, an infinite number of them, many of them rather
simple, as shown by the following examples.

EXAMPLE 2.1

Let!' = {a, b}, and let R be defined by x Ry ~ Ixl-Iy I is even. It is easy to show
that this R is an equivalence relation (see the exercises) and partitions S" into two
equivalence classes: the even-length words and the odd-length words. Furthermore,
R is a right congruence: for example, if x = abb and y = baabb, then abb R baabb,
since Ixl-Iyl = 3 - 5 = -2, which is even. Note that for any choice of u,
abbu R baabbu, since Ixu I-Iyu I will also be -2. Thus abbu R baabbu for every
choice of u. The same is true for any other pair of words x and y that are related by
R, and so R is indeed a right congruence.
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EXAMPLE 2.2

Let l = {a, b, e}, and let Rzbe defined by x RzY ~x and Y end with the same letter.
It is straightforward to show that Rz is a right congruence (see the exercises) and
partitions l* into four equivalence classes: those words ending in a, those words
ending in b, those words ending in e, and {A}.

The relation Rz was based on the placement of letters within words, while
Example 2.1 was based solely on the length of the words. The following definition
illustrates a way to produce a relation in l* based on a given set of words L.

V Definition 2.2. Given an alphabet l and a language L ~ l ", the relation
induced by L in l *, denoted by RL , is defined by

('tJx,Y El*)(xRLy ~ ('tJu El*)(xu EL~yuEL))

EXAMPLE 2.3

Let K be the set of all words over {a, b}" that are of odd length. Those strings that
are in K are used to define exactly which pairs of strings are in RK • For example, we
can determine that ab RK bbaa, since it is true that, for any u E l *, either abu fl. K
and bbaau fl. K (when Iu I is even) or abu E K and bbaau E K (when Iu I is odd).
Note that ab and a are not related by RK , since there are choices for u that would
violate the definition of RK : abx $. K and yet aA E K. In this case, RK turns out to be
the same as the relation R defined in Example 2.1.

Recall that relations are sets of ordered pairs, and thus the claim that these
two relations are equal means that they are equal as sets; an ordered pair belongs to
R exactly when it belongs to RK :

R = RK iff ('tJx,y E l*)(xRy ~XRKY)

The strings ab and bbaa are related by R in Example 2.1, and they are likewise
related by RK • A similar statement is true for any other pair that was in the relation
R; it will be in RK , also. Additionally, it can be shown that elements that were not in
R will not be in RK either.

Notice that RK relates more than just the words in K; neither ab nor bbaa
belongs to K, and yet they were related to each other. This simple language K
happens to partition l * into two equivalence classes, corresponding to the language
itself and its complement. Less trivial languages will often form many equivalence
classes. The relation RL defined by a language L has all the properties given in
Definition 2.1.

V Theorem 2.1. Let l be an alphabet. If L is any language over l (that is,
L ~ l*), the relation RL given in Definition 2.2 must be a right congruence.

Proof. See the exercises.



68 Characterization of FAD Languages Chap. 2

Note that the above theorem is very broad in scope: any language, no matter how
complex, always induces a relation that satisfies all four properties of a right congru
ence. Thus, RL always partitions l* into equivalence classes. One useful measure of
the complexity of a language L is the degree to which it fragments l*, that is, the
number of equivalence classes in RL •

V Definition 2.3. Given an equivalence relation P, the rank of P, denoted
rk(P), is defined to be the number of distinct (and nonempty) equivalence classes
ofP. .
~

The ranks of the relation in Example 2.3 was 2, since there were two equiv
alence classes, the set of even-length words and the set of odd-length words. In
Example 2.2, rk (R2) = 4. The rank of RL can be thought of as a measure of the
complexity of the underlying language L. Thus, for K in Example 2.3, rk(RK ) = 2,
and K might consequently be considered to be a relatively simple language. Some
languages are too complex to be recognized by finite automata; this relationship will
be explored in the subsequent sections.

While the way in which a language gives rise to a partition of I * may seem
mysterious and highly nonintuitive, a deterministic finite automaton naturally dis
tributes the words of E" into equivalence classes. The following definition describes
the manner in which a DFA partitions I *.

V Definition 2.4. Given a DFA M = <I, S, so, 8, F>, define a relation RM on
I * as follows:

('rIx,y E 1*)(xRM y ¢:> 8(so,x) =8(so,Y»

RM relates all strings that, when starting at so, wind up at the same state. It is
easy to show that RM will be an equivalence relation with (usually) one equivalence
class for each state of M (remember that equivalence classes are by definition
nonempty; what type of state might not have an equivalence class associated with
it?). It is also straightforward to show that the properties of the state transition
function guarantee that RM is in fact a right congruence (see the exercises).

The equivalence classes of RM are called initial sets and will be of further
interest in later chapters. For a DFA M = <I, S, so, 8, F> and a given state t from
M, [(M, t) = {x I8(so,x) = t}. This initial set can be thought of as the language
accepted by a machine similar to M, but which has t as its only final state. That is, if
we define Mt = <I, S, so, 8, {t}>, then [(M, t) = L(M t ) .

The notation presented here allows a concise method of denoting both
relations defined by languages and relations defined by automata. It is helpful to
observe that even in the absence of context, Rx indicates that a relation based on the
language X is being described (since X occurs as a subscript), while the relation RY

identifies Y as a machine (since Y occurs as a superscript).
Just as each DFA M gives rise to a right congruence RM

, many right congru-
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ences Q can be associated with a DFA, which will be called Ao. It can be shown that,
if some of the equivalence classes of Q are singled out to form a language L, Ao will
recognize L.

V Definition 2.5. Given a right congruence Q of finite rank and a language L
that is the union of some of the equivalence classes of Q, Ao is defined by

Ao = <!', So, soo' 80, Fo>
where

So = {[x]0 Ix E !,*}

sOo=[>"]o

Fo = {[x]0 Ix E L}

and 80 is defined by

(Vx E!'*)(VaE!')(80([xlo,a) = [xa]o)

Note that this is a finite-state machine since rk(Q) < 00, and that if L1 were a
different collection of equivalence classes of Q, Ao would remain the same except
for the placement of the final states. In other words, Fo is the only aspect of this
machine that depends on the language L (or L1 ) . As small as this change might be, it
should be noted that Ao is defined both by Q and the language L. It is left for the
reader to show that Ao is well-defined and that L(Ao) = L (see the exercises). The
corresponding statements will be proved in detail in the next section for the im
portant special case where Q = RL .

EXAMPLE 2.4

Let Q C [a}" x [a}" be the equivalence relation with the following equivalence
classes:

[>"]0 = {>"} = {a}O

[a]o = {a} = {aF

[aa]o = {a}' U{a}' U{a]" U{a}'U ...

It is easy to show that Q is a right congruence (see the exercises). If L1 were defined
to be [>"]0 U [a]o, then Ao would have the structure shown in Figure 2.la. For the
language defined by the different combination of equivalence classes given by
L, = [>"]0 U [aalo, Ao would look like the DFA given in Figure 2.lb. This example
illustrates that it is the right congruence Q that establishes the start state and the
transitions, while the language L determines the final state set. It should also be
clear why L must be a union of equivalence classes from Q. The figure shows that a
machine with the structure imposed by Q cannot possibly both reject aaa and accept
aaaa. Either the entire equivalence class for [aa]o must belong to L, or none of the
strings from [aa]o can belong to L.
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a

(b)

2.2 NERODE'S THEOREM

Figure 2.1 (a) The automaton for L1 in
Example 2.4 (b) The automaton for L, in
Example 2.4

In this section, we will show that languages that partition I* into a finite number of
equivalence classes can be represented by finite automata, while those that yield an
infinite number of classes would require a machine with an infinite number of
states.

EXAMPLE 2.5

The language K given in Example 2.3 can be represented by a finite automaton with
two states; all words that have an even number of letters eventually wind up at state
so, while all the odd words are taken by 8 to S1. This machine is shown in Figure 2.2.

It is no coincidence that these states split up the words of I * into the same
equivalence classes that RK does. There is an intimate relationship between
languages that can be represented by a machine with a finite number of states and
languages that induce right congruences with a finite number of equivalence classes,
as shown by the following theorem.

Figure 2.2 The DFA discussed in Ex
ample 2.5

V Theorem 2.2: Nerode's Theorem. Let L be a language over an alphabet I;
the following statements are all equivalent:

1. L is FAD.
2. There exists a right congruence R on I* for which L is the (possibly empty)

union of some of the equivalence classes of Rand rk(R) < 00.

3. rk(Rd < 00.

Proof. Because of the transitivity of =>, it will be sufficient to show only the
three implications (1) => (2), (2) => (3), and (3) => (1), rather than all six of them.
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Proofof (1)~ (2): Assume (1); that is, let L be FAD. Then there is a machine
that accepts L; that is, there exists a finite automaton M = <I, S, so, 8, F> such that
L(M) =L. Consider the relation RM on I* based on this machine M as given in
Definition 2.4: (\lx,y E I*)(xRM y ~ &(so, x) = &(so,y)).

This RM will be the relation R we need to prove (2). For each s E S, consider
I(M, s) = {x E I* I&(so,x) = s}, which represents all strings that wind up at state s
(from so). Note that it is easy to define automata for which it is impossible to reach
certain states from the start state; for such states, I(M, s) would be empty. Then
\Is E S, I(M, s) is either an equivalence class of RM or I(M, s) = 0. Since there is at
most one equivalence class per state, and there are a finite number of states, it
follows that rk(RM

) is also finite: rk(RM
) s; IISII < 00.

However, we have

L =L(M) = {x E I* j&(so, x) E F} = U {x E I* I&(so, x) = f} = U I(M, f)
fEF fEF

That is, L is the union of some of the equivalence classes of the right congruence
RM, and RM is indeed of finite rank, and hence (2) is satisfied. Thus (1)~ (2).

Proof of (2)~ (3): Assume that (2) holds; that is, there is a right congruence
R for which L is the union of some of the equivalence classes of the right congruence
R, and rk(R) < 00. Note that we no longer have (1) as an assumption; there is no
machine (as yet) associated with L.

Case 1: It could be that L is the empty union; that is, that L =0. In this case, it
is easy to show that RL has only one equivalence class (I*), and thus rk(Rd = 1 < 00

and (3) will be satisfied.
Case 2: In the nontrivial case, L is the union of one or more of the equivalence

classes of the given right congruence R, and it is possible to show that this R must
then be closely related to the RL induced by the original language L. In particular,
for any strings x and y,

x Ry ~ (since R is a right congruence)

(\lu E I*)(xu Ryu)~ (by definition of [ ])

(\lu E I*)([xu]R = [YU]R) ~ (by definition of L as a union of [ ]'s)

(\lu E I *)(xu E L~ yu E L)~ (by definition of RL )

xRLy

(\Ix E I*)(\ly E I*)(xRy ~ xRLy) means that R refines RL , and thus each equiv
alence class of R is entirely contained in an equivalence class of RL ; that is, each
equivalence class of RL must be a union of one or more equivalence classes of R.
Thus, there are more equivalence classes in R than in RL , and so rk(Rd -s rk(R).
But by hypothesis, rk(R) is finite, and so RL must be of finite rank also, and (3) is
satisfied. Thus, in either case, (2)~ (3).

Proof of (3)~ (1): Assume now that condition (3) holds; that is, L is a
language for which RL is of finite rank. Once again, note that all we know is that RL

has a finite number of equivalence classes; we do not have either (1) or (2) as a
hypothesis. Indeed, we wish to show (1) by proving that L is accepted by some finite
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automaton. We will base the structure of this automaton on the right congruence
RL , using Definition 2.5 with Q = RL . ARLis then defined by

ARL= <l, SRL, SORL' 8RL, FRL>
where

SRL = {[xklx E l*}

SORL = [A]RL

FRL = {[xklx E L}

and 8RLis defined by

('t/x E l *)('t/a E l)(8RL([xk, a) = [xak)

The basic idea in this construction is to define one state for each equivalence
class in RL , use the equivalence class containing Aas the start state, use those classes
that were made up of words in L as final states, and define 8 in a natural manner. We
claim that this machine is really a well-defined finite automaton and that it does
behave as we wish it to; that is, the language accepted by ARLreally is L. In other
words, L(ARJ = L.

First, note that SRLis a finite set, since [by the only assumption we have in (3)]
RL consists of only a finite number of equivalence classes. It can be shown that FRL is
well defined; if [zk = [Yk, then either (both z ELand Y E L) or (neither z nor Y
belong to L) (why?). The reader should show that 8RLis similarly well defined; that
is, if [z]RL= [y ]RL, it follows that 8RLis forced to also take both transitions to the
same state ([za]RL= [ya]RJ. Also, a straightforward induction on Iy Ishows that the
rule for 8RLextends to a similar rule for 8RL:

('t/x E l*)('t/y E l*)(8RL([xk,y) = [XY]RJ

With this preliminary work out of the way, it is possible to easily show that
L (ARJ = L. Let x be any element of l *. Then

x EL(ARJ~ (by definition of L)

8RL(SORL' x) E FRL~ (by definition of SOR)

8RL([A]RL, x) E FRL~ (by definition of 8RLand induction)

[uk E FRL~ (by definition of A)

[xk E FRL~ (by definition of FRJ

xEL

Consequently, L is exactly the language accepted by this finite automaton; so L
must be FAD, and (1) is satisfied. Thus (3)~ (1). We have therefore come full
circle, and all three conditions are equivalent.
.:l

The correspondence described by Nerode's theorem can best be illustrated by
an example.
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Figure 2.3 The DFA N discussed in Ex
ample 2.6

1 0,1

o

0,1

EXAMPLE 2.6

Let L be the following FAD language: L = I * - {A.} = Ii-. There are many finite
automata that accept L, one of which is the DFA given in Figure 2.3. This four-state
machine gives rise to a four-equivalence class right congruence as described in
(1) => (2), where

[A.]RN = I (N, so) = {A.}, since A. is the only string that ends up at So

[l]RN = leN, s.) = {y I Iy Iis odd, and y ends with a I} = {z 15(so, z) = s.}

[l1]RN = leN, S2) = {y I Iy Iis even} - {A.} = [z 15(so, z) = S2}

[OOO]RN = leN, S3) = {y I Iyl is odd, and y ends with a O} = [z 15(so, z) = S3}

Note that L is indeed l(N,sl)Ul(N,s2)Ul(N,s3) which is the union of all the
equivalence classes that correspond to final states in N, as required by (2). To
illustrate (2) => (3), let R be the equivalence relation RN defined above, let L again
be I+, and note that (2) is satisfied: L = [l]R U [l1]R U [OOO]R, the union of 3 of the
equivalence class of a right congruence of rank 4 (which is finite).

As in the proof of (2) => (3), RL is refined by R, but in this case Rand RL are
not equal. All the relations from R still hold, such as 11 R 1111, so 11 RL 1111;
OR 000, and thus 0 RL 000, and so forth. It can also be shown that 11 RL 000, even
though 11 and 000 were not related by R (apply the definition of RL to convince
yourself of this). Thus, everything in [l1]R is related by R L to everything in [OOO]R;
that is, all the strings belong to the same equivalence class of RL , even though they
formed separate equivalence classes in R. It may at first appear strange, but the fact
that there are more relations in RL means that there are fewer equivalence classes in
RL than in R. Indeed, RL has only two equivalence classes, {A} and L. In this case,
three equivalence classes of R collapse to form one large equivalence class of R L •

Thus {A} = [A]RL= [A]R and L = [11k = [l]R U [l1]R U [OOO]R and, as we were as
sured by (2) => (3), R refines RL .

1

To illustrate (3) => (1), let's continue to use the Land R L given above. Since RL

is of rank 2, we are assured of finding a two-state machine that will accept L. ARLin
this case would take the form of the automaton P displayed in Figure 2.4. In this DFA,
for example, 8([11]RL'0) = [110]RL = [l1]RL' and [A.]RL is the start state. [l1]RLis a
final state since 11 E L. Verify that this machine accepts all words except A; that is,
L(ARL) = L.
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EXAMPLE 2.7

Figure 2.4 The DFA P discussed in Ex
ample 2.6

Assume Q is defined to be the right congruence R given in Example 2.4, and L is
again I + , which is the union of three of the equivalence classes of Q: [1]Q, [11]Q, and
[OOO]Q. The automaton AQis given in Figure 2.5.

Figure 2.5 The automaton discussed in
Example 2.7

If we were instead to begin with the same language L, but use the two-state
machine P at the end of Example 2.6 to represent L, we would find that L would
consist of only one equivalence class, RP would have only two equivalence classes,
and R P would in this case be the same as RL (see the exercises). R P turns out to be as
simple as RL because the machine we started with was as "simple" as we could get
and still represent L. In Chapter 3 we will characterize the idea of a machine being
"as simple as possible," that is, minimal.

The two machines given in Example 2.6 accept the same language. It will be
convenient to formalize this notion of distinct machines "performing the same
task," and we therefore make the following definition.

V Definition 2.6. Two DFAs A and 8 are equivalent iffL (A) = L (8).
~

EXAMPLE 2.8

The DFAs N from Example 2.6 and AQ from Example 2.7 are equivalent since
L(N) = I+ = L(AQ ) .

V Definition 2.7. A DFA A = <I, SA, SOA' 8A, FA> is minimal iff for every DFA
8 = <I, SB, SOB' 8B, FB> for which L (A) = L (8), ISA I:51 SB I·
~

An automaton is therefore minimal if no equivalent machine has fewer states.
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EXAMPLE 2.9

The DFA N from Example 2.6 is clearly not minimal since the automaton Ao from
Example 2.7 is equivalent and has fewer states than N. The techniques from Chapter
3 can be used to verify that the automaton Ao from Example 2.7 is minimal. More
importantly, minimization techniques will be explored in Chapter 3 that will allow
an optimal machine (like this Ao) to be produced from an inefficient automaton
(like N).

2.3 PUMPING LEMMAS

As you have probably noticed by now, finding RL and counting the equivalence
classes is not a very practical way of verifying that a suspected language cannot be
defined by a finite automaton. It would be nice to have a better way to determine if
a given language is unwieldy. The pumping lemma will supply us with such a
technique. It is based on the observation that if your automaton processes a "long
enough" word it must eventually visit (at least) one state more than once.

Let A = <I, S, sO, 8, F>, and consider starting at some state s and processing a
word x of length 5. We will pass through state s and perhaps five other states,
although these states may not all be distinct if we visit some of them repeatedly
while processing the five letters in x; thus the total will be six states (or less). Note
that if A has 10 states (IISII = 10) and Ixl =12 we cannot go to 13 different states
while processing x; (at least) one state must be visited more than once.

u

Figure 2.6 A path with a loop

In general, if n = IISII, then any string x whose length is equal to or greater
than n must pass through some state q twice while being processed by A, as shown in
Figure 2.6. Here the arrows are meant to represent the path taken while processing
several letters, and the intermediate states are not shown. The strings u, v, and ware
defined as

u = first few letters of x that take us to the state q

v = next few letters of x that will again take us back to q

w = rest of the string x

Then, with x = uvw, we have 8(s, u) = q, 8(s, uv) = g, and in fact 8(q, v) = q. Also,
8(s, x) = 8(s, uvw) = f and 8(q, w) = f, as is clear from the diagram. Now consider
the string uw, that is, the string x with the v part "removed":

8(s, uw) = 8(8(s, u), w)

= 8(q, w)

=f

(why?)
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That is, the string uw winds up in the same place uvw does; this is illustrated in
Figure 2.7a. Note that a similar thing happens if uv 2 w is processed:

8(s, uvvw) = 8(8(s, u), vvw)

= 8(q, vvw)

= 8(8(q, v), vw)

=8(q, vw)

= 8(8(q, v), w)

= 8(q, w)

=f

This behavior is illustrated in Figure 2.7b.

(a)

(b)

Figure 2.7 (a) The path that bypasses
the loop (b) The path that traverses the
loop twice

In general, it can be proved by induction that (Vi E N){8(s,uv i w) = f =

8(s, uvw)}. Notice that we do reach q two distinct times, which implies that the string
v contains at least one letter; that is, Iv I2=: 1. Also, after the first n letters of x, we
must have already repeated a state, and thus some state q can be found such
that Iuv 1:5 n. If s happens to be the start state So and f is a final state, we have
now shown that: If A = <I, S, sO, '0,F>, where [S] = n, then, given any string
x = 818283 .•. 8 m , where m 2=: nand 8(so,x) = fE F [which implies x EL(A)], the
states 8(so,A), 8(so,81), 8(so,8182)' 8(so,818283)' ... ,8(so, 8182' .. 8 n ) cannot all be dis
tinct, and so x can be broken up into strings u, v, and w such that

x =uvw

luvl :5n
Ivl2=: 1

and (Vi E N)(8(so,uv i w) = f), that is, (Vi E N)(uv i w EL(A». In other words,
given any "long" string in L (A), there is a part of the string that can be "pumped" to
produce even longer strings in L (A).

Thus, ifL is FAD, there exists an automaton (with a finite number n of states),
and thus for some n EN, the above statement should hold. We have just proved
what is generally known as the pumping lemma, which we now state formally.
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V Theorem 2.3: The Pumping Lemma. Let L be an FAD language over I*.
Then (3n E ~)(Vx EL :llxl ::::n)(3u, v, w EI*):l

x = uvw,

luvl:5n,

Ivl:::: 1,

and

(Vi E ~)(UViW E L).

Proof. Given above.
a
EXAMPLE 2.10

Let E be the set of all even-length words over {a, b}". There is a two-state machine
that accepts E, so E is FAD, and the pumping lemma applies if n is, say, S. Then
Vx :llx I> 5, if x = alaZa3' .. aj E E (that is,j is even), we can choose u = A, v = alaZ,
and w=a3a4 ... aj' Note that luvl=2:5S, Ivl=2::::1, and luv iwl=j+2(i-1),

which is even, and so (Vi E ~)(UVi wEE).

If Example 2.10 does not appear truly exciting, there is good reason: The
pumping lemma is generally not applied to FAD languages! (Note: We will see an
application later.) The pumping lemma is often applied to show languages are not
FAD (by proving that the language does not satisfy the pumping lemma). Note that
the contrapositive of Theorem 2.3 is:

V Theorem 2.4. Let L be a language over I ". If
(VnE~)(3xEL:llxl::::n)(Vu,v,wEI* h =uvw, Iuv [:5 n, Ivi:::: 1)(3iE~:luviw Et L),
then L is not FAD.

Proof. See the exercises.
a
EXAMPLE 2.11

Consider L4= {y E{O, l}*llyll = [ylo}. We will use Theorem 2.4 to show L4is not
FAD: Let n be given, and choose x =onr, Then x EL4, since Ixll =n = Ixlo. It
should be observed that x must be dependent on n, and we have no control over n
(in particular, n cannot be replaced by some constant; similarly, while i may be
chosen to be a fixed constant, a proof that covers all possible combinations of u, v,
and w must be given).

Note that this choice of x is "long enough" in that Ix[= 2n :::: n, as required by
Theorem 2.4. For any combination of u, v, wEI* such that x = uvw, Iuv I:5n,
Iv I:::: 1, we hope to find a value for i such that uv i w Et L4. Since Iuv 1:5 n and the first
n letters of x are all zeros, this narrows down the choices for u, v, and w. They must
be of the form u = oj and v = Ok (since Iuv 1:5 n and x starts with n zeros), and w
must be the "rest of the string" and look something like w = 0"' I", The constraints
on u, v, and w imply thatj + k:5 n, k :::: 1, and j + k + m = n. If i = 2, we have that
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uv 2 W = on+k I" $. L4 (why?). Thus, by Theorem 2.4, L4 is not FAD [or, alternately,
because the conclusion of the pumping lemma (Theorem 2.3) does not hold, L4

cannot be FAD].
It is instructive to attempt to build a DFA that attempts to recognize the

language L4• As you begin to see what such a machine must look like, it will become
clear that no matter how many states you add (that is, no matter how large n
becomes) there will always be some strings ("long" strings) that would require even
more states. Your construction may also suggest what the equivalence classes of RL4

must look like (see the exercises). How many equivalence classes are there? (You
should be able to answer this last question without referring to any constructions.)

A similar argument can be made to show that no DFA can recognize the set of
all fully parenthesized infix expressions (see the exercises). Matching parentheses,
like matching Os and Is in the last example, requires unlimited storage. We have
seen that DFAs are adequate vehicles for pattern matching and token identification,
but a more complex model is clearly needed to implement functions like the parsing
of arithmetic expressions. Pushdown automata, discussed in Chapter 10, augment
the finite memory with an unbounded stack, allowing more complex languages to be
recognized.

Intuitively, we would not expect finite-state machines to be able to differen
tiate between arbitrarily long integers. While modular arithmetic, which only differ
entiates between a finite number of remainders, should be representable by finite
automata, unrestricted arithmetic is likely to be impossible. For example,
{aibickli,j, k E ~ and i + j = k} cannot be recognized by any DFA, while the lan
guage {a'bickIi,j, k E ~ and i + j == k mod 3}is FAD. Checking whether two num
bers are relatively prime is likewise too difficult for a DFA, as shown by the proof in
the following example.

EXAMPLE 2.12

Consider L = {aibili,j E ~ and i and j are relatively prime}. We will use Theorem
2.4 to show L is not FAD: Let n be given, and choose a prime p larger than n + 1
(we can be assured such a p exists since there are an infinite number of primes). Let
x = aPb(p - 1)1. Since p has no factors other than 1 and p, it has no nontrivial factor in
common with (p-1)·(p-2)· ... ·3·2·1, and sop and (p-1)! are relatively
prime, which guarantees that x E L. The length of x is clearly greater than n, so
Theorem 2.3 should apply, which implies that there must exist a combination
u, v, wE I* such that x = uvw, Iuv 1:5 n, Ivl:2: 1; we hope to find a value for i such
that uv i w E L. Since Iuv 1:5 n and the first n letters of x are all as, there must exist
integers j, k, and m for which u = a/ and v = a\ and w must be the "rest of the
string"; that is, w = am b(p -1)1. The constraints on u, v, and w imply that j + k :5 n,
k:2: 1, andj + k + m =p. If i = 0, we have that uvow = aP-kb(p-I)'. Butp - k is a
number between p - 1 and p - n and hence must match one of the nontrivial
factors in (p -1)!, which means that uvowEtL (why?). Therefore, Theorem 2.3
has been violated, so L could not have been FAD.

The details of the basic argument used to prove the pumping lemma can be
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varied to produce other theorems of a similar nature: for example, when processing
x, there must be a state q' repeated within the last n letters. This gives rise to the
following variation of the pumping lemma.

V Theorem 2.5. Let L be a FAD language over I*. Then

(3n E N)(Vx E L, Ixl ~ n)(3u, v, wE I*) ,

x =uvw

Ivwl::5 n,

Ivl~l

and

Proof. See the exercises.

The new condition Ivw I::5 n reflects the constraint that some state must be
repeated within the last n letters. The contrapositive of Theorem 2.5 can be useful
in demonstrating that certain languages are not FAD. By repeating our original
reasoning while assuming the string x takes us to a non final state, we obtain yet
another variation.

V Theorem 2.6. Let L be a FAD language over I*. Then

(3n E N)(Vx E;t L, Ixl ~ n)(3u, v, wE I*) ,

x =uvw

Iuv 1::5 n

Ivl~ 1

and

(Vi E N)(uv i w E;t L)

Proof. See the exercises.

Notice that Theorem 2.6 guarantees that if one "long" string is not in the
language then there is an entire sequence of strings that cannot be in the language.
There are some examples of languages in the exercises where Theorem 2.4 is hard
to apply, but where Theorem 2.5 (or Theorem 2.6) is appropriate.

When i = 0, the pumping lemma states that given a "long" string (uvw) in L
there is a shorter string (uw) that is also in L. If this new string is still of length
greater than n, the pumping lemma can be reapplied to find a still shorter string,
and so on. This technique is the basis for proving the following theorem.
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V Theorem 2.7. Let M be an n-state DFA accepting L. Then

('fix E L 1 x =818Z' .. a; and m ~ n)(3 an increasing sequence t-, iz, ... ,ij )

for which 8/
J8iz

... 8i
j
E L, and j < n.

Proof. See the exercises.

Note that 8il8iz .•• 8i
j

represents a string formed by "removing" letters from
perhaps several places in x, and that this new string has length less than n.

Theorem 2.7 can be applied in areas that do not initially seem to relate to
DFAs. Consider an arbitrary right congruence R of (finite) rank n. It can be shown
that each equivalence class of R is guaranteed to contain a representative of length
less than n. For example, consider the relation R given by

[A]R = {A}

[l1l1l]R = {y IlyIis odd, and y ends with a I}

[OIOI]R = {y IlyIis even and Iy I>O}

[OOOOO]R = {y IlyIis odd, and y ends with a O}

In this relation, rk(R) = 4, and appropriate representatives of length less than 4 are
A, I, 11, and 100, respectively. That is, [A]R = [A]R, [I]R= [l1l11]R, [l1]R = [OIOI]R,
and [IOO]R = [OOOOO]R' By constructing a DFA based on the right congruence R,
Theorem 2.7 can be used to prove that every equivalence class of R has a "short"
representative (see the exercises).

We have seen that deterministic finite automata are limited in their cognitive
powers, that is, there are languages that are too complex to be recognized by DFAs.
When only a finite set of previous histories can be distinguished, the resulting
languages must have a certain repetitious nature. Allowing automata to instead
have an infinite number of states is uninteresting for several reasons. On the prac
tical side, it would be inconvenient (to say the least) to physically construct such a
machine. Infinite automata are also of little theoretical interest as they do not
distinguish between simple and complex languages: any language can be accepted
by the infinite analog of a DFA. With an infinite number of states available, the
state transition diagrams can look like trees, with a unique state corresponding to
each word in l ". The states corresponding to desired words can simply be made
final states.

More reasonable enhancements to automata will be explored later. Non
determinism will be presented in Chapter 4, and machines with extended
capabilities will be defined and investigated in Chapters 10 and 11.

EXERCISES

2.1 Let}; = {a, b, c}. Show that the relation 'I' ~};* x };* defined by

x'l'y ¢:> Ix I-Iy Iis odd

is not a right congruence. (Is it an equivalence relation?)
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2.2. Let 1 ={a, b, c}. Consider the relation Q ~ 1* x 1* defined by

xQy ~Ixl. -lyl.=Omod3

(a) Show that Q is an equivalence relation.
(b) Assume that part (a) is true, and show that Q is a right congruence.

2.3. Let 1 = {a, b, c}, Find all languages L such that rk(Rd = 1. Justify your conclusions.

2.4. Let P ~ {a, 1}* x {a, 1}* be the equivalence relation with the following equivalence
classes:

[A]p = {A} = {a, I}O

[1]p= {O, I} = {a, t}'

[OO]p = {O, 1}2 U {O, WU {a, 1}4 U {O, WU ...

Show that P is a right congruence.

2.5. For the relation P defined in Exercise 2.4, find all languages L 1 RL = P.

2.6. For the relation Q defined in Exercise 2.2, find all languages L 1 R L = Q.

2.7. Let 1 = {a, b}. Define the relation Q by AQA, and ("Ix f- A)(A<,l;lX), and

("Ix f- A)(Vy f-A)[XQy~ (Ix Iis even /\ IyI is even) V (Ix Iis odd /\ IyIis odd)],

which implies that

("Ix f- A)(Vy f- A)[X~y ~ (Ix Iis even /\ IyI is odd) V (Ix Iis odd /\ Iy Iis even)].

(a) Show that Q is a right congruence, and list the equivalence classes.
(b) Define L = [A]O U [aa]o. Find a simple decription for L, and list the equivalence

classes of RL • (Note that Q does refine RL . )

(c) Draw a machine with states corresponding to the equivalence classes of Q. Ar
range the final states so that the machine accepts L (that is, find Ao).

(d) Draw ARL'
(e) Consider the machine in part (c) above (Ao). Does it look like ARL? Can you

rearrange the final states in Ao (producing a new language K) so that ARK looks
like your new Ao? Illustrate.

(f) Consider all eight languages found by taking unions of equivalence classes from Q,
and see which ones would satisfy the criteria of part (e).

2.8. Let 1 = {a}. Let I be the identity relation on 1*.
(a) Show that I is a right congruence.
(b) What do the equivalence classes of I look like?

2.9. Let 1 = {a}, and let I be the identity relation on 1*. Let L = {A} U {a}U {aa}, which is
the union of three of the equivalence classes of I. I has infinite rank. Does Nerode's
theorem imply that L is not FAD? Explain.

2.10. Define a machine M = <1, SM, Sn, 8, FM>for which rk(RL(M» f-IISMII.
2.11. Carefully show that FRL is a well-defined set; that is, show that the rule that assigns

equivalence classes to rRLis unambiguous.

2.12. Carefully show that 8RLis well-defined, that is, that 8RLis a function.

2.13. Use induction to show that ("Ix E l*)(Vy E l*)(BRL([x]RuY) = [XY]RL)'
2.14. Consider the automaton P derived in Example 2.6, find RP and notice that RP = RL •

2.15. Find RA for each machine A you built in the exercises of Chapter 1; compare RA to
RL(A).
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2.16. Prove by induction that, for the strings defined in the discussion of the pumping
lemma, (Vi E I'\ll)(~(s, uv' w) = f = ~(s, uvw».

2.17. Prove Theorem 2.1.

2.18. (a) Find a language that gives rise to the relation I defined in Exercise 2.8.
(b) Could such a language be FAD? Explain.

2.19. Starting with Theorem 2.3 as a given hypothesis, prove Theorem 2.4.

2.20. Prove Theorem 2.5 by constructing an argument similar to that given for Theorem 2.3.

2.21. Prove Theorem 2.6 by constructing an argument similar to that given for Theorem 2.3.

2.22. Prove Theorem 2.7.

2.23. Let L = {x E {a, b}*Ilx la< IX Ib}. Show L is not FAD.

2.24. Let G = {x E {8, b}*llxla~ Ixlb}' Show G is not FAD.
2.25. Let P = {y .{d}* /3 prime p ~ y = d"} = {dd, ddd, ddddd, d", d", d13

, ••• }. Prove that P
is not FAD.

2.26. Let r = {x E{O, 1,2}*/3w E{O, 1}* h = w·2·w} = {2, 121,020, 11211, 10210, ... }.
Prove that r is not FAD.

2.27. Let 'I' = {x E {O, 1}*13w E {O, 1}* ~ x = w -w}= {>., 00,11,0000,1010,1111, ... }. Prove
that 'I' is not FAD.

2.28. Define the reverse of a string w as follows: If w = ala2a334 ... an-Ian, then
w r = an8 n -I, .. a483a281. Let K = {w E {O, 1}*Iw = w'} = {>., 0,1,00,11,000,010,
101,111,0000,0110, ... }. Prove K is not FAD.

2.29. Let ep = {x E {a, b, c}"13i,j, k E I'\ll ~ x = aibk em, where j ~ 3 and k = m}. Prove ep is
not FAD. Hint: The first version of the pumping lemma is hard to apply here (why?).

2.30. Let C = {y E {d]" 13 non prime q ~ y = d"} = {>., d, d4,d6, dB, d9,d lO
••• }. Show C is not

FAD. Hint: The first version of the pumping lemma is hard to apply here (why?).

2.31. Assume}; = {a, b}and L is a language for which RL has the following three equivalence
classes: {>.}, {all odd-length words}, {all even-length words except x},
(a) Why couldn't L = {x Ilxl is odd}? (Hint: Recompute R{xllxl is odd}).

(b) List the languagesL that could give rise to this RL .

2.32. Let}; = {a, b} and let 'I' = {x E};* Ix has an even number of as and ends with (at least)
one b}. Describe R", and draw a machine accepting '1'.

2.33. Let S = {x E{a}*13j E I'\ll ~ Ixl =/} = {>.,a,aaaa,a9,aI6,a25, ... }. Prove that S is not
FAD.

2.34. Let ep = {x E {b}* 13j E I'\ll ~ Ixl = 2J} = [b, bb, bbbb, bB, b16, b32, ... }. Prove that ep is not
FAD.

2.35. Let}; = {a, b}, Assume RL has the following five equivalence classes: {>.}, {a}, {aa},
{a", a", as, a6, ... }, {x Ix contains (at least)one b}. Also assume that L consists of exactly
one of these equivalence classes.
(a) Which equivalence class is L?
(b) List the other languages L that could give rise to this RL (and note that they might

consist of several equivalence classes).

2.36. Let n = {y E {O, 1}*I(y contains exactly one 0) V (y contains an even number of Is)}.
Find Rn.

2.37. Let}; = {a, b} and LI = {x E};* Ilxla> Ix Ib} and L, = {x E};* Ilx la< 3}. Which of the
following are FAD? Support your answers.
(a) LI (b) t., (c) L I n Lz (d) -L2 (e) LI U Lz
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2.38. Let mEN and let R; be defined by x Rmy ¢::? Ixl-Iy Iis a multiple of m.
(a) Prove that Rm is a right congruence.
(b) Show that Rz n R3 is R6 , and hence also a right congruence. (Note, for example,

that (A,aaaaaa) E R6 since (A,aaaaaa) E R3 and (A,aaaaaa) E Rz ; how do the
equivalence classes of Rz and R, compare?).

(e) Show that, in general, if Rand S are right congruences, then so is R n S.
(d) Now consider Rz U R3 , and show that this is not a right congruence because it is not

even an equivalence relation.
(e) Prove that if Rand S are right congruences and R U S happens to be an equivalence

relation then R U S will be a right congruence, also.
2.39. Give an example of two right congruences R1 and Rz over ~*for which R1 U Rz is not a

right congruence.
2.40. Let ~ = {a, b} and let r = {A, a, ab, ba, bb, bbb} U {x E ~* Ilxl <=: 4}.

(a) Use the definition of Rr to show ab Rr ba.
(b) Use the definition of Rr to show ab is not related by Rr to bb.
(e) Show that the equivalence classes of Rr are {A}, {a}, {b}, [aa},[bb},{ab, ba},

{x Ix '" bbb /\ Ixl = 3},{x Ix = bbb V Ixl <=: 4}.
(d) Draw the minimal state DFA which accepts r.

2.41. Prove that the relation RMgiven in Definition 2.4 is a right congruence.

2.42. We can view a text file as being one long "word," that is, a string of characters
(including spaces, carriage returns, and so on). In this sense, each Pascal program can
be considered to be a single word over the ASCII alphabet. We can define the language
Pascal as the set of all valid Pascal programs (that is, the valid words are those text files
that would compile with no compiler errors). Is this language FAD?

2.43. Define "Short Pascal" as the collection of valid Pascal programs that are composed of
less than 1 million characters. Is Short Pascal FAD? Any volunteers for building the
appropriate DFA?

2.44. Let ~ = {a,b, c}, and define L = {an bk c']n < 3 or (n <=: 3 and k = j)}.
(a) Show that for this language the conclusion of Theorem 2.3 holds, but the hypothe

sis of Theorem 2.3 does not hold.
(b) Is the contrapositive of Theorem 2.3 true? Explain.

2.45. Carefully show that Fo in Definition 2.5 is a well-defined set.
2.46. Carefully show that 80 in Definition 2.5 is well defined.
2.47. For 80 in Definition 2.5, use induction to show that

(Vx E ~*)(Vy E ~*)(~o([x]o,Y) = [xY]o).

2.48. For the Land Q in Definition 2.5, prove that L(Ao) = L.
2.49. Given Land Q as in Definition 2.5, Ao is a machine to which we can apply Definition

2.4. Prove or give a counterexample: Q = R(AQ).

2.50. Given Land Q = RL as in Definition 2.5, ARLis a machine to which we can apply
Definition 2.4. Prove or give a counterexample: RL = R(ARL).

2.51. Show that the converse of Theorem 2.3 is false (Hint: See Exercise 2.29 and let L = <1».
2.52. LetL={x E{a,b}*llxI. =2Ixlb}. Prove thatLisnot FAD.
2.53. Consider the language K defined in Exercise 2.28.

(a) Find [llO]RK; that is, find all strings y for which Y RK 110.
(b) Describe RK •
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2.54. Prove or give a counterexample: RL1n RL2= R(LI n L2)'
2.55. Given a right congruence Rover I* for which rk(R) = n. Prove that each equivalence

class of R contains a representative whose length is less than n.
2.56. For the R given in Example 2.6, find all languages L for which RL= RN

•

2.57. Consider the languages defined in Exercise 1.6. Find the right congruences induced by
each of these four languages.

2.58. Assume L c {a}* and ARLa. List all possible choices for the language L.

2.59. Assume L ~ [a]" and a RLaa. List all possible choices for the language L.

2.60. Assume L ~ {a}* and ARLaa. List all possible choices for the language L.

2.61. (a) Give an example of a DFA M for which RM= RL(M).
(b) Give an example of a DFA M for which RM1- RL(M).
(c) For every DFA M, show that RMrefines ~(M)'

2.62. Find RMand RL(M) for the machine M described in Example 1.5.

2.63. Is ARL(A) always equivalent to A? Explain.
2.64. Consider L4 = {y E {O, 1}* I Iy 10 = Iy II} as given in Example 2.11. Let n be given and

consider x = (01)" = 010101 ... 0101. Then Ixl = 2n > n; but if u = 0101, v = 01, and
w = (01)" - \ ('Vi E N)Uyi W E L4 • Does this mean L4 is FAD? Explain.

2.65. Consider L4 = {y E {O, 1}* l b 10 = Iy Idas given in Example 2.11. Find RL4·
2.66. Show that the set of all postfix expressions over the alphabet {A,B, +, -} is not FAD.

2.67. Show that the set of all parenthesized infix expressions over the alphabet
{A,B, +, -, (,)} is not FAD.

2.68. For a given language L, how does RL compare to R_ L; that is, how does the right
congruence generated by a language compare to the right congruence generated by its
complement? Justify your statement.

2.69. Let I = {a, b]. Assume the right congruence Q has the following equivalence classes:
{A}, {a},[b}, {x IlxI 2: 2}. Show that there is no language L such that RL= Q.

2.70. Let Q be the equivalence relation with the two equivalence classes {A, a, aa} and
{a\a"as, ... }.
(a) Show that Q is not a right congruence.
(b) Attempt to build Ao(ignoring Fo for the moment), and describe any difficulties

that you encounter.
(c) Explain how the failure in part (a) is related to the difficulties found in part (b).

2.71. Let I ={a, b, e}, Show that {a'b ' ckli,j, kEN and i + j = k} is not FAD.
2.72. Let Q ~ {a}* x {a}* be the equivalence relation with the following equivalence classes:

[A]o = {A} = {a}O

[a]o = {a} = [a}'

[aa]o = {a}2 U{a]" U{a]"U{a}" U ...

Show that Q is a right congruence.
2.73. Let I = {a, b,c}, and let R2 be defined by x R2 y ~x and y end with the same letter.

(a) Show that R2is an equivalence relation.
(b) Assume that part (a) is true, and show that R2is a right congruence.

2.74. Let I = {a, b, c}, and let R3 be defined by x R 3 y <=>x and y begin with the same letter.
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(a) Show that R3 is an equivalence relation.
(b) Assume that part (a) is true, and show that R3 is a right congruence.

2.75. Let I = {a, b}. Which of the following languages are FAD? (Support your answers.)
(a) L1 = all words over I * for which the last letter matches the first letter.
(b) ~ = all odd-length words over I* for which the first letter matches the center

letter.
(c) L3 = all words over I* for which the last letter matches none of the other letters.
(d) L4 = all even-length words over I* for which the two center letters match.
(e) L, = all odd-length words over I* for which the center letter matches none of the

other letters.
2.76. In the proof of (2) => (3) in Nerode's theorem:

(a) Complete the proof of case 1.
(b) Could case 1 actually be included under case 2?

2.77. Consider the right congruence property (Re) in Definition 2.1. Show that the implica
tion could be replaced by an equivalence; that is, property (Re) could be rephrased as

('v'x,y EI*)(xRy ~ ('v'u EI*)(xuRyu))

2.78. Given a DFA M = <I,S, sO, 8, F>, assume that 8(s, u) = q, and 8(q, v) = q. Use in
duction to show that ('v'iE N)(8(s, zzv') = q).

2.79. Let L be the set of all strings that agree with some initial part of the pattern
0]10 21031041 ... = 0100100010000100000100 Thus,
L = {O, 01, 010, 0100, 01001, 010010, 0100100, }. Prove that L is not FAD.

2.80. Consider the following BNF over the three-symbol alphabet {a,), (}, and show that the
resulting language is not FAD.

<simple> := a I(<simple>)

2.81. (a) Let I = {O, I}. Let ~ = {x E I* Ithe base 2 number represented by x is a power of
2}. Show that ~ is FAD.

(b) LetI={0,1,2,3,4,5,6,7,8,9}.
Let L IO = {x E I *Ithe base 10 number represented by x is a power of 2}. Prove that
L IO is not FAD.



CHAPTER

MINIMIZATION ofFINITE
AUTOMATA

We have seen that there are many different automata that can be used to represent a
given language. We would like to be able to find an automaton for a language L that
is minimal, that is, a machine which can represent that language which has the
fewest number of states possible.

Finding such an optimal DFA will involve transforming a given automaton
into the most efficient equivalent machine. To effectively accomplish this transfor
mation, we must have a set of clear, unequivocal directions specifying how to
proceed. A procedure is a finite set of instructions that unambiguously defines
deterministic, discrete steps for performing some task. As anyone who has pro
grammed a computer knows, it is possible to generate procedures that will never
halt for some inputs (or perhaps for all inputs if the program is seriously flawed). An
algorithm is a procedure that is guaranteed to halt on all (legal) inputs. In this
chapter we will specify a procedure for finding a minimal machine and then justify
that this procedure is actually an algorithm. Thus, the theorems and definitions will
show how to transform an inefficient DFA into an optimal automaton in a straight
forward manner that can be easily programmed.

3.1 HOMOMORPHISMS AND ISOMORPHISMS

One of our goals for this chapter can be stated as follows: Given a language L, we
wish to survey all the machines that recognize L and choose the machine (or
machines) that is "smallest." It will be seen that there is indeed a unique smallest
machine: ARL • The automaton ARL will be unique in the sense that any other optimal

86
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DFA looks exactly like ARL except for a trivial relabeling of the state names. The
concept of two automata "looking alike" will have to be formalized to provide a
basis for our rigorous statements. Machines that "look alike" will be called
isomorphic, and the relabeling specification will be called an isomorphism.

We have already learned some facts about ARL, which stem from the proof of
Nerode's theorem. These are summarized below and show that ARL is indeed one of
the optimal machines for the language L.

V Corollary 3.1. For any FAD language L, L(ARJ = L.

Proof. This was shown when (3)~ (1) in Theorem 2.2 was proved.

Also, in the proof of (1)~ (2) in Nerode's theorem, the relation RM (defined
by a given DFA M=<I,S,so,B,F> for which L(M)=L) was used to show
IISII ~ rk(RM

) . Furthermore, in (2)~ (3), right congruences such as RM that satis
fied property (2) must be refinements of RL , and so rk(RM

) ~ rk(RL ) . Thus
IISII ~ rk(RM

) ~ rk(RL) = IISRJ, which leads immediately to the following corollary.

V Corollary 3.2. For any FAD language L, ARL is a minimal deterministic
finite automaton that accepts L.

Proof. The proof follows from the definition of a minimal DFA (Definition
2.7); that is, if M = <I, S, sO, B, F> is any machine that also accepts L, then
IISII ~ IISRJ.
A

Besides being in some sense "the simplest," the minimal machine has some
other nice properties. For example, if A is minimal, then the right congruence
generated by A is identical to the right congruence generated by the language
recognized by A; that is, R

A = RL(A) (see the exercises). Examples 3.1 and 3.2
illustrate the two basic ways a DFA can have superfluous states.

V Definition 3.1. A state s in a finite automaton A = <I, S, sO, B,F> is called
accessibleiff

3xs E I* , B(so,xs) = s

The automaton A is called connected iff

(\is ES)(3xs E I*)(B(so,xs) = s)

That is, a connected machine requires all states to be accessible; every state s of S
must be "reachable" from sci by some string (xs) in I * (different states will require
different strings, and hence it is convenient to associate an appropriate string x, with
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the state s). States that are not accessible are sometimes called disconnected,
inaccessible, or unreachable.

EXAMPLE 3.1

The machine defined in Figure 3.1 satisfies the definition of a deterministic finite
automaton, but is disconnected since r cannot be reached by any string from the
start state q. Note that xq could be A or 10, while Xl might be 0 or 111. There is no
candidate for X r • Furthermore, r could be "thrown away" without affecting the
language that this machine accepts. This will be one of the techniques we will use to
minimize finite automata: removing the inaccessible states.

There is a second way for an automaton to have superfluous states, as shown
by the automata in the following examples. An overabundance of states may be
present, recording nonessential information and consequently distinguishing be
tween strings in ways that are unnecessary.

0,1

Figure 3.1 The automaton discussed in
Example 3.1

EXAMPLE 3.2

Consider the four-state DFA over {a, b}" in which So is the start and only final state,
defined in Figure 3.2. This automaton is clearly connected, but it is still not optimal.
This machine accepts all strings whose length is a multiple of 3, and sland S2 are
really "remembering" the same information, that is, that we currently have read a
string that is one more than a multiple of 3. The fact that some strings that end in a
are sent to s., while those that end in b may be sent to S2, is of no real importance; we
do not have to "remember" what the last letter in the string actually was in order to
correctly accept the given language. The states s, and S2 are in some sense equiva
lent, since they are performing the same function. The careful reader may have
noticed that this language could have been recognized with a three-state machine, in
which a single state combines the functions of Sl and Si.

Now consider the automaton shown in Figure 3.3, in which there are three
superfluous states. This automaton accepts the same language as the DFA in Figure
3.2, but this time not only are Sl and S2 performing the same function, but S3 and S4
are "equivalent," and So and S5 are both "remembering" that there has been a
multiple ofthree letters seen so far. Note that it is not enough to check that Sl and S2
take you to exactly the same places (as was the case in the first example); in this
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Figure 3.2 The first automaton dis
cussed in Example 3.2

Figure 3.3 The second automaton discussed in Example 3.2

example, the arrows coming out of St and S2 do not point to the same places. The
important thing is that, when leaving St or S2, when a is seen, we go to equivalent
states, and when processing b from s, or S2, we also go to equivalent states. However,
deciding whether two states are equivalent or not is perhaps a little less straight
forward than it may at first seem. This sets the stage for the appropriate definition of
equivalence.

V Definition 3.2. Given a finite automaton A = <!', S, So, 5, F>, there is a
relation between the states of A called EA , the state equivalence relation on A,
defined by

('v'sES)('v'tES)(sEAt ~ ('v'x E!'*)(B(s,X)EF ~ B(t,x)EF))

In other words, we will relate sand t iffit is not possible to distinguish whether we
are starting from state s or state t; each string x E!,* will either take x to a final state
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when starting from s and also take x to a final state from t, or neither s nor t will take
x to a final state.

Another way of looking at this concept is to define new machines that "look
like" A, but have different start states. Given a finite automaton A = <~, S, sO, 8, F>
and two states s, t E S, define a new automaton AI= <~, S, t, 8, F> that has t
as a start state, and another automaton A"= <~, S, s, 8, F> having s as a start
state. Then sEAt~L(A")=L(At

) . (Why is this an equivalent definition?) These
sets of words will be used in later chapters and are referred to as terminal sets.
T(A, t) will denote the set of all words that reach final states from t, and thus
T(A, t) =L (At) = {x 18(t,x) E F}.

In terms of the black box model presented in Chapter 1, we see that we cannot
distinguish between A" and At by placing matching strings on the input tapes and
observing the acceptance lights of the two machines. For any string, both A" and At
will accept, or both will reject; without looking inside the black boxes, there is no
way to tell whether we are starting in state s or state t. This highlights the sense in
which sand t are deemed equivalent: we cannot distinguish between sand t by the
subsequent behavior of the automaton.

The modified automaton At, which gives rise to the terminal set T(A, t), can be
contrasted with the modified automaton At = <~, S, sO, 8, [t}> from Chapter 2,
which recognized the initial set I(A, t) = {x I8(so,x) = t}. Notice that initial sets are
comprised of strings that move from the start state to the distinguished state t, while
terminal sets are made up of strings that go from t to a final state.

EXAMPLE 3.3

The automaton N discussed in Example 2.6 (Figure 3.4) has the following relations
comprising EN:

SI EN SI , SI EN S2 , SI EN S3

S2 EN SI , S2 EN S2 , S2 ENS3

S3 EN SI , S3 EN S2 , S3 ENS3

o 1 0,1

Figure 3.4 The automaton N discussed
in Example 3.3
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This can be succinctly described by listing the equivalence classes:

[SOlEN = {so}

[StlEN = [SZ]EN = [S3]EN = {sJ, sz, S3},

and we will abuse our notation slightly and blur the distinction between the relation
EN with the partition it generates by writing EN = {{so}, {sJ, Sz,S3}}'

Recall that Example 2.6 showed that the minimal machine that accepted L (N)
had two states; it will be seen that it is no coincidence that EN has exactly the same
number of equivalence classes.

V Definition 3.3. A finite automaton A= <'I,S,so,8,F> is called reduced iff
('tis, t E S)(s EA t ¢:> s = t).
~

In a reduced machine, EA must be the identity relation on S, and in this case
each equivalence class will contain only a single element.

EXAMPLE 3.4

The automaton N in Figure 3.4 is not reduced, since Example 3.3 shows that [szlE
N

contains three states. On the other hand, the automaton A displayed in Figure 3.Sa
is reduced since [solEA= {so} and [StlEA = {SI}' The concepts of homomorphism and
isomorphism will play an integral part in justifying the correctness of the algorithms
that produce the optimal DFA for a given language. We need to formalize what we
mean when we say that two automata are "the same." The following examples
illustrate the criteria that must exist between similar machines.

EXAMPLE 3.5

We now consider the automaton B shownin Figure 3.Sb, which looks suspiciously
like the DFA A given in Figure 3.Sa. In fact, it is basically the "same" machine.
While it has been oriented differently (which has rio effect on the 8 function), and
the start state has been labeled qo rather than so, and the final state is called qi rather
than S1> A and B are otherwise "identical." For such a relabeling to truly reflect the
same automaton structure, certain conditions must be met, as illustrated in the
following examples.

EXAMPLE 3.6

Consider machine C, defined by the state transition diagram given in Figure 3.Sc.
This machine is identical to B, except for the position of the start state. However, it
is not the same machine as B, since it behaves differently (and in fact accepts a
different language). Thus we see that it is important for the start state of one
machine to correspond to the start state of the other machine. Note that we cannot
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(a)

(c)

(b)

(d)

(e)

Figure 3.5 (a) The automaton A (b) The automaton B (c) The automaton C (d) The automa
ton D (e) The automaton E

circumvent this by letting qo correspond to Sl and q1 correspond to so, since other
problems will develop, as shown next in Example 3.7.

EXAMPLE 3.7

Let machine D be defined by the state transition diagram given in Figure 3.5d. The
automata Band D (Figures 3.5b and 3.5d) look much the same, with start states
corresponding, but they are not the same (and will in fact accept different lan
guages), because we cannot get the final states to correspond correctly. Even if we
do get the start and final states to agree, we still have to make sure that the
transitions correspond.This is illustrated in the next example.

EXAMPLE 3.8

Consider the machine E given in Figure 3.5e. In this automaton, when leaving the
start state, we travel to a final state if we see 0, and remain at the start state (which is
nonfinal) if we see 1; this is different from what happened in machine A, where we
traveled to a final state regardless of whether we saw 0 or 1. Thus it is seen that we
not only have to find a correspondence (which can be thought of as a function 1-1-)
between the states of our two machines, but we must do this in a way that satisfies
the above three conditions (or else we cannot claim the machines are "the same").
This is summed up in the following definition of a homomorphism.
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V Definition 3.4. Given two finite automata, A = <I, SA,SOA' 3A,FA> and
B = <I,SB,SOB,3B,FB>, and a function u: SA~SB, j.L is called a finite automata
homomorphism from A toB iff the following three conditions hold:

i. j.L(SOA) = SOB
li, ('Is E SA)(S E h~ j.L(s) E FB)

iii. ('Is E SA)(Va E I)(j.L(3A(s,a)) = 3B(j.L(s), a))

Note that j.L is called a homomorphism from A to B, but it is actually a function
between state sets, that is, from SA to SB.

EXAMPLE 3.9

Machines A and B in Example 3.5 are homomorphic, since the homomorphism
u: {so, Sl}~ {go, gl} defined by j.L(so) = go and j.L(Sl) = gl satisfies the three condi
tions.

The following example shows that even if we can find a homomorphism that satisfies
the 3 conditions the machines might not be the same.

EXAMPLE 3.10

Let M = <I, {so, S1, S2}, so,3M , {SI}> and N = <I, {go,gl}, go, 3N , {gl}> be given by
the state transition diagrams in Figures 3.6a and 3.6b. Define a homomorphism
ljJ: {so, S1, S2}~ {go,q.I by ljJ(so) = go, ljJ(Sl) -= gt. and ljJ(S2) = go. Note that the start
state maps to the start state, final states map to final states (and nonfinal states map
to nonfinal states), and, furthermore, the transitions agree. Here is the statement
that the 0 transition out of state So is consistent:

(a)

0,1

(b)

Figure 3.6 (a) The DFA M discussed in Example 3.10 (b) The DFA N discussed in
Example 3.10
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Note that this really does say that the transition labeled 0 leaving the start state
conforms; So has a O-transition pointing to s., and so the O-transition from ljJ(so)
should point to IjJ(SI) (that is, qoshould point to q.), But the transition taken from So
upon seeing a 0, in our notation, is 8M(so, 0), and the place qogoes to is 8N(qo, 0). We
wish to make sure that the state in N corresponding to where the O-transition from So
points, denoted by 1jJ(8M(so, 0», agrees with the state to which qo points. Hence we
require 1jJ(8M(so,0» = 8N(qo, 0). In the last formula, qo was chosen because that
was the state corresponding to so; that is, ljJ(so) = qo. Hence, in our formal notation,
we were really checking 1jJ(8M(so,0» = 8N(IjJ(so), 0). Hence, we see that rule (iii)
requires us to check all transitions leading out of all states for all letters; that is,
('Is ESM)('1a E I)(1jJ(8M(s, a» = 8N(IjJ(s), a». Applying this rule to each choice of
letters a and states s, we have

1jJ(8M(so,0» = IjJ(SI) = ql = 8N(qo, 0) = 8N(IjJ(so), 0)

1jJ(8M(so, 1» = IjJ(SI) = ql = 8N(qo, 1) = 8N(IjJ(so), 1)

1jJ(8M(sl> 0» = IjJ(SI) = ql = 8N(ql> 0) = 8N(IjJ(SI), 0)

1jJ(8M(sl> 1» = ljJ(so) = qo= 8N(ql> 1) = 8N(IjJ(SI), 1)

1jJ(8M(S2'0» = IjJ(SI) = ql = 8N(qo, 0) = 8N(IjJ(S2), 0)

1jJ(8M(S2' 1» = IjJ(SI) = ql = 8N(qo, 1) = 8N(IjJ(S2), 1)

Hence IjJ is a homomorphism between M and N even though M has three states and
N has two states. While the existence of a homomorphism is not enough to ensure
that the machines are "the same," the exercises for this chapter indicate that the
existence of a homomorphism is enough to ensure that the machines are equivalent.
The extra condition we need to guarantee that the machines are identical (except
for a trivial renaming of the states) is that IjJ be a bijection.

V Definition 3.5. Given two finite automata A = <I, SA,SOA' 8A,FA> and
B = <I, SB, SOS' 8B, FB>, and a function u.; SA~ Sa, f.L is called a finite automata
isomorphism from A to B iff the following five conditions hold:

I, f.L( SOA) = sos'
ii. ('Is E SA)(S E FA ~ f.L(s) E FB) .

iii. ('Is E SA)('1aE I)(f.L(8A(s, a» = 8B(f.L(S), a».
iv. f.L is a one-to-one function from SA to SB.

v. f.L is onto SB.
il

EXAMPLE 3.11

f.L from Example 3.9 is an isomorphism. Example 3.5 illustrated that the automaton
A was essentially "the same" as B except for the way the states were named. Note
that f.L can be thought of as the recipe for relabeling the states of A to form a
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machine that would then be in the very strictest sense absolutely identical to B. I\J
from Example 3.10 is not an isomorphism because it is not one to one.

V Definition 3.6. Given two finite automata A = <I,SA, SOA' 8A, FA> and
B = <I, Sa, s08,8a, Fa>, A is said to be isomorphic to B iff there exists a finite
automata isomorphism between A and B, and we will write A == B.
d

EXAMPLE 3.12

Machines A and B from Examples 3.4 and 3.5 are isomorphic. Machines M and N
from Example 3.10 are not isomorphic (and not just because the particular function
I\J fails to satisfy the conditions; we must actually prove that no function exists that
qualifies as an isomorphism between M and N).

Now that we have rigorously defined the concept of two machines being
"essentially identical," we can prove that, given a language L, any reduced and
connected machine A accepting L must be minimal, that is, have as few states as
possible for that particular language. We will prove this assertion by showing that
any such A is isomorphic to ARL , which was shown in Corollary 3.2 to be the
"smallest" possible machine for L.

V Theorem 3.1. Let L be any FAD language over an alphabet I, and let
A = <I, S, sO, 8, F> be any reduced and connected automaton that accepts L. Then
A==ARL•

Proof. We must try to define a reasonable function I-L from the states of A to
the states of ARL (which you should recall corresponded to equivalence classes of
RL) . A natural way to define I-L (which happens to work!) is: For each s E S, find a
string z, E l* 1 8(so,xs) = s. (Since A is connected, we are guaranteed to find such
an X s' In fact, there may be many strings that take us from So to s; choose anyone of
them, and call itxs' ) We need to map s to some equivalence class of Rj ; the logical
choice is the class rontaining Xs' Thus we define

I-L(s) = [Xs]RL

An immediate question comes to mind: There may be several strings that we could
use for X s ; does it matter which one we choose to find the equivalence class? It
would not do if, say, RL consisted of two equivalence classes, the even-length
strings = [l1]R

L
and the odd-length strings = [Ok, and both 8(so,0) and 8(so,11)

equaled s. Then, on the one hand, I-L(s) should be [O]RL , and, on the other hand, it
should be [l1]R

L
' I-L must be a function; it cannot send s to two different equivalence

classes. Note that there would be no problem if8(so, 11.) = sand 8(so1111) = s, since
[l1]R

L
= [l1l1]R

L
, both of which represent the set of all even-length strings. Here X s

could be 11, or it could be 1111, and there is no inconsistency in the way in which
I-L(s) is defined; in either case, s is mapped by I-L to the class of even-length strings.
Thus we must first show:
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1. ,.... is well-defined (which means it is defined everywhere, and the definitions
are consistent; that is, if there are two choices for xs, say, Y and z, then
[y ]RL= [Z]RJ Since A is connected, each state s can be reached by some string
Xs; that is, (Vs E S )(3xsE I *)(8(so,xs) = s), and so there is indeed (at least)
one equivalence class ([XS]RJ to which s maps under ,..... We therefore have
,....(s) = [Xs]RL' Thus u is defined everywhere. We must still make sure that u is
not multiply defined: Let x.y E I* and assume 8(so,x) =8(so,Y). Then

8(so, x) = 8(so,Y):::} (by definition of =)

(Vu E I*)(8(8(so, x), u) E F ~ 8(8(so,Y), u) E F):::} (by Theorem 1.1)

(Vu E I*)(8(so, xu) E F ~ 8(so,yu) E F):::} (by definition ofL)

(Vu E I *)(xu E L ~ yu E L):::} (by definition of Rd
x RLy:::} (by definition of [ ])

[X]RL= [Y]RL

Thus, if both x and Y take us from So to s, then it does not matter whether we let
,....(s) equal [x]RLor [y ]RL, since they are identical. ,.... is therefore a bona fide
function.

2. ,.... is onto SRL' Every equivalence class must be the image of some state in S,
since (V[xk E SRJ([X]RL= ,....(8(so, x))), and so 8(so,x) maps to [X]RL.

3. ,....(so) = SORL'

4. Final states map to final states; that is, (Vs E S)(,....(s) E FRL ~ s E F). Choose
an s E S and pick a corresponding x, E I * such that 8(so,xs) = s. Then

s E F~ (by definition of x" L )

Xs E L (A)~ (by definition of L)

XsE L~ (by definition of ~J

[xs] E FRL~ (by definition of ,....)

,....(s) E FRL

5. The transitions match up; that is, (Vs E S)(Va E I)(,....(5(s, a)) = 5RL(,....(S), a)).
Choose an s E S and pick a corresponding x, E I * such that 8(so, xs) = s. Note
that this implies that [xs] = ,....(s) = ,....(8(so,xs))' Then

,....(5(s, a)) = (by definition of xs)

,....(5(8(so,xs),a)) = (by Theorem 1.1)

,....(8(so,xsa)) = (by definition of ,....)
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[xSa]RL= (by definition of 8RJ
8RL([Xs]RL, a) = (by definition of IJ. and xs)

8RL(IJ.(S), a)

So far we have not needed the fact that A was reduced. In fact, we have now
proved that IJ. is a homomorphism from A to ARL as long as A is merely
connected. However, if A is reduced, we can show:

6. IJ. is one to one; that is, if lJ.(s) = lJ.(t), then s = t. Let s, t E S and assume
lJ.(s) = lJ.(t).

IJ.(s) = IJ.(t)~ (by definition of =)

(Vu E !,*)(8RL(IJ.(S), u) = 8RL(IJ.(t), u))~ [by property (5), induction]

(Vu E !,*)(1J.(8(s, u)) = 1J.(8(t, u))) ~ (by definition of =)

(Vu E !,*)(1J.(8(s, u)) E FRL~ 1J.(8(t, u)) E FRJ~ [by property (4) above]

(Vu E !'*)(8(s, u) E F ~ 8(t, u) E F)~ (by definition of EA)

SEA t~ (since A is reduced)

s=t

Thus, by results (1) through (6), IJ. is a well-defined homomorphism that is also
a bijection; so IJ. is an isomorphism and therefore A == ARL.

V Corollary 3.3. Let A and B be reduced and connected finite automata.
Under these conditions, A is equivalent to B iffA == B.

Proof. If A == B, it is easy to show that A is equivalent to B (as indicated in the
exercises, this implication is true even if A and B are not reduced and connected).
Now assume the hypothesis that A and B are reduced and connected does hold, and
that A is equivalent to B. Since A is minimal, A == ARL(A)' Similarly, B == ARL(B)" Since
L (A) = L (B), ARL(A) = ARL(B)' Therefore, A == ARL(A) = ARL(B) == B.
A

3.2 MINIMIZATION ALGORITHMS

From the results in the previous section, it follows that a reduced and connected
finite automaton must be minimal. This section demonstrates how to transform an
existing DFA into an equivalent machine that is both reduced and connected and
hence is the most efficient machine possible for the given language. The designer of
an automaton can therefore focus solely on producing a machine that recognizes the
correct set of strings (without regard for efficiency), knowing that the techniques
presented in this section can later be employed to shrink the DFA to its optimal size.
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The concepts explored in Chapters 4,5, and 6 will provide further tools to aid in the
design process and corresponding techniques to achieve optimality.

V Corollary 3.4. A reduced and connected deterministic finite automaton
A = <I, S, so, 8, F> is minimal.

Proof. By Theorem3.!, there is an isomorphism between A and ARc Since an
isomorphism is a bijection between the state sets, IISI/ = IISRJ. By Corollary 3.2, ARL
has the smallest number of states, and therefore so does A.
a

Thus, if we had a machine for L that we could verify was reduced and con
nected, we would be able to state that we had found the minimal machine accepting
L. We therefore would like some algorithms for determining if a machine M has
these properties. We would also like to find a method for transforming a non optimal
machine into one with the desired properties. The simplest transformation is from a
disconnected machine to a connected machine: given any machine A, we will define
a connected machine N that accepts the same language that A did; that is,
L(A) =L(N).

V Definition 3.7. Given a finite automaton A = <I, S, so,8, F>, define a new
automaton Ac = <I, S', s3,8c

, FC>, called A connected, by

SC = {sE S 13x E I* ~ &(so, x) = s}

s3 = So

pc=Fnsc={fEFI3x EI* ~ &(so,x) =f}

and 8c is derived from the restriction of 8 to SC x I:

(\fa E I)(\fs E SC)(8«s, a) = 8(s, a))

AC is thus simply the machine A with the unreachable states "thrown away"; So
can be reached by x = A,so it is a valid choice for the start state in N. F' is simply the
final states that can be reached from so, and 8C is the collection of transitions that
still come from (and consequently point to) states in the connected portion. Ac
tually, 8C was defined to be the transitions that merely come from states in SC, with
no mention of any restrictions on the range of 8C

• We must have, however,
8c: SC x I~ sc; in order for N to be well defined, 8Cmust be shown to map into the
proper range. It would not do to have a transition leading from a state in SC to a state
that is not in the new state set of N. The fact that 8C does indeed have the desired
properties is relegated to the exercises.

EXAMPLE 3.13

Let M=<{a,b},{qo,qt.q2,q3},qo,8,{qt.Q3}>, as illustrated in Figure 3.7a. By
inspection, the only states that can be reached from the start state are qo and q3'
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b

b

b

(a) (b)

Figure 3.7 (a) The DFA M discussed in Example 3.13 (b) The DFA M' discussed
in Example 3.13

Hence MC = <{a, b},{q-, q3}, qo,8c
, {q-]'>. The resulting automaton is shown in Fig

ure 3.7b. An algorithm for effectively computing SC will be presented later.

V Theorem 3.2. Given any finite automaton A, the new machine N is indeed
connected.

. Proof. This is an immediate consequence of the way SC was defined.

Definition 3.7 and Theorem 3.2 would be of little consequence if it were not
for the fact that A and N accept the same language. N is in fact equivalent to A, as
proved in Theorem 3.3.

V Theorem 3.3. Given any finite automaton A = <I, S, sO, 8, F>, A and N are
equivalent, that is, L (N) = L (A).

Proof. Let x E I *. Then:

x EL(A)~(by definition ofL)

3s E S :l (8(so,x) = s 1\ s E F)~ (by definition of SC)

s E SC 1\ s E F~ (by definition of n)

s E (SC n F)~ (by definition of PC)

s E F'~ (by definition of s)

8(so, x) E F"~ (by definition of 8c and induction)

8C(so, x) E Pc~ (by definition of s3)

8C(s3,x) E F"~ (by definition of L)

x EL(N)
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Thus, given any machine A, we can find an equivalent machine (that is, a
machine that accepts the same language as A) that is connected. Furthermore, there
is an algorithm that can be applied to find N (that is, we don't just know that such a
machine exists, we actually have a method for calculating what it is). The definition
of SC implies that there is a procedure for finding SC: one can begin enumerating the
strings x in ~", and by applying the transition function to each x, the new states that
are reached can be included in SC. This is not a very satisfactory process because
there are an infinite number of strings in ~* to check. However, the indicated proof
for Theorem 2.7 shows that, if a state can be reached by a "long" string, then it can
be reached by a "short" string. Thus, we will only need to check the "short" strings.
In particular,

SC:=: U B(so,x) = U B(so,x)
xE~' xEQ

where Q consists of the "short" strings: Q = {x E ~*I Ix I< II S II}. Thus, Q is the set
of all strings of length less than the number of states in the DFA. Q is a finite set,
and therefore we can check all strings x in Q in a finite amount of time; we therefore
have an algorithm (that is, a procedure that is guaranteed to halt) for finding SC, and
consequently an algorithm for constructing AC. Thus, given any machine, we can
find an equivalent machine that is connected. The above method is not very efficient
because many calculations are constantly repeated. A better algorithm based on
Definition 3.10 will be presented later.

We now turn our attention to building a reduced machine from an arbitrary
machine. The following definition gives a consistent way to combine the redundant
states identified by the state equivalence relation EA.

V Definition 3.8. Given a finite automaton A = <~, S, so,B,F>, define a new
finite automaton A/E A, called A modulo its state equivalence relation, by

A/E A = <~, SEA' SOEA' BEA, FEA>
where

SEA = {[S]EAI s E S}

SOEA = [SO]EA

PEA = {[S]EAI s E F}

and BEAis defined by

('VaE ~)('V[s] E SEA)(BEA([S]EA, a) = [B(s, a)]EA)

Thus, there is one state in A/EA for each equivalence class in EA , the new start
state is the equivalence class containing so, and the final states are those equivalence
classes that are made up of states from F. The transition function is also defined in a
natural manner: Given an equivalence class [t]EAand a letter a, choose one state, say
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t, from the class and see what state the old transition specified (8(t, a)). The new
transition function will choose the equivalence class containing this new state
([8(t, a)]EA)' Once again, there may be several states in an equivalence class and thus
several states from which to choose. We must make sure that the definition of 8EA
does not depend on which state of [t]EAwe choose (that is, we must ascertain that 8EA
is well defined.) Similarly, FEAshould be shown to be well defined (see the exer
cises).

It stands to reason that if we coalesce all the states that performed the same
function (that is, were related by EA) into a single state the resulting machine should
no longer have distinct states that perform the same function. We can indeed prove
that this is the case, that is, that A/EAis reduced.

V Theorem 3.4. Given a finite automaton A = <!', S ,so, 8, F>, A/EA is
reduced.

Proof. Note that the state equivalence relation for A/EAis E(A/E ), not EA. We
need to show that if two states of A/EAare related by the state equiva1ence relation
for A/EAthen those two states are identical; that is,

(Vs, t E SEA)(S E(A/EA) t ¢::> s = t)

Assume s, t E SEA' Then 3s', t' E S ~ s = [S']EAand t = [t']EA; furthermore,

s E(A/EA) t ¢::> (by definition of s', t')

[S']EA E(A/EA) [t']EA¢::> (by definition of E(AfE))

(Vx E !, *)(8EA([S'], x) E FEA¢::> 8EA([t'],x) E FEA) ¢::> (by 8EAand induction)

(Vx E!, *)([8(s', x)] E FEA¢::> [8(t', x)] E FEA) ¢::> (by definition of FEA)

(Vx E !'*)(8(s' ,x) E F ¢::> 8(t' ,x) E F) ¢::> (by definition of EA)

s' EAt' ¢::> (by definition of [ ])

[S']EA = [t']EA ¢::> (by definition of s, t)

s=t

Since we ultimately want to first apply Definition 3.7 to find a connected DFA
and then apply Definition 3.8 to reduce that DFA, we wish to show that this process
of obtaining a reduced machine does not destroy connectedness. We can be assured
that if Definition 3.8 is applied to a connected machine the result will then be both
connected (Theorem 3.5) and reduced (Theorem 3.4).

V Theorem 3.5. If A = <!', S, sO, 8,F> is connected, then A/EAis connected.

Proof. We need to show that every state in A/EAcan be reached from the start
state of A/EA' Assume s E SEA' Then 3s' E S ~ s = [S']EA; but A was connected, and
so there exists an x E!,* such that 8(so,x) = s'; that is, there is a string that will take
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us from So to s' in the original machine A. This same string will take us from SOE to s
in A/E

A
since A

8(so,x) = s' ~ (by definition of =)

[8(so,X)]EA= [S']EA~ (by definition of 8EAand induction)

8EA([SO]EA'X) = [S']EA~ (by definition of SOE)

8EA(SOEA' X) = [S']EA

Therefore, every state s E SEA can be reached from the start state and A/EA is thus
connected.
d

Finally, we want to show that we do not change the language by reducing the
machine. The following theorem proves that A/EA and A are indeed equivalent.

V Theorem 3.6. Given a finite automaton A=<I,S,so,8,F>, then
L(A/EA) =L(A).

Proof.

x E L (A/EA) ~ (by definition of L )

8EA(SOEA' x) E FEA~ (by definition of SOE)

8EA([SO]EA' x) E FEA~ (by definition of 8EAand induction)

[8(so, x) ]EA E FEA~ (by definition of FEA)

8(so,x) E F~ (by definition of L )

x EL(A)

V Theorem 3.7. Given a finite automaton definable language L and any finite
automaton A that accepts L, then there exists an algorithm for constructing the
unique (up to isomorphism) minimum-state finite automaton accepting L.

Proof. For the finite automaton A that accepts L, there is an algorithm for
finding the set of connected states in A, and therefore there exists an algorithm
for constructing N, which is a connected automaton with the property that
L (N) = L (A) = L.

Furthermore, there exists an algorithm for computing EAc, the state
equivalence relation on N; consequently, there is an algorithm for construct
ing N/EAc, which is a reduced, connected automaton with the property that
L (N/EAc) = L (N) =L (A) = L.

From the main theorem on minimization (Theorem 3.1), we know that
N/EAc == ARL, and ARL is the unique (up to isomorphism) minimum-state finite au-
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tomaton accepting L. Consequently, the derived automaton AC!EAc is likewise a
minimum-state automaton.
a

The remainder of the chapter is devoted to developing the methods for
computing SC and EAand justifying that the resulting algorithms are indeed correct.

Our formal definition of EArequires that an infinite number of strings be
checked before we can find the equivalence classes upon which AC!EAc is based. Ifwe
could find an algorithm to generate EA, we would then have an algorithm for
building the minimal machine. This is the motivation for Definition 3.9.

V Definition 3.9. Given a finite automaton A = <I, S, sO, 3, F> and an integer
i, define the ith partial state equivalence relation on A, a relation between the states
of A denoted by EiA, by

('Is, t E S)(SEiAt ¢> ('Ix E I* :l[x I::; i)(3(s, x) E F ¢> 3(t,x) E F))

Thus EiArelates states that cannot be distinguished by strings of length i or
less. Contrast this to the definition of E A, which related states that could not be
distinguished by any string of any length. EOAdenotes a relatively weak criterion
that is progressively strengthened with successive EiArelations. As illustrated by
Example 3.14, these relations culminate in the relation we seek, EA.

EXAMPLE 3.14

Let B be the DFA illustrated in Figure 3.8. Consider the relation EOB' The empty
string A can differentiate between qo and the final states, but cannot differentiate
between qr, qz, q3, and q4' Thus EOB has two equivalence classes, {qo} and
{q., qz, q3,q4}'

In E1B, A still differentiates qo from the other states, but the string 1 can
distinguish q, from qb qz, and q, since 3(q3' 1) $.F, but 3(qi' 1) E Ffor i = 1, 2, and
4. We still cannot distinguish between q., qz, and q, with strings of length 0 or
1, so these remain together and E1B={{qO},{q3},{qbqz,q4}}' Similarly, since
3(q}, 11) E F but 3(qz, 11) $.F and 3(q4' 11) $.F, EZB= {{qo}, {q3}, {q.}, {qz,q4}}' Fur
ther investigation shows EZB= E3B= E4B= ESB= ... , and indeed E B= EZB'

1 1

Figure 3.8 The DFA 8 discussed in Ex
ample 3.14
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The ith state equivalence relation provides a convenient vehicle for computing
EA. The behavior exhibited by the relations in Example 3.14 follow a pattern that is
similar for all deterministic finite automata. The following observations will
culminate in a proof that the calculation of successive partial state equivalence
relations is guaranteed to lead to the relation EA.

Given an integer i and a finite alphabet I, there is clearly an algorithm for
finding EiAsince there are only a finite number of strings in IO U II U I Zu ... U Ii.
Furthermore, given every EiA, there is an expression for EA:

'"
EA= EOAn EIAn EZAn E3An ... n E An· .. = n E An j=O J

The proof is relegated to the exercises and is related to the fact that

I* = IO U II U I Zu··· u In u···

Finally, it should be clear that if two states cannot be distinguished by strings
of length 7 or less, they cannot be distinguished by strings of length 6 or less, which
means E7Ais a refinement of E6A. This principle generalizes, as formalized below.

V Lemma 3.1. Given a finite automaton A = <I, S, so, 8, F> and an integer
m, Em+ IAis a refinement of EmA, which means

(\:Is, t E S)(s Em+IAt =.? s EmAt)

or

Proof. See the exercises.

Lemma 3.2 shows that each EmAis related to the desired EA. Lemma 3.1 thus
shows that successive EmArelations come closer to "looking like" EA.

V Lemma 3.2. Given a finite automaton A = <I, S, so, 8, F> and an integer
m, EAis a refinement of EmA, and so

That is,

Proof. Let s, t E S. Then

SEA t =.? (by definition of EA)

(\:Ix EI*)(8(s,x) EF ~ 8(t,x) EF)=.? (true for all x, so it is true

for all "short" x)

(\:Ix E I* 11xl::5 m)(8(s,x) E F ~ 8(t,x) E F) =.? (by definition of EmA)

sEmAt



Sec. 3.2 Minimization Algorithms 105

While it is clearly possible to find a given EmAby applying the definition to
each of the strings in !,O U!,l U!,2 U ... U !,m, there is a much more efficient way if
Em-1Ais already known, as outlined in Theorem 3.8. A starting point is provided by
EOA' which can be found very easily, as shown by Lemma 3.3. From EOA' E1Acan
then be found using Theorem 3.8, and then E2A, and so on.

'il Lemma 3.3. Given a finite automaton A= <!"S,so,3,F>, EOA has two
equivalence classes, F and S-P (unless either For S-Fis empty, in which case there is
only one equivalence class, S).

Proof. The proof follows immediately from the definition of EOA; the empty
string A differentiates between final and nonfinal states, producing the equivalence
classes outlined above.
Ll

Given EOAas a starting point, Theorem 3.8 shows how successive relations can
be efficiently calculated.

'il Theorem 3.8. Given a finite automaton A = <!', S, so,3, F>,

(Vs E S)(Vt E S)(Vi E N)(s Ei+1At ~ SEiAU\ (Va E !')(3(s, a) EiA3(t, a)))

Proof. Let s E S, t E S. Then

SEi+lA t~(Vx E!'* ~ Ixl::s; i + 1)(3(s, x) E F ~3(t,x) E F)

~(Vx E!'* ~ Ixl::S;i)[3(s,x)EF~3(t,x)EF]/\

(Vy E!'* ~ Iyl = i + 1)[3(s,y) EF~3(t ,y) E F]

~(Vx E!'* ~ Ixl::S;i )[3(s,x) EF~3(t,x) EF]/\

(Vy E!,* ~ 1 ::s; Iy I-s i + 1)[3(s, y) E F~ 3(t, y) E F]

~ (Vx E!'* ~ Ixl::s; i )[3(s,x) E F ~3(t,x) E F]/\

(Va E !')(Vx E!'* ~ Ixl ::s; i )[3(s, ax) E F~ 3(t, ax) E F]

(Va E !')(Vx E!'* ~ IxI::s; i )(3(s, ax) E F~ 3(t, ax) E F)

~SEiA t /\

(Va E !')(Vx E!'* ~ IxI::s; i )(3(3(s, a), x) E F~ 3(3(t, a), x) E F)

~SEiA t /\ (Va E !')(3(s,a) EiA3(t, a))

Note that Theorem 3.8 gives a far superior method for determining successive
EjArelations. The definition required the examination of many (long) strings using
the 3 function; Theorem 3.8 allows us to simply check a few letters using the 3
function. Theorems 3.9, 3.10, and 3.11 will assure us that EAwill eventually be
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found. The following theorem guarantees that the relations, should they ever begin
to look alike, will continue to look alike as successive relations are computed.

V Theorem 3.9. Given a finite automaton A = <I" s,so,8, F>,
(3mE N ;l EmA= E m+1A) => (Vk E N)(Em+kA= EmA)

Proof. By induction on k; see the exercises.

The result in Theorem 3.9 is essential to the proof of the next theorem, which
guarantees that when successive relations look alike they are identical to EA.

V Theorem 3.10. Given a finite automaton A = <I" s,so,8, F>,

(3m EN ;l EmA= Em+1A) => EmA= E A

Proof. Assume 3m EN ;l EmA= Em+1Aand let q, rES:

1. By Lemma 3.2, qEAr => qEmAr.
2. Conversely, assume q EmAr. Then

q EmAr => (by assumption)

q Em+1Ar => (by Theorem 3.9)

(Vj 2:m)(qEjAr)

Furthermore, by Lemma 3.1, (Vj:5m)(qEjAr), and so (VjEN)(qEjAr);
but by definition or EA, this implies q E Ar. We have just shown that
qEmAr => qEAr.

3. Combining (1) and (2), we have (Vq, r E S)(qEmAr¢:>qEAr), and so EmA= EA.
Ll

The next theorem guarantees that these relations will eventually look alike
(and so by Theorem 3.10, we are assured that successive computations of EiAwill
yield an expression representing the relation EA).

V Theorem 3.11. Given a finite automaton A = <I" s, so,8, F>,

(3m EN ;l m :5IISIIA EmA= Em+1A).

Proof. Assume the conclusion is false; that is, that EOA,E1A, ... ,EllsllA are all
distinct. Since EllsllA C ... C E1AC EOA' the only way for two successive relations to
be different is for the number of equivalence classes to increase. Thus,

0< rk(EoA) < rk(E1A) < rk(EzA) < ... < rk(EllsIIA),

which means that rk(Ells1IA) > [S'], which is a contradiction (why?). Therefore,
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not all these relations can be distinct, and so there is some index m for which
EmA = Em+1A '
~.

V Corollary 3.5. Given a DFA A = <I, S, so, fl, F>, there is an algorithm for
computing EA.

Proof. EA can be found by using Lemma 3.2 to find EOA' and computing
successive EiArelations using Theorem 3.8 until EiA= E i+1A; this EiAwill equal EA,
and this will all happen before i reaches liS II, the number of states in S. The
procedure is therefore guaranteed to halt.
~

Since EA was the key to producing a reduced machine, we now have an
algorithm for taking a DFA and finding an equivalent DFA that is reduced. The
other necessary step needed to find the minimal machine was to produce a
connected DFA from a given automaton. This construction hinged on the calcula
tion of SC, the set of connected states.

The algorithm suggested by the definition of SC is by no means the most
efficient; it involves checking long strings with the 5 function and hence massive
duplication of effort. Furthermore, the definition seems to imply that all the strings
in I* must be checked, which certainly cannot be completed if it is done one string
at a time. Theorem 2.7 can be used to justify that it is unnecessary to check any
strings longer than IISII (see the exercises). Thus SC = {S(so,x)Ilxl< IISII}. While this
set, being based on a finite number of words, justifies that there is an algorithm for
finding S" (and hence there exists an algorithm for constructing N), it is still a very
inefficient way to calculate the set of accessible states.

As with the calculation of EA, there is a way to avoid using 5 to process long
strings when computing SC. In this case, a better strategy is to begin with So and find
all the new states that can be reached from So with just one transition. Note that this
can be done by simply examining the row of the state transition table corresponding
to so, and hence the computation can be accomplished quite fast. Each of these new
states should then be examined in the same fashion to see if they lead to still more
states, and this process can continue until all connected states are found. A se
quence of state sets is thereby constructed, in a similar manner to the way successive
partial state equivalence relations E iA were built. This approach is reflected in
Definition 3.10.

V Definition 3.10. Given a finite automaton A = <I, S, so, fl, F>, the ith par
tial state set C; is defined by the following rules: Let Co = {so} and recursively define

Ci+l = C, U U fl(q, a).
qECj,aEI

qS11 must equal SC (why?), and we will often arrive at the final answer long
before /lSII iterations have been calculated (see the exercises and refer to the
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treatment of EiA) . It can also be proved (by induction) that C; represents the set of
all states that can be reached from So by strings of length i or less (see the exercises).

Recall that the definition of SC involved the extended state transition function
8. Definition 3.10 instead uses the information found in the previous iteration to
avoid calculating paths for long strings. As suggested earlier, there is an even more
efficient method of calculating Ci+1 from C;, since only paths from the newly added
states need be explored anew.

EXAMPLE 3.15

Consider the DFA D given in Figure 3.9.

Co = {so}

and since 8(so,a) = s, and 8(so,b)= S3,

CI = {so, SJ, S3}

Note that there is no need to check So again, but Sl and S3 generate

Checking these two new states generates one more state, so

and since Ss leads to no new states, we have C4 = C3 ; as with E iA , we will now find
C3= C4 = Cs = C6 = ... = SC. The exercises will develop the parallels between the
generation of the partial state sets C; and the generation of the partial state equiv
alence relations EiA •

The procedure for recursively calculating successive C;s to determine SC pro-

S
S9

a,b

a

b

b a

a
a

b

Figure 3.9 The DFA D discussed in Example 3.15
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vides the final algorithm needed to efficiently find the minimal machine correspond
ing to a given automaton A. From A, we use the CiS to calculate SC and thereby
define N. Theorems 3.8 and related results suggest an efficient algorithm for com
puting EAc, from which we can construct N/EAc. N/EAc is indeed the minimal ma
chine equivalent to A, as shown by the results in this chapter. Theorems 3.3 and 3.6
show that AC/EACis equivalent to A. By Theorems 3.2,3.4, and 3.5, this automaton is
reduced and connected, and Corollary 3.4 guarantees that N/EAc must therefore be
minimal.

The proof of Theorem 3.7 suggests building a minimal equivalent determinstic
finite automaton for A by first shrinking to a connected machine and then reducing
modulo the state equivalence relation, that is, by finding N/EN . Theorem 3.5
assures us that when we reduce a connected machine it will still be connected. An
alternate strategy would be to first reduce modulo EA and then shrink to a con
nected machine, that is, to find (A/EAt In this case, we would want to make sure
that connecting a reduced machine will still leave us with a reduced machine. It can
be shown that if A is reduced then N is reduced (see the exercises), and hence this
method could also be used to find the minimal equivalent DFA.

Finding the minimal equivalent DFA by reducing A first and then eliminating
the disconnected states is, however, less efficient than applying the algorithms in the
opposite order. Finding the connected set of states is simpler than finding the state
equivalence relation, so it is best to eliminate as many states as possible by finding
SC before embarking on the more complex search for the state equivalence relation.

It should be clear that the algorithms in this chapter are presented in sufficient
detail to easily allow them to be programmed. As suggested in Chapter 1, the final
states can be represented as a set and the transition function as a matrix. The
minimization procedures would then return the minimized matrix and new final
state set.

As a practical matter then, when generating an automaton to perform a given
task, our concern can be limited to defining a machine that works. No further
creative insight is then necessary to find the minimal machine. Once a machine that
recognizes the desired language is found (however inefficient it may be), the minimi
zation algorithms can then be applied to produce a machine that is both correct and
efficient.

The proof that a reduced and connected machine is the most efficient was
based on the properties of the automaton ARL obtained from the right congruence
RL . This can be proved without relying on the existence of ARL • We close this
chapter with an outline of such a proof. The details are similar to the proofs given in
Chapter 7 for finite-state transducers.

Theorem 3.3, which was not based in any way on RL , implies that a minimal
DFA must be connected. Similarly, an immediate corollary of Theorem 3.6 is that a
minimal DFA must be reduced. Thus, a minimal machine is forced to be both
reduced and connected. We now must justify that a reduced and connected machine
is minimal. This result will follow from Corollary 3.3, which can also be proved
without relying on ARL • The implication (A == B ~ A is equivalent to B) is due solely



110 Minimization of Finite Automata Chap. 3

to the properties of isomorphisms and is actually true irrespective of any other
hypotheses (see the exercises). Conversely, if A is equivalent to B, then the fact that
A and B are both reduced and connected allows an isomorphism to be defined from
A to B (see the exercises).

Corollary 3.3 allows us to argue that any reduced and connected automaton A
is isomorphic to a minimal automaton M, and hence A has as few states as M and is
minimal. The argument would proceed as follows: Since M is minimal, we already
know that Theorems 3.3 and 3.6 imply that M is reduced and connected. Thus, M
and A are two reduced and connected equivalent automata, and Corollary 3.3
ensures that A 0= M. Thus, minimal machines are exactly those that are reduced and
connected.

EXERCISES

3.1. Use induction to show ("Is ES)(Vx E I*)(fL(B(s, x» = BRL(fL(S), X»for the mapping fL
defined in Theorem 3.1. Do not appeal to the results of (5) in the proof of Theorem
3.1.

3.2. Consider the state transition function given in Definition 3.8 and use induction to show

("Ix E I *)(V[S]EA E SEA)(BEA([S]EMX) = [B(S,X)]EA)

3.3. Prove that

EA=EoAnElAnEzAnE3An··· nEnAn··· = n EjA
j~O

3.4. Given a finite automaton A = <I, S, sO, B,F>, show that the function BEAgiven in
Definition 3.8 is well defined.

3.5. Given a finite automaton A = <I, S, sO, B,F>, show that the set FEAgiven in Defini-
tion 3.8 is a well-defined set.

3.6. Show that the range of the function Be given in Definition 3.7 is contained in S".
3.7. Prove Lemma 3.1.

3.8. Prove Lemma 3.3.

3.9. Prove Theorem 3.9.

3.10. Given a homomorphism fL from the finite automaton A = <I, SA,SOM BA,FA> to the
DFA B = <I, SB, SOB' BB, FB>,prove by induction that

("Is .SA)(Vx E I*)(fL(BA(s,x» = BB(fL(S), x»
3.11. Given a homomorphism fL from the finite automaton A = <I, SA, SOM BA,FA> to the

DFA B = <I, SB,SOB' BB, FB>,prove thatL(A) = L(B). As long as it is explicitly cited,
the result of Exercise 3.10 may be used without proof.

3.12. (a) Give an example of a DFA for which A is not connected and A/EAis not connected.
(b) Give an example of a DFA for which A is not connected but A/EAis connected.

3.13. Given a finite automaton A = <I, S, sO, B,F> and the state equivalence relation EA,
show there exists a homomorphism from A to A/E A.

3.14. Given a connected finite automaton A = <I, S, sO, B,F>, show there exists a homo
morphism from A to ARL(A) by:
(a) Define a mapping IjJ from A to ARL(A)' (No justification need be given.)
(b) Prove that your IjJ is well defined.
(c) Prove that IjJ is a homomorphism.
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3.15. Give an example to show that there may not exist a homomorphism from A to ARL(A) if
A is not connected (see Exercise 3.14).

3.16. Give an example to show that there may still exist a homomorphism from A to ARL(A)

even if A is not connected (see Exercise 3.14).

3.17. Give an example to show that, for the relations Rand RL given in Theorem 2.2, there
need not exist a homomorphism from AR L to AR •

3.18. == is an equivalence relation; in Chapter 2 we saw some relations were also right
congruences. Comment on the appropriateness of asking whether == is a right congru
ence.

3.19. Is EAa right congruence? Explain your answer.
3.20. Prove that if A is reduced then Ae is reduced.
3.21. For a homomorphism J.L between two finite automata A <k, SA,SOA' SA, FA> and

B = <k, Se,Soa,Ss,Fs>, prove (Vs, t E SA)(J.L(s)Es J.L(t) ~ sEA t).

3.22. Let M be a DFA, and let L =L(M).
(a) Define a mapping", from Me to A(RM) . (No justification need be given.)
(b) Prove that your", is well defined.
(e) Prove that e is a homomorphism.
(d) Prove that", is a bijection.
(e) Argue that Me == A(RM).

3.23. For the machine A given in Figure 3.10a, find:
(a) EA (list each EfA)
(b) L(A)
(e) ARL(A)

(d) RL(A)
(e) A/EA

3.24. For the machine B given in Figure 3.lOb, find:
(a) Ee (list each Eie)
(b) L(B)
(e) ARL(B)

(d) RL(B)

(e) alEe
Note that your answer to part (e) might contain some disconnected states.

3.25. For the machine C given in Figure 3.lOc, find:
(a) Ec (list each Efc)
(b) L(C)
(e) ARL(C)

(d) RL(c)

(e) ClEe
Note that your answer to part (e) might contain some disconnected states.

3.26. For the machine D given in Figure 3.10d, find:
(a) E (list each E, D)
(b) L(D)
(e) ARLIJ)

(d) RL(D)

(e) DIED
Note that your answer to part (e) might contain some disconnected states.
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a

a

b

b

a

(d)

Figure 3.10 (a) The DFA A discussed in Exercise 3.23 (b) The DFA B discussed in
Exercise 3.24 (c) The DFA C discussed in Exercise 3.25 (d) The DFA D discussed in
Exercise 3.26
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3.27. Without relying on AR L , prove that if A and B are both reduced and connected
equivalent DFAs then A 2: B. Give the details for the following steps:
(a) Define an appropriate function l\J between the states of A and the states of B.
(b) Show that l\J is wen defined.
(c) Show that l\J is a homomorphism.
(d) Show that l\J is a bijection.

3.28. In the proof of (6) in Theorem 3.1, one transition only involved c> rather than ¢:>.

Show by means of an example that the two expressions involved in this transition are
not equivalent.

3.29. Supply reasons for each of the equivalences in the proof of Theorem 3.8.
3.30. Minimize the machine defined in Figure 3.3.
3.31. (a) Give an example of a DFA for which A is not reduced and AC is not reduced.

(b) Give an example of a DFA for which A is not reduced and AC is reduced.

3.32. Note that 2: relates some automata to other automata, and therefore 2: is a relation
over the set of an deterministic finite automata.
(a) For automata A, B, and C, show that if g is an isomorphism from A to Bandfis an

isomorphism from B to C, thenf 0 g is an isomorphism from A to C.
(b) Prove that 2: is a symmetric relation; that is, formally justify that if there is an

isomorphism from A to B then there is an isomorphism from B to A.
(c) Prove that 2: is a reflexive relation.
(d) From the results in parts (a), (b), and (c), prove that 2: is an equivalence relation

over the set of an deterministic finite automata.

3.33. Show that homomorphism is not an equivalence relation over the set of alJ deter
ministic finite automata.

3.34. For the relations Rand RL given in Theorem 2.2, show that there exists a homo
morphism from AR to AR L •

3.35. Prove that if there is a homomorphism from A to B then RArefines RB
•

3.36. Prove that if A is isomorphic to B then RA= R B

(a) By appealing to Exercise 3.35.
(b) Without appealing to Exercise 3.35.

3.37. Consider two deterministic finite automata for which A is not homomorphic to B, but
RA=RB

•

(a) Give an example of such automata for which L (A) = L (B).
(b) Give an example of such automata for which L(A) =F L(B).
(c) Can such examples be found if both A and B are connected and L(A) = L(B)?
(d) Can such examples be found if both A and B are reduced and L (A) = L (B)?

3.38. Disprove that if A is homomorphic to B then RA = RB
•

3.39. Prove or give a counterexample [assume L =L(M)].
(a) For any DFA M, there exists a homomorphism l\J from A(RM) to M.
(b) For any DFA M, there exists an isomorphism l\J from A(RM ) to M.
(c) For any DFA M, there exists a homomorphism l\J from M to A(RM) .

3.40. Prove that if A is a minimal DFA then RA= RL(A).
3.41. Give an example to show that Exercise 3.40 can be false if A is not minimal.

3.42. Give an example to show that Exercise 3.40 may still hold if A is not minimal.
3.43. Definition 3.8 takes an equivalence relation ofthe set of states S and defines a machine

based on that relation. In general, we could choose a relation R in S and define a
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machine AIR (as we did when we defined A/E A when the relation R was EA).
(a) Consider R = EOA' Is A/E oA always well defined? Give an example to illustrate your

answer.
(b) Assume R is a refinement of EA. Is AIR always well defined? FOrthe cases where it

is well defined, consider the theorems that would correspond to Theorems 3.4,3.5,
and 3.6 if EA were replaced by such a refinement R Which of these theorems
would still be true?

3.44. Given a DFA M, prove or give a counterexample.
(a) There exists a homomorphism from M/EM to ARL(M)'

(b) There exists a homomorphism from ARt.(M) to M/EM •

3.45. Prove that the bound given for Theorem 3.11 can be sharpened: given a finite automa
ton A = <I,S,so,8,F>, (3m EN?J m < Iisil/\ Em A = Em+ IA).

3.46. Prove or give a counterexample:
(a) If A and B are equivalent, then A and B are isomorphic.
(b) If A and B are isomorphic, then A and B are equivalent.

3.47. Given a finite automaton A = <I, S, sO, 8, F>, prove that the C;s given in Definition
3.10 are nested: (Vi E N)(C;~ Ci+I)'

3.48. Prove (by induction) that C; does indeed represent the set of all states that can be
reached from So by strings of length i or less.

3.49. Prove that, given a finite automaton A = <I, S, sO, 8, F>,

(3i E N ?J C;= Ci+I)=? (Vk E N)(C; = Ci+k)'
3.50. Prove that, given a DFA A = <I, S, sO, 8, F>, (3i EN ?J C;= Ci+I)=? (C; = SC).

3.51. Prove that, given a finite automaton A = <I, S, sO, 8, F>, 3i EN ?J C; = C;+I'
3.52. Prove that, given a DFA A = <I, S, sO, 8, F>, (3i E N ?J i :511 S 11/\ C; = SC).

3.53. Use the results of Exercises 3.47 through 3.52 to argue that the procedure for
generating SC from successive calculations of C, is correct and is actually an algorithm.

3.54. Give an example of two DFAs A and B that simultaneously satisfy the following three
criteria:
1. There is a homomorphism from A to B.
2. There is a homomorphism from B to A.
3. There does not exist any isomorphism between A and B.

3.55. Assume R and Q are both right congruences of finite rank, R refines Q, and L is a
union of equivalence classes of Q.
(a) Show that L is also a union of equivalence classes of R
(b) Show that there exists a homomorphism from AR to AQ • (Hint: Do not use the fJ.

given in Theorem 3.1; there is a far more straightforward way to define a map
ping.)

(c) Give an example to show that there need not be a homomorphism from Ao to AR •

3.56. Prove that Ao must be connected.
3.57. Prove that if there is an isomorphism from A to B and A is connected then B must also

be connected.
3.58. Prove that if there is an isomorphism from A to Band Bis connected then A must also

be connected.
3.59. Disprove that if there is a homomorphism from A to B and A is connected then B must

also be connected.
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3.60. Disprove that if there is a homomorphism from A to Band Bis connected then A must
also be connected.

3.61. Given a DFA A, recall the relation RAon I* induced by A. This relation gives rise to
another DFA A(RA) [with Q = RAand L =L(A)J. Consider also the connected version
of A,Ac

•

(a) Define an isomorphism IjJ from A(RA) to AC
• (No justification need be given.)

(b) Prove that your IjJ is well defined.
(c) Prove that IjJ is a homomorphism.
(d) Prove that IjJ is an isomorphism.

3.62. Assume that A and B are connected DFAs. Assume that there exists an isomorphism IjJ
from A to B and an isomorphism fJ.. from B to A. Prove that IjJ = fJ.. -1.

3.63. Assume that A and Bare DFAs. Assume that there exists an isomorphism IjJ from A to
B and an isomorphism fJ.. from B to A. Give an example for which IjJ =f fJ..-1.

3.64. Give an example of a three-state DFA for which EOAhas only one equivalence class. Is
it possible for EOAto be different from E1Ain such a machine? Explain.

3.65. Assume A and B are both reduced and connected. If IjJ is a homomorphism from A to
B, does IjJ have to be an isomorphism? Justify your conclusions.

3.66. Prove Corollary 3.2.
3.67. Prove that SC = {8(So, x) l l-l $IISII}.
3.68. Given a finite automaton A = <I, S, Sn, 8, F>, two states s, t E S, and the automata

A' = <I,S, t, 8, F> and AS = <I, S, s, 8, F>, prove that sEA t ~ L(AS
) =L(At

) .

3.69. Given a finite automaton A = <I, S, ss,8, F>, consider the terminal sets
T(A, t) = {x 1"B(t,x) E F} and initial sets I(A, t) = {x 18(so, x) = t} for each t E S.
(a) Prove that the initial sets of A must form a partition of I ",
(b) Give an example to show that the terminal sets of A might not partition I *.
(c) Give an example to show that the terminal sets of A might partition I*.



CHAPTER

NONDETERMINISTIC FINITE
AUTOMATA

A nondeterministic finite automaton, abbreviated NDFA, is a generalization of the
deterministic machines that we have studied in previous chapters. Although non
deterministic machines lack some of the restrictions imposed on their deterministic
cousins, the class of languages recognized by nondeterministic finite automata is
exactly the same as the class of languages recognized by deterministic finite auto
mata. In this sense, the recognition power of nondeterministic finite automata is
equivalent to that of deterministic finite automata.

In this chapter we will show the correspondence of nondeterministic finite
automata to deterministic finite automata, and we will prove that both types of
machines accept the same class of languages. In a later section, we will again
generalize our computational model to allow nondeterministic finite automata that
make transitions spontaneously, without an input symbol being processed. It will be
shown that the class of languages recognized by these new machines is exactly the
same as the class of languages recognized by our first type of nondeterministic finite
automata and is thus the same as the class of languages recognized by deterministic
finite automata.

4.1 DEFINITIONS AND BASIC THEOREMS

Whereas deterministic finite automata are restricted to having exactly one transi
tion from a state for each a E~, a nondeterministic finite automaton may have any
number of transitions for a given input symbol, including zero transitions.

When processing an input string, if an NDFA comes to a state from which

116
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there is no transition arc labeled with the next input symbol, the path through the
machine which is being followed is terminated. Termination can take the place of
the "garbage state" (a permanent rejection state) found in many deterministic finite
automata, which is used to reject some strings that are not in the language recog
nized by the automaton (the state S7played this role in Examples 1.11 and 1.9).

EXAMPLE 4.1

Let L = {w E {a, b, e}*j3y E {b}* ~ w = aye}. We can easily build a nondeterministic
finite automaton that accepts this set of words. One such automaton is displayed in
Figure 4.1. In this example there are no transitions out of Solabeled with either b or
c, nor are there any transitions from Sl labeled with a. From state S2 there are no
transitions at all. This means that if either b or e is encountered in state So or a is
encountered in state Sl, or any input letter is encountered once we reach state S2,

the word on the input tape will not be able to follow this particular path through the
machine. Thus, if a word is not fully processed by the NDFA, it will not be
considered accepted (even if the state in which it was prematurely "stuck" was a
final state).

Figure 4.1 The NDFA described in Example 4.1

An equivalent, although more complicated, deterministic finite automaton is
given in Figure 4.2. Note that this deterministic finite automaton requires the
introduction of an extra state, a dead state or garbage state, to continue the proces
sing of strings that are not in the language.

Figure 4.2 A deterministic version of the NDFA in Example 4.1
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A nondeterministic finite automaton may also have multiple transitions from
any state for a given input symbol. For example, consider the following construc
tion of a nondeterministic acceptor for the language L, which consists of all even
length strings along with all strings whose number of Is is a multiple of 3. That is,
L = {x E{O, 1}* Ilxl =Omod2 V Ixll =Omod3}.

EXAMPLE 4.2

In the NDFA given in Figure 4.3, there are multiple transitions from state so:
processing the symbol 0 causes the machine to enter states S1 and 81, whereas
processing a 1 causes the machine to enter both state S3 and state S2.

Figure 4.3 The NDFA discussed in Example 4.2

Within a nondeterministic finite automaton there can be multiple paths that
are labeled with the components of a string. For example, if we let w = 01, then
there are two paths labeled by the components of w: (so~ S1~ S3) and (so~ S2~ S4)'

The second path leads to a final state, S4, while the first path does not. We will adopt
the convention that this word w is accepted by the automaton since at least one of
the paths does terminate in a final state. These concepts will be formalized later in
Definition 4.3.

This ability to make multiple transitions from a given state can simplify the
construction of the machine, but adds no more power to our computational model.
The deterministic machine equivalent to Example 4.2 is substantially more com
plex, and its construction is left as an exercise for the reader.

Another restriction that is relaxed when we talk about nondeterministic finite
automata is the number of initial states. While a deterministic machine is con
strained to having exactly one start state, a nondeterministic finite automaton may
have any number, other than zero, up to IISII. Indeed, some applications will be seen
in which all the states are start states.
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EXAMPLE 4.3

We can build a machine that will accept the same language as in Example 4.2, but in
a slightly different way. Note that in Figure 4.4 the multiplicity of start states
simplifies the construction considerably.

Figure 4.4 The NDFA discussed in Example 4.3

As before, the addition of multiple start states to our computational model
facilitates machine construction but adds no more recognition power. We turn now
to the formal definition of nondeterministic finite automata.

V Def'mition 4.1. A nondeterministic finite automaton (NDFA) is a quintuple
A = <I, S, So, 8, F> where:

i. I is an alphabet.
fl, S is a finite nonempty set of states.

iii. So is a set of initial states, a nonempty subset of S.
iv, 8: S x I-lop(S) is the state transition function.
v, Fis the set of accepting states, a (possibly empty) subset of S.

The input alphabet, the state space, and even the set of final states are the
same as for deterministic finite automata. The important differences are contained
in the definitions of the initial states and of the 8 function.

The set of initial states can be any nonempty subset of the state space. These
can be viewed as multiple entry points into the machine, with each start state
beginning distinct, although not necessarily disjoint, paths through the machine.
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The 8 function for nondeterministic finite automata differs from the 8 function
of deterministic machines in that it maps a single state and a letter to a set of states.
In some texts, one will find 8 defined as simply a relation with range S and not as a
function; without any loss of generality we define 8 as a function with range p(S),
which makes the formal proofs of relevant theorems considerably easier.

EXAMPLE 4.4

Consider the machine A = <I, S, So, 8, F>, where

I = {a, b}

S={r,s,t}

So={r,s}

F ={t}

and 8: {r, s, t] x {a,b}~ {0, {r}, is}, it}, is, t},{r, s},{r, t},{r, s, tH is given in Figure 4.5.

8 a b

r {s} 0
s 0 {r,t}
t 0 it}

Figure 4.5 An NDFA state transition
diagram corresponding to the formal defi
nition given in Example 4.4

We will see later that this machine accepts strings that begin with alternating as and
bs and end with one or more consecutive bs. '

V Definition 4.2. Given an NDFA A = <I, S, So,8, F>, the extended state tran
sition/unction/or A is the function 8: S x I*~ p(S) defined recursively as follows:

(V's E S) 8(s, >t) = is}

(V'sES)(V'aEI)(V'xEI*) 8(s,xa)= U 8(q, a)
q E8(s,x)
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Once again, &(s,x) is meant to represent where we arrive after starting at a
state s and processing all the letters of the string x. In the case of nondeterministic
finite automata, &does not map to a single state but to a set of states because of the
multiplicity of paths.

EXAMPLE 4.5

Consider again the NDFA displayed in Example 4.4. To find all the places a string
such as bb can reach from s, we would first determine what can be reached by the
first b. The reachable states are rand t, since &(s,b) = {r, t}, From these states, we
would then determine what could be reached by the second b (from r, no progress is
possible, but from t, we can again reach t), These calculations are reflected in the
recursive definition of &:

&(s,bb) = l) &(q, b) = U &(q, b) = &(r, b) U &(t, b) ={ }U {t}= {t}
qE8(s,b) qE{r,t}

Because of the multiplicity of initial states and because the & function is now
set valued, it is possible for a nondeterministic finite automaton to be active in more
than a single state at one time. Whereas in all deterministic finite automata there is
a unique path through the machine labeled with components of w for each wEI*,
this is not necessarily the case for nondeterministic finite automata. At any point in
the processing of a string, the &function maps the input symbol and the current state
to a set of states. This implies that multiple paths through the machine are possible
or that the machine can get "stuck" and be unable to process the remainder of the
string if there is no transition from a state labeled with the appropriate letter. There
is no more than one path for each word if there is exactly one start state and the &
function always maps to a singleton set (or 0). If we were to further require that the
&function have a defined transition to another state for every input symbol, then the
machine that we have would essentially be a deterministic finite automaton. Thus,
all deterministic finite automata are simply a special class of nondeterministic finite
automata; with some trivial changes in notation, any DFA can be thought of as an
NDFA. Indeed, the state transition diagram of a DFA could be a picture of a
well-behaved NDFA. Therefore, any language accepted by a DFA can be accepted
by an NDFA.

EXAMPLE 4.6

Consider the machine given in Example 4.4 and let x =b; the possible paths
through the machine include (1) starting at s and proceeding to r, and (2) starting at
s and proceeding to t. Note that it is not possible to start from t (since t ct=. So), and
there is no way to proceed with x = b by starting at r, the other start state.

Now let x = ba and consider the possibilities. The only path through the
machine requires that we start at s, proceed to r, and return to s; starting at sand
proceeding to t leaves no way to process the second letter of x. Starting from r is
again hopeless (what types of strings are good candidates for starting at r?).
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Now letx = bab; the possible paths through the machine include (1) starting at
s, proceeding to r, returning to s, and then moving again to r, and (2) starting at s,
proceeding to r, returning to s, and then proceeding to t. Note that starting at sand
moving immediately to t again leaves us with no way to process the remainder of the
string. Both band bab included paths that terminated at the final state t (among
other places). These strings will be said to be recognized by this NDFA (compare
with Definition 4.3). ba had no path that led to a final state, and as a consequence
we will consider ba to be rejected by this machine.

There are a number of ways in which to conceptualize a nondeterministic
finite automaton. Among the most useful are the following two schemes:

1. At each state where a multiple transition occurs, the machine replicates into
identical copies of itself, with each copy following one of the possible paths.

2. Multiple states of the machine are allowed to be active, and each of the active
states reacts to each input letter.

It happens that the second viewpoint is the most useful for our purposes. From
a theoretical point of view, we use this as the basis for proving the equivalence of
deterministic and nondeterministic finite automata. It is also a useful model upon
which to base the circuits that implement NDFAs.

The concept of a language for nondeterministic finite automata is different
from that for deterministic machines. Recall that the requirement for a word to be
contained in the language accepted by a deterministic finite automaton was that the
processing of a string would terminate in a final state. This is also the condition for
belonging to the language accepted by a nondeterministic finite automaton; how
ever, since the path through a nondeterministic finite automaton is not necessarily
unique, only one of the many possible paths need terminate in a final state for the
string to be accepted.

V Definition 4.3. Let A = <I, S, So, 8, F> be a nondeterministic finite autom-
aton and w be a word in I*. A accepts w iff ( U 8(q, w)) n F 4= 0.
Ll qESO

Again conforming with our previous usage, a word that is not accepted is
rejected. The use of the symbol L will be consistent with its usage in previous
chapters, although it does have a different formal definition. As before, L(A) is
used to designate all those strings that are accepted by a finite automaton A. Since
the concept of acceptance must be modified for nondeterministic finite automata,
the formal definition of L is necessarily different (contrast Definitions 4.3 and 1.12).

V Definition 4.4. Given an NDFA A = <I, S, So, 8, F>, the language accepted
byA,denotedL(A),is{xEI*I( U 8(q,x))nF4=0}.
Ll qESO
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Occasionally, it will be more convenient to express L (A) in the following
fashion: L(A) = {x E ~* 13t E So' 8(t,x) n F =F 0}. The concept of equivalent auto
mata is unchanged: two machines are equivalent iff they accept the same language.
Thus, if one or both of the machines happen to be nondeterministic, the definition
still applies. For example, the NDFAs given in Figures 4.3 and 4.4 are equivalent.

The language recognized by a nondeterministic finite automaton is the set of
all words where at least one of the paths through the machine labeled with compo
nents of.that word ends in a final state. In other words, the set of terminal states at
the ends of the paths labeled by components of a word w must have a state in
common with the set of final states in order for w to belong to L (A).

As a first example, refer to the NDFA defined in Example 4.4. As illustrated
in Example 4.6, this machine accepts strings that begin with alternating as and bs
and end with one or more consecutive bs.

EXAMPLE 4.7

For a more concrete example, consider the problem of a ship attempting to transmit
data to shore at random intervals. The receiver must continually listen, usually to
noise, and recognize when an actual transmission starts so that it can record the data
that follow. Let us assume that the start of a transmission is signaled by the string
010010 (in practice, such a signal string should be much longer to minimize the
possibility of random noise triggering the recording mechanism). In essence, we
wish to build an NDFA that will monitor a bit stream and move to a final state when
the substring 010010 is detected (note that nonfinal states correspond to having the
recording mechanism off, and final states signify that the current data should be
recorded). The reader is encouraged to discover firsthand how hard it is to build a
DFA that correctly implements this machine and contrast that solution to the
NDFA T given in Figure 4.6.

Figure 4.6 An NDFA for pattern recognition

Since the transitions leading to higher states are labeled by the symbols in
010010, it is clear that the last state cannot be reached unless the sequence 010010 is
actually scanned at some point during the processing of the input string. Thus, the
NDFA clearly accepts no word that should be rejected. Conversely, since all possi
ble legal paths are explored by an NDFA, valid strings will find a way to the final
state. It is sometimes helpful to think of the NDFA as remaining in So while the
initial part of the input string is being processed and then "guessing" when it is the
right time to move to Sl'

lt is also possible to model an end-of-transmission signal that turns the record-

",
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ing device off (see the exercises). The device would remain in various final states
until a valid end-of-transmission string was scanned, at which point it would return
to the (nonfinal) start state.

While the NDFA given in Example 4.6 is very straightforward, it appears to be
hard to simulate this nondeterminism in real time with a deterministic computer. It
has not been difficult to keep track of the multiple paths in the simple machines seen
so far. However, if each state has multiple transitions for a given symbol, the
number of distinct paths a single word can take through an NDFA grows exponen
tially as the length of the word increases. For example, if each transition allowed a
choice of three destination states, a word of length m would have 3m possible paths
from one single start state. An improvement can be made by calculating, as each
letter is processed, the set of possible destinations (rather than recording all the
paths). Still, in an n-state NDFA, there are potentially 2n such combinations of
states. This represents an improvement over the path set, since now the number of
state combinations is independent of the length of the particular word being
processed; it depends only on the number of states in the NDFA, which is fixed. We
will see that keeping track of the set of possible destination states is indeed the best
way to handle an NDFA in a deterministic manner.

Since we have seen in Chapter 1 that it is easy to implement a DFA, we now
explore methods to convert an NDFA to an equivalent DFA. Suppose that we are
given a nondeterministic finite automaton A and that we want to construct a corre
sponding deterministic finite automaton N. Using the concepts in Definitions 4.1
through 4.4, we can proceed in the following fashion. Our general strategy will be to
keep track of all the states that can be reached by some string in the nondeter
ministic finite automaton. Since we can arbitrarily label the states of an automaton,
we let the state space of Ad be the power set of S. Thus, S" = peS), and each state in
the new machine will be labeled by some subset of S. Furthermore, let the start state
of N, denoted sg, be labeled by the member of peS) containing those states that are
initial states in A; that is, sg= So.

Since our general strategy is to "remember" all the states that can be reached
for some string, we can define the afunction in the following natural manner: For
every letter in ~, let the new state transition function, ad, map to the subset of peS)
labeled by the union of all those states that are reached from some state contained
in the current state name (according to the old state transition function a).

According to Definition 4.4, for a word to be contained in the language
accepted by some nondeterministic finite automaton, at least one of the terminal
states was required to be contained in the set of final states. Thus, let the set of final
states in the corresponding deterministic finite automaton be labeled by the subsets
of S that contain at least one of the accepting states in the nondeterministic counter
part. The formal definition of our corresponding deterministic finite automaton is
given in Definition 4.5.

V Definition 4.5. Given an NDFA A = <~, S, So, a, F>, the corresponding de-
terministic finite automaton, N = <~, s-, sg,ad, r-», is defined as follows:
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s-= peS)

125

Fd={Q ESdlQ nFf0}

and 3dis the state transition function, 3d: Sd x ~-'> s-, defined by

(VQ ES~(VaE~) 3d(Q,a) = U 3(q,a)
qEQ

3dextends to the function "8d: s- x ~* -'> Sd as suggested by Theorem 1.1:

('tJQ E Sd) "8d(Q, A) = Q

(VQ E Sd)(Va E ~)(Vx E ~*) "8d(Q,xa) = 3d("8d(Q,x), a)

Definition 4.5 describes a deterministic finite automaton that observes the
same restrictions as all other deterministic finite automata (a single start state, a
finite state set, a well-defined transition function, and so on). The only peculiarity is
the labeling of the states. Note that the definition implies that the state labeled by
the empty set is never a final state and that all transitions from this state lead back to
itself. This is the dead state, which is reached by strings that are always prematurely
terminated in the corresponding nondeterministic machine.

EXAMPLE 4.8

Consider the NDFA B given in Figure 4.7. As specified by Definition 4.5, the
corresponding DFA Bd would look like the machine shown in Figure 4.8. Note that
all the states happen to be accessible in this particular example.

a

'.·

Figure 4.7 The NDFA B discussed in
Example 4.8

Figure 4.8 The deterministic equivalent
of the NDFA given in Example 4.8
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Since the construction of the corresponding deterministic machine involves
p(S), it should be obvious to the reader that the size of this deterministic finite
automaton can grow exponentially larger as the number of states in the associated
nondeterministic finite automaton increases. In general, however, there are often
many inaccessible states. Thus, only the states that are found to be reachable during
the construction process need to be included. The reader is encouraged to exploit
this fact when constructing corresponding deterministic finite automata. The lan
guage accepted by the DFA Adfollows the definition given in Chapter 1.

To show that the deterministic finite automaton that we have just defined
accepts the same language as the corresponding nondeterministic finite automaton,
we must first show that the Sd function behaves in the same manner for strings as the
I)d function does for single letters. For any state Q E s-, the I)d function maps this
state and an input letter a E!" according to the mapping of the I) function for each
q E Q and the letter a. The following lemma establishes that Sd performs the
corresponding mapping for strings.

V Lemma 4.1. Let A = <!', S, So, I),F> be a nondeterministic finite automa
ton, and let Ad= <!', S", sg,I)d, F"> represent the corresponding deterministic finite
automaton. Then

(VQ E Sd)(VX E !'*)(Sd(Q,X) = U 8(q,x))
qEQ

Proof. By induction on [x]: Let P(k) be defined by

P(k): (VQ E Sd)(VX E !,k)(Sd(Q, x) = U 8(q,x))
qEQ

Basis step: Ixl =°=;> x = A and therefore

Sd(Q, A) = Q = U {q} = U 8(q, A)
q_Q qEQ

Inductive step: Suppose that the result holds for all x :1 Ix I= k; that is, P(k) is true.
Let y E!,k + 1. Then 3x E !,k and 3a E!, :1 y = xa. Then

Sd(Q,y) = (by definition ofy)

Sd(Q,xa) = (by Theorem 1.1)

I)d(Sd(Q, x), a) = (by the induction hypothesis)

I)d( U 8(q,x), a) = (VA, BE p(S))(Va E !,)(l)d(A U B, a) = I)d(A, a) U I)d(B, a))
qEQ

U I)d(S(q, x), a) = (by Definition 4.5)
qEQ

U ( l) I)(p, a)) = (by Definition 4.2)
qEQ pE8(q,x)

U 8(q,xa) = (by definition ofy)
qEQ

U 8(q,y)
qEQ

Therefore, P(k) =;> P(k + 1) for all k ;::: 0, and thus by the principle of mathematical
induction we can say that the result holds for all x E !,*.
Ll
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Having established Lemma 4.1, proving that the language accepted by a
nondeterministic finite automaton and the corresponding deterministic machine are
the same language becomes 'a straightforward task. The equivalence of A and Ad is
given in the following theorem.

V Theorem 4.1. Let A = <!" S, So, 8, P> be a nondeterministic finite automa
ton, and let N = <!', s-, sg, 8d, pd> represent its corresponding deterministic finite
automaton. Then Aand N are equivalent; that is, L(A) = L(N).

Proof. Let x E !,*. Then

x E L (A)~ (by Definition 4.4)

( U "8(s,x)) n p +- 0~ (by Definition 4.5)
sESo

(U "8(s,x))Epd~(byLemma4.1)
sESo

"8d(So,x) E pd~ (by Definition 4.5)

"8d(sg, x) E pd~ (by Definition 1.15)

x EL(N)

Now that we have established that nondeterministic finite automata and deter
ministic finite automata are equal in computing power, the reader might wonder
why we bother with nondeterministic finite automata. Even though nondetermin
istic finite automata cannot recognize any language that cannot be defined by a
DFA, they are very useful both in theory and in machine construction (as illustrated
by Example 4.7). The following examples further illustrate that NDFAs often yield
more natural (and less complex) solutions to a given problem.

EXAMPLE 4.9

Recall the machine from Chapter 1 that accepted a subset of real constants in
scientific notation according to the following BNF:

<sign>:: = +1-
<digit>:: =0111213141516171819

<natural> :: = <digit> I<digit><natural>

<integer> :: = <natural> I<sign><natural>

<real constant> ::=<integer>

<integer>.

<integer>. <natural> I
<integer>. <natural>E<integer>
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By using nondeterministic finite automata, it is easy to construct a machine that will
recognize this language (compare with the deterministic version given in Example
1.11). One such NDFA is shown in Figure 4.9.

Figure 4.9 The NDFA discussed in Example 4.9

EXAMPLE 4.10

Let L = {x E {a, b}"Ix begins with a V x contains ba as a substring}. We can easily
build a machine that will accept this language, as illustrated in Figure 4.10. Now
suppose we wanted to construct a machine that would accept the reverse of this
language, that is, to accept L' = {x E {a, b}"I x ends with a V x contains ab]. The
machine that will accept this language can be built using nondeterministic finite
automata by simply exchanging the initial states and the final states and by reversing
the arrows of the B function. The automaton (definitely an NDFA in this case!)
arising in this fashion is shown in Figure 4.11.

Figure 4.10 An NDFA accepting the language given in Example 4.10

It can be shown that the technique employed in Example 4.10, when applied
to any automaton, will yield a new NDFA that is guaranteed to accept the reverse of
the original language. The material in Chapter 5 will reveal many instances where
the ability to define multiple start states and multiple transitions will be of great
value.
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Figure 4.11 An NDFA representing the reverse of the language represented in Figure 4.10

EXAMPLE 4.11

Assume we wish to identify all words that contain at least one of the three strings
10110, 1010, or 01101 as substrings. Consequently, we let L be the set of all words
that are made up of some characters, followed by one of our three target strings,
followed by some other characters. That is,

L = {w E {O, 1}* Iw = xyz,x E {O, 1}* ,y E {10110, 1010, 01101}, z E {O, 1}*}

We can construct a nondeterministic finite automaton that will accept this language
as follows. First construct three machines each of which will accept one of the
candidates for y. Next, prepend a single state (so in Figure 4.12) that loops on I*;
make this state an initial state and draw arrows from it which mimic the transitions
from each of the other three initial states (as shown in Figure 4.12). Finally, append
a single state machine (SIS) that accepts I*; draw arrows from each of the final states
to this state. The machine that accepts this language is given in Figure 4.12. The

Figure 4.12 An NDFA for recognizing any of several substrings
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reader is encouraged to try to construct a deterministic version of this machine in
order to appreciate the simplicity of the above solution.

EXAMPLE 4.12

Recall the application in Chapter 1 involving string searching (Example 1.15). The
construction of DFAs involved much thought, but there is an NDFA that solves the
problem in an obvious and straightforward manner. For example, an automaton
that recognizes all strings over the alphabet {a, b} containing the substring aab might
look like the NDFA in Figure 4.13.

a a b

Figure 4.13 An automaton recognizing the substring aab

As is the case for this NDFA, it may be impossible for certain sets of states to
all be active at once. These combinations can never be achieved during the normal
operation of the NDFA. The DFA states corresponding to these combinations will
not be in the connected part of N. Applying Definition 4.5 to find the entire
deterministic version and then pruning it down to just the relevant portion is very
inefficient. A better solution is to begin at the start state and "follow transitions" to
new states until no further new states are uncovered. At this point, the relevant
states and their transitions will have all been defined; the remainder of the machine
can be safely ignored. For the NDFA in Figure 4.13, the connected portion of the
equivalent DFA is shown in Figure 4.14. This automaton is still not reduced; the last

b a

ba
b

a

Figure 4.14 The connected portion of the DFA equivalent to the NDFA given in Example
4.12
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a

b

a b

Figure 4.15 A reduced equivalent of the DFA given in Figure 4.14

three states are all equivalent and can be coalesced to form the minimal machine
given in Figure 4.15.

The above process can be easily automated; an interesting but frustrating
exercise might involve producing an appropriate set of rules for generating, given a
specific string y, a DFA that will recognize all strings containing the substring y.
Definition 4.5 can be used to generate the appropriate DFA from the obvious
NDFA without subjecting the designer to such frustrations!

4.2 CIRCUIT IMPLEMENTATION OF NDFAs

As mentioned earlier, the presence of multiple paths within an NDFA for a single
word characterizes the nondeterministic nature of these automata. The most profit
able way to view the operation of an NDFA is to consider the automaton as having
(potentially) several active states, with each of the active states reacting to the next
letter to determine a new set of active states. In fact, by using one D flip-flop per
state, this viewpoint can be directly translated into hardware. When a given state is
active, the corresponding flip-flop will be on, and when it is inactive (that is, it
cannot be reached by the substring that has been processed at this point), it will be
off. As a new letter is processed, a state will be activated (that is, be placed in the
new set of active states) if it can be reached from one of the previously active states.
Thus, the state transition function will again determine the circuitry that feeds into
each flip-flop.

Following the same conventions given for DFAs, the input tape will be as
sumed to be bounded by special start-of-string <SOS> and end-of-string <EOS>
symbols. The <EOS> character is again used to activate the accept circuitry so that
acceptance is not indicated until all letters on the tape have been processed. As
before, the <SOS> symbol can be employed at the beginning of the string to ensure
that the circuitry beginsprocessing the string from the appropriate start state(s).
Alternately, SR (set-reset) flip-flops can be used to initialize the configuration
without relying on the <SOS> conventions.

EXAMPLE 4.13

Consider the NDFA D given in Figure 4.16. With the <SOS> and <EOS>
transitions illustrated, the complete model would appear as in Figure 4.17.

Two bits of input data (31 and 32) are required to represent the symbols
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<EOS>,<SOS>a,<EOS>,<SOS>

Figure 4.16 The NDFA discussed in Ex- Figure 4.17 The expanded state transi-
ample 4.13 tion diagram for the NDFA in Figure 4.16

<EOS>, a, b, and <SOS>. The standard encodings described in Chapter 1 would
produce <EOS> = 00, a = 01, b = 10, and <SOS> = 11. If the flip-flop t1 is used to
represent the activity of s., and tz is used to record the status of Sz, then the
subsequent activity of the two flip-flops can be determined from the current state
activity and the current letter being scanned, as shown in Table 4.1.

TABLE 4.1

t1 h a1 a2 t; H accept

0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 1 1 0
0 1 0 0 0 1 1
0 1 0 1 1 0 0
0 1 1 0 1 0 0
0 1 1 1 1 1 0
1 0 0 0 1 0 0
1 0 0 1 1 1 0
1 0 1 0 0 0 0
1 0 1 1 1 1 0
1 1 0 0 1 1 1
1 1 0 1 1 1 0
1 1 1 0 1 0 0
1 1 1 1 1 1 0

The first four rows of Table 4.1 reflect the situation in which a string is
hopelessly stuck, and no states are active. Processing subsequent symbols from I
will not change this; both t{ and tzremain O. The one exception is when the <SOS>
symbol is scanned; in this case, each of the start states is activated (t{ = 1 andtj = 1).
This corrects the situation in which both flip-flops happen to initialize to 0 when
power is first applied to the circuitry. Scanning the <SOS> symbol changes the
state of the flip-flops to reflect the appropriate starting conditions (in this machine,
both states are start states, and therefore both should be active as processing is
begun). Note that each of the rows of Table 4.1 that correspond to scanning <SOS>
show that t1 and tz are reset in the same fashion.

Determining the circuit behavior for the symbols in I closely parallels the
definition of ad in Definition 4.5. For example, when state Sl is active but Sz is
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inactive (t1 = 1 and t2 = 0) and a is scanned (a, = 0 and a2= 1), transitions from s\
cause both states to next be active (t; =1 and t2=1). The other combinations are
calculated similarly. Minimized expressions for the new values of each of the flip
flops and the accept circuitry are

~=~A~~V~A~V~A~V~A~

t2= (t2A~a\A~a2)V(tlAa2)V(alAa2)

accept = (t2A~alA~a2)

Since similar terms appear in these expressions, these three subcircuits can "share"
the common components, as shown in Figure 4.18.

..-+---+-....
"'''-+---t
..,..

aeee t

Figure 4.18 Circuitry for the automaton discussed in Example 4.13

Note that the accept circuitry reflects that a string should be recognized when
some final state is active (S2 in this example) and <EOS> is scanned. In more
complex machines with several final states, lines leading from each of the flip-flops
corresponding to final states would be joined by an OR gate before being ANDed
with the <EOS> condition.

An interesting exercise involves converting the NDFA 0 given in Example 4.1
to the equivalent DFA Dd

, which will have four states: 0, {St}, {S2}, and [s., S2}. The
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deterministic automaton Dd can be realized by a circuit diagram as specified in
Chapter 1. This four-state DFA willrequire 2 bits.of state data. If the state encoding
conventions 0= 00, {s.}= 10, {S2} = 01, and {s., 52} = 11 ate used, the circuitry for
the DFA o-will be identical to that for the NDFA D.

For DFAs, m bits of state data (th h, ... , tm) can encode up to 2m distinct
states. With NDFAs, an n-state machine required a full n bits Ofstate data (1 bit per
state). This apparently "extravagant" use of state data is offset by the fact that an
n-state NDFA may require 2n states to form an equivalent DFA. This was the case
in the preceding example, in which nand m were equal to 2; the two-state NDFA D
required two flip-flops, and the equivalent four-state DFA also required two flip
flops; the savings induced by the DFA state encoding was exactly; offset by the
multiplicity of states needed by the NDFA.

A DFA may tum out to need less hardware than an equivalent NDFA, as
illustrated by Example 4.12. The four-state NDFA C needs four flip-flops, and the
(nonminimal, 16-state) DFA c- would also need four. However, the minimal
equivalent DFA derived in Example 4.12 has only four states and therefore can be
encoded with just 2 bits of state data. Hence only two flip-flops are necessary to
implement a recognizer for L(G). .

4.3 NDFAs WITH LAMBDA-TRANSITIONS

We now extend our computational model to include the nondeterministic finite
automata that allow transitions between states to occur "spontaneously," without
any input being processed. Transitions that occur without an input symbol being
processed are called 'A-transitions or lambda-moves. Intexts that denote the empty
string by the symbol E, such transitions are usually referred to as epsilon-moves.

'.

V Definition 4.6. A nondeterministic finite automaton with 'A-transitions is a
quintuple AI.. = <~, S, So, SA' F>, where

i. I is an alphabet.
il, Sis afinite nonempty set of states.
iii. So is a set of initial states, a nonempty subset of S.
iv. SA: (S x (I U {'A}))~ peS) is the state transition function.
v, Fis the set of accepting states, a (possibly empty) subset of S.

6.

A nondeterministic finite automaton with 'A-transitions is very similar in struc
ture to anNDFA that does not have 'A-transitions. The only different aspect is the
definition of the 5 function. Instead of mapping state/letter pairs [from S x I) to
peS), it maps pairs consisting of a state and either a letter or the empty string [from
S x (I U {'An to PtS)). From any state that has a 'A-transition, we adopt the con-
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vention that the machine is capable of making a spontaneous transition to the new
state specified by that A-transition without processing an input symbol. However,
the machine may also "choose" not to follow this path and instead remain in the
original state. Before we can extend the 8~ function to operate on strings from I*,
we need the very useful concept of lambda-closure.

V Definition 4.7. Given a nondeterministic finite automaton

A~ = <I, S, So, 8~,F>

with A-transitions, the A-closure of a state t E S, denoted A(t), is the set of all states
that are reachable from t without processing any input symbols. The A-closure of a
set ofstates Tis then A(T) = U A(t).
Ii. lET

The A-closure of a state is the set of all the states that can be reached from that
state, including itself, by following A-transitions only. Obviously, one can always
reach the state currently occupied without having to move. Consequently, even if
there are no explicit arcs labeled by A going back to state t, t is always in the
A-closure of itself.

EXAMPLE 4.14

Consider the machine given in Figure 4.19, which contains A-transitions from So to SI
and from SI to S2. By Definition 4.7,

A(so) = {So, s., S2}

A(SI) = [s., S2}

A(S2) = {S2}

A(S3) = {S3}

d

Figure 4.19 An NDFA with lambda
moves
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V Definition 4.8. Given a nondeterministic finite automaton

with A-transitions, the extended state transition function for AI.. is a function
8x: S x I*~ p(S) defined as follows:

i, (Vs E S) 8A(s, A) = A(s)

ii. (Vs E S)(Va E I) 8A(s, a) = A( U 8A(q, a))
qEA(s)

iii. (Vs E S)(Vx E I*)(Va E I) 8A(s,xa) = A( U 8A(q,a))
Ii. qE8,(s,x)

The 81.. function is not extended in the same way as for the nondeterministic
finite automata given in Definition 4.2. Most importantly, due to the effects of the
A-closure, 8A(s, a) =1= 8A(s, a). Thus, not only does the 81.. function map to a set of
states based on asingle letter, but it also includes the A-closure of those states. This
may seem strange for single letters (strings of length 1), but it is required for
consistency when the 81.. function is presented with strings of length greater than 1,
since at each state along the path there can be A-transitions. Each A-transition maps
to a new state (which may have A-transitions of its own) that must be included in this
path and processed by the 81.. function.

The nondeterministic finite automaton without A-transitions that corresponds
to a nondeterministic finite automaton with A-transitions is given in Definition 4.9.

V Definition 4.9. Given a nondeterministic finite automaton with
A-transitions, AI.. = <I, S, So, 81.., F>, the corresponding nondeterministic finite auto
maton without A-transitions, A).= <I,S U{qo},SoU{qo},8LF">, is defined as
follows:

{
F iff A$. L (AI..)

F" = F U {qo} iff AEL(AA)

(Va E I)8X(qo, a) = 0

(Vs E S)(Va E I) 8x(s, a) =8A(s, a) = A( U 8A(q, a))
qEA(s)

and which is extended in the "usual" way for nondeterministic finite automata to
the function 8x: (S U {qo}) x I*~ p(S U {qo}).
Ii.

Note that from a state in AI.. several A-transitions may be taken, then a single
letter a may be processed, and then several more A-movesmay occur; all this activity
can result from just a single symbol on the input tape being processed. The defini
tion of 8xreflects these types of transitions. The 8xfunction is defined to be the same
as the 81.. function for all single letters (strings of length 1), which adjusts for the
A-closure of AI..' The 8xfunction can then be extended in the usual nondeterministic
manner.
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To account for the case that A might be in the language accepted by the
automaton AI., we add an extra start state qo to the corresponding machine A'{.,
which is disconnected from the rest of the machine. If AE L (AI.), we also make qo a
final state.

EXAMPLE 4.15

Let AI. represent the NDFA given in Example 4.14. A'{. would then be given by the
NDFA shown in Figure 4.20. This new NDFA does indeed accept the same lan
guage as AI.' To show in general that L(AI.) =L(Ao, we must first show that the
respective extended state transition functions behave in similar fashions. However,
these two functions can be equivalent only for strings of nonzero length (because of
the effects of the A-closure in the definition of So. This result is established in
Lemma 4.2.

d

a,c,d

Figure 4.20 An NDFA without lambda
moves that is equivalent to the automaton
in Figure 4.19

V Lemma 4.2. Given a nondeterministic finite automaton AI. with A-transitions
and the corresponding nondeterministic finite automaton A'{. without A-transitions,
then

(Vs E S)(Vx E I+)(8'{.(s,x) =81.(s,x»

Proof. The proof is by induction on [x]; see the exercises.

Once we have shown that the extended state transition functions behave
(almost) identically, we can proceed to show that the languages accepted by these
two machines are the same.

V Theorem 4.2. Given a nondeterministic finite automaton that contains
A-transitions, there exists an equivalent nondeterministic finite automaton that does
not have A-transitions.

Proof. Assume AI. = <I, S, So, SA' F> is an NDFA with A-transitions. Con
struct the corresponding NDFA A'{. = <I, S U {qo}, So U {qo}, S'{., Fa>, which has no
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A-transitions. We will show L (AI.) = L (An, and thereby prove that the two machines
. are equivalent. Because the way A~ was constructed limits the scope of Lemma 4.2,
the proof is divided into two cases.

Case 1: If x = A, then by Definition 4.9

(qoE FlY iff AEL(A,,))

and so

(A EL(An·~ AEL(AA))

Case 2: Assume x =/= A. Since there are no transitions leaving qo, it may be dis
regarded as one of the start states of A~. Then

x E L (An =? (by definition of L)

( U 8~(so,x)) n FlY =/= 0=? (by Lemma 4.2)
soESo

( U 8A(so, x)) n FlY =/= 0=? (since if qo were the common element, then x
soESo would have to be A, which violates the assumption)

( U 8A(so, x)) n F =/= 0=?(by definition ofL)
soESo

x EL(AA)

Conversely, and for many of the same reasons, we have

x E L (AI.) =? (by definition of L)

( U 8A(so, x)) n F =/= 0=? (by Lemma 4.2)
soESo

( U 8~(so, x)) n F =/= 0=? (since F ~ FlY)
soESo

( U 8~(so, x)) n FlY=/= 0=? (by definition of L)
soESo·

x EL(M)

Consequently, (\Ix E I*)(x EL(An ~ x EL(AA))'
A

Although nondeterministic finite automata with A-transitions are no more
powerful than nondeterministic finite automata without A-transitions and con
sequently recognize the same class of languages as deterministic finite automata,
they have their place in theory and machine construction. Because such machines
can be constructed very easily from regular expressions (see Chapter 6), NDFAs are
used by the UNIX™ text editor and by lexical analyzer generators such as LEX for
pattern-matching applications. Example 4.16 involves the regular expression
(a U c)*be(a U c)", which describes the set of words composed of any number of as
and es, followed by a single b, followed by a single c, followed by any number of as
and es.
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EXAMPLE 4.16

Suppose that we wanted to construct a machine that will accept the language
L ={x E {a, b, e}" Ix contains exactly one b, which is immediately followed by c}. A
machine that accepts this language is given in Figure 4.21.

b c

a,

Figure 4.%1 The NDFA described in
Example 4.16

Suppose VIe now wish to build a machine that will accept any positive number
of occurrences of various strings from this language concatenated together. In this
case, the resulting language would include all strings (with at least one b) with the
property that each and every b is immediately followed by c. By simply adding a
A-transition from every final state to the start state, we achieve our objective. The
machine that accepts this new language is shown in Figure 4.22.

Figure 4.22 The modification of the
NDFA in Figure 4.21

The previous section outlined how to implement nondeterministic finite auto
mata without A-transitions; accommodating A-movesis in fact quite straightforward.
A A-transition from state s to state t indicates that state t should be considered active
whenever state s is active. This can be assured by an obvious modification, as shown
by the following example.

EXAMPLE 4.17

As an illustration of how circuitry can °bedefined for machines with A-transitions,
consider theDFA E given in figure 4.23. This machineis similar to theNDFA 0 in
Example 4.13, but a A-transition has been added from StOto S2; that is, 8(S1. A)= {S2}'
This transition implies that S2 should be considered active °whenever S1 is active.
Consequently, the circuit diagram produced in Example 4.13 need only be slightly
modified by establishing the. extra connection indicated by the dotted line shown in
Figure 4.24. . ,

In general, the need for such "extra" connections leaving a given flip-flop
input t, is determined by examining 8(s;, A), the set of A-transitions for S;. Note that
the propagation delay in this circuit has been increased; there are signals that must
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l\ --11----4'"'-'-4

-la,-i---.
.......

..

Fi&ure 4.23 A simple NDFA with
lambda moves

In t,t---....

t"2

acee t

Figure 4.24 Circuitry for the automaton discussedin Example 4.17

now propagate through an extra gate during a single clock cycle. The delay will be
exacerbated in automata that contain sequences of A-transitions. In such cases, the
length of the clock cycle may need to be increased to ensure proper operation. This
problem can be minimized by adding all the connections indicated by A(s,), rather
than just adding those implied by 8(sj, A).

EXERCISES

4.1. Draw the deterministic versions of each of the nondeterministic finite automata shown
in Figure 4.25. In each part, assume I = {a, b, e].

4.2. Consider the automaton given in Example 4.17.
(a) Convert this automatoninto an NDFA without ?.-transitionsusing Definition 4.9.
(b) Convert this NDFA into a DFA using Definition 4.5.
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(a)

(e)

~@-

(d)

(g)

Figure 4.25 Automata for Exercise 4.1

4.3. Consider the automaton given in Example 4.4.
(a) Using the standard encodings, draw a circuit diagram for this NDFA (include

neither <SOS> nor <EOS».
(b) Using the standard encodings, draw a circuit diagram for this NDFA (include both

<SOS> and <EOS».
(c) Convert the NDFA into a DFA using Definition 4.5 (draw only the connected

portion of the machine).
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(d) Convert the NDFA into a DFA using Definition 4.5 (draw the entire machine,
including the disconnected portion).

4.4. Consider the automaton given in Example 4.2.
(a) Using the standard encodings, draw a circuit diagram for this NDFA (include both

<SOS> and <EOS».
(b) Convert the NDFA into a DFA using Definition 4.5.

4.5. Consider the automaton given in Example 4.3.
(a) Using the standard encodings, draw a circuit diagram for this NDFA (include

neither <SOS> nor <EOS».
(b) Using the standard encodings, draw a circuit diagram for this NDFA (include both

<SOS> and <EOS>).
(c) Convert the NDFA into a DFA using Definition 4.5 (draw only the connected

portion of the machine).
(d) Is this DFA isomorphic to any of the automata constructed in Exercise 4.4?

4.6. Consider the automaton given in Example 4.14.
(a) Using the standard encodings, draw a circuit diagram for this NDFA (include

neither <SOS> nor <EOS>).
(b) Using the standard encodings, draw a circuit diagram for the NDFA in part (b)

(include neither <SOS> nor <EOS».
4.7. Consider the automaton given in the second part of Example 4.16.

(a) Using the standard encodings, draw a circuit diagram for this NDFA (include
<EOS> but not <SOS».

(b) Build the equivalent automaton without A-transitions using Definition 4.9.
(c) Using the standard encodings, draw a circuit diagram for the NDFA in part (b)

(include <EOS> but not <SOS».
(d) Convert the NDFA into a DFA using Definition 4.5 (draw only the connected

portion of the machine).
4.8. It is possible to build a deterministic finite automaton Asuch that the language accepted

by this machine is the absolute complement of the language accepted by a machine A
[that is, L(A) = ~* - L(A)] by simply complementing the set of final states (see The
orem 5.1). Can a similar thing be done for nondeterministic finite automata? If not,
why not? Give an example to support your statements.

4.9. Given a nondeterministic finite automaton A without A-transitions, show that it is
possible to construct a nondeterministic finite automaton with A-transitions A' with the
properties
(1) A' has exactly one start state and exactly one final state and
(2) L (A') = L (A).

4.10. Consider (ii) in Definition 4.8. Can this fact be deduced from parts (i) and (iii)? Justify
your answer.

4.11. If we wanted another way to construct a nondeterministic finite automaton without
A-transitions corresponding to one that does have them, we could try the following: Let
S' = S, Sb= A(So), F' = F, and 8'(s, a) = 8,(s, a) for all a E~, s E S. Show that this
works (or if it does not work, explain why not and give an example).

4.12. Using nondeterministic machines with A-transitions, give an algorithm for constructing
a A-NDFA having one start state and one final state that will accept the union of two
FAD languages.



Chap. 4 Exercises 143

4.13. Give an example of an NDFA A for which:
(a) Adis not connected.
(b) Adis not reduced.
(c) Adis minimal.

4.14. Why was it necessary to include an "extra" state qo in the construction of A~ in
Definition 4.9? Support your answer with an example.

4.15. (a) Using nondeterministic machines without A-transitions, give an algorithm for con
structing a machine that will accept the union of two languages.

(b) Is this easier or more difficult than using machines with A-transitions?
(c) Is it possible to ensure that this machine both (i) has exactly one start state and (ii)

has exactly one final state?
4.16. Consider the automaton A~ given in Example 4.15.

(a) Using the standard encodings, draw a circuit diagram for A~ (include neither
<SOS> nor <EOS>).

(b) Convert A~into A~d using Definition 4.5 (draw only the connected portion of the
machine).

4.17. (a) Prove that for any NDFA without A-transitions the definitions of 8 and 8 agree for
single letters; that is, (VsE S)(Va E I)(8(s, a) = 8(s, a)).

(b) Give an example to show that this need not be true for an NDFA with A-transitions.

4.18. Consider the NDFA that accepts the original language L in Example 4.10.
(a) Using the standard encodings, draw a circuit diagram for this NDFA (include

neither <SOS> nor <EOS».
(b) Convert the NDFA into a DFA using Definition 4.5 (draw only the connected

portion of the machine).

4.19. Consider the NDFA which accepts the modified language L' in Example 4.10.
(a) Using the standard encodings, draw a circuit diagram for this NDFA (include

neither <SOS> nor <EOS>).
(b) Convert the NDFA into a DFA using Definition 4.5 (draw only the connected

portion of the machine).

4.20. Consider the arguments leading up to the pumping lemma in Chapter 2. Are they still
valid when applied to NDFAs?

4.21. Consider Theorem 2.7. Does the conclusion still hold if applied to an NDFA?

4.22. Given a nondeterministic finite automaton A (without A-transitions) for which
At/=. L (A), show that it is possible to construct a nondeterministic finite automaton (also
without A-transitions) AI/with the properties:
1. A" has exactly one start state.

2. A" has exactly one final state.

3. L(A") =L(A).

4.23. Give an example to show that if AE L(A) it may not be possible to construct an NDFA
without A-transitions satisfying all three properties listed in Exercise 4.22.

4.24. Prove Lemma 4.2.
4.25. Given a DFA A, show that it can be thought of as an NDFA An and that, furthermore,

L(An) = L(A). Hint: Carefully define your "new" machine An, justify that it is indeed
an NDFA, make the appropriate inductive statement, and argue that L(An) = L(A).
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4.26. Give an example to show that the domain of Lemma 4.2 cannot be expanded to include
>..; that is, show that 8~(s, >..) 1- 8~(s, x).

4.27. Refer to Definition 4.5 and prove the fact used in Lemma 4.1:

(VA E p(S))(VB E p(S))(Va E ~)W(A U B, a) = Sd(A, a) U Sd(B,a))

4.28. Recall that if a word can reach several states in an NDFA, some of which are final and
some nonfinal, Definition 4.4 requires us to accept that word.
(a) .Change the definition of L (A) so that a word is accepted only if every state the word

can reach is final.
(b) Change the definition of Ad to produce a deterministic machine that accepts only

those words specified in part (a).
4.29. Draw the connected part of r-, the deterministic equivalent of the NDFA T in Example

4.7.
4.30. Refer to Example 4.7 and modify the NDFA T so that the machine reverts to a nonfinal

state (that is, turns the recorder off) when the substring 000111 is detected. Note that
000111 functions as the EOT (end of transmission) signal.

4.31. Consider the automaton A given in Example 4.14.
(a) Draw a diagram of A~.
(c) Draw A~d (draw only the connected portion of the machine).

4.32. What is wrong with the following "proof' of Lemma 4.2? Let P(k) be defined by
P(k): (Vs E S)(Vx E ~k)(8~(s, x) = 8~(s,x)).

Basis step (k = 1): (Vs E S)(Va E ~)(8~(s, a) = S~(s, a) = 8~(s, a)).
Inductive step: Suppose that the result holds for all x E ~k and let y E ~k + 1. Then
(3x E ~k)(3a E ~ ;)Y = xa). Then

8~(s,y) = 8~(s,xa)

= S~(8~(s, x), a)

=8~(8~(s,x),a)

= 8~(8~(s, x), a)

= 8~(s,xa)

= 8~(s,y)

Therefore, P(k):::} P(k + 1) for all k 2: 1, and by the principle of mathematical
induction, we are assured that the equation holds for all x E ~".

4.33. Consider the automaton given in Example 4.7.
(a) Using the standard encodings, draw a circuit diagram for this NDFA (include

neither <SOS> nor <EOS».
(b) Convert the NDFA into a DFA using Definition 4.5 (draw only the connected

portion of the machine).

4.34. Consider the automaton given in Example 4.11.
(a) Using the standard encodings, draw a circuit diagram for this NDFA (include

neither <SOS> nor <EOS».
(b) Convert the NDFA into a DFA using Definition 4.5 (draw only the connected

portion of the machine).
4.35. Consider the automaton 8 given in Example 4.8.
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(a) Using the standard encodings, draw a circuit diagram for B (include neither
<SOS> nor <EOS».

(b) Using the standard encodings, draw a circuit diagram for Bd (include neither
<SOS> nor <EOS». Encode the states in such a way that your circuit is similar
to the one found in part (a).

4.36. Draw a circuit diagram for each NDFA given in Exercise 4.1 (include neither <SOS>
nor <EOS». Use the standard encodings.

4.37. Draw a circuit diagram for each NDFA given in Exercise 4.1 (include both <SOS> and
<EOS». Use the standard encodings.

4.38. Definition 3.10 and the associated algorithms were used in Chapter 3 for finding the
connected portion of a DFA.
(a) Adapt Definition 3.10 so that it applies to NDFAs.
(b) Prove that there is an algorithm for finding the connected portion of an NDFA.



CHAPTER

CLOSURE PROPERTIES

In this chapter we will look at ways to combine languages that are recognized by
finite automata (that is, FAD languages) and consider whether the combinations
result in other FAD languages. These results will provide insights into the construc
tion of finite automata and will provide useful information that will have bearing on
the topics covered in later chapters. After the properties of the collection of FAD
languages have been fully explored, other classes of languages will be investigated.
We begin with a review of the concept of closure.

5.1 FAD LANGUAGES AND BASIC CLOSURE THEOREMS

Notice that when many everyday operators combine objects of a given type they
produce an object of the same type. In arithmetic, for example, the multiplication
of any two whole numbers produces another whole number. Recall that this prop
erty is described by saying that the set of whole numbers is closed under the
operation of multiplication. In contrast, the quotient of two whole numbers is likely
to produce a fraction: the whole numbers are not closed under division. The formal
definition of closure, both for operators that combine two other objects (binary
operators) and those that modify only one object (unary operators) is given below.

yo Definition 5.1. The set K is closed under the (binary) operator ® iff
(Vx,y E K)(x®y E K).
.:l

146
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V Definition 5.2. The setK is closed under the (unary) operator T) iff
('fix E K)(T)(x) E K).
A

EXAMPLE 5.1

I\J is closed under + since, if x and yare nonnegative integers, then x + y is another
nonnegative integer; that is, if x,y E I\J, then x + y E I\J.

EXAMPLE 5.2

ois closed under I I(absolute value), since if xis an integer Ix Iis also an integer.

EXAMPLE 5.3

Let p = {X IX is a finite subset of I\J}; then p is closed under U, since the union of
two finite sets is still finite. (If Y and Z are subsets for which II YII = n < 00

and IIZII = m <00, then II Y UZII:5 n + m < 00. Under what conditions would
IIYUZII<n +m?)

To show a set K is not closed under a binary operator e, we must show
-,[('fIx,y E K)(xey E K)], which means 3x,y E K ., xey f1. K.

EXAMPLE 5.4

I\J is not closed under - (subtraction) since 3 - 5 = -2 $.I\J, even though both 3 E I\J
and 5 E I\J.

Notice that the set as well as the operator is important when discussing closure
properties; unlike I\J, the set of all integers 0is closed under subtraction. As with the
binary operator in Example 5.4, a single counterexample is sufficient to show that a
given set is not closed under a unary operator.

EXAMPLE 5.5

I\J is not closed under V (square root) since 7 E I\J but V7$.I\J.

We will not be concerned so much with sets of numbers as with sets of
languages. As in Example 5.3, the collection will be a set of sets. Of prime concern
are those languages that are related to automata.

V Definition 5.3. Let I be an alphabet. The symbol ~I is used to denote the set
of all FAD languages over I; that is,

~I ={L k I* 13 deterministic finite automaton M ., L(M) = L}
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~~ is the set of all languages that can be recognized by finite automata. In this
chapter, it is this set whose closure properties with respect to various operations in
I* we are most interested in investigating. For example, if there exists a machine
that accepts a language K, then there is also a machine that accepts the complement
of K. That is, if K is FAD, then -K is FAD: ~~ is closed under r«,

V Theorem 5.1. For any alphabet I, ~~ is closed under - (complementation).

Proof. Let K E ~~. We must show -K E ~~ also; that is, there is a machine
that recognizes - K. But K E ~~, and thus there is a deterministic finite automaton
that recognizes K: Let A = <I, S, so, 8, F> and L(A) = K. Define a new machine
A- as follows: A- = <I,S-,so,8-,F-> = <I,S,so,8,S-F>, which looks just like
A except that the final and nonfinal states have been interchanged. We claim that
L(A-) = -K. To show this, letx be an arbitrary element of E". Then

x E L (A-) ~ (by definition of L)

8-(so ,x) E F-~ (by induction and the fact that 8 =8-)

8(so, x) E F-~ (by definition of so)

8(so,x) E F-~ (by definition of F-)

8(so,x ) E S-F~ (by definition of complement)

8(so,x) $.F~ (by definition of L)

x f/:. L (A)~ (by definition of K)

x f/:. K~ (by definition of complement)

xE-K

Thus L(A-) = -K as claimed, and therefore the complement of a FAD language
can also be recognized by a machine and is consequently also FAD. Thus ~~ is
closed under complementation.
~

It turns out that ~~ is closed under all the common set operators. Notice that
the definition of ~~ implies that we are working with only one alphabet; if we
combine two machines in some way, it is understood that both automata use exactly
the same input alphabet. This turns out to be not much of a restriction, however, for
if we wish to consider two machines that use different alphabets It and I z, we can
simply modify each machine so that it is able to process the new common alphabet
I =It U I z• It should be clear that this can be done in such a way as not to affect the
language accepted by either machine (see the exercises).

We will now prove that the union of two FAD languages is also FAD. This can
be shown by demonstrating that, given two automata Mt and Mz, it is possible to
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construct another automaton that recognizes the union of the languages accepted by
M1 and M2•

EXAMPLE 5.6

Consider the two machines M1 and M2 displayed in Figure 5.1. These two machines
can easily be employed to construct a nondeterministic finite automaton that clearly
accepts the appropriate union. We simply need to combine them into a single
machine, which in this case will have two start states, as shown in Figure 5.2.

The structure inside the dotted box should be viewed as a single NDFA with
two start states. Any string that would be accepted by M1 will reach a final state if it
starts in the "upper half" of the new machine, while strings that are recognized by
M2 will be accepted by the "lower half' of the machine. Recall that the definition of
acceptance by a nondeterministic finite automaton implies that the NDFA in Figure
5.2 will accept a string if any path leads to a final state. This new NDFA will
therefore accept all the strings that M1 accepted and all the strings that M2 accepted.
Furthermore, these are the only strings that will be accepted. This trick is the basis
of the following proof, which demonstrates the convenience of using the NDFA
concept; a proof involving only DFAs would be both longer and less obvious (see
the exercises).

JMIll

Figure 5.1 The two automata discussed
in Example 5.6

r:
I

I

I

I

I

..

~

I

I

I

I

I

~
Figure 5.2 The resulting automaton in
Example 5.6
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V Theorem 5.2. For any alphabet S, <21J1 is closed under U.

Proof. Let L1 and L, belong to <21J1 . Then there are nondeterministic
finite automata Al = <~, S1> SOl' 81> 1\> and A2= <~, S2'SOz' 82,F2> such that
L(A1) = L1 andL(A2 ) = L2(why?). Define AU = <~,Su,S~,8u,Fu>, where

SU = Sl U S2 (without loss of generality, we can assume Sl n S2= 0)

Sou =: So, U SOz

F U
= 1\ U F2

and 8u: (Sl U S2) x ~~ P(SI U S2) is defined by

1
81(S, a) if s E s.

8U(s,a) = , Vs E S, U S2, 'Va E ~

82(s, a) if s E S2

We claim that L(AU)=L(AI)UL(A2)=LIU~,This must be proved using the
definition of L from Chapter 4, since AI, A2, and AU are all NDFAs.

x EL(AU) ¢:> (from Definition 4.4)

(3s E SoU)[8U(s,x) n F U
'" 0]¢:> (by definition of SOU)

(3s E SOl U Soz)[8U(s,x) n F U
'" 0]¢:> (by definition of U)

(3s E So)[8U(s,x) n F U
'" 0]V (3s E SoJ[8U(s,x) n F U

'" 0]¢:> (by definition of 8u

and induction)

(3s E So)[81(s, x) n F U
'" 0]V (3s E SoJ[82(s,x) n F U

'" 0]¢:> (by definition of F U
)

(3s E So)[81(s, x) n 1\ '" 0]V (3s E SoJ[82(s,x) n F2 '" 0]¢:> (from Definition 4.4)

x EL(A1) V x EL(A2) ¢:> (by definition of U)

x E (L(A1 ) UL(A2))¢:>(by definition of
L[,~)

The above "proof" is actually incomplete; the transition from line 4 to line 5
actually depends on the assumed properties of 8u, and not the known properties of
8u. A rigorous justification should include an inductive proof of (or at least a
reference to) the fact that 8u reflects the same sort of behavior that 8u does; that is,

_ 181(S,X) if s E Sl
8U(s,x) = Vs E S, U S2, Vx E ~*

82(s,x) ifsES2

The above rule essentially states that the definition that applies to the single letter a
also applies to the string x, and it is easy to prove by induction on the length of x (see
the exercises).
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The following theorem, which states that 2LlI is closed under n, will be justified
in two separate ways. The first proof will argue that the closure property must hold
due to previous results; no new DFA need be constructed. The drawback to this
type of proof is that we have no suitable guide for actually combining two existing
DFAs into a new machine that will recognize the appropriate intersection (al
though, as outlined in the exercises, in this case a construction based on the first
proof is fairly easy to generate).

Some operators are so bizarre that a nonconstructive proof of closure is the
best we can hope for; intersection is definitely not that strange, however. In a
second proof of the closure of 2LlI under n, Lemma 5.1 will explicitly outline how an
intersection machine could be built. When such constructions can be demonstrated,
we will say that 2LlI is effectively closed under the operator in question (see Theorem
5.12 for a discussion of an operator that is not effectively closed).

Til Theorem 5.3. For any alphabet ~, 2LlI is closed under n.
Proof. Let LI and Lz belong to 2LlI . Then by Theorem 5.1, -LI and -Lz are

also FAD. By Theorem 5.2, -LI U -Lz is also FAD. By Theorem 5.1 again,
-(-L U -Lz) is also FAD. By De Morgan's law, this last expression is equivalent to
LI n Lz, so LIn Lz is FAD, and thus LIn Lz E 2lJI .

~

Note that the above argument could be made to apply to any collection C of
sets that were known to be closed under union and complementation. A second
proof of Theorem 5.3 might rely on the following lemma, using the "direct" method
of constructing a deterministic machine that accepts LI n Lz. This would show that
2LlI is effectively closed under the intersection operator.

Til Lemma 5.1. Given deterministic finite automata Al = <~, SJ, SOl' ~h, F;> and
A2= <~, S2' S02' S2, Fi> such that L (AI) = LI and L (A2) = Lz, define a new DFA
An = <~, s», s~, Sn,Fn>,where

S" = SI X S2

s~ == (SOl' S02)

F" = F; x Fi,

and Sn: (SI x S2) x ~~ SI X S2 is defined by

Sn(s, t), a) = (SI(S, a), S2(t, a) VsE SJ, Vt E S2,Va E ~

Then L(An) = LIn Lz.

Proof. As usual, the key is to show that x E L(An)
~x ELI n Lz. The proof

hinges on the inductive statement that Sn obeys the same rule that defines Sn; that
is, (VsE SI)(Vt E S2)(VX E ~*)(Sn(s, t),x) = (SI(S,X), S2(t,X)). The details are left
for the reader (see the exercises).
~
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The idea behind the above construction is to build a machine that "remem
bers" the state changes that both Al and Az make as they each process the same
string, and hence the state set consists of all possible pairs of states from Al and Az .
The goal was to design the transition function an so that being in state (s, t) in An
indicates that Al would currently be in state sand Azwould be in state t. This goal
also motivates the definition of the new start state; we want to begin in the start
states of Al and Az, and hence s~ = (so\, so). We only wish to accept strings that are
common to both languages, which means that the terminating state in Al belongs to
Fi and the last state reached in Azis likewise a final state. This requirement naturally
leads to the definition of F", where (s, t) is a final state if and only if both sand t
were final states in their respective machines.

EXAMPLE 5.7

Consider the two machines Al and Azdisplayed in Figure 5.3. Note that Az"remem
bers" whether there have been an even or an odd number of bs, while Al "counts"
the number of letters (mod 3). We now demonstrate how the definition in Lemma
5.1 can be applied to form a deterministic machine that accepts the intersection of
L(A I ) and L(Az). The structure of An would in this .case look like the automaton
shown in Figure 5.4. Note that An does indeed keep track of the criteria that both Al
and Az use to accept or reject strings. We will be in a state on the right side of An if

(a)
A"
(b)

Figure 5.3 The automata discussed in Example 5.7
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Figure 5.4 The resulting DFA for Ex
ampleS.?

an odd number of bs have been seen and on the left side when an even number of bs
have been processed. At the same time, we will be in the upper, middle, or lower
row of states depending on the total number of letters (mod 3) that have been
processed. There is but one final state, corresponding to the situation where we
have both an odd number of bs and the letter count is 0 (mod 3).

The operations used in the previous three theorems are common to set theory.
We now present some new operators that are special to string algebra. We have
defined concatenation (.) for individual strings, but there is a natural extension of
the definition to languages, as indicated by the next definition.

V Definition 5.4. Let L1 and L, be languages. The concatenation of L1 with Lz,
written L1 •Lz, is defined by

L 1 •L, = {x .yIx E L 1 r; Y E Lz}

EXAMPLES.S

If L1 = {A, b, ee}and L, = {A, aa, baa}, then

L1 •L, = {A, b, ee, aa, baa, eeaa, bbaa, eebaa}.
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Note that baa qualifies to be in Lj-L, for two reasons: baa = A·baa and baa = b·aa.
Thus we see that the concatenation contains only eight words rather than the
expected 9 ( = 3·3). In general, Lj·L, consists of all words that can be formed by the
concatenation of a word from L, with a word from Lz; for finite sets, concatenating
an n word set with an m word set results in no more than n-m words. As shown in
this example, the number of words can actually be less than n ·m. Larger languages
can be concatenated, also. For example, I*·I = I+.

The concatenation of two FAD languages is also FAD, as can easily be seen by
employing NDFAs with A-transitions.

EXAMPLE 5.9

Figure 5.5 illustrates two nondeterministic finite automata B, and B, that accept the
languages L, and ~ given in Example 5.8. Combining these two machines and
linking the final states of B, to the start states of B, with A-transitions yields a new
NDFA that accepts Lj'~, as shown in Figure 5.6.

Figure 5.5 Two candidates for concatenation

Figure 5.6 An NDFA which accepts the concatenation of the machines discussed
in Example 5.9

EXAMPLE 5.10

Consider the deterministic finite automata A, and Az displayed in Figure 5.7. These
can similarly be linked together to form an NDFA that accepts the concatenation of
the languages accepted by A j and Az, as shown in Figure 5.8.
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if A~~
if AE~

Figure 5.7 A pair of candidates for concatenation

Figure 5.8 Concatenation of the machines in Example 5.10 via lambda-moves

It is also possible to directly build a machine for concatenation without using
any A-transitions, although the penalty for limiting our attention to less exotic
machines is a loss of clarity in the construction. While the proof of the following
theorem does not depend on A-transitions, the resulting machine is still non
deterministic.

V Theorem 5.4. For any alphabet I, ~~ is closed under· (concatenation).

Proof. Let L, and L, belong to ~~. Then there are deterministic finite auto
mata Al = <I, S11 SOl' 811 r.» and A2 = <I, S2, S02' 82, F2> such that L(Al) = L,
and L(A2 ) =~. Without loss of generality, assume Sl n S2 =F 0. Define a
nondeterministic machine A' = <I, S', So, 8', F>, where

S' = Sl U S2 (without loss of generality, assume Sl n S2 = 0)

So = {soJ

r-{Fz- Fl.UFz

and 8': rs, U S2) x I~ P(SI US2) is defined by
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!{81(S, an if s E SI - Pi
8'(s, a) = {81(s, a), 82(S02' an if s E Pi

{82(s, an if s E S2

It can be shown thatL(A') =L(A1)·L(A2 ) = Ld-2 (see the exercises).
Ll

EXAMPLE 5.11

Conside the deterministic finite automata Al and A2in Example 5.10. These can be
linked together to form the NDFA A', and the reader can indeed verify that the
machine illustrated in Figure 5.9 accepts the concatenation of the languages
accepted by Al and A2. Notice that the new transitions from the final states of Al
mimic the transitions out of the start state of A2.

Thus we see that avoiding A-transitions while defining a concatenation ma
chine is relatively simple. Unfortunately, avoiding the nondeterministic aspects of
the construction is relatively impractical and would basically entail re-creating the
construction in Definition 4.5 (which outlined the method for converting an NDFA
into a DFA). Whereas it was merely convenient (rather than necessary) to employ
NDFAs to demonstrate that 2lJ1 is closed under union, the use of nondeterminism is
essential to the proof of closure under concatenation.

Figure 5.9 Concatenation of the machines in Example 5.10 without lambda
moves (Example 5.11)

EXAMPLE 5.12

Consider the nondeterministic finite automata 81 and 82from Example 5.9. Ap
plying the analog of Theorem 5.4 (see Exercise 5.43) yields the automaton shown in
Figure 5.10. Notice that each final state of 81 now mimics the start state of 82, and to
has become a disconnected state. Both So and SI are still final states since AE L (8 2 ) ,

EXAMPLE 5.13

Consider the nondeterministic finite automata 8 1 and 83 shown in Figure 5.11,
where 81 is the same as that given in Example 5.9, while 83 differs just slightly from
82(tois no longer a final state). Note that L(83) = {aa, baa}, and AEt: L(83 ) . Apply-
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Figure S.10 An NDFA without lambda-moves which accepts the concatenation of the lan
guages discussed in Example 5.8

a

Figure S.11 Candidates for concatenation in which the second machine does not accept A
(Example 5.13)

ing Theorem 5.4 in this case yields the automaton shown in Figure 5.12. In this
construction, So and S1 are no longer final states since the definition of F"must follow
a different rule when Af/;. L (B3).By examining the resulting machine, the reader can
verify that having t3 as the only final state is indeed the correct strategy for this case.

Besides concatenation, string algebra allows other new operators on Ian-
a

Figure 5.12 The concatenation of the NDFAs in Example 5.13
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" ,

guages. The operators * and ", which have at this point only been defined for
alphabets, likewise have natural extensions to languages. Loosely, we would expect
L* to consist of all words that can be formed by the concatenation of several words
from L.

V Definition 5.5. Let L be a language over some alphabet I. Define

LO= {A}
U=L
U=L·L
U=L·U=L·L·L

and in general

L" = L·Ln-l, for n = 1,2,3, ...
cc

L * = U L i = LOU U U U u ... = {A} U L U L· L U L· L· L U ...
i=O

cc

U= U V=UUUUUU···=LUL·LUL·L·LU ...
i=l

L* is called the Kleene closure of the language L.
.:l

EXAMPLE 5.14

If L = {aa, e}, then L * = {A, aa, e, aae, eaa, aaaa, ee, aaaaaa, aaaae, aaeaa, ... }.

EXAMPLE 5.15

If K = {db, b, c}, then K* consists of all words (over [b, c, d}) for which each occur
rence of d is immediately followed by (at least) one b.

~I is closed under both * and +. The technique for Kleene closure is outlined
in Theorem 5.5. The construction for L + is similar (see the exercises).

V Theorem 5.5. For any alphabet I, ~I is closed under * (Kleene closure).

Proof. Let L belong to ~I' Then there is a nondeterministic finite automaton
A = <I, S, So,3, F> such that L(A) = L. Define a nondeterministic machine
A. = <I,S.,So.,3.,F.>, where -

S. = S U {go} (where go is some new element; gof/=. S)

So' = So U {go}

p. = F U {go}

and 3. : (S U {go} x I~ p(S U {go}) is defined by

1
5(S' a) if sf/=. F U {go}

3.(s, a) = 3(s, a) U ( U 3(t, a») if s E F
o tESo if s = go
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We claim that L(A.) = L(A)* =L* (see the exercises).
Il

EXAMPLE 5.16

Consider the nondeterministic finite automaton B displayed in Figure 5.13, which
accepts all words that contain exactly two (consecutive) bs. Using the modifications
described above, the new NDFA B. would look like the automaton shown in Figure
5.14. Notice that the new automaton does indeed accept L(B)*, the set of all words
in which the bs always occur in side-by-side pairs. This example also demonstrates
the need for the special extra start (and final) state qo (see the exercises).

Figure 5.13 The NDFA B in Example 5.16.

Figure 5.14 The resulting NDFA for
Example 5.16

It is instructive to compare the different approaches taken in the proofs of
Theorems 5.4 and 5.5. In both cases, nondeterministic automata were built, but
Theorem 5.4 began with deterministic machines, while Theorem 5.5 assumed that a
NDFA was provided. Note that, in the construction of 3' in Theorem 5.4,31 was a
deterministic transition function and as such produced a single state, whereas 3', on
the other hand, must adhere to the nondeterministic definition and produce a set of
states. As a consequence, the definition of 3' involved expressions like {31(s, a)},
which indicated that the single state given by 31(s, a) should be viewed as a singleton
set.

By contrast, Theorem 5.5 specified the nondeterministic transition function 3.
in terms of 3, which was also assumed to be nondeterministic. This gave rise to
definitions of the form 3.(s, a) = 3(s, a). In this case, no set brackets { }were neces
sary since 3(s, a) by assumption already represented a set (rather than just a single
element as in the deterministic case).

The definition of the new set of start states So is also affected by the type of
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machine from which the new NDFA is formed. In reviewing Theorems 5.4 and 5.5,
the reader should be able to see the parallel between the differences in the specifica
tions of the Bfunction and the differences in the definitions of So and So', It is also
instructive to compare and contrast the proof of Theorem 5.2 to those discussed
above.

5.2 FURTHER CLOSURE PROPERTIES

The operators discussed in this section, while not as fundamental as those presented
earlier, illustrate some useful techniques for constructing modified automata. Also
explored are techniques that provide existence proofs rather than constructive
proofs.

V Theorem 5.6. For any alphabet l, 9JI is closed under the operator Z, where
Z is defined by

Z(L) = {x Ix is formed by deleting zero or more letters from a word in L}.•

Proof. See the exercises and the following example.
A

EXAMPLE 5.17

Consider the deterministic finite automaton C displayed in Figure 5.15, which
accepts the language {anbmln;::: I,m;::: I}. Z(L(C» would then be

{anbmln ;:::O,m ;:::O}

Figure 5.15 The automaton C discussed in Example 5.17

and can be accepted by modifying C so that every transition in the diagram has a
corresponding X-move (allowing that particular letter to be skipped), as shown in
Figure 5.16.

Figure 5.16 An automaton accepting Z(C) in Example 5.17
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b

Figure 5.17 The automaton 0 discussed
in Example 5.18

V Theorem 5.7. For any alphabet I, ~I is closed under the operator Y, where
Y is defined by

Y(L) = {x Ix is formed by deleting exactly one letter from a word in L}.

Proof. See the exercises and the following example.

EXAMPLE 5.18

We need a way to skip a letter as was done in Example 5.17, but we must now skip
one and only one letter. The technique for accomplishing this involves using copies
of the original machine. Consider the deterministic finite automaton D displayed in
Figure 5.17. We will use A-moves to mimic normal transitions, but in this case we
will move from one copy of the machine to an appropriate state in a second copy.
Being in the first copy of the machine will indicate that we have yet to skip a letter,
and being in the second copy will signify that we have followed exactly one A-move
and have thus skipped exactly one letter. Hence the second copy will be the only
one in which states are deemed final, and the first copy will contain the only start
state. The modified machine for this example might look like the NDFA shown in
Figure 5.18. The string aba, which is accepted by the original machine, should cause
ab, aa, and ba to be accepted by the new machine. Each of these three are indeed
accepted, by following the correct A-move at the appropriate time. A similar tech
nique, with the state transition function slightly redefined, could be used to accept
words in which every other letter was deleted. If one wished only to acknowledge
every third letter, three copies of the machine could be suitably connected together
to achieve the desired result (see the exercises).

Figure 5.18 The modified machine in
Example 5.18
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While 0J l is certainly the most important class of languages we have seen so
far, we will now consider some other classes whose properties can be investigated.
The closure properties of other collections of languages will be considered in the
exercises and in later chapters.

V Definition 5.6. Let ~ be an alphabet. Then OWl is defined to be the set of all
languages over ~ recognized by NDFAs; that is,

OWl = {LC~*13 NDFA N:1 L(N) = L}.

V Lemma 5.2. Let ~ be an alphabet. Then OWl = ~l'

Proof. The proof follows immediately from Theorem 4.1 and Exercise 4.25.

The reader should note that Lemma 5.2 simply restates in new terms the
conclusion reached in Chapter 4, where it was proved that NDFAs were exactly as
powerful as DFAs. More specifically, it was shown that any language that could be
recognized by a NDFA could also be recognized by a DFA, and conversely. While
every subset of ~* represents a language, those in ~l have exhibited many nice
properties owing to the convenient representation afforded by finite automata. We
now focus our attention on "the other languages," that is, those that are not in ~l'

V Definition 5.7. Let ~ be an alphabet. Then Xl is defined to be the set of all
non-FAD languages over S; that is,

Xl ={L C ~* Ithere does not exist any finite automaton M :1 L(M) =L}.

Xl is all the "complicated" languages (subsets) that can be formed from ~*;

that is, Xl = p(~ *) - ~l' Be careful not to confuse Xl with the set of languages that
can be recognized by NDFAs (OWl in Definition 5.6).

V Theorem 5.8. Let ~ be an alphabet. Then Xl is closed under ~ (comple-
mentation).

Proof. (by contradiction): Assume the lemma is not true, which means that
there exists a language K for which

K E Xl 1\ ~K $. X l ~ (by definition of Xl)

~K E ~l~ (by Theorem 5.1)

-(~K) E ~l~ (since ~(~K) = K)

K E ~l~ (by definition of Xl)

K $. Xl
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..,

which contradicts the assumption. Thus the lemma must be true.
A

V Lemma 5.3. X{a, b} is not closed under n.

Proof. Let L1 = {aP Ip is prime} and let L, = {lY'lp is prime}. Then L1 E X{a, bj,

~ E X{a,b}' but L1 n~ = 0tt. X{a,b} (why?).

A

As another useful example of closure, we consider the transformation of one
language to another via a language homomorphism, which represents the process of
consistently replacing each single letter a, by a word Wi. Such transformations are
commonplace in computer science; some applications expect lines in a text file to be
delimited with a carriage return/line feed pair, while other applications expect only
a carriage return. Stripping away the unwanted line feeds is tantamount to applying
a homomorphism that replaces most ASCII characters by the same symbol, but
replaces line feeds by A. Converting all lowercase letters in a file to uppercase is
another common transformation that can be defined by a language homomorphism.

V Definition 5.8. Let S = [a., az, ... ,am}be an alphabet and let I' be a second
alphabet. Given words Wb Wz, •.. , Wm over I'", define a language homomorphism
~: !,~P by ~(ai) = w;for each i, which can be extended to \jJ: !,*~ P by:

\jJ(A) = A

(V'aE!')(V'x E!,*)(\jJ(a·x) = ~(a)·(\jJ(x)))

\jJ can be further extended to operate on a language L by defining

\jJ(L) = {\jJ(z) E P [z E L}

In this context, \jJ: p(!,*)~ pep).
A

EXAMPLE 5.19

Let!' = {a, b} and I' = [c, d}, and define ~ by ~(a) = cd and ~(b) = d. For
K = {A, ab, bb}, \jJ(K) = {A, cdd, dd}, while for L = {a, b}*, Ij/(L) represents all words
over {c,d} in which every c is immediately followed by d.

EXAMPLE 5.20

As a second example, let!' =n, (} and let I' be the ASCII alphabet. If j.L is defined
by j.L(O = begin and j.L()) = end, then the set M of all strings of matched parentheses
maps to K, the set of all matched begin-end pairs .
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,..

A general homomorphism IjJ maps a language over I to a language over r.
However, to consider the closure of ~};, we will restrict our attention for the
moment to homomorphisms for which I' =I. It is more generally true, though, that
even for language homomorphisms between two different alphabets, if L is FAD,
the homomorphic image of L is also FAD (see the exercises).

V Theorem 5.9. Let I be an alphabet, and let 1jJ: I~ I* be a language homo-
morphism. Then ~}; is closed under $.

Proof. See the exercises and the following examples. A much more concise
way to handle this transformation will be seen in Chapter 6 when substitutions are
explored.
a

If the homomorphism is length preserving, that is, if it always maps letters to
single letters, it is relatively easy to define a new automaton from the old one.
Indeed, the state transition diagram hardly changes at all; all transitions marked b
are simply relabeled with ljJ(b). For more complex homomorphisms, extra states
must be added to accommodate the processing of the surplus letters. The following
two examples illustrate the appropriate transformation of the state transition func
tion and suggest a convenient labeling for the new states.

EXAMPLE 5.21

Consider the DFA B displayed in Figure 5.19a. For the homomorphism f1 defined
by £(a) = a and £(b) = a, the automaton that will accept f1(L(B)) is shown in Figure
5.19b. Note that even in simple examples like this one the resulting automaton can
be nondeterministic.

(a) (b)

Figure 5.19 (a) The automaton discussed in Example 5.21 (b) The resulting auto
maton for Example 5.21

EXAMPLE 5.22

For the NDFA C displayed in Figure 5.20a and the homomorphism f1 defined by
f1(a) = cc and f1(b) = a, the automaton that will accept f1(L(C)) is shown in Figure
5.20b. Note that each state of C requires an extra state to accommodate the cc
transition.
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b

(a) (b)

Figure 5.20 (a) The automaton discussed in Example 5.22 (b) The resulting auto
maton for Example 5.22

EXAMPLE 5.23

Consider the identity homomorphism J.L: I- I* defined by (Va E I)(J.L(a)= a).
Since jI(L) = L, any collection of languages, including .N',£, is clearly closed under
this homomorphism. Unlike ~,£, though, there are many homomorphisms under
which .N''£ is not closed.

V Lemma 5.4. Let I ={a, b}, and let ~: I- I* be defined by ~(a) =a and
~(b) a. Then X,£ is not closed under ~.

Proof. Consider the set L of all strings that have the same number of as as bs.
This language is in X ,£, but ~(L) is the set of all even-length strings of as, which is
clearly not in X,£.
!:J.

A rather trivial example involves the homomorphism defined by ljJ(a) = 'A for
every letter a E I. Then for all languages L, whether or not LEX,£, iii(L) = {'A},
which is definitely not in Xs-

V Definition 5.9. Let 1jJ: I- I" be a language homomorphism and consider
z E I'", The inverse homomorphic image of z under iii is then

iji-l(Z) ={x EI*/iji(x) z}

For a language L ~ I" , the inverse homomorphic image of Lunder iji is defined by

iji-l(L) = {x E I* liji(x) E L}

Thus, x Eiji-l(L) ~ iji(x) E L. While the image of a string under a homomorphism
is a single word, note that the inverse image of a single string may be an entire set of
words.
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EXAMPLE 5.24

Consider ~ from Lemma 5.4 in which ~: !,-,)!,* was defined by ~(a) = a and
~(b) = a. Let z = aa. Since ~(bb) = ~(ba) = ~(ab) = ~(aa) = aa,

~-l(aa) = {bb, ba, ab, aa}. Note that ~-I(ba) = 0.

For L={xE{a}*llxl=Omod3}, ~-I(L)={xE{a,b}*llxl=Omod3}.Note
that this second set is definitely larger, since it also contains words with bs in them.

It can be shown that 2ll l is closed under inverse homomorphism. The trick is to
make the state transition function of the new automaton simulate, for a given letter
a, the action the old automaton would have taken for the entire string ljJ(a). As the
following proof will illustrate, the only change that need take place is in the 8
function; the newly constructed machine is even deterministic!

V Theorem 5.10. Let E be an alphabet, and let ljJ: !, -,) !, * be a language
homomorphism. Then 2ll l is closed under 1jI-1.

Proof. Let L E 2lll . Then there exists a DFA A = <!', s, so, 8, F> such that
L(A) = L. Define a new DFA N = <!', s-,s~, 80/, r» by

So/=S

s~ = So

Fo/=F

and 80/ is defined by

80/(s, a) = 8(s, ljJ(a)) "IsE S, Va E!,

Induction can be used to show 80/(s, x) = 8(s, ljI(x)) "Is E S, "Ix E!'*, and in particu
lar 80/(so, x) = 8(so,ljI(x)) "Ix E!'*. Hence L(Ao/) = 1jI-I(L(A)).
6 . .

This theorem makes it possible to extend the range of the pumping lemma
(Theorem 2.3) to many otherwise unpleasant problems. The set M given in Exam
ple 5.20 can easily be shown to violate Theorem 2.3 and is therefore not FAD. The
set K given in Example 5.20 is just as clearly not FAD, but this is quite tedious to
formally prove by the pumping lemma (the number of choices for u, v, and w is
prohibitively large to thoroughly cover). An argument might proceed as follows:
Assume K were FAD. Then M, being the inverse homomorphic image of a FAD
language, must also be FAD. Since M is known (by an easy pumping lemma proof)
to be definitely not FAD, the assumption that K is FAD must be incorrect. Thus,
K E Xl.

V Lemma 5.5. Let!' = {a, b}, and let ~: !,-,)!,* be defined by ~(a) = a and
Hb) = a. Then Xl is not closed under ~-I.
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Proof. Consider the set L of all strings that have the same number of as as bs.
This language is in Xl, but ~-1(L) is {X.}, which is clearly not in Xl'
d

We close this chapter by considering two operators for which it is definitely not
convenient to modify the structure of an existing automaton to construct a new
automaton with which to demonstrate closure.

V Theorem 5.11. Let I be an alphabet. Define the operator b by

L b={xI3y EI* j (xy EL 1\ [xl = [y[)}

Then ~l is closed under the operator b.

Proof. Lb represents the first halves of all the words in L. For example, if
K = {ad, abaa, ccccc}, then Kb = {a,ab}, Assume that L is FAD. Then there exists a
DFA A = <I, S, so, 8, F> that accepts L. The proof consists of identifying those
states q that are "midway" between the start state and a final state; specifically, we
need to identify the set of strings for which q is the midpoint. The previous closure
results for union, intersection, homomorphism, and inverse homomorphism will be
used to construct the language representing Lb. Define the length homomorphism
1\1: I~ {I}* by l\1(a) = I for all a E I. Note that tjJ effectively counts the number of
letters in a word:

tjJ(x) = Ilxl

The following argument can be applied to each state q to determine the set of strings
that use it as a "midway" state.

. Consider the initial set for q, I(A, q) ={xI8(so,x) = q}and the terminal set for
q, T(A,q)={xj8(q,x)EF}. We are interested in finding those words in I(A,q)
that are the same length as words in T(A, q). tjJ(I(A, q)) represents strings of Is
whose lengths are the same as words in I(A, q). A similar interpretation can be
given for tjJ(T(A, q)). Therefore, tjJ(I(A, q)) n tjJ(T(A, q)) will reflect those lengths
that are common to both the initial set and the terminal set. The inverse image
under tjJ for this set will then reflect only those strings in I * that are of the correct
length to reach q from so. This set is tjJ-l(tjJ(I(A, q)) n tjJ(T(A, q))). Not all strings of
a given length are likely to reach q, though, so this set must be intersected with
I (A, q) to correctly describe those strings that are both of the proper length and that
reach q from the start state. This set, I(A, q) n tjJ-l(tjJ(I(A, q)) n tjJ(T(A, q))), is thus
the first halves of all words that have q as their midpoint. This process can be
repeated for each of the (finite) number of states in the automaton A, and the union
of the resulting sets will form all the first halves of words that are accepted by A; that
is, the union will equal Lb.

Note that by moving the start state of A and forming the automaton
Aq= <I,S,q,8,F>, each of the initial sets I(A,q) can be shown to be FAD.
Similarly, the automaton Aq = <I, S, so, fl,{q}> illustrates that each terminal set
T(A, q) must be FAD, also. Since L b has now been shown to be formed from these
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basic FAD sets by applying homomorphisms, intersections, inverse homomorph
isms, and unions, Lb must be FAD since ~~ is closed under each of these types of
operations.
a

EXAMPLE 5.25

Consider the automaton A displayed in Figure 5.21. For the state highlighted as q,
the quantities discussed in Theorem 5.11 would be as follows:

leA, q) = {abc, abcabc, abcabcabc,
abcabcabcabc, ... }

T(A, q) = {aa, aaaa, aaaaaa, aaaaaaaa, ... }
= {a2 a4 a6 a8 a10 a12 }, , , , , , ...

\jI(I(A,q)) = {13, 16
, 19

, 112,115,... }

\jI(T(A, q)) = W, 14, 16
, 18

, 110
, 112

, ••• }

\jI(I(A, q)) n \jI(T(A, q)) = {16
, 112

, 118,... }= {x E {IV Ilx1== Omod 6}

\jI-1(\j1(I(A, q)) n \jI(T(A, q))) = {x E {a, b, cV Ilx1== 0 mod 6}

= {aaaaaa, aaaaab,aaaaac, aaaaba,
aaaabb, ... }

leA, q) n \jI-1(\j1(I(A, q)) n \jI(T(A, q))) = {abcabc, abcabcabcabc, ... }

Figure 5.21 The automaton discussed in Example 5.25

Similar calculations would have to be done for each of the other states of A.

Once again,.N'~does not enjoy the same closure properties that ~~ does.

V Lemma 5.6. Let ~ be an alphabet. Then .N'~ is not closed under the oper-
ator b.

Proof. Let L = {a'b" In;;:: O} E.N'~. Then Lb = {an In;;:: O} ft:.N'~.
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Other examples that show .N~ is not closed under the operator b abound. If
K = {x E {a, b]" I IxI. = Ix Ib}, then Kb = {a, b]". The last operator we will cover in
this chapter is useful for illustrating closures that may not be effective, that is, for
which there may not exist an algorithm for constructing the desired entity.

V Definition 5.10. Let LI and L, be languages. The quotient of LI with ~,

written LI/~' is defined by LI/~ = {x 13y E I* ;,Y E L, A xy ELI}
~

Roughly speaking, the quotient consists of the beginnings of those words in LI that
terminate in a word from ~.

EXAMPLE 5.26

Let I = {a, b}*. {b",b\ b6
, b8

, b", bl2
, ••• }/{b} = {b', b", b5

, b", b19
, b", ... }. Note that

{b', b", b6
, b8

, b lO
, bl2

, ••• }/{a} ={ }.

V Theorem 5.12. For any alphabet I, 2ll~ is closed under quotient.

Proof. Let LI and L, belong to 2ll~. Then there is a deterministic finite autom
aton Al = <I, SI, SOl' 8I, Pi> such that L (AI) = LI. An automaton that accepts LI/~
can be defined by AI= <I, SI, SOl' 81) pi>, where pi is defined to be the set of all
states t for which there is a word in L, that reaches a final state from t. That is,
pi ={t/3y EI*;, (y E~ A ~I(t,y) EP)}. It can be shown that A'does indeed ac
cept LI/~, and hence 2ll~ is closed under quotient (see the exercises).
~

Note that the above proof did not mention the automaton associated with the
second Ianguage Lj. Indeed, the definition given for pi is sufficient to argue that the
new automaton does recognize the quotient of the two languages. It was not actually
necessary to deal with an automaton for L, in order to argue that there must exist a
DFA that recognizes LI/~' The proof of Theorem 5.12 is thus an existence proof,
but does not indicate whether 2ll~ is effectively closed under quotient. Indeed,
Theorem 5.12 actually proves that the quotient of a FAD language with any other
language (including those in .N'~) will always be FAD. However, if it is hard to
determine just which strings in the other language may have the properties we need
to define pi; we may not really know which subset of states pi should actually be
[after all, we could hardly check the property 31(q , y) E P, one string at a time, for
each of an infinite number of strings y in~ in a finite amount of time]. Fortunately,
it is not necessary to know pi exactly, since there are only a finite number of ways to
choose a set of final states in the automaton A', and the proof of Theorem 5.12
assures us that one of those ways must be the correct one that admits the conclusion
L (AI) =LI/L2.

It would, however, be quite convenient to know what pi actually is so that we
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could construct the automaton that actually accepts the quotient; this seems much
more satisfying that just knowing that such a machine must exist! If L, is FAD, the
existence of an automaton Az = <!', Sz, S02' ~>z, F2> for which L(Az) = L, does make
it possible to calculate F1 exactly (see the exercises). Thus, ~~ is effectively closed
under quotient. In later chapters, languages that may make it impossible to deter
mine F1 will be studied. We defer the details of such problems until then.

V Lemma 5.7. Let!, = {a, b}. .N'~ is not closed under quotient.

Proof. Consider the set L of all strings that have a different number of as than
bs. This language is in .N'~, but L/L =!,* (why?).
Ll

From the exercises it will become clear that.N'~ is not closed over most of the
usual (or unusual!) operators. Note that ~~ is by contrast a very special set, in that it
appears to be closed over every reasonable unary and binary operation that we
might consider. The question of closure will again arise as more complex classes of
machines and languages are presented in later chapters.

EXERCISES

5.1. Let ~ be an alphabet. Define F~ to be the collection of all finite languages over ~.

Prove or give counterexamples to the following:
(a) F~ is closed under complementation.
(b) F~ is closed under union.
(c) F~ is closed under intersection.
(d) F~ is closed under concatenation.
(e) F~ is closed under Kleene closure.
(0 F~ is closed under relative complement.

5.2. Let ~ be an alphabet. Define C~ to be the collection of all cofinite languages over ~ (a
language is cofinite if it is the complement of a finite language). Prove or give counter
examples to the following:
(a) C~ is closed under complementation.
(b) C~ is closed under union.
(c) C~ is closed under intersection.
(d) C~ is closed under concatenation.
(e) C~ is closed under Kleene closure.
(0 C~ is closed under relative complement.

5.3. Let ~ be an alphabet. Define B~= F~ U C~ (see Exercises 5.1 and 5.2). Prove or give
counterexamples to the following:
(a) B~ is closed under complementation.
(b) B~ is closed under union.
(c) B~ is closed under intersection.
(d) B~ is closed under concatenation.
(e) B~ is closed under Kleene closure.
(0 B~ is closed under relative complement.
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5.4. Let ~ be an alphabet. Define Is to be the collection of all infinite languages over ~.

Note that Is = p(~*) - F}; (see Exercise 5.1). Prove or give counterexamples to the
following:
(a) I}; is closed under complementation.
(b) I}; is closed under union.
(c) I}; is closed under intersection.
(d) I}; is closed under concatenation.
(e) I}; is closed under Kleene closure.
(I) I}; is closed under relative complement.

5.5. Let ~ be an alphabet. Define J}; to be the collection of all languages over ~ that have
infinite complements. Note that J}; = p(~*) - C}; (see Exercise 5.2). Prove or give
counterexamples to the following:
(a) J}; is closed under complementation.
(b) J}; is closed under union.
(c) J}; is closed under intersection.
(d) J}; is closed under concatenation.
(e) J};is closed under Kleene closure.
(I) J}; is closed under relative complement.

5.6. Let ~ be an alphabet. Define E to be the collection of all languages over {a, b} that
contain the word abba. Prove or give counterexamples to the following:
(a) E is closed under complementation.
(b) E is closed under union.
(c) E is closed under intersection.
(d) E is closed under concatenation.
(e) E is closed under Kleene closure.
(I) E is closed under relative complement.

5.7. If a collection of languages is closed under intersection, does it have to be closed under
union? Prove argive a counterexamaple.

5.8. If a collection of languages is closed under intersection and complement, does it have
to be closed under union? Prove or give a counterexample.

5.9. Show that if a collection of languages is closed under concatenation it is not necessarily
closed under Kleene closure.

5.10. Show that if a collection of languages is closed under Kleene closure it is not necessarily
closed under concatenation.

5.11. Show that if a collection of languages is closed under complementation it is not
necessarily closed under relative complement.

5.12. Give a finite set of numbers that is closed under V.
5.13. Give an infinite set of numbers that is closed under V.
5.14. Given deterministic machines Al and Az, use the definition of AU and Definition 4.5 to

describe an algorithm for building a deterministic automaton AU that will accept
L(A I ) UL(Az) .

5.15. Given deterministic machines Al and Az , and without relying on the construction used
in Theorem 5.2:
(a) Build a deterministic automaton AU that will accept L (AI) U L (A z).
(b) Prove that your construction behaves as advertised.
(c) If no minimization is performed in Exercise 5.14, how do the number of states in
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AU, AU, and' AU compare? (Assume A\ has n states and A2 has m states, and give
expressions based on these variables.)

5.16. Let l be an alphabet. Define the (unary) operator P by

peL) = {x 13y E l* j xy E L} (for any collection of words L)

peL) then represents all the prefixes of words in L. For example, if K = {a, bbe, dd},
then P(K) = {A, a, b, bb, bbe, d, dd}, Prove that 2lJ:l; is closed under the operator P.

5.17. Let l be an alphabet. Define the (unary) operator S by

S(L) = {x 13y E l* j yx E L} (for any collection of words L)

S(L) then represents all the suffixes of words in L. For example, if K = {a, bbe, dd},
then S(K) = {A, a, e, be, bbe, d, dd},
(a) Given an automaton accepting L, describe how to modify it to produce an automa

ton accepting S(L).
(b) Prove that your construction behaves as advertised.
(e) Argue that 2lJ:l; is closed under the operator S.

5.18. Let l be an alphabet. Define the (unary) operator C by

CCL) = {x 13y, Z E l* j yxz E L} (for any collection of words L)

C(L) then represents all the centers of words in L. For example, if K = {a, bbe, dd},
then C(K) = {A, a, e, be, bbe, b, bb, d, dd},
(a) Given an automaton accepting L, describe how to modify it to produce an automa

ton accepting C (L).
(b) Prove that your construction behaves as advertised.
(e) Argue that 2lJ:l; is closed under the operator C.

5.19. Let l be an alphabet. Define the (unary) operator F by

F(L) = {x Ix E L!\ (if3y E l* hy E L, then y = A)}

F(L) then represents all the words in L that are not the beginnings of other words in L.
For example, if K = {ad, ab, abbad}, then F(K) = {ad, abbad}. Prove that 2lJ:l; is closed
under the operator F.

5.20. Let l be an alphabet, and x = a\a2 ... an_ IanE l "; define x r' = a.a, - 1 .•• a2a\. For a
language Lover l, define V = {xrlx E L}. Note that the (unary) reversal operator r is
thus defined by V = [a.a, _\ ... a3a2a\1 a\a2a3... an-Ian E L}, and V therefore repre
sents all the words in L written backward. For example, if K = {A, ad, bbe, bbad}, then
K' = {A, da, ebb, dabb].
(a) Given an automaton accepting L, describe how to modify it to produce an automa

ton accepting V.
(b) Prove that your construction behaves as advertised.
(e) Argue that 2lJ:l; is closed under the operator r.

5.21. Let l = {a, b, e, d}. Define the (unary) operator G by

={wr,wlwEL}

(see the definition of wr in Exercise 5.20). As an example, if K = {A, ad, bbe, bbad},
then G (K) = {A, daad, ebbbbe, dabbbbad}.
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(a) Prove that ~l: is not closed under the operator G.
(b) Prove that Xl: is closed under the operator b.

5.22. Prove that Xl: is closed under the operator r (see Exercise 5.20).
5.23. Prove that Xl: is not closed under the operator P (see Exercise 5.16).

5.24. Prove that Xl: is not closed under the operator S (see Exercise 5.17).
5.25. Prove that Xl: is not closed under the operator C (see Exercise 5.18).
5.26. Prove that Xl: is not closed und.er the operator F (see Exercise 5.19).
5.27. Consider the following alternate "proof' of Theorem 5.1: Let A be an NDFA and

define A- as suggested in Theorem 5.1. Give an example to show that L(A) might not
be equal to -L(A).

5.28. Complete the proof of Lemma 5.7.

5.29. Give an example of a collection of languages that is closed under union, concatenation,
and Kleene closure, but is not closed under intersection.

5.30. If a collection of languages is closed under union, does it have to be closed under
intersection? Prove or give a counterexample.

5.31. Refer to the construction in Theorem 5.4 and prove that L(A') = Lt·Lz. Warning! This
involves a lot of tedious details.

5.32. Refer to the construction in Theorem 5.5 and prove that L(A.) = L*. Warning! This
involves a lot of tedious details.

5.33. Amplify the explanations for each of the equivalences in the proof of Theorem 5.2.
5.34. Given a DFA A = <I, S, sO, 5, F>, define an NDFA that will accept L(A)+.
5.35. Given a NDFA A = <I,S,So,5, F>, define a NDFA that will accept LtA)".

5.36. If L is FAD, is it necessarily true that all subsets of L are FAD? Prove or give a
counterexample.

5.37. If L E ~l:, is it necessarily true that all supersets of L are in ~l:? Prove or give a
counterexample.

5.38. If LEXl:, is it necessarily true that all subsets of L are in Xl:? Prove or give a
counterexample.

5.39. If LEXl:, is it necessarily true that all supersets of L are in Xl:? Prove or give a
counterexample.

5.40. Explain the purpose of the new start state qo in the proof of Theorem 5.5.

5.41. Redesign the construction in the proof of Theorem 5.4, making use of x-transitions
where appropriate.

5.42. Redesign the construction in the proof of Theorem 5.5, making use of x-transitions
where appropriate. Do this in such a way as to make the "extra" start state qounneces
sary.

5.43. Redesign the construction in the proof of Theorem 5.4, assuming that At and Az are
NDFAs.

5.44. Redesign the construction in the proof of Theorem 5.5, assuming that A is a DFA.,
5.45. How does the right congruence generated by a language L compare to the right

congruence generated by the complement of L? Hint: It may be helpful to consider the
construction of A- given in Theorem 5.1 when A is a minimal machine accepting L.

5.46. (a) Give examples of languages L, and L, for which R(Lt n L2) = RL1n RL2.
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(b) Give examples of languages L1and L2for which RCL 1n L2) =f. RL 1 n RL2 • Hint: It may
be helpful to consider the construction of An given in Lemma 5.1 to direct your
thinking.

5.47. Consider the following assertion: ~~ is closed under relative complement; that is, if L1
and L2are FAD, then L1- L, is also FAD.
(a) Prove this by appealing to existing theorems.
(b) Define an appropriate "new" machine.
(c) Prove that the machine constructed in part (b) behaves as advertised.

5.48. Define;e~ to be the set of all languages recognized by NDFAs with A-transitions. What
sort of closure properties does ;e~ have? How does ;e~ compare to ~~?

5.49. (a) Give an example of a language L for which AE L".
(b) Give three examples of languages L for which L+ = L.

5.50. Recall that l)u: (51U 52) X I-+p(51U 52) was defined by

(

8l(S, a) if s E s.
l)U(s, a) = 'tis E Sl U Sz, 'tIa E ~

8z(s, a) if s E Sz

(a) Prove (by induction) that 8u conforms to a similar formula:

,
if s E S:

'tIx E ~*

(b) Was this fact used in the proof of Theorem 5.2?
5.51. Let I be an alphabet. Prove or give counterexamples to the following:

(a) .N'~ is closed under relative complement.
(b) .N'~ is closed under union.
(c) .N'~ is closed under concatenation.
(d) .N'~ is closed under Kleene closure.
(g) IfLE.N'~, then L+ E.N'~..

5.52. Why was it necessary to require that 51n 52= 0in the proof of Theorem 5A? Would
any step of the proof be invalid without this assumption? Explain.

5.53. Let I be an alphabet. Define E(L) = {z I(3y E I+)(3x E L)(z = yx)}.
(a) Given an automaton accepting L, describe how to modify it to produce an automa

ton accepting E(L).
(b) Prove that your construction behaves as advertised.
(c) Argue that ~~ is closed under the operator E.

5.54. Let I bean alphabet. Define B(L) ={z 1(3x E L)(3y EI*)(z =xy)}.
(a) Given an automaton accepting L, describe how to modify it to produce an automa

ton accepting B(L).
(b) Prove that your construction behaves as advertised.
(c) Argue that ~~ is closed under the operator B.

5.55. Let I be an alphabet. Define M(L) ={z 1(3x EL)(3y EI+)(z =xy)}.
(a) Given an automaton accepting L, describe how to modify it to produce an automa

ton accepting M(L).
(b) Prove that your construction behaves as advertised.

. . (c) Argue that ~~ is closed under the operator M.
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5.56. Refer to the definitions given in Lemma 5.1 and use induction to show that

(Vs E SI)(Vt E Sz)(Vx E I*)(Bn«s, t),x) = (B1(s, x), Bz(t,x»)

5.57. Refer to Lemma 5.1 and prove that L(A n
) = L1 n Lz. As long as the reference is

explicitly stated, the result in Exercise 5.56 can be used without proof.
5.58. Prove Theorem 5.6.
5.59. Prove Theorem 5.7.

5.60. (a) Cleverly define a machine modification that does not use any A-moves that could
be used to prove Theorem 5.7 (your new machine is still likely to be non
deterministic, however).

(b) Prove that your modified machine behaves as advertised.

5.61. Let W(L) = {x Ix is formed by deleting one or more letters from a word in L}.
(a) Given an automaton accepting L, describe how to modify it to produce an automa

ton accepting W(L).
(b) Prove that your construction behaves as advertised.
(c) Argue that Q1)~ is closed under the operator W.

5.62. Let V(L) = {x Ix is formed by deleting the odd-positioned letters from a word in L}.
[Note: This refers to the first, third, fifth, and so on, letters in a word. For example, if
abcdefE L, then bdfE V(L).]
(a) Given an automaton accepting L, describe how to modify it to produce an automa

ton accepting V (L).
(b) Prove that your construction behaves as advertised.
(c) Argue that Q1)~ is closed under the operator V.

5.63. Let U(L) = {x Ix is formed by deleting the even-positioned letters from a word in L}.
[Note: This refers to the second, fourth, sixth, and so on, letters in a word. For
example, if abcdefg E L, then aceg E U(L).]
(a) Given an automaton accepting L, describe how to modify it to produce an automa

ton accepting U (L).
(b) Prove that your construction behaves as advertised.
(c) Argue that Q1)~ is closed under the operator U.

5.64. Let T(L) = {x Ix is formed by deleting every third, sixth, ninth, and so on, letters from
a word in L}. [Note: This refers to those letters in a word whose index position is
congruent to 0 mod 3. For example, if abcdefg E L, then abdeg E T(L).]
(a) Given an automaton accepting L, describe how to modify it to produce an automa

ton accepting T(L).
(b) Prove that your construction behaves as advertised.
(c) Argue thatQ1)~ is closed under the operator T.

5.65. Let P = {x Ilxl is prime} and let I(L) be defined by I(L) = L n P.
(a) Show that Q1)~ is not closed under I.
(b) Show that F~ is closed under I (see Exercise 5.1).
(c) Prove or disprove: C~ is closed under I (see Exercise 5.2).
(d) Prove or disprove: B~ is closed under I (see Exercise 5.3).
(e) Prove or disprove: Is is closed under I (see Exercise 5.4).
(I) Prove or disprove: J~ is closed under I (see Exercise 5.5).
(g) Prove or disprove: E is closed under I (see Exercise 5.6).
(h) Prove or disprove: Nz is closed under I.
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5.66. Define C to be the collection of all languages over {a,b} that do not contain A. Prove or
give counterexamples to the following:
(a) C is closed under complementation.
(b) C is closed under union.
(c) C is closed under intersection.
(d) C is closed under concatenation.
(e) C is closed under Kleene closure.
(0 C is closed under relative complement.
(g) If LEe, then L+ E C.

5.67. (a) Consider the statement that 2ll}; is closed under finite union:
(i) Prove by existing theorems and induction.

(ii) Prove by construction.
(b) Prove or disprove that 2ll}; is closed under infinite union. Justify your assertions.

5.68. Let I = {a, b}.
(a) Give examples of three homomorphisms under which j(}; is not closed.
(b) Give examples of three homomorphisms under which j(}; is closed.

5.69. Let I = {a}. Can you find two different homomorphisms under which j(}; is not closed?
Justify your conclusions.

5.70. Refer to the construction given in Theorem 5.10.
(a) Prove 8"(s,x) = 8(s, iJI(x)) \Is E S, \Ix E I*.
(b) Complete the proof of Theorem 5.10.

5.71. Consider the homomorphism ~ given in Lemma 5.4 and the set L of all strings that have
the same number of as as bs.
(a) 2ll}; is closed under inverse homomorphism, but ~(L) is the set of all even-length

strings of as, and it appears that under ~-l the DFA language ~(L) maps to the
non-FAD language L. Explain the apparent contradiction. Hint: First compute
~-l(~(L)).

(b) Give an example of a homomorphism for which iJI(iJI-\L)) 1- L.
(c) Give an example of a homomorphism for which iJI-\iJI(L)) 1- L.
(d) Prove iJI(iJI-l(L)) c L.
(e) Prove L c iJI-l(iJI(L)).

5.72. Let I be an alphabet. Define the (unary) operator e by

L' = {x 13y EI* Ol (yx EL 1\ Ixl = Iyl)}

L" then represents the last halves of all the words in L. For example, if

K = {ad, abaa, ccccc},

then K"= {d,aa}. Prove that 2ll}; is closed under the operator e.
5.73. Refer to the proof of Theorem 5.11 and show that there exists an automaton A for

which it would be incorrect to try to accept L b by redefining the set of final states to be
the set of "midway" states.

5.74. Consider the sets M and K in Example 5.20. Assume thatwe have used the pumping
lemma to show that M is not FAD. What would be wrong with arguing that, since M
was not FAD, its homomorphic image cannot be FAD either, and hence K is therefore
not FAD.

5.75. Prove Theorem 5.9.
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5.76. Let I be the ASCII alphabet. Define a homomorphism that will capitalize all lower
case letters (and does not change punctuation, spelling, and the like).

5.77. Consider the proof of Theorem 5.12.
(a) Show that for AI defined by AI = <I, St, SOl' lit, FI>,where

FI ={tl3y .I*:J (y.Lz A 8t (t , y) .F)},L(N) = LdLz.

(b) Given deterministic finite automata At = <I, St, SOl' lit, F;> such that L (At) = L,
and Az = <I, Sz, saz, liz,Fz> for which L(Az) = Lz, give an algorithm for com
puting FI = {tl3y E I* :J (y E Lz A 8t (t , y) E F)}.

5.78. Given two alphabets It and I z and a DFA A = <It, S, sO, 8, F>:
(a) Define a new automaton A' = <It U Iz,S', so,8' ,F'> for which L(A') =L(A).
(b) Provethat A' behaves as advertised.

5.79. Let S be a collection of languages that is closed under union, concatenation, and
Kleene closure. Prove or disprove: IfS contains an infinite number of languages, every
language in S must be FAD.

5.80. Let S be a collection of languages that is closed under union, concatenation, and
Kleene clsoure. Prove or disprove: If S is a finite collection, every language in S must
be FAD.

5.81. Let u be a unary language operator that, when composed with itself, yields the identity
function. Prove that .N:l: must be closed under u.



CHAPTER

REGULAR EXPRESSIONS

In this chapter we will develop a standard notation for denoting FAD languages and
thus explore yet another characterization of these languages. The specification of a
language by an automaton unfortunately does not provide a convenient summary of
those strings that are accepted; it is straightforward to check whether any particular
word belongs to the language, but it is often difficult to get an overall sense of the set
of accepted words. Were the language finite, the individual words could simply be
explicitly listed. The delineation of an infinite set in this manner is clearly impos
sible.

Up to this point, we have relied on English descriptions of the languages under
consideration. Natural languages are unfortunately imprecise, and even small
machines can have impossibly complex descriptions. the concept of regular expres
sions provides a clear and concise vehicle for denoting many of the languages we
have studied in the previous chapters.

6.1 ALGEBRA OF REGULAR EXPRESSIONS

The definition of set union and the concepts of language concatenation (Definition
5.4) and Kleene closure (Definition 5.5) afford a convenient and powerful method
for building new languages from existing ones. The expression ({a, b}·{c))*·{d} is an
infinite set built from simple alphabets and the operators presented in Chapter 5.
We will see that this type of representation is quite suitable for our purposes and is
intimately related to the finite automaton definable languages.

178
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V Definition 6.1. Let I = {a., az, ... ,am}be an alphabet. A regular set over I is
any set that can be formed by a sequence of applications of the following rules:

i. {a.},{a-}, ... ,{am} are regular sets.
ii, { } (the empty set of words) is a regular set.

iii. {A} (the set containing only the empty word) is a regular set.
iv, If L, and L, are regular sets, then so is Lj"Lz.
v, If L, and L, are regular sets, then so is L, U Lz.

vi. If L, is a regular set, then so is Lt.

EXAMPLE 6.1

Let I = {a, b, e}. Each of the following languages are regular sets:

{A}
{a}*

{b} U {e}
({a} U {A})' ({b}*)

{a}'({b} U {e})
{ }*

{b'A}
{e}'{ }

The multitude of set brackets in these expressions is somewhat undesirable;
we now present a common shorthand notation to represent such sets. Expressions
like {a}* will simply be written as a", and {a}'{b} will be shortened to abo The
notation we wish to use can be formally defined in the following recursive manner.

V Definition 6.2. Let I = {a., az, ... ,am}be an alphabet. A regular expression
over I is a sequence of symbols formed by repeated application of the following
rules:

i. a., az, ... ,am are all regular expressions, representing the regular sets
{a.}, {az}, ... ,{am}, respectively.

li, 0is a regular expression representing { }.
iii. E is a regular expression representing {A}.

lv, If R, and R, are regular expressions corresponding to the sets L, and Lz, then
(R, .Rz) is a regular expression representing the set L, .Lz.

v. If R, and R, are regular expressions corresponding to the sets L, and Lz, then
(R, U Rz) is a regular expression representing the set L, U Lz.

vi. If R, is a regular expression corresponding to the set Lj, then (Rj)" is a regular
expression representing the set Lt.

EXAMPLE 6.2

Let I ={a, b, e}. The regular sets in Example 6.1 can be represented by the follow
ing regular expressions:

E

(a)*
(b U c)
((a U E)' (b) *)

(a·(b U c))
(0)*

(b-e)
(e'0)
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Note that each expression consists of the "basic building blocks" given by 6.2i
through 6.2iii and are connected by the operators U, . and * according to rules 6.2iv
through 6.2vi. Each expression is intended to denote a particular language over I.
Such representations of languages are by no means unique. For example,
(a·(b U c)) and (Ia-b) U (a·c)) both represent the same set, {ab, ac}. Similarly, (b-e)
and b both represent {b},

The intention of the parentheses is to prevent ambiguity; a-b U c could mean
(a·(b U c)) or (Ia-b) U c), and the difference is important: the first expression repre
sents {ab, ac}, while the second represents {ab, c}, which are obviously different
languages. To ease the burden of all these parentheses, we will adopt the following
simplifying conventions.

Notational Convention: The precedence of the operators, from highest to lowest,
shall be *, " U. When writing a regular expression, parentheses that conform to this
hierarchy may be omitted. In particular, the outermost set of parentheses can
always be omitted. Juxtaposition may be used in place of the concatenation symbol
(. ).

EXAMPLE 6.3

Thus, a·b U c will be taken to mean (Ia-b) U c), not (a-Ib U c)), since· has pre
cedence over U. Redundant parentheses that are implied by the precedence rules
can be eliminated, and thus «(a·b) U cj-d) can be written as (ab U c)d. Notice that
b U c* represents (b U (c*)), not (b U c)*. Kleene closure therefore behaves much
like exponentiation does in ordinary algebraic expressions in that it is given prece
dence over the other operators. Concatenation and union behave much like the
algebraic operators multiplication and addition, respectively. Indeed, some texts
use + instead of U for union; the symbol for concatenation already agrees with that
for multiplication ( .), and we will likewise allow the symbol to be omitted in favor of
juxtaposition. The constants 0 and e behave much like the numbers 0 and 1 do in
algebra. The common identities x + 0 = x, x·1 = x and x ·0 = 0 have parallels in
language theory (see Lemma 6.1). Indeed, 0 is the identity for union and e is the
identity for concatenation.

Thus far we have been very careful to distinguish between the name of an
object and the object itself. In algebra, we are used to saying that the symbol 4
equals the string of symbols (that is, the word) 20 -;- 5; we really mean that both
names refer to the same object, the concept we generally call the number/our. (You
should be able to think of many more strings that are commonly used as a name for
this number, for example, 1111, IV, and 1002, We will be equally inexact here, writing
a·(b U c) = (a-b) U (a-c), This will be taken to mean that the sets represented by the
two expressions are equal (as is the case here; both equal {ab, ac}) and will not be
construed to mean that the two expressions themselves are identical (which is clearly
not the case here; the right-hand side has more as, more parentheses, and more
concatenation symbols).
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'il Definition 6.3. Let R be a regular expression. The language represented by
R is formally denoted by L(R). Two regular expressions R I and R, will be said to be
equivalent if the sets represented by the two expressions are equal, and we will write
RI=Rz.
Ll

Thus, R I and R, are equivalent if L(RI ) = L(Rz), but this is commonly abbre
viated R I = Rz. The word "equivalent" has been seen in three different contexts so
far: there are equivalent DFAs, equivalent NDFAs, and now equivalent regular
expressions. In each case, the intent has been to equate constructs that are associ
ated with the same language. Now that the idea of equality (equivalence) has been
established, some general identities can be outlined. The properties given in
Lemma 6.1 follow directly from the definitions of the operators.

'il Lemma 6.1. Let I be an alphabet, and let Rl> Rz, and R3 be regular
expressions. Then:

(a) R I u0= R I

(b) RI'E = RI = E·RI
(c) RI·0=0=0·RI
(d) R I U Rz = Rz U R I

(e) R I URI = RI
(0 R I U (Rz U R3) = (R I U Rz) U R3

(g) RdRz·R3) = (R I·Rz)·R3

(h) RI· (Rz U R3) = (R I.Rz) U (R I.R3)

(i) E*=E

(j) 0* =.E
(k) (R I U R z)* = (Ri U Ri)*
(I) (R I U R z)* = (Ri-Ri)*

(m) (R]")" = Ri
(n) (R I)*' (R]') = Ri

Furthermore, there are examples of sets for which:

(b') R I U E +- R I

(d') RI'Rz +- Rz'RI
(e') RI·RI +- R I
(h') RI U (R z·R3) +- (R I U Rz)·(RI U R3)

(k') (RI'Rz)* +- (Ri'Ri)*
(I') (RI'Rz)* +- (Ri URi)*

Proof. Property (h) will be proved here. The remainder are left as exercises.
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w E RIO (R2 U R3) ~ (by definition of .)

(3x,y)(y E (R2 U R3) A x E R, A w = x .y) ~(by definition of U)

(3x,y)«y E R2 V Y E R3) A (x E R, A w = x .y)) ~(by the distributive law)

(3x,y)«(y E R 2) A (x E R 1 A w = x oy))

V «y E R3) A (x E R1 A w = x oy)))~ (by definition of .)

(3x,y)«w = x 0y E R1·'R2) V (w = x-y E R1 •R3) ) ~ (by definition of U)

w E (Re R2) U (R 1•R3)

Note that identity (c) in Lemma 6.1 implies that {a, b}'0 = 0, which follows
immediately from the definition of concatenation. If w E {a, b}'0, then w would
have to be of the form x 'y, where x E {a, b} and y E 0; there are clearly no valid
choices for y, so {a, b}'0 is empty.

6.2 REGULAR SETS AS FAD LANGUAGES

Armed with the constructs and properties discussed in the first section, we will now
consider what types of languages can actually be defined by regular expressions.
How general is this method of expressing sets of words? Can the FAD languages be
represented by regular expressions? (Yes). Can all programming languages be
represented by regular expressions? (No). Are regular sets always finite automaton
definable languages? (Yes). We begin by addressing this last question.

V Definition 6.4. Let l be an alphabet. ~~ is defined to be the set of all regular
sets over l.
11

The first question to be considered is, Can every regular set be recognized by a
DFA? That is, is ~~ ~ 2lJ~? It is clear that the "basic building blocks" are recog
nizable. Figure 6.1 shows three NDFAs that accept { }, {A}, and {c], respectively.
Recalling the constructions outlined in Chapter 5, it is easy to see how to combine
these "basic machines" into machines that will accept expressions involving the
operators U, " and ".

EXAMPLE 6.4

An NDFA that accepts a U b (as suggested by the proof of Theorem 5.2) is shown in
Figure 6.2. Note that it is composed of the basic building blocks for the letters a and
b, as suggested by the constructions in Figure 6.1.
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~CL(C)~{c}

Figure 6.1 NDFAs which recognize regular expressions with zero operators

183

Figure 6.2 The NDFA discussed in
Example 6.4

EXAMPLE 6.5

An NDFA that accepts (a U b)" is shown in Figure 6.3. The automaton given in
Figure 6.2 for (a U b) is modified as suggested by the proof of Theorem 5.5 to
produce the Kleene closure of (a U b). Recall that the "extra" state qo was added to
ensure that A. is accepted by the new machine.

a

a b

b
Figure 6.3 The NDFA discussed in
Example 6.5
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EXAMPLE 6.6

An NDFA that accepts c·(a U b)" (as suggested by the proof of Theorem 5.4) is
shown in Figure 6.4.

a

b

Figure 6.4 The NDFA discussed in
Example 6.6

Note that in this last example qo, to, and So are disconnected states, and r., Sb
and t1 could be coalesced into a single state. The resulting machines are not
advertised to be efficient; the main point is that they can be built. The techniques
illustrated above are used to prove the following lemma.

V Lemma 6.2. Let I be an alphabet and let R be a regular set over I. Then
there is a DFA that accepts R.

Proof. The proof is by induction on the number of operators in the regular
expression describing R (see the exercises). Note that Figure 6.1 effectively
illustrates the basis step: Those regular expressions with zero operators
(0, E, a., a2, ... ,am) do indeed correspond to FAD languages. This covers sets gen
erated by rules i, ii, and iii of Definition 6.2. For sets corresponding to regular
expressions with a positive number of operators, the outermost operator can be
identified, and it will be either', U, or *, corresponding to an application of rule iv,
v, or vi. The induction assumption will guarantee that the subexpressions used by
the outermost operator have corresponding DFAs. Theorems 5.2,5.4, and 5.5 can
then be invoked to argue that the entire expression has a corresponding DFA.
d

V Corollary 6.1. Let I be an alphabet. then ~I ~ 21lI .

Proof. The proof follows immediately from Lemma 6.2.
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Since we are assured that every regular set can be accepted by a finite automa
ton, the collection of regular sets is clearly contained in the set of FAD languages.
This also means that those languages that cannot be represented by a DFA (that is,
those contained in.N'~) have no chance of being represented by a regular expression.

6.3 LANGUAGE EQUATIONS

The next question we will address is whether ~~ ~ ~~, that is, whether every FAD
language can be represented by a regular expression. The reader is invited to take a
sample DFA and try to express the language it accepts by a regular expression. You
will probably be able to do it, but only by guesswork and trial and error. Our first
question appears to have a much more methodical solution: Given a regular expres
sion, it was a relatively straightforward task to draw a NDFA (and then a DFA); in
fact, we have a set of algorithms for doing just that, and we could program a
computer to do the task for us. This second question does not seem to have an
obvious algorithm connected with it, and we will have to attack the problem using a
new concept: language equations.

In algebra, we are used to algebraic equations such as 3x + 7 = 19. Recall that
a solution to this equation is a numerical value for x that will make the equation true,
that is, make both sides equal. In the above example, there is only one choice for x,
the unique solution 4. Equations can have two different solutions, like x 2 = 9, no
solutions, like x 2 = -9, or an infinite number of solutions, like 2(x + 3) = x + 6 + x.
In a similar way, set equations can be solved, such as {a, b, c}= {a, b}U X. Here X
represents a set, and we are again looking for a value for X that will make the
equation true; an obvious choice is X = {c}, but there are other choices, like
X = [b, c}(since {a, b, c}= {a, b}U{b, en. Such equations may likewise have no solu
tions, like XU {b} = {a, c}, or an infinite number of solutions, such as XU {b} = X
(what sorts of sets satisfy this last equation?). We wish to look at set equations
where the sets are actually sets of strings, that is, language equations. The type of
equation in which we are most interested has one and only one solution, as outlined
in the next theorem. It is very similar in form and spirit to the theorem in algebra
that says "For any numbers a and b, where a =/= 0, the equation ax = b has a unique
solution given by x = b -:- a."

V Theorem 6.1. Let I be an alphabet. Let E and A be any subsets of I ". Then
the language equation X = E U A· X admits the solution X = A*.E. Any other
solution Y must contain A*.E. Furthermore, if A $. A, X = A*.E is the unique
solution.

Proof. First note that the set A*E is indeed a solution to this equation, since
A*E = E U A ·(A*E) (see the exercises). Now assume that some set Y is a solution
to this equation, and let us investigate some of the properties that Y must have: If Y
is a solution, then
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Y = E U A· Y~ (by definition of U)

E~Y 1\ A·Y~Y~(ifE~Y, thenA·E~A·Y)

A· E ~ A· Y ~ Y~ (by substitution)

A·A·E~A·A·Y c A·Y ~Y~(by induction)

('fin E N)(An
•E c Y)~ (by definition of A *)

A*·E~Y

Chap. 6

Thus, every solution must contain all of A *E, and A*E is in this sense the smallest
solution. This is true regardless of whether or not A belongs to A.

Now let us assume that A$. A and that we have a solution W that is actually
"bigger" than A *E; we will show that this is a contradiction, and thus all solutions
must look exactly like A *E. If W is a solution, W =F A *E, then there must be some
elements in the set W - A *E; choose a string of minimal length from among these
elements and call it z. Thus z E Wand z f!. A *E, and since E ~ A *E (why?), z f!. E.
Since W is a solution, we have

W = E UA·W~ (since z E Wand it cannot be in the E part)

z EA·W~ (by definition of .)

(3x E A, 3y E W) ;) z = x-y ~ (by definition of I I)

Iz I= [xI+ Iy I~ (since A$. A and x E A, so x =/= A and [xI> 0)

lyj<lzl

Note that y cannot belong to A *E (if yEA*E, then, since x E A,
z( = x .y) E A·(A*E) ~ A *E, which means that z E A *E, and we started by assum
ing that z f!. A *E); since yEW, we have yEW - A *E, and we have produced a
string shorter than z, which belongs to W - A *E. This is the contradiction we were
looking for, and we can conclude that it is impossible for a solution W to be larger
than A *E. Since we have already shown that no solution can be smaller than A *E,
we now know that the only solution is exactly A *E.
a

EXAMPLE 6.7

X ={b, c}U [a} X does indeed have a solution; X can equal [a}" '{b, c}. Note also
that this is the only solution (verify, for example, that X ={a]" '{c} is not a solu
tion). The equation Z = {b, c}U {a, A}'Z has several solutions; among them are
Z = [a]" {b, c}and Z = {a, b, c}",

It is instructive to explicitly list the first few elements of {a}* '{b, c}and begin to
check the validity of the solution to the first equation. If Y is a solution, then the two
sides of the equation Y = [b, c}U{a}'Y must be equal. Since both band c appear on
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the right-hand side they must also be on the left-hand side, which clearly means that
they have to be in Y. Once b is known to be in Y, it will give rise to a term on the
right-hand side due to the presence of {a}·Y. Thus, a-b must also be found on the
left-hand side and therefore is in Y, and so on. The resulting sequence of implica
tions parallels the first part of the proof of Theorem 6.1.

To see intuitively why no string other than those found in [a]" '{b, e} may
belong to a solution for X = {b, c] U {a}'X, consider a string such as aa. If this were
to belong to X, then it would appear on the left-hand side and therefore would have
to appear on the right-hand side as well if the two sides were to indeed be equal. On
the right-hand side are just the two components, {b, e}and [a}X. aa is clearly not in
{b, c], so it must be in {aj-X, which does seem plausible; all that is necessary is for a
to be in X, and then aa will belong to [a} X. If a is in X, though, it must also appear
on the left-hand side, and so a must be on the right-hand side as well. Again, a is not
in {b,e}, so it must be in [aj-X, This can happen only if Abelongs to X so that a-x
will belong to {a}'X. This implies that A must now show up on both sides, and this
leads to a contradiction: A cannot be on the right-hand side since A clearly is not in
{b;c}, and it cannot belong to [aj-X either, since all these words begin with an a.
This contradiction shows why aa cannot be part of any solution X.

This example illustrates the basic nature of these types of equations: for words
that are not in [a]" ·{b, e}, the inclusion of that word in the solution leads to the
inclusion of shorter and shorter strings, which eventually leads to a contradiction.
This property was exploited in the second half of the proof of Theorem 6.1. Rather
than finding shorter and shorter strings, though, it was assumed we already had the
shortest, and we showed that there had to be a still shorter one; this led to the
desired contradiction more directly.

Our main goal will be to solve systems of language equations, since the re
lationships between the terminal sets of an automaton can be described by such a
system. Systems of language equations are similar in form and spirit to systems of
algebraic equations, such as

3Xl +X2 = 10

Xl -X2 = 2

which has the unique solution Xl = 3,X2 = 1. We will look at systems of language
equations such as

Xl=EUa·XlUb,X2

X2 = 0U b· Xl U 0·X2

which has the (unique) solution Xl=(aUbb)*,X2=b·(aUbb)*. Checking that
this is a solution entails verifying that both equations are satisifed if these expres
sions are substituted for the variables Xl and X2 •

The solution of such systems parallels the solution of algebraic equations. For
example, the system
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3XI +X2 = 10

Xl -X2 = 2

can be solved by treating the second statement as an equation in just the variable Xz

and solving as indicated by the algebraic theorem "For any numbers a and b, where
a =1= 0, the equation ax = b has a unique solution given by X = b -:- a." The second
statement can be written as (-1)xz = 2 - Xz, which then admits the solution
Xz = (2 - Xl) -:- (-1) or Xz = Xl - 2. This solution can be inserted into the first equa
tion to eliminate Xz and form an equation solely in Xl' Terms can be regrouped and
the algebraic theorem can be applied to find Xl. We would have

3XI + Xz = 10

which becomes

or

4XI - 2 = 10

or

or

Xl = 12 -:- 4

yielding

xl=3

This value of Xl can be back-substituted to find the unique solution for Xz:

Xz= XI - 2 = 3 - 2 = 1.
Essentially, the same technique can be applied to any two equations in two

unknowns, and formulas can be developed that predict the coefficients for the
reduced set of equations. Consider the generalized system of algebraic equations
with unknowns Xl and Xz, constant terms EI and Ez, and coefficients An, A12, A2l ,

and A zz:

Anxi + A12xz = EI

AZIXI + Azzxz = Ez

Recall that the appropriate formulas for reducing this to a single equation of the
form Anxi = EI, where the new coefficients An and EI can be calculated as

EI = EIAzz- EzAIZ

An = AnAzz - AIZAzl

A similar technique can be used to eliminate variables when there is a larger
number of equations in the system. The following theorem makes similar predic
tions of the new coefficients for language equations.
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V Theorem 6.2. Let n 2= 2 and consider the system of equations in the un-
knowns Xl, Xz, ' , . .X, given by

Xl = E 1U A llX1U A 12XZU U A 1(n-1)Xn- 1 U A 1nXn

x, = Ez U A Z1X1U AzzXz U U A Z(n-1)Xn- 1 U A 2nXn

X n-1 = En-1U A(n-1)lX1 U A(n-1)ZXZU . , . U A(n-1)(n-1)Xn- 1 U A(n-1)n X,

X, = En U A n1X1 U AnzXz U . , . U A n(n-1)Xn- 1 U AnnXn

in which (Vi,j E {I, 2, ... ,n})(A $. A ij) ,

a. This system has a unique solution.
b. Define Ei = E, U (Ain,A:n ,En) for all i = 1,2,., . ,n -1

and

Aj = A ij U (Ain ,A:n •A nj) for all i,j = 1,2, ... ,n - 1.

The solution of the original set of equations will agree with the solution of the
following set of n - 1 equations in the unknowns Xj , Xz, ' , . ,Xn - 1:

X, = E1 U AU x1 U A12xZ U ' , . U A 1(n-1)Xn- 1

x, = Ez U A Z1X1U Azzxz U··· U A Z(n-l)Xn-1

X n- 1 =En- 1U A(n - 1)lX1 U A(n-l)zXZU ' , . U A(n-1)(n-1)Xn-1

c. Once the solution to the above n - 1 equations in (b) is known, that solution
can be used to find the remaining unknown:

x,= A:n ·(EnU A n1X1 U AnzXz U,·· U A n(n-1)Xn- 1)

Proof. The proof hinges on the repeated application of Theorem 6.1. The last
of the n equations, X, = En U A n1X1 U AnzXz U ' .. U A n(n-1)Xn- 1 U AnnXn can be
thought of as an equation in the one unknown X, with a coefficient of Ann for X n,

and the remainder of the expression a "constant" term not involving X n • The
following parenthetical grouping illustrates this viewpoint:

x, = (En U A n1X1 U AnzXz U··· U A n(n-l)Xn-1) U AnnXn

Note that for any subscript k, if A nk does not contain A,neither will AnkXk, Theorem
6.1 can therefore be applied, to the one equation in the one unknown Xn , with
coefficients
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and A = Ann. The solution, A*E, is exactly as given by part (c) above:

X n= A:n·(EnU AnlXI U AnzXzU' .. U An(n-I)Xn-l)

or

X, = A:n.EnU A:n·AnlXI U A:n·AnzXzU ... U A:n·An(n-I)Xn-l)

If there was a unique solution for the terms X, through Xn- l, then Theorem 6.1
would guarantee a unique solution for X n , too.

The solution for X, can be substituted for X, in each of the other n -1
equations. If the kth equation is represented by

x, = EkU AklXI U AkZXZU ... U AknXn

then the substitution will yield

X, = EkU AklXI U AkZXZU ...

U (Akn·(A:n'EnU A:n·AnIXI U A:n.AnzXzU'" U A:n·An(n-I)Xn-l))

By using the distributive law, this becomes

X, = EkU AklXI U AkZXZU ...

U(Akn·A:n-B, UAkn·A:n.AnlXI UAkn·A:n·AnzXzU··· UAkn·A:n.An(n-l)Xn-l)

Collecting like terms yields

x, = (EkU Akn·A:n·En)U (AkIXI U Akn·A:n·AnIXI)

U (AkZXZU Akn,A:n.AnzXz) U··· U (Ak(n-I)Xn-1 U Akn·A:n·An(n-l)Xn-l)

or

X, = (E, U A kn·A:n.En) U (Akl U A kn·A:n.Anl)XI

U (AkZU Akn·A:n.Anz)XzU'" U (Ak(n-l) U Akn·A:n·An(n-l))Xn-1

The constant term in this equation is (E, U A kn·A:n.En), which is exactly the for
mula given for Ek in part (b). The coefficient for X, is seen to be

(Akl U Akn,A:n.Ani),

while the coefficient for X, is (AkZU A kn·A:n.Ad, and so on. The coefficient for Xj
would then be Akj= A kj U (Akn·A:n.A nj), which also agrees with the formula given
in part (b). This is why the solution of the original set of equations agrees with the
solution of the set of n - 1 equations given in part (b).

Part (a) is proved by induction on n: the method outlined above can be
repeated on the new set of n - 1 equations to eliminate Xn - l, and so on, until one
equation in the one unknown X, is obtained. Theorem 6.1 will guarantee a unique
solution for Xl, and part (c) can then be used to find the unique solution for Xz, and
so on .
.6.
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EXAMPLE 6.8

Consider the system defined before, where

Xl=EUa,XlUb·Xz

Xz=0Ub·Xlu0·Xz

The proof of Theorem 6.2 implies the solution for X, will agree with the solution to
the one-variable equation X, = El U AnXI, where

E l = E, U (Alz·Aiz·Ez) = EU (b·0*·0) = EU (b·E·0) = EU 0 = E,

and

An = An U (A l2 • Aiz' Azl) = a U (b'0* ·b) = a U (b-e-b) = aU bb.

Thus we have X, = EU (a U bb). XI, which by Theorem 6.1 has the (unique) solution
Xl = AilEl = (a U bb)*·E. Substituting this into the second equation yields
X, = 0 U b·(a U bb)* U 0·Xz, which by Theorem 6.1 has the (unique) solution
X, = 0*·(b· (a U bb)*) = b·(a U bb)". Note that this expression for X, could also be
found by applying the back-substitution formula given in the proof of Theorem 6.2.

We will now see that the language accepted by a DFA can be equated with the
solution of a set of language equations, which will allow us to prove the following
important theorem.

V Theorem 6.3. Let l be an alphabet and let L be an FAD language over l.
Then L is a regular set over l.

Proof. If L is FAD, then there exists an n > 0 and a deterministic finite auto
maton A = <l, [s., Sz, ... ,sn}, s., 8, F> such that L(A) = L. For each i = 1,2, ... ,n,
define Xi = {z E l* 18(s;, z) E F}; that is, Xi is the set of all strings that, when starting
at state s., reach a final state in A. Each Xi then represents the terminal set T(A, Si)
defined in Chapter 3. Since Sl is the start state of this machine, it should be clear that
X, =L(A) = L. Define

and

if s,$. F
for i = 1,2, ... ,n

if SiE F

Ai} = U a
ae:EA&(s"a)=sj

for i,j = 1,2, ... ,n

That is, Ai} represents the set of all letters that cause a transition from state s, to state
sf. Notice that since A. $.l none of the sets Ai} contain the empty string, and
therefore by Theorem 6.2, there is a unique solution to the system:
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x, = E l U AllXl U A1ZXZU U AlnXn

x, = EzU AZlXl U AzzXzU U AznXn

Chap. 6

However, these equations exactly describe the relationships between the terminal
sets denoted by Xl> Xz, ... , X, at the beginning of this proof (compare with Exam
ple 6.11), and hence the solution will represent exactly those quantities. In particu
lar, the solution for X, will be a regular expression for L(A), that is, for L.
~

EXAMPLE 6.9

Consider the DFA B given by the diagram in Figure 6.5, which accepts all strings
with an odd number of bs over {a, b], This machine generates the following system
of language equations:

x, = 0U aX l U ex,
X, = E U bXl U aXz

which will have the same solution for X, as the equation

x, = E,l U .AllXl

where

and

Figure 6.5 The DFA discussed in
Example 6.9

Theorem 6.1 predicts the solution for X, to be (a U (b·a*·b))*·b·a*. It can be
verified that this solution describes all those strings with an odd number of bs. X, is
indeed the terminal set for s., that is, T(B, s.). Likewise, finding X, yields all strings
with an even number of bs, which is the terminal set for Sz, T(B, sz).

Nondeterministic finite automata can likewise be represented by language
equations, and without the intermediate step of applying Definition 4.5 to acquire a
deterministic equivalent. The sets E; and A ij retain essentially the same definitions
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as before: E, is • or 0, depending on whether or not s, is a final state, and A ij again
represents exactly the set of all letters that cause a transition from state s, to state Sj'

This definition requires a minor cosmetic change for NDFAs, since the state transi
tion function is slightly different:

A ij = U a
8 E I II SjE 8(s, ,8)

for i,j = 1,2, ... ,n

An n-state NDFA therefore gives rise to n equation in n unknowns, which can
be solved as outlined by Theorems 6.2 and 6.1. While Definition 4.5 need not be
used as a conversion step, an NDFA with A-moves will have to be transformed into
an equivalent NDFA without A-moves. An appropriate definition for A ij could be
given for the original NDFA, and while the resulting equations would describe the
relation between the terminal sets, some A ij set might then contain Aas a member.
There are systems of equations arising in this manner that do not have unique
solutions (see the exercises). For an NDFA with A-moves, Definition 4.9 could be
applied to find an equivalent NDFA without A-moves, since Theorems 6.2 and 6.1
specifically prohibit the empty string as a part of a coefficient. However, if the
ambiguous equations generated from a machine with A-moves were solved as sug
gested in Theorems 6.1 and 6.2, a "minimal" solution would be obtained that would
correspond to the desired answer.

EXAMPLE 6.10

Consider again the system described in Example 6.8. This can be thought of as the
set of language equations corresponding to the NDFA called 8, illustrated in Figure
6.6a. Note that L (8) is indeed the given solution: L (8) = X, = (a U bb)*. Notice the

a

(a)

a

(b)

a

(c)

Figure 6.6 (a) The NDFA 8 discussed
in Example 6.10 (b) The NDFA C dis
cussed in Example 6.10 (c) The NDFA
D discussed in Example 6.10
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similarity between B and the machine C shown in Figure 6.6b, which has Sz as the
start state. Note that L(C) is given by X, = b·(a U bb)", where X, was the other part
of the solution given in Example 6.8 (verify this). Finally, consider a similar machine
D in Figure 6.6c with both s, and Sz as start states. Can you quickly write a regular
expression that describes the language accepted by D?

EXAMPLE 6.11

Regular expressions for machines with more than two states can be found by
repeated application of the technique described in Theorem 6.2. For example,
consider the three-state DFA given in Figure 6.7. The solution for this three-state
machine will be explored shortly. We begin by illustrating the natural relationships
between the terminal sets described in Theorem 6.3. First let us note that the
language accepted by this machine includes:

b

Figure 6.7 The DFA discussed in
Example 6.11

1. All strings that end with b.
2. Strings that contain no bs, but for which [x], -Ixlc is a multiple of 3.
3. Strings that are concatenations of type (1) and type (2) strings.

According to Theorem 6.3, the equations for this machine are

x, = E U ex,U aXzU cX3

x, = 0 U (b U c)X j U0Xz U aX3

X3 = 0 U (a U b)X j Uex, U 0X3

which can be simplified to

x, = E U sx, U aXzU cX3

Xz=(bUc)X jUaX3

X3 = (a U b)X j Uex,

and rewritten as



Sec. 6.3 Language Equations

x, = E Uex, U aXzU eX3

x, = ux, U ex, U aX3

X3= »x,usx, U eXz

195

The equation for Xl admits the following interpretation; recalling that Xl
represents all the strings that reach a final state when starting from Sl> we see that
these can be broken up into four distinct classes:

1. Strings of length 0: (E).
2. Strings that start with a (and note that a moves the current state from s, to sz)

and then proceed (from sz) to afinal state: (aXz).
3. Strings that start with b and then proceed to a final state: (bXl).
4. Strings that start with e and then proceed to a final state: (eX3).

The union of these four classes should equal Xl> which is exactly what the first
equation states.

X? = bXl U eXl U aX3 can be interpreted similarly; E does not appear in this
equation because there is no way to reach a final state from Sz if no letters are
processed. If at least one letter is processed, then that first letter is an a, b, or e. If it
is a, then we move from state Sz to S3, and the remainder of the string must take us to
a final state from S3 (that is, the remainder must belong to X3). Strings that begin
with an a and are followed by a string from X3 can easily be described by a·X3.
Similarly, strings that start with b or e must move from Sz to s., and then be followed
by a string from Xl' These strings are described by b-X, and c-Xi. The three cases
for reaching a final state from Sz that have just been described are exhaustive (and
mutually exclusive), and so their union should equal all of Xz. This is exactly the
relation expressed by the second equation, Xz = bXl U eXl U aX3. The last equation
admits a similar interpretation.

None of the above observations are necessary to actually solve the system! The
preceding discussion is intended to illustrate that the natural relationships between
the terminal sets described by Theorem 6.3 and the correspondences we have so
laboriously developed here are succinctly predicted by the language equations.
Once the equations are written down, we can simply apply Theorem 6.2 and reduce
to a system with only two unknowns. We have

An = b,

A2l =bUe,

A 3l = a U b,

from which we can compute

Ez=0,
A12 = a,

A zz= 0,

A13=e

A 23 = a
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E2 = 0
A12= a U c0*c = a U cc

A22= 0 U a0*c = ac

E1= E1U A13Aj3E3 = EU c0*0 = E,

An = An U A13Aj3A31 = b U c0*(a U b) = b U c(a U b),

A21= b U c U a0*(a U b) = b U c U a(a U b),

which gives the following system of equations:

X, = EU (b U c(a U b))X1U (aU cc)X2

X2= 0 U ((b U c) U a(a U b))X1U acX2

These two equations can be reduced to a single equation by applying Theorem 6.2
again:

£1 = E1U A12(A22)*E2=~ (a U cc)·(ac)*·0 = ~
A 1\ "" " .

An = An U A1zCAd*A21= b U c(a U b) U (a U cc)(ac)*((b U c) U a(a U b))

which yields one equation in one unknown whose solution is
A .~

X, = (A n)*E1= (b U c(a U b) U (a U cc)(ac)*((b U c) U a(a U b)))*'E

Since Sl was the only start state, the regular expression given by X, should describe
the language accepted by the original three-state automaton.

Returning to our observations above, this expression ~an be reconciled with
our intuitive notion of what the solution "should" look like. An can be expanded to
yield the following form:

*An = b U ca U cb U a(ac)*b U a(ac)*c U a(ac)*ab U a(ac)*aa
U cc(ac)*b U cc(ac)*c U cc(ac)*ab U cc(ac)*aa

Observe that each of the 11 subexpressions consists of strings that (1) end with b, or
(2) contain no bs, but for which Ix la -Ix Ie is a multiple of 3. Hence the Kleene
closure of this expression, which represents the language accepted by this machine,
does indeed agree with our notion of what X, should describe.

Since Sl is also the only final state in this example, it is interesting to note that
*each of the subexpressions of An describes strings that, when starting at Sl in the

automaton, return you to Sl again for the first time (examine the diagram and verify
this ).

EXAMPLE 6.12

Consider the automaton shown in Figure 6.8. It is similar to the one in Example
6.11, but it now gives rise to four equations in four unknowns. As these equations
are solved, the final An coefficient for X, will again describe strings that, when
startiqg at Sl in the automaton, return you to Sl again for the first time; it will ag[ee
with An in Example 6.11. The final constant term associated with X, (that is, E1),
will represent all those strings that deposit you in a final ~tate froms, without ever
returning to Sl. In this automaton, this will be given by E1= de". Ai1E1 therefore
represents strings that go from s, back to s, any number of times, followed by a
string that leaves Sl (for the last time) for a final state.



Sec. 6.3 Language Equations

Figure 6.8 The DFA discussed in
Example 6.12
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In general, the final coefficient and constant terms can always be interpreted
in this manner. In Example 6.11, the only way to reach a final state from Sl and
avoid having to rfturn again to Sl was to not leave in the first place; this was reflected
by the fact that EI = E.

EXAMPLE 6.13

Consider the automaton illustrated in Figure 6.9, which is identical to the DFA in
Example 6.11 except for the placement of the final state. Even though the initial

~

system of three equations is now pifferent, we can expect An to compute to the
same expression as before. Since E I is supposed to represent all those strings that
deposit you in a final state from Sl without ever returning to S1> one should be able to
predict that the new final constant term will look like EI = a(ac)* U c(ca)*c. An
expression for the language recognized by this automaton would then be given by

Figure 6.9 The DFA discussed in
Example 6.13

XI = (A.n)*E I

= (b U c(a U b) U (a U cc)(ac)*«b U c) U a(a U b)))*'(a(ac)* U c(ca)*c)

It may often be convenient to eliminate a variable other than the one that is
numerically last. This can be accomplished by appropriately renumbering the un
knowns and applying Theorem 6.2 to the new set of equations. For convenience, we
state an analog of Theorem 6.2 that allows the elimination of the mth unknown
from a set of n equations in n unknowns. The following lemma agrees with Theorem
6.2 if m = n.
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V Lemma 6.3. Let nand m be positive integers and let m :5 n. Consider the
system of n ~ 2 equations in the unknowns Xl, X2, ... , X, given by

for k = 1,2, ... , n

in which (Vi,j)(A. $. Ai})'

The unknown X; can be eliminated from this system to form the following n - 1
equations in the unknowns Xl>X2, ... , Xm-l, Xm+l> ... , X n •

x, = EkU AklX l U Ak2X2U ... U Ak(m-I)Xm-1 U Ak(m+l) Xm+ l U ... U Aknxn,
for k = 1, 2, ... , m - 1, m + 1, ... , n

where

for alIi = 1,2, ... ,m -I,m + 1, ... ,n

and

foralli,j=I,2, ... ,m - l,m+l, ... ,n

Furthermore, once the solution to the above n - 1 equations is known, that solution
can be used to find the remaining unknown:

x, = A;:;m ·(EmU AmlXl U Am2X2U··· U Am(m-I)Xm-1

U Am(m+I)Xm+ 1 U ... U AmnXn)

Proof. The proof follows from a renumbering of the equations given III

Theorem 6.2.
a

A significant reduction in the size of the expressions representing the solutions
can often be achieved by carefully choosing the order in which to eliminate the
unknowns. This situation can easily arise when solving language equations that
correspond to finite automata. For example, consider the DFA illustrated in Figure
6.10. The equations for this machine are given by

Figure 6.10 The DFA discussed in
Exercise 6.19
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for all i = 1,2, ... , m - 1, m + 1, ... .n

x, = 0 U 0X l U (0 U nx, U 0X3

Xz = E U OXI U lXzU 0X3

X3 = 0 U 0Xl U (0 U nx, U 0X3

Using Theorem 6.2 to methodically solve for XI, Xz, and X3 involves eliminating X3

and then eliminating Xz. Theorem 6.1 can then be used to solve for XI, and then the
back-substitution rules can be employed to find X, and X3• The regular expressions
found in this manner are quite complex. A striking simplification can be made by
eliminating X3 and then eliminating X, (instead of Xz). The solution for X, is quite
concise, which leads to simple expressions for X, and X3 during the back
substitution phase (see Exercise 6.19).

Let A = <I, {SI, sz, ... , s.}, SI,5, F> be a deterministic finite automaton. We
have seen that the relationships between the terminal sets T(A, Si) described in
Chapter 3 give rise to a system of equations. Similarly, the initial sets leA, s.)
defined in Chapter 2 are also interrelated. Recall that, for a state s., leA, Si) is
comprised of strings that, when starting in the start state, lead to the state s.. That is,
leA, Si) = {x 15(sI,x) = s.}, The equations we have discussed to this point have been
right linear; that is, the unknowns Xi appear to the right of their coefficients. The
initial sets for an automaton are also related by a system of equations, but these
equations are left linear; the unknowns Y, appear to the left of their coefficients.
The solution for sets of left-linear equations parallels that of right-linear systems.

V Theorem 6.4. Let nand m be positive integers and let m ::5 n, Consider the
system of n === 2 equations in the unknowns YI, Y z, . . . , Y, given by

Y k= Ik U YlBkl U Y 2Bk2U'" U YnBkn, for k = 1,2, ... .n

in which (Vi,j)(A f/:. Bij).

a. The unknown Ym can be eliminated from this system to form the following
n - 1 equations in the unknowns YI, Y z, . . . , Ym - I, Y m+b . . • ,Yn.

Y k= t,U YlBkl U Y ZBk2U U Ym-lBk(m-l) U Ym+IBk(m+l) U ... U YnB kn,

for k = 1,2, ... ,m - 1, m + 1, ,n

where

t = Ii U (1m ' B';'m' Bim),

and

Bij = Bij U (BmrB;:',m .Bim), for all i,j = 1,2, ... ,m -1, m + 1, ... , n
b. Once the solution to the above n - 1 equations is known, that solution can be

used to find the remaining unknown:

v, = rr, U YlBml U Y 2Bm2U'" U Ym-lBm(m-l)
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c. A single equation YI = II U YIB u has the unique solution YI = IIBtl.

Proof. The proof is essentially a mirror image of the proofs given in Theorems
6.1 and 6.2.
b..

V Lemma 6.4. Let A = <I, {s!> S2,' .. .s.}, So, 8, F> be an NDFA. For each
i = 1,2, ... ,n, let the initial set I (A, s.) = {x 18(s., x) = s.} be denoted by Y i . The
unknowns Y!> Y2 , ••• , Yn satisfy a system of n left-linear equations of the form

for k = 1,2, ... ,n

where the coefficients are given by

if Si$ So
for i = 1, 2, ... .n

if s, E So

and

Bjj = U a
aE:Et\ si E 8(Sj,a)

Proof. See the exercises.

for i,j = 1,2, ... ,n

In contrast to Theorem 6.3, where A jj represented the set of all letters that
causes a transition from state s, to state Sj, Bjj represents the set of all letters that
causes a transition from state Sj to state s., That is, Bjj = Aji. In the definition in
Theorem 6.3, E, represented the set of all strings of length zero that can reach final
states from s., Compare this with the definition of I, above, which represents the set
of all strings of length zero that can reach Sj from a start state.

6.4 FAD LANGUAGES AS REGULAR SETS; CLOSURE PROPERTIES

The technique outlined by Theorems 6.1,6.2, and 6.3 provide the second half of the
correspondence between regular sets and FAD languages. As a consequence, regu
lar expressions and automata characterize exactly the same class of languages.

V Corollary 6.2. Let I be an alphabet. Then ~:E k ~:E'

Proof. The proof follows immediately from Theorem 6.3.

V Theorem 6.5: Kleene's Theorem. Let I be an alphabet. Then ~:E = ~:E'

Proof. The proof follows immediately from Corollaries 6.1 and 6.2.



Sec. 6.4 FAD Languages as Regular Sets; Closure Properties 201

Thus the terms FAD language and regular set can be used interchangeably,
since languages accepted by finite automata can be described by regular expres
sions, and vice versa. Such languages are often referred to as regular languages. The
correspondence will allow, for example, the pumping lemma to be invoked to justify
that certain languages cannot be represented by any regular expression.

~I is therefore closed under every operator for which ~I is closed. We have
now seen two representations for FAD languages, and a third will be presented in
Chapter 8. Since there are effective algorithms for switching from one representa
tion to another, we may use whichever vehicle is most convenient to describe a
language or prove properties about regular languages. For example, we may use
whichever concept best lends itself to the proof of closure properties. The justifica
tion that ~I is closed under union follows immediately from Definition 6.1; much
more effort was required in Chapter 5 to prove that the union of two languages
represented by DFAs could be represented by another DFA. On the other hand,
attempting to justify closure under complementation by using regular expressions is
an exercise in frustration. We will now see that closure under substitution is con
veniently proved via regular expressions.

A substitution is similar to a language homomorphism (Definition 5.8), in
which letters were replaced by single words. Substitutions will denote the methodi
cal replacement of the individual letters within a regular expression with sets of
words. The only restriction on these sets is that they must also be regular expres
sions, though not necessarily over the same alphabet.

V Definition 6.5. Let I = [a., a2, ... ,am}be an alphabet and let r be a second
alphabet. Given regular expressions Rl> R2, ... .R, over I', define a regular set
substitution s: I~ p(f*) by s (a.) = R, for each i = 1,2, ... ,m, which can be ex
tended to s: I *~ p(f*) by

S(A) = E

and

(Va E I)(Vx E I*)(s(a·x) = s(a)·s(x))

s can be further extended to operate on a language L k I * by defining

s(L) = U s(z)
zEL

In this context, s: p(I*)~ p(f*).
Ll

EXAMPLE 6.14

Let I = {O} and r ={a, b}. Define s(O) = (a U b)·(a U b). From the recursive defini
tion, s(OO) = (a U b)·(a U b)·(a U b)·(a U b). Furthermore, the language s(O*) rep
resents all even-length strings over {a, b}.

The definition of s(L) for a language L allows the domain of the substitution to
be extended all the way to s: p(I*)~ p(f*). It can be proven that the image of ~I
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under s is contained in (!}tr (see the exercises); however, the image of .N'I, under s is
not completely contained in .N'r.

In Example 6.14, the language 0* was regular and so was its image under S.
Neither of the sets described in the second example were regular. It is possible to
start with a nonregular set and define a substitution that produces a regular set (see
Lemma 6.5), but it is impossible for the image of a regular set to avoid being regular,
as shown by the next theorem.

yo Theorem 6.6. Let ~ be an alphabet, and let s: ~~ p(~*) be a substitution.
Then (!}tI, is closed under S.

Proof. Choose an arbitrary regular expression R over S. We must show that
s(R) represents a regular set. R is an expression made up of the letters in ~ and the
characters (, ), " U, and ". Form the new expression R' by replacing each letter a by
sea). R' is then clearly another regular expression over S, In fact, it can be shown
that R' represents exactly the words in s(R); this is formally accomplished by
inducting on the number of operators in the expression R. To prove this, one must
argue that this substitution correspondence is preserved by each of the six rules
defining regular expressions. The basis step of the induction involves all regular
expressions with zero operators,that is, those defined by the first three rules for
generating a regular expression.

i, The substitution corresponding to any single letter a, is a regular expression
corresponding to s(ai)' since, by definition of S, sea;) = sea;).

ii. The substitution corresponding to 0 is a regular expression corresponding to
s(0), since, by definition of S, s(0) = 0.

iii. The substitution corresponding to E is a regular expression corresponding to
seA), since, by definition of S, seA) = E.

The inductive step requires an argument that the correspondence is preserved
whenever another of the three operators is introduced to form a more complex
expression. These assertions involve the final three rules for generating regular
expressions.

iv. If R, and R, are regular expressions, then the substitution corresponding to
(R, .Rz) is a regular expression representing the concatenation of the two
corresponding substitutions. That is, s(Rj ' Rz) = s(Rj ) ·s(Rz).

v, If R, and R, are regular expressions, then the substitution corresponding to
(R, U Rz) is a regular expression representing s(Rj ) U s(Rz).

vi. If R, is a regular expression, then the substitution corresponding to (Rj)" is a
regular expression representing (s(Rj )) *.
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Each of these three assertions follows immmediately from the definition of
substitution and is left as an exercise. The inductive step guarantees that the substi
tution correspondence is preserved in any regular expression R, regardless of the
number of operators in R. Consequently, R' is indeed a regular expression denoting
s(R), and m~ is therefore closed under s.
~

The analogous result does not always hold for the nonregular sets.

V Lemma 6.5. Let I be an alphabet.

a. There are examples of regular set substitutions s: I--,-. p(I*) for which .N'~ is
not closed under s.

b. There are examples of regular set substitutions t: I--,-.p(I*) for which.N'~ is
closed underj.

Proof. (a).N'~ is not closed under some substitutions. Let I = {a, b} and define
s(a) = (a U b) and s(b) = (a U b). The image of the nonregular set

L={xllxl.=lxlb}

is the set of even-length words, which is regular. Thus L E .N's but s(L) $. .N'~.
(b) .N's is closed under some substitutions. Some substitutions do preserve non

regularity (such as the identity substitution i, since for any language L, t(L) = L). In
this case, ('v'L)(L E.N'~ ~ t(L) E .N'~) and therefore N, is closed under t.
~

Note that a substitution in which each R; is a single string then conforms to Defini
tion 5.8 and represents a language homomorphism.

V Corollary 6.3. Let I be an alphabet, and let 1jJ: I--,-.I* be a language
homomorphism. Then m~ is closed under 1iJ.

Proof. The proof follows immediately from Theorem 6.6, since a language
homomorphism is a special type of substitution.
~

As in Chapter 5, this result can also be proved by successfully modifying an
appropriate DFA, showing that 2lJ~ (= m~) is closed under language homomorph
ism. It is likewise possible to use machine constructs to show that 2lJ~ is closed under
substitution, but this becomes much more complex than the argument given for
Theorem 6.6. A third characterization of regular languages will be presented in
Chapter 8, affording a choice of three distinct avenues for proving closure proper
ties of (lJt~.
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EXERCISES

Regular Expressions Chap. 6

6.1. Let I = {a, b]. Give (if possible) a regular expression that describes the set of all
even-length words in 1*.

6.2. Let I = {a, b}. Give (if possible) a regular expression that describes the set of all words
x in 1* for which Ixl~ 2.

6.3. Let I = {a, b}. Give (if possible) a regular expression that describes the set of all words
x in 1* for which Ixla = Ixlb.

6.4. Let I = {a, b, c}. Give a regular expression that describes the set of all odd-length
words in 1* that do not end in b.

6.5. Let I = {a, b, c}. Give a regular expression that describes the set of all words in 1* that
do not contain two consecutive cs.

6.6. Let I = {a, b, c], Give a regular expression that describes the set of all words in 1* that
do contain two consecutive cs.

6.7. Let I = {a, b, c}. Give a regular expression that describes the set of all words in 1* that
do not contain any cs.

6.8. Let 1= {O, I}. Give, if possible, regular expressions that will describe each of the
following languages. Try to write these directly from the descriptions (that is, avoid
relying on the nature of the corresponding automata).
(a) L1={xllxlmod3=2}

(b) L2=I*-{wI3n~Bw=al· .. an 1\ an=l}
(c) L3 = {y Ilylo > Iylt}

6.9. Let I = {a, b, c}. Give, if possible, regular expressions that will describe each of the
following languages. Try to write these directly from the descriptions (that is, avoid
relying on the nature of the corresponding automata).
(a) L1 = {x I(Ix la is odd) 1\ (Ix Ib is even)}
(b) k = {y I(Iy Ie is even) V (Iy Ib is odd)}
(c) L3 = {z 1(lzla is even)}
(d) L4 = {z IIz Ie is a prime number}
(e) L, = {x Iabc is a substring of x}
([) L6 = {x Iacaba is a substring of x}
(g) ~={x E{a,b,c}*llxla=Omod3}

6.10. Let I = {a, b, d], Give a regular expression that will describe

'I' = {x E I *I(x begins with d) V (x contains two consecutive bs)}.

6.11. Let I = {a, b, c}. Give a regular expression that will describe

cI> = {x E 1* Ievery b in x is immediately followed by c}.

6.12. Let I = {O, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Give a regular expression that will describe

r = {x E I *Ithe number represented by x is evenly divisible by 3}

= {A, 0, 00, 000, ... ,3,03,003, ... ,6,9,12,15, ...}.

6.13. Let 1= {O, 1,2,3,4,5,6,7,8, 9}. Give a regular expression that will describe

K = {x E 1* [the number represented by x is evenly divisible by 5}.
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6.14. Use the exact constructs given in the theorems of Chapter 5 to build a NDFA that
accepts b U a*c (refer to Examples 6.4, 6.5, and 6.6). Do not simplify your answer.

6.15. Give examples of sets that demonstrate the following inequalities listed in Lemma 6.1:
(a) R I U E =f. RI

(b) RI,Rz=f. Rz·RI
(c) RI,RI =f. RI
(d) RI U (Rz,R3) =f. (RI U Rz)·(RI U R3)

(e) (RI·Rz)* =f. (Rj·Ri)*
(f) (RI'Rz)* =f. (Rj U Ri)*
Find other examples of sets that show the following expressions may be equal under
some conditions:
(g) RI UE = RI

(h) RI·Rz=Rz'RI (even if Ri v Rs)
(i) RI.RI = RI
(j) RI U (Rz·R3) = (RI U Rz)·(RI U R3) (even if RI =f. Rz=f. R3 =f. RI)
(k) (RI·Rz)* = (Rj· Ri) * (even if RI =f. Rz)
(I) (RI·Rz)*=(RjURi)* (even if Rj v Rj)

6.16. Prove the equalities listed in Lemma 6.1.
6.17. (a) Consider Theorem 6.1. Find examples of sets A and E that will show that A*,E is

not a unique solution if >.. E A.
(b) Find examples of setsA and E that will show that A *,E can be the unique solution

even if>" EA.
6.18. Solve the following set of language equations for X, and X, over {O, 1}*:

x, = (OU I)XI

X, = E U lXo U OXI

Do you see any relation between these equations and the DFA A in Example 3.4?
6.19. (a) Solve the following set of language equations for XI, Xs, and X3 by eliminating X3

and then eliminating X z. Solve for X, and then back-substitute to find X, and X3 .

Note that these equations arise from the automaton in Figure 6.10.

x, = 0U0XI U (0 U I)Xz U0X 3

x, = E U OXI U ix, U 0X3

X3 = 0 U 0XI U (0 U I)Xz U 0X3

(b) Rework part (a) by eliminating X3 and then eliminating X, (instead of Xz).
(c) How does the solution in part (b) compare to the solution in part (a)? Is one more

concise? Are they equivalent?
6.20. Prove Lemma 6.2. [Hint: Let P(m) be the statement that "Every regular expression R

with m or fewer operators represents a regular set that is FAD," and induct on m.l
6.21. Let ~ = {a, b, c}. Find all solutions to the language equation X = X U{b}.
6.22. Prove that, for any languages A and E, A*E = E U A· (A *E).
6.23. Give a regular expression that will describe the intersection of the regular sets

(ab U b)*a and (ba U a)".
6.24. Develop an algorithm that, when applied to two regular expressions, will generate an

expression describing their intersection.
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6.25. Verify by direct substitution that X, = (a U bb)" and X2 = b·(a U bb)" is a solution to

Xl=eUa,XlUb,X2

X2 = 0U sx, U 0,X2

6.26. (a) Find L (D) for the machine D described in Example 6.10.
(b) Generalize your technique: For a machine A with start states Sip Si2' ••• ,Sim , L(A) is

given by ?

6.27. Let I = {a, b}. Give a regular expression that will describe the complement of the
regular set (ab U b)*a.

6.28. Develop an algorithm that, when applied to a regular expression, will generate an
expression describing the complement.

6.29. Let I = {a, b, c}.Define E(L) = {z I(3y E r)(3x E L)z = yx}. Use the regular expres
sion concepts given in this chapter to argue that 1!Jl.:t is closed under the operator E (that
is, don't build a new automaton; build a new regular expression from the old expres
sion).

6.30. Let I = {a, b, c}.Define B (L) = {z I(3x E L)(3y E I*)z = xy}. Use the regular expres
sion concepts given in this chapter to argue that 1!Jl.:t is closed under the operator B (that
is, don't build a new automaton; build a new regular expression from the old expres
sion).

6.31. Let I = {a, b, e}. Define M(L) = {z I(3x E L)(3y E r)z = xy}. Use the regular ex
pression concepts given in this chapter to argue that 1!Jl.:t is closed under the operator M
(that is, don't build a new automaton; build a new regular expression from the old
expression).

6.32. (a) Let I = {a, b, c}. Show that there does not exist a unique solution to the following
set of language equations:

Xl=bUe,XlUa,X2

X2 = c U 0,Xl U e,X2

(b) Does this contradict Theorem 6.2? Explain.
6.33. Solve the following set of language equations for Xo and X, over {O, 1}*:

x, = 0*1 U (10)*Xo U 0(0 U I)X l

x, = e U 1*01x, U OX I

6.34. Let I = {a, b, e}.
(a) Give a regular expression that describes the set of all words in I * that end with c

and for which aa, bb, and cc never appear as substrings.
(b) Give a regular expression that describes the set of all words in I* that begin with c

and for which aa, bb, and cc never appear as substrings.
6.35. Let I = {a, b, c],

(a) Give a regular expression that describes the set of all words in I* that contain no
more than two es.

(b) Give a regular expression that describes the set of all words in I* that do not have
exactly one c.

6.36. Recall that the reverse of a word x, written x', is the word written backward. The
reverse of a language is likewise given by L' = {x'ix E L}. Let I = {a, b, c}.
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(a) Note that (R 1 U Rs)' = (R~ U R;) for any regular sets R1 and Rz• Give similar
equivalences for each of the rules in Definition 6.1.

(b) If L were represented by a regular expression, explain how to generate a regular
expression representing L' (compare with the technique used in the proof of
Theorem 6.6).

(c) Prove part (b) by inducting on the number of operators in the expression.
(d) Use parts (a), (b), and (c) to argue that~}; is closed under the operator r.

6.37. Complete the details of the proof of Theorem 6.4.
6.38. Let I = {a, b, e},

(a) Give a regular expression that describes the set of all words in I * for which no b is
immediately preceded by a.

(b) Give a regular expression that describes the set of all words in I* that contain
exactly two cs and for which no b is immediately preceded by a.

6.39. Let I = {a, b, c}.
(a) Give a regular expression that describes the set of all words in I * for which no b is

immediately preceded by c.
(b) Give a regular expression that describes the set of all words in I* that contain

exactly one c and for which no b is immediately preceded by c.
6.40. (a) Use Theorem 6.3 to write the two right-linear equations in two unknowns corre

sponding to the NDFA given in Figure 6.11.

Figure 6.11 The NDFA for Exercise
6.40

(b) Solve these equations for both unknowns.
(c) Give a regular expression that corresponds to the language accepted by this

NDFA.
(d) Rework the problem with two left-linear equations.

6.41. (a) Use Theorem 6.3 to write the four right-linear equations in four unknowns corre
sponding to the NDFA given in Figure 6.12.

Figure 6.12 The automaton for Exercise 6.41

(b) Solve these equations for all four unknowns.
(c) Give a regular expression that corresponds to the language accepted by this

NDFA.
(d) Rework the problem with four left-linear equations.
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6.42. (a) Use Theorem 6.3 to write the seven right-linear equations in seven unknowns
corresponding to the NDFA given in Figure 6.13.

Figure 6.13 The NDFA for Exercise 6.42

(b) Solve these equations for all seven unknowns. Hint: Make use of the simple nature
of these equations to eliminate variables without appealing to Theorem 6.2.

(c) Give a regular expression that corresponds to the language accepted by this
NDFA.

(d) Rework the problem with seven left-linear equations.

6.43. Prove that for any languages A, E, and Y, if E ~ Y, then A·E ~ A·Y.

6.44. Let S be an alphabet, and let s: :l~ I" be a substitution.
(a) Prove that the image of 9tl; under s is contained in 9tr .
(b) Give an example to show that the image of Xl; under s need not be completely

contained in Xr.
6.45. Give a detailed proof of Lemma 6.3.

6.46. Let S= {a, b] and E = {x E:l* Ix contains (at least) two consecutive bs A x does not
contain two consecutive as}. Draw a machine that will accept E.

6.47. Let S = {a, b, c}. Give regular expressions that will describe:
(a) {x E {a, b, c}* Ievery b in x is eventually followed by c}; that is, x might look like

baabacaa, or bcacc, and so on.
(b) {x E {a, b, c}* Ievery b in x is immediately followed by c}.

6.48. Let :l = {a, b]. Give, if possible, regular expressions that will describe each of the
following languages. Try to write these directly from the descriptions (that is, avoid
relying on the nature of the corresponding automata).
(a) The language consisting of all words that have neither consecutive as nor

consecutive bs.
(b) The language consisting of all words that begin and end with different letters.
(c) The language consisting of all words for which the last two letters match.
(d) The language consisting of all words for which the first two letters match.
(e) The language consisting of all words for which the first and last letters match.

6.49. The set of all valid regular expressions over {a, b] is a language over the alphabet
{a, b, (,), U,·, *,~,E}. Show that this language is not FAD.

6.50. Give regular expressions corresponding to the languages accepted by each of the
NDFAs listed in Figure 6.14.

6.51. Complete the details of the proof of Theorem 6.6.
6.52. Prove Lemma 6.4.

6.53. Corollary 6.3 followed immediately from Theorem 6.6. Show that Theorems 5.2,5.4,
and 5.5 are also corollaries of Theorem 6.6.
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a)

d)

g)

Figure 6.14 The automata for Exercise 6.50

6.54. Let F be the collection of languages that can be formed by repeated application of the
following five rules:

i. {a} E F and {b} E F
ii. { } E F

iii. {A} E F
iv. IfFtEFandF2EF,thenFt·F2EF

v. IfFtEFandF2EF,thenFtUF2EF

Describe the class of languages generated by these five rules.



CHAPTER

FINITE-STATE TRANSDUCERS

We have seen that finite-state acceptors are by no means robust enough to accept
standard computer languages like Pascal. Furthermore, even if a DFA could
reliably recognize valid Pascal programs, a machine that only indicates "Yes, this is
a valid program" or "No, this is not a valid program" is certainly not all we expect
from a compiler. To emulate a compiler, it is necessary to have a mechanism that
will produce some output other than a simple yes or no: in this case, we would
expect the corresponding machine language code (if the program compiled success
fully) or some hint as to the location and nature of the syntax errors (if the program
was invalid).

A machine that accepts input strings and translates them into output strings is
called a sequential machine or transducer. Our conceptual picture of such a device is
only slightly different from the model of a DFA shown in Figure 7.1a. We still have
a finite-state control and an input tape with a read head, but the accept/reject
indicator is replaced by an output tape and writing device, as shown in Figure 7.1b.

These machines do not have the power to model useful compilers, but they can
be employed in many other areas. Applications of sequential machine concepts are
by no means limited to the computer world or even to the normal connotations
associated with "read" and "write." A vending machine is essentially a transducer
that interprets inserted coins and button presses as valid inputs and returns candy
bars and change as output. Elevators, traffic lights, and many other common de
vices that monitor and react to limited stimuli can be modeled by finite-state
transducers.

The vending machine analogy illustrates that the types of input to a device
(coins) may be very different from the types of output (candy bars). In terms of our

210
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Finite State Transducer

Figure 7.1 The difference between an acceptor and a transducer

conceptual model, the read head may be capable of recognizing symbols that are
different from those that the output head can print. Thus we will have an output
alphabet r that is not necessarily the same as our input alphabet k.

Also essential to our model is a rule that governs what characters are printed.
For our first type of transducer, this rule will depend on both the current internal
state of the machine and the current symbol being scanned by the read head and will
be represented by the function co, Finally, since we are dealing with translation
rather than acceptance/rejection, there is no need to single out accepting states: the
concept of final states can be dispensed with entirely.

7.1 BASIC DEFINITIONS

V Definition 7.1. A finite-state transducer (FST) or Mealy sequential machine
with a distinguished start state is a sextuple <k, I', S, so, 8, w>, where:

l,

ii.

iii.

iv.
v.

vi.
a

k denotes the input alphabet.
r denotes the output alphabet.
S denotes the set of states, a finite nonempty set.
So denotes the start (or initial) state; So E S.
8 denotes the state transition function; 8: S x k-,'> S.
w denotes the output function; co: S x k-,'> r.

The familiar state transition diagram needs to be slightly modified to represent
these new types of machines. Since there is one labeled arrow for each ordered pair
in the domain of the state transition function and there is also one output symbol for
each ordered pair, we will place the appropriate output symbol by its corresponding
arrow, and separate it from the associated input symbol by a slash, /.
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EXAMPLE 7.1

Finite-State Transducers Chap. 7

Let V = <in, d, q, b},[e, n', d', q', CO, c., CZ, C3, C4}, S, sO, 8, w> be the FST illustrated
in Figure 7.2. V describes the action of a candy machine that dispenses 30¢
Chocolate Explosions. n, d, q denote inputs of nickels, dimes, and quarters (re
spectively), and b denotes the act of pushing the button to select a candy bar.
'P, n', d', q', Co, c., CZ, C3, C4 represent the vending machine's response to these inputs:
it may do nothing, return the nickel that was just inserted, return the dime, return
the quarter, or dispense a candy bar with 0, 1,2,3, or 4 nickels as change, respec
tively. Note that the transitions agree with the vending machine model presented in
Chapter 1; the new model now specifies the action corresponding to the given input.
It is relatively simple to modify the above machine to include a new input r that
signifies that the coin return has been activated and a new output a representing the
release of all coins that have been inserted (see the exercises).

Figure 7.2 A finite-state transducer model of the vending machine discussed in
Example 7.1

Various modern appliances can be modeled by FSTs. Many microwave ovens
accept input through the door latch mechanism and an array of keypad sensors, and
typical outputs include the control lines to the microwave generator, the elements of
a digital display, an interior light, and an audible buzzer. The physical circuitry
needed to implement these common machines will be discussed in a later section.
We now examine the ramifications of Definition 7.1 by concentrating on the details
of a very simple finite-state transducer.
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EXAMPLE 7.2

Let B = <I, I', S, sO, 8, w> be given by

I ={a, b]

r = {O, I}

S = {so, s.}

So = So

The state transition function is defined in Table 7.1a.

TABLE7.1a

B .3 b

So So S1

S1 So S1

It can be more succinctly specified by (Vs E S)[8(s, a) = So and 8(s, b) = s.], Finally,
Table 7.1b displays the output function, which can be summarized by

(Vc E I)[w(so, c) = 0 and w(sJ,c) = 1]

TABLE7.1b

~~~ I ~ ~
All the information about B is contained in the diagram displayed in Figure

7.3. Consider the input sequence z = abaabbaa. From so, the first letter of z, that is,
a, causes a 0 to be printed, since w(so, a) = 0, and since 8(so,a) = so, the machine
remains in state so. The second letter b causes a second 0 to be printed since
w(so, b) = 0, but the machine now switches to state Sl [8(so, b) = s.], The third input
letter causes a 1 to be printed [w(s., a) = 1], and so on. The entire output string will
be 00100110, and the machine, after starting in state so, will successively assume the
state so, SJ, so, so, SJ, SJ, so, So as the input string is processed. We are not currently
interested in the terminating state for a given string (so in this case), but rather in the

. resulting output string, 00100110.

Figure 7.3 The state transition diagram
for the transducer discussed in Example
7.2
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It should be clear that the above discussion illustrates a very awkward way of
describing translations. While Wdescribes the way in which single letters are trans
lated, the study of finite-state transducers will involve descriptions of how entire
strings are translated. This situation is reminiscent of the modification of the state
transition function 8, which likewise operated on single letters, to the extended state
transition function 8 (which was defined for strings). Indeed, what is called for is an
extension of to to W, which will encompass the translation of entire strings. The
translation cited in the last example could then be succinctly stated as
w(so, abaabbaa) == 00100110. That is, the notation wet, y) is intended to represent
the output string produced by a transducer (beginning from state t) in response to
the input string y.

The formal recursive definition of Wwill depend not only on w but also on the
state transition function 8 (and its extension 8). "8 retains the same conceptual
meaning it had for finite-state acceptors: 8(s, x) denotes the state reached when
starting from s and processing, in sequence, the individual letters of the string x.
Furthermore, the conclusion stated in Theorem 1.1 still holds:

(Vx E 1*)(Vy E 1*)(Vs E S)(8(s,yx) == 8(8(s,y),x))

A similar statement can be made about wonce it has been rigorously defined.

V Definition 7.2. Given a FST A== <1,f,S,so,8,w>, the extended output
function for A, denoted by w, is a function W: S x l*~f* defined recursively as
follows:

l. (Vt ES) w(t,>.) == >.
ii. (Vt E S)(Vx E 1*)(Va E l)(w(t, ax) == wet,a)·w(8(t, a), x))

EXAMPLE 7.3

Let B= <I, I', S, sO, 8, w> be the FST given in Example 7.2. Then

W(S1, baa) = W(S1, b)·w(8(S1, b), aa) = 1·W(S1, aa)

= I'W(S1,a)'w(8(s1,a),a) == 11'w(so,a) =:' 110

Note that a three-letter input sequence gives rise to exactly three output symbols: w
is length preserving, in the sense that (Vt E S)(Vx E l*)(!w(t, x ) 1== Ixi).

The Wfunction extends the Wfunction from single letters to words. Whereas
the Wfunction maps a state and a letter to a single symbol from I', the w function
maps a state and a word to an entire string from I'", It can be deduced from (i) and
(ii) (see the exercises) that (iii) (Vt E S)(Va E l)(w(t, a) = wet,a)), which is the
observation that wand wtreat single letters the same. The extended output function
Whas properties similar to those of 8, in that the single letter a found in the recursive
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definition of 00 can be replaced by an entire word y. The analog of Theorem 1.1 is
given below.

V Theorem 7.1. Let A = <!', r, S, so, 8, 00> be a FST. Then:

(Vx E!'*)(Vy E!'*)(Vt ES)(oo(t,yx) =oo(t,Y)'oo(S(t,y),x))

and

(Vx E !'*)(Vy E !'*)(Vs E S)(S(s,yx) = S(S(s,y),x))

Proof. The proof is by induction on IyI (see the exercises and compare with
Theorem 1.1).
a

EXAMPLE 7.4

Let B = <!', r, S, so, 8, 00> be the FST given in Example 7.2. Consider the string
z = abaabbaa = yx, where Y = abaab and x == baa. To apply Theorem 7.1 with
t = so, we first calculate oo(so,Y) =oo(so, abaab) = 00100, and S(so,Y) = Sl. From Ex
ample 7.3, oo(S1> baa) = 110, and hence, as required by Theorem 7.1,

00100110=oo(so, abaabbaa) =oo(so,Yx) =oo(so,y)'oo(S(t,y),x) = 00100·110

For a given FST A with a specified start state, the deterministic nature of
finite-state transducers requires that each input string be translated into a unique
output string; that is, the relation fA that associates input strings with their corre
sponding output strings is afunction.

V Definition 7.3. Given a FST M = <!', r, S, so, 8, 00>, the translationfunction
for M, denoted by fM' is the functionju: !,*~ I'" defined by fM(X) =oo(so,x).
a

Note that fM,like 00, is length preserving: (Vx E !'*)(lfM(x)I = IxI). Consequently,
for any n EN, if the domain offM were restricted to !,n, then the range offM would
likewise be contained in I".

EXAMPLE 7.5

Let B = <!', r, S, so, 8, 00> be the finite-state transducer given in Figure 7.3. Since
oo(so, abaab) = (00100), fB(abaab) = 00100. Similarly, fB(A) = A, fB(a) = 0, fB(b) = 0,
fB(aa) = 00, iB(ab) = 00, fs(ba) = 01, fB(bb) = 01. Coupled with these seven base
definitions, this particular iB could be recursively defined by

(Vx E !,*)fB(xaa) = fs(xa)·O

fs(xab) = fs(xa)·O

fs(xba) =iB(xb)·1
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and
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fB(xbb) = fB(xb)·1

fB in essence replaces as with Os and bs with Is, and "delays" the output by one
letter. More specifically, the translation function for B takes an entire string and
substitutes Os and Is for as and bs (respectively), deletes the last letter of the string,
and appends a 0 to the front of the resulting string. The purpose of the two states So
and S1 in the FST B is to remember whether the previous symbol was an a or a b
(respectively) and output the appropriate replacement letter. Note that Is are
always printed on transitions from s}, and Os are printed as we leave so.

EXAMPLE 7.6

Let C = <{a, b},{O, I}, {to, t},t2 , t3 } , to,8e, we> be the FST shown in Figure 7.4. C
flags occurrences of the string aab by printing a Ion the output tape only when the
substring aab appears in the input stream.

Figure 7.4 The state transition diagram
for the Mealy machine C in Example 7.6

Clearly, not all functions from I* to I'" can be represented by finite-state
transducers; we have already observed that functions that are not length preserving
cannot possibly qualify. As the function discussed later in Example 7.7 shows, not
all length-preserving functions qualify, either.

V Definition 7.4. Given a function f: I *--',lo I" , f is finite transducer definable
(FTD) iff there exists a transducer A such thatf = fA'
a

Due to the deterministic nature of transducers, any two strings that "begin the
same" must start being "translated the same." This observation is the basis for the
following theorem.

V Theorem 7.2. Assume f is FTD. Then

('tin E ~)('tIx E In)('tIy E L*)('tIZ E I*) (thefirst n letters off(xy)
must agree with the first n letters off(xz))
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Proof. See the exercises.

EXAMPLE 7.7

Consider the function g: {a, b, c}*~ {O, I}*, which replaces input symbols by 0
unless the next letter is c, in which case I is used instead. Thus,

g(abcaaccb) = 01001100 and g(abb) = 000.

With n = 2, choosing x = ab, y = caaccb, and z = b shows that g violates Theorem
7.2, so g cannot be FrO.

The necessary condition outlined in the previous theorem is by no means sufficient
to guarantee that a function is FrO; other properties such as a pumping lemma
style repetitiousness of the translation must also be present (see the exercises).

7.2 MINIMIZATION OF FINITE-STATE TRANSDUCERS

Two transducers that perform exactly the same translation over the entire range of
input strings from ~* will be called equivalent transducers. This is in spirit similar to
the way equivalence was defined for deterministic finite automata.

V Definition 7.5. Given transducers

A = <~, r, SA, SOA' 5A, WA> and B = <~, r, Ss, SOB' 5s, ws>,

A is said to be equivalent to B ifffA =fs.
Ii

Just as with finite automata, a reasonable goal when constructing a transducer
is to produce an efficient machine, and, as before, this will be equated with the size
of the finite-state control; given a translation function f, a minimal machine for f is a
FST that has the minimum number of states necessary to perform the required
translation.

V Definition 7.6. Given a finite-state transducer A=<~,r,SA,SOA,5A,WA>'
A is the minimal Mealy machine for the translation fA iff for all finite-state trans
ducers B = <~, r, Ss, SOB' 5s, ws> for which fA =fs, II SAil :5IISsll·
Ii

Thus, A is minimal if there is no equivalent machine with fewer states.

EXAMPLE 7.8

The FST C = <{a, b},{O, I}, {to, tl> t2, t3 } , to, 5c, we> given in Figure 7.4 is not min
imal. The FST D = <{a, b},{O, I}, {qo, ql> q2}, qo,50,wo> given in Figure 7.5 per
forms the same translation, but has only three states.
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Figure 7.5 The state transition diagram
for the Mealy machine 0 in Example 7.8

The concept of two transducers being essentially the same except for a trivial
renaming of the states will again be formalized through the definition of isomorph
ism (and homomorphism). As before, it will be important to match the respective
start states and state transitions; but rather than matching up final states (which do
not exist in the FST model), we must instead ensure that the output function is
preserved by the relabeling process.

'i/ Definition 7.7. Given two FSTs

A = <2, I', SA, SOA' &A, WA> and B = <2, I', SB,SOB' &B, WB>,

and a function u.; SA~ SB, f.L is called a Mealy machine homomorphism from A to B
iff the following three conditions hold:

i, f.L(SOA) = SOB'
ii. (Vs E SA)(Va E 2)("""(&A(S, a)) = &B("""(S), a)),

iii. (Vs E SA)(Va E 2)(WA(S, a) = WB(f.L(S), a)).

As in Chapter 3, a bijective homomorphism will be called an isomorphism and
will signify that the isomorphic machines are essentially the same (except perhaps
for the names of the states). The isomorphism is essentially a recipe for renaming
the states of one machine to produce identical transducers.

'i/ Definition 7.8. Given two FSTs

A = <2, I', SA, SOA' &A, WA> and B = <2, I', SB,SOB' &B, WB>,

and a fun.ction IX: SA~ SB, f.L is called a Mealy machine isomorphism from A to B iff
the following five conditions hold:

l, f.L(SOA) = SOB' .
ii. (Vs E SA)(Va E 2)(f.L(&A(S, a)) = &B(f.L(S), a)).

iii. (Vs E SA)(Va E 2)(WA(S, a) = WB(f.L(S), a)).
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iv. f-L is a one-to-one function from SA to SB.
v.f-L is onto SB.

V Definition 7.9. If f-L: SA-SB is an isomorphism between two transducers
A = <I, r, SA, SOA'8A, WA> and B = <I, r, SB, SOB' 8B, WB>, then A is said to be iso
morphic to B, and we will write A =:; B.
d

EXAMPLE 7.9

Consider the two FSTs C = <{a, b},{O, I}, {to, t1> t2,t3},to,8c, wc>, given in Figure
7.4, and D=<{a,b},{O,I},{qo,q1>q2},qo,80'wo>, displayed in Figure 7.5. The
function f-L: {to, t1> t2,t3}- {qo, q1> q2}, defined by f-L(to) = qo, f-L(t1) = qb f-L(t2) = q2,
and fi(t3)= qo is a homomorphism between C and D. Conditions (i) and (ii) are
exactly the same criteria used for finite automata homomorphisms and have exactly
the same interpretation: the start states must correspond arid the transitions must
match. The third condition is present to ensure that the properties ofthe W function
are respected; for example, since t2causes 1 to be printed when b is processed, so
should the corresponding state in the 0 machine, which is q2= f-L(t2) in this example.
Indeed, wc(t2 , b) = 1 = wo(f-L(t2), b). Such similarities extend to full strings also: note
that wc(to,aab) = 001 = wo(f-L(to),aab) in this example. The results can be gen
eralized as presented in the next lemma.

V Lemma 7.1. If f-L: SA- SB is a homomorphism between two FSTs

A = <I, I', SA, SOA'8A, WA> and B = <I, r, SB, SOB; 8B,WB>,

then

and

('tis E SA)('tIX E I*)(WA(S,X) =WB(f-L(S),x))).

Proof. The proof is by induction on Ix I(see the exercises).

V Corollary 7.1. If u.: SA-Sa is a homomorphism between two FSTs
A = <I, r, SA, SOA'8A, WA> and B= <I, r, SB, SOB' 8B, WB>, then A is equivalent to B;
that is,fA = fa.

Proof. The proof follows immediately from Lemma 7.1 and the definition of

In a manner very reminiscent of the approach taken to minimize deterministic
finite automata, notions of state equivalence relations, reduced machines, and
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connectedness can be defined. As was the case in Chapter 3, a reduced and con
nected machine will be isomorphic to every other equivalent minimal machine. The
definition for connectedness is essentially unchanged.

V Definition 7.10. A state s in a transducer M = <~, r, S, sO, 8, w> is called
accessibleiff

(3x s E ~*) 18(so,xs) = s

The transducer M = <~, r, S, sO, 8, w> is called connected iff

(VsE S)(3xs E ~*) 18(so,xs) = s

That is, every state s of S can be reached by some string (xs) in ~"; once again, the
choice of the state s will have a bearing on which particular string is used as a
representative. States that are not accessible do not affect the translation performed
by the transducer; such states can be safely deleted to form a connected version of
the machine.

V Definition 7.11. Given a FST M = <~, r, S, sO, 8, w>, define the transducer
Mc = <~, r, SC, sti, 8c

, wC>,called M connected, by

SC = {sE S 13x E~* 18(so,x) = s}

8Cis essentially the restriction of 8 to SC x~: (Va E ~)(Vs E SC)(8C(s, a) = 8(s, a)),
and W

Cis the restriction of w to SC x~: (Va E ~)(Vs E SC)(WC(s, a) = w(s, a)).
A

MC is, as in Chapter 3, the machine M with the unreachable states "thrown away."
As with DFAs, trimming a machine in this fashion has no effect on the operation of
the transducer. To formally prove this, the following lemma is needed.

V Lemma 7.2. Given transducers

M = <~,r,S,so,8,w> and MC= <~,r,sc,sg,8c,wc>,

the restriction of wto SC x ~* is WC.

Proof. We must show that (VyE~*)(VtESC)(WC(t,y)=w(t,y)).This can
be done with a straightforward induction on Iy I. Let P(n) be defined by

(Vy E ~n)(Vt E SC)(WC(t, y) = w(t, y)).

The basis step is trivial, since WC(t, A) = A= w(t, A). For the inductive step, assume
(Vy E~m)(VtESC)(WC(t,y) =w(t,y)), and let tESCand z E~m+l be given. Then
3x E ~m, 3a E ~ for which z = ax, and therefore
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WC(t, z) = (by definition of z)

WC(t, ax) = (by Definition 7.2ii)

u{(t, a) 'WC(~)C(t, a), x) = (by definition of ~n

u{(t, a) ·wC(8(t , a), x) = (by the induction assumption)

u{(t, a)·w(8(t, a),x) = (by definition of co")

w(t,a)·w(8(t, a),x) = (by Definition 7.2ii)

w(t, ax) = (by definition of z)

w(t, z)

Since z was an arbitrary element of Im+ 1, and t was an arbitrary state in SC,

(Vy E Im+ l)(Vt E SC)(WC(t,z) =w(t, z»,

which proves P(m + 1). Hence, P(m)~P(m + 1), and, since m was arbitrary,
(Vm E N)(P(m) ~ P(m + 1». By the principle of mathematical induction, P(n) is
therefore true for all n, and the lemma is proved.
a

Since WC= W, it immediately follows thatfM = fMC, and we are therefore assured that
the operation of any transducer is indistinguishable from the operation of its con
nected counterpart.

V Theorem 7.3. Given transducers

M = <I, r, S, so, 8, w> and MC = <I, r, SC, sg, 8c
, wC>,

M is equivalent to MC.

Proof. fM'(x) =WC(sg, x) =WC(so, x) =w(so,x) = fM(X), and hence by the defini
tion of equivalence of transducers, M is equivalent to MC.
a

V Corollary 7.2. Given a FrD function f, the minimal machine corresponding
to f must be connected.

Proof. (by contradiction): Assume the minimal machine M is not connected;
then, by Theorem 7.3, fMC =fM = f, and clearly Iiscil < IISII, and hence M could not
be minimal.
a

While connectedness is a necessary condition for minimality, it is not suffi
cient, as evidenced by the machine C in Figure 7.4: C was connected, but the FST D
in Figure 7.5 was an equivalent but smaller transducer.

As was the case with finite automata in Chapter 3, connectedness is just one of
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the two major requirements for minimality. The other requirement is that no two
states behave identically. For DFAs, this translated into statements about accept
ance and rejection. For FSTs, this will instead involve the behavior of the output
function. The analog to Definition 3.2 is given next.

V Definition 7.12. Given a transducer M = <I, r, S, sO, &, w>, the state equiv-
alence relation on M, EM, is defined by

('Vs E S)('Vt E S)(s EM t ~ ('Vx E I*)(w(s, x) =w(t,x»)

In other words, we will relate states sand t if and only if it is not possible to
determine, by only observing the output, whether we are starting from state s or
state t (no matter what input string is used). The more efficient machines will not
have such duplication of states, and, as with DFAs, will be said to be reduced.

V Definition 7.13. A transducer M = <I, r, S, sO, &, w> is called reduced iff
('Vs, t E S)(s EM t ~ s = t).
a

As before, if M is reduced, EM must be the identityrelation on the set of states
S, and each equivalence class must contain only a single element. We defer for the
moment the discussion of how EM can be efficiently calculated. Once the state
equivalence relation is known, in a manner that is also analogous to the treatment of
finite automata, states related by EM can be coalesced to form a machine that is
reduced.

V Definition 7.14. Given a FST M = <I, r, S, sO, &, w>, defined M modulo its
state equivalence relation, M/EM' by M/EM = <I, r, SEM' SOEM' &EM' WEM>' where

SEM = {[S]EMls E S}

S~M = [SOlEM

&EM is defined by

('VaE I)('V[S]EM E SEM)(&EM([S]EM' a) = [&(s, a)]EM)'

and WEM is defined by

('VaE I)('V[slEM E SEM)(WEM([S]EM' a) = w(s, a».

The proof that &EM is well defined is similar to that found in Chapter 3. In an
analogous fashion, WEM must be shown to be well defined (see the exercises).

All the properties that one would expect of M/EM are present, as outlined in
the following theorem.
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V Theorem 7.4. Given a FST M = <I, r, S, SO, 8, w>,

M/EM =<I, r, SEM' SOEM' 8EM' WEM>

is equivalent to M and is reduced. Furthermore, if M is connected, so is M/E
M

•

Proof. The proof that connectedness is preserved is identical to that given for
Theorem 3.5; showing that M/EM is reduced is very similar to the proof of Theorem
3.4. The proof of the fact that the two machines are equivalent requires the induc
tive argument that ('t:Iy EI*)('t:ItES)(w(t,y) =WEM([t]EM,y)) and is indeed very
similar to the proofs of Lemma 7.2 and Theorem 7.3.
d .

An argument similar to that given for Corollary 7.2 shows that a reduced FST
is also a requirement for minimality.

V Corollary 7.3. Given a FTD functionf, the minimal machine corresponding
to fmust be reduced.

Proof. The proof is by contradiction; see the exercises.

Being reduced, like connectedness, is a necessary condition for a machine to
be minimal, but it is also not sufficient (see the exercises). One would hope that the
combination of being reduced and connected wouLd be sufficient to guarantee that
the given machine is minimal. This is indeed the case, and one more important
result, proved next in Theorem 7.5, is needed to complete the argument: Two
reduced and connected FSTs are equivalent iff they are isomorphic. Armed with
this result, we can also show that a minimal transducer can be obtained from any
FST M by reducing and connecting it. As in Chapter 3, connecting and reducing an
arbitrary machine M will therefore be guaranteed to produce the most efficient
possible machine for that particular function.

V Theorem 7.5. Two reduced and connected FSTs, Mj = <I, r, SI> SOl' 81> Wj>
and Mz= <I, r, SZ, SOl' 8z, wz>, are equivalent iffM j == Mz.

Proof. By Corollary 7.1, if Mj == Mz, then Mj is equivalent to Mz. The con
verse half of the proof is very reminiscentof that given for Theorem 3.1. We must
assume Mj and Mz are equivalent and then prove that an isomorphism can be
exhibited between Mj and Mz. A natural way to define such an isomorphism is
as follows: Given a state s in Mj, choose a string X s such that 8j(so1'x s) = s. Let
J.1(s) = 8z(s~, x.). At least one such string z, must exist for each state of MI> since Mj
was assumed to be connected. There may be several choices for z, for a given state s,
but all will yield the same value for 8z(soz'xs), and so J.1 is well defined (see the
exercises). The function J.1 satisfies the three properties of a homomorphism and
turns out to be a bijection (see the exercises). Thus Mj == Mz. As will be clear from
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the exercises, the hypothesis that M1 and Mz are reduced and connected is crucial to
the proof of this part of the theorem.
a

Note that Theorem 7.5 implies that, as long as we are dealing with reduced
and connected machines, fM

l
= fM2iff M1 ='=' Mz. The conclusions discussed earlier

now follow immediately from Theorem 7.5.

V Corollary 7.4. Given a FST M, a necessary and sufficient condition for M to
be minimal is that M is both reduced and connected.

Proof. See the exercises.

V Corollary 7.5. Given a FST M, Me/E MCis minimal.

Proof. Let M be a FST and let A be a minimal machine that is equivalent to
M. By Corollaries 7.2 and 7.3, A must be both reduced and connected. By The
orems 7.3 and 7.4, Me/E MC is also reduced, connected, and equivalent to M (and
hence to A). Theorem 7.5 would then guarantee that A and Me/E MCare isomorphic,
and therefore they have the same number of states. Since A was assumed to have the
minimum possible number of states, Me/E MC also has that property and is thus
minimal.
a

The minimal machine can therefore be found as long as Me/E MCcan be com
puted. Finding S" (and from that M') is accomplished in exactly the same manner as
described in Chapter 3. The strategy for generating EM is likewise quite similar, and
again uses the ith state equivalence relation, as outlined below.

V Definition 7.15. Given a transducer M = <~, r, s,sO, S,w> and a non
negative integer i, define a relation between the states of M called EiM, the ith state
equivalence relation on M, by

('Is, t E S)(s EiM t ¢> ('Ix E ~* 3 Ix I:s; i)(w(s, x) =wet,x)))

Thus E iM relates states that cannot be distinguished by strings of length i or less,
whereas EM relates states that cannot be distinguished by any string of any length.
All the properties attributable to the analogous relations for finite automata (EiA)

carry over, with essentially the same proofs, to the relations for finite-state trans
ducers (EiM) .

V Lemma 7.3. Given a transducer M = <~, r, s,sO, S, w>:

a. E m+1M is a refinement of E mM; that is, ('Is, t E S)(s E m+1M t ~ s E mM t).
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b. EM is a refinement of EmM; that is, (Vs,tES)(sEMt ~ sEmMt); hence,
EM~EmM'

c. (3m E N ~ EmM= Em+IM) ~ (Vk E N)(Em+kM= EmM).
d. (3m E t\l ~ m :511 S II f\ EmM= Em+lM)'
e. (3m E N ~ EmM= Em+IM) ~ EmM= EM.

Proof. The proof is similar to the proofs given in Chapter 3 for EiA(see the
exercises).
A

V Lemma 7.4. Given a FST M = <1,r,S,so,8,w>:

a. EOMhas just one equivalence classes, which consists of all of S.
b. ElM is defined by s ElM t ~ (Va E 1)(w(s, a) = w(t, a».
c. For i 2: 1, Ei+IM can be computed from EiMas follows:

(Vs E S)(Vt E S)(Vi 2: 1)(s Ei+IMt ~ S EiMtf\ (Va E 1)(8(s, a) EiM8(t, a))).

Proof. The proof is similar to the proofs given in Chapter 3 for EiA(see the
exercises).
A

V Corollary 7.6.. Given a FST M = <I, r, S, sO, 8, w>, there is an algorithm for
computing EM.

Proof. Use Lemma 7.4 to compute successive EiMrelations from ElM until
EiM= Ei+IM; by Lemma 7.3, this EiMwill equal EM, and this will all happen before i
reaches IIsll, the number of states in S. Thus the procedure is guaranteed to halt.
A

V Corollary 7.7. Given a FST M = <1,r,S,so,8,w>, there is an algorithm for
computing the minimal machine equivalent to M.

Proof. Using the algorithm for computing the set of connected states, MC can
be found. The output function is used to find ElMc, and the state transition function
is then used to calculate successive relations until EMc is found. MC/EMCcan then be
defined and will be the minimal machine equivalent to M.
A

7.3 MOORE SEQUENTIAL MACHINES

Moore machines form another class of transducer that is equivalent in power to
Mealy machines. They use a less complex output function, but often require more
states than an equivalent Mealy machine to perform the same translation. An
illustration of the convenience and utility of Moore machines can be found in
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Example 7.16, which demonstrates that traffic signal controllers can most naturally
be modeled by the transducers discussed in this section.

V Definition 7.16. A Moore sequential machine (MSM) with a distinguished
start state is a sextuple <~, I', S, sO, 8, w>, where:

l, ~ denotes the input alphabet.
li, r denotes the output alphabet.
iii. S denotes the set of states, a finite nonempty set.
lv, So denotes the start (or initial) state; So E S.

v. 8 denotes the state transition function; 8: S x ~~ S.
vi. w denotes the output function; w: S~ r.

a

Note that the only change from Definition 7.1 is the specification of the
domain of w. Conceptually, we will envision the machine printing an output symbol
as a new state is reached (rather than during the transition, as was the case for
Mealy machines).Note that the output symbol can no longer depend (directly) on
the current symbol being scanned; it is solely a function of the current state of the
machine. Consequently, the state transition diagrams will list the output function
next to the state name, separated by a slash, l . We will adopt the convention that no
symbol will be printed until the first character is read and a transition is made (an
alternate view, not adopted here, is to decree that the machine print the symbol
associated with So when the machine is first turned on; in this case, an output string
would be one character longer than its corresponding input string).

EXAMPLE 7.10

Let C = <~, I', S, ro,8, w> be given by

~ = {a, b}

r =: {O, I}

So =: ro

The state transition table is shown in Table 7.2.

TABLE 7.2

1) a b

ro ro rz

II Io Iz

I z II I3

r, II I3
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Finally, the output function is given by w(ro) = 0, w(r1) = 1, w(r2) = 0, and w(r3)= 1,
or, more succinctly, [w(r;)=imod2] for i =0,1,2,3. All the above information
about C is contained in Figure 7.6. This Moore machine performs the same
translation as the Mealy machine B in Example 7.2.

Figure 7.6 The state transition diagram
for the transducer discussed in Example
7.10

Results that were targeted toward a: FST in the previous sections were specific
to Mealy machines. When the descriptor "transducer" appearsin the theorems and
definitions presented earlier, the concept or result applies unchanged to both FSTs
and MSMs. Most of these results are alluded to but not restated in this section. For
example, 8" is defined like and behaves like the extended state transition functions
for DFAs and FSTs. On the other hand, because of the drastic change in the domain
of w, w must be modified as outlined below in order for w(s, x) to represent the
output string produced when starting at s and processing x.

V Definition 7.17. Given a MSM A=<I,r,S,so,8;w>, the extended output
function for A,denoted again by W, is a function w: S x I*~ I'" defined recursively
by:

i, (Vt E S) w(t, A) = A
ii. (Vt E S)(Vx E !'*)(Va E !')(w(t, ax) = w(8(t, a))·w(8(t, a), x))

A

Note that the domain of the function w has been extended further than usual:
in all previous cases, the domain was enlarged from S x !, to S x !,"; in this in
stance, we are beginning with a domain of only S and still extending it to S x !,".
The above definition allows the following analog of Theorem 7.1 to remain essen
tially unchanged.

V Theorem 7.6. Let!' be an alphabet and A = <!', I', S, sO, 8, w> be a Moore
sequential machine. Then
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(VX E~*)(Vy E~*)(VtES)(w(t,yx) =w(t,y)'w(8(t,y),x»

Proof. The proof is by induction on Iy I (see the exercises and compare with
Theorem 1.1).
A

As before, the essence of a Moore machine is captured in the translation
function that the machine describes.

V Definition 7.18. Given a MSM M = <~, r,s, so, 8, w>, the translation func
tion for M, denoted by fM' is the function fM: ~*--i> I'" defined by fM(X) =w(so,x).
A

Definition 7.5 applies to Moore machines; two MSMs are equivalent if they
define the same translation. Indeed, it is possible for a Mealy machine to be
equivalent to a Moore machine, as shown by the transducers in Figures 7.2 and 7.6.

It is easy to turn a Moore machine A = <~, r, s, so, 8, w> into an equivalent
Mealy machine M = <~,r,S,so,8,w'>. The first five parts of the transducer are
unchanged. Only the sixth component (the output function) must be redefined, as
outlined below.

V Definition 7.19. Given a Moore machine A = <~, r, s, so, 8, w>, the corre
sponding Mealy machine M is given by M = <~, r, s, so,8, w'>, where wI is defined
by

(Va E ~)(Vs E S)(w'(s, a) = w(8(s, a»)

Pictorially, all arrows that lead into a given state in the Moore machine should
be labeled in the corresponding Mealy machine with the output symbol for that
particular state. It follows easily from the definition that the corresponding ma
chines perform the same translation.

V Theorem 7.7. Given a Moore machine A= <~,r,S,so,8,w>, the corre
sponding Mealy machine M = <~, r, s, so, 8, w'> is equivalent to A; that is,
(Vx E ~*)(fM(X) = fA(X»,

Proof. The proof is by induction on Ix I(see the exercises).

EXAMPLE 7.11

Let A = <~, r, s, ro, 8, w> be the Moore machine given in Figure 7.6. The
corresponding Mealy machine M = <~, r, s, so, 8, w'> is then given by

~={a,b}, r={O,I}, So = ro
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and the state transition table and the output function table are specified as in Tables
7.3a and 7.3b.

TABLE7.3A TABLE7.3B

I) a b 00' a b

fa fa f2 fa 0 0
f1 fa f2 f1 0 0
f2 f1 f3 f2 1 1
f3 f1 f3 f3 1 1

The new Mealy machine is shown in Figure 7.7. Note that the arrow labeled a
leaving rl now has a 0 associated with it, since the state at which the arrow pointed
(ro/O) originally output a O.

Figure 7.7 The state transition diagram
for the Mealy machine M in Example
7.11

In a similar fashion, an equivalent Moore machine can be defined that corre
sponds to a given Mealy machine. However, .due to the more restricted nature of the
output function of the Moore constructs, the new machine will generally need more
states to perform the same translation.

The idea behind the construct is to break each state in the Mealy machine up
into a group of several similar states in the Moore machine, each of which prints a
different output symbol. The new transition function mimics the old one; if state r
maps to state t in the Moore machine, then any state in the group corresponding to
r will map to one particular state in the group of states corresponding to t. The par
ticular state within the group is chosen in a manner that will guarantee that the
appropriate output symbol will be printed. This construct is implemented in the
following definition.

'i1 Definition 7.20. Given a Mealy machine M = <I, I', S, so, 8, 00>, the corre
sponding Moore machine A is given by A = <I, I', S x I', (so, a), 8',00'>, where a is
an (arbitrary) member of r,
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and

A

3' is defined by (Vs E S)(Vb E r)(Va E I)(3'(s, b), a) = (3(s, a), w(s, a»)

00' is defined by (Vs E S)(Vb E f)(w'(s, b) = b).

V Theorem 7.8. Given a Mealy machine M = <I,f,S,so,3,w>, the corre
sponding Moore machine A = <I, I', S, sO, 3',00' > is equivalent to M; that is,
(Vx E I*)(JA(X) = fM(X»,

Proof. The proof is by induction on Ix I (see the exercises).
A

Since every Mealy machine has an equivalent Moore machine and every
Moore machine has an equivalent Mealy machine, either construct can be used as a
basis of what was meant by a translation f being finite transducer definable.

V Corollary 7.8. A translation f is FfD ifff can be defined by a FST M ifff can
be defined by a MSM A.

Proof. The proof is immediate from the definition of FfD and Theorems 7.7
and 7.8.
A

EXAMPLE 7.12

Consider the Mealy machine B from Figure 7.3. The corresponding Moore machine
A = <I, I', S, qo,3, 00> is given by

I ={a, b}

r = {O, I}

S ={(so, 0), (so, 1), (s., 0), (S1. I)}

qo= (so, 1)

w(so, 0» = 0, w(so, 1» = 1, W(S1. 0» = 0, w(SI> 1» = 1

and the state transition table is specified as in Table 7.4.

TABLE 7.4

1) a b

(so,O) (so,O) (S1, 0)
(so,l) (so,O) (S1, 0)
(SI'O) (so,l) (sl,l)
(S1, 1) (so,1) (S1, 1)

Figure 7,8 displays this new Moore machine. Note that this transducer A,
except for the placement of the start state, looks very much like the Moore machine
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Figure 7.8 The state transition diagram
for the Moore machine A in Example
7.12

C given in Figure 7.4. Indeed, any ordered pair that is labeled with the original start
state would be an acceptable choice for the new start state in the corresponding
Moore machine. For example, the automaton A' , which is similar to A but utilizes
(so, 0) as the new start state, is another Moore machine that is equivalent to the
original Mealy machine B. The transition diagram for A' is shown in Figure 7.9. In
fact, by appropriately recasting the definition of isomorphism so that it applies to
Moore sequential machines, it can be shown that A' and C are isomorphic. The
definition of isomorphic again guarantees that a renaming of the states can be found
that preserves start states, transition functions, and output functions. Indeed, the
definition of isomorphism agrees with that of Mealy machines (and of DFAs, for

Figure 7.9 The state transition diagram
for the Moore machine A' in Example
7.12



232 Finite-State Transducers Chap. 7

that matter) except in the specification of the correspondence between output
functions. The formal definition is given below.

V Definition 7.21. Given two MSMs

A = <:£, r,SA, SOA' 8A, WA> and B = <:£, r,SB,SOB' 8B, WB>,

anda function I-L: SA~ SB, I-L is called a Moore machine isomorphism from A to B iff
the following five conditions hold:

I,

ii.

iii.
iv.
v.

11

I-L(SOA) = SOB'
(VsE SA)(Va E :£)(1-L(8A(s, a)) = 8B(I-L(s), a).
(VsE SA)(WA(S) = WB(I-L(S))).
I-L is a one-to-one function between SA and SB'
I-L is onto SB.

EXAMPLE 7.13

The two Moore machines A' in Figure 7.9 and C in Figure 7.6 are indeed iso
morphic. There is a function I-L from the states of A'to the states of C that satisfies
all five properties of an isomorphism. This correspondence is given by I-L((so, 0») = ro,
I-L«so, 1») = rb 1-L«Sb 0») = rz, and 1-L«Sb 1») = r3, succinctly defined by 1-L«Si,j») = rZi+j
for i,j E {a, I}. As before, a homomorphism is meant to represent a correspondence
between states that preserves the algebraic structure of the transducer without
necessarily being a bijection.

V Definition 7~22. Given two MSMs

A = <:£, r, SA, SOA' 8A, WA> and B = <:£, r, SB, SOB' 8B, WB>,

and a function I-L: SA~ SB, I-L is called a Moore machine homomorphism from A to B
iff the following three conditions hold:

I, I-L(SOA) = SOB
ii, (VsE SA)(Va E :£)(1-L(8A(s, a)) = 8B(I-L(s), a))
iii. (Vs E SA)(WA(S) = WB(I-L(S)))

The isomorphism I-L discussed in Example 7.13 is also a homomorphism.
Preserving the algebraic structure of the transducer guarantees that the translation
is also preserved: if A and B are homomorphic, then they are equivalent. The
homomorphism criterion that applies to single letters once again extends to similar
statements about strings, as outlined in Lemma 7.5.

V Lemma 7.5. If I-L: SA~ SB is a homomorphism between two MSMs
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("IsE SA)('VX E I*)(WA(S,X) =WB(J.1(S),x))).

Proof. The proof is by induction on Ix I(see the exercises).

V Corollary 7.9. If J.1: SA~SB is a homomorphism between two MSMs
A = <I, r, SA, SOA' 8A, <UA> and B = <I, r, SB, SOB' 8B, <UB>, then A is equivalent to B;
that is, fA = fB.

Proof. The proof follows immediately from Lemma 7.5 and the definition
offM'
il

It is interesting to note that the MSMs A in Figure 7.8 and A' in Figure 7.9 are
not isomorphic. In fact, there does not even exist a homomorphism (in either
direction) between A and A' since the start states print different symbols, and rules
(i) and (iii) therefore conflict. The absence of an isomorphism in this instance
illustrates that an analog to Theorem 7.5 cannot be asserted under the definition of
Moore sequential machines presented here. Observe that A and A' are equivalent
and they are both minimal (four states are necessary in a Moore machine to perform
this translation), yet they are not isomorphic. The reader should contrast this failure
with the analogous statement about Mealy machines in Theorem 7.5.

Producing a result comparable to Theorem 7.5 is not possible without a
fundamental adjustment of at least one of the definitions. One possibility is to drop
the distinguished start state from the definition of the Moore machine. This re
moves condition (i) from the isomorphism definition and thereby resolves the
conflict between (i) and (iii). We have already noted that many applications do not
require a distinguished start state (such as elevators and traffic signal controls),
which makes this adjustment not altogether unreasonable.

A more common alternative is to decree that a Moore sequential machine first
print the character specified by the start state upon being turned on (before any of
the input tape is read) and then proceed as before. This results in output strings that
are always one symbol longer than the corresponding input strings, and the length
preserving property of transducers is thereby lost. A more substantial drawback
results from the less natural correspondence between Mealy and Moore machines:
no FST can be truly equivalent to any MSM since translations would not even be of
the same length.

The advantage of this decree is that machines like A and A' (from Figures 7.8
and 7.9) would no longer be equivalent, and hence they would not be expected to be
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isomorphic. Note that equivalence is lost since, under the new decree for trans
lations, they would produce different output when presented with, say, A as input:
A would print 1 while A' would produce O. Our definition of a MSM (Definition
7.16) was chosen to remain compatible with the translations obtained from Mealy
machines and to preserve a distinguished state as the start state; these advantages
were obtained at the expense of a convenient analog to Theorem 7.5.

A third, and perhaps the best, alternative is to modify what we mean by a
MSM isomorphism. Definition 7.21 can be rephrased to relax the condition that the
start states of the two machines must print the same character.

As with Mealy machines, Moore machines can also be minimized, and a
reduced and connected MSM is guaranteed to be the smallest MSM which performs
that translation. Note that Definitions 7.4 (FfD), 7.5 (equivalence), 7.9 (iso
morphic), 7.10 (connected), 7.12 (state equivalence relation), 7.13 (reduced), and
7.15 (ith relation) have been phrased to encompass both forms of transducers.
Minor changes (generally involving the domain ofthe output function) are all that is
necessary to make the remaining definitions and results conform to the Moore
constructs. We begin with a formal definition of minimality, which is in essence the
same as the definitions presented for DFAs and FSTs (Definitions 2.7 and 7.6).

V Definition 7.23. Given a MSM A = <~, I', SA, SOA' 8A, WA>, A is the minimal
Moore machine for the translation fA ijjfor all MSMs 8 = <~, I', SB, SOB' 8B, WB> for
which fA = Is, II SAil ::; IISBII·
~

A connected Moore machine is essential to minimality. The previous defini
tion of connectedness (Definition7.10) suffices for both FSTs and MSMs and was
therefore phrased to apply to all transducers, rather than. to one specific type of
transducer. For an arbitrary Moore machine, the algorithm for finding the set of
accessible states is unchanged; transitions are followed from the start state until no
further new states are found. The connected version of a MSM is again obtained by
paring down the state set to encompass onlythe connected states and restricting the
8 and W functions to the smaller domain.

V Definition 7.24. Given a, MSM M=<~,r,S,so,8,w>, define the trans-
ducer Me = <~, r, s-, so, 8e, we>, called M connected, by

S" = {sE S /3x E};* 3l 8(so, x) = s}

So = So

8e is essentially the restriction of 8 to S" x S: (\fa E ~)(\fs E se)(8e(s,a) = 8(s, a)),
and weis the restriction of co to S" x~: (\fs Ese)(we(s) = w(s)).
~

The concept of a reduced Moore machine and the definition of the state
equivalence relation are identical in spirit and in form to those presented for Mealy
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machines (Definitions 7.12 and 7.13). The definition that outlines how to reduce a
Moore machine by coalescing states differs from that given for FSTs (Definition
7.14) only in the specification of the output function. In both Definition 7.14 and
the following Moore machine analog, the value Wtakes for an equivalence class is
determined by the value given for a representative of that equivalence class. As

; before, this natural definition for the output function can be shown to be well
defined (see the exercises).

v . Definition 7.25. Given aMSM M=<~,r,S,so,B,w>,define M!EM' M
modulo its state equivalence relation, by M!EM = <~, r, SEM' SOEM' BEM' WEM>' where

SEM = {[S]EMls E S}

SOEM = [SO]EM

BEMis defined by

(Va E ~)(V[s] E SEM)(BEM([S]EM' a) = [B(s,a)]EM)'

and WEM is defined by

The Moore machine M!E
M

has all the properties attributed to the Mealy
version. Without changing the nature of the translation, it is guaranteed to produce
a MSM which is reduced.

V Theorem 7.9. Given a MSM M = <~, r, S, sO, B,w>:

-a, M!EM = <~, r, SEM' SOEM' BEM' WEM> is equivalent to M.
b. M!EM is reduced.

c. If M is conected, so is M!EM •

d. Given a FTD function f, the minimal Moore machine corresponding to f must
be reduced.

Proof. The proof is similar to Theorem 7.4 (see the exercises).

As mentioned earlier, the definition of a MSM chosen here denies a con
venient analog to Theorem 7.5. However, a reduced and connected Moore machine
must be minimal.

V Theorem 7.10

(a) Given a MSM M, a necessary and sufficient condition for M to be minimal is
that M is both reduced and connected.
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(b) Given a MSM M, Me/EMCis minimal.

Proof. See the exercises.
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The minimal Moore machine corresponding to a MSM M can thus be obtained
if the connected state set and the state equivalence relation can be computed. The
algorithm for calculating the accessible states is the same as before, and computing
the state equivalence relation will again be accomplished using the concept of the
ith state equivalence relation (Definition 7.15). All the results proved previously in
Lemma 7.3 still hold, showing that successive calculations are guaranteed to halt
and produce EM. All that remains is to specify both a starting point and a way to find
the next relation from the current EiM.

With Mealy machines, EOMconsisted of one single equivalence class, since A'
could not distinguish between states. All states were therefore related to each other
under EOM' With Moore machines, different states cause different letters to be
printed. EOMcan therefore be thought of as grouping together states that print the
same symbol.

V Lemma 7.6. Given a MSM M = <I, I', S, so, 8, 00>:

(a) EoMisdefinedbysEoMt ¢:> (oo(s)=oo(t)).
(b) For i 2= 0, Ei+lM can be computed from EiMas follows:

(Vs ES)(Vt E S)(Vi 2= o)(s Ei+1Mt ¢:> SEiMtf\(Va E I)(8(s, a) EjM8(t, a))).

Proof. The proof is essentially the same as in Chapter 3 (see Theorem 3.8).

V Corollary 7.10. Given a MSM M = <I, I', S, so, 8, 00>, there is an algorithm
for computing EM.

Proof. See the exercises.

EOMwill generally have one equivalence class for each symbol in I'; rk(EoM)

could be less than II I'] if some output symbols are not printed by any state (remem
ber that equivalence classes are by definition nonempty). The rule for computing
Ei+1Mfrom EiMis identical to that given for Mealy machines (and DFAs); only the
starting point, EOM' had to be redefined for Moore machines (compare with Lemma
7.4). Lemmas 7.3 and 7.6 imply that there is an algorithm for finding EM for any
Moore machine M; this was the final computation needed to produce Me/EM"> which
will be the minimal Moore machine equivalent to the MSM M.

V Corollary 7.11. Given a MSM M = <I, I', S, so, 8,00>, there is an algorithm
for computing the minimal machine equivalent to M.

Proof. See the exercises.
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7.4 TRANSDUCER APPLICATIONS AND CIRCUIT IMPLEMENTATION

The vending machine example that began this chapter showed that the transducer
was capable of modeling many of the machines we deal with in everyday life. This
section gives examples of several types of applications and then shows how to form
the circuitry that will implement such transducers. Transducers can be used not only
to model physical machinery, but can also form the basis for computational
algorithms. The following example can be best thought of not as a model of a
machine that receives files, but as a model of the behavior of the computer algo
rithm that specifies how such files are to be received.

EXAMPLE 7.14

The transducer metaphor is often used to succinctly describe the structure of many
algorithms commonly used in computer applications, most notably in network com
munications. Kermit is a popular means of transferring files between mainframes
and microcomputers. A transfer is accomplished by the send portion of Kermit on
the source host exchanging information with the receive portion of Kermit on the
destination host. The two processes communicate by exchanging packets of infor
mation; these packets comprise the input alphabet of our model. When the Kermit
protocol was examined in Chapter 1 (Example 1.16), it was noted that a full
description of the algorithm must also describe the action taken upon receipt of an
incoming packet; these actions comprise the output alphabet of our model. During
a file transfer, the states of the receiving portion of Kermit on the destination host
are R (awaiting a transfer request), RF (awaiting the name of the file to be trans
ferred), RD (awaiting more data to be placed in the new file), and A (abort due to
an unrecoverable error). The set of states will again be {A, R, RD, RF}.

Expected inputs are represented by S (an initialization packet, indicating that
a transfer is requested), H (a header packet, containing the name of one of the files
to be created and opened),n (a data packet), Z (an end of file marker, signaling that
no more data need be placed in the currently opened file), and B (break, signaling
the end of transmission). Unexpected input, representing a garbled transmission, is
denoted by X. The input alphabet is therefore I = {B,D, H, S, X, Z}.

When Kermit receives a recognizable packet, it sends an acknowledgment
(ACK) back to the other host. This action will be represented in the output alphabet
by the symbol Y. When the receiver expects and gets a valid header packet, it opens
the appropriate file and also acknowledges the packet. This pair of actions is
represented by the output symbol. O. W will denote the writing of the packet
contents to the opened file and acknowledgment of the packet, and 'P will denote
that no action is taken. C will indicate that the currently opened file is closed. N will
represent the transmission of a NAK (negative acknowledgment), which is used to
alert the sender that a garbled packet was detected. The output alphabet is there
fore r ={N,0, W, Y, 'P}. The complete algorithm is summed up in the state transi
tion diagram given in Figure 7.10.

Hardware as well as software can be profitably modeled by finite-state trans
ducers. The column-by-column addition of two binary numbers is quite naturally
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Figure 7.10 The state transition dia
gram for the receive portion of Kermit,
as discussed in Example 7.14

modeled by a simple two-state FST, since the carry bit is the only piece of previous
history needed by the transducer to correctly sum the current column. This dis
cussion will focus on binary numbers in order to keep the alphabets small, but trivial
extensions will make the two-state machine apply to addition in any base system.

EXAMPLE 7.15

A computation such as the one shown in Figure 7.lla would be divided up into
columns and presented to the FST as indicated in Figure 7.llb (shown in mid
computation). A digit from the first number and the corresponding digit from the
second number are presented to the transducer as a single input symbol. With the
column pairs represented by standard ordered pairs, the corresponding input tape

binary adder

00110
+00011

(a) (b)
Figure 7.11 (a) The addition problem discussed in Example 7.15 (b) Conceptual
model of the binary adder discussed in Example 7.15
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binary adder

Figure 7.12 The binary adder discussed in Example 7.15
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might appear as in Figure 7.12 (shown at the start of computation). As illustrated by
the orientation of the tape, this FST must be set up to process strings in reverse, that
is, from right to left, since computations must start with the low-order bits to ensure
that the correct answer is always (deterministically) computed. With states C (repre
senting carry) and N (no carry), input alphabet I ={(O, 0), (0,1), (1, 0), (1, I)} and
output alphabet r = {O, I}, this binary adder behaves as shown in the state transition
diagram given for B in Figure 7.13. For the problem displayed in Figure 7.lla, the
output produced by B would be 01001 (9 in binary), which is the appropriate
translation of the addition problem given (6 + 3).

Unfortunately, addition is not truly length preserving; adding the three-digit
numbers 110 and 011 produces a binary answer that is four digits long. The adder B
defined in Example 7.15 cannot correctly reflect a carry out of the most significant
binary position. While the concept of finalstates is not present in our formal
definition of transducers, this FST B provides an example in which it is natural to
both produce continuous output and track the terminal state: if a computation ends
in state C, then we know that an overflow condition has occurred. Bclearly operates
correctly on all strings that have been padded with (0,0) as the last (leftmost)
symbol; employing such padding is reminiscent of the use of the <EOS> symbol
when building circuits for DFAs. Indeed, it might be profitable to specifically

<0,0>/0
<0,1>/1
<1,0>/1

<0,1>/0
d,O>/O
d,1>/1

Figure 7.13 The state transition dia
gram for a binary adder modeled as a
Mealy machine, as discussed in Example
7.15
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include an <EOS> symbol and have the transducer react to <EOS> by printing a y
or n to indicate whether or not there was overflow.

While the binary adder is only one small component of a computer, finite
state transducers can be profitably used to model complete systems; one such
application involves traffic lights. The controller for a large intersection may handle
eight banks of traffic signals for the various straight-ahead and left-turn lanes, as
well as four sets of walk lights (see the exercises). Input about the intersection
conditions is often fed to the controller from pedestrian walk buttons and metal
detectors embedded in the roadway. For simplicity, we will choose a simplified
intersection to illustrate how to model a traffic controller by a transducer. The
simplified example nevertheless incorporates all the essential features of the more
intricate intersections. A full-blown model would only require larger alphabets and
more states.

EXAMPLE 7.16

Consider a small north-south street that terminates as it meets a large east-west
avenue, as shown in Figure 7.14. Due to the heavy traffic along the avenue, the
westbound traffic attempting to turn left is governed by a left-turn signal (signal 2 in
Figure 7.14). Traffic continuing west is controlled by signal 1, while signal 3 governs
eastbound traffic. Vehicles entering the intersection from the south rely on signal 4.
The red, yellow, and green lights of these four signals represent the output of the
transducer. Protecting westbound traffic while turning left is accomplished by an
output configuration of (G, G, R, R), which is meant to indicate that the first two
signals are green while the eastbound and northbound lanes have red lights. The
output alphabet can thus be represented by ordered foursomes of R, Y, and G (red,
yellow, and green). We can succinctly define

I' = {R, Y, G} X {R, Y, G} x {R, Y, G} x {R, Y, G},

though there will be some combinations (like (G, G, G, G») that are not expected to
appear in the model.

100 -- --
200 ,r--CKJ .:

- -003

jN
Figure 7.14 The intersection discussed
in Example 7.16
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The most prevalent output configuration is expected to be (G, R, G, R), which
allows unrestricted flow of the east-west traffic on the avenue. Due to the relatively
small amount of traffic on the north-south street, the designers of the intersection
chose to embed the sensors IX in the left-turn lane and 13 in the northbound lane and
only depart from the (G, R, G, R) configuration when a vehicle is sensed by these
detectors. There is therefore a pair of inputs to our transducer, indicating the status
of sensor IX and sensor 13. The four combinations will be represented by (0,0), (no
traffic above either sensor), (1,0) (sensor IX active), (0, 1) (sensor 13 active), and (1, 1)
(both detectors have currently sensed vehicles).

The controller is most naturally modeled by a Moore machine, since the state
of the system is so intimately tied to the status of the four lights. From the config
uration (G, R, G, R), activation of the 13 sensor signifies that all traffic should be
stopped except that governed by signal 4. The output should therefore move
through the pattern (Y, R, Y, R) to (R, R, R, G) and remain in that state until the 13
sensor is deactivated. This and the other transitions are illustrated in Figure 7.15.

<0,1>,< 1,1>

<0,1>,< 1,1>

<1;0>,<1,1>

<0,1>

<1,0>,<1,1>

Figure 7.15 The state transition diagram for a stoplight modeled as a Moore
machine, as discussed in Example 7.16
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In actuality, the duration of patterns incorporating the yellow caution light is
shorter than others. With the addition of extra states, a clock cycle length on the
order of 5 seconds (commensurate with the typical length of a yellow light) could be
used to govern the length of the different output configurations. For example,
incorporating S8 as shown in Figure 7.16 guarantees that the output (R, R, R, G) will
persist for at least two cycles (10 seconds). From an engineering standpoint, compli
cating the finite-state control in this manner can be avoided by varying the clock
cycle length.

We now discuss some of the hardware that comprise the heart of traffic
controllers and vending machines. As was done with deterministic finite automata
in Chapter 1 and nondeterministic finite automata in Chapter 4, finite-state trans
ducers can be implemented with digital logic circuits. We again use a clock pulse, D
flip-flops, and an encoding for the states. Besides needing an encoding for the input
alphabet, it is now necessary to have an encoding for the output alphabet, which will

<0,0>

<0,0>

<0,0>,< 1,0>

<1,0>,<1,1>

<0,1>

Figure 7.16 The modified controller discussed in Example 7.16
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be represented by the bits WI> wz,W3•••. We again suggest (solely for simplicity and
standardization in the exercises) ordering the symbols in r alphabetically and
assigning binary codes in ascending order, as was recommended earlier for I. We
must construct a circuit for generating each wi> in the same manner as we built
circuits implementing the accept function for finite automata.

Many practical applications of FSTs (such as traffic signals) operate continu
ously, rather than starting and stopping for one small string. In such cases, an
<EOS> symbol is not necessary; the circuit operates until power is shut off.
Similarly, an <SOS> symbol is not essential for a traffic signal complex; upon
resuming operation after a power failure, it is usually immaterial whether east-west
traffic first gets a green light or whether it gets a red light in deference to the
north-south traffic. In contrast, it is important for vending machines to initialize to
the proper state or some interesting discounts could be obtained by playing with the
power cord.

EXAMPLE 7.17

Consider the FST displayed in Figure 7.17. If <EOS> and <SOS> is unnecessary,
then the input alphabet can be represented by a single bit a., with a, = 0 represent
ing c and a, = 1 representing d. Similarly, the output alphabet can be represented by
a single bit WI> with WI = 0 representing a and WI = 1 representing b. The states can

Figure 7.17 The state transition dia
gram for the Mealy machine in Example
7.17

likewise be represented by a single bit tl> with tl = 0 representing So and tl = 1
representing Sl' As before, we can construct a truth table to represent the state
transition function, defining t; in terms of tl and al. The complete table is given in
Table 7.5a.

TABLE 7.5a

t1 31 t;

1 1 1
0 1 0
1 0 0
0 0 1

The principal disjunctive normalform for the transition function is therefore seen
to be t; = (tl1\ al)V (---,tll\---,al)' The output function can be found in a similar
manner, as shown in Table 7.5b.

Thus, WI = (tl tal)' As in Example 1.12, the circuit for tl will.be fed back into
the D flip-flop(s); the circuit for WI will form the output for the machine (replacing
the acceptance circuit used in DFAs). The complete network is shown in Figure
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TABLE 7.5b

t l al WI

1 1 0
0 1 1
1 0 1
0 0 1

7.18. Note that we would want the output device to print on the rising edge of the
clock cycle, before the new value of t1 propagates through the circuitry.

A larger output alphabet would require an encoding of several bits; each Wi

would have its own network of gates; and the complete circuit would then simulta
neously generate several bits of output information. As in Chapter 1, additional
states or input symbols will add bits to the other encoding schemes and add to the
number of rows in the truth tables for 8 and eo. Each additional state bit will also
require its own D flip-flop and a new truth table for its feedback loop. Each
additional state bit doubles the number of states that can be represented, which
means that, as was the case with deterministic finite automata, the number of
flip-flops grows as the logarithm of the number of states.

W,

In t.

t1

Figure 7.18 Circuit diagram for Example 7.17

EXERCISES

7.1. Let A = <I, I', S, se,8, 00> be a Mealy machine. Prove the following statements from
Theorem 7.1:
(a) (Vx E 1*)(Vy E 1*)(Vt E S)(w(t,yx) = w(t,y)'w{8(t,y),x»
(b) (Vx E 1*)(Vy E 1*)(Vs E S)(8(s,yx) = 8(8(s,y),x»

7.2. Refer to Lemma 7.1 and prove:
(a) (VsE SA)(VX E 1*)«J.I.(8A(s,x» = 8B(J.I.(s), x»
(b) (VsE SA)(Vx1*)(wA(s,x) = WB(J.I.(S),x)))

7.3. Prove Corollary 7.3.
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7.4. Prove Corollary 7.4 by showing that a necessary and sufficient condition for a Mealy
machine M to be minimal is that M is both reduced and connected.

7.5. Show that any FfD functionfmust satisfy a "pumping lemma."
(a) Devise the statement of a theorem that shows that the way any sufficiently long

string is translated determines how an entire sequence of longer strings are trans
lated.

(b) Prove the statement made in part (a).
7.6. In each of the following parts, you may assume the results in the preceding parts; for

example, you may assume parts (a) and (b) when proving (c).
(a) Prove Lemma 7.3a.
(b) Prove Lemma 7.3b.
(c) Prove Lemma 7.3c.
(d) Prove Lemma 7.3d.
(e) Prove Lemma 7.3e.

7.7. Given aFST M = <I,r, S, sO, &, 00>,prove the following statements from Lemma 7.4:
(a) EOMhas just one equivalence classes, which consists of all of S.
(b) ElM is defined by s ElM t ~ ('v'a E I)(oo(s, a) = oo(t, a».
(c) ('v's E S)('v't E S)('v'i 2: l)(s Ei+ IMt ~ SEiMt!\ ('v'a E I)(&(s, a) EiM&(t, a))).

7.8. Prove Theorem 7.6 by showing that if A = <I, I', S; ss, &, 00> is a Moore machine then
('v'x E I*)('v'y E I*)('v't E S)(w(t,yx) = w(t,y)·w(8(t,y),x».

7.9. Prove Theorem 7.7.

7.10. Prove Theorem 7.8.
7.11. Use Lemma 7.6 to find Ee in Example 7.10.
7.12. Show that there is a homomorphism from the machine M in Example 7.11 to the

machine 8 in Example 7.2.
7.13. Prove that, in a FST M = <I, r, S, ss, &, 00>, ('v'tE S)('v'a E I)(w(t, a) = oo(t, a».
7.14. Modify the vending machine in Example 7.1 so that it can return all the coins that have

been inserted. Let r denote a new input that represents activating the coin return, and
let a represent a new output corresponding to the vending machine releasing all the
coins in its temporary holding area.

7.15. Given a FST M = <I,r,S,so,&,oo> and M/EM= <I, r,SEM,SOEM' &EM,ooEM>' show
that &EM is well defined.

7.16. Given a FST M = <I, r, S, ss, &, 00> and M/EM= <I,r,SEM,soEM' &EM' ooEM> , show
that ooEM is well defined.

7.17. Give an example that shows that requiring a FST M to be reduced is not a sufficient
condition to ensure that M is minimal.

7.18. Show that the function Il. defined in the proof of Theorem 7.5 is well defined.

7.19. Given the function Il. defined in the proof of Theorem 7.5, prove that Il. is really an
isomorphism; that is:
(a) Il.(SOI) = S02'
(b) ('v's E Sl)('v'aE I)(Il.(&I(s,a» = &,(Il.(s), a»
(c) ('v's E Sl)('v'aE I)(ool(s, a) = oo2(Il.(S), a»
(d) Il. is a one-to-one function between S, and S2.
(e) Il. is onto S2.

7.20. Consider a transducer that implements a "one-unit delay" over the alphabets I = {a, b}
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and r = {a, b, x}. The first letter of the output string should be x, and the nth letter of
the output string should be the n - 1st letter of the input string (for n > 1). Thus,
w(abbab) = xabba, and so on.
(a) Define a sextuple for a Mealy machine that will perform this translation.
(b) Draw a Mealy machine that will perform this translation.
(c) Define a sextuple for a Moore machine that will perform this translation.
(d) Draw a Moore machine that will perform this translation.

7.21. Consider the circuit diagram that would correspond to the vending machine in Exam
ple 7.l.
(a) Does there appear to be any reason to use an <EaS> symbol in the input

alphabet? Explain.
(b) Does there appear to be any reason to use an <SO'S> symbol in the input alpha

bet? Explain.
(c) How many encoding bits are needed for the input alphabet? Define an appropriate

encoding scheme.
(d) How many encoding bits are needed for the output alphabet? Define an appropri

ate encoding scheme.
(e) How many encoding bits are needed for the state names? Define an appropriate

encoding scheme.
(I) Write the truth table and corresponding (minimized) Boolean function for h. Try

to make the best possible use of the don't-care combinations.
(g) Write the truth table and corresponding (minimized) Boolean function for W2. Try

to make the best possible use of the don't-care combinations.
(h) Define the other functions and draw the complete circuit for the vending machine.

7.22. Consider the vending machine described in Exercise 7.14.
(a) Does there appear to be any reason to use an <EaS> symbol in the input

alphabet? Explain.
(b) How many encoding bits are needed for the input alphabet? Define an appropriate

encoding scheme.
(c) How many encoding bits are needed for the output alphabet? Define an appropri

ate encoding scheme.
(d) How many encoding bits are needed for the state names? Define an appropriate

encoding scheme.
(e) Write the truth table and corresponding (minimized) Boolean function for h. Try

to make the best possible use of the don't-care combinations.
(I) Write the truth table and corresponding (minimized) Boolean function for W3. Try

to make the best possible use of the don't-care combinations.
(g) Define the other functions and draw the complete circuit for the vending machine.

7.23. Use the standard encoding conventions to draw the circuit corresponding to the FST
defined in Example 7.2.

7.24. Use the standard encoding conventions to draw the circuit corresponding to the FST
defined in Example 7.6.

7.25. Use the standard encoding conventions to draw the circuit corresponding to the FST D
defined in Example 7.8.

7.26. Give an example that shows that requiring a FST M to be connected is not a sufficient
condition to ensure that M is minimal.

7.27. Consider a transducer that implements a "two-unit delay" over the alphabets I == {a, b}
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and r = {a, b, x}, The first two letters of the output string should be xx, and the nth
letter of the output string should be the n - 2nd letter of the input string (for n > 2).
Thus, w(abbaba) = xxabba, and so on.
(a) Define a sextuple for a Mealy machine that will perform this translation.
(b) Draw a Mealy machine that will perform this translation.
(c) Define a sextuple for a Moore machine that will perform this translation.
(d) Draw a Moore machine that will perform this translation.

7.28. (a) Give an example that shows that the conclusion of Theorem 7.5 can be false if M1is
not reduced.

(b) What essential property of the proposed isomorphism uis now absent?
7.29. (a) Give an example that shows that the conclusion of Theorem 7.5 can be false if M1is

not connected.
(b) What essential property of the proposed isomorphism J.L is now absent?

7.30. (a) Give an example that shows that the conclusion of Theorem 7.5 can be false if M2is
not reduced.

(b) What essential property of the proposed isomorphism J.L is now absent?
7.310 (a) Give an example that shows that the conclusion of Theorem 7.5 can be false if M2is

not connected.
(b) What essential property of the proposed isomorphism J.L is now absent?

7.32. (a) Give an example of a FST A for which A is not reduced and ACis not reduced.
(b) Give an example of a FST A for which A is not reduced and AC is reduced.

7.33. Complete the proof of Theorem 7.4 by showing:
(a) (Vy E I*)(Vt E S)(w(t,y) = WEM([t]EM'y».
(b) M/EM is equivalent to M.
(c) M/EM is reduced.
(d) If M is connected, then M/EM is connected.

7.34. Let I = {O, I} and r ={y, n}.
(a) Define /1(ala2,..am)=s" if a, = 1, and let /1(ala2... am)= n" otherwise. Thus,

/1(10) = yy and/1(0101) = nnnn. Demonstrate that j; is FTD.
(b) Define b(ala2... am)= s" if am = 1, and let b(ala2,..am)= n" otherwise. Thus,

b(10) = nn andb(0101) = yyyy. Prove that j; is not FTD.

7.35. Let I = {a, b}and r = {O, I}. Define /J(ala2oo.am) to be the first m letters of the infinite
sequence 01001000100001051061071081.... Thus, h(ababababab) = 0100100010 and
h(abbaa) = 01001. Argue that j, is not FTD.

7.36. Assume/is FTD. Prove that (Vx E In)(vy E I*)(Vz E I*) (the first n letters of/(xy)
must agree with the first n letters of /(xz».

7.37. Consider an elevator in a building with two floors. Floor 1 has an up button u on the
wall, floor two has a down button d, and there are buttons labeled 1 and 2 inside the
elevator itself. The four actions taken by the elevator are close the doors, open the
doors, go to floor 1, and go to floor 2. Assume that an inactive elevator will attempt to
close the doors. For simplicity, assume that the model is not to incorporate sensors to
test for improperly closed doors, nor are there buttons to hold the doors open, and the
like. Also assume that when the elevator arrives on a given floor the call button for that
floor is automatically deactivated, rather than modeling the shutoff as a component of
the output.
(a) Define the input alphabet for this transducer (compare with Example 7.16).
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(b) Define the output alphabet for this transducer.
(c) Define the Mealy sextuple that will model this elevator.
(d) Draw a Mealy machine that will model this elevator.
(e) Define the Moore sextuple that will model this elevator.
(I) Draw a Moore machine that will model this elevator.
(g) Without using <EOS> or <SOS>, draw a circuit that will implement the trans

ducer defined in part (d).
7.38. Build a Mealy machine that will serve as a traffic signal controller for the intersection

described in Example 7.16.
7.39. Consider the intersection described in Example 7.16 with walk signals added to the

north-south crosswalks (only). As shown in Figure 7.19, there is an additional input
sensor v corresponding to the pedestrian walk button and an additional component of
the output that will always be in one of two states (W for walk and D for don't walk).
There are walk buttons at each of the corners, but they all trip the same single input
sensor; similarly, the output for the walk light is displayed on each corner, but they all
change at once and can be modeled as a single component. Assume that if the walk
button is activated all traffic but that on the side street is stopped, and the walk lights
change from D to W. Further assume that the walk lights revert to D and W before the
side street light turns to yellow.

~rrJ ~rrJ
loo~ ~

200 ,--00 ,--
----.00 3

~rrJ

fN

Figure 7.19 The intersection discussed in Exercise 7.39

(a) Define the new input and output alphabets.
(b) Draw a Moore machine that implements this scenario.
(c) Draw a Mealy machine that implements this scenario.

7.40. Consider an intersection similar to that described in Example 7.16, as shown in Figure
7.20. There are now four left-turn signals in addition to the four straight-ahead signals
and additional input sensors v and 1)for the other left-turn lanes. Assume that a normal
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Figure 7.20 The intersection discussed in Exercise 7.40

alternation of straight-ahead traffic is carried out, with no left turns indicated unless
the corresponding sensor is activated. Further assume that left-turn traffic will be
allowed to precede the opposing traffic.
(a) Define the new input and output alphabets.
(b) Draw a Moore machine that implements this scenario.
(c) Draw a Mealy machine that implements this scenario.

7.41. Consider an adder similar to the one in Example 7.15, but which instead models
addition in base 3.
(a) Define the input and output alphabets.
(b) Draw a Mealy machine that performs this addition.
(c) Draw a Moore machine that performs this addition.
(d) Draw a circuit that will implement the transducer built in part (b); use both

<EOS> and <SOS>.
7.42. Consider an adder similar to the one in Example 7.15, but which models addition in

base 10.
(a) Define the input and output alphabets.
(b) Define the sextuple of a Mealy machine that performs this addition (by indicating

the output and transitions by concise formulas, rather than writing out the 200
entries in the tables).

(c) Define the sextuple of a Moore machine that performs this addition.
(d) Draw a circuit that will implement the transducer built in part (b); use both

<EOS> and <SOS>.
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7.43. Consider a function f4 implementing addition in a manner similar to the function
described by the transducer in Example 7.15, but that scans the characters (that is,
columns of digits) from left to right (rather than right to left as in Example 7.15). Argue
that f4 is not FfD.

7.44. Given a MSM M, prove the following statements from Theorem 7.9:
(a) M/EMis equivalent to M.
(b) M/EMis reduced.
(c) If M is connected, so is M/EM.

7.45. Given a FfD function f, prove that the minimal Moore machine corresponding to f
must be reduced.

7.46. Given a MSM M, prove the following statements from Theorem 7.10:
(a) A necessary and sufficient condition for M to be minimal is that M is both reduced

and connected.
(b) Mc/EMc is minimal.

7.47. Given MSMs A = <I, r,SA,SOA' 8A, WA> and B = <I, I', SB, SOs' 8B, WB>'and a homo
morphism u.: SA~ SB, prove the following statements from Lemma 7.5 and Corollary
7.9:
(a) (VsE SA)(VX E I*)(j..L(8A(s,x» = 8B(j..L(s),x».
(b) (VsE SA)(VX E I*)(WA(S,X) = WB(j..L(S),x))).
(c) A is equivalent to B; that is,fA = fB'

7.48. Prove Corollary 7.10.
7.49. Prove Corollary 7.11.

7.50. Given a FST M = <I, I', S, sO, 8, 00> and M/EM= <I, I', SEM' SOEM' 8EM, WEM> defined
by

SEM = {[S]EMls E S}
SOEM = [SOlEM

8EMis defined by

(Va E I)(V[S]EM E SEM)(8EM([S]EM' a) = [8(s, a)]EM)
and WEM is defined by

(Va E I)(V[S]EM E SEM)(WEM([S]EM' a) = w(s,a»
(a) Show that 8EMis well defined.
(b) Show that WEM is well defined.

7.51. Given a MSM M = <I, r, S, sO, 8, 00> and M/EM= <I, r, SEM' SOEM' 8EM, WEM> de
fined by

SEM = {[S]EMls E S}
SOEM = [SO]EM

8EMis defined by

(Va E I)(V[S]EM E SEM)(8EM([S]EM' a) = [8(s, a)]EM)
and WEM is defined by

(V(S]EM E SEM)(WEM«(S]EM) = w(s»

(a) Show that 8EMis well defined.
(b) Show that WEM is well defined.
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7.52. Consider the following assertion: If there is an isomorphism from A to B and A is
connected, then B must also be connected.
(a) Prove that this is true for isomorphisms between Mealy machines.
(b) Prove that this is true for isomorphisms between Moore machines.

7.53. Consider the following assertion: If there is an isomorphism from A to Band B is
connected, then A must also be connected.
(a) Prove that this is true for isomorphisms between Mealy machines.
(b) Prove that this is true for isomorphisms between Moore machines.

7.54. Consider the following assertion: If there is a homomorphism from A to B and A is
connected, then B must also be connected."
(a) Give an example of two Mealy machines for which this assertion is false.
(b) Give an example of two Moore machines for which this assertion is false.

7.55. Consider the following assertion: If there is a homomorphism from A to Band B is
connected, then A must also be connected.
(a) Give an example of two Mealy machines for which this assertion is false.
(b) Give an example of two Moore machines for which this assertion is false.

7.56. Assume A and B are connected FSTs and that there exists an isomorphism 1\1 from A to
B and an isomorphism JL from B to A. Prove that 1\1 = JL-1.

7.57. Assume A and Bare FSTs and there exists an isomorphism 1\1 from A to B and an
isomorphism JL from B to A. Give an example for which 1\1 f. JL-1.

7.58. Give an example of a three-state MSM for which EOAhas only one equivalence class. Is
it possible for EOAto be different from E1Ain such a machine? Explain.

7.59. (a) Give an example of a Mealy machine for which M is not connected and M/EM is not
connected.

(b) Give an example of a Mealy machine for which M is not connected but M/EM is
connected.

7.60. (a) Give an example of a Moore machine for which M is not connected and M/EM is
not connected.

(b) Give an example of a Moore machine for which M is not connected but M/EM is
connected.

7.61. For a homomorphism JL: SA-;>Se between two Mealy machines

A = <I, r, SA, SOM BA, WA> and B = <I, I', Se, SOB' Be,We>,

prove (Vs, t E SA)(JL(S) E e JL(t) ~ SEAt).
7.62. For a homomorphism JL: SA-;>Sebetween two Moore machines

A = <I, r, SA, SOM BA, WA> and B = <I, r, Se, SOB' Be,We>,

prove (Vs, tE SA)(JL(s)EeJL(t) ~ SEAt).

7.63. (a) Give an example of a FST for which A is not reduced and AC is not reduced.
(b) Give an example of a FST for which A is not reduced and AC is reduced.

7.64. (a) Give an example of a MSM for which A is not reduced and AC is not reduced.
(b) Give an example of a MSM for which A is not reduced and AC is reduced.

7.65. Isomorphism (:=) is a relation in the set of all Mealy machines.
(a) Prove that := is a symmetric relation; that is, formally justify that if there is an

isomorphism from A to B then there is an isomorphism from B to A.
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(b) Prove that == is a reflexive relation.
(c) Show that iff and g are isomorphisms, thenfog is also an isomorphism (whenever

fog is defined).
(d) From the results of parts (a), (b), and (c) given above, prove that == is an equiv

alence relation over the set of all Mealy machines.
(e) Show that homomorphism is not an equivalence relation over the set of all Mealy

machines.
7.66. (a) Prove that == is an equivalence relation in the set of all Moore machines.

(b) Show that homomorphism is not an equivalence relation over the set of all Moore
machines.

7.67. Given a Mealy machine M = <I,r,S,so,8,w>, prove that there exists a homo
morphism J.l. from M to M/EM •

7.68. Given a Moore machine M = <I,r,S,so,8,w>, prove that there exists a homo
morphism J.l. from M to M/EM •

7.69. Consider the intersection presented in Example 7.16 and note that the construction
presented in Figure 7.15 prevents the transducer from leaving S2 or S6 while the
appropriate sensor is active. The length of time spent in each output configuration can
be limited by replacing S2 with a sequence of states that ensures that the output
configuration will change within, say, three clock cycles (this is similar to the spirit in
which Ss was added). A similar expansion can be made with regard to S6. While this
would not be a likely problem if the side street were not heavily traveled, higher traffic
situations would require a different solution than that shown in Figure 7.15.
(a) Modify Figure 7.15 so that the output configuration can, if necessary, remain at

(R, R, R, G) for three clock cycles, but not for four clock cycles.
(b) Starting with the larger transducer found in part (a), make a similar expansion to S6.
(c) Starting with the larger transducer found in part (a), make an expansion to S6 in

such a way that the left-turn signal is guaranteed to be green for a minimum of two
clock cycles and a maximum of four clock cycles.

7.70. Consider the intersection presented in Example 7.16 and note that the construction
presented in Figure 7.15 prevents the transducer from returning to So while either of the
sensors is active. Thus, even ifthe length oftime spent in each output configuration was
limited (see Exercise 7.69), left-turn and northbound traffic could perpetually alternate
without ever allowing the east-west traffic to resume. This would not be a likely
problem if the side street were not heavily traveled, buthigher traffic situations would
require a different solution than the one presented in Example 7.16.
(a) Without adding any states to Figure 7.15, modify the state transition diagram so

that east-west traffic will receive a green light occasionally.
(b) By adding new states to Figure 7.15 (to remember the last lanes that had the right

of way), implement a controller that will ensure that no lane will get a second green
light if any other lane that has an active sensor has yet to receive a green light. (It
may be helpful to think of the east-west traffic as having an implicit sensor that is
always actively demanding service).

7.71. Prove that iftwo Moore machines are homomorphic then they are equivalent.
7.72. Show that, for any FTD functionf: I*~1*, ~:ds closed under f.



CHAPTER

REGULAR GRAMMARS

In the preceding chapters, we have seen several ways to characterize the set of FAD
languages: via DFAs, NDFAs, right congruences, and regular expressions. In this
chapter we will look at still another way to represent this class, using the concept of
grammars. This construct is very powerful, and many restrictions must be placed on
the general definition of a grammar in order to limit the scope to FAD languages.
The very restrictive regular grammars will be explored in full detail in this chapter.
The more robust classes of grammars introduced here will be discussed at length in
later chapters.

8.1 OVERVIEW OFTHEGRAMMAR HIERARCHY

Much like the rules given in Backus-Naur Form (BNF) in Chapters 0 and 1, the
language-defining power of a grammar stems from the generation of strings through
the successive replacement of symbols in a partially constructed string. These re
placement rules form the foundation for the definition of programming languages
and are used in compiler construction not only to determine correct syntax, but also
to help determine the meaning of the statements and thereby guide the translation
of a program into machine language.

EXAMPLES.1

A BNF that describes the set of all valid FORTRAN identifiers is given below.
Recall that such identifiers must begin with a letter and be followed by no more than
five other letters and numerals. These criteria can be specified by the following set
of rules.

253
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S :: =aSj! bSj! IzSd a! b! Iz
Sj:: =aSzlbSzl IzSzlalbl IziOSzllSz12Sz1 19Szl011121 19

Sz::= aS31bS31 IzS31albi !z!OS3!IS312S31 19S31011!21 19

S3::=aS4!bS4! IzS41albj IzlOS411S412S41 19S410j1121 19

S4::= aSslbSsl lzSslalbl .. ·lzIOSsllSsI2Ssl .. ·19SsIOI1121· .. 19

s,::=a Ib I... 1z 1011121 ... 19

The first rule specifies that S can be replaced by any of the 26 letters of the Roman
alphabet or any such letter followed by the token Sj. These productions (rules) do
indeed define the variable names found in FORTRAN programs. Starting with S, a
derivation might proceed as S =;> sSj =;> suSz =;> sum, indicating that sum is a valid
FORTRAN identifier. Invalid identifiers, such as 2a, cannot be derived from these
productions by starting with S.

EXAMPLE 8.2

The strings used to represent regular sets (see Chapter 6) could have been succinctly
specified using BNF. Recall that regular languages over, say, {a, b, c}are described
by regular expressions. These regular expressions were strings over the alphabet
{ft, E, a, b, c, U,·, *,), (}, and the formal definition was quite complex. A regular
expression over {a, b, c} was defined to be a sequence of symbols formed by re
peated application of the following rules:

I. a, b, c are each regular expressions.
ii. f/J is a regular expression.
iii.• is a regular expression.
iv. If R, and R, are regular expressions, then so is (Rj· Rz).

v, If R, and Rz are regular expressions, then so is (R, U Rz).

vi. If R, is a regular expression, then so is R]',

The conditions set forth above could have instead been succinctly specified by the
BNF shown below.

R:: =alblcIElftl(RoR)I(RUR)IR*

The following is a typical derivation, culminating in the regular expression
(ao(cUE»*.

R=;>R*

=;> (RoR)*

=;> (a-R]"

=;> (ao(RUR»*
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~ (a·(cUR»*

~ (a.(cUe»*
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Note that in the intermediate steps of the derivation we do not wish to consider
strings such as (aoR)* to be valid regular expressions. (aoR)* is not a string over the
alphabet {tl, e, a, b, c, U, 0, *,),0, and it does not represent a regular language over
{a, b, c}.To generate a valid regular expression, the derivation must proceed until all
occurrences of R are removed. To differentiate between the symbols that may
remain and those that must be replaced, grammars divide the tokens into terminal
symbols and nonterminal symbols, respectively.

The following notational conventions will be used throughout the remainder
of the text. Members of I will be represented by lowercase roman letters such as a,
b, c, d and will be referred to as terminal symbols. A new alphabet n will be
introduced, and its members will be represented by uppercase roman letters such as
A, B, C, and S, and these will be called nonterminal symbols. S will often denote a
special nonterminal, called the start symbol. The specification of the production
rules will be somewhat different from the BNF examples given above. The common
grammatical notation for rules such as S:: = aSj and S:: = bSj is S-i> aSj and
S-i>bSj. As with BNF, a convenient shorthand notation for a group of productions
involves the use of the I (or) symbol. The productions Zr-« aaB, Zr-« ac, Zr-« cbT,
which all denote replacements for Z, could be succinctly represented by
z-» aaB Iac IcbT.

A production can be thought of as a replacement rule; that is, A -i> cdba
indicates that occurrences of the (nonterminal) A can be replaced by the string
cdba. For example, the string abBAdBc can be transformed into the string
abBcdbadBc by applying the production A -i> cdba; we will write

abBAdBc~ abBcdbadBc,

and say that abBcdbadBc was derived (in one step) from abBAdBc. Productions
may be applied in succession; for example, if both A -i> cdba and B-i> etB were
available, then the following modifications of the string abBAdBc would be
possible: abBAdBc~ abBcdbadBc~ abetBcdbadBc~ abefetBcdbadBc, and we
might write abBAdBc~ abefetBcdbadBc to indicate that abBAdBc can produce
abefetBcdbadBc in zero or more steps (three steps in this case). Note that the
distinction between ~ and ~ is reminiscent of the difference between the state
transition functions 8 and 8. As with the distinction between the transducer output
functions wand W, the overbar is meant to indicate the result of successive applica
tions of the underlying operation. The symbol ~ is often used in place of ~.

As illustrated by Example 8.1, several nonterminals may be used in the gram
mar. The set of nonterminals in the grammar given for FORTRAN identifiers was
comprised of {S,Sj, S2, S3, S4, Ss}. The start symbol designates which of these non
terminals should always be used to begin derivations.

The previous examples discussed in this section have illustrated all the essen-
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tial components of a grammar. A grammar must specify the terminal alphabet, the
set of intermediary nonterminal symbols, and the designated start symbol, and it
must also enumerate the set of rules for replacing phrases within a derivation with
other phrases. In the above examples, the productions have all involved the replace
ment of single nonterminals with other strings. In an unrestricted grammar, a
general replacement rule may allow an entire string IX to be replaced by another
string 13. Thus, aBeD~ beA would be a legal production, and thus whenever the
sequence aBeD is found within a derivation it can be replaced by the shorter string
beA.

V Definition 8.1. An unrestricted or type 0 grammar over an alphabet I is a
quadruple G = <0, I, S, P>, where:

o is a (nonempty) set of nonterminals.

I is a (nonempty) set of terminal symbols (and 0 n I = 0).
S is the designated start symbol (and S EO).
P is a set of productions of the form IX~ 13, where IX E (0 u It, 13 E (0 U I)*.

EXAMPLE 8.3

Consider the grammar

Gil= <{A,B,S, T},{a, b,e},S,{S~aSBe,S~T, T~A, TB~ bT,eB~Be}>

A typical derivation, starting from the start state S, would be:

S~ (by applying S~ aSBe)

aSBe~ (by applying S~ aSBe)

aaSBeBe~ (by applying S~ T)

aaTBeBe ~ (by applying TB~bT)

aabTeBe ~ (by applying eB~ Be)

aabTBee ~ (by applying TB~ bT)

aabbTee ~ (by applying T~ A)

aabbee

Depending on how many times the production S~ aSBe is used, this grammar will
generate strings such as A, abc, aabbee, and aaabbbeee. The set of strings that can be
generated by this particular grammar is [a'b'c' Ii2=: OJ. In this sense, each grammar
defines a language. Specifically, we require that derivations start with the desig
nated start symbol and proceed until only members of I remain in the resulting
string.
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V Definition 8.2. Given a grammar G = <n,I, S, P>, the language generated
by G, denoted by L(G), is given by L(G) = {x Ix E I* 1\ S~x}.
6.

A language that can be defined by a type 0 grammar is called a type 0 language.
Thus, as shown by the grammar G" given in Example 8.3, L(G") ={aibicili;::: O} is a
type 0 language.

The way grammars define languages is fundamentally different from the way
automata define languages. An automaton is a cognitive device, in that it is used to
directly decide whether a given string should be accepted into the language. In
contrast, a grammar is a generative device: the productions specify how to generate
all the words in the language represented by the grammar, but do not provide an
obvious means of determining whether a given string can be generated by those
rules. There are many applications in which it is important to be able to determine
whether a given string can be generated by a particular grammar, and the task of
obtaining cognitive answers from a generative construct will be addressed at several
points later in the text. The reverse transformation, that is, producing an automaton
that recognizes exactly those strings that are generated by a given grammar, is
addressed in the next section.

The distinction between generative and cognitive approaches to representing
languages has been explored previously, when regular expressions were considered
in Chapter 6. Regular expressions are also a generative construct, in the sense that a
regular expression can be used to begin to enumerate the words in the correspond
ing regular set. As is the case with grammars, it is inconvenient to use regular
expressions in a cognitive fashion: it may be difficult to tell whether a given string is
among those represented by a particular regular expression. Chapter 6 therefore
explored ways to transform a regular expression into a corresponding automaton. It
is likewise feasible to define corresponding automata for certain grammars (see
Lemma 8.2). However, Example 8.3 illustrated that some grammars produce non
FAD languages and therefore cannot possibly be represented by deterministic finite
automata. The translation from a mechanical representation of a language to a
grammatical representation is always successful, in that every automaton has a
corresponding grammar (Lemma 8.1). This result is similar to Theorem 6.3, which
showed that every automaton has a corresponding regular expression.

Note that in Example 8.3 the only production that specified that a string be
replaced by a shorter string was T~ A. Consequently, the length of the derived
string either increased or remained constant except where this last production was
applied. Rules such as aBcD~ beA, in which four symbols are replaced by only
three, will at least momentarily decrease the length of the string. Such productions
are called contracting productions. Grammars that satisfy the added requirement
that no production may decrease the length of the derivation are called context
sensitive. Such grammars cannot generate as many languages as the unrestricted
grammars, but they have the added advantage of allowing derivations to proceed in
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a more predictable manner. Programming languages are explicitly designed to
ensure that they can be represented by grammars that are context sensitive.

V Definition 8.3. A pure context-sensitive grammar over an alphabet I is a
quadruple G = <O,I,S,P>, where:

o is a (nonempty) set of nonterminals.
I is a (nonempty) set of terminal symbols (and 0 n I = 0).
S is the designated start symbol (and S EO).
P is a set of productions ofthe form a-i> 13, where a E (0 U It, 13 E (0 U I)+'
and Ia I~ 1131·

In a derivation in a context-sensitive grammar, if S =? Xl =? X2 =? ... =? Xn , then
we are assured that 1 = IS I ~ IXII -s IX21 -s ... ~ Ixnl. Unfortunately, this means that
in a pure context-sensitive grammar it is impossible to begin with the start symbol
(which has length 1) and derive the empty string (which is of length 0).

EXAMPLE 8.4

Languages that contain A, such as {a'b'c'[r ;:::O} generated in Example 8.3 by the
unrestricted grammar Gil, cannot possibly be represented by a pure context
sensitive grammar. However, the empty string is actually the only impediment to
finding an alternative collection of productions that all satisfy the condition
1a I -s 1131. The language {a'b'c'] i ;::: 1}can be represented by a pure context-sensitive
grammar, as illustrated by the following grammar. Let G be given by

G = <{A, B, S, T},{a, b, e},S,{S-i> aSBe, S-i>aTe, T-i> b, TB-i> bT, eB-i>Be}>

The derivation to produce aabbee would now be

S =? (by applying S-i>aSBe)

aSBe =? (by applying S-i>aTe)

aaTeBe =? (by applying eB-i>Be)

aaTBee =? (by applying TB -i> bT)

aabTee =? (by applying T -i> b)

aabbee

The shortest string derivable by G is S =? aTe =? abc. In Example 8.3, the shortest
derivation was S =? T =? A.

Any pure context-sensitive grammar can be modified to include A by adding a
new start state Z and two new productions Zr-» A and Zs--» S, where S was the
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original start state. Such grammars and their resulting languages are generally
referred to as type 1 or context sensitive.

V Definition 8.4. A context-sensitive or type 1 grammar over an alphabet ~ is
either a pure context-sensitive grammar or a quadruple

G' = <OU{Z},~,Z,P U{Z~A,A~S}>,

where G = <O,~, S, P> is a pure context-sensitive grammar and Z f/=. 0 U~.

a

The only production Ct~ f3 that violates the condition ICt 1:51 f31 is Z~ A, and
this production cannot playa part in any derivation other than Z =9 A. From the start
symbol Z, the application Z~ A immediately ends the derivation (producing A),
while the application of Z~ S will provide no further opportunity to use Z~ A,
since the requirement that Z f/=. 0 U ~ means that the other productions will never
allow Z to reappear in the derivation. Thus, G' enhances the generating power of G
only to the extent that G' can produce A. Every string in L(G) can be derived from
the productions of G', and G' generates no new strings besides A. This argument
essentially proves that L(G') = L(G) U {A} (see the exercises).

EXAMPLES.5

The language generated by Gil in Example 8.3 was L(G") = [a'b'c'[r ~O}. Since
L(G") is [a'b'c'[r ~ I} U {A}, it can therefore be represented by a context-sensitive
grammar by modifying the pure context-sensitive grammar in Example 8.4. Let G'
be given by

G' = <{A, B, S, T, Z},{a, b, c], Z,
{S~ aSBe, S~ aTe,T~ b, TB~ bT, eB~ Be, Z~ A,Z~ S}>

The derivation to produce aabbee would now be

Z~ (by applying Z~ S)

S =9 (by applying S~ aSBe)

aSBe~ (by applying S~ aTe)

aaTeBe~ (by applying eB~ Be)

aaTBee =9 (by applying TB~ bT)

aabTee~ (by applying T~ b)

aabbee

This grammar does produce A, and all other derivations are strictly length
increasing. Note that this was not the case in the grammar Gil in Example 8.3. The
last step of the derivation shown there transformed a string of length 7 into a string
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of length 6. Gil does not satisfy the definition of a context-sensitive grammar; even
though only T could produce A, T could occur later in the derivation. The presence
of T at later steps destroys the desirable property of having all other derivations
strictly length-increasing at each step. Definition 8.4 is constructed to ensure that
the start symbol Z can never appearin a later derivation step.

The restriction of productions to nondecreasing length reduces the number of
languages that can be generated; as discussed in later chapters, there exist type 0
languages that cannot be generated by any type 1 grammar. The restriction also
allows arguments about the derivation process to proceed by induction on the
number of symbols in the resulting terminal string and is crucial to the development
of normal forms for context-sensitive grammars.

We have already seen examples of different grammars generating the same set
of words, as in the grammars Gil and G' from Examples 8.3 and 8.5. The term
context sensitive comes from the fact that context-sensitive languages (that is, type 1
languages) can be represented by grammars in which the productions are all of the
form aB-y---,'> a~-y, where a single nonterminal B is replaced by the string ~ in the
context of the strings a on the left and -y on the right. Specialized grammars such as
these, in which there are restrictions on the form of the productions, are examples
of normal forms and are discussed later in the text.

If the productions in a grammar all imply that single nonterminals can be
replaced without regard to the context, then the grammar is called context free. In
essence, this means that all productions are of the form A ---,'> ~, where the left side is
just a single nonterminal and the right side is an arbitrary string. The resulting
languages are also called type 2 or context free.

V Definition 8.5. A pure context-free grammar over an alphabet I is a quadru-
ple G = <fl,I,S,P>, where:

fl is a (nonempty) set of nonterminals.
I is a (nonempty) set of terminal symbols (and fl n I = 0).
S is the designated start symbol (and S E fl).
P is a set of productions of the form A---,'>~, where A E fl, ~ E (fl U I)+.

Note that since the length of the left side of a context-free production is 1 and the
right side cannot be empty, pure context-free grammars have no contracting pro
ductions and are therefore pure context-sensitive grammars. As with pure context
sensitive grammars, pure context-free grammars cannot generate languages that
contain the empty string.

V Definition 8.6. A context-free or type 2 grammar over an alphabet I is
either a pure context-free grammar or a quadruple

G' = <flU{Z},I,Z,P U{Z---,'>A,Z---,'>S}>,
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where G = <O,!', S, P> is a pure context-free grammar and Z $. 0 u !'.
~

Productions of the form C~ ~ are called C-rules. As was done with context
sensitive grammars, this definition uses a new start state Z to avoid all such length
decreasing productions except for a single one of the form Z~ 'A., which is used only
for generating the empty string. Type 2 languages will therefore always be type 1
languages. Note that the definition ensures that the only production that can
decrease the length of a derivation must be the Z-rule Z~ 'A..

The grammar corresponding to the BNF given in Example 8.2 would be a
context-free grammar, and thus the collection of all regular expressions is a type 2
language. The grammar given in Example 8.4 is not context free due to the presence
of the production eB~ Be, but this does not yield sufficient evidence to claim that
the resulting language {a'b'c'] i 2: 1} is not a context-free language. To support this
claim, it must be shown that no type 2 grammar can generate this language. A
pumping lemma for context-free languages will be presented in Chapter 10 to
provide a tool for measuring the complexity of such languages. Just as there are type
1 languages that are not type 2, there are type 0 languages that are not type 1.

Note that even these very restrictive type 2 grammars can produce languages
that are not FAD. As shown in Example 8.2, the language consisting of the
collection of all strings representing regular expressions is context free. However,
this collection is not FAD, since it is clear that the pumping lemma (Theorem 2.3)
would show that a DFA could not hope to correctly match up unlimited pairs of
parentheses.

Consequently, even more severe restrictions must be placed on grammars if
they are to have generative powers similar to the cognitive powers of a deterministic
finite automaton. The type 3 grammars explored in the next section are precisely
what is required. It will follow from the definitions that all type 3 languages are type
2. It is likewise clear that all type 2 languages must be type 1, and every type 1
language is type O. Thus, a hierarchy of languages is formed, from the most re
strictive type 3 languages to the most robust type 0 languages. The four classes of
languages are distinct; there are type 2 languages that are not type 3 (for example,
Example 8.2), type 1 languages that are not type 2 (see Chapter 9), and type 0
languages that are not type 1 (see Chapter 12).

8.2 RIGHT-LINEAR GRAMMARS AND AUTOMATA

The grammatical classes described in Section 8.1 are each capable of generating all
the FAD languages; indeed, they even generate languages that cannot be recog
nized by finite automata. This section will explore a class of grammars that generate
the class of regular languages: every FAD language can be generated by one of the
right-linear grammars defined below, and yet no right-linear grammar can generate
a non-FAD language.
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V Definition 8.7. A right-linear grammar over an alphabet l is a quadruple
G:::: <O,l,S,P>, where

o is a (nonempty) set of nonterminals.
l is a (nonempty) set of terminal symbols (and 0 n l:::: 0).
S is the designated start symbol (and S EO).
P is a set of productions of the form A -i> XB, where A E 0, B E (0 U h), and
x El*.

Right-linear grammars belong to the class of type 3 grammars and generate all
the type 3 languages. Grammars that are right linear are very restrictive; only one
nonterminal can appear, and it must appear at the very end of the expression.
Consequently, in the course of a derivation, new terminals appear only on the right
end of the developing string, and the only time the string might shrink in size is
when a (final) production of the form A -i> h is applied. A right-linear grammar may
have several contracting productions that produce h and may not strictly conform
with the definition of a context-free grammar. However, Corollary 8.3 will show
that every type 3 language is a type 2 language.

Right-linear grammars generate words in the same fashion as the grammars
defined in Section 8.1. The following definition of derivation is tailored to right
linear grammars, but it can easily be generalized to less restrictive grammars (see
Chapter 9).

V Definition 8.8. Let G:::: <O,l,S,P> be a right-linear grammar, y El*,
and A -i> XB be a production in P. We will say that yx B can be directly derived
fromyA by applying the production A-i>xB, and writeyA~ yxB. Furthermore, if

(xjAj~xzAz) A (XZAZ~X3A3) A"'A (xn-jAn-j~xnAn),

where Xi E l* for i :::: 1,2, ... ,n, Ai E 0 for i :::: 1,2, ... ,n - 1, and An E (0 U h),
then we will say that xjAj derives xnAn, and write xjAj:!:;>xnAn.
a

While the symbol ~ might be more consistent with our previous extension nota
tions, :!:;> is most commonly used in the literature.

EXAMPLE 8.6

Let Gj::::<{T,S},{a,b},S,{S-i>aS,S-i>bT,T-i>aa}>. Then S:!:;>aabaa, since by
Definition 8.2, with Xj :::: h, Xz :::: a, X3 :::: aa, X4:::: aab, Xs :::: aabaa, A, :::: A, := A3 :::: S,
A4 :::: T, and As :::: h.

S~ as(by applying S-i>aS)

~ aaS(by applying S-i>as)
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::}aabT(by applying S~ bT)

::}aabaa(by applying T~ aa)

Derivations similar to Example 8.1, which begin with only the start symbol Sand
end with a string with symbols entirely from I (that is, which do not contain any
nonterminals) will be the main ones in which we are interested. As formally stated
in Definition 8.2, the set of all strings (in I *) that can be derived from the start
symbol form the language generated by the grammar G and will be represented by
L(G). In symbols, L(G) == {x Ix EI* 1\ S~x}.

EXAMPLES.1

As in Example 8.6, consider Gl==<{T,S},{a,b},S,{S~aS,S~bT,T~aa}>.

Then L(G 1) == a*baa == {baa, abaa, aabaa, ... }. Note that each of these words can
certainly be produced by G1 ; the number of as at the front of the string is entirely
determined by how many times the production S~aS is used in the derivation.
Furthermore, no other words in I* can be derived from G1 ; beginning from S,
the production S~ as may be used several times, but if no other production is
used, a string of the form anS will be produced, and since Sf/=. I, this is not a valid
string of terminals. The only way to remove the S is to apply the production S~ bT,
which will leave a string of the form anbT, which is also not in I ". The only
production that can be applied at this point is T~ aa, deriving a string of the form
anbaa. A proof involving induction on n would be required to formally prove that
L (G1) == {anbaa In EN} == a*baa. If G contains many productions, such inductive
proofs can be truly unpleasant.

EXAMPLES.S

Consider the grammar Q == <{I,F},{O, 1, .},I,{I~OIllIlo.Fll.F,F~ AIOF!IF}>.
L(Q) generates the set of all (terminating) binary numbers including 101.11, 011.,
10.0, 0.010, and so on.

In a manner similar to that used for automata and regular expressions, we will
consider two grammars to be similar in some fundamental sense if they generate the
same language. The following definition formalizes this notion.

V Definition8.9. Twogrammars G, == <OI,I,SI,P1> and Gz == <Oz,I, Sz, Pz>
are called equivalent iffL(G 1) == L(Gz), and we will write Gz= G1•

A

EXAMPLES.9

Consider G1 from Examples 8.6 and 8.7, and define the right-linear grammar
Gs == <{Z},{a,b},Z, {Z~ aZ, Z~ baa]'>. Then L(Gs) == a*baa == L(G 1) , and there
fore Gs= G1• The concept of equivalence applies to all types of grammars, whether
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or not they are right linear, and hence the grammars Gil and G' from Examples 8.3
and 8.5 are likewise equivalent.

Definition 8.9 marks the fourth distinct use of the operator L and the concept
of equivalence. It has previously been used to denote the language recognized by a
DFA, the language recognized by an NDFA, and the language represented by a
regular expression [although the more precise notation L (R), which is the regular
set represented by the regular expression R, has generally been eschewed in favor of
the more common convention of denoting both the set and the expression by the
same symbol R]. In the larger sense, then, a representation X of a language,
regardless of whether X is a grammar, DFA, NDFA, or regular expression, is
equivalent to another representation Y iffL (X) = L (Y).

Our first goal in this section is to demonstrate that a cognitive representation
of a language (via a DFA) can be replaced by a generative representation (via a
right-linear grammar). In the broader sense of equivalence of representations
discussed above, Lemma 8.1 shows that any language defined by a DFA has an
equivalent representation as a right-linear grammar. We begin with a definition of
the class of all type 3 languages.

V Definition 8.10. Given an alphabet S, c§}; is defined to be the collection of all
languages generated by right-linear grammars over S,
6.

The language generated by G1 in Example 8.7 turned out to be FAD. We will
now prove that every language in~ is FAD, and, conversely, every FAD language
L has (at least one) right-linear grammar that generates L. This will show that
~ = ~};. We begin by showing that a mechanical representation A of a language is
equivalent to a grammatical representation (denoted by GAin Lemma 8.1).

V Lemma 8.1. Given any alphabet ~ and a DFA A = <~, Q,qo, 8, F>, there
exists a right-linear grammar GAfor which L (A) = L (GA).

Proof. Without loss of generality, assume Q = {qo, ql> q2,' .. ,qm}' Define
GA= <Q,~,qO,PA>' where PA={q~a'8(q,a)lq E Q,aE~}U{q~Alq EF}.
There is one production ofthe form s~ bt for each transition inthe DFA, and one
production of the form s~ Afor each final state s in F. (It may be helpful to look
over Example 8.10 to get a firmer grasp of the nature of PA before proceeding with
this proof.) Note that the set of nonterminals n. is made up of the names of the states
in A, and the start symbol S is the name of the start state of A.

The heart of this proof is an inductive argument, which will show that for any
string x = ala2' .. anE ~*,

qo~ al·(8(qo, a.)

~ al'a2'(8(qo, ala2»
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~ acaz· .. an-d8(qo, alaz... an-I))

=?al'az ... an' (8(qo,alaz· .. an))

from which it follows that, if 8(qo, alaz... an) E F, then

qo~alaz'" an·8(qo,alaz... an)=?alaz··· an

The actual inductive statement and proof is left as an exercise; given this fact, if
x EL(A), then 8(qo,x) E F and there is a corresponding derivation qo~x, and so
x EL(GA). Thus L(A) ~L(GA)' A similarly tedious inductive argument will show
that if, for some sequence of integers i], iz, •.. .i.;

qio=?alqi j =?alazqiz=? ... =?alaZ ... anqin ,

then the string alaz ... an will cause the DFA (when starting in state qio) to visit the
states qip qiz' ... ,qi

n
' Furthermore, if qin E F, then, by applying the production

qi
n

--.-. 'A, qo~ alaz ... anqi
n
=?alaz ... an' This will show that valid derivations corre

spond to strings reaching final states in A, and so L (GA) ~ L (A) (see the exercises).
ThusL(GA) =L(A).
L1

EXAMPLE 8.10

Let

8 = <{a, b}, is, T}, S, 8, {T}>

where

8(S, a) =T, 8(S, b) =T

8(T, a) =S, 8(T, b) =S

This automaton is shown in Figure 8.1. Applying the construction in Lemma 8.1, we
have .n = is, T}, I = {a, b}, S = S, and

Pa= {S--.-. aT, S--.-. bT, T --.-. as, T--.-. bS, T --.-. 'A}.

Note that the derivation S =?bT =?baS =?babT =? bab mirrors the action of the
DFA as it processes the string bab, recording at each step of the derivation the string
that has been processed so far, followed by the current state of B. Conversely,
in trying to duplicate the action of 8 as it processes the string ab, we have
S =?aT =?abS, which cannot be transformed into a string of only as and bs without
processing at least one more letter, and hence ab Et=L(Ga). Since S is not a final
state, it cannot be removed from the derivation, corresponding to the rejection of
any string that brings us to a nonfinal state. Those strings that are accepted by 8 are
exactly those that end in the state T, and for which we will have the opportunity to
use the production T--.-. 'A in the corresponding derivation in Ga, which will leave us
with a terminal string of only as and bs.

",
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Figure 8.1 The automaton discussed in
Example 8.10

Lemma 8.1 showed that a cognitive representation of a finite automaton
definable language can be expressed in an appropriate generative form (via a right
linear grammar). There are many practical applications in which it is necessary to
test whether certain strings can be generated by a particular grammar. For un
restricted grammars, the answers to such questions can be far from obvious. In
contrast, the specialized right-linear grammars discussed in this section can always
be transformed into a simple cognitive representation: every right-linear grammar
has a corresponding equivalent NDFA.

V Lemma 8.2. Let!' be any alphabet and G = <O,!', S, P> be a right
linear grammar, then there exists an NDFA AG (with x-transitions) for which
L(G) =L(AG) .

Proof. Define AG= <!" QG,qOG' 8G, FG>,where

QG = {<z > Iz = A. V z EO V 3y E !, * and 3B EO
such that B~yz is a production in P}

qOG={<S>}

FG={<A.>},

and 8Gis comprised of (normal) transitions of the form

8G«w>,a) ={<x>13y E(OU!,)*,3BEO ~ w =ax /\ B~yw
is a production in P}

oG also contains some X-transitions of the form

8G«B>, A.) = {<v> IB~ v is a production in P}

As in the proof of Lemma 8.1, there is a one-to-one correspondence between paths
through the machine and derivations in the grammar. Inductive statements will be
the basis from which it will follow that L(AG) = L(G) (see the exercises).
t::.

The following example may be helpful in providing a firmer grasp of the
nature of A G.

EXAMPLE 8.11

Let G1 = <{T, S},{a, b},S,{S~ as, S~ bT, T~aa}>. Then

AG1= <{a,b},{<aS>,<S>, <bT>, <T>, <aa>, <a>, <A.>},{<S>},8GI'{<A.>}>,

where oG1is given by
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8Gj«S>, A) = {<as>, <bT>} 8G1«T>, A}= {<aa>}

8Gj«aS>, a) = {<S>} 8Gj«bT>, b) = {<T>}

8Gj( <aa>, a) = {<a>} 8G1( <a>, a) = {<A>}

and all other transitions are empty [for example, 8Gl <S>, a) = 0]. This automaton
is shown in Figure 8.2. Note that abaa is accepted by this machine by visiting the
states <S>, <as>, <S>, <bT>, <T>, <aa>, <a>, <A>, and that the corre
sponding derivation in G1 is S :;. as :;. abT:;' abaa.

Figure 8.2 The automaton corresponding to the grammar G,

V Theorem 8.1. Given any alphabet S, '9~ = ~~.

Proof. Lemma 8.1 guaranteed that every DFA has a corresponding grammar,
and so ~~ ~ '9~. By Lemma 8.2, every grammar has a corresponding NDFA, and so
'9~ ~W~ = ~~. Thus '9~ = ~~.

l\

8.3 REGULAR GRAMMARS AND REGULAR EXPRESSIONS

The grammars we have considered so far are called right linear because productions
are constrained to have the resulting nonterminal appear to the right of the terminal
symbols. We next consider the class of grammars that arises by forcing the lone
nonterminal to appear to the left of the terminal symbols.

V Definition 8.11. A left-linear grammar over an alphabet ~ is a quadruple
G = <O,~,S,P>, where:

o is a (nonempty) set of nonterminals.

~ is a (nonempty) set of terminal symbols (and 0 n ~ = 0).
S is the designated start symbol (and S EO).
P is a set of productions of the form A~ Bx, where A EO, B E (0 U A), and
x E~*.
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Note that a typical production might now look like A~ Bcd, where the nonterminal
B occurs to the left of the terminal string cd.

EXAMPLE 8.12

Let Gz = <{A, S},{a, b},S,{S~Abaa, A~ Aa,A~ A}>. Then

L (Gz) = a*baa = {baa, abaa, aabaa, ... }= L (Gi),

and so Gz = Gj (compare with Example 8.7). Note that there does not seem to be an
obvious way to transform the right-linear grammar Gj discussed in Example 8.7 into
an equivalent left-linear grammar such as Gz (see the exercises).

As was done for right-linear grammars in the last section, we could show that
these left-linear grammars also generate the set of regular languages by constructing
corresponding machines and grammars (see the exercises). However, we will
instead prove that left-linear grammars are equivalent in power to right-linear
grammars by applying known results from previous chapters. The key to this strat
egy is the reverse operator r (compare with Example 4.10 and Exercises 5.20 and
6.36).

V Definition 8.12. For an alphabet I, and x = ajaz· .. an-janE I*; define
x r = anan-j ... aZaj. For a language L over I, define L' = {xrlx E L}. For a gram
mar G = <O,I,S,P>, define Gr= <O,I,S,P'>, where P' is given by
P' ={A~xrIA~x was a production in Pl.
Ll

V Lemma 8.3. Let G be a right-linear grammar. Then G' is a left-linear gram
mar, and L(Gr)=L(G)'. Similarly, if G is a left-linear grammar, then G" is a
right-linear grammar, and again L(Gr) = L(G)'.

Proof. A straightforward induction on the number of productions used to
produce a given terminal string (see the exercises). It can be shown that S~ Bx by
applying n productions from G iffS ~xrB by applying n corresponding productions
from Gr.
Ll

EXAMPLE 8.13

Consider

G3 = <{T,S},{a,b,c,d},S,{S~abS, s-s err,T~ bT, T~ b}>.

Then

G~ = <{T,S},{a, b,c,d},S,{S~Sba,S~Tdc,T~Tb,T~ b}>,

L(G3) = (ab) *cdbb*, L(GD = b*bdc(ba)* ,
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V Theorem 8.2. Let I, be an alphabet. Then the class of languages generated
by the set of all left-linear grammars over I, is the same as the class of languages
generated by the set of all right-linear grammars over I,.

Proof. Let G be a left-linear grammar. Gr is then a right-linear grammar, and
L(Gr) is therefore FAD by Theorem 8.1. Since ~'I. is closed under the reverse
operator r (see Exercise 5.20), L(Gry is also FAD. But, by Lemma 8.3,
L(Gry = L(G), and so L(G) is FAD. Hence every left-linear grammar generates a
member of~'I. and therefore has a corresponding right-linear grammar.

Conversely, if L is generated by a right-linear grammar, then L is a language in
~'I., and so is L' (as shown by Exercise 5.20 or 6.36). Since ~'I. =~, there is a right
linear grammar G that generates L', and hence Gr is a left-linear grammar that
generates L (why?). Thus every right-linear grammar has a corresponding left-linear
grammar.
Ll

V Definition 8.13. A regular or type 3 grammar is a grammar that is either
right-linear or left-linear.
Ll

Thus, the languages generated by left-linear (and hence regular) grammars are
referred to as type 3 languages. The class of type 3 languages is exactly ~.

V Corollary 8.1. The class of languages generated by regular grammars is
equal to~.

Proof. The proof follows immediately from Theorem 8.2.

With the correspondences developed between the grammatical descriptors
and the mechanical constructs, it is possible to transform a regular expression into
an equivalent grammar by first transforming the representation of the language into
an automaton (as described in Chapter 6) and then applying Lemma 8.1 to the
resulting machine. Conversely, the grammar G1 in Example 8.11 gives rise to the
seven-state NDFA AG1 (using Lemma 8.2), which could in turn be used to generate
seven equations in seven unknowns. These could then be solved for a regular
expression representing L(G 1) via Theorems 6.1 and 6.2. A much more efficient
method, which generates equations directly from the productions themselves, is
outlined in the following theorem.

V Theorem 8.3. Let G = <{S1> S2,' .. ,Sn}, I" S1> P> be a right-linear gram
mar, and for each nonterminal S, define XSi to be the set of all terminal strings that
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can be derived from S, by using the productions in P. XS 1 then representsL(G), and
these sets satisfy the language equations

XSk =E, U AklXSt U A k2XSz U ... U AknXSn, for k = 1,2, ... .n

where E, is the union of all terminal strings x that appear in productions of the form
S,--,-. x, and A ij is the union of all terminal strings x that appear in productions of the
form Si--'-' X Sj'

Proof. Since SI is the start symbol, XSt is by definition the set of all words that
can be derived from the start symbol, and hence XS1 = L(G). The relationships
between the variables XSj essentially embody. the relationships enforced by the
productions in P.
~

EXAMPLE 8.14

Consider GI from Example 8.11, in which

GI = <{T, S},{a, b},S, {S--,-. as, S--'-' bT, T --,-. aa}>.

The corresponding equations are

x,» 0UaXs UbXT

XT = aa U 0Xs U 0XT

Eliminating XT via Theorem 6.2 yields X, =baa U aXs. Theorem 6.1 can be applied
to this equation to yield X, = L(G I ) = a*baa. Solving these two equations is indeed
preferable to appealing the resulting NDFA from Example 8.11 and solving the
corresponding seven equations.

EXAMPLE 8.15

Let I ={a, b, c},and consider the set of all words that end in b and for which every c
is immediately followed by a. This can be succinctly described by the grammar
G = <{S},{a, b, c},S, {S--'-' as, S--'-' bS, S--'-' caS, S--'-' b}>. The resulting one equa
tion in the single unknown X, isX, = b U (a U b U ca)Xs, and Theorem 6.1 can be
applied to yield a regular expression for this language; that is, X, = (a U b U ca)*b.

Unfortunately, another grammar that generates this same language is

G' = <{S},{a, b, c},S, {S--,-. x'S, S--'-' as, S--'-' bS, S--'-' caS, S--,-. b}>.

In this case, however, the resulting one equation in the single unknown X, is
X, = b U (X, U a U b uca)Xs, and Theorem 6.1 explicitly prohibits X, from appearing
as a coefficient of an unknown. The equation no longer has a unique solution; other
solutions are now possible, such as X, = I ". Nevertheless, the reduction described
by Theorem 6.1 still predicts the correct expression for this language; that is,
X, = (X, U a U b U ca)*b. For equations arising from grammatical constructs, the
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I ,

desired solution will always be the minimal solution predicted by the technique used
in Theorem 6.1. The condition prohibiting ~ from appearing in the set A in the
equation X =E U AX was required to guarantee a unique solution. Regardless of
the nature of the set A, A *E is guaranteed to be a solution, and it will be contained
in any other solution, as restated in Lemma 8.4.

V Lemma 8.4. Let E and A be any two sets, and consider the language equa
tion X =E U AX. A *E is always a solution for X, and any other solution Y must
satisfy the property A *E f: Y.

Proof. Follows immediately from Theorem 6.1.

Consider again the grammar

G' = <{S},{a, b, c},S, {S-,) ~S, S-,) as, S-,) bS, S-,) caS, S-,) b}>,

which generates the language (~ U aU b U ca)*b. The corresponding equation was
X = E U AX, where E = b, and A = (~ U a U b U ca). Note that E represents the set
of terminal strings that can be generated from S using exactly one production, while
A· E = (~ U a U b U ca)b is the set of all strings that can be generated from S using
exactly two productions. Similarly, A· A·E represents all terminal strings that can
be generated from S using exactly three productions. By induction, it can be shown
that An-I. E is the set of all strings that can be generated from S using exactly n
productions. From this it follows that the minimal solution A *E is indeed the
language generated by the grammar.

Clearly, a useless production of the form S-,) ~S in a grammar can simply be
removed from the production set without affecting the language that is generated.
In the above example, it was the production S-,) ~S that was responsible for ~

appearing in the coefficient set A. It is only the nongenerative productions, which do
not produce any terminal symbols, that can give rise to a nonunique solution.
However, the removal of productions of the form V -,) ~T will require the addition
of other productions when T is a different nonterminal than V. Theorem 9.4,
developed later, will show that these grammars can be transformed into equivalent
grammars that do not contain productions of the form V -,) ~T. Theorem 8.4 shows
that it is not necessary to perform such transformations before producing equations
that will provide equivalent regular expressions: the techniques outlined in
Theorem 6.2 can indeed be used to solve systems of equations, even if the coeffi
cients contain the empty word. Indeed, the minimal solution found in this manner
will be the regular expression sought. This robustness is similar to that found in
Theorem 6.3, which was stated for deterministic finite automata. Regular expres
sions for nondeterministic finite automata can be generated by transforming the
NDFA into a DFA and then applying Theorem 6.3, but it was seen that it is both
possible and more efficient to apply the method directly to the NDFA without
performing the transformation. The following theorem justifies that a transforma-
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tion to a well-behaved grammar is an unnecessary step in the algorithm for finding a
regular expression describing the language generated by a right-linear grammar.

V Lemma 8.5. Consider the system of equations in the unknowns
Xl, X2, ... .X, given by

x, = El U AllXl U A12X2U ... U Al(n-l)Xn-l U AlnXn

X2= E2U A21Xl U A22X2U· ..· U A2(n-l)Xn-l U A 2nXn

Xn-l = En-l U A(n-l)lXl U A(n-l)2X2 U ... U A(n-l)(n-l)Xn-l U A(n-l)nXn

x, = En U AnlXl U A n2X2U ... U An(n-l)Xn-l U AnnXn

a. Define E; = E; U (An·A:n .En) for all i = 1,2, ... , n -1 and

Ai= AiU (Ain·A:n· Ani) for all i,j = 1,2, ... ,n - 1.

Any solution of the original set of equations will agree with a solution of the
following set of n - 1 equations in the unknowns Xl, X2, ... ,Xn-l:

Xl =El U Allxl U A12x2U U Al(n-l)Xn-l

X2=E2U A21Xl U A22X2U U A2(n-l)Xn-l

x., = En- l U A(n-l)lXl U A(n-l)2X2 U ... U A(n-l)(n-l)Xn-l

b. Given a solution to the above n - 1 equations in (a), that solution can be used
to find a compatible expression for the remaining unknown:

X, = A:n.(En U AnlXl U A n2X2U ... U An(n-l)Xn-l)

c. This system has a unique minimal solution in the following sense: Let
Wl> W2,· .. ,Wn denote the solution found by eliminating variables and back
substituting as specified in (a) and (b). If Yl> Y2, ... .Y, is any other solution
to the original n equations in n unknowns, then Wl C Yl> W2C Y2,... , and
WnCYn.

Proof. This proof is by induction on the number of equations. Lemma 8.4
proved the basis step for n = 1. As in Theorem 6.2, the inductive step is proved by
considering the last of the n equations,

x, = (En U AnlXl U A n2X2U ... U An(n-l)Xn-l) U AnnXn

This can be thought of as an equation in the one unknown X, with a coefficient of
Ann for X n, and the remainder of the expression a "constant" term not involving X;

For a given solution for X, through Xn-l, Lemma 8.4 can therefore be applied
to the above equation in the one unknown X n , with coefficients
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E = (En U AnlXl U AnzXz U ... U An(n-l)Xn-l)

and A= Ann to find a minimal solution for X, for the corresponding values of X,
through Xn+ This is exactly as given by part (b) above:

x, = A:n·(EnU AnlXl U AnzXz U" . U An(n-l)Xn-l)

or

X, = A:n-E, U A:n.AnlXl U A:n.A n2XzU'" U A:n·An(n-l)Xn-l)

Specifically, if X, through Xn - l are represented by a minimal solution W l through
Wn- l. then Lemma 8.4 implies that the inclusion of W n , given by

W n= A:n -E, U A:n.AnlWl U A:n .AnzWzU'" U A:n.An(n-l)Wn-l)

will yield a minimal solution W1 through Wn of the original n equations in n
unknowns.

The minimal solution for the n - 1 equations in the unknowns
Xl. Xz, ... ,Xn- l. denoted by W l through W n-l. can be found by substituting this
particular solution W n for X, in each of the other n - 1 equations. If the kth
equation is represented by

X, = E, U AklXl U AkZXZU ... U AknXn

then the substitution will yield

X, = Ek U AklXl U A k2Xz U ...

U (Akn·(A:n-E, U A:n.AnlXl U A:n .AnzXzU'" U A:n.An(n-l)Xn-l))

Due to the nature of union and concatenation, no other solution for X, can possibly
allow a smaller solution for Xl. Xz, ... ,Xn- l to be found. Specifically, if Yn is a
solution satisfying the nth equation, then Lemma 8.4 guarantees that W n ~ Y n , and
consequently

x, = Ek U AklXl U AkZXZU'" U AknWnc Ek U AklXl U AkZXZU'" U AknYn

Thus, the minimal value for each X, is compatible with the substitution of Wn

defined earlier. Hence, by using the distributive law, the revised equation becomes

X, = E, U AklXl U AkZXZU'" U (Akn·A:n'EnU Akn·A:n .AnlXl

U Akn·A:n.AnzXzU'" U Akn·A:n .A n(n-l)Xn-l)

Collecting like terms yields

X, = (E, U Akn·A:n·En) U (AklXl U Akn·A:n.AnlXl)

U (Ak2Xz U Akn·A:n.AnzXz) U'" U (Ak(n-l)Xn-l U Akn·A:n·An(n-l)Xn-l),

or

X, = (E, U Akn·A:n·En) U (Akl U Akn·A:n .Anl)Xl

U (Ak2 U Akn·A:n.Anz)XzU'" U (Ak(n-l) U Akn·A:n.An(n-l»)Xn- l
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The constant term in this equation is (E; UAkn·A~n·En), and the coefficient for Xj is
A.kj = A kj U (Akn•A~n •A nj), which agrees with the formula given in (a). The substi
tution of X, was shown to yield a minimal set of n - 1 equations in the unknowns X,
through Xn-1o and the induction assumption guarantees that the elimination and
back-substitution method yields a minimal solution for W1through Wn-1. Lemma
8.4 then guarantees that the solution for

Wn= A~n -E, U A~n •An1W1U A~n .An2W2U'" U A~n •A n(n-1)Wn-1)

is minimal, which completes the minimal solution for the original system of n
equations.
a

As with Lemma 8.4, the minimal expressions thus generated describe exactly
those terminal strings that can be produced by a right-linear grammar. In an analo
gous fashion, left-linear grammars give rise to a set of left-linear equations, which
can be solved as indicated in Theorem 6.4.

The above discussion describes the transformation of regular grammars into
regular expressions. Generating grammars from regular expressions hinges on the
interpretation of the six building blocks of regular expressions, as described in
Definition 6.2. Since '9l is the same as ~l, all the closure properties known about ~l
must also apply to '9l , but it can be instructive to reprove these theorems using
grammatical constructions. Such proofs will also provide guidelines for directly
transforming a regular expression into a grammar without first constructing a corre
sponding automaton.

V Theorem 8.4. Let ~ be an alphabet. Then '9l is effectively closed under
union.

Proof. Let G1= <Ob~' S10 Pt> and G2= <02 ' ~ , S2, P2>be two right-linear
grammars, and without loss of generality assume that 0 1n O2= 0. Choose a new
nonterminal Z such that Z f/=. 0 1U O2,and consider the new grammar GU defined by
GU = <01U O2U {Z},~, Z, P1 U P2 U{Z~ S10Z~ S2}>' It is straightforward to
show thatL (GU) = L(G1) U L (G2) (see the exercises). From the start symbol Z there
are only two productions that can be applied; if Z~ Sl is chosen, then the
derivation will have to continue with productions from P1 and produce a word from
L (G1) (why can't productions from ~ be applied?). Similarly, if Z~ S2 is chosen
instead, the only result can be a word from L(G2) .

a

In an analogous fashion, effective closure of ~ can be demonstrated for the
operators Kleene closure and concatenation. The proof for Kleene closure is out
lined below. The construction for concatenation is left for the exercises; the tech
nique is illustrated in Example 8.18.

V Theorem 8.5. Let ~ be an alphabet. Then '9l is effectively closed under
Kleene closure.
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Proof. Let G = <0, I, S, P> be a right-linear grammar. Choose a new
nonterminal Z such that Z $.0, and consider the new grammar G. defined by

G. = <0 U{Z}, I, Z, P.>,

where

P. = <{Z~A,Z~S}

U{A~xB I(x E I*)/\(A,B E n)/\(A~xB E P)}

U{A~xZI(x E I*)/\(A E n)/\(A~x E P)}.

That is, all productions in P that end in a nonterminal are retained, while all other
productions in P are appended with the new symbol Z, and the two new productions
Z~ Aand Z~ S are added. A straightforward induction argument will show that
the derivations that use n applications of productions of the form A~ x Z generate
exactly the words in L (G)", Consequently, L (G.) = L (G)*.
Ii

V Theorem 8.6. Let I be an alphabet. Then ~ is effectively closed under
concatenation.

Proof. See the exercises.

V Corollary 8.2. Every regular expression has a corresponding right-linear
grammar.

Proof. While this follows immediately from the fact that '§I = 2IJI and
Theorem 6.1, the previous theorems outline an effective procedure for trans
forming a regular expression into a right-linear grammar. This can be proved by
induction on the number of operators in the regular expression. The basis step
consists of the observation that expressions with zero operators, which must be
of the form 0, A, or a, can be represented by the right-linear grammars
<{S},I,S,{S~S}>, <{S},I,S,{S~A}>, and <{S},I,S,{S~a}>, respectively.

To prove the inductive step, choose an arbitrary regular expression R with
m + 1 operators, and identify the outermost operator. R must be of the form
RI U R2 or RI •R2 or RT, where RI (and R2) have m or fewer operators. By the
induction hypothesis, RI (and R2) can be represented as right-linear grammars, and
therefore by Theorem 8.4, 8.S, or 8.6, R can also be represented by a right-linear
grammar. Any regular expression can thus be methodically transformed into an
equivalent right-linear grammar.
Ii

EXAMPLE 8.16

Let I={a,b,c}, and consider the regular expression (aUb). The grammars
G1 = <{R},{a,b,c},R,{R~a}> and G2 = <{T},{a, b,c}, T,{T~ b}> can be com
bined as suggested in Theorem 8.4 (with A playing the role of Z) to form
G = <{T,R,A},{a, b,c},A,{A~R,A~T,R~a,T~ b}>.
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Consider the regular expression (a U b)*. The grammar

G = <{T,R,A},{a,b,c},A,{A~R,A~T,R~a, T~b}>

can be modified as suggested in Theorem 8.5 to form
G. = <{T, R,A, Z},{a, b,c}, Z,{Z~ x.,Z~ A, A~ R,A~T, R~aZ, T~ bZ}>.
G. generates (a U b)".

EXAMPLE 8.18

Consider the regular expression (a U b)*c. The grammars

G. = <{T, R,A, Z},{a, b, c},Z,{Z~ x,Z~ A,A~ R,A~T, R~aZ, T~ bZ>

and

G3= <{V},{a,b,c}, V,{V~c}>

can be combined with modified productions to form

G' =<{T,R,A,Z, V,S},{a, b,c},S,

{S~Z,Z~X.V,Z~A,A~R,A~T,R~aZ,T~bZ,V~c}>.

G' generates (a U b)*c.

The previous examples illustrate the manner in which regular expressions can
be systematically translated into right-linear grammars. Constructions correspond
ing to those given in Theorems 8.4,8.5, and 8.6 can similarly be found for left-linear
grammars (see the exercises).

Normal forms for grammars are quite useful in many contexts. A standard
representation can be especially useful in proving theorems about grammars. For
example, the construction given in Lemma 8.2 would have been more concise and
easier to investigate if complex productions such as S~ bcaaT could be avoided.
Indeed, if all productions in the grammar G had been of the form A~ aB or A~ x.,
both the state set and the state transition function of AG could have been defined
more easily. Other constructions and proofs may also be able to make use of the
simpler types of productions in grammars that conform to such normal forms. The
following theorem guarantees that a given right-linear grammar has a correspond
ing equivalent grammar containing only productions that conform to the above
standard.

V Theorem 8.7. Every right-linear grammar G has an equivalent right-linear
grammar G1 in which all productions are of the form A~ aB or A~ x..

Proof. Let G be a right-linear grammar. By Lemma 8.2, there exists an
NDFA AG that is equivalent to G. From Chapter 4, A~ is an equivalent deterministic
finite automaton, and Lemma 8.1 can be applied to A~ to form an equivalent
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right-linear grammar. By the construction given in Lemma 8.1, all the productions
in this grammar are indeed of the form A --') aB or A --') A.
A

Note that the proof given is a constructive proof: rather than simply arguing
the existence of such a grammar, a method for obtaining G1 is outlined. The above
theorem could have been proved without relying on automata constructs. Basically,
"long" productions like T--') abcR would be replaced by a series of productions
involving newly introduced nonterminals, for example, T --') aX, X --') bY, Y--') cR.
Similarly, a production like T--') aa might be replaced by the sequence T--') aB,
B--') aC, C--') A. If the existence of such a normal form had been available for the
proof of Lemma 8.2, the construction of AG could have been simplified and the
complexity of the proof drastically curtailed. Indeed, the resulting machine would
have contained no A-moves. Only one state per nonterminal would have been
necessary, with final states corresponding to nonterminals that had productions of
the form A --') A. Productions of the form A --') aB would imply that B E 8(A, a).

EXAMPLE 8.19

G = <{S, T, B, C], {a, b},S, {S--') as, S--')bT, T --') aB, B--')aC, C--')A}>can be
represented by the NDFA shown in Figure 8.3.

a

Figure 8.3 An automaton corresponding to a grammar in normal form

In practice, given an arbitrary right-linear grammar G, the work associated
with finding the complex machine defined in Lemma 8.2 has simply been replaced
by the effort needed to transform G into the appropriate normal form. Neverthe
less, the guarantee that regular languages have grammars that conform to the above
normal form is useful in many proofs, as illustrated above and in Theorem 8.8
below.

As with context-free and context-sensitive languages, the contracting produc
tions can be limited to Z--') A, where Z is the start symbol. This is only necessary if
AE L; if A$. L, there need be no contracting productions at all. We wish to show
how to produce a grammar with no more than one contracting production. By
relying on the existence of the normal form described in Theorem 8.7, this can be
done without dealing with right-linear grammars in their full generality.

V Theorem 8.8. Every right-linear grammar G has an equivalent right-linear
grammar GO in which the start symbol Z never appears on the right in any produc
tion, and the only length-contracting production that may appear is Z--') A. Further
more, all other productions are of the form A --') aB or A --') a.
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Proof. Let G = <0, I, S, P> be a right-linear grammar. Without loss of
generality, assume that G is of the form specified by Theorem 8.7. (If G were not
of the proper form, Theorem 8.7 guarantees that an equivalent grammar that is
in the proper form could be found and used in place of G.) Choose a new non
terminal Z such that Z $. 0, and consider the new grammar GO defined by
GO = <0 U {Z},I, Z, pO>, where pO contains Z~ S, and all productions from P of
the form A~xB, where x E I* and A, B E O. pO also contains the productions in
the set {A~al(3BEO)(A~aBEP I\B~AEP)}. Finally, if S~A was a pro
duction in P, then Z~ Ais included in pO. Note that no other productions of the
form B~ Aare part of pO. Other productions have been added to compensate for
this loss. Derivations using the productions in pO typically start with Z~ S, then
proceed with productions of the form A~ x B, and terminate with one production
of the form A~ a. The corresponding derivation in the original grammar G would
be very similar, but would start with the old start symbol S and therefore avoid the
Z~ S application used in GO. The productions of the form A~ x B are common to
both grammars, and the final step in GO that uses A~ a would be handled by two
productions in G: A~ aB and B~ A. An induction argument on the number of
productions in a derivation will show that every derivation from GO has a corre
sponding derivation in G that produces the same terminal string, and vice versa.
Thus, L(GO) =L(G), which justifies that GO is equivalent to G. GO was constructed to
conform to the conditions specified by the theorem, and thus the proof is complete.
~

V Corollary 8.3. Every type 3 language is also a type 2 language.

Proof. Let L be a type 3 language. Then there exists a right-linear grammar G
that generates L. By Theorem 8.8, there is an equivalent right-linear grammar GO
that satisfies the definition of a context-free grammar. Thus, L is context free.
~

Section 8.1 explored several generalizations of the definition of a regular
grammar, and, unlike the generalization from DFAs to NDFAs, new and larger
classes of languages result from these generalizations. These new types of grammars
will be explored in the following chapters, and the corresponding generalized
machines will be developed.

EXERCISES

8.1. Can strings like abBAdBc (where B and A are nonterminals) ever be derived from the
start symbol S in a right-linear grammar? Explain.

8.2. Given A and GA as defined in Lemma 8.1, let P(n) be the statement that
('fix E 1")(3j EN) [if to~xtj then BA(to, x) = tJ. Prove that P(n) is true for all n EN.

8.3. Give regular expressions that describe the language generated by:
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(a) G4 = <{S, A, B, C, V, W, X}, {a, b, c}, S, {S~abAlbbBlccV, A~ sctex,
B~ab,C~Alcs, v-s svlex, W~aalaW,X~bVlaaX}>

(b) Gs = <{So,Sl, Sz};{O, I}, So,{So~ AIOSzllSl,s,~ osd IS z,Sz~ OSzIISo>
(c) G6 = <{T,Z},{a,b},Z,{Z~aZ, Z~bT, T~aZ}>

(d) G7 = <{S,B, q,{a, b, c},S,{S~aSlabBlcC, B~abBIA, C~cClca}>
8.4. Use the inductive fact proved in Exercise 8.2 to formally prove Lemma 8.1.
8.5. Draw the automata corresponding to the grammars given in Exercise 8.3.
8.6. Give, if possible, right-linear grammars that will generate:

(a) All words in {a, b, c}* that do not contain two consecutive bs.
(b) All words in {a, b, c}* that do contain two consecutive bs.
(c). All words in {a, b, c]" that have the same number of as as bs.
(d) All words in {a, b, c]" that have an even number of as.
(e) All words in {a, b, c]" that do not end in the letter b.
(0 All words in {a, b, c]" that do not contain any cs.

8.7. Give left-linear grammars that will generate the languages described in Exercise 8.6.
8.8. Complete the inductive portion of the proof of Theorem 8.8.
8.9. Complete the inductive portion of the proof of Theorem 8.5.

8.10. Use the more efficient algorithm indicated in Theorem 8.3 to find regular expressions
to describe L(G s), L(G 6 ) , and L(G 7) in Exercise 8.3.

8.11. (a) Restate Theorem 8.3 so that itgenerates valid language equations for left-linear
grammars.

(b) Restate Lemmas 8.4 and 8.5 for these new types of equations.
(c) Use your new methods to find a regular expression for L(G z) in Example 8.12.

8.12. Consider the grammar Q = <{I, F},{O, 1, .},I,{I~OIllIlo.Fll.F,F~AIOFIIF}>.
L(Q) generates the set of all (terminating) binary numbers including 101.11, 011.,
10.0, 0.010, and so on.
(a) Find the corresponding NDFA for this grammar.
(b) Write the right-linear equations corresponding to this grammar.
(c) Solve the equations found in part (b) for both unknowns.

8.13. Find right-linear grammars for:
(a) (aUb)c*(dU(ab)*)
(b) (aUb)*a(aUb)*

8.14. Find left-linear grammars for:
(a) (a U b)c*(d U (ab)*)
(b) (a U b)*a(a U b)*

8.15. (a) Describe an efficient algorithm that will convert a right-linear grammar into a
left-linear grammar.

(b) Apply your algorithm to

G4 = <{S,A,B, C, V, W,X},{a, b,c},S,{S~abAlbbBlccV,A~bClcX,B~ab,

C~AlcS,v-s svlex, W~aalaW,X~bVlaaX}>
8.16. Describe an algorithm that will convert a given regular grammar G into another regular

. grammar G I that generates the complement of L (G).
8.17. Without appealing to results from Chapter 12, outline an algorithm that will determine

whether the language generated by a given regular grammar G is empty.
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8.18. Without appealing to results from Chapter 12, outline an algorithm that will determine
whether the language generated by a given regular grammar G is infinite.

8.19. Without appealing to results from Chapter 12, outline an algorithm that willdetermine
whether two right-linear grammars GI and G2generate the same language.

8.20. Consider the grammar

H = <{A,B,S},{a, b,c},S,{S~aSBc,S~A,SB~bS,cB~Bc}>

Determine L (H).
8.21. What is wrong with proving that %: is closed under concatenation by using the fol

lowing construction? Let GI = <01, I, SI, PI> and G2= <02,I, S2,P2> be two
right-linear grammars, and, without loss of generality, assume that 0 1 n~ = 0.
Choose a new nonterminal Z such that Z f/=. 0 1 U O2, and define a new grammar
GO = <01 U n, U {Z},I, Z, PI U P2 U {Z~SI'~}>' Note: It is straightforward to show
that L(GO)=L(G I)·L(G2) (see Chapter 9).

8.22. Prove that %:is closed under concatenation by:
(a) Constructing a new grammar GO with the property that L(GO) = L(G I)·L(G 2 ) .

(b) Proving that L(GO) = L(G I)·L(G2) .

8.23. Use the constructs presented in this chapter to solve the following problem from
Chapter 4: Given a nondeterministic finite automaton A without A-transitions, show
that it is possible to construct a nondeterministic finite automaton with A-transitionsA'
with the properties (1) A' has exactly one start state and exactly one final state, and (2)
L(A') =L(A).

8.24. Complete the proof of Lemma 8.2 by:
(a) Defining an appropriate inductive statement.
(b) Proving the statement defined in part (a).

8.25. Complete the proof of Lemma 8.3 by:
(a) Defining an appropriate inductive statement.
(b) Proving the statement defined in part (a).

8.26. Fill in the details in the second half of the proof of Theorem 8.2 by providing reasons
for each of the assertions that were made.

8.27. (a) Refer to Example 8.7 and use induction to formally prove that
L(G I ) = {a"baa In EN}.

(b) Refer to Example 8.9 and use induction to formally prove that
L(G s) = [a''baa]» EN}.

8.28. Notice that regular grammars are defined to have production sets that contain only
right-linear-type productions or only left-linear-type productions. Consider the follow
ing grammar C, which contains both types of productions:

C = <{S,A,B},{O, 1},S,{S~OAI1BloI1IA,A~SO,B~Sl}>.

Note that S=>OA=>OSO=>01BO=>01S10=>01l0.
(a) Find L(C).
(b) IsL(C) FAD?
(c) Should the definition of regular grammars be expanded to include grammars like

this one? Explain.
8.29. (a) Why was it important to assume that 0 1 n~ = 0 in the proof of Theorem 8A?

Give an example.
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(b) Why was it possible to assume that 0 1 n O2 = f/J in the proof of Theorem 8.4? Give a
justification.

8.30. Consider the NDFA AG defined in Lemma 8.2. If AG is disconnected, what does this
say about the grammar G?

8.31. Apply Lemma 8.1 to the automata in Figure 8.4.
8.32. (a) Restate Lemma 8.1 so that it directly applies to NDFAs.

(b) Prove this new lemma.
(c) Assume I = {a, b, c}and apply this new lemma to the automata in Figure 8.5.

a)

c)

e)

Figure 8.4 Automata for Exercise 8.31
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d)

g)

Figure 8.5 Automata for Exercise 8.32

8.33. Define context-free grammars for the following languages:
(a) L1 all words over I* for which the last letter matches the first letter.
(b) Lz = all odd-length words over I* for which the first letter matches the center

letter.
(c) L3 = all words over I* for which the last letter matches none of the other letters.
(d) L4 all even-length words over I * for which the two center letters match.
(e) Ls all odd-length words over I* for which the center letter matches none of the

other letters.
(I) Which of the above languages are regular?
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8.34. Define context-free grammars for the following languages:
(a) L={xE{a,b}*llxla<lxlb}
(b) G = {x E {a, b]" Ilxla~ Ixlb}
(e) K = {w E{O, 1}*lw = w r

}

(d) <I> = {x E {a, b, c}"13i,j, k E ~ ~ x = wbkem
, where j ~ 3 and k = m}

8.35. Define context-free grammars for the following languages:
(a) L1={xE{a,b}*llxla =2Ixlb}
(b) Lz = {x E {a, b}*I Ix la=f Ix Ib}
(e) The set of all postfix expressions over the alphabet {A, B, +, -}
(d) The set of all parenthesized infix expressions over the alphabet {A, B, +, -, (,)}

8.36. Definecontext-sensitive grammars for the following languages:
(a) r = {x E {O, 1, 2}*13w E {O, 1}* ~ x = w ·2 o w} = {2, 121, 020, 11211, 10210, ... }
(b) <I> ={x E{b}*13j E ~ ~ Ixl = 2/}= {b, bb, bbbb, b8

, b16, b32
, . o.}

8.37. Consider the grammar

G = <{A, 13, S},{a, b, e}, S, {S---+ aSBe, S---+ X, SB ---+ bS, eB---+ Be}>

Show that this context-sensitive grammar is not equivalent to Gil given in Example 8.3,
where

Gil = <{A, B, S, T}, {a, b, e}, S, {S---+ aSBe, S---+ T, T ---+ X, TB---+ bT, eB---+ Be}>

8.38. Design context-free grammars that accept:
(a) L1= a*(b Ue)* n{x E{a, b,e}*llxla = Ixlb + Ixlc}

(b) L2 = {x E {a, b, c}" 13i,j, k E ~ ~ x = a'b'c", where i + j = k}
(e) L3 = {x E {a, b, c]" I Ix la+ Ix Ib = IxIc}

8.39. Refer to Definition 8.4 and prove that L(G') = L(G) U {X}.

8.40. Refer to Definition 8.6 and prove that L(G') = L(G) U {X}.
8.41. (a) Show that if G is in the form specified in Theorem 8.8 so is G. in Theorem 8.5.

(b) Give an example that shows that, even if G1 and G2 are in the form specified in
Theorem 8.8, the grammar GU described in Theorem 8.4 may not be.

(e) Is your construction for G· in Example 8.22 normal form preserving?

.8.42. Given two left-linear grammars G1 and G2 , give a set of rules to find a new left-linear
grammar that will generate:
(a) L(G 1) UL(G 2)

(b) L(G 1)·L(G2)

(e) L(G 1)*



CHAPTER

CONTEXT-FREE GRAMMARS

The preceding chapter explored the properties of the type 3 grammars. The next
class of grammars in the language hierarchy, the type 2 or context-free grammars,
are central to the linguistic aspects of computer science. Context-free grammars
were originally used to help specify natural languages and are thus well-suited for
defining computer languages. These context-free grammars represent a much wider
class of languages than did the regular grammars. Due to the need for balancing
parentheses and matched begin-end pairs (among other things), the language Pas
cal cannot be specified by a regular grammar, but it can be defined with a context
free grammar. Programming languages are specificallydesigned to be representable
by context-free grammars in order to take advantage of the desirable properties
inherent in type 2 grammars. These properties are explored in this chapter, while
Chapter 10 investigates the generalized automata corresponding to context-free
languages.

9.1 PARSE TREES

Derivations in a context-free grammar are similar to those of regular grammars, and
the definition of derivation given below is compatible with that given in Definition
8.8.

V Definition 9.1. Let ~ be any alphabet, G = <n,~, S, P> be a right-linear
grammar, Cl..A-y E (I u n)*, and A~ 13 be a production in P. We will say that Cl..13')'

284
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can be directly derived from aAy by applying the production A~ [3, and write
aA"Y~a[3"Y. Furthermore, if (al~a2)I\(a2~a3)1\" 'I\(an-I~an), then we will
say that 0.1 derives an and write a1!:;> an'
a

As with Definition 8.8, 0.1 !:;> 0.1 in zero steps. In generating a particular string,
regular grammars typically allowed only a single sequence of applicable produc
tions. Context-free grammars are generally more robust, as shown by Example 9.4,
which illustrates several derivations for a single string.

The special nature of the productions in a context-free grammar, which
replace a single nonterminal with a string of symbols, allow derivations to be
diagrammed in a treelike structure, much as sentences are diagrammed in English.
For example, the rules of English specify that a sentence is composed of a subject
followed by a predicate, which is reflected in the production

<sentence>~ <subject> <predicate>

Other rules include

<noun phrase>~ <modifier><noun>

and

<predicate>~ <verb> <prepositional phrase>

A specific sequential application of these and other rules to form an English
sentence might be diagrammed as shown in Figure 9.1. Such diagrams are called
parse trees or derivation trees.

V Definition 9.2. A parse tree or derivation tree for a regular or context-free
grammar G = <0, I, S, P> is a labeled, ordered tree in which the root node is
labeled S, and the n subtrees of a node labeled A are labeled 0.1 through an only if
A~ 0.1' 0.2 ... an is a production in P, and each ai E (0 U I). However, if B~ Xis a
production in P, then a node labeled B may instead have a single subtree labeled A.
The parse tree is called complete if no leaf is labeled with a nonterminal.
a

Recall that for context-free grammars only the start symbol Z can have a
production of the form B~ A; regular grammars are allowed to have several such
rules.

EXAMPLE 9.1

As illustrated in Figure 9.1, a parse tree shows a particular sequence of substitutions
allowed by a given grammar. A left-to-right rendering of the leaves of this complete
parse tree yields the terminal string "the check is in the mail."
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<sentence>

<verb>

<noun>

/~
<subject> <predicate>

/~
<prepositional phrase>

/~
<preposition> :;p~

<noun phrase>

/""<modifier>

<modifier> <noun>

the check is in the mail

Figure 9.1 A parse tree for the English grammar

EXAMPLE 9.2

Regular grammars form parse trees that are much more restrictive; at any given
level in the tree, only one node can be labeled with a nonterminal. Figure 9.2 shows
the parse tree for the word aaabaa from the grammar

G1 = <{T, S},{a, b},S, {S~ as, S~ bT, T~aa}>.

In general, since productions in a right-linear grammar allow only the rightmost
symbol to be a nonterminal, parse trees for right-linear grammars will only allow the
rightmost child of a node to have a nontrivial subtree.

EXAMPLE 9.3

Given a context-free grammar G, a common task required of compilers is to scan a
proposed terminal string x belonging to L(G) and build a parse tree corresponding
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Figure 9.2 The parse tree discussed in Example 9.2
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to x. If G is the "regular expression" grammar defined in Example 8.2,
G = <{R},{a, b, c, (,),E, e, U,·, *}, R, {R~alblcIElel(R.R)I(RUR)IR*}> and x
is «aUb)*·c), the desired result would be a representation of the tree shown in
Figure 9.3.

In a perfect world of perfect programmers, it might be appropriate to assume
that x can definitely be generated by the productions in G. In our world, however,
compilers must unfortunately perform the added task of determining whether it is
possible to generate the proposed terminal string x, that is, whether the file
presented represents a syntactically correct program. This is typically done as the
parse trees are being built, and discrepancies are reported to the user. For the
"regular expression" grammar used in Example 9.3, there is an algorithm for
scanning the symbols of proposed strings such as «aUb)*·c) to determine whether a
parse tree can be constructed. In the case of a string like «aU·b), no such parse tree
exists, and the string therefore cannot be generated by the grammar. If the produc
tions of a grammar follow certain guidelines, the task of finding the correct scanning
algorithm is greatly simplified. The desired properties that should be inherent in a
programming language grammar are investigated later in the text.

In a separate phase, after the parse trees are found, the compiler then uses the
trees and other constructs to infer meaning to the program, that is, to generate
appropriate machine code that reflects the advertised meaning (that is, the seman
tics) of the program statements. For example, the parse tree for «aUb)*·c) in
Figure 9.3 clearly shows both the order in which the operators U, -, and " should be
applied and the expressions to which they should be applied.

Given a particular complete parse tree for a string x, there may be some
freedom in the order in which the associated productions are applied.
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a U b * • c )

EXAMPLE 9.4

Figure 9.3 The parse tree discussed in Example 9.3

For the grammar

G <{R},{a,b, c, (,), E., tt,u, -, *}, R, {R-,> a!blclE.lttl(R·R)I(RUR)IR*}>,

each ofthe following are validderivations of the string x =«aUb)*.c).

Derivation 1:
R::}(R.R) .

::}(R*·R)

«RUR)*.R)

::}. «aUR)*.R)

::}«aUb)*.R)

::}«aUb)*·c)

. Derivation 2:
R (R·R)

::}(R*.R)

«RUR)*.R)

::}«RUR)*.c)

::}«RUb)*·c)

::}«aUb)*.c)
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Derivation 3:

Derivation 4:

R~(R.R)

~(R.c)

~(R*·c)

~ «RUR)*·c)

~ «aUR)*·c)

~«aUb)*·c)

R~(R.R)

~(R.c)

~(R*·c)

~ «RUR)*·c)

~ «RUb)*·c)

~ «aUb)*·c)

V Definition 9.3. A derivation sequence is called a leftmost derivation if at
each step in the sequence the leftmost nonterminal is next expanded to produce the
following step. A derivation sequence is called a rightmost derivation if at each step
in the sequence the rightmost nonterminal is next expanded to produce the follow
ing step.
a

The first ofthe derivations given in Example 9.4' is a leftmost derivation since
at each step it is always the leftmost nonterminal that is expanded to arrive at the
next step. Similarly, the last of these, derivation 4, is a rightmost derivation. There
are many other possible derivations, such as derivations 2 and 3, which are neither
leftmost nor rightmost.

The restrictions on regular grammars ensure that there is never more than one
nonterminal present at any point during a derivation. This linear nature of regular
grammars ensures that all derivations of a parse tree follow exactly the same
sequence, since there is never a choice of nonterminals to expand. Thus, the
rightmost derivation of a parse tree in a regular grammar is always the same as its
leftmost derivation.

Parse trees in context-free grammars are generally more robust, allowing
several different derivation sequences to correspond to the same tree. For a given
parse tree, though, there is only one leftmost derivation. In Figure 9.4, the nodes in
the parse tree for «aUb)*·c) are numbered to show the order in which they would
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Figure 9.4 The preorder traversal of the parse tree

be visited by a pre order traversal. Note that the sequence in which the nonterminals
would be expanded in a leftmost derivation corresponds to the order in which they
appear in the preorder traversal.

9.2 AMBIGUITY

Whereas each tree corresponds to a unique leftmost derivation, it is possible for a
terminal string to have more than one leftmost derivation. This will happen when
ever a string x corresponds to more than one parse tree, that is, whenever there are
truly distinct ways of applying the productions of the grammar to form x. Grammars
for which this can happen are called ambiguous.

V Definition 9.4. A grammar G = <O,~, S, P> is called ambiguous if there
exists a string x E ~* that corresponds to two distinct parse trees. A grammar that is
not ambiguous is called unambiguous.
6.

EXAMPLE 9.5

Consider the grammar G2=<{S,A},{a},S,{S--,>AA,A--'>aSa,A--,>a}>. Figure
9.5 shows the two distinct parse trees associated with the word aaaaa. Note that the
leftmost derivations corresponding to these trees are indeed different:
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S=?AA

=?aSaA

=?aAAaA

=?aaAaA

=?aaaaA

=?aaaaa

is the sequence indicated by the parse tree in Figure 9.5a, while

S=?AA

=?aA

=?aaSa

=?aaAAa

=?aaaAa

=?aaaaa

corresponds to Figure 9.5b.

Recall that context-free grammars are used to inspect statements within a
computer program and determine corresponding parse trees. Such ambiguity is
undesirable in a grammar that describes a programming language, since it would be
unclear which of the trees should be used to infer the meaning of the string. Indeed,
this ambiguity would be intolerable if a statement could give rise to two trees that
implied different meanings, as illustrated in Example 9.6 below. It is therefore of
practical importance to avoid descriptions of languages that entail this sort of
ambiguity.

The language defined by the grammar G2 in Example 9.5 is actually quite
simple. Even though Gz is not a regular grammar, it can easily be shown that L(G z)
is the regular set {a', as, as, all, a", ... }. The ambiguity is therefore not inherent
in the language, but is rather a consequence of the needlessly complex grammar
used to describe the language. A much simpler context-free grammar is given by
G3=<{T},{a},T,{T-?aaaT,T-?aa}>. This grammar happens to be right linear
and is definitely not ambiguous.

EXAMPLE 9.6

The following sampling from a potential programming language grammar illustrates
the semantic problems that can be caused by ambiguity. Consider the grammar
G, = <{<expression>, <identifier>}, {a, b, c, d, -}, <expression>, P>, where P
consists of the productions
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s

a

A

aaa

A

I
s

/""A A

a

(a)

s

A

a a a a a

(b)

Figure 9.5 (a) A parse tree for aaaaa in Example 9.5 (b) An alternate parse
tree for aaaaa
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<expression>~ <identifier>
<expression>~ <identifier> - <expression>
<expression>~ <expression> - <identifier>

<identifier>~ a
<identifier>~ b
<identifier>~ c
<identifier>~ d

L(G.) then contains the string a - b - d, which can be generated by two distinct
parse trees, as shown in Figure 9.6. Figure 9.6a corresponds to the following
leftmost derivation.

<expression>~ <expression> - <identifier>
~ <identifier> - <expression> - <identifier>
~ a - <expression> - <identifier>
~ a - <identifier> - <identifier>
~ a - b - <identifier>
~a-b-d

Figure 9.6b corresponds to a different leftmost derivation, as shown below.

<expression>~ <identifier> - <expression>
~ a - <expression>
~ a - <identifier> - <expression>
~ a - b - <expression>
~ a - b - <identifier>
~a-b-d

If the productions of G. were part of a grammatical description of a programming
language, there are obvious semantics associated with the productions involving the
- operator. The productions

<expression>~ <identifier> - <expression>

and

<expression>~ <expression> - <identifier>

indicate that two values should be combined using the subtraction operator to form
. a new value. The compiler would be responsible for generating code that carried out

the appropriate subtraction. Unfortunately, the two parse trees give rise to func
tionally different code. For the parse tree in Figure 9.6a, the subtraction will be
performed left to right, while in the parse tree in Figure 9.6b the ordering of the
operators is right to left. Subtraction is not a commutative operation, and the
expression (a - b) - d will usually produce a different value than a - (b - d).
Ambiguity can thus be a fatal flaw in a grammar describing a programming lan
guage.
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<expression>

Chap. 9

<expression>

/~
<identifier> <expression>

I
<identifier>

<identifier>

(a)

a b

<expression>

c

<identifier> <expression>

/~
<identifier> <expression>

I
<identifier>

a
(b)

b c

Figure 9.6 (a) A parse tree for a-bod in Example 9.6 (b) An alternate parse
tree for a-bod
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In the language L(Gs) discussed in Example 9.6, the ambiguity is again not
inherent in the language itself, but is rather a consequence of the specific produc
tions in the grammar G, describing the language. In most programming languages,
the expression a - b - d is allowed and has a well-defined meaning. Most languages
decree that such expressions be evaluated from left to right, and hence a - b - d
would be interpreted as (a - b) - d. This interpretation can be enforced by simply
removing the production

<expression>~ <identifier> - <expression>

from G, to form the new grammar

Gm = <{<expression>, <identifier>}, {a, b, c, d, -}, <expression>, P'>

where P' consists of the productions

<expression>~ <identifier>
<expression>~ <expression> - <identifier>

<identifier>~ a
<identifier>~ b
<identifier>~ C

<identifier>~ d

It should be clear that G, and Gm are equivalent, and both generate the regular
language «aUbUcUd)o - )*o(aUbUcUd). Gm gives rise to unique parse trees and
is therefore unambiguous. It should be noted that the language could have
been defined with a single nonterminal; a simpler grammar equivalent to Gm is
G, = <{T},{a, b,c, d, -}, T,{T~alblcldIT- T}>. However, since G, is ambigu
ous, it is much more difficult to work with than Gm • The pair of nonterminals
<expression> and <identifier> are used to circumvent the ambiguity problem in
this language. For the grammar Gm , the production

<expression>~ <expression> - <identifier>

contains the nonterminal <expression> to the left of the subtraction token and
<identifier> to the right of the -. Since <identifier> can only be replaced by a
terminal representing a single variable, the resulting parse tree will ensure that the
entire expression to the left of the - will be evaluated before the operation corre
sponding to this current subtraction token is performed. In this fashion, the dis
tinction between the two nonterminals forces a left-to-right evaluation sequence. In
fact, a more robust language with other operators like x and -:- will require more
nonterminals to enforce the default precedence among these operators.

Most modern programming languages employ a solution to the ambiguity
problem that is different from the one just described. Programmers generally do not
want to be constrained by operators that can only be evaluated from left to right,
and hence matched parentheses are used to indicate an order of evaluation that may
differ from the default. Thus, unambiguous grammars that correctly reflect the
meaning of expressions like d - (b - c) or even (a) - «c - (d))) are sought.
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EXAMPLE 9.7

Context-Free Grammars Chap. 9

The following grammar Gp allows expressions with parentheses, minus signs, and
single-letter identifiers to be uniquely parsed.

Gp = <{<expression>, <identifier>}, {a, b, C, d, -, (, )}, <expression>, P">

where P" consists of the productions

<expression> -,'> «expression»
<expression> -,'> <expression> - «expression»
<expression> -,'> <identifier>
<expression> -,'> <expression> - <identifier>

<identifier> -,'> a
<identifier> -,'> b

<identifier> -,'> C

<identifier> -,'> d

The first two productions in P", which were not present in P', are designed to
handle the balancing of parentheses. The first rule allows superfluous sets of paren
theses to be correctly recognized. The second rule ensures that an expression that is
surrounded by parentheses is evaluated before the operator outside those paren
theses is evaluated. In the absence of parentheses, the left-to-right ordering of the
operators is maintained. Figure 9.7 illustrates the unique parse tree for the
expression (a) - ((c - (d))).

Gp is a context-free language that is too complex to be regular; the pumping
lemma for regular sets (Theorem 2.3) can be used to show that is impossible for a
DFA to maintain an unlimited number of corresponding balanced parentheses. This
language, and the others discussed so far, can all be expressed by unambiguous
grammars. It should be clear that every language generated by grammars has ambig
uous grammars that also generate it, since an unambiguous grammar can always be
modified to become ambiguous. What is not immediately clear is whether there are
languages that can only be generated by ambiguous grammars.

V Definition 9.5. A context-free language L is called inherently ambiguous if
every grammar that generates L is ambiguous. A context-free language that is not
inherently ambiguous is called unambiguous.
6. .

V Definition 9.6. Let the class of context-free language L over the alphabet I
be denoted by '€~. Let the-class of unambiguous context-free languages be denoted
by OU~.

6.

V Theorem 9.1. There are context-free languages that are inherently ambigu-
ous; that is, OU~ is properly contained in '€~.
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<expression>

<expression>

I
<identifier>

I
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a c d

Figure 9.7 The parse tree discussed in Example 9.7

Proof. The language L = {anbnemdmln,m EN} U {aiJ>ieidili,j E N}is a context
free language (see the exercises). L is also inherently ambiguous, since there must
exist two parse trees for some of the strings in the intersection of the two sets
{anbnemdmln,mE!\I} and {aiJ>ieidili,jEN}. The proof of this last statement is
tedious to formalize; the interested reader is referred to [HOPe].
~

Theorem 9.1 states that there exist inherently ambiguous type 2 languages. No
type 3 language is inherently ambiguous. Even though there are regular grammars
that are ambiguous, every regular grammar has an equivalent grammar that is
unambiguous. This assertion is supported by the following examples and results.

EXAMPLE 9.8

Consider the following right-linear grammar G;;

G, = <{S, A, C},{a, b, e},S, {S--?Abc, S--? abC, A--? a, C--? e}>

Only one terminal string can be derived from Gn but this word has two distinct
derivation trees, as shown in Figure 9.8. Thus, there are regular grammars that are
ambiguous.

V Theorem 9.2. Given any right-linear grammar G =<n,!', S, P>, there ex-
ists an equivalent right-linear grammar that is unambiguous.
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S S-, /
C A

Figure 9.8 The parse trees discussed in Example 9.8

Proof. Let G' = G(A(id). That is, beginning with the right-linear grammar G,
use the construction outlined in Lemma 8.2 to find the corresponding automaton
AG• Use Definition 4.9 to remove the lambda-transitions and Definition 4.5 to
produce a deterministic machine, and then apply the construction outlined in
Lemma 8.1 to form the new right-linear grammar G'. By Lemma 8.2, Theorem 4.2,
Theorem 4.1, and Lemma 8.1, the language defined by each of these constructs is
unchanged, so G' is equivalent to G. Due to the deterministic nature of the machine
from which this new grammar was built, the resulting parse tree for a given string
must be unique, since only one production is applicable at any point in the
derivation. A formal inductive statement of this property is left as an exercise.
a

V Corollary 9.1. The class '9~ of languages generated by regular grammars is
properly contained in ou.~.

Proof. Containment follows immediately from Theorem 9.2. Proper contain
ment is demonstrated by the language and grammar discussed in Example 9.3.
a

EXAMPLE 9.9

The right-linear grammar

e.= <{S, B, q, {a, b, e},S, {S--?aB, S--? abC, B--? be, C--? e}>

in Example 9.8 can be transformed, as outlined in Theorem 9.2, into an unambig
uous grammar. The automaton corresponding to G, found by applying the tech
nique given in Lemma 8.2 is shown in Figure 9.9a. The version of this automaton
without lambda-moves (with the inaccessible states not shown) is illustrated in
Figure 9,9b. The deterministic version, with the disconnected states again removed,
is given in Figure 9.9c. For simplicity, the states are relabeled in Figure 9.9d. The
corresponding grammar specified by Lemma 8.1 is

G' = < {So, s.. Sz,S3,S4}, {a, b, c},So, {So--?aSllbS4IeS4, Sl--?aS4IbSzleS4,

Sz --?aS41 bS4/ eS3, S3 --? l\ IaS4/ bS41eS4, S4 --?aS4/ bS4/ eS4}>
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(a)

(b)

(c)

(d)

a,b,c

a.b,c

Figure 9.9 (a) The automaton discussed in Example 9.9 (b) The simplified
automaton discussed in Example 9.9 (c) The deterministic automaton discussed
in Example 9.9 (d) The final automaton discussed in Example 9.9
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The orderly nature of this resulting type of grammar easily admits the specification
of an algorithm that scans a proposed terminal string and builds the corresponding
parse tree. The partial parse tree for a string such as abb would be as pictured in
Figure 9.l0a. This would clearly be an invalid string since S4 cannot be replaced by
A. By contrast, the tree for the word abc would produce a complete parse tree, and
it is instructive to step through the process by which it is built. The root of the tree
must be labeled So, and scanning the first letter of the word abc is sufficient to
determine that the first production to be applied is So~ aSI (since no other So-rule
immediately produces an a). Scanning the next letter provides enough information
to determine that the next SI rule that is used must be SI~ bS2, and the third letter
admits the production S2~ CS3 and no other. Recognizing the end of the string
causes a check for whether the current nonterminal can produce the empty string.
Since S3~ A is in the grammar, the string abc is a valid terminal string, and corre
sponds to the parse tree shown in Figure 9.l0b.

So

"'sI",
S2

"'s4

a
(a)

a

b

b

b

c

(b)

Figure 9.10 (a) The partial parse tree for the string abb (b) The parse tree for
the string abc
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Grammars that admit scanning algorithms like the one outlined above are
called LLO grammars since the parse tree can be deduced using a left-to-right scan
of the proposed string while looking ahead Qsymbols to produce a leftmost deri
vation. That is, the production that produces a given symbol can be immediately
determined without regard to the symbols that follow.

Note that the grammar G3 = <{T},{a}, T, {T~ aaaT,T~ aa}> is LL2; that is,
upon seeing a, the scanner must look ahead two symbols to see if the end-of-string
marker is imminent. In this grammar, a may be produced by either of the two
T-rules; the letters following this symbol in the proposed string are an important
factor in determining which production must be applied. The language described by
G3 is simple enough to be defined by a grammar that is LLO, since every regular
grammar can be transformed as suggested by the proof of Theorem 9.2.

The deterministic orderliness of LLO grammars may be generally unattain
able, but it represents a desirable goal that a compiler designer would strive to
approximate when specifying a grammatical model of a programming language.
When a grammar is being defined to serve as a guide to construct a compiler, an
LLO grammar is clearly the grammar of choice. Indeed, if even a portion of a
context-free grammar conforms to the LLO property, this is of considerable benefit.
Whereas the technique outlined in Theorem 9.2 could be applied to any regular
language to find a hospitable LLO grammar, programming languages are generally
more complex than regular languages, and these languages are unlikely to have LLO
models. For context-free languages, it is much more likely that it will not be possible
to determine which production (or sequence of productions) will produce the
symbol currently being scanned. In such cases, it will be necessary to look ahead to
successive symbols to make this determination.

A classic example of the need to look ahead in parsing programming lan
guages is reflected in the following FORTRAN statement:

D077I=1.S

Since FORTRAN allows blanks within identifiers, this is a valid statement and
should cause the variable D077I to be assigned the value 1.5. On the other hand,
the statement

D077I=1,S

specifies a "do" loop, and has an entirely different meaning. A lexical analyzer that
sees the three characters 'DO ' cannot immediately determine whether this
represents a token for a do loop, or is instead part of a variable identifier. It may
have to wait until well after the equal sign is scanned to correctly identify the tokens.

9.3 CANONICAL FORMS

The definition of a context-free grammar was quite broad, and it is desirable to
establish canonical forms that will restrict the type of productions that can be
employed. Unrestricted context-free grammars do not admit very precise relation-

, . '
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ships between the strings generated by the grammar and the production sequences
generating those strings. In particular, the length of a terminal string may bear very
little relation to the number of productions needed to generate that string.

EXAMPLE 9.10

A string of length 18 can be generated with only three applications of productions
from the grammar

<is}, {a, b, c},S,{S- abcabcS, s- abcabc}>

A string of length 1 can be generated by no less than five productions in the
grammar

It should be clear that even more extreme examples can be defined, in which the
number of terminal symbols markedly dominates the number of productions, and
vice versa.

The pumping theorem for context-free grammars (Theorem 9.7) and other
theorems hinge on a more precise relationship between the number of terminal
symbols produced and the number of productions used to produce those symbols.
Grammars whose production sets satisfy more rigorous constraints are needed if
such relationships are to be guaranteed. The constraints should not be so severe that
some context-free languages cannot be generated by a set of productions that
conform to the restrictions. In other words, some well-behaved normal forms are
sought.

A practical step toward that goal is the abolition of productions that cannot
participate in valid derivations. The algorithm for identifying such productions
constitutes an application of the algorithms developed previously for finite auto
mata. The following definition formally identifies productions that cannot partici
pate in valid derivations.

V' Definition 9.7. A production A-[3 in a context-free grammar
G = <0):, S, P> is useful if it is part of a derivation beginning with the start
symbol and ending with a terminal string. That is, the A-rule A -[3 is useful if there
is a derivation S? oAeo=? al3w? x, where X E ~*.

A production that is not useful is called useless.
A nonterminal that does not appear in any useful production is called useless.

A nonterminal that is not useless is called useful.
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EXAMPLE 9.11

Consider the grammar with productions

S~gAe,S~aYB,S~CY

A~bBY,A~ooC

B~dd,B~D

C~jVB,C~gi

D~n

U~kW

V~baXXX,V~oV

W~c

x-s rv
Y~Yhm

This grammar illustrates the three basic ways a nonterminal can qualify as useless.

1. For the nonterminal W above, it is impossible to find a derivation from the
start symbol S that produces a sentential form containing W. U also lacks this
quality.

2. No derivation containing the nonterminal Y can produce a terminal string. X
and V are likewise useless for the same reason.

3. B is only produced in conjunction with useless nonterminals, and it is there
fore useless also. Once B is judged useless, D is seen to be useless for similar
reasons.

V Theorem 9.3. Every nonempty context-free language L can be generated by
a context-free grammar that contains no useless productions and no useless
non terminals.

Proof. Note that if L were empty the conclusion would be impossible to
attain: the start symbol would be useless, and every grammar by definition must
have a start symbol. Assume that L is a nonempty context-free language. By
Definition 8.6, there is a context-free grammar G = <0, I, S, P> that generates L.
The desired grammar GU can be formed from G, with the useless productions
removed from P and the useless nonterminals removed from O. The new grammar
GU will be equivalent to G, since the lost items were by definition unable to par
ticipate in significant derivations. GU will then obviously contain no useless produc
tions and no useless nonterminals.

Agrammar with the desired properties must therefore exist, but the outlined
argument does not indicate how to identify the items that must be removed. The
following algorithm, based on the procedures used to investigate finite automata,
shows how to effectively transform a context-free grammar G into an equivalent
context-free grammar GU with no useless items.

Several nondeterministic finite automata over the (unrelated) alphabet {I}
will be considered, each identical except for the placement of the start state. The
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states of the NDFA correspond to nonterminals of the grammar, and one extra
state, denoted by w, is added to serve as the only final state. A transition from A
to C will arise if a production in P allows A to be replaced by a string contain
ing the nonterminaI C. States corresponding to nonterminals that directly pro
duce terminal strings will also have transitions to the sole final state w. Formally,
for the grammar G = <n,~, S, P> and any nonterminal BEn, define the
NDFA AB=<{I},nU{w},B,8,{w}>, where 8 is defined by 8(w,I)=0, and for
each A E n, let

8(A, 1) = {C/ (C E n 1\ (3a, -y E rn u ~)*)(A -HtOy E pm u {w}

if (3a E ~*)(A --.7 a E P), and

8(A, 1) = {C/ (C E n 1\ (3a, -y E (n U ~)*)(A --.7 aC-yE pm
otherwise.

Note that, for any two nonterminals Rand Q in n, AR and AQ are identical
except for the specification of the start state. The previously presented algorithms
for determining the set of connected states in an automaton can be applied to these
new automata to identify the useless nonterminals. As noted before, there are three
basic ways a nonterminal can qualify as useless. The inaccessible states in the NDFA
N correspond to nonterminals of the first type and can be eliminated from both the
grammar and the automata. For each remaining nonterminal B, if the final state w is
not accessible in AB

, then B is a useless nonterminal of the second type and can be
eliminated from further consideration in both the grammar and the automata.
Checking for disconnected states in the pared-down version of N will identify
useless nonterminals of the third type. The process can be repeated until no further
disconnected states are found.
6.

EXAMPLE 9.12

Consider again the grammar introduced in Example 9.11. The structure of each of
the automata is similar to that of AS, shown in Figure 9.lla. Note that the
disconnected states are indeed Wand U, which can be eliminated from the state
transition table. Checking the accessibility of win N, A\ AB

, AC
, and ADresult in

no changes, but V, X, and Y are eliminated when Av, AX, and AYare examined,
resulting in the automaton displayed in Figure 9.llb. Eliminating transitions
associated with the corresponding useless productions yields the automaton shown
in Figure 9.llc. Checking for disconnected states in this machine reveals the
remaining inaccessible states. Thus, the equivalent grammar GU with no useless
nonterminals contains only the productions S--.7 gAe, A--.7 ooC, and C--.7 gi.

Note that the actual language described by the NDFA AS is of no conse
quence, nor may any finite automaton be capable of producing the context-free
language in question. However, the above method illustrates that the tools devel
oped for automata can be brought to bear in areas that do not directly apply to FAD
languages. A more efficient algorithm for identifying useless nonterminals can be
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Figure 9.11 (a) The automaton discussed in Example 9.12 (b) The simplified
automaton discussed in Example 9.12 (c) The final automaton discussed in Exam
ple 9.12
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found in [HOPe]. If computerized, such a tailored algorithm would consume less
CPU time than if the automata modules described above were employed. In terms
of the programming effort required, though, it is often more advantageous to
adhere to the "toolbox approach" and adapt existing tools to new situations.

Note that the algorithm developed in Theorem 9.3 relied on connectedness,
and hence the specification of the final states was unimportant in this approach.
With co as the lone final state, some of the decision algorithms developed in Chapter
12 could have been used in place of the connectivity and accessibility checks.

Example 9.12 illustrates the simplification that can be attained by the elimi
nation of useless productions. Further convenience is afforded by the elimina
tion of nongenerative A-rules of the form A - B. Recall that in the grammar
<{Sb Sz, S3, S4, Ss},{a, b, c},Sb {Sl- Sz, Sz- S3, S3- S4, S4- Ss,Ss- a]>, all the
nonterminals were useful, but the production set was still needlessly complex.

V Definition 9.8. A production of the form A - B, where A, B E 0, is called a
unit production or a nongenerative production.
.Il

As with the elimination of useless nonterminals, unit productions can be
removed with the help of automata constructs. The interested reader is referred to
[DENN] for the constructive proof. The proof given below indicates the general
algorithmic approach.

V Theorem 9.4. Every pure context-free language L can be generated by a
pure context-free grammar which contains no useless non-terminals and no unit
productions. Every context-free language L' can be generated by a context-free
grammar which contains no useless non-terminals and no unit productions except
perhaps the Z-rule Z- S, where Z is the new start symbol.

Proof. If the first statement of the theorem is proved, the second will follow
immediately from Definition 8.6. If L is a pure context-free language, then by
Definition 8.5 there is a pure context-free grammar G = <O,!', S, P> that gener
ates L. Divide the production set up into P" and P", the set of unit productions and
the set of nonunit productions, respectively. For each nonterminal B found in P",
find BU ={CIB~ C}, the unit closure of B. The derivations sought must all come
from the (finite) set P", and there is clearly an algorithm that correctly calculates BU.
In fact, BU is represented by the set of accessible states in a suitably defined
automaton (see the exercises). Define a new grammar G' = <O,!"S,P'>, where
P' =pnU{B_aIB is a nonterminal in P" 1\ CEBu 1\ C_aEpn}. A straight
forward induction argument shows that G' is equivalent to G, and G I contains no
unit productions. Note that if G is pure, so is G'.

G' is likely to contain useless nonterminals, even if all the productions in G
were useful (see Example 9.13). However, the algorithm from Theorem 9.3 can now
be applied to G' to eliminate useless nonterminals. Since that algorithm creates no
new productions, the resulting grammar will still be free of unit productions.
.Il .
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EXAMPLE 9.13

Consider again the pure context-free grammar

<{SJ, S2,S3,S4,Ss}, {a, b, e},SJ, {Sc-~ S2,S2~ S3,S3~ S4,S4~ Ss,Ss~ a}>

The production set is split into P" = {Ss~ a} and

P" = {SI~ S2,S2~ S3'S3~ S4,S4~ Ss}.

The unit-closure sets are

S~ ={SJ,S2'S3'S4,Ss}

S~ ={S2'S3'S4,Ss}

S~ = {S3'S4,Ss}

S~ == {S4'Ss}

S~ = {Ss}

Since Ss~ a and Ss E S~, the production S3~ a is added to P'. The full set of
productions is P'= {SI~a,S2~a, S3~ a, S4~ a, Ss~ a}. The elimination of useless
nonterminals and productions results in the grammar <{SI}, {a, b, e}, SJ,{SI~ a]'>.

EXAMPLE 9.14

Consider the context-free grammar with productions

Z~S,Z~A

S~CBh,S~D

A~aaC

B~Sf,B~ggg

C~ eA, C~ d, C~ C

D~E,D~SABC

E~be

The unit closures of each of the appropriate nonterminals and the new productions
they imply are shown below. Note that Z~ S is not considered and that the produc
tions suggested by C~ C are already present.

S~D S~SABC

S~E S~be

D~E D~be

C~C C~eA,C~d
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The new set of productions is therefore

Z-+S, Z-+A

S-+ SABC, S-+ be, S-+ CBh

A-+aaC

B-+ Sf,B-+ ggg

C-+cA,C-+d

D -+ be, D -+ SABC

Note that D is now useless and can be eliminated.

The assurance that every context-free grammar corresponds to an equivalent
grammar with no unit productions is helpful in many situations. In particular, it is
instrumental to the proof showing that the following restrictive type of grammar is
indeed a canonical form for context-free languages.

V Definition 9.9. A pure context-free grammar G = <n, I, S, P> is in pure
Chomsky normal form (PCNF) if P contains only productions of the form A -+ BC
and A -+ d, where Band Care nonterminals and d E I.

A context-free grammar G = <n,I, Z, P> is in Chomsky normal form
(CNF) if the Z-rules .Z-+ Sand Z-+ Aare the only allowable productions involving
the start symbol Z, and all other productions are ofthe form A-+BC and A-+d,
where Band Care nonterminals and d E I.
a

Thus, in PCNF the grammatical rules are limited to producing exactly two
nonterminals or one terminal symbol. Few of the grammars discussed so far have
met the restricted criteria required by Chomsky normal form. However, every
context-free grammar can be transformed into an equivalent CNF grammar, as
indicated in the following proof. The basic strategy will be to add new nonterminals
and replace undesired productions such as A -+ JKcb by a set of equivalent produc
tions in the proper form, such as A -+ JYll , Yll-+ KYI2, Y12-+ x.,Xb , x.,-+ C, Xb-+ b,
where Yll , Y12, Xb, and X, are new nonterminals.

V Theorem 9.5.
Every pure context-free language L can be generated by a pure Chomsky
normal form grammar.
Every context-free language L' can be generated by a Chomsky normal form
grammar.

Proof. Again, if the first statement of the theorem is proved, the second will
follow immediately from Definition 8.6. If L is a pure context-free language, then
by Definition 8.5 there is a pure context-free grammar G = <n,I, S, P> that
generates L. Theorem 9.4 shows that without loss of generality we may assume that
Pcontains no unit productions. We construct a new grammar G' = <n, I, S, P"> in
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the following manner. Number the productions in P, and consider each production
in turn. If the right side of the kth production consists of only a single symbol, then
it must be a terminal symbol, since there are no unit productions. No modifications
are necessary in this case, and the production is retained for use in the new set of
productions P'. The same is true if the kth production consists of two symbols and
they are both nonterminals. If one or both ofthe symbols is a terminal, then the rule
must be modified by replacing any terminal symbol a with a new nonterminal Xa.
Whenever such a replacement is done, a production of the form X,~ a must also be
included in the new set of productions P'. If the kth production is A~ ala2a3 ... an>
where the number of (terminal and nonterminal) symbols is n > 2, then new non
terminals Ykh Yk2, ... , Y kn- 2 must be introduced and the rule must be replaced by
the set of productions A~alYkhYkl~a2Yk2,Yk2~a3Yk3,"" Ykn-2~an-lan'

Again, if any o; is a terminal symbol such as a, it must be replaced as indicated
earlier by the nonterminal Xa.

Each new set of rules is clearly capable of producing the same effect as the rule
that was replaced. Each nonterminal Y ki is used in only one such replacement set to
ensure that the new rules do not combine in unexpected new ways. Tedious but
straightforward inductive proofs will justify that L(G) = L(G').
a

EXAMPLE 9.15

The grammar discussed in Example 9.14 can be transformed into CNF by the
algorithm given in Theorem 9.5. After elimination of the unit productions and the
consequent useless productions, the productions (suitably numbered) that must be
examined are

1. S~SABC
2. S~be
3. S~CBh
4. A~aaC

5. B~Sf
6. B~ggg
7. C~cA
8. C~d

In the corresponding lists given below, notice that only production 8 is retained; the
others are replaced by

S~SYll, Yll~AY12' Y12~BC

s-s x.x,
S~ CY3h Y31~ BXh

A~XaY4h Y41~XaC

B~SXr

B~XgY61' Y61~XgXg

C~x.,A

C~d
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and the terminal productions Xb~ b, x,,~ e, Xh~ h, X.~ a, Xr~ f, Xg~ g. Since
d did not appear as part of a two-symbol production, the rule ~~ d was not
needed. The above rules, with S as the start symbol, form a pure Chomsky normal
form grammar. The new start symbol Z and productions Z~S and Z~A would be
added to this pure context-free grammar to obtain the required CNF.

Grammars in Chomsky normal form allow an exact correspondence to be
made between the length of a terminal string and the length of the derivation
sequence that produces that string. If the empty string can be derived, the produc
tion sequence will consist of exactly one rule application (Z~ A). A simple induc
tive argument shows that, if a string of length n > 0 can be derived, the derivation
sequence must contain exactly 2n steps. In the grammar derived in Example 9.15,
for example, the following terminal string of length 5 is generated in exactly ten
productions:

Z => S => CY31 => dY31 => dBXh=> dSXrXh=> dXbx"XrXh=> dbx"XrXh

=> dbeXrXh=> dbefXh=> dbefh

Other useful properties are also assured for grammars in Chomsky normal
form. When a grammar is in CNF, all parse trees can be represented by binary trees,
and upper and lower bounds on the depth of a parse tree for a string of length n can
be found (see the exercises). The derivational relationship between the number of
production steps used and the number of terminals produced implies that CNF
grammars generate an average of one terminal every two productions. The follow
ing canonical form requires every production to contain at least one terminal sym
bol, and grammars in this form must produce strings of length n ( > 0) in no more
than n steps.

V Definition 9.10. A pure context-free grammar G == <fl,!, S, P> is in pure
Greibach normal form (PGNF) if P contains only productions of the form A~ du,
where 0: E (fl U !)* and dE!.

A context-free grammar G == <fl,!, Z, P> is in Greibach normal form
(GNF) if the Z-rules Z~ S and Z~ Aare the only allowable productions involving
the start symbol Z, and all other productions are of the form A~ dn, where
0: E (fl U !)* and dE!.
Ii.

In pure Greibach normal form, the grammatical rules are limited to producing
at least one terminal symbol as the first symbol. The original grammar in Example
9.9 is a PGNF grammar, but few of the other grammars presented in this chapter
meet the seemingly mild restrictions required for Greibach normal form. The main
obstacle to obtaining a GNF grammar is the possible presence of left recursion. A
nonterminal A is called left recursive if there is a sequence of one or more prod
uctions for which A!:? AI3 for some string 13. Greibach normal form disallows such
occurrences since no production may produce a string starting with a nonterminal.
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Replacing productions involved with left recursion is complex; but every context
free grammar can be transformed into an equivalent GNF grammar, as shown by

. Theorem 9.6. Two techniques will be needed to transform the productions into the
appropriate form, and the following lemmas ensure that the grammatical trans
formations leave. the language unchanged. The first indicates how to remove an
X-rule that begins with an undesired nonterminal; Lemma 9.1 specifies a new set of
productions that compensate for the loss.

V Lemma 9.1. Let G = <n, I, S, P> be a context-free grammar, and assume
there is a string a and nonterminals X and B for which X~ Bo E P. Further
assume that the set of all B-rules is given by {B~ 131, B~ 132, ... , B ~l3m} and let
G' = <n,I,S,p'>, where

pi = P U{X~ 131a,X~ 132a, ... ,X~ I3ma} - {X~ Bo}.

ThenL(G) =L(G/).

Proof. Let each nonterminal A be associated with the set of sentential form
XA that A can produce. That is, let A=XA={XE(IUn)*IA~x}. The non
terminals then denote variables in a set of language equations that reflect the
productions in P. These equations will generally not be linear; several variables may
be concatenated together within a single term. Since the set of all B-rules were
B~ 13], B~132, ... ,B~ 13m, XBsatisfies the equation

XB= 131 U 132 U ... U 13m

Similarly, ifthe X-rules other than X~ Boare X~ 'Y], X~ 'Y2, ... , X~ "t«, then X
satisfies the equation

x, = 'Y1 U 'Y2 U ... U 'Yn U XBa

Substituting for XBin the Xx equation yields

x, = 'Y1 U 'Y2 U ... U 'Yn U (131 U 132 U ... U I3m)a

which by the distributive law becomes

Xx = 'Y1 U 'Y2 U ... U 'Yn U 131a U 132a U U I3ma

This shows why the productions X~ 131a, X~ 132a, , X~ I3ma can replace the
ruleX~Ba.

a

The type of replacement justified by Lemma 9.1 will not eliminate left recursion.
The following lemma indicates a way to remove all the left-recursive X-rules by
introducing a new right-recursive nonterminal.

V Lemma 9.2. Let G = <n,I,S,p> be a context-free grammar, and choose
a nonterminal X E n. Denote the set of all recursive X-rules by X' =
{X~Xa],X~Xa2';" ,X7Xam} and the set of all nonrecursive X-rules by
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X" = {X~ 'Yb X~ 'Yz, ... ,X~ 'Yn}. Choose a new nonterminal Y f/:. n and let
GIt =<nU {Y},I,S,P">, where pit = P U {X~'YlY'X~'YZY"" ,X~'YnY}U
{Y~ab Y~az, ... , Y~am}U{Y~alY' Y~azY, ... , Y~amy}-xr. Then
L(G) =L(G It

) .

Proof. As in Lemma 9.1, let each nonterminal A be associated with the set of
sentential forms XA that A can produce, and consider the set of language equations
generated by P. The Xx equation is

x, = 'Yl U 'Yz U ... U 'Yn U XXal U Xxaz U ... U x,«,
Solving by the method indicated in Theorem 6.4c for an equivalent expression for
Xx shows that

Xx = (-Yl U 'Yz U ... U 'Yn)(al U az U··· U a m)*

In the new set of productions pit, the equations of interest are

x, = 'Yl U 'Yz U U 'Yn U 'YlXy U 'YzXy U U 'YnXy

X, = al U az U U am U alXy U azXy U U amXy

Factoring each equation produces

x, = 'Yl U 'Yz U U 'Yn U (-Yl U 'Yz U U 'Yn)Xy

Xy = al U az U U am U (al U az U U am)Xy

and the second can also be solved for an equivalent expression for Xv, yielding

Xy = (al U az U··· U am)*(al U az U··· U am)

Substituting this expression for X, in theXy equation produces

Xx = 'Yl U 'Yz U··· U 'Yn U (-Yl U 'Yz U ... U 'Yn)(alU az U··· U am)*(al U az U ... U am)

which by the distributive law becomes

Xx = (-Yl U 'Yz U· .. U 'Yn)(A U (al U az U· .. U am)*(al U az U ... U am»

Using the fact that AU B*B = B*, this simplifies to

Xx = (-Yl U 'Yz U· .. U 'Yn)(al U az U·· . U a m)*

Therefore, when X, is eliminated from the sentential forms, Xx produces exactly
the same strings as before. This indicates why the productions in the sets

{X~'YlY'X~'YZY"" ,X~'YnY}U{Y~abY~az, ... ,Y~am}U

{Y~alY' Y~azY, ... ,Y~amY}

can replace the recursive X-rules X~ 'YI, X~ 'Yz, ... ,X~ 'Yn.
A

Note that the new production set eliminates all recursive X-rules and does not
introduce any new recursive productions. The techniques discussed in Lemmas 9.1
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and 9.2, when applied in the proper order, will transform any context-free grammar
into one that is in Greibach normal form. The appropriate sequence is given in the
next theorem.

V Theorem 9.6.
Every pure context-free language L can be generated by a pure Greibach
normal form grammar.
Every context-free Language L' can be generated by a Greibach normal form
grammar.

Proof. Because of Definition 8.6, the second statement will follow
immediately from the first. If L is a pure context-free language, then by Definition
8.5 there is a pure context-free grammar G = <{Sh Sz, . . . ,S,},!" Sh P> that gener
ates L. We construct a new grammar by applying the transformations discussed in
the previous lemmas.

Phase 1: The replacements suggested by Lemmas 9.1 and 9.2 will be used to
ensure that the increasingcondition is met: if Si-i> SjG~ belongs to the new grammar,
then i > j. We transform the S, rules for k = r, r - 1, ... ,2,1 (in that order), consid
ering the productions for each nonterminal in turn. At the end of the ith iteration,
the top i nonterminals will conform to the increasing condition. After the final step,
all nonterminals (including any newly introduced ones) will conform, all left recur
sion will be eliminated, and we can proceed to phase 2.

The procedure for the ith iteration is: If an Si-rule of the form Si-i> Sja is found
where i < j. eliminate it as specified in Lemma 9.1. This may introduce other rules
of the form Si-i> Spa', in which i is still less thanj'. Such new rules will likewise have
to be eliminated via Lemma 9.1, but since the offending subscript will decrease each
time, this process will eventually terminate. Si-rules of the form Si-i> Sja where i = j
can then be eliminated according to Lemma 9.2. This will introduce some new
nonterminals, which can be given new, higher-numbered subscripts. Lemma 9.2 is
designed so that the new rules will automatically satisfy the increasing condition
specified earlier. The remaining Si-rules must then conform to the increasing condi
tion. The process continues with lower-numbered rules until all the rules in the new
production set conform to the increasing condition.

Phase 2: At this point, S, conforms to the increasing condition, and since there
are no nonterminals with subscripts that are less than 1, all the Sj-rules must begin
with terminal symbols, as required by GNP. The only Sz-rules that may not conform
to GNF are those ofthe form Sz-i> S,«, and Lemma 9.1 can eliminate such rules by
replacing them with the Sj-rules. Since all the Sj-rules now begin with terminal
symbols, all the new Sz-rules will have the same property. This process is applied to
Sk-rules for increasing k until the entire production set conforms to GNP.

The resulting context-free grammar is in GNF, and since all modifications
were of the type allowed by Lemmas 9.1 and 9.2, the new grammar is equivalent to
the original.
~
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Consider the pure context-free grammar

<{Sb Sz,S3}, {a, b, c, d, e},Sb {SI~ SISZC, SI~ S3bS3, Sz~ SlSb Sz~ d, S3~ Sze}>

If the given subscript ordering is not the most convenient, the nonterminals can be
renumbered. The current ordering will minimize the number of transformations
needed to produce Greibach normal form, since the only production that does not
conform to the increasing condition is SI~ S3bS3. Thus, the first and second steps of
phase 1 are trivially completed; no substitutions are necessary. In the third step,
Lemma 9.1 allows the offending production

Sl~S3bS3

to be replaced by

SI~ SzebS3

The new production produces the smaller-subscripted nonterminal Sz, but the new
rule still does not satisfy the increasing condition. Replacing SI~ SzebS3 as indi
cated by Lemma 9.1 yields the two productions

SI~ SlSlebS3 and SI~ debS3

At this point, the grammar contains the productions

SI~ SISZC, SI~ SlSlebS3, Sl~debS3, Sz~ SISb Sz~ d, S3~ Sze

The first nonterminal has a left-recursive rule that must be eliminated by introduc
ing the new nonterminal S4. In the notation of Lemma 9.2, n = 1, m = 2, "11 = debS3,
UI = Szc, and Uz = SlebS3. Eliminating SI~ SISZC and SI~ SlSlebS3 introduces the
new nonterminal Y = S4 and the productions

SI~ debS3S4, S4~ Szc, S4~ SlebS3, S4~ SZCS4' S4~ SlebS3S4

Phase 1 is now complete. All left-recursion has been eliminated and the grammar
now contains the productions

SI~ debS3S4, SI~ debS3

Sz~ SlSb Sz~ d

S3~SZe

S4~ Szc, S4~ SlebS3, S4~ SZCS4' S4~ SlebS3S4

all of which satisfy the increasing condition. The grammar is now setup for phase 2,
in which substitutions specified by Lemma 9.1 will ensure that every rule begins
with a nonterminal.

The Sj-rules are in acceptable form, as is the Sz-ruleSz~ d. The other Sz-rule,
Sz~ SlSb is replaced via Lemma 9.1 with Sz~ debS3S4SI and Sz~ debS3SI. Re
placement of the Srrule then yields S3~ debS3S4SIe, S3~ debS3SIe and S3~ de.
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The S4 rules are treated similarly. The final set of productions at the comple-
tionof phase 2 contains

Sc~ debS3S4, Sl~ debS3

S2~ debS3S4Sr, S2~ debS3Sl, S2~ d

S3~ debS3S4S1e, S3~ debS3S1e, S3~ de

S4~ de, S4~ debS3S4S1C, S4~ debS3S1c, S4~ debS3S4ebS3, S4~ debS3ebS3,

S4~ debS3S4S1CS4,

S4~ dCS4, S4~ debS3S1cS4, S4~ debS3S4ebS3S4, S4~ debS3ebS3S4

In this grammar, S2 is now useless and can be eliminated.

. Greibach normal form is sometimes considered to require all productions to

. be of the form A~ dn, where u E 0* and dE I. Such rules must produce exactly
one leading terminal symbol; the rest of the string must be exclusively nonterminals.
It should be clear that this extra restriction can always be enforced by a technique
similar to the one employed for Chomsky normal form. The above conversion
process would be extended to phase 3, in which unwanted terminals such as e are
replaced by a new nonterminal X, , and new productions such as :x.~ e are
introduced. For the grammar in Example 9.16, the first production might look like
S,~ d:x.X bS3S4.

9.4 PUMPING THEOREM

As was the case with type 3 languages, some languages are too complex to be
defined by a context-free grammar. To prove a language L is context-free, one need
only define a grammar that generates L. By contrast, to prove L is not context free,
one must effectively argue that no context-free grammar can possibly generate L.
The pumping lemma for deterministic finite automata (Theorem 2.3) showed that
the repetition of patterns within strings accepted by a DFA was a consequence of
the nature of the finite description. The finiteness of grammatical descriptions like
wise implies a pumping theorem for languages represented by context-free gram
mars. The proof is greatly simplified by the properties implied by the existence of
canonical forms for context-free grammars.

V Theorem 9.7. Let L be a context-free language over I *. Then

(3n E N)('Vz EL ~ Izl::::n)(3u, v, w,x,y EI*) ~ z = uvwxy, Ivwxl :5n, Ivxl:::: 1,
and ('Vi E N)(UViwxiy E L)

Proof. Given a context-free language L, there must exist a PCNF grammar
G = <0, I, S, P> generating L - {A}. Let k = 110 II. The parse tree generated by this
PCNF grammar for any word z E L is a binary tree with each (terminal) symbol in z
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corresponding to a distinct leaf in the tree. Let n = 2k+1
• Choose a string z generated

by G of length at least n (if there are no-strings in L that are this long, then the
theorem is vacuously true, and we are done). The binary parse tree for any such
string z must have depth at least k + 1, which implies the existence of a path involv
ing at least k + 2 nodes, beginning at the root and terminating with a leaf. The
labels on the k + 1 interior nodes along the path must all be nonterminals, and since
Ilnll = k, they cannot all be distinct. Indeed, the repetition must occur within the
"bottom" k + 1 interior nodes along the path. Call the repeated label R (see Figure
9.12), and note that there must exist a derivation for the parse tree that looks like

S~ u Ry~ uv Rxy~ uvwxy

where u, v, w, x, and yare all terminal strings and z = uvwxy. That is, there are
productions in P that allow R~vRx and R~w. Since S~uRy and R~w,

S~ uwy is a valid derivation, and uwy is therefore a word in L. Similarly,
S~uRy~uvRxy~uvvRxxy~uvvwxxy, and so uv 2wx 2y EL. Induction shows
that each of the strings uviwxiy belongs to L for i = 0, 1,2, .... If both v and x were
empty, these strings would not be distinct words in L. This case cannot arise, as
shown next, and thus the existence of z implies that there is an infinite sequence of
strings that must belong to L.

The two occurrences of R were in distinct places in the parse tree, and hence at

s

heightSk+l

u v w x y

Figure 9.12 The parse tree discussed in the proof of Theorem 9.7
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least one production was applied in deriving uvRxy from uRy. Since the PCNF
grammar G contains neither contracting productions nor unit productions, the
sentential form uvRxy must be of greater length than uRy, and hence Ivi + Ixl > O.
Furthermore, the subtree rooted at the higher occurrence of R was of height k + 1
or less, and hence accounts for no more than Zk+l( = n) terminals. Thus, Ivwx 1::5 n.
All the criteria described in the pumping theorem are therefore met.

Since a context-free language must be generated by a CNF grammar with a
finite number of nonterminals, there must exist a constant n (such as n = Zllnll+l) for
which the existence of a string of length at least n implies the existence of an infinite
sequence of distinct strings that must all belong to L, as stated in the theorem.
!1

As with the pumping lemma, the pumping theorem is usually applied to justify
that certain languages are complex (by proving that the language does not satisfy
the pumping theorem and is thus not context free). Such proofs naturally employ
the contrapositive of Theorem 9.7, which is stated next.

V Theorem 9.8. Let L be a language over I*.

if (Vn E ~)(3z E L 11z1 ~ n)(Vu, v, w,x,y E I* 1z = uvwxy, Ivwxl ::5n, Ivxl ~ 1)
(3i E ~ 1 uviwxiy tt. L)

then L is not context free.

Proof. See the exercises.

Examples 8.5 and 9.17 show that there are context-sensitive languages which are
not context free.

EXAMPLE 9.17

The language L ={a"bkckIkE ~} is not a context-free language. Let n be given, and
choose z = a"b"c". Then z ELand Iz I= 3n ~ n. If L were context free, there must
be choices for u, v, w, x, and y satisfying the pumping theorem. Every possible
choice of these strings leads to a contradiction, and hence L cannot be context free.
A sampling of the various cases is outlined below.

If the strings v and x contain only one type of letter (for example, e), then
uv2wx 2y willcontain more es than as or bs, and thus uv2wx 2y tt. L. If v were, say, all
bs and x were all es, then uv2wx 2y would contain too few as and would again not be
a member of L. If v were to contain two types of letters such as v = aabb, then
uv2wx 2y = uvvwxxy = uaabbaabbwxxy and would represent a string that had some
bs preceding some as, and again uv2wx 2y tt. L. All other cases are similar to these,
and they collectively imply that L is not a context-free language.
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Example 9.17 illustrates one major inconvenience of the pumping theorem:
the inability to specify which portion of the string is to be "pumped." With the
pumping lemma in Chapter2,variants were explored that allowed the first n letters
to be pumped or the last n letters to be pumped. Indeed, any n consecutive letters in
a word from an FAD language' can be pumped. For context-free languages, such
precision is more elusive. The uncertainty as to where the vwxportion of the string
was in Example 9.171ed to manysubcases, since all combinations of u, v, W, x, and
y had to be shown to lead to contradictions. The following result, a variant of
Ogden's lemma, allows some choice in the placement of the portion of the string to
be pumped in a "long" word froin a context-free language.

V Theorem 9.9. Let L be a context-free language over l*. Then
(3n EN)
(Vz E L.j [z]~ nand z has any n or more positions marked as distinguished)
(3u, v, w,x,y E l*)j z= uvwxy,
vwx contains no more than n distinguished positions,
vx contains at least one distinguished position,
W contains at least one distinguished position, and
(Vi E N)(UViwxiy E L)

Proof. Given a context-free language L, there must exist a PCNF grammar
G = <n,I,S,p> generating L-{lI.}. Let n =211011+1. The proof is similar to that
given for the pumping theorem (Theorem 9.7); the method for choosing the path
now depends on the placement of the distinguished positions. A suitable path is
constructed by beginning at the root of the binary parse tree and, at each level,
descending to the right or left to lengthen the path. The decision to go right or left is
determined by observing the number of distinguished positions generated in the
right subtree and the number of distinguished positions generated in the left sub
tree. The path should descend into the subtree that has the larger number of
distinguished positions; ties can be broken arbitrarily. The resulting path will termi
nate at a leaf corresponding to a distinguished position, willbe of sufficient length to
guarantee a repeated label R within the bottom Ilnll + 1 interior nodes,and so on.
The conclusions now follow in much the same manner as those given ill the pumping
theorem.
Ii.

EXAMPLE 9.18

For the language L = {akbkcklk EN} investigated in Example 9.17, Ogden's lemma
could be applied with the first n letters of anbncnas the distinguished positions. Since
w musthave at least one distinguished letter (that is, an a), and u and v must precede
w, the u and v portions of the string would then be required to be all as. This greatly
reduces the number of cases that must be considered. Note that more than n letters
can be chosen as the distinguished positions, and they need not be consecutive.
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9.5 CLOSURE PROPERTIES

Recall that '€~ represented the class of context-free languages over I. The applica
tions of the pumping theorem show that not every language is context free. The
ability to show that specific languages are not context free makes it feasible to
decide which language operators preserve context-free languages. The context-free
languages are closed under most of the operators considered in Chapter 5; the
major exceptions are complement and intersection. We begin with a definition of
substitution for context-free languages.

V Definition 9.11. Let I ={all az, ... ,am} be an alphabet and let f be a second
alphabet. Given context-free languages Lll Lz, .L; over f, define a substitu-
tion s: I~ p(f*) by sea;) = L; for each i = 1,2, ,m, which can be extended to
s: I*~ p(f*) by

SeA) = A

and

(Va E I)Vx E I*)(s(a·x) = s(a)·s(x))

s can be further extended to operate on a language L ~ I * by defining
s. p(I*)~ p(f*), where

A
s(L) = U s(z)

zEL

A substitution is similar to a language homomorphism (Definition 5.8), where
letters were replaced by single words, and to the regular set substitution given by
Definition 6.5. For context-free languages, substitution denotes the consistent re
placement of the individual letters within each word of a context-free language with
setsof words. Each such set of words must also be a context-free language, although
not necessarily over the original alphabet.

EXAMPLE 9.19

Let L = L (G t) , where

G t = <{T},{a, b,c,d, -}, T,{T~alblcldIT- T}>

Let L1 denote the set of all valid FORTRAN identifiers.
Let L, denote the set of all strings denoting integer constants.
Let L3 denote the set of all strings denoting real constants.
Let L4 denote the set of all strings denoting double-precision constants.

If the substitution s were defined by sea) =~, s(b) = Lz, s(c) =~, sed) = L4, then
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s(L) would represent the set of all unparenthesized FORTRAN expressions in
volving only the subtraction operator.

In this example, s(L) is a language over a significant portion of the ASCII
alphabet, whereas the original alphabet consisted of only five symbols. The result is
still context free, and this can be proved for all substitutions of context-free lan
guages into context-free languages. In Example 9.19, the languages L1 through L4

were not only context free, but were in fact regular. There are clearly context-free
grammars defining each of them, and it should be obvious how to modify G, to
produce a grammar that generates s(L). If G1= <,010 lb Sb P1> is a grammar gen
erating L1 , for example, then occurrences of a in the productions of G,should simply
be replaced by the start symbol S, of G1 and the productions of P1 added to the new
grammar that will generate s(L). This is essentially the technique used to justify
Theorem 9.10. The closure theorem is stated for substitutions that do not modify
the terminal alphabet, but it is also true in general, as a trivial modification of the
following proof would show.

V Theorem 9.10. Let l be an alphabet, and let s: l~l* be a substitution.
Then ~I is closed under t.

Proof. Let l =[a., a2, ... ,am}' If L is a context-free language, then there is a
context-free grammar G = <n, l, S, P> that generates L1• If s: l~ l* is a substi
tution satisfying Definition 9.11, then for each letter akE l there is a corresponding
grammar G, = <nb l, Sb Pi> for which L(Gk) =s(ak)' Since nonterminals can be
freely renamed, we may assume that n,nb ~, ... ,nm have no common symbols.
s(L) will be generated by the context-free grammar

G' = «nun, U~U···unm,l,S,P' U P1 U P2U'" UPm>,
where P I consists of the rules of P, with each appearance of a, replaced by Sk. From
the start symbol S, the rules of P' can be used as they were in the original grammar
G, producing strings with the start symbol of the kth grammar where the kth
terminal symbol would be. Since the nonterminal sets were assumed to be pairwise
disjoint, only the rules in Pk can be used to expand Sb resulting in the desired
terminal strings from s(ak)' It follows that L(G') = s(L), and thus s(L) is context
free.
~

V Theorem 9.11. Let l be an alphabet, and let \(I: l~ l* be a homo-
morphism. Then ~I is closed under \iI.

Proof. Languages that consist of single words are obviously context free.
Hence, Theorem 9.10 applies when single words are substituted for letters. Since
homomorphisms are therefore special types of substitutions, ~I is closed under
homomorphism.
~

Many of the other closure properties of the collection of context-free gram-
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mars follow immediately from the result for substitution. Closure under union could
be proved by essentially the same method presented in Theorem 8.4. An alternate
proof, based on Theorem 9.10, is given next.

V Theorem 9.12. Let I be an alphabet, and let LI and L, be context-free
languages over I. Then LI U L, is context free. Thus, ~l is closed under union.

Proof. Assume LI and L, are context-free languages over I. The grammar
U=<{S},{a,b},S,{S~a,S~b}> clearly generates the context-free language
{a, b}. The substitution defined by s (a) = LI and s (b) = L, gives rise to the language
s({a, b}), which obviously equals LIU~. By Theorem 9.10, this language must be
context free.
Ll

A similar technique can be used for concatenation and Kleene closure. It is
relatively easy to directly construct appropriate new grammars that combine the
generative powers of the original grammars. The exercises explore constructions
that prove these closure properties without relying on Theorem 9.10.

V Theorem 9.13. Let I be an alphabet, and let LI and L, be context-free
languages over I. Then LI·L, is context free. Thus, ~l is closed under concate
nation.

Proof. Let LI and L, be context-free languages over I. The pure context-free
grammar C = <{S},{a, b},S, {S~ ab}> generates the language {ab}. The substitu
tion defined by s (a) = LI and s (b) = L, gives rise to the language s({ab}) = LJ'~. By
Theorem 9.10, LI'~ must therefore be context free.
Ll

Closure under Kleene closure could be justified by Theorem 9.10 in a similar
manner, since the context-free grammar

K= <{Z,S},{a, b},S,{Z~A,Z~S,S~aS,S~a}>

generates the language a", The substitution defined by s (a) = LI gives rise to the
language s(a*), which is L]', and so Lt is also context free. The proof of Theorem
9.14 instead illustrates how to modify an existing grammar.

V Theorem 9.14. Let I be an alphabet, and let LI be a context-free language
over I. then Lt is context free. Thus, ~l is closed under Kleene closure.

Proof. If LI is a context-free language, then there is a pure context-free
grammar GI = <Ob I, Sb PI> that generates LI - {A}. Choose nonterminals Z' and
S' such that Z' ~ 0 1 and S' ~ 0b and define a new grammar

G. = <01 U{S',Z'},I,Z',PIU{Z'~A,Z'~S', S'~ S'SbS'~SI}>'

A straightforward induction shows that L (G.) = L (GI)*.
Ll
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Thus, many of the closure properties of the familiar operators investigated in
Chapter 5 for regular languages carryover to the class of context-free languages.
Closure under intersection does not extend, as the next result shows.

V Lemma 9.3. ~{a,b.c} is not closed under intersection.

Proof. The languages L1= {aibicili,jEN} and Lz={anbncmln,mEN} are
context free (see the exercises), and yet L1n L, = {akbkckIkE N} was shown in
Example 9.17 to be a language that was not context free. Hence ~{a.b,c} is not closed
under intersection.
tl

The exercises show that ~l is not closed under intersection for any alphabet I
with two or more letters. It was noted in Chapter 5 that De Morgan's laws implied
that any collection of languages that is closed under union and complementation
must also be closed under intersection. It therefore follows immediately that ~{a,b.c}

cannot be closed under complementation either.

V Lemma 9.4. ~{a, h.c] is not closed under complementation.

Proof. Assume that ~{a.b,c} is closed under complementation. Then any two
context-free languages L1 and L, would have context-free complements ~L1 and
~Lz. ByTheorem 9.12, ~L1 U ~Lz is context free, and the assumption would imply
that its complement is also context free. But ~(-L1U - Lz) = L1n Lz, which
would contradict Lemma 9;3 (for example, if L1were {aibicili,jE N} and L, were
{anbncmln,mEN}). Hence the assumption must be false and ~{a.b,C}cannot be closed
under complementation.
tl

Thus, the context-free languages do not enjoy all ofthe closure properties that
the regular languages do. However, the distinction between a regular language and
a context-free language is lost if the underlying alphabet contains only one letter, as
shown by the following theorem. The proof demonstrates that there is a certain
regularity in the lengths of any context-free language. It is the relationships between
the different letters in the words of a context-free language that give it the potential
for being non-FAD. If L is a context-free language over the singleton alphabet {a},
then no such complex relationships can exist; the character of a word is determined
solely by its length.

V Theorem 9.15. ~{a} = 2lJ{a}; that is, every context-free language over a single
letter alphabet is regular.

Proof. Let L be a context-free language over the singleton alphabet {a}, and
assume the CNF grammar G = <0, I, S, P> generates L. Let n = 2111111+1. Consider
the words in L that are of length n or greater, choose the smallest such word, and
denote it by alt. Since i. 2':: n, the pumping theorem can be applied to this word,
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and hence ail can be written as uvwxy, where u = aPI, V = aQ1
, W = a", x = aS1, and

y = a". Let i! = q! + S!. Note that Ivwxl::s; n implies that i!::s; n. The pumping the
orem then implies that all strings in the set L! = {ail+kill k = 0, 1,2, ... }must belong
to L. These account for many of the large words in L. If there are other large words
in L, choose the next smallest word ah that is of length greater than n that belongs to
L but is not already in the set L!. By a similar argument, there is an integer iz::S; n for
which all strings in the set L, = {ah+ki2

1 k = 0, 1,2, ... } must also belong to L. Note
that if i! happens to equal iz, then i, - h is not a multiple of n, or else ah would belong
to L!. That is, hand h must in this case belong to different equivalence classes
modulo n. While large words remain unaccounted for, we continue choosing the
next smallest word aim +1 that is of length greater than n and belongs to L but is not
already in the set L! U L, U ... U Lm • Since each ik::s; n, there are only n choices for
the iks, and only n different equivalence classes mod n in which the jkS may fall,
totaling n z different combinations. Thus, all the long words in L will be accounted
for by the time m reaches n z. The words in L of length less than n constitute a finite
set F, which is regular. Each L, is represented by the regular expession indicated by
(aik)*·aik, and there are less than n Z of these expressions, so L is the finite union of
regular sets, and is therefore regular.
d

If a regular language is intersected with a context-free language, the result
may not be regular, but it will be context free. The proof that '€~ is closed under
intersection with a regular set will use the tools developed in Chapter 10. The
constructs in Chapter 10 will also allow us to show that '€~ is closed under inverse
homomorphism. Such results are useful in showing closure under other operators
and will also be useful in identifying certain languages as non-context-free. These
conclusions will be based on a more powerful type of machine, called a pushdown
automaton. The context-free languages will correspond to the languages that can be
represented by such recognizers.

EXERCISES

9.1. Characterize the nature of parse trees of left-linear grammars.

9.2. Give context-free grammars for the following languages:
(a) {anbncmdmln,m EN}
(b) {aibieidili,j EN}
(c) {anbncmdmln,mEN} U {a'b'c'd'[z.] E N}

9.3. (a) Find, if possible, unambiguous context-free grammars for each of the languages
given in Exercise 9.2.

(b) Prove or disprove: If L1 and L, are unambiguous context-free languages, then
L1 U L, is also an unambiguous context-free language.

(c) Is OIL}; closed under union?

9.4. State and prove the inductive result needed in Theorem 9.2.
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9.5. Consider the proof of Theorem 9.4. Let G = <il, I, S, P> be a context-free grammar,
with the production set divided up into P" and P" (the set of unit productions and
the set of nonunit productions, respectively). Devise an automaton-based algorithm
that correctly calculates BU = {C]B~ C}for each nonterminal B found in PU

•

9.6. (a) What is wrong with proving that '€:l; is closed under concatenation by using the
following construction? Let G1 = <ilt, I, Sl, PI> and Gz = <ilz, I, Sz, Pz> be two
context-free grammars, and without loss of generality assume that ill n Oz = rfJ.
Choose a new nonterminal Z such that Z ft. ill UOz, and define a new grammar
Ge = <ill U ilz U{Z}, I, Z, PIU Pz U{Z~ Sl ·SZ}>. Note: It is straightforward to
show that L(G e

) =L(G 1)·L(G z).
(b) Modify G" so that it reflects an appropriate valid context-free grammars. (Hint:

Pay careful attention to the treatment of lambda productions.)
(c) Prove that '€:l; is closed under concatenation by using the construction defined in

part (b).
9.7. Let I = {a, b, c}. Show that {a'b'c"Ii,j, kEN and i + j = k} is context free.
9.8. (a) Show that the following right-linear grammar is ambiguous.

G = <{S,A,B},{a},S,{S~A,S~B,A~aaA,A~A,B~aaaB,B~A}>

(b) Use the method outlined in Theorem 9.2 to remove the ambiguity in G.
9.9. The regular expression grammar discussed in Example 9.3 produces strings with need

less outermost parentheses, such as «aUb)ec).
(a) Define a grammar that generates all the words in this language and strings that are

stripped of (only) the outermost parentheses, as in (aUb)ec.
(b) Define a grammar that generates all the words in this language and also allows

extraneous sets of parentheses, such as ««a)Ub»ec).
9.10. For the regular expression grammar discussed in Example 9.3:

(a) Determine the leftmost derivation for «a*eb)U(ced)*).
(b) Determine the rightmost derivation for «a*eb)U(ced)*).

9.11. Consider the grammars G and G' in the proof of Theorem 9.5. Induct on the number of
steps in a derivation in G to show that L (G) = L (G').

9.12. For a grammar G in Chomsky normal form, prove by induction that for any string
x E L(G) other than x = Athe number of productions applied to derive x is 2jxj.

9.13. (a) For a grammar G in Chomsky normal form and a string x EL(G), state and prove a
lower bound on the depth of the parse tree for x.

(b) For a grammar G in Chomsky normal form and a string x E L (G), state and prove
an upper bound on the depth of the parse tree for x.

9.14. Convert the following grammars to Chomsky normal form.
(a) <{S,B, C},{a,b,c},S,{S~aB,S~abC,B~ bc,C~c}>
(b) <{S,A,B}, {a, b, c},S,{S~cBA, S~B,A~cB,A~AbbS,B~aaa}>
(c) <{R}, {a, b.c, (,), E,rfJ, U, -, *},R,{R~ajblcIElrfJj(ReR)I(RUR)IR*}>
(d) <{T}, {a, b,c, d, -, +}, T,{T~alblcldIT - TIT+ T}>

9.15. Convert the following grammars to Greibach normal form.
(a) <{Sl, Sz},{a, b, c, d, e},St, {Sl~ SZSle,S,~ Szb,Sz~ SlSZ,Sz~c}>
(b) <{Sl' Sz, S3}, {a,b, c, d, e},Sl, {S.~ S3St,Sl~ Sza,Sz~ be, S3~ Szc}>
(c) < {St, Sz, S3}, {a, b, c, d, e},Si, {Sl~ SlSZC, Si~ dS3,Sz~ SlSt, Sz~ a, S3~ S3e}>

9.16. Let G be a context-free grammar, and obtain G' from G by adding rules of the form
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A~ A. Prove that there is a context-free grammar Gil that is equivalent to GI. That is,
show that apart from the special rule Z~ A all other lambda productions are
unnecessary.

9.17. Prove the following generalization of Lemma 9.1. Let G = <n,~, S, P> be a
context-free grammar, and assume there are strings a and 'Y and nonterminals X and B
for which X~ 'YBaE P. Further assume that the set of all B rules is given by
{B~ f3l,B~ 132,'" ,B~ 13m}, and let G' = <n,~, S, P">, where

P' = P U{XB~ 'Yf3la,XB~ 'Yf32a, ... ,XB~ 'Yf3ma} - {X~ 'YBa}.

ThenL(G) =L(G').
9.18. Let P = {y E [d}" 13 prime p ~ y = di'} = [dd, ddd, ddddd, d", d", d13

, ••• }.

(a) Prove that P is not context free by directly applying the pumping theorem.
(b) Prove that P is not context free by using the fact that P is known to be a nonregular

language.

9.19. Let r = {x E {O, 1, 2}* 13w E {O, 1}* ~ x = w ·2·w} = {2, 121,020, 11211, 10210, ... }.
Prove that r is not context free.

9.20. Let 'I' = {x E {O, 1}* 13w E {O, 1}* ~ x = w-w} = {A, 00,11,0000,1010,1111, ... }. Prove
that 'I' is not context free.

9.21. Let E = {x E{b}*13j E ~ ~ Ixl= 2J
} = {b, bb, bbbb, b8

, b16,b32, ... }. Prove that E is not
context free.

9.22. Let <I> = {x E{a}*13j E ~ ~ Ixl = /} = {A,a,aaaa,a9,aI6,a25, ... }, and let

<I>'={xE{b,c,d}*llxlb;:::1/\ IxIc=(14)2}.

(a) Prove that <I> is not context free.
(b) Use the conclusion of part (a) and the properties of homomorphism to prove that

<1>' is not context free.
(c) Use Ogden's lemma to directly prove that <1>' is not context free.
(d) Is it possible to use the pumping theorem to directly prove that <1>' is not context

free?

9.23. Consider L = {y E {O, 1}* l b 10 = Iy Id. Prove or disprove that L is context free.

9.24. Refer to the proof of Theorem 9.9.
(a) Give a formal recursive definition of the path by (1) stating boundary conditions,

and (2) giving a rule for choosing the next node on the path.
(b) Show that the conclusions of Theorem 9.9 follow from the properties of this path.

9.25. Show that '€:l: is closed under U by directly constructing a new context-free grammar
with the appropriate properties.

9.26. Let~:l: be the set of all languages that are not context free. Determine whether or not:
(a) ~:l: is closed under union.
(b) ~:l: is closed under complement.
(c) ~:l: is closed under intersection.
(d) ~:l: is closed under Kleene closure.
(e) If:l: is closed under concatenation.

9.27. Let ~ be an alphabet, and x = ala2' .. an-Ian E ~*; define x r = anan-I ... a2al. For a
language L over S, define L' = {xrlx E L}. Note that the (unary) reversal operator r is
thus defined by L' = {anan-I ... a3a2allala2a3' .. an-Ian E L}, and L' therefore repre
sents all the words in L written backward. Show that '€:l: is closed under the operator r.
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9.28. Let I = {a,b, c, d}. Define the (unary) operator T by

={wr·wlwEL}

(see the definition of wrin Exercise 9.27). Prove or disprove that %:is closed under the
operator T.

9.29. Prove or disprove that '€{a.b} is closed under relative complement; that is, if L1 and k are
context free, then L1 - L, is also context free.

9.30. (a) Prove that '€{a.b} is not closed under intersection, nor is it closed under com
plement.

(b) By defining an appropriate homomorphism, argue that whenever I has more than.
one symbol '€X is not closed under intersection, nor is it closed under complement.

9.31. Consider the iterative method discussed in the proof of Theorem 9.3. Outline an
alternative method based on an automaton with states labeled by the sets in pen).

9.32. Consider grammars in Greibach normal form that also satisfy one of the restrictions of
Chomsky normal form; that is, no production has more than two symbols on the right
side.
(a) Show that this is not a "normal form" for context-free languages by demonstrating

that there is a context-free language that cannot be generated by any grammar in
this form.

(b) Characterize the languages generated by grammars that can be represented by this
restrictive form.

9.33. Let L be any collection of words over an alphabet I. Prove that L* must be regular.

9.34. If IIIII = 1, prove or disprove that '€X is closed under complementation.
9.35. Prove that {anbncmIn, mEN} is context free.
9.36. Use Ogden's lemma to prove that {a"bncml (k 1= n) 1\ (n 1= m)} is not context free.
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PUSHDOWN AUTOMATA

In the earlier part of this text, the representation of languages via regular grammars
was a generative construct equivalent to the cognitive power of deterministic finite
automata and nondeterministic finite automata. Chapter 9 showed that context-free
grammars had more generative potential than did regular grammars, and thus
defined a significantly larger class of languages. This chapter and the next explore
generalizations of the basic automata construct introduced in Chapter 1. In Chapter
4, we discovered that adding nondeterminism did not enhance the language capabil
ities of an automaton. It seems that more powerful automata will need the ability to
store more than a finite amount of state information, and machines with the ability
to write and read from an indefinitely long tape will now be considered. Automata
that allow unrestricted access to all portions ofthe tape are the subject of Chapter
11. Such machines are regarded to be as powerful as a general-purpose computer.
This chapter will deal with automata with restricted access to the auxiliary tape.
One such device is known as a pushdown automaton and is strongly related to the
context-free languages.

10.1 DEFINITIONS AND EXAMPLES

A language such as {anbnln 2= I} can be shown to be non-FAD by the pumping
lemma, which uses the observation that a finite-state control cannot distinguish
between an unlimited number of essentially different situations. Deterministic finite
automata could at best "count" modulo some finite number; unlimited matching
was one of the many things beyond the capabilities of a finite-state control. One
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possible enhancement would be to augment the automaton with a single integer
counter, which could be envisioned as a sack in which stones could be placed (or
removed) in response to input. The automaton would begin with one stone in the
sack and process input much as a nondeterministic finite automaton would. With
each transition, the machine would not only choose a new state, but also choose to
add another stone to the sack, remove an existing stone from the sack, or leave the
contents unchanged. The 8 function is independent of the status of the sack; the
sack is used only to determine whether the automaton should continue to process
input symbols. Perhaps some sort of weight sensor would be used to detect when
there were stones in the sack, and the device would continue to operate as long as
stones were present; the device would halt when the sack is empty. If all the symbols
on the input tape happen to have been consumed at the time the sack empties, the
input string is accepted by the automaton.

Such devices are called counting automata and are general enough to recog
nize many non-FAD languages. A device to recognize {a"b"In ~ 1} would need
three states. The start state will transfer control to a second state when an a is read,
leaving the sack contents unchanged. The start state will have no valid moves for b,
causing words that begin with b to be rejected since the input tape will not be
completely consumed. The automaton will remain in the second state in response to
each a, adding a stone to the sack each time an a is processed. The second state will
transfer control to the third state upon receipt of the symbol b and withdraw a stone
from the sack. The third state has no moves for a and remains in that state while
removing a stone for each b that is processed. For this device, only words of the
form a"b" will consume all the input just when the sack becomes empty.

Another type of counting automaton handles acceptance in the same manner
as nondeterministic finite automata. That is, if there is a sequence of transitions that
consumes all the input and leaves the device in a final state, the input word is
accepted (irrespective of the sack contents). As with NDFAs, the device may halt
prematurely if there are no applicable transitions (or if the sack empties).

These counting automata are not quite general enough to recognize all
context-free languages. More than one type of "stone" is necessary in order for such
an automaton to emulate the power of context-free grammars, at which point the
order of the items becomes important. Thus, the sack is replaced by a stack, a
last-in, first-out (LIFO) list. The most recently added item is positioned at the end
called the top of the stack. A newly added item is placed above the current top and
becomes the new top item as it is pushed onto the stack. The action of the finite
state control can be influenced by the type of item that is on the top of the stack.
Only the top (that is, the most recently placed) item can affect the state transition
function; the device has no ability to reexamine items that have previously been
deleted (that is, have been popped). The next item below the top of the stack cannot
be examined until the top item is popped (and that popped item thereby becomes
unavailable for later reinspection). As with counting automata, an empty stack will
halt the operation of this type of automaton, called a pushdown automaton.
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V' Definition 10.1. A (nondeterministic) pushdown automaton (NPDA or just
PDA) is a septuple P = <I, I', S, sO, 8, B, F>, where

I is the input alphabet.
I' is the stack alphabet.
S is a finite nonempty set of states.

So is the start state (so E S).

8 is the state transition function,
8: S x (I U A) x f~ the set of finite subsets of S x I'".

B is the bottom of the stack symbol (B E f).
F is the set oi final states (F ~ S).

By the definition of alphabet (Definition 1.1), both I and I' must be non
empty. Figure 10.1 presents a conceptualization of a pushdown automaton. As with
an NDFA, there is a finite-state control and a read head for the input tape, which
only moves forward. The auxiliary tape also has a read/write head, which not only
moves forward, but can move backward when an item is popped. The state transi
tion function is meant to signify that, given a current state, an input symbol being
currently scanned, and the current top stack symbol, the automaton may choose

input.tape

stacktape

read/writehead

Finite State
Control

Figure 10.1 A model of a pushdown automaton
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both a new current state and a new string of symbols from f* to replace the top stack
symbol. This definition allows the machine to behave nondeterministically, since a
current state, input letter, and stack symbol are allowed to have any (finite) number
of alternatives for state transitions and strings from I'" to record on the stack.

The auxiliary tape is similar to that of a finite-state transducer; the second
component of the range of the state transition function in a pushdown automaton
specifies the string to be written on the stack tape. Thus, the functions I) and co of a
FST are essentially combined in the I) function for pushdown automata. The auxil
iary tape differs from that of a FST in that the current symbol from I' on the tape is
sensed by the stack read/write head and can affect the subsequent operation of the
automaton. If no symbols are written to tape during a transition, the tape head
drops back one position and will then be scanning the previous stack symbol. In
essence, a state transition is initiated by the currently scanned symbol on both the
input tape and the stack tape and begins with the stack symbol being popped from
the stack; the state transition is accompanied by a push operation, which writes a
new string of stack symbols on the stack tape. If several symbols are written, the
auxiliary read/write head will move ahead an appropriate amount, and the head will
be positioned over the last of the symbols written. Thus, if exactly one symbol is
written, the stack tape head does not move, and the effect is that the old top-of
stack symbol is overwritten by the new symbol. When the empty string is to be
written, the effect is a pop followed by a push of no letters, and the stack tape head
retreats one position. If the only remaining stack symbol is removed from the stack
in this fashion, the stack tape head moves off the end of the tape. It would then no
longer be scanning a valid stack symbol, so no further transitions are possible, and
the device halts.

It is possible to manipulate the stack and change states without consuming an
input letter, which is the intent of the x-moves in the state transition function. Since
at most one symbol can be removed from the stack as a result of a transition,
~-moves allow the stack to be shortened by several symbols before the next input
symbol is processed.

Acceptance can be defined by requiring the stack to be empty after the entire
input tape is consumed (as was the case with counting automata) or by requiring
that the automaton be in a final state after all the input is consumed. The non
determinism may allow the device to react to a given input string in several distinct
ways. As with NDFAs, the input word is considered accepted if at least one of the
possible reactions satisfies the criteria for acceptance. For a given PDA, the set of
words accepted by the empty stack criterion will likely differ from the set of words
accepted by the final state condition.

EXAMPLE 10.1

Consider the PDA defined by P1 = <{a, b], {A, B},{q, r},q, 8, B, 0>, where 8 is
defined by
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8(q, a, B) = {(q, A)}

8(q, a, A) = {(q,AA)}

8(q,b,B)={ }

8(q, b, A) = {(r, A)}

8(r,a,B)={ }

8(r,a,A)={}

8(r, b,B) = { }

8(r, b, A) = {(r, A)}
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Note that since the set of final states is empty no strings are accepted by final state.
We wish to consider the set of strings accepted by empty stack. In general, when the
set of final states is nonempty, the PDA will designate a machine designed to accept
by final state; F = 0will generally be taken as an indication that acceptance is to be
by empty stack.

The action of the state transition function can be displayed much like that of
finite-state transducers. Transition arrows are no longer labeled with just a symbol
from the input alphabet, since both a stack symbol and an input symbol now govern
the action of the automaton. Thus, arrows are labeled by ordered pairs from I x r.
As with FSTs, this is followed by the output caused by the transition. The diagram
corresponding to Pi is shown in Figure 10.2.

Figure 10.2 The PDA discussed in
Example 10.1

The reaction of Pi to the string aabb is the sequence of moves displayed in
Figure 10.3. Initially, the heads of the two tapes are positioned as shown in Figure
1O.3a, with the (current) initial state highlighted. Since the state is q, the input
symbol is a, and the stack symbol is B, the first transition rule 8(q, a, B) = {(q, A)}
applies; Pi remains in state q, and the popped stack symbol B is replaced by a single
A. Figure 10.3b shows the new state of the automaton. The stack read/write head is
in the same position, since the length of the stack did not change. The input read
head moves on to the next letter, since the first input symbol was consumed. The
second rule now applies, and the single A is replaced by the pair AA as Pi returns to
q again, as shown in Figure 10.3c. Note that the stack tape head advanced as the
topmost symbol was written. The rule 8(q, b, A) = {(r, A)} now applies, and the state
of the machine switches to r as the (topmost) A is popped and replaced with an
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(a)

(b)

Figure 10.3 (a-e) Walkthrough of the pushdown automaton discussed in Exam
ple 10.1
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(c)
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(d)

empty string, leaving the stack shorter than before. This is shown in Figure 1O.3d.
The last of the eight transition rules now applies, leaving the automaton in the
configuration shown by Figure lO.3e. Since the stack is now empty, no further
moves are possible. However, since the read head has reached the end of the input
string, the word aabb is accepted by Pl' The word aab would be rejected by Pt> since
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(e)

the automaton would run out of input in a configuration similar to that of Figure
1O.3d, in which the stack is not yet empty. The word aabbb would not be accepted
because the stack would empty prematurely, leaving PI stuck in a configuration
similar to that of Figure lO.3e, but with the input string incompletely consumed.
The word aaba would likewise be rejectedbecause there would be no move from the
state r with which to process the final input symbol a.

As with deterministic finite automata, once an input symbol is consumed, it
has no further effect on the operation of the pushdown automaton. The current
state of the device, the remaining input symbols, and the current stack contents
form a triple that describes the current configuration of the PDA. The triple
(q, bb, AA) thus describes the configuration of the PDA in Figure 1O.3c. When
processing aabb, PI moved through the following sequence of configurations:

(q.aabb.B)

(q,abb,A)

(q,bb,AA)

(r, b, A)

(r, A, A)

Successive configurations followed from their predecessors by applying a single rule
from the state transition function. These transitions will be described by the
operator 1-.
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V Definition 10.2. The current configuration of pushdown automaton
P = <I, r, S, so,8,B, F> is described by a triple (s,x, a), where

s is the current state.
x is the unconsumed portion of the input string.
a is the current stack contents (with the topmost symbol written as the left
most).

An ordered pair (t, 'Y) within the finite set of objects specified by 8(s, a, A) can
cause a move in the pushdown automaton P from the configuration (s, ay, A/3) to the
configuration (t.y, 'Y/3). This transition is denoted as (s, ay, A/3) I-(t,y, 'Y/3).

A sequence of successive moves in which

(s., Xl, al) I-(sz,xz, az), (sz,xz, az) I-(S3' X3, a3), ... ,(Sm-l, X';'-l,am-l) I-(Sm, Xm, am)

is denoted by (s., Xl, al) ~ (sm, Xm,am)'
6.

The operator ~ reflects the· reflexive and transitive closure of 1-, and thus
we also have (s., Xl, al) ~ (s., Xl> al) and clearly (s., Xl> al) I-(sz;xz, az) implies
(s., Xl> al) ~ (sz,xz, az).

EXAMPLE 10.2

For the pushdown automaton P1 in Example 10.1, (q, aabb,B) ~ (r, A, A) because
(q, aabb, B) I-(q, abb, A) I-(q, bb, AA) I-(r, b, A) I-(r, A,A).

V Definition 10.3. For a pushdown automaton P= <I,r,S,so,8,B,F>, the
language accepted via final state by P, L( P), is

{x E I* 13rE F, 3a E f* ~ (so,x, B) ~ (r, A,a)}

The language accepted via empty stack by P, A(P), is

{x E I* 13r E S ~ (so,x, B) ~(r, A,A)}

EXAMPLE 10.3

Consider the pushdown automaton P1 in Example 10.1. Since only strings of the
form aibi (for i ;;::: 1) allow(q, a'b', B) ~ (r, A, A), it follows that A(P 1) =;:{a''b" In ;;::: I}.
However, F= 0 and thus L (P1) is clearly 0.

The pushdown automaton P1 in Example 10.1 was deterministic in the sense
that there will never be more than one choice that can be made from any config
uration. The. following example illustrates a pushdown automaton that is non
deterministic.
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EXAMPLE 10.4

Consider the pushdown automaton defined by Pz = <{a, b},{S, C], {t}, t, 8, S, 0>,
where 8 is defined by

8(t, a, S) ={(t, sq, (t, q}
8(t, a, C) = { }

8(t, b, S) = { }

8(t, b, C) = {(t, A)}

8(t, A, S) ={ }

8(t,A,C)={}

In this automaton, there are two distinct courses of action when the input symbol is
a and the top stack symbol is S, which leads to several possible options when trying
to process the word aabb. One option is to apply the first move whenever possible,
which leads to the sequence of configurations

(t, aabb, S) I- (t, abb, sq I- (t, bb, scq.
Since there are no A-moves and8(t, b, S) = { }, there are no further moves that can
be made, and the input word cannot be completely consumed in this manner.
Another option is to choose the second move option exclusively, leading to the
abortive sequence (t, aabb, S) I- (t, abb, C); 8(t, a, C) = { }, and processing again
cannot be completed. A mixture of the first and second moves results in the
sequence (t, aabb, S) I- (t, abb, sq I- (t, bb, cq I- (t, b, C) I- (t, A,A), and aabb is thus
accepted by Pz. Further experimentation shows that A(Pz) = {anbnln ~ 1}. To suc
cessfully empty its stack, this automaton must correctly "guess" when the last a is
being read and choose the second transition pair, placing only C on the stack.

V Definition 10.4. Two pushdown automata M1 = <I., flo s., SOl' 810 Bb r»
and Mz = <I., f z, Sz, sO:!' 8z, Bz, F2> are called equivalent iff they accept the same
language.
A

The pushdown automaton P1 from Example 10.1 is therefore equivalent to Pz
in Example lOA. The concept of equivalence will apply even if one device accepts
via final state and the other accepts via 'empty stack. In keeping with the previous
broad use of the concept of equivalence, if any two finite descriptors define the
same language, those descriptors will be called equivalent. Thus, if a PDA M
happens to accept the language described by a regular expression R, we will say that
R is equivalent to M. .

EXAMPLE 10.5

The following pushdown automaton illustrates the use of A-moves and accept
ance by final state for the language {anbmln ~ 1/\ (n = m V n = 2m)}. Let
P3= <{a, b},{A},{so}, {so, s., SZ, S3, S4}, 8, A, {sz,S4}>, where 8 is defined by
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8(so,a, A) = {(so, AA)}

8(so,b, A) ={ }

8(so, A,A) = {(S1o A),(S3' A)}

8(S1o a, A) ={ }
8(S1o b, A) = {(S1o A)}

8(S1o A,A) = {(S2' A)}

8(S2' a, A) ={ }

8(S2' b, A) = { }

8(S2, A,A) ={ }

8(S3' a, A) = { }

8(S3' b, A) = { }

8(S3' A,A) = {(S4' A)}

8(S4' a, A) ={ }

8(S4' b, A) = {(S3' A)}

8(S4' A,A) = { }

The finite-state control for this automaton is diagrammed in Figure lOA. Note that
the A-move from state S3 is not responsible for any nondeterminism in this machine.
From S3, only one move is permissible: the A-move to S4. On the other hand, the
A-move from state Sl does allow a choice of moving to S2 (without moving the read
head) or staying at Sl while consuming another input symbol. The choice of moves
from state So also contributes to the nondeterminism; the device must "guess"
whether the number of bs will equal the number of as or whether there will be half
as many, and at the appropriate time transfer control to Slor S3, respectively. Notice
that the moves defined by states S3 and S4 allow two stack symbols to be removed for
each b consumed. Furthermore, a string like aab can transfer control to S3 as the

, . '

Figure 10.4 The PDA discussed in
Example 10.5
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final b is processed, but the A-move can then be applied to reach S4 even though
there are no more symbols on the input tape.

Since A was the only stack symbol in P3, the language could have as easily
been described by the sack-and-stone counting device described at the beginning of
the section. It should be clear that counting automata are essentially pushdown
automata with a singleton stack alphabet. Pushdown automata with only one stack
symbol cannot generate all the languages that a PDA with two symbols can
[DENN]. However, it can be shown that using more than two stack symbols does
not contribute to the generative power of a PDA; for example, a PDA with
r = {A, B, C, D} can be converted into an 'equivalent machine with I" = {O, I} and
the occurrences of the old stack symbols replaced by the encodings A = 01, B = 001,
C = 0001, and D = 00001.

Every NDFA can be simulated by a PDA that simply ignores its stack. In fact,
every NDFA has an equivalent counting automaton, as shown in the following
theorem.

V Theorem 10.1. Given any alphabet I, and an NDFA A:

1. There is an equivalent pushdown automaton (counting automaton) A' for
which L (A) = L (A').

2. There is an equivalent pushdown automaton (counting automaton) A" for
which L(A) = A(A").

Proof. The results for pushdown automata will actually follow from the re
sults of the next section, since pushdown automata can define all the context-free
languages, and the regular language defined by the NDFA A must be context free.
The following constructions will use only the one stack symbol e, and hence A' and
A"are actually counting automata for which L(A) = L(A') and L(A) = A(A").

While the construction of a PDA from an NDFA is straightforward, the
inductive proofs are simplified if we appeal to Theorem 4.1, and assume that
the given automaton is actually a DFA A=<I,S,so,8,F>. Define the PDA
A' = <I,{¢},S,so, 8', ¢,F>, where 8' is defined by

('t:/s E S)('t:/a E I)(3'(s, a, ¢) = {(8(s, a), ¢)})

and ('t:/s E S)(3 '(s, A,e) = { }). That is, the PDA makes the same transitions that the
DFA does and replaces the ¢ with the same symbol on the stack at each move. The
proof that A and A' are equivalent is by induction on the length of the input string,
where pen) is the statement that

('t:/x E In)(3(so,x) = t ~ (so,x, ¢) ~ (t, A,¢»)

The PDA with a single stack symbol that accepts L via empty stack is quite similar;
final states are simply given the added option of removing the only symbol on the
stack. That is, A"= <I, {¢}, S, sO, 8", e, 0>, where 3" is defined by

('t:/s E S)('t:/aE I)(8"(s, a, e) ={(8(s, a), ¢)})
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Equivalence of PDAs and CFGs

(Vs E F)(8"(s, A, e) ={(s,Am

(VsE S - F)(8"(s, A, e) ={ })
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The same type of inductive statement proved for A' holds for A", and it therefore
will follow that exactly those words that terminate in what used to be final states
empty the stack, and thus L(A) = A(A").
Ll

10.2 EQUIVALENCE OF PDAs AND CFGs

In this section, it will be shown that if L is accepted by a PDA, then L can be
generated by a CFG, and, conversely, every context-free language can be recog
nized by a PDA. We will also show that the class of pushdown automata that accept
by empty stack defines exactly the same languages as the class of pushdown auto
mata that accept by final state. In each case, the languages defined are exactly the
context-free languages.

V Definition 10.5. For a given alphabet I, let

~}; = {L~I*13PDAP:l L = A(P)}

~};={L£:I*13PDAP:l L=L(P)}

Recall that~}; was defined to be the collection of context-free languages. We
begin by showing that ~}; ~ ~};. To do this, we must show that, given a language L
generated by a context-free grammar G, there is a PDA PG that recognizes exactly
those words that belong to L. The pushdown automaton given in the next definition
simulates leftmost derivations in G. That is, as the symbols on the input tape are
scanned, the automaton guesses at the production that produced that letter and
remembers the remainder of the sentential form by pushing it on the stack. PG is
constructed in such a way that, when the stack contents are checked against the
symbols on the input tape, wrong guesses are discovered and the device halts.
Wrong guesses, corresponding to inappropriate or impossible derivations, are
thereby prevented from emptying the stack, and yet each word that can be gener
ated by G will be guaranteed to have a sequence of moves that results in acceptance
by empty stack.

V Definition 10.6. Given a context-free grammar G = <n, I, S, P> in pure
Greibach normal form, the single-state pushdown automaton corresponding to G is
the septuple

PG = <I,n u I,{s}, S, 8G, S,0>,
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where 8G is defined by

_ !{(s, a) I'I'~ ao E P},
8G(s, a, '1') -

{(s, A)},

Ll

EXAMPLE 10.6

if 'I' E 0
Va E L, '1'1'E (0 U L)

if 'I' E L !\ 'I' = a

Consider the pure Greibach normal form grammar

G = <{S},{a,b},S,{S~aSb,S~ab}>

which is perhaps the simplest grammar generating [a'b" In ~ I}. The automaton PG

is then

PG = <{a, b}, is, a, b}, is}, S, 8G , S, 0>

where 8G is defined by

8G(s, a, S) ={(s, Sb), (s, b)}

8G(s , a, a) = {(s, A)}

8G(s, a , b) = { }

8G(s, b, S) ={ }

8G(s, b, a) ={ }

8G(s, b, b) ={(s, A)}

This automaton contains no A-moves and is essentially the same as Pz in Example
lOA, with the state t now relabeled as s, the stack symbol b now playing the role of
C, and the unused stack symbol a added to I'. The "derivation S~ aSb ~ aabb
corresponds to the successful move sequence

(s, aabb, S) f-(s, abb, Sb) f-(s, bb, bb) f-(s, b, b) f-(s, A,A).

The exact correspondence between derivation steps and move sequences is illus
trated in the next example.

EXAMPLE 10.7

For a slightly more complex example, consider the pure Greibach normal form
grammar

G = <{R}, {a, b, c, (,),E, e, U,·, *},{R,{R~alblcIElel(R.R)I(RUR)I(R)*}>.

The automaton PG is then

<{a, b, c, (,), E, e, U,·, *},{R, a, b, c, (,), E, e, U,·, *},is}, S, 8G, R, 0>,

where 8G is comprised of the following nonempty transitions:
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8G(s, (, R) ={(s, R·R», (s, RUR», (s, R)*)}

8G(s, a, R) ={(s, >..)}

8G(s, b, R) = {(s, >..)}

8G(s, c, R) ={(s, >..)}

8G(s, E, R) = {(s, >..)}

8G(s, 4l, R) = {(s, >..)}

8G(s, a, a) ={(s, >..)}

8G(s, b, b) ={(s, >..)}

8G(s, c, c) = {(s, >..)}

8G(s , 4l, 4l) = {(s, >..)}

8G(s , E, E) = {(s, >..)}

8G(s, U, U) ={(s, >..)}

8G(s, -, 0) ={(s, >..)}

8G(s, *, *) ={(s, >..)}

8G(s, ) , ») = {(s, >..)}

8G(s, (, 0 = {(s, >..)}

341

In this grammar, it happens that the symbol (is never pushed onto the stack, and so
the last transition is not utilized. Transitions not listed are empty; that is, they are of
the form 8G(s, d, A) ={ }.

Consider the string (aU(boc», which has the following (unique) derivation:

R~(RUR)

~(aUR)

~(aU(RoR»

:::} (aU(boR»

~(aU(boc»

PG simulates this derivation with the following steps:

(s, (aU(boc», R) f- (s, aU(boc», RUR»

f- (s,U(boc», UR»

f- (s, (boc» , R»

f- (s, b-cj], RoR»)
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f-(s, -cj), oR»)

f-(s, cj), R»)

f-(s, », »)
f-(s,),»

f-(s, A,A)

I
I

I
I

Chap. 10

Figure 10.5 illustrates the state of the machine at several points during the
move sequence. At each point when an R is the top stack symbol and the input tape
head is scanning a (, there are three choices of productions that might have
generated the opening parenthesis, and consequently the automaton has three
choices with which to replace the R on the stack. If the wrong choice is taken, PG

will halt at some future point. For example, if the initial move guessed that the first
parenthesis was due to a concatenation operation, the move sequence would be

(s, (aU(boc», R) f- (s, aU(boc», RoR» f- (s, U(boc», -R)

Since there are no A-moves and the entry for 8G(s, U, 0) is empty, this attempt can go
no further. A construction such as the one given in Definition 10.6 can be shown to
produce the desired automaton for any context-free grammar in Greibach normal
form.

(a)

Figure 10.5 (a-f) Walkthrough of the pushdown automaton discussed in Exam
ple 10.7
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u
R
)

(b)

(c)

V Theorem 10.2. Given any alphabet I, '€I ~ Cf}I. In particular, for any
context-free grammar G, there is a pushdown automaton that accepts (via empty
stack) the language generated by G.

Proof. Let G' be any context-free grammar. Theorem 9.6 guarantees that
there is a pure Greibach normal form grammar G = <0, I, S, P> for which
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(d)

Chap. 10

(e)

L(G) =L(G') {11.}. If 1I.~L(G'), the PDA Pa from Definition 10.6 can be used
directly. If 11. E L(G'), then there is a Greibach normal form grammar

Gil= <Ou{Z},I,Z,P U{Z~S,Z~1I.}>,

which generates L(G'), and the state transition function for L(G') should then
include the move 3G(s, 11., Z) == {(s,S), (s, 11.)} to reflect the two Z-rule's. The bottom
of the stack symbol would then be Z, the new start symbol.
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(f)
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In either case, induction on the number of moves in a sequence will show that
('fix E I*)('fI13 E (I U fl)*)«s, x, S) ~ (s, A,13) iff S~x 13 as a leftmost derivation).
Note that x 13 is likely to be a sentential form that still contains nonterminals. The
words x that result in an empty stack (13 = A) will then be exactly those words that
produce an entire string of terminal symbols from the start symbol S (or Z in the
case where the grammar contains the two special Z-rules). In other words,
L(G') = A(P G) .

Ii

Given a context-free grammar, the definition of an equivalent PDA is easy
once an appropriate GNF grammar is in hand. In Example 10.6, the grammar was
already in Greibach normal form. To find a PDA for the grammar in Chapters 8 and
9 that generates regular expressions, the grammar

<{R},{a, b,c, (,), E,e, U,', *},R,{R~alblcIElel(R'R)I(RUR)IR*}>

would have to be converted to Greibach normal form. The offending left-recursive
production R~ R* would have to be replaced, resulting in an extra nonterminal
and about three times as many productions. The definition of the PDA for this
grammar would be correspondingly more complex (see the exercises).

Since every context-free language can be represented by a pushdown automa
ton with only one state, one might suspect that more complex PDAs with extra
states may be able to define languages that are more complex than those in '€I. It
turns out that extra states yield no more cognitive power; the information stored
within the finite-state control can effectively be stored on the stack tape. This will
follow from the fact that the converse of Theorem 10.2, that context-free grammars
have equivalent pushdown automata, is also true.
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Defining a pushdown automaton based on a context-free grammar is not as
elegant as the construction presented in Definition 10.6, but the idea is to have the
leftmost derivations in the grammar correspond to successful move sequences in the
PDA.

V Definition 10.7. Let P = <I, f, S, so,8, B, 0> be a pushdown automaton.
Define the grammar Gp= <0, I, Z, Ps>, where

0= {Z}U{NjAEf, s, tE S}

and

Pp = {Z~BSOllt E S} U {A'q~ aAiIIA~ltzAjzI3 ... A,;;n_-/mA,;;nq!A E I', a E I U {X.},

(r, A IA2 • •• Am) E 8(s, a, A), s, q, r, t., t2 , ••• ,tmE S}

U {A'r~als, rE S, A E f, a E I U {X.}, (r, X.) E 8(s, a,A)}

Note that when m = 1, the transition (r, AI) E 8(s, a, A) gives rise to a rule of
the form A'q~ aAiqfor each state q E S.

EXAMPLE 10.8

Consider again the pushdown automaton from Example 10.4, defined by
P2 = <{a, b}, is, C},it}, t, 8, S, 0>, where 8 is given by

8(t, a, S) = {(t, SC), (t, C)}

8(t, a, C) ={ }

8(t,b,S)={ }

8(t, b, C) = {(t, X.)}

Since there is but one state and two stack symbols, the nonterminals for the corre
sponding grammar Gpzare 0 = {Z, S'', C'']. Ppz can be calculated as follows: Z~ S'' is
the only rule arising from the first criteria for productions. Since 8(t, a, S) contains
(t, SC), a move that produces two stack symbols, m = 2 and the resulting production
is Sll~ aSllCll. The only other rule due to the second criteria arises because 8(t, a, S)
contains (t, C), which with m = 1 yields Stl~ aCll. Finally, (t, X.) E 8(t, b, C) causes
Cll~ b to be added to the production set. The resulting grammar is therefore

Gpz= <{Z, S'', C"},{a, b}, Z, {Z~ S", Sll~ aSllet, Sll~ aCt, Cll~ b}>

and Gpzdoes indeed generate {anbnln ;:::: 1}and is therefore equivalent to P2•

EXAMPLE 10.9

Now consider the pushdown automaton from Example 10.1, defined by

PI= <{a, b},{A,B},{q,r},q,8,B,0>,
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where the nonempty transitions were

8(g, a, B) ={(g, A)}

8(g, a, A) ={(g, AA)}

8(g, b, A) = {(r, A)}

8(r, b, A) ={(r, A)}

Since there are two stack symbols and two choices for each of the state superscripts,
thenonterminalset for the grammar GP1is r ={Z, Bq\ Bqr, Br\ s-, Aq\ Aqr, N\ Arr},

although some of these will turn out to be useless.
PP

1
contains the Z-rules Z~ Bqq and Z~ B" from the first criteria for produc

tions. The transition 8(g, a, B) = {(g, A)} accounts for the productions B"~ aAqr
and Bqq~ aNq. 8(g, a, A) ={(g, AA)} gives rise to the Nq-rules Aqq~ aAqqAqq and
Aqq~aAqrN\ and the Aqr-rules Aqr~ aAqqAqr and Aqr~ aAqrArr. 8(g, b, A) ={(r, A)}
accounts for another Aqr-rule, Aqr~ b. Finally, the transition 8(r, b, A) = {(r, A)}
generates the only Arr-rule, Arr~ b.

Note that some of the potential nonterminals (B'", B'", B") are never gener
ated, and others (Aq\ Bqq) cannot produce terminal strings. The resulting grammar,
with useless items deleted, is given by

G = <{Z B" Aqr A"} {a b} Z {Z~Bqr Bqr~aAqr Aqr~aAqrArr Aqr~b Arr~b}>
Pl: ' , , "" , , "

and GP1 generates the language PI recognizes: {anbnln ;:.:: I}.
Notice that the move seguence

(g, aaabbb, B) I- (g, aabbb, A)

I- (q, abbb, AA)

I- (q, bbb, AAA)

I-(r, bb,AA)

I- (r, b,A)

Hr, A,A)

corresponds to the leftmost derivation

=>aaAqrArr

=> aaaAqrArrArr

=> aaab.A"Arr

=>aaabbArr

=>aaabbb
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Note the relationship between the sequence of stack configurations and the
nonterminals in the corresponding sentential form. For example, when aaa has been
processed by PI> AAA is on the stack, and when the leftmost derivation has pro
duced aaa, the remaining nonterminals are also three A-based symbols (AqrNrArr).
Aqr denotes a nonterminal (which corresponds to the stack symbol A) that will
eventually produce a terminal string as the stack shrinks below the current size
during a sequence of transitions that lead from state q to state r. This finally
happens in the last of the following steps, where aaaAqrArrArr~aaabbb. Arr, by
contrast, denotes a nonterminal (again corresponding to the stack symbol A) that
will produce a terminal string as the stack shrinks in size during transitions from
state r back to state r. In this example, this occurs in the next to the last two steps.
The initial stack symbol position held by B is finally vacated during a sequence of
transitions from q to r, and hence B" appears in the leftmost derivation. On the
other hand, it was not possible to vacate B's position during a sequence of moves
from q to q, so Bqq consequently does not participate in significant derivations.

The strong correspondence between profitable move sequences in P and valid
leftmost derivations in Gp forms the cornerstone of the following proof.

V Theorem 10.3. Given any alphabet ~, 'l}I ~ '€I' In particular, for any push-
down automaton P, there is a context-free grammar Gp for which L(G p) = A(P).

Proof. Let P = <~, I', S, sO, 8, B, 0> be a pushdown automaton, and let Gp be
the grammar given in Definition 10.7. The key to the proof is to show that all words
accepted by empty stack in the PDA P can be generated by Gp and that only such
words can be generated by Gp • That is, we wish to show that the automaton halts in
some state t with an empty stack after processing the terminal string x exactly when
there is a leftmost derivation of the form

Z~NOI~X

That is,

('Ix E~*)(Z~BSOI~X ~ (so,x,B)~(t,A,A»)

The desired conclusion, that L (Gp) = A(P), will follow immediately from this equiv
alence. The equivalence does not easily lend itself to proof by induction on the
length of x; indeed, to progress from the mth to the m + 1st step, a more general
statement involving more of the nonterminals of Gp is needed. The following
statement can be proved by induction on the number of moves and leads to the
desired conclusion when s = So and A = B:

('Ix E ~*)('1A E f)('1s E S)('1t E S)(NI~X ~ (s,x,A) ~(t, A,A»)

The resulting grammar will then generate A(P), but Gp may not be a strict context
free grammar; A-moves may result in some productions of the form N r~ A, which
will then have to be "removed," as specified by Exercise 9.16.
A
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Thus, ~I = <€I' Furthermore, only one state in a PDA is truly necessary, as
noted in the followingcorollary. In essence, this means that for PDAs that accept by
empty stack any state information can be effectively encoded with the information
on the stack.

V Corollary 10.1. For every PDA P that accepts via empty stack, there is an
equivalent one-state PDA P' that also accepts via empty stack.

Proof. Let P be a PDA that accepts via empty stack. Let P' = PGp' That is,
from the original PDA P, find the corresponding context-free grammar Gp• By
Theorem 10.3, this is equivalent to P. However, by Theorem 10.2, the grammar Gp

has an equivalent one-state PDA, which must also be equivalent to P.
b.

Unlike the pushdown automata discussed in this section, PDAs that accept via
final state cannot always make do with a single state. As the exercises will make
clear, at least one final and one nonfinal state are necessary. Unlike DFAs, PDAs
with only one state can accept some nontrivial languages, since selected words can
be rejected because there is no appropriate move sequence. However, a single final
state and a single nonfinal state are sufficient, as shown in the following section.

10.3 EQUIVALENCE OFACCEPTANCE BYFINAL STATE
AND EMPTYSTACK

In this section, we explore the ramifications of accepting words according to the
criteria that a final state can be reached after processing all the letters on the input
tape, rather than the criteria that the stack is emptied. Theorem 10.4 will show that
any language that can be accepted via empty stack can also be accepted via final
state. In terms of Definition 10.5, this means that ~I C ?:FI . Since ~I = <€I, this
means that every context-free language can be accepted by a PDA via final state.
Theorem 10.5 ensures that no "new" languages can be produced by pushdown
automata that accept via final state; ?:FI C ~I, and so ?:FI = ~I = <€I'

As in the last section, the key to the correspondence is the definition of an
appropriate translation from one finite representation to another. We first consider
a scheme for modifying a PDA so that the new device can transfer to a final state
whenever the old device was capable of emptying its stack. To do this, we need to
place a "buffer" symbol at the bottom of the stack, which will appear when the
original automaton would have emptied its stack. The new machine operates in
almost the same fashion as the original automaton; the differences amount to an
additional transition at the start of operation to install the new buffer symbol and an
extra move at the end of operation to transfer to the (new) final state.

V Theorem 10.4. Every pushdown automaton P that accepts via empty stack
has an equivalent two-state pushdown automaton Pf that accepts via final state.
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Proof. Corollary 10.1 guaranteed that every pushdown automaton that ac
cepts via empty stack has an equivalent one-state pushdown automaton that also
accepts via empty stack. Without loss of generality, we may therefore assume that
P = <~, I', {s}, s, B,B, 0>. Define Pr by choosing a new state f and two new stack
symbols Y and Z such that Y, Z $. I', and let P, = <~, I' U{Y, Z}, {s,f},s, Br,Z, {f}>,
where Bris defined by:

1. Br(s, >.., Z) = {(s,BY)}
2. (Va E ~)(VA E f)(Ms, a, A) = B(s,a, A))
3. (VA E f)(Br(s, >.., A) = B(s, >.., A))
4. Br(s, >.., Y) ={(f,Y)}

5. (Va E ~)(Br(s, a, Z) = { } 1\ Br(s, a, Y) = { })
6. (Va E ~ U {>..})(VA E r U {Y, Z})(Br(f, a, A) ={ })

Notice that rules 2 and 3 imply that, while the original stack symbols appear on
the stack, the machine moves exactly as the original PDA. Rules 5 and 6 indicate
that rio letters can be consumed while there is a Y or Z on the stack, and no moves
are possible once the final state f is reached. Since the bottom of the stack symbol is
now the new letter Z, rule 1 is the only rule that initially applies; Its application
results in a configuration very much like that of the old PDA, with the symbol Y
underneath the old bottom of the stack symbol B. Pr now simulates P until the Y is
uncovered (that is, until a point is reached in which the old PDA would have
emptied its stack). In such cases (and only in such cases), rule 4 applies, and control
can be transferred to the final state f, and Prmust then halt.

By inducting on the number of moves in a sequence, it can be shown for any
a, 13 E I'" that

(Vx,Y E ~*)«s, xy, a) ~ (s,y, 13) in P ¢::> (s,xy, a Y) ~ (s,y, I3Y) in Pr)

From this, with y = 13 = >.. and a = B, it follows that

(Vx E ~*)«s,x, B) ~ (s, x, >..) in P ¢::> (s,x, BY) ~ (s, >.., Y) in Pr)

Consequently, since Br(s, >.., Z) ={(s,BY)} and Br(s, >.., Y) ={(f,Y)},

(Vx E ~*)«s,x, B) ~ (s, x,>..) in P ¢::> (s, x, Z) ~ (f, >.., Y) in Pr)

which implies that (Vx E ~*)(x E A(P) ¢::> x EL(Pr)), as was to be proved.
~

Thus, every language which is A(P) for some PDA can be recognized by a
PDA that accepts via final state, and this PDA need only employ one final and one
nonfinal state. Thus, C!Jl~ ~ f!j~. One might conjecture that f!j~ might actually be
larger than C!Jl~, since some added capability might arise if more than two states are
used in a pushdown automaton that accepts via final state. This is not the case, as
demonstrated by the following theorem. Once again, the information stored in the
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finite control can effectively be transferred to the stack; only one final and one
nonfinal state are needed to accept any context-free language via final state, and
context-free languages are the only type accepted via final state.

V Theorem 10.5. Every pushdown automaton P that accepts via final state has
an equivalent pushdown automaton PI.. that accepts via empty stack.

Proof. Assume that P= <I,f,S,so,8,B,F>. Define PI.. by choosing a new
stack symbols Y and Z such that Y, Z $. I' and a new state e such that e $. S, and let
PI.. = <I, I' U{Y,Z}, S U {e}, so, 81.., Z, 0>, where 81.. is defined by:

1. 8A(so, A, Z) = {(so, BY)}
2. (Va E I)(VA E f)(Vs E S)(8A(s, a, A) = 8(s, a, A))
3. (VA E f)(Vs E S - F)(8A(s, A,A) = 8(s, A,A))
4. (VA E f)(Vf E F)(8A(f , A,A) = 8(f, A, A) U{(e, A)})
5. (VA E f)(8A( e, A,A) = {(e, A)})
6. 8A(e , A, Y) = {(e, A)}

The first rule guards against PI.. inappropriately accepting if P simply empties
its stack (by padding the stack with the new stack symbol Y). The intent of rules 2
through 4 is to arrange for PI.. to simulate the moves of P and allow PI.. to enter the
state e when final states can be reached. The state e does not allow any further
symbols tobe processed, but does allow the stack contents (including the new buffer
symbol) to be emptied via rules 5 and 6. Thus, PI.. has a sequence of moves for input
x that empties the stack exactly when P has a sequence of moves that leads to a final
state.

By inducting on the number of moves in a sequence, it can be shown for any
a, 13 E I" that

(Vx, y E I*)(Vs, t E S)«s,xy, a) ~ (t, y, 13) in P <=> (s,xy, a Y) ~ (t,y, I3Y) in PI..)

From this, with y = A, a = B, and t E F, it follows that

(Vx,y E I*)(Vt E F)«so,x, B) ~ (t, A,13) in P <=> (so,x, BY) ~ (t, A, I3Y) in PI..)

Consequently, since 8A(so, A, Z) = {(so, BY)} and 8A(t, A, A) contains (e, A), repeated
application of rules 5 and 6 implies

(Vx,y E I*)(Vt E F)«so,x, B) ~ (t, A, 13) in P <=> (so,x, Z) ~ (t, A, A) in PI..)

This shows that (Vx E I*)(x E A(PA) <=> x E L(P)).
Ll

Thus, ~l k~l, and so ~l = ~l = '€l' Acceptance by final state yields exactly
the same class of languages as acceptance by empty stack. This class of languages,
described by these cognitive constructs, has been encountered before and can be
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defined by the generative constructs which comprise the context-free grammars.
Note that since the type 3 languages are contained in the type 2 languages, the
portion of Theorem 10.1 dealing with pushdown automata follows immediately
from the results in this and the previous section.

10.4 CLOSURE PROPERTIES AND DETERMINISTIC
PUSHDOWN AUTOMATA

Since the collection of languages recognized by pushdown automata is exactly the
collection of context-free languages, the results in Chapter 9 show that ~l is closed
under substitution, homomorphism, union, concatenation, and Kleene closure.
Results for context-free languages likewise imply that ~l is not closed under com
plement or intersection.

It is hard to imagine how to find a method that would combine two context
free grammars to produce a new context-free grammar that might accept the inter
section of the original languages. The constructs for regular expressions and regular
grammars likewise did not lend themselves to such methods, and yet it was possible
to find appropriate constructs that did represent intersections. As presented in
Chapter 5, this was possible by turning to the cognitive representation for this class
of languages, the deterministic finite automata. It is instructive to recall the tech
nique that allowed two DFAs A1 and Az to be combined to form a new DFA An that
accepts the intersection of the languages accepted by the original devices and to see
why this same method cannot be adapted to pushdown automata.

The automaton An used a cross product of the states of A1 and Az to simulta
neously keep track of the progress of both DFAs through an appropriate revamping
of the state transition function. An only accepted strings that would have reached
final states in both A1 and Az. Two pushdown automata P1 and Pzmight be combined
into a new PDA pn using the cross-product approach, but the transition function for
this composite PDA cannot be reliably defined. A problem arises since the 8
function depends on the top stack symbol, and it is impossible to keep track of both
the original stacks through any type of stack encoding, since the stack size of P1

might be increasing while the stack size of Pz is decreasing. A device like the one
depicted in Figure 10.6 could be capable of recognizing the intersection of two
context-free languages, but such a machine is inherently more powerful than PDAs.
The language {anbncnIn;::: O} is not context free, yet a two-tape automata could
recognize this set of words by storing the initial as on the first stack tape, match
them against the incoming bs while storing those bs on the second tape, and then
matching the cs against the bs on the second tape (see the exercises).

If one were to attempt to intersect a context-free language with a regular
language, one would expect the result to be context free, since the corresponding
cross-product construct would need only one tape. This is indeed the case, as shown
by the following theorem.

V Theorem 10.6. '€l is closed under intersection with a regular set. That is, if
L1 is context free and Rz is regular, L1 n Rz is always context free.
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Finite State
B Control

Figure 10.6 A model of a "pushdown
automaton" with two tapes

Proof. Let L1 be a context-free language and let R2 be a regular set. Since
'€I = ?}iI, there must be a PDA P1 = <I, r, Sl, SOl' 8l, Bl, F1> for which L1=L (P1).
Let A2= <I, S2, sllz' 82,F2> be a DFA for which R2= L (A2). Define

pn = <I, r; S1 x S2, (SOl' sllz)' 8n
, Bl, F1 x F2>,

where 8n is defined by:

1. (V'S1 E S1)(V'S2 E S2)(V'a E I)(V'A E f 1)
(8n( (s., S2), a, A) = {«tl, t2), (3) I(tl, (3) E 81(sl, a, A) /\ t2= 82(S2' am.

2. (V'S1 E S1)(V'S2 E S2)(V'A E f 1)
(8n«sl, S2), A,A) = {«tl, t2), (3) I(tl, (3) E 81(sl, A,A) /\ t2= S2})'

As with the constructions in the previous sections, induction on the number of
moves exhibits the desired correspondence between the behaviors of the machines.
In particular, it can be shown for any ex, [3 E I'" that

(V'x E I*)(V'sl, t1E S1)(V'S2, t2E S2)«(Sl, S2),XY, ex> ~ «tl, t2),y, (3)'in P1 ~
«(SbXy, ex) ~ (tl,y, (3) in pn) /\ (t2 =82(S2' X))) )

From this, with ex = B1and the observation that (tl, t2) E F1 x F2 iff t1E F1 /\t2E F2,
it follows that (V'x E I*)(x EL(pn)~ (x EL(P1) /\ x EL(A2»). Therefore,

L(pn) =L(P1) nL(A2) = L1 n R2.

Since pn is a PDA accepting L1n R2, L1n R2must be context free.
A

Closure properties such as this are quite useful in showing that certain lan
guages are not context free. Consider the set L = {x E {a, b, c}I Ix I. = Ix Ib = Ix Ie}.
Since the letters in a word can occur in any order, a pumping theorem proof is less
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..

straightforward than for the set {anbncn!n 2:0}. However, if L were context free,
then L n a*b*c* would also be context free. But L n a*b*c* = [ab''c" In 2: O}, and
thus L cannot be context free. The exercises suggest other occasions for which
closure properties are useful in showing certain languages are not context free.

For the machines discussed in the first portion of this text, it was seen that
nondeterminism did not add to the computing power of DFAs. In contrast, this is
not the case for pushdown automata. There are languages that can be accepted by
nondeterministic pushdown automata that cannot be accepted by any deterministic
pushdown automaton. The following is the broadest definition of what can con
stitute a deterministic pushdown automaton.

V Definition 10.8. A deterministic pushdown automaton (DPDA) is a push
down automaton P = <I, I', S, so, 8, B, F> with the following restrictions on the
state transition function 8:

1. (Va E I)(VA E r)(Vs E S)(8(s, a, A) is empty or contains just one element).
2. (VA E f)(Vs E S)(8(s, A, A) is empty or contains just one element).
3. (VA E f)(Vs E S)(8(s, A, A) =I 0 ::? (Va E I)(8(s, a, A) = 0)).

~

Rule 1 states that, for a given input letter, deterministic pushdown automata
cannot have two different choices of destination states or two different choices of
strings to place on the stack. Rule 2 ensures that there is no choice of A-moves
either. Furthermore, rule 3 guarantees that there will never be a choice between a
A-move and a transition that consumes a letter; states that have a A-move can have
only that one move; no other transitions of any type are allowed out of that state.
Thus, for any string, there is never any more than one path through the machine.
Unlike deterministic finite automata, deterministic pushdown automata may not
always completely process the strings in I*; a given string may reach a state that has
no further valid moves, or a string may prematurely empty the stack. In each case,
the DPDA would halt without processing any further input.

EXAMPLE 10.10

The automaton P1 in Example 10.1 was deterministic. The PDAs in Examples 10.4
and 10.5 were not deterministic. The automaton PG derived in Example 10.7 was
not deterministic because there were three possible choices of moves listed for
8G(s, (, R): {(s,RoR», (s, RUR», (s, R)*)}. These choices corresponded to the three
different operators that might have generated the open parenthesis.

Pushdown automata provide an appropriate mechanism for parsing sentences
in programming languages. The regular expression grammar in Example 10.7 is
quite similar to the arithmetic expression grammar that describes expressions in
many programming languages. Indeed, the transitions taken within the correspond-
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ing PDA give an indication of which productions in the underlying grammar were
used; such information is of obvious use in compiler construction. A nondetermin
istic pushdown automaton is at best a very inefficient tool for parsing; a DPDA is
much better suited to the task.

As mentioned in the proof of Theorem 10.2, each leftmost derivation in G has
a corresponding sequence of moves in PG. If G is ambiguous, then there is at least
one word with two distinct leftmost derivations, and hence if that word appeared on
the input tape of PG, there would be two distinct move sequences leading to accept
ance. In this case, PGcannot possibly be deterministic. On the other hand, if PGis
nondeterministic, this does not mean that G is ambiguous, as demonstrated by
Example 10.7. In parsing a string in that automaton, it may not be immediately
obvious which production to use (and hence which transition to take), but for any
string, there is at most only one correct choice; each word has a unique parse tree
and a unique leftmost derivation. The grammar in Example 10.7 is not ambiguous,
even though the corresponding PDA was nondeterministic.

EXAMPLE 10.11

The following Greibach normal form grammar is similar to the one used to
construct the PDA in Example 10.7, but with the different operators paired with
unique delimiters. Let

G = <{R},{a,b,c,(,),{,},[,],E,~,U,·,*},R, {R~ albjc]e I~I(R·R)I [RURl I{R}*}>.

The automaton PGis then

<{a, b, c, (,), {,}, [, l,E,~, U,·, *},{R, a, b, c, (,), {,}, [, l, E,~, U,·, *},{s}, S, BG, R, 0>

where BGis comprised of the following nonempty transitions:

BG(s, (, R) ={(s, R.R»}

BG(s, [, R) = {(s,RURl)}

BG(s, {, R) ={(s,R}*)}

BG(s, a, R) = {(s, A)}

BG(s, b, R) = {(s,A)}

BG(s, c, R) = {(s,A)}

BG(s, E, R) = {(s, A)}

BG(s,~, R) ={(s, A)}

BG(s, a, a) ={(s, A)}

BG(s, b, b) = {(s,A)}

BG(s, c, c) ={(s, A)}

BG(s,~,~) ={(s, A)}
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8G(s, E, E) ={(s, A)}

8G(s, U, U) ={(s, A)}

8G( s, " .) ={(s, A)}

8G(s, *, *) = {(s, A)}

8G(s, ) , » ={(s, A)}

8G(s, ], ]) = {(s, A)}

8G(s,},}) = {(s,A)}

8G(s, (, 0 = {(s, A)}

8G(s , [, D== {(s, A)}

8G(s,{, {) ={(s, A)}

All other transitions are empty; that is, they are of the form 8G(s, d, A) ={ }.
The resulting PDA is clearly deterministic, since there are no A-movesand the other
transitions are all singleton sets or are empty. It is instructive to step through the
transitions in PG for a string such as [{(a'b)}*Uc]. Upon encountering a delimiter
while scanning a prospective string, the parser would immediately know which
operation gave rise to that delimiter, and need not "guess" at which of the three
productions might have been applied. Note that G was an LLOgrammar (as defined
in Section 9.2), and the properties of G resulted in PG being a deterministic device.
An efficient parser for this language follows immediately from the specification of
the grammar, whereas the grammar in Example 10.7 gave rise to a nondeterministic
device.

Programmers would not be inclined to tolerate remembering which delimiters
should be used in conjunction with the various operators, and hence programming
language designers take a slightly different approach to the problem. The non
determinism in Example 10.7 may only be an effect of the particular grammar
chosen and not inherent in the language itself. Note that the language {anbnln ?:: I}
had a grammar that produced a nondeterministic PDA (Example 10.4), but it also
had a grammar that corresponded to a DPDA (Example 10.1). In compiler con
struction, designers lean toward syntax that is compatible with determinism, and
they seek grammars for the language that reflect that determinism.

EXAMPLE 10.12

Consider again the language discussed in Example 10.7, which can also be ex
pressed by the following grammar

H = <{S, T},{a, b, c, (,), E, 0, U,', *},S, {S~ (STlalb ICJEI0,T~ -sj] US) I)*}>

The automaton PH is then

<{a, b, c, (,), E, 0,U,', *},{S,T, a, b, c, (,), E, 0,U,', *},{t},t, 8H, S, 0>
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where each production of H gives rise to the following transitions in &H:

&H(t, (, S) ={(t, ST)}

&H(t, a, S) ={(t, A)}

&H(t, b, S) ={(t, A)}

&H(t, C, S) ={(t, A)}

&H(t, E, S) = {(t, A)}

&H(t; tl, S) ={(t, A)}

&H(t, -, T) ={(t, S»}

&H(t, U, T) ={(t, S»}

&H(t,),T) = {(t, *)}

While the formal definition of &H specifies several productions of the form
&H(t, d, d) ={(t, A)}, by observing what can be put on the stack by the above produc
tions, it is clear that the only remaining useful transitions in &H are

&H(t, *, *) ={(t, A)}

and

&H(t,),» ={(t, A)}

Thus, even though the PDA PG in Example 10.7 turned out to be nondeter
ministic, this was not a flaw in the language itself, since PH is an equivalent DPDA.
Notice that the grammar G certainly appears to be more straightforward than H. G
had fewer nonterminals and fewer productions, and it is a bit harder to understand
the relationships between the nonterminals of H. Nevertheless, the LLOgrammar H
led to an efficient parser and G did not.

To take advantage of the resulting reduction in complexity, all major pro
gramming languages are designed to be recognized by DPDAs. These constructs
naturally lead to a mechanical framework for syntactic analysis. In Example 10.12,
the application of the production T~ US) [that is, the use of the transition
&H(t, U, T) = {(t, S»} ] signifies that the previous expression and the expression to
which S will expand are to be combined with the union operator. It should be easy
to see that a similar grammar and DPDA for arithmetic expressions (using +, -, *,
and / rather than U, " and *) would provide a guide for converting such expressions
into their equivalent machine code.

Deterministic pushdown automata have some surprising properties. Recall
that ~~ was not closed under complementation, and since 'lJ~ = ~~, there must be
some PDAs that define languages whose complement cannot be recognized by any
PDA. However, it can be shown that any language accepted by a DPDA must have
a complement that can also be recognized by a DPDA. The construction used to
prove this statement, in which final and nonfinal states are interchanged in a DPDA
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that accepts via final state, is similar to the approach used in Theorem 5.1 for
deterministic finite automata. It is useful to recall why it was crucial in the proof of
Theorem 5.1 to begin with a DFA when interchanging states, rather than using an
NDFA. Strings that have multiple paths in an NDFA that lead to both final and
nonfinal states would be accepted in the original automaton and also in the machine
with the states interchanged. Furthermore, some strings may have no complete
paths through the NDFA and be rejected in both the original and new automata.
The problem of multiple paths does not arise with DPDAs, since by definition no
choice of moves is allowed. However, strings that do not get completely consumed
would be rejected in both the original DPDA and the DPDA with final and nonfinal
states interchanged. Thus, the proof of closure under complement for DPDAs is not
as straightforward as for DFAs. There are three ways an input string might not be
completely consumed: the stack might empty prematurely, there may be no transi
tion available at some point, or there might only be a cycle of A-moves available that
consumes no further input. The exercises indicate that it is possible to avoid these
problems by padding the stack with a new bottom-of-the-stack symbol, and adding a
"garbage state" to which strings that are hopelessly stuck would transfer.

V Theorem 10.7. If L is a language recognized by a deterministic pushdown
automaton, then -L can also be recognized by a DPDA.

Proof. See the exercises.

V Definition 10.9. Given any alphabet I, let sIlI, represent the collection of all
languages recognized by deterministic pushdown automata. IfL E sIlI" then L is said
to be a deterministic context-free language (DCFL).
d

Theorem 10.7 shows that unlike rJ}I" sIlI, is closed under complementation.
This divergent behavior has some immediate consequences, as stated below.

V Theorem 10.8. Let I be an alphabet.

If II1= 1, then ~I, =sIlI, =rJ}I,.

If II I> 1, then ~I, is properly contained in sIlI" which is properly contained in
~I,.

Proof. For every alphabet I, examining the proof of Theorem 10.1 shows that
every finite automaton has an equivalent deterministic pushdown automaton, and
thus it is always true that ~I, ~ sIlI,. Definition 10.7 implies that sIlI,~ ~I,. If II1= 1,
then Theorem 9.15 showed that ~I, = 'f6I, (= rJ}I,), from which it follows that
~I, = sIlI, = rJ}'$.' If II I> 1, an example such as {anbnIn 2: l}shows that ~I, is properly
contained in sIlI, (see the exercises). Since rJ}{B,b} and sIl{B,b} have different closure
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properties, they cannot represent the same collection, and stl"i, C '!J"i, implies that the
containment must be proper.
~

In the proof of Theorem 10.6, it is easy to see that if Pl is deterministic then pn

will be a DPDA, also. Hence stl"i" like '!J"i" is closed under intersection with a regular
set. Also, the exercises show that both stl"i, and '!}"i,are closed under difference with a
regular set. However, the closure properties of stl"i, and '!}"i, disagree in just about
every other case. The languages

L, = {anbml (n ~ l)/\(n = m)} and L, = {anbml (n ~ l)/\((n = 2m)}

are both DCFLs, and yet L, U L, = [a'b" I(n ~ 1) /\ (n = m V n = 2m)} is not a
DCFL (see the exercises). Thus, unlike '!}"i" stl"i, is not closed under union if I is
comprised of at least two symbols (recall that since ~{B} = stl{B) = '!J{B), stl{B} would be
closed under union). If stl"i, was closed under intersection, then stl"i, would by De
Morgan's law be closed under union, since it is closed under complement. Hence,
stl"i, cannot be closed under intersection.

The language {cnbm!(n ~ l)/\(n = m)} U {anbml(n ~ l)/\(n = 2m)} is defi
nitely a DCFL, and yet a simple homomorphism can transform it into

[a'b" I(n ~ 1) /\ ((n = m) V (n = 2m))}

(see the exercises). Thus, stl"i, is not closed under homomorphism. Since homo
morphisms are special cases of substitutions, stl"i, is not closed under substitution
either. stl"i, is also the only collection of languages discussed in this text that is not
closed under reversal; [ca'b" I(n ~ 1) /\ (n = m)} U {anbmI(n ~ 1) /\ (n = 2m)} is a
DCFL, but {bmancl (n ~ 1) /\ (n = m)} U {bmanl (n ~ 1) /\ (n = 2m)} is not. These
properties are summed up in the following statements.

V Theorem 10.9. Given any alphabet I, stl"i, is closed under complement. stl"i, is
also closed under union, intersection, and difference with a regular set. That is, if L,
is a DCFL and R, is a FAD language, then the following are deterministic,
context-free languages:

-r.,
LlnRz
LlURz
Ll-Rz
Rz-Ll

Proof. The proof follows from the above discussion and theorems and the
exercises.
~

V Lemma 10.1. Let I be an alphabet comprised of at least two symbols. Then
stl"i, is not closed under union, intersection, concatenation, Kleene closure, homo-
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morphism, substitution, or reversal. That is, there are examples of deterministic
context-free languages L1 and Lz, a homomorphism h, and a substitution s for which
the following are not DCFLs:

L1ULz
L1nLz
L1·Lz
Lt
h(L1)

s(L1)

LI

Proof. The proof follows from the above discussion and theorems and the
exercises.
~

EXAMPLE 10.13

These closure properties can often be used to justify that certain languages are
not DCFLs. For example, the language

L={x E{a,b,c}*llxla=lxlb}U{X E{a,b,c}*llxlb=lxlc}

can be recognized by a PDA but not by a DPDA. If L were a DCFL, then
~L = {x E {a, b,c}* Ilxla=1= Ixlb} n {x E{a, b,c}* Ilxlb =1= Ixl c} would also be a DCFL.
However, ~L n a*b*c* = {akbncml (k =/= n)l\(n =/= m)}, which should also be a DCFL.
Ogden's lemma shows that this is not even a CFL (see the exercises), and hence the
original hypothesis that L was a DCFL must be false. The interested reader is
referred to similar discussions in [HOPe] and [DENN].

The restriction that the head scanning the stack tape could only access the
symbol at the top of the stack imposed limitations on the cognitive power of this
class of automata. While the current contents of the top of the stack could be stored
in the finite-state control and be remembered after the stack was popped, only a
finite number of such pops can be recorded within the states of the PDA. At some
point, seeking information further down on the stack will cause an irretrievable loss
of information. One might suspect that if popped items were not erased (so that
they could be revisited and reviewed at some later point) a wider class of languages
might be recognizable. Generalized automata that allow such nondestructive
"backtracking" are called Turing machines and form a significantly more powerful
class of automata. These devices and their derivatives are the subject of the next
chapter.

EXERCISES

10.1. Refer to Theorem 10.1 and use induction to show

(Vx E I*)(8(so, x) = t <=> (so,x, ¢) ~ (t, A,¢»)
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10.2. Define a deterministic pushdown automaton Pi with only one state for which
A(Pl) = {anbnln 2: 1}.

10.3. Consider the pushdown automaton defined by Pz = <{a, b},{S,q, {t}, t, 8, S, {t}>,
where 8 is defined by

8(t, a, S) = {(t,SC), (t, C)}

8(t,a,C)={ }

8(t, b, S) = { }

8(t, b, C) = {(t, A)}

(a) Give an inductive proof that

(Vi E N)«t, a', S) ~ (t, A,a) =? (a = so V a = C))

(b) Give an inductive proof that

(Vi E N)«t,x, Ci) ~ (t, A, P) =? (x = bi))

(c) Find L(P2); use parts (a) and (b) to rigorously justify your statements.
10.4. Let L = {a'b'c"] i,j, kEN and i + j = k}.

(a) Find a pushdown automaton (which accepts via final state) that recognizes L.
(b) Find a pushdown automaton (which accepts via empty stack) that recognizes L.
(c) Is there a counting automaton that accepts L?
(d) Is there a DPDA that accepts L?
(e) Use Definition 10.7 to find a grammar equivalent to the PDA in part (a).

10.5. Let L = {x E {a, b, c]" 114+ Ix Ib = [x],},
(a) Fi~d a pushdown automaton (which accepts via final state) that recognizes L.
(b) Find a pushdown automaton (which accepts via empty stack) that recognizes L.
(c) Is there a counting automaton that accepts L?
(d) Is there a DPDA that accepts L?
(e) Use Definition 10.7 to find a grammar equivalent to the PDA in part (a).

10.6. Prove or disprove that:
(a) ClJ''I, is closed under inverse homomorphism.
(b) slh is closed under inverse homomorphism.

10.7. Give an example of a finite language that cannot be recognized by anyone-state PDA
that accepts via final state.

10.8. Let L = {anbncmdmln, mEN}.
(a) Find a pushdown automaton (which accepts via final state) that recognizes L.
(b) Find a pushdown automaton (which accepts via empty stack) that recognizes L.
(c) Is there a DPDA that accepts L?
(d) Is there a counting automaton that accepts L?
(e) Use Definition 10.7 to find a grammar equivalent to the PDA in part (b).

10.9. Refer to Theorem 10.2 and use induction on the number of moves in it sequence to
show that

(Vx E I *)(VP E (I U11)*)«s, x, S) ~ (s, A, P) iff S~ x P as a leftmost derivation)

10.10. Consider the grammar

<{R}, {a, b, c, (,), E,ft, U,·, *},R, {R~alblcIE Iftl(R.R)I(RUR)IR*}>
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(a) Convert this grammar to Greibach normal form, adding the new non terminal y.
(b) Use Definition 10.6 on part (a) to find the corresponding PDA.
(c) Use the construct suggested by Theorem 10.4 in part (b) to find the corresponding

PDA that accepts via final state.
10.11. Let L = {aibjcjdili,j EN}.

(a) Find a pushdown automaton (which accepts via final state) that recognizes L.
(b) Find a pushdown automaton (which accepts via empty stack) that recognizes L.
(c) Is there a DPDA that accepts L?
(d) Is there a counting automaton that accepts L?
(e) Use Definition 10.7 to find a grammar equivalent to the PDA in part (b).

10.12. Consider the PDA P3 in Example 10.5. Use Definition 10.7 to find Gp3 •

10.13. Refer to Theorem 10.3 and use induction to show

(\:Ix E~*)(\:IAEr)(\:ISE5)(\:ItE5)(A't~x ~ (s,x,A)~(t,A,A»)

10.14. Let L = {anbncmdmln, mEN} U {a'b'c/d'] i,j EN}.
(a) Find a pushdown automaton (which accepts via final state) that recognizes L.

. (b) Find a pushdown automaton (which accepts via empty stack) that recognizes L.
(c) Is there a DPDA that accepts L?
(d) Is there a counting automaton that accepts L?
(e) Use Definition 10.7 to find a grammar equivalent to the PDA in part (b).

10.15. Consider the PDA PG in Example 10.6. Use Definition 10.7 to find GPG •

10.16. Refer to Theorem 10.4 and use induction to show

(\:la, 13 E P)(\:Ix, y E ~*)(s, xy, a) ~ (s, y, 13) in P ~ (s, xy, a Y) ~ (s.y, I3Y) in Pf)

10.17. Refer to Theorem 10.5 and use induction to show

(\:la, 13 E P)(\:Ix,y E ~ *)(\:Is, t E 5)(s, xy, a) ~ (t.y, 13) in P ~
(s, xy, a Y) ~ (t, y, I3Y) in P~)

10.18. Prove that {x E {a, b, c}*1 Ix I. = Ix Ib 1\ Ix Ib > IxIc} is not context free. (Hint: Use
closure properties.)

10.19. (a) Give an appropriate definition for the state transition function of the two-tape
automaton pictured in Figure 10.6, stating the new domain and range.

(b) Define a two-tape automaton that accepts {anbncnIn 2: I} via final state.

10.20. (a) Prove that {anbncnIn 2: I} is not context free.
(b) Prove that {x E {a, b, c}*1 Ix I. = Ix Ib} is not context free. [Hint: Use closure prop

erties and apply part (a).]

10.21. (a) Find a DPDA that accepts

{cnbml(n 2: 1) 1\ (n =m)}U{anbml(n 2:1)I\(n = 2m)}

(b) Define a homomorphism that transforms part (a) into a language that is not a
DCFL.

10.22. Use Ogden's lemma to show that {akbncml(k i= n) 1\ (n i= m)} is not a context-free
language.

10.23. Refer to Theorem 10.6 and use induction to show

(\:la, 13 E P)(\:Ix E ~*)(\:ISI, hE 51)(\:IsZ' tz E 5z)
(SI,Sz),xy,a)~((h,tz),y,l3) in P1~«(Sl,xy,a) ~ (h,y, l3) in pn) 1\ (tz = 3z(sz,x))))
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10.24. Assume that P is a DPDA. Prove that there is an equivalent DPDA P' (which accepts
via final state) for which:
(a) P' always has a move for all combinations of states, input symbols, and stack

symbols.
(b) P' never empties its stack.
(c) For each input string presented to P', P' always scans the entire input string.

10.25. Assume the results of Exercise 10.24, and show that stl'I, is closed under complementa
tion. (Hint: Exercise 10.24 almost allows the trick of switching final and nonfinal
states to work; the main remaining problem involves handling the case where a series
of X-moves may cycle through both final and nonfinal states.) .

10.26. Give an example that shows that stl'I, is not closed under concatenation.
10.27. Give an example that shows that stl'I, is not closed under Kleene closure.
10.28. Show that {canbml(n? 1) 1\ (n = m)} U {anbml(n? 1) 1\ (n = 2m)} is a DCFL.

10.29. (a) Modify the proof of Theorem 10.6 to show that if L1 is context free and R, is
regular, L1 - R z is always context free.

(b) Prove the result in part (a) by instead appealing to closure properties for com
plement and intersection.

10.30. (a) Modify the proof of Theorem 10.6 to show that if L1 is context free and R, is
regular, L1 U Rz is always context free.

(b) Prove the result in part (a) by instead appealing to closure properties for com
plement and intersection.

10.31. Argue that ifL, is a DCFL and Rz is regular, Rz - L1 is always a DCFL.
10.32. (a) Prove that {w2w r Iw E {O, 1}*} is a DCFL.

(b) Prove that {ww'] wE {O, 1}*} is not a DCFL.

10.33. Give examples to show that even if L I and Lz are DCFLs:
(a) L I · L, need not be a DCFL.
(b) L I - L, need not be a DCFL.
(c) Li need not be a DCFL.
(d) L~ need not be a DCFL.

10.34. Consider the quotient operator / given by Definition 5.10. Prove or disprove that:
(a) CJ''I, is closed under quotient.
(b) stl'I, is closed under quotient.

10.35. Consider the operator b defined in Theorem 5.11. Prove or disprove that:
(a) CJ''I, is closed under the operator b.
(b) stl'I, is closed under the operator b.

10.36. Consider the operator Ydefined in Theorem 5.7. Prove or disprove that:
(a) </P'I, is closed under the operator Y.
(b) stl'I, is closed under the operator Y.

10.37. Consider the operator P given in Exercise 5.16. Prove or disprove that:
(a) CJ''I, is closed under the operator P.
(b) stl'I, is closed under the operator P.

10.38. Consider the operator F given in Exercise 5.19. Prove or disprove that:
(a) </P'I, is closed under the operator F.
(b) stl'I, is closed under the operator F.
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TURING MACHINES

In the preceding chapters, we have seen that DFAs and NDFAs represented the
type 3 languages and pushdown automata represented the type 2 languages. In this
chapter we will explore the machine analog to the type 1 and type 0 grammars.
These devices, called Turing machines, are the most powerful automata known and
can recognize every language considered so far in this text. We will also encounter
languages that are too complex to be recognized by any Turing machine. Indeed, we
will see that any other such (finite) scheme for the representation of languages is
likewise forced to be unable to represent all possible languages over a given
alphabet. Turing machines provide a gateway to undecidability, discussed in the
next chapter, and to the general theory of computational complexity, which is rich
enough to warrant much broader treatment than would be possible here.

11.1 DEFINITIONS AND EXAMPLES

Pushdown automata turned out to be the appropriate cognitive devices for the type
2 languages, but further enhancements in the capabilities of the automaton model
are necessary to achieve the generality inherent in type 0 and type 1 languages. A
(seemingly) minor modification will be all that is required. Turing machines are
comprised of the familiar components that have already been used in previous
classes of automata. As with the earlier constructions, the heart of the device is a
finite-state control, which reacts to information scanned by the tape head(s). Like
finite-state transducers and pushdown automata, information can be written to tape
as transitions between states are made. Unlike FSTs and PDAs, Turing machines

364
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have only one tape with which to work, which serves both the input and the output
needs of the device. Note that with finite-state transducers the presence of a second
tape was purely for convenience; a single tape, with input symbols overwritten by
the appropriate output symbol as the read head progressed, would have sufficed.
Whereas a pushdown automaton could write an entire string of symbols to the
stack, a Turing machine is constrained to print a single letter at a time. These new
devices would therefore be of less value than PDAs were they not given some other
capability. In all previous classes of automata, the read head was forced to move one
space to the right on each transition (or, in the case of A-moves, remain stationary).
On each transition, the Turing machine tape head has the option of staying put,
moving right, or moving left. The ability to move back to the left and review
previously written information accounts for the added power of Turing machines.

It is possible to view a Turing machine as a powerful transducer of computable
functions, with an associated function defined much like those for FSTs. That is, as
with finite-state transducers, each word that could be placed on an otherwise blank
tape is associated with the word formed by allowing the Turing machine to operate
on that word. With FSTs, this function was well defined; the machine would process
each letter of the word in a unique way, the read head would eventually find the end
of the word (that is, it would scan a blank), and the device would then halt. With
Turing machines, there is no built-in guarantee that it will always halt; since the tape
head can move both right and left, it is possible to define a Turing machine that
would reverberate back and forth between two adjacent spaces indefinitely. A
Turing machine is also not constrained to halt when it scans a blank symbol; it may
overwrite the blank and/or continue moving right indefinitely.

Rather than viewing aTuring machine as a transducer, we will primarily be
concerned with employing it as an acceptor of words placed on the tape. Some
variants of Turing machines are defined with a set of final states, and the criteria for
acceptance would then be that the device both halt and be in a final state. For our
purposes, we will employ the writing capabilities of the Turing machine and simply
require that acceptance be indicated by printing a Y just prior to halting. If such a Y
is never printed or the machine does not halt, the word will be considered rejected.
It may be that there are words that might be placed on the input tape that would
prevent the machine from halting, which is at best a serious inconvenience; if the
device has been operating for an extraordinary amount of time, we may not be able
to tell if it will never halt (and thus reject the word), Orwhether we simply need to be
patient and wait for it to eventually print the Y. This uncertainty can in some cases
be avoided by finding a superior design for the Turing machine, which would always
halt, printing N when a word is rejected and Y when a word is accepted. This is not
always a matter of being clever in defining the machine; we will see that there are
some languages that are inherently so complex that this goal is impossible to
achieve.

A conceptual model of a Turing machine is shown in Figure 11.1. Note that the
tape head is capable of both reading and overwriting the currently scanned symbol.
As before, the tape is composed of a series of cells, with one symbol per cell. The
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Figure 11.1 A model of a Turing
machine

tape head will also be allowed to move one cell to either the left or right during a
transition. Note that unlike all previous automata, the tape does not have a "left
end"; it extends indefinitely in both directions. This tape will be used for input,
output, and as a "scratch pad" for any intermediate calculations. At the start of
operation of the device, all but a finite number of contiguous cells are blank. Also,
unlike our earlier devices, the following definition implies that Turing machines may
continue to operate after scanning a blank.

V Definition 11.1. A Turing machine that recognizes words over an alphabet I
is a quintuple M = <I, I', S, sO, 8>, where

I is the input alphabet.
r is the auxiliary alphabet, and I, I', and {L, R} are pairwise disjoint sets of
symbols.
S is a finite nonempty set of states (and S n (I U f) = 0).
So is the start state (so E S).
8 is the state transition function 8: S x (I Uf)~ (S U{h}) x (I U r U{L, R}).

The auxiliary alphabet always includes the blank symbol (denoted by #), and
neither I nor r include the special symbols Land R, which denote moving the tape
head left and right, respectively. The state h is a special halt state, from which no
further transitions are possible; h $. s.
Ll

The alphabet I is intended to denote the nonblank symbols that can be
expected to be initially present on the input tape. By convention, it is assumed that
the tape head is positioned over the leftmostnonblank (in the case of the empty
string, though, the head will be scanning a blank). In Definition 11.1, the state
transition function is deterministic; for every state in S and every tape symbol
scanned, exactly one destination state is specified, and one action is taken by the
tape head. The tape head may either:

1. Overprint the cell with a symbol from I or r (and thus a blank may be
printed).
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2. Move one cell left (without printing).
3. Move one cell right (also without printing).

In the case where a cell is overprinted, the tape head remains positioned on that
cell.

The above definition of a Turing machine is compatible with the construct
implemented by Jon Barwise and John Etchemendy in their Turing's Worldv soft
ware package for the Apple'" Macintosh. The Turing's World program allows the
user to interactively draw a state transition diagram of a Turing machine and watch
it operate on any given input string. As indicated by the next example, the same
software can be used to produce and test state transition diagrams for deterministic
finite automata.

EXAMPLE 11.1

The following simple Turing machine recognizes the set of even-length words over
{a, b}. The state transition diagram for this device is shown in Figure 11.2 and con
forms to the conventions introduced in Chapter 7. Transitions between states are
represented by arrows labeled by the symbol that caused the transition. The symbol
after the slash denotes the character to be printed or, in the case of Land R, the
direction to move the tape head. The quintuple is <{a, b},{#, Y, N}, {so, s.], so, 8T>,
where 8T is given by

8T(so, a) = (sj, R)

8T(so, b) = (sj, R)

8T(so, #} = (h, Y)

8T(sj, a) = (so, R)

8T(sj, b) = (so, R)

8T(sj, #) = (h, N)

This particular Turing machine operates in much the same way as a DFA
would, always moving right as it scans each symbol of the word on the input tape.

Figure 11.2 The state transition dia
gram of the Turing machine discussed in
Example 11.1
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When it reaches the end of the word (that is, when it first scans a blank), it prints Y
or N, depending on which state it is in, and halts. It differs from a DFA in that the
accept/reject indication is printed on the tape at the right end of the word. Figure
11.3 shows an alternative way of displaying this machine, in which the halt state is
not explicitly shown. Much like the straight start state arrow that denotes where the
automaton is entered, the new straight arrows show how the machine is left. This
notation is especially appropriate for submachines. As with complex programs, a
complex Turing machine may be comprised of several submodules. Control may be
passed to a submachine, which manipulates the input tape until it halts. Control
may then be passed to a second submachine, which then further modifies the tape
contents. When this submachine would halt, control may be passed on to a third
submachine, or back to the first submachine, and so on. The straight arrows leaving
the state transition diagram can be thought of as exit arrows for a submachine, and
they function much like a return statement in many programming languages. Exam
ple 11.4 illustrates a Turing machine that employs submachines.

#IY #IN
Figure 11.3 An alternate depiction of
the Thring machine discussed in Exam
ple 11.1

We will see that any DFA can be emulated by a Turing machine in the manner
suggested by Example 11.1. The following example shows that Turing machines can
recognize languages that are definitely not FAD. In fact, the language accepted in
Example 11.2 is not even context free.

EXAMPLE 11.2

The Turing machine M illustrated in Figure 11.4 operates on words over {a, b, c}.
When started at the leftmost end of the word, it is guaranteed to halt at the
rightmost end and print Y or N. It happens to overwrite the symbols comprising the
input word as it operates, but this is immaterial. In fact, it is possible to design a
slightly more complex machine that restores the word before halting (see Example
11.11). The quintuple is <{a, b, c},{#, X, Y, N}, {so, Sh S2, S3, S4, S5, S6}, so, 8>, where 8
is as indicated in the diagram in Figure 11.4. It is intended to recognize the language
{x E {a, b, c}"I Ixls = Ixlb = Ixl.}. One possible procedure for processing a string to
check if it had the same number of as, bs, and cs is given by the pseudocode below.

while an a remains do
begin

replace a by X
return to leftmost symbol
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find b; if none, halt and print N
replace b by X
return to leftmost symbol
find c; if none, halt and print N
replace c by X
return to leftmost symbol

end
halt and print Y if no more bs nor cs remain

369

States So and Sl in Figure 11.4 check the while condition, and states S2 through
S6 perform the body of the do loop. On each iteration, beginning at the leftmost
symbol, state So moves the tape head right, checking for symbols that have not been
replaced by X. If it reaches the end of the word (that is, if it scans a blank), the as,
bs, and cs all matched, and it halts, printing Y. If b or c is found, state 1 searches for
as; if the end of the string is reached without finding a corresponding a, the machine
halts with N, since there were an insufficient number of as. From either So or Sh
control passes to S2 when an a is scanned, and that a is replaced by X. State S2, like S4
and S6, returns the tape head to the leftmost character. This is done by scanning left
until a blank is found and then moving right as control is passed on to the next state.
State S3 searches for b, halting with N if none is found. The first b .encountered is
otherwise replaced by X, and the Turing machine enters S4, which then passes
control on to s, after returning to the leftmost symbol. State s, operates much like S3,
searching for c this time, and S6 returns the tape head to the extreme left if the
previous a and b have been matched with c. The process then repeats from so.

Figure 11.4 The Thring machine M dis
cussed in Example 11.2
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To see exactly how the machine operates, it is useful to step through the
computation for an input string such as babcca. To do this, conventions to designate
the status of the device are quite helpful. Like the stack in a PDA, the tape contents
may change as transitions occur, and the notation for the configuration of a Turing
machine must reflect those changes. Steps in a computation will be represented
according to the following conventions.

V Definition 11.2. Let M = <~, I', S, sO, B> be a Turing machine that is oper
ating on a tape containing ... ###ab~###... , currently in state t with the tape
head scanning the b, where a, ~ E (~ U I')", a contains no leading blanks and ~ has
no trailing blanks. This configuration will be represented by atb~.

'Y 1-1\1 will be taken to mean that the configuration denoted by 1\1 is reached in
one transition from 'Y. The symbol ~ will denote the reflexive and transitive closure
of!--.
Ll

That is, the symbol representing the state will be embedded within the string,
just to the left of the symbol being scanned. If B(t, b) = (s, R), then atb~ I-abs~. The
new placement of the state label within the string indicates that the tape head has
indeed moved right one symbol. The condition S n (~ U f) = 0ensures that there is
no confusion as to which symbol in the configuration representation denotes the
state. As with PDAs, 'Y ~ 1\1 means that 'Y produces 1\1 in zero or more transitions.
Note that the leading and trailing blanks are not represented, but a and ~ may
contain blanks. Indeed, b may be a blank. The representation ac###t# indicates
that the tape head has moved past the word ac and is scanning the fourth blank to
the right of the word (a = ac###, b = #, ~ = A). At the other extreme, t##ac
shows the tape head two cells to the left of the word (a = A, b = #, ~ = #ac). A
totally blank tape is represented by t#.

V Definition 11.3. For a Turing machine M = <~, J', S, sO, B>, the language
accepted by M, denoted by L(M), is L(M) = {x E ~* Isox ~ xhY}. A language ac
cepted by a Turing machine is called a Turing-acceptable language.
Ll

It is generally convenient to assume that the special symbol Y is not part of the
input alphabet. Note that words can be rejected if the machine does not print a Y or
if the machine never halts.

Several reasonable definitions of acceptance can be applied to Turing ma
chines. One of the most common specifies that the language accepted by M is the set
of all words for which M simply halts, irrespective of what the final tape contents
are. It might be expected that this more robust definition of acceptance might lead
to more (or at least different) languages being recognized. However, this definition
turns out to yield a device with the same cognitive power as specified by Definition
11.3, as indicated below. More precisely, let us define
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LI(A) = {x E I* j3a, [3 E (I U I')" ~ sox ~ ah[3}

LI(A) is thus the set of all words that cause A to halt. Let L be a language for which
L = L I (8) for some Turing machine 8. It can be shown that there exists another
Turing machine C that accepts L according to Definition 11.3; that is, LI(8) = L(C)
for some C. The converse is also true: any language of the form L(M) is LI(A) for
some Turing machine A. Other possible definitions of acceptance include

Lz(M) =: {x E I* 13a, [3 E (I U I')" ~ sox ~ ahY[3}

and

L3(M) =: {x E I* 13a E (I u r)* ~ sox ~ ahY}

These distinguish all words that halt with Y somewhere on the tape and all words
that halt with Y at the end of the tape, respectively.

It should be clear that a Turing machine A, accepting L =LI(AI) has an
equivalent Turing machine Azfor which L = Lz(Az). Az can be obtained from Al by
simply adding a new state and changing the transitions to the halt state so that they
now all go to the new state. The new state prints Y wherever the tape head is and
then, upon scanning that Y, halts. Similarly, a Turing machine A3can be obtained
from A, by instead requiring the new state to scan right until it finds a blank. It
would then print Y and halt, and Lz(Az) =: L3(A3) . The technique for modifying such
an A3 to obtain A4 for which L3(A3) =: L (A4) is discussed in the next section and
illustrated in Example 11.11.

EXAMPLE 11.3

Consider again the machine M in Example 11.2 and the input string babcca. By
the strict definition of acceptance given in Definition 11.3, L(M) = {"'}, since x is
the only word that does not get destroyed by M. Using the looser criteria for
acceptance yields a more interesting language. The following steps show that
sobabcca ~ XXXXXXhY.

ssbabcca f- bs-abcca f- bszXbcca f- szbXbcca f

sz#bXbcca f- s3bXbcca f- s4XXbcca f- s4#XXbcca f

ssXXbcca f- Xs.Xbcca f- XXssbcca f- XXbsscca f

XXbs6Xca f- XXs6bXca f- Xs6XbXca f- s6XXbXca f-

s6#XXbXca f- soXXbXca f- XsoXbXca f- XXsobXca f-

XXbslXca ~ sz#XXbXcX ~

XXs3bXcX ~ S4#XXXXCX ~

XXXXsscX ~ S6#XXXXXX ~

XXXXXXso f- XXXXXXhY
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The string babcca is therefore accepted. ac is rejected since s-ac ~ XchN. Further
analysis shows thatL3(M) is exactly {x E{a, b,c}* Ilxls = Ixlb = Ixlc} . Since the only
place Y is printed is at the end of the word on the tape, L3(M) =L2(M). Every word
eventually causes M to halt with either Y or N on the tape, and so L 1(M) =I*.

EXAMPLE 11.4

The composite Turing machine shown in Figure 11.5 employs several submachines
and is based on the parenthesis checker included as a sample in the Turing's World
software. The machine will search for correctly matched parentheses, restoring the
original string and printing Y if the string is syntactically correct, and leaving a $ to
mark the offending position if the string has mismatched parentheses. Asterisks are
recorded to the left of the string as left parentheses are found, and these are erased
as they are matched with right parentheses.

Figure 11.5a shows the main architecture of the Turing machine. The square
nodes represent the submachines illustrated in Figures 11.5b and 11.5c. When So
encounters a left parenthesis, it marks the occurrence with $, and transfers control
to the submachine Sl' S, moves the read head to the left end of the string, and
deposits one * there. The cells to the left of the original string serve as a scratch
area; the asterisks record the number of unmatched left parentheses encountered
thus far. Submachine S, then scans right until the $ is found; it then restores the
original left parenthesis. At this point, no further internalmoves can be made in S1,
and the arrow leaving S12 indicates that control should be returned to the parent
automaton.

The transition leaving the square S, node in Figure 11.5a now applies, and the
tape head moves to the right of the left parenthesis that was just processed by S1,
and control is returned to so. So continues to move right past the symbols a and b,
uses S, to process subsequent left parenthesis, and transfers control to the sub
machine S2 whenever a right parenthesis is encountered.

Submachine S2 attempts to match a right parenthesis with a previous left
parenthesis. As control was passed to S2' the right parenthesis was replaced by $ so
that this spot on the tape can be identified later. The transitions in state S20 move the
tape head left until a blank cell is scanned. If the cell to the right of this blank does
not contain an asterisk, S21 has no moves and control is passed back to the parent
Turing machine, which will enter S4 and move right past all the symbols in the word,
printing N as it halts. The absence of the asterisk implies that no previous matching
left parenthesis had been found, so halting with N is the appropriate action.

Ifan asterisk had been found, S21 would have replaced it with a blank, and then
would have no further moves, and the return arrow would be followed. The blank
that is now under the tape head will cause the parent automaton to pass control to
S3, which will move right to $, and the $ is then restored to ). Control returns to So as
the tape head moves past this parenthesis.

The start state continues checking the remainder of the word in this fashion.
When the end of the word is reached, S6 is used to examine the left end of the string;
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Figure 11.5 (a) The Turing machine
discussed in Example 11.4 (b) Sub
machine 51(c) Submachine 52
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remaining asterisks indicate unmatched left parentheses, and will yield N as the
machine halts from S8. If S6 does not encounter *, the Turing machine halts with Y
and accepts the string from S7.

As more complex examples are considered, one may begin to suspect that any
programming assignment could be carried out on a Turing machine. While it would
be truly unwise to try to make a living selling computers with this architecture, these
devices are generally regarded to be as powerful as any general-purpose computer.
That is, if an algorithm for solving a class of problems can be carried out on a
computer, then there should be a Turing machine that can produce identical output
for each instance of a problem in that class.

The language {x E {a, b, c}"I Ix I. = Ix Ib = Ix Ie} is not context free, so it cannot
be recognized by a PDA. Turing machines can therefore accept some languages that
PDAs cannot, and we will see that they can recognize every context-free language.
We began with DFAs, which were then extended to the more powerful PDAs,
which have now been eclipsed by the Turing machine construct. Each of these
classes of automata has been substantially more general than the previous class. If
this text were longer, one might wonder when the next class of superior machines
would be introduced. Barring the application of magic or divine intuition, there
does not seem to be a "next class." That is, any machine that is constrained to
operate algorithmically by a well-defined set of rules appears to have no more
computing power than do Turing machines.

This constraint, "to behave in an algorithmic fashion," is an intuitive notion
without an obvious exact formal expression. Indeed, "behaving like a Turing ma
chine" is generally regarded as the best way to express this notion! A discussion of
how Turing machines came to be viewed in this manner is perhaps in order. An
excellent in-depth treatment of their history can be found in [BARW].

At the beginning of the twentieth century, mathematicians were searching for
a universal algorithm that could be applied to mechanically prove any well-stated
mathematical formula. This naturally focused attention on the manipulation of
symbols. In 1931, Godel showed that algorithms of this sort cannot exist. Since this
implied that there were classes of problems that could not have an algorithmic
solution, this then led to attempts to characterize those problems that could be
effectively "computed." In 1936, Turing introduced his formal device for symbol
manipulation and suggested that the definition of an algorithm be based on the
Turing machine. He also outlined the halting problem (discussed later), which
demonstrated a problem to which no Turing machine could possibly provide the
correct answer in all instances. The search for abetter, perhaps more powerful
characterization of what constitutes an algorithm continued.

While it cannot be proved that it is impossible to find a better formalization
that is truly more powerful, on the basis of the .accumulating evidence, no one
believes that a better formulation exists. For one thing, other attempts at formaliza
tion, including grammars, A-calculus, u-recursive functions, and Post systems, have
all turned out to yield exactly the same computing power as Turing machines.
Second, all attempts at "improving" the capabilities of Turing machines have not
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expanded the class of languages that can be recognized. Some of these possible
improvements will be examined in the next section. We close this section by for
malizing what Example 11.1 probably made clear: every DFA can be simulated by a
Turing machine.

V Theorem 11.1. Every FAD language is Turing acceptable.

Proof. We show that given any DFA A= <"2,S,so,5,F>, there is a Turing
machine MA that is equivalent to A. Define MA = <"2,{#, Y, N}, S, so, 5A>,where 5A

is defined by

(Vs E S)(Va E "2)(5A(s, a) = (5(s, a), R»

(Vs E F)(5A(s, #) = (h, Y»

(Vs E S - F)(5A(s, #) = (h, N»

A simple inductive argument on Ixi shows that

(Vx E "2*)(Vu,~ E ("2 U r)*)(utx~ ~ uxq~ iff 8A(t ,x ) = q)

From this it follows that

(Vx E "2*)(sox ~ xq# iff 8A(so, x) = q)

Therefore,

(Vx E"2*)(Sox ~xhY iff 8A(so, x) EF)

which means that L(MA) =L(A).
Ll

This result actually follows trivially from the much stronger results presented
later. Not only is every type 3 language Turing acceptable, but every type 0 language
is Turing acceptable (as will be shown by Theorem 11.2). The above proof presents
the far more straightforward conversion available to type 3 languages and illustrates
the flavor of the inductive arguments needed in other proofs concerning Turing
machines. By using this conversion, the Turing's World software can be employed to
interactively build and test deterministic finite automata on a Macintosh.

EXAMPLE 11.5

Consider the DFA T shown in Figure 11.6, which recognizes all words of even length
over {a, b}. The corresponding Turing machine is illustrated in Example 11.1 (see
Figure 11.2).

, . '

Figure 11.6 The DFA T discussed in
Example 11.5
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There are several ways in which the basic definition of the Turing machine can be
modified. For example, Definition 11.1 disallows the tape head from both moving
and printing during a single transition. It should be clear that if such an effect were
desired at some point it could be effectively accomplished under the more restrictive
Definition 11.1 by adding a state to the finite-state control. The desired symbol
could be printed as control is transferred to the new state. The transition out of the
new state would then move the tape head in the appropriate fashion, thus accom
plishing in two steps what a "fancier" automaton might do in one step. While this
modification might be convenient, the ability of Definition 11.1 style machines to
simulate this behavior makes it clear that such modified automata are no more
powerful than those given by Definition 11.1. That is, every such modified auto
maton has an equivalent Turing machine.

It is also possible to examine machines that are more restrictive than Defini
tion 11.1. If the machine were constrained to write on only a fixed, finite amount of
the tape, this would seriously limit the types of languages that could be recognized.
In fact, only the type 3 languages can be accepted by such machines. Linear
bounded automata, which are Turing machines constrained to write only on the
portion of the tape containing the original input word, are also less powerful than
unrestricted Turing machines and are discussed in a later section. Having an un
bounded area in which to write is therefore an important factor in the cognitive
power of Turing machines, but it can be shown that the tape need not be unbounded
in both directions. That is, Turing machines that cannot move left of the cell the
tape head originally scanned can perform any calculation that can be carried out by
the less-restrictive machines given by Definition 11.1 (see the exercises).

In deciding whether a Turing machine can simulate the modified machines
suggested below, it is important to remember that the auxiliary alphabet r can be
expanded as necessary, as long as it remains finite. In particular, it is possible to
expand the information content of each cell by adding a second "track" to the tape.
For example, we may wish to add check marks to certain designated cells, as shown
in Figure 11.7. The lower track would contain the original symbols, and the upper
track mayor may not have a check mark. This can be accomplished by doubling the

I I I I
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Figure 11.7 A Thring machine with a
two-track tape
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combined size of the alphabets S and r to include all symbols without check marks
and the same symbols with check marks. The new symbols can be thought of as
ordered pairs, and erasing a check mark then amounts to rewriting a pair such as
(a, j) with (a, #). A scheme such as this could be used to modify the automaton in
Example 11.2. Rather than replacing designated symbols with X, a check could
instead be placed over the original symbol. Just prior to acceptance, each check
mark could be erased, leaving the original string to the left of the Y (see Example
11.11).

The foregoing discussion justifies that a Turing machine with a tape head
capable of reading two tracks can be simulated by a Definition 11.1 style Turing
machine; indeed, it is a Turing machine with a slightly more complex alphabet.
When convenient, then, we may assume that we have a Turing machine with two
tracks. A similar argument shows that, for any finite number k, a k-track machine
has an equivalent one-track Turing machine with an expanded alphabet. The sym
bols on the other tracks can be more varied than just j and #; any finite number of
symbols may appear on any of the tracks. Indeed, a Turing machine may initially
make a copy of the input string on another track to use in a later calculation and/or
to restore the tape to its original form. The ability to preserve the input word in this
manner illustrates why each language L =L3(A) for some Turing machine A must be
Turing acceptable; that is, L =L3(A) implies that there is a multitrack Turing ma
chine M for which L =L(M).

EXAMPLE 11.6

Conceptualizing the tape as being divided into tracks simplifies many of the argu
ments concerning modification of the basic Turing machine design. For example, a
modified Turing machine might have two heads that move independently up and
down a single tape, both scanning symbols to determine what transition should be
made and both capable of moving in either direction (or remaining stationary and
overwriting the current cell) as each transition is carried out. Such machines would
be handy for recognizing certain languages. The set {anbnln ;::::: 1}can be easily recog
nized by such a machine. If both heads started at the left of the word, one head
might first scan right to the first b encountered. The two heads could then begin
moving in unison to the right, comparing symbols as they progressed, until the
leading head encounters a blank and/or the trailing head scans its first b. If these two
events occurred on the same move, the word would be accepted. A single head
Turing machine would have to travel back and forth across the word several times to
ascertain if it contained the same number of as as bs. The ease with which the
two-headed mutation accomplished the same task might make one wonder whether
such a modified machine can recognize any languages which the standard Turing
machine cannot.

To justify that a two-headed Turing machine is no more powerful than the type
described by Definition 11.1, we must show that any two-headed machine can be
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Figure 11.8 Emulating a two-headed
Turing machine with a three-track tape

simulated by a corresponding standard Turing machine. As suggested by Figure
11.8, a three-track Turing machine will suffice. The original information would
remain on the first track, and check marks will be placed on tracks 2 and 3 to signify
the simulated locations of the two heads. Several moves of the single head will be
necessary to simulate just one move of the two-headed variant, and the finite-state
control must be replicated and augmented to keep track of the stages of the
computation. Each simulated move will begin with the single tape head positioned
over the leftmost check mark. The tape contents are scanned, and the symbol found
is remembered by the finite state control. The tape head then moves right until the
second check mark is found. At this point, the device will have available the input
symbols that would have been scanned by both heads in the two-headed variant,
and hence it can determine what action each of the heads would have taken. The
rightmost checkmark would then be moved left or right or the current symbol on
track 1 overwritten, whichever is appropriate. The single tape head would then scan
left until the other check mark is found, which would then be similarly updated.
This would complete the simulation of one move, and the process would then
repeat.

Various special cases must be dealt with carefully, such as when both heads
would be scanning the same symbol and when the heads "cross" to leave a different
head as the leftmost. These cases are tedious but straightforward to sort out, and
thus any language that can be recognized by a two-headed machine can be recog
nized by a standard Turing machine. Similarly, a k-headed Turing machine can be
simulated by a machine conforming to Definition 11.1. The number of tracks
required would then bek + 1, and the set of states must expand so that the device
can count the number of check marks scanned on the left and right sweeps of the
tape.

Multihead Turing machines are therefore fundamentally no more powerful
than the single-head variety. This means that whenever we need to justify that some
task can be accomplished by a Turing machine we may employ a variant with several
heads whenever this is convenient. We have seen that this variant simplified the
justification that {a'b" In ~ I} was Turing acceptable. It can also be useful in showing
that other variants are no more powerful than the type of machines given by
Definition 11.1, as illustrated in the next example.
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EXAMPLE 11.7

Consider now a device employing several independent tapes with one head for each
tape, as depicted in Figure 11.9. Ifwe think ofthe tapes as stationary and the heads
mobile, it is easy to see that we could simply glue the tapes together into one thick
tape with several tracks, as indicated in Figure 11.10. The multiple heads would now
scan an entire column of cells, but a head would ignore the information on all but
the track for which it was responsible. In this fashion, a multitape Turing machine
can be simulated by a multihead Turing machine, which can in turn be simulated by
a standard Turing machine. Thus, multitape machines are no more powerful than
the machines considered earlier.

Finite State
Control

Figure 11.9 A three-tape Turing
machine

Finite State
Control Figure 11.10 Emulating a three-tape

Turing machine with a single three-track
tape

I •

One of the wilder enhancements involves the use of a two-dimensional tape,
which would actually be a surface on which the tape head can move not only left and
right, but also up and down to adjacent squares. With some frantic movement of the
tape head on a one-dimensional tape, two-dimensional Turing machines can be
successfully simulated. Indeed, k-dimensional machines (for finite k} are no more
powerful than a standard Turing machine. The interested reader is referred to
[HOPe].
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A potentially more interesting question involves the effects that nondeterminism
might have on the computational power of a Turing machine. With finite automata,
it was seen that NDFAs recognized exactly the same class of languages as DFAs.
However, deterministic pushdown automata accepted a distinctly smaller class of
languages than their nondeterministic cousins. It is consequently hard to develop
even an intuition for what "should" happen when nondeterminism is introduced to
the Turing machine construct.

Before we can address this question, we must first define what we mean by a
nondeterministic Turing machine. As with finite automata and pushdown auto
mata, we may wish to allow a choice of moves from a given configuration, leading to
several disparate sequences of moves for a given input string. Like NDFAs and
NPDAs, we will consider a word accepted if there is at least one sequence of moves
that would have resulted in a Y being printed. Simulating such machines with
deterministic Turing machines is more involved than it may at first seem. If each
possible computation was guaranteed to halt, it would be reasonable to try each
sequence of moves, one after the other, halting only when a Y was found. If one
sequence led to an N being printed, we would then move on to the next candidate.
Since there may be a countable number of sequences to try, this process may never
end. This is not really a problem, since if a sequence resulting in a Y exists, it will
eventually be found and tried, and the machine will halt and accept the word. If no
such sequence resulting in a Y exists, and there are an infinite number of negative
attempts to be checked, the machine will never halt. By our original definition of
acceptance, this will result in the word being rejected, which is the desired result.

The trouble arises in trying to simulate machines that are not guaranteed to
halt under all possible circumstances. This is not an inconsequential concern; in
Chapter 12, we will identify some languages that are so complex that their corre
sponding Turing machines cannot halt for all input strings. A problem then arises in
trying to switch from one sequence to the next. If, say, the first sequence we tried
did not halt and instead simply continued operation without ever producing Y or N,
we would never get the chance to try other possible move sequences. Since the
machine will not halt, the word will therefore be rejected, even if some later
sequence would have produced Y. Simulating the nondeterministic machine in this
manner will not be guaranteed to recognize the same language, and an alternative
method must be used.

This problem is avoided by simulating the various computations in the follow
ing (very inefficient) manner. We begin by simulating the first move of the first
sequence. We then start over with the first move of the second sequence, and then
begin again and simulate two moves in the first sequence. On the next pass, we
simulate the first move of the third sequence, then two moves of the second
sequence, and then three moves of the first sequence. On each pass, we start
computing a new sequence and move a little further along on the sequences that
have already been started. If any of these sequences results in Y, we will eventually
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simulate enough of that sequence to discover that fact and accept the word. In this
way, we avoid getting trapped in a dead end with no opportunity to pursue the
alternatives.

Implementing the above scheme will produce a deterministic Turing machine
that is equivalent to the original nondeterministic machine. It remains to be shown
that the Turing machine can indeed start over as necessary, and that the possible
move sequences can be enumerated in a reasonable fashion so that they can be
pursued according to the pattern outlined above. A three-tape (deterministic) Tur
ing machine will suffice. The first tape will keep an inviolate copy of the input string,
which will be copied onto the second tape each time a computation begins anew. A
specific sequence of steps will be carried out on this second scratch tape, after which
the presence of Y will be determined. The third tape is responsible for keeping track
of the iterations and generating the appropriate sequences to be employed. Enum
erating the sequences is much like the problem of generating words over some
alphabet in lexicographic order (see the exercises). Methods for generating the
"directing sequences" can be found in both [LEWI] and [HOPe]. These references
also propose a more efficient approach to the whole simulation, which is based on
keeping track of the sets of possible configurations, much as was done in Theorem
4.5 for nondeterministic finite automata.

Thus, neither nondeterminism nor any of the enhancements considered above
improved the computational power of these devices. As mentioned previously, no
one has yet been able to find any mechanical enhancement that does yield a device
that can recognize a langu~e that is not Turing acceptable. Attempts at producing
completely different formal vstems have fared no better, and there is little cause to
believe that such systems exist. We now turn to characterizing what appears to be
the largest class of algorithmically definable languages. In the next section, we will
see that the Thring-acceptable languages are exactly the type 0 languages intro
duced in Chapter 8.

V Definition 11.4. For a given alphabet I, let ~I, be the collection of all
Turing-acceptable languages, and let 2lI, be the collection of all type 0 languages.
Ll

The freedom to use several tapes and nondeterminism makes it easier to
explore the capabilities of Turing machines and relate ~I, to the previous classes of
languages encountered. It is now trivial to justify that every PDA can be simulated
by a nondeterministic Turing machine with two tapes. The first tape will hold the
input, which will be scanned by the first tape head, which will only have to move
right or, at worst, remain stationary and reprint the same character it was scanning.
The second tape will function as the stack, with strings pushed or symbols popped in
correspondence with what takes place in the PDA. Since a Turing machine can only
print one symbol at a time, some new states may be needed in the finite-state
control to simulate pushing an entire string, but the translation process is quite
direct.
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V Lemma 11.1. Let s be an alphabet. Then (jp'i, C Iff'i,. That is, every context-
free language is Turing acceptable, and the containment is proper.

Proof. Containment follows from the formalization of the above discussion
(see the exercises). Example 11.3 presented a language over {a, b, c}that is Turing
acceptable but not context free. While the distinction between ~'i, and (jp'i, disap
peared for singleton alphabets, proper containment remains between (jp{a} and Iff{a}>

as shown by languages such as {a"]» is a perfect square}.
a

In the next section, an even stronger result is discussed, which shows that the
class of Turing-acceptable languages includes much more than just the context-free
languages. Lemma 11.1 is actually an immediate corollary of Theorem 11.2. The
next section also explores the formal relationship between Turing machines and
context-sensitive languages.

11.3 TURING MACHINES, LBAs, AND GRAMMARS

The previous sections have shown that the class of Turing-acceptable languages
properly contains the type 2 languages. We now explore how the type 0 and type 1
languages relate to Turing machines. Since the preceding discussions mentioned
that no formal systems have been found that surpass Turing machines, one would
expect that every language generated by a grammar can be recognized by a Turing
machine. This is indeed the case, as indicated by the following theorem.

V Theorem 11.2. Let s be an alphabet. Then ~'i, c e; That is, every type 0
language is Turing acceptable.

Proof. We justify that, given any type 0 grammar G = <~,r,s,p>, there
must be a Turing machine TG that is equivalent to G. As with the suggested con
version of a PDA to a Turing machine, TG will employ two tapes and nondeterm
inism. The first tape again holds the input, which will be compared to the sentential
form generated on the second tape. The second tape begins with only the start
symbol on an otherwise blank tape. The finite-state control is responsible for
nondeterministically guessing the proper sequence of productions to apply, and
with each guess, the second tape is modified to reflect the new sentential form. If at
some point the sentential form agrees with the contents of the first tape, the
machine prints Y and halts. A guess will consist of choosing both an arbitrary
position within the current sentential form and a particular production to attempt to
substitute for the substring beginning at that position. Only words that can be
generated by the grammar will have a sequence of moves that produces Y, and no
word that cannot be generated will be accepted. Thus, the new Turing machine is
equivalent to G.
a
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EXAMPLE 11.9

Consider the context-sensitive grammar G = <{a, b, c},{S,A, B, C},S, P>, where
P contains the productions

1. Z~A

2. Z~S
3. S~SABC
4. S~ABC
5. AB~BA
6. BA~AB
7. CB~BC
8. BC~CB
9. CA~AC

10. AC~CA
11. A~a

12. B~b
13. c-s e

It is quite easy to show that L (G) = {x E {a, b, c}* I Ix I. = Ix Ib = Ix Ie} by observing
that no production changes the relative numbers of (lowercase and capital) As, Bs,
and Cs, and the six context-sensitive rules allow them to be arbitrarily reordered.
One of the attempted "guesses" made by the Turing machine TG concerning how
the productions might be applied is:

Use (2) beginning at position 1.
Use (4) beginning at position 1.
Use (6) beginning at position 2 ....

This would lead to a failed attempt, since it corresponds to Z~ S~ ABC, and the
substring BC beginning at position 2 does not match BA, the left side of rule 6. On
the other hand, there is a pattern of guesses that would cause the following sequence
of symbols to appear on the second tape:

Z~ S~ ABC~ BAC~ BCA~ BcA ~ Bca~ bca

This would lead to a favorable comparison if bca was the word on the input tape.
Note that the Turing machine may have to handle shifting over existing symbols on
the scratch tape to accommodate increases in the size of the sentential form. Since
type 0 grammars allow length-reducing productions, the machine may also be
required to shrink the sentential form when a string of symbols is replaced by a
smaller string.
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A rather nice feature of type 1 languages is that the length of the sentential
form could never decrease (except perhaps for the application of the initial produc
tion Z~ X), and hence sentential forms that become longer than the desired word
are known to be hopeless. All context-sensitive (that is, type 1) languages can
therefore be recognized by a Thring machine that use an amount of tape propor
tional to the length of the input string, as outlined below.

V Definition 11.5. A linear bounded automaton (LBA) is a nondeterministic
Turing machine that recognizes words over an alphabet I given by the quintuple
M = <I,r,S,so,8>, where

I is the input alphabet
I' is the auxiliary alphabet containing the special markers < and> and I, I',
and {L,R}are pairwise disjoint sets (and thus <, > f/:. I).
S is a finite nonempty set of states (and S n (I U I') = 0).
So is the start state (so E S).
8 is the state transition function 8: S x C~: Ur)~ (S U{h}) x C~: U r U {L,R}),
where
('tisE S)(8(s, <) = (q, R) for some q E S U{h}), and
('tisE S)(8(s, » = (q, L) for some q E S U{h}, or
8(s, » (h, Y) or 8(s, » (h, N»)

That is, the automaton cannot move left of the symbol < nor overwrite it. the LBA
likewise cannot move right of the symbol>, and it can only overwrite it with Y or N
just prior to halting. The symbols #, L, R, Y, and N retain their former meaning,
although # can be dropped from I' since it will never be scanned. As implied by the
following definition, the special markers < and> are intended to delimit the input
string, and Definition 11.5 ensures that the automaton cannot move past these
limits. As has been seen, the use of several tracks can easily multiply the amount of
information that can be stored in a fixed amount of space, and thus the restriction is
essentially that the amount of available tape is a linear function of the length of the
input string. In practice, any Turing machine variant for which each tape head is
constrained to operate within an area that is a multiple of the length of the input
string is called a linear bounded automaton.

V Definition 11.6. For a linear bounded automaton M = <I, I', S, so, 8>, the
language accepted by M, denoted by L(M), is L(M) = {x E I* I<sox> ~ <xhY}. A
language accepted by a linear bounded automaton is called a linear bounded lan
guage (LBL).
a

Note that while the endmarkers must enclose the string x, it is the word x
(rather than <x» that is considered to belong to L (M). As before, other criteria
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for acceptance are equivalent to Definition 11.6. The set of all words for which a
LBA merely halts can be shown to be a LBL according to the above definition. The
following example illustrates a linear bounded automaton that is intended to
recognize all words that cause the machine to print Y at the end of the (obliterated)
word. Example 11.13 illustrates a general technique for restoring the input word,
producing an LBA that accepts according to Definition 11.6.

EXAMPLE 11.10

Consider the machine L shown in Figure 11.11 and the input string babeea. The
following steps show that <ssbabcca> ~ <XXXXXXhY.

<s.babcca> I-<bs.abcca> I-<bs-Xbcca> I-<s2bXbeea> I

s2<bXbeea> I-<s3bXbeea> I-<s4XXbeea> I-s4<XXbeea> I

<ssXXbeea> I-<Xs.Xbcca> I-<XXssbeea> I-<Xxbs-cca> I

<Xxbs.Xca> I-<XXs6bXea> I-<Xs6XbXea> I-<s6XXbXea> I-

s6<XXbXea> I-<soXXbXea> I-<XsoXbXea> I-<XXsobXea> I-

<XXbstXea> ~ s2<XXbXeX> ~

<XXs3bXeX> ~ S4<XXXXeX> ~

<XXXXsseX> ~ S6<XXXXXX> ~

<XXXXXXso> I-<XXXXXXhY

Figure 11.11 The Turing machine dis
cussed in Example 11.10
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V Definition 11.7. For a given alphabet !', let:£I. be the collection of all linear
bounded languages, and let VI. be the collection of all context-sensitive (type 1)
languages.
Ll

The proof Of Theorem 11.2 can be modified to show that all context-sensitive
languages can be recognized by linear bounded automata. Since context-sensitive
languages do not contain contracting productions, no sentential forms that are
longer than the desired word need be considered. Consequently, the two-tape
Turing machine in Theorem 11.2 can operate as a linear bounded automaton. The
first tape with the input word never changes and thus satisfies the boundary re
striction, while the finite-state control can simply abort any computation on the
second tape that violates the length restriction. Just as Theorem 11.2 showed that
2lI. ~ '!II., we now have a relationship between another pair of cognitive and
generative classes.

V Theorem 11.3. Let!' be an alphabet. Then VI. c :£I.. That is, every type 1
language is a LBL.

Proof. The proof follows from the formalization of the above discussion (see
the exercises).
Ll

We have argued that every type a grammar must have an equivalent Turing
machine, and it can conversely be shown that every Turing-acceptable language can
be generated by a type agrammar. To do this, it is most convenient to use the very
restrictive criteria for a Turing-acceptable language given in Definition 11.3, in
which the original input string is not destroyed. For Turing machines which behave
in this fashion, the descriptions of the device configurations bear a remarkable
resemblance to the derivations in a grammar.

EXAMPLE 11.11

Consider again the language {x E {a, b, c}* I Ixl. = Ixlb = Ix Ie}. As discussed in Ex
ample 11.3, the Turing machine in Figure 11.4 destroys the word originally on the
input tape. Figure 11.12 depicts a slightly more complex Turing machine that
restores the original word justprior to acceptance. It will (fortunately) not generally
be necessary for our purposes to restore rejected words, since there are intricate
languages for which this is not always possible. The modified quintuple is
T = <{a, b, c},{#, A,B, C, Y, N}, {so, S1,S2, S3, S4, S5,S6, S7, S8}, so, 8>, where 8 is as in
dicated in the diagram in Figure 11.13. "Saving" the original input string is
accomplished by replacing occurrences of the different letters by distinct symbols
and restoring them later. The implementation reflects one of the first uses suggested
for multiple-track machines: using the second track to check off input symbols. For
legibility, an a with a check mark above it is denoted by A, while an a with no check
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Control
Figure 11.12 The Turing machine dis
cussed in Example 11.11

Figure 11.13 The state transition dia
gram discussed in Example 11.11

mark remains an a. Similarly, checked bs are represented by B and checked cs by C.
Thus, if the string BAbCca were on a two-track tape employing check marks, it
would look like

jj j
babcca
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The additional states S7 and Ss essentially erase the check marks just before halting
by replacing A with a, B with b, and C with c.

Consider again the input string babcca processed by the Turing machine in
Example 11.3. It is also accepted by this Turing machine because the following steps
show that sobabcca ~ babccahY. Note how closely the steps correspond with those in
Example 11.3. The sequence below also illustrates how S7 converts the string back to
lowercase, after which Ss returns the tape head to the right for acceptance.

sobabcca I- bs.abcca I- bs-Abcca I- szbAbcca I-

sz#bAbcca I- s3bAbcca I-s4BAbcca I-s4#BAbcca I-

ssBAbcca I- Bs.Abcca I- BAssbcca I- BAbsscca I-

BAbs6Cca I- BAs6bCca I- Bs6AbCca I- s6BAbCca I-

s6#BAbCca I- soBAbCca I- BsoAbCca I- BAsobCca I-

BAbslCca ~sz#BAbCcA ~

BAs3bCca ~s4#BABCcA ~

BABCsscA ~s6#BABCCA ~

BABCCAsoI- BABCCs7AI- BABCCs7a I- BABCs7Ca I-

BABCs7ca ~ s-babcca I-s7#babcca I-

ssbabcca I- bssabcca ~babccass I-

babccahY

If occurrences of the machine transition symbol I- are replaced by the deriva
tion symbol ~, the above sequence would look remarkably like a derivation in a
type 0 grammar. Indeed, we would like to construct a grammar in which sentential
forms like bs.abcca could be derived from sobabcca in one step. Since the machine
changed configurations because of the transition rule &(so, b) = (s., R), this transi
tion should have a corresponding production of the form sob~ bs.. Each transition
in the Turing machine will be responsible for similar productions.

Unfortunately, the correspondence between transition rules and productions
is complicated by the fact that the tape head may occasionally scan blank cells,
which must then be added to the sentential form. The special characters [ and] will
bracket the sentential form throughout this stage of the derivation and will indicate
the current left and right limits of the tape head travel, respectively. Attempting to
move left past the conceptual position of [ (or right past the position of]) will result
in the addition of a blank symbol to the sentential form.

To generate the words accepted by a Turing machine, our grammar will
randomly generate a word over I, delimit it by brackets, and insert the symbol for
the start state at the left edge. The rules derived from the transitions should then be
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able to transform a string such as [sobabcca#] into [#babccahY#]. Since only the
letters in I will be considered terminal symbols, the symbols [, ], #, and Yare
nonterminals, and the derivation will not yet be complete. To derive terminal strings
for just the accepted words, the presence of Y will allow further productions to
delete the remaining nonterminals.

V Definition 11.8. Given a Turing machine M = <I, I', S, sO, B>, the grammar
corresponding to M, GM, is given by GM= <I, I' u S u {Z, W, U, v, [,]}, Z, PM>,
where PM contains the following classes of productions:

1. Z~ [W#] E PM
(Va E 1)([W~ [Wa E PM)
W~SOEPM

2. Each printing transition gives rise to a production rule as follows

(Vs E S)(Vt E S U {h})(Va,bE I U r)(if B(s,a) = (t, b), then sa~ tb E PM)

Each move right gives rise to a production rule as follows

(Vs, t E S)(Va E I U r)(if B(s,a) = (t, R>, then sa~ at E PM)

If a = #, an additional production is needed:

(Vs, t E S)(if B(s,#) = (t, R>, then s]"""" #t] E PM)

Each move left gives rise to a production rule as follows

(Vs, t E S)(VaE I U I')

(if B(s,a) = (t, L>, then [sa~ [t#a E PM 1\ (Vd E I U r)(dsa~ tda E PM))

3. hY~UEPM
U#~UEPM

U]~VEPM

(Va E 1)(aV~ Va E PM)
#V~VEPM

[V~A.EPM

The rules in class 1 are intended to generate all words of the form [soX#],
where x is an arbitrary member of 1*. The remaining rules are defined in such a way
that only those strings x that are recognized by M can successfully produce a
terminal string. Note that once W is replaced by So neither Z nor W can appear in a
later sentential form. After So is generated, the rules in class 2 may apply. It can be
inductively argued that the derivations arising from the application of these rules
directly reflect the changes in the configuration of the Turing machine (see Theorem
11.4).

None of the class 3 productions can be used until the point at which the halt
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state would be reached in the corresponding computation. Since h $.S, none of the
class 2 productions can then be used. Only if Y was written to tape as the Turing
machine halted will the production hY~ U be applicable. U will then delete the
trailing blanks and] from the sentential form, and then V will percolate to the left,
removing the leading blanks and the final nonterminal [, leaving only the terminal
string x in the (completed) sentential form. The following example illustrates a
derivation stemming from a typical Turing machine.

EXAMPLE 11.12

Consider the Turing machine T in Figure 11.13 and the corresponding grammar GT•

Among the many possible derivations involving the class 1 productions is

Z~ [W#] ~ [Wa#] ~ [Wca#] ~ [Wcca#]~ [Wbcca#]~ [Wabcca#]

~ [Wbabcca#]~ [ssbabcca-s]

Only class 2 productions apply at this point, and there is exactly one derivation
applicable at each step in the following sequence.

[ssbabccas'] ~ [bs.abccaw] ~ [bs2Abcca#] ~ [s2bAbcca#] ~

[s2#bAbcca#]~ [#s3bAbcca#] ~ [#s4BAbcca#] ~ [s4#BAbcca#] ~

[#ssBAbcca#]~ [#BssAbcca#] ~ [#BAssbcca#] ~ [#BAbsscca#] ~

[#BAbs6Cca#] ~ [#BAs6bCca#] ~ [#Bs6AbCca#] ~ [#s6BAbCca#] ~

[s6#BAbCca#]~ [#soBAbCca#] ~ [#BsoAbCca#] ~ [#BAsobCca#] ~

[#BAbsjCca#] ~ [s2#BAbCcA#] ~

[#BAs3bCcA#] ~ [s4#BABCcA#] ~

[#BABCsscA#] ~ [s6#BABCCA#] ~

[#BABCCAso#]~ [#BABCCs7A#] ~ [#BABCCs7a#] ~ [#BABCs7Ca#] ~

[#BABCs7ca#] ~ [#s7babcca#] ~ [s7#babcca#] ~

[#sgbabcca#]~ [#bsgabcca#] ~ [#babccasg#] ~

[#babccahY]

In Turing machines where the tape head travels further afield, there may be many
more blanks enclosed within the brackets. At this point, the class 3 productions take
over to tidy up the string:

[#babccahY]~ [#babccaU]~ [#babccaV~ [#babccVa

~ [#babcVca~ [#babVcca~ [#baVbcca~ [#bVabcca

~ [#Vbabcca~ [Vbabcca ~ babcca

As expected, babcca E L (GT) .
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It is interesting to observe that only stage in which a choice of productions is
available is during the replacement of the nonterminal W. Once a candidate string is
so chosen, the determinism of the Turing machine forces the remainder of the
derivation to be unique. This is true even for strings that were not accepted by the
Turing machine: if class 2 productions are applied to [sobaa#], there is exactly one
derivation sequence for this sequential form, and it leads to [BAass#] and then
[BAahN]. No productions apply to this sentential form, and thus no terminal string
will be generated. The relationship between strings accepted by the Turing machine
and the strings generated by the corresponding grammar is at the heart of the
following theorem.

V Theorem 11.4. Let I be an alphabet. Then ?J~ C ~~. That is, every Turing-
acceptable languge can be generated by a type 0 grammar.

Proof. Let M be a Turing machine M = <I, I', S, sO, 3>, and let

L(M) ={x EI*lsoX ~xhY},

as specified in the most restrictive sense of a Turing-acceptable language (Definition
11.3). Consider the grammar GM corresponding to M, as given in Definition 11.8.
The previous discussion of GM provided a general sense of the way in which the
productions could be used and justified that they could not be combined in
unexpected ways. A rigorous proof requires an explicit formal statement of the
general properties that have been discussed. A trivial induction on the length of x
shows that by using just the productions in class 1

(Vx E I*)(Z~ [sox#])

Another induction argument establishes the correspondence between se
quences of applications of the class 2 productions and sequences of moves in the
Turing machine. Specifically, by inducting on the number of transitions, it can be
shown that

(Vs, t E S U{h})(Va, ~,'Y, co E (I U I')")

(as~ ~'Ytw iff (3i,j, m, n E N)([#ias~#j] ~ [#m'Ytw#n]))

The actual number of padded blanks is related to the extent of the tape head
movement, but this is not important for our purposes. The essential observation is
that a move sequence in M is related to a derivation sequence in GM , with perhaps
some change in the number of blanks at either end. The above statement was stated
in full generality to facilitate the induction proof (see the exercises). We need apply
it in a very limited sense, as stated below.

Observe that the productions in class 3 cannot be used unless hY appears on the
tape after a finite number of steps. As discussed earlier, the presence of hY triggers
the class 3 productions, which remove all the remaining nonterminals. Thus,
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('fix EI*)(soX ~xhY iff Z? [soX#]? [#mxhy#n]?x)

which implies that L (M) =L (GM) .

Ll

Since every Turing machine has an equivalent type 0 grammar and every type 0
grammar generates a Turing-acceptable language, we have two ways of representing
the same class of languages.

V Corollary 11.1. The class of languages generated by type 0 grammars is
exactly the Turing-acceptable languages. That is, ~I = 5"I'

Proof. The proof follows immediately from Theorems 11.2 and 11.4.

As will be seen in Chapter 12, the linear bounded languages are a distinctly
smaller class than the Turing-acceptable languages. Theorem 11.3 showed that
VI C ~I, and a technique similar to that used in Theorem 11.4 will show that
~I C VI. That is, we can show that every linear bounded automaton has an equiv
alent context-sensitive gramr .ar. Note that the class 1 and 2 productions in
Definition 11.8 contained no contracting productions; it was only when the class 3
productions were applied that the sentential form might shrink. When dealing with
linear bounded automata, the tape head is restricted to the portion of the tape
containing the input string, so there will be no extraneous blanks to delete. The
input word on the tape of a linear bounded automaton is bracketed by distinct
symbols < and>, which might be used in the corresponding grammar in a fashion
similar to [ and]. These would be immovable in the sense that no new blanks would
be inserted between them and the rest of the bracketed word. Unfortunately, in
Definition 11.8 the delimiters [ and] must eventually disappear, shortening the
sentential form. No such shrinking can occur if we hope to produce a context
sensitive grammar.

To overcome this difficulty, it is useful to imagine a three-track tape with the
input word on the middle track and the delimiter - on the upper track of the tape
above the first symbol of the word. Another - will occur on the lower track below
the last character of the input string. These markers will serve as guides to prevent
the tape head from moving past the limits of the input word. For example, if the
linear bounded automaton contained the word <babcca> on its input tape, the tape
for the corresponding three-track automaton would be as pictured in Figure 11.14a.
If the word were accepted, the tape would eventually reach the configuration shown
in Figure 11.14b as it halted, printing Y on the lower track. It is a relatively simple
task to convert a linear bounded automaton into a three-track automaton, where
the tape head never moves left of the tape cell with the - in the upper track, and
never moves right of the cell with the - in the lower track (see the exercises). We
will refer to such an automaton as a strict linear bounded automaton. The definitions
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(a)

(b)

Finite State
Control

Finite State
Control

Figure 11.14 (a) A three-track Turing
machine employing delimiters (b) An
accepting configuration

used will depend on the upper and lower track markers occurring in different cells,
which makes the representation of words of length less than two awkward. Since
this construct is motivated by a need to find a context-sensitive grammar, we will
simply modify the resulting grammar to explicitly generate any such short words and
not rely on the above formalism.

EXAMPLE 11.13

Consider the linear-bounded automaton discussed in Example 11.10, which ac
cepted {x E {a, b, c}* I Ix I. = Ix Ib = Ix Ie}. As suggested by the exercises, this can be
modified to form the three-track strict linear bounded automaton shown in Figure
11.15, which accepts {x E{a, b,c}*llxl ~2 1\ [x], = Ixlb = Ixle}. To avoid explicitly
mentioning the three tracks, a cell containing b on the middle track and - on the
upper track is denoted by the single symbol b, a cell containing A on the middle track
and - on the lower track is shown as A, and so on. Thus, the six original symbols
in {a, b, c, A, B, C} give rise to six other symbols employing the overbar -, six
more using the underscore _, and some symbols indicating acceptance (or pos
sibly rejection), such as ay (or CN)' For clarity, only those combinations that can
actually occur in a transition sequence are shown in Figure 11.15. The sequence of
moves that would transform the tape from the configuration shown in Figure 11.14a
to that of Figure 11.14b is shown below.
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sobabcc!! I- bs.abccg I- bs2Abcc!! I- s2bAbcc!! I-

s3bAbcc!! I-s4BAbcc!! I-

ssBAbcc!! I- BssAbcc!! I- BAssbcc!! I- BAbsscc!! I-

BAbs6Cc!! I- BAs6bCc!! I- Bs6AbCc!! I-s6BAbCc!! I-

soBAbCc!! I- BsoAbCc!! I- BAsobCc!! I-

BAbs1Cc!! ~s2BAbCcA ~

BAs3bCcA ~s4BABCcA ~

BABCsscA ~s6BABCCA ~

Chap. 11

BABCs7c!! ~ s7Babcc!!

Ssbabccg I- bssabccg ~ babccss!!

l

I-

babcchay

Consider implementing a grammar similar to that given in Definition 11.8, but
applied to a strict linear bounded automaton incorporating the two delimiting
markers on separate tracks. The new symbols will eliminate the need for [ and] and
avoid the contracting productions that were required to delete [ and ] from the
sentential form. The class 3 productions would simply replace a symbol such as ay
with a and b with b.

Unfortunately, it will not be possible to explicitly use distinct symbols to keep
track of the state and the placement of the state head, as was done with so, s., ... .s,
and h in the previous production sets. This extraneous symbol will also have to
disappear to form a terminal string, and this must be done in a way that does not use
contracting productions. As with the underscore and overbar, the state name will be
encoded as a subscript attached to one symbol in the sentential form. Thus, each
original symbol d,:which has already given rise to additional non terminals d and d,
will also require nonterminals such as do,db' .. .d, to be added to r. The inclusion
of d, within a sentential form will reflect that the tape head is currently scanning this
d while the finite-state control is in state S;. Further symbols will also be needed; di

indicates that the tape head is scanning the leftmost symbol, which happens to be d,
while the finite-state control is in state Si, and d, indicates a similar situation involv
ing the rightmost symbol.

This plethora of nonterminals can be used to define a context-sensitive gram
mar that generates the language recognized by a strict linear bounded automa
ton. For the automaton given in Example 11.13, generating the terminal string
babcca will begin with the random generations of the six-symbol sentential form
boabcc!!with the class 1 productions, which will be transformed into babccay by the
class 2 productions, and finally into babcca via the class 3 productions. In the
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blR
cIR
lilR
CIR

Alii
BIIi
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aiL AlL
blL BIL
elL elL

l!1L

Figure 11.15 The Thring machine dis
cussed in Example 11.13

following definition, note that by the conditions placed on a strict linear bounded
automaton I' already contains symbols of the form A and A, and hence so will I'B.

For simplicity, the state set is required to be of the form {so, S1> ••• ,sn}, but clearly
the state names of any automaton could be renumbered sequentially to fit the given
definition.

V Definition 11.9. Given a strict linear bounded automaton

B= <I, I', {so, Sl> ••• .s.}, So, 8>,

the context-sensitive grammar corresponding to B, GB, is given by

GB = <I,fB,Z,PB>,
where I'B is given by

fB=fU{dildEIuf,i 1,2, ... ,n,ori Y}U{Z,S,W}
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Pa contains the following classes of productions:

Turing Machines Chap. 11

HAbCrc!!

HAb3CcA

BABCcsA

1. If AEL(B), then Z~AE Pa
Z~SEPa

(Vd E 2)(if d E L(B), then S~ d EPa)
(Vd E 2)(S~W!!EPa)
(\fdE2)(W~WdEPa)
(Vd E 2)(W~ do EPa)

2. Each printing transition gives rise to a production rule as follows:

(Vsi, Sj E S)(Va, b E 2 U f)(if 8(s;, a) = (sj, b), then ai~ bj EPa)

Each move right gives rise to a production rule as follows:

(Vs;,sjE S)(Va E 2 U f)(if 8(s;, a):= (sbR), then (Vd E 2 U f)(aid~adjE Pa)

Each move left gives rise to a production rule as follows:

(Vs;,Sj E S)(Va E 2 U f) (if 8(s;, a) := (Sj, L), then (Vd E 2 U f)(dai~ dja EPa)

Each halt with acceptance gives rise to a production rule as follows:

(Vs;E S)(Vb E 2 U f)(Va E 2)(if 8(s;, b) (h, ay), then b;~ ay EPa)

3. (Va, b E 2)(bay~ bya EPa)

(Va, b E 2)(bay~ ba EPa)
A

EXAMPLE 11.14

Consider again the strict linear bounded automaton B given in Figure 11.15 and the
corresponding context-sensitive grammar Ga. The following derivation sequences
show that babeea EL(Ga):

Z:? S W!!:? Wc!!:? WCC!!:? Wbecg :? Wabeca :?boabcc!!

At this point, only the class 2 productions can be employed, yielding:

boabcc!! balbcc~:?bA2bcc~ :?b2Abcc~ :?

b3AbcC!!:?B4AbcC!! :?

BsAbcc!! :?BAsbcc!! :? BAbscC!! :?BAbcsc!!

BAbC6C~:? BAb6Cc!! :?BA6bCc~ :?B6AbCc~ :?

BoAbCc!!:? BAobCc~ :?HAboCc~ :?

~B2AbCcA

~H4ABCcA

~H6ABCCA
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, "

BABCCAo =? BABCC.!!7 =? BABCC7.!! =?

BABCC7.!! ~B7abcca =?

bsabcc.!! =? basbcc.!! ~ babcc.!!s

Finally, since B(ss,.!!) = (h.a-), the class 3 productions now apply:

babcc.!!s =? babccay =? babccya =? babcyca =? babycca =? baybcca =? babcca

Once again, the grammars springing from Definition 11.9 can generate sen
tential forms corresponding to any string in I *, as long as the length of the string is
at least two. As with the grammars arising from Definition 11.8, only strings that
would have been accepted by the original machine will lead to a terminal string. If
the productions of this example were applied to the sentential form boa.!!, at each
step there will be exactly one choice of applicable production, until eventually the
form BA,!!s is obtained. At this step, no production will apply, and therefore a
terminal string cannot be generated from boa.!!. This correspondence between words
accepted by the machine B and words generated by the context-sensitive grammar
Ge given in Definition 11.9 is the foundation of the following theorem.

V Theorem 11.5. Let I be an alphabet. Then ;£I. ~Ok' That is, every linear
bounded language can be generated by a type 1 grammar.

Proof. Any linear bounded language can be recognized by a strict linear
bounded automaton (see the exercises). Hence, if L is a linear bounded language,
there exists a strict linear bounded automaton B = <I,r,{SO,Sb'" ,sn},so,B>
which accepts exactly the words in L by printing Y on the lowest of the three tracks
after restoring the original word to the middle track. We will employ the grammar
Ge corresponding to B, as given in Definition 11.9. Example 11.14 illustrated that
these productions can be used in a manner similar to those of Definition 11.8, and it
is easy to justify that they cannot be combined in unexpected ways. Induction on the
length of x will show that by using just the productions in class 1,

(Vx E I *)(Va, bE I)(Z~ aoX..!!)

The correspondence between sequence's of applications of the class 2 produc
tions and sequences of moves in B follows as in Theorem 11.4. Due to the myriad
positions that the integer subscript can occupy, and the special cases caused by the
presence of the overbars and underscores, the general induction statement is quite
tedious to state and is left as an exercise. The statement will again be applied to the
special case in which we are interested, as stated below.

(Vx E I*)(Va, bE I)(soaxb ~ arhbv iff aoxE.~axby)

A final induction argument will show that axb y~ axb. Thus,

(Vx EI*)(Va,bEI)(soaxb~axhby iff Z~aoX..!!~axby~axb)
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,
,.

This establishes the correspondence between words of length at least two accepted
by 8 and those generated by Gs. Definition 11.9 included specific productions of the
form Z~ 'A. and S~ d to ensure that words of length 0 and 1 also corresponded.
This implies that L (8) = L (Gs), as was to be shown.
A

The proof of Theorem 11.5 argues that there exists a context-sensitive gram
mar Gs for each strict linear bounded automaton 8, and it certainly appears that
given an automaton 8 we can immediately write down all the productions in Ps, as
specified by Definition 11.9. However, some of the class 1 productions may cause
some trouble. For example, determining whether the production Zs--» 'A. is included
in Ps depends on whether the automaton halts with Y when presented with a blank
tape. In the next chapter, we will see that even this simple question cannot be
effectively answered for arbitrary Turing machines! That is, it is impossible to find
an algorithm that, when presented with the state diagram of a Turing machine, can
reliably determine whether or not the machine accepts the empty string. It will be
shown that any such proposed algorithm is guaranteed to give the wrong answer for
some Turing machines. Similarly, it now seems that there might be some uncer
tainty about which members of I give rise to productions of the form S~ d.

The productions specified by Definition 11.9 were otherwise quite explicit;
only the productions relating to the immediate generation of a single character or
the empty string were in any way questionable. There are only II I+ 1 such produc
tions, and some combination of them has to be the correct set of productions to
include in Ps. Thus, as stated in the theorem, we are assured that a context-sensitive
grammar does exist, even if we are unclear as to exactly what productions it should
contain.

As will be seen in Chapter 12, it is possible to determine which words are
accepted (and which are rejected) by linear bounded automata. Unlike unrestricted
Turing machines, there is only a finite span of tape upon which symbols can be
placed. Furthermore, there are only a finite number of characters that can appear in
those cells, a finite number of positions the tape head can be in, and a finite number
of states to consider. The limited number of configurations makes it possible to
determine exactly which words of a given size are recognized by the LBA.

We have seen that every linear bounded automaton is equivalent to a strict
linear bounded automaton, and these have equivalent type 1 grammars. Con
versely, every type 1 grammar generates a linear bounded language, which implies
there is another correspondence between a generative construct and a cognitive
construct.

V' Corollary 11.2. The class of languages generated by context-sensitive gram-
mars is exactly the linear bounded languages. That is, :£I = (JI.

Proof. The proof follows immediately from Theorems 11.3 and 11.5.
A
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11.4 CLOSURE PROPERTIES AND THE HIERARCHY THEOREM

Finally, we consider some of the closure properties of the classes of languages
explored in this chapter. Since 5"I = 2lI , we may use either cognitive or generative
constructs for this class, whichever is most convenient. The fact that ;£I = OI will
allow the same choice for the type 1 languages. The next theorem illustrates a case
in which the grammatical construct is the easier to use.

V Theorem 11.6. Let l be an alphabet. Then 5"Iis closed under union.

Proof. If L1 and L, are two Turing-acceptable languages, then by Theorem
11.4 there are type 0 grammars G1 = <01, l, Sb P1>and Gz = <Oz, l, Sz, Pz> that
recognize L1 and Lz. Without loss of generality, assume that 0 1 n Oz = 0. Choose
a new nonterminal Z such that Z f/=. 0 1 U 0z, and consider the new type 0 grammar
GU defined by GU = <01 U n,U{Z},s, Z, P1 U Pz U{Z~ Sb Z~ s,». Clearly,
L(G U

) =L(G1) U L(Gz). By Theorem 11.2, there is a Turing machine equivalent to
GU, and hence L1 U L, is Turing acceptable.
~

Theorem 11.6 could be proved directly by constructing a new Turing machine
from Turing machines T1 and Tz accepting L1 and Lz. It is a bit harder to give a
concrete proof and care must be taken to avoid inappropriate constructions. For
example, it would be incorrect to build the new machine in such a way that it first
simulates Tb halting with Y if T1 does, and then simulating Tz if T1 would have halted
with N. It must be remembered that there is no guarantee that a Turing machine will
ever halt for a given word. The above construction will incorrectly reject words that
could be recognized by Tz but which were rejected by T1 because T1 never halted;
the new machine would never get a chance to simulate Tz. One valid construction
involves a two-tape Turing machine, which immediately copies the input word onto
the second tape. By using a cross product of the states of the T1 and Tz and
appropriate transitions, the action of both machines could be simultaneously simu
lated, and the new machine would accept as soon as either simulation indicated that
the word should be accepted. A slight modification of this construct would show
that 5"I is also closed under intersection, but the next theorem outlines a superior
method.

V Theorem 11.7. Let l be an alphabet. Then 5"Iis closed under intersection.

Proof. L1 and L, are two Turing-acceptable languages recognized by the
Turing machines T1 and Tz, respectively. We build a new Turing machine T" with T1

and Tz as submachines. T" transfers control to the submachine T1. If T1 never halts,
the input will be rejected, which is the desired result. If T1 halts, r erases the Y and
moves the tape head back to the leftmost character and transfers control to the
submachine Tz. r will halt if Tz does, and if Tz also accepts, Y will be left in the

, ..
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proper place on the tape. T" therefore accepts if and only if both T1 and T2 accept,
and hence L1 n L, is Turing acceptable.
a

Note that it was important that, except for the presence of Y after the input
word, Tj left the tape in the same condition it found it, with the input string intact
for Tz• As with type 3 and type 2 grammars, there is no pleasant way to combine
type 0 grammars to produce a grammar that generates the intersection of type 0
languages, although Theorem 11.7 guarantees that such a grammar must surely
exist.

V Theorem 11.8. Let l be an alphabet. Then 5''J, is closed under reversal,
homomorphism, inverse homomorphism, substitution, concatenation, and Kleene
closure.

Proof. The proof for reversal is almost trivial; it is almost as simple as replac
ing every transition that moves the tape head to the right with a transition to the left,
and likewise making left moves into right moves. This will yield a mirror image
machine, which when started at the rightmost character will print Y just past the
leftmost character. We therefore have to modify this machine by adding a prelim
inary states that will move the tape head from its traditional leftmost starting
position to the opposite end of the word. Similarly, just before the Y would be
printed, we must again move the tape head to the right.

The description of the modifications necessary to convert a type 0 grammar
into one that generates the reverse of the original is even more succinct: Each rule in
the original grammar is modified by writing the characters to the left of the
production symbol ~ backward, and similarly reversing the string on the right of
~. That is, a production like Dc~ ABe would become cD~ eBA. A relatively
trivial induction on the number of steps in a derivation proves that the new grammar
accepts the reverse of the original language. The proofs of closure under the re
maining operators are left for the exercises.
a

As shown in Chapter 12, there are some operators under which 5''J, is not
closed. Complementation is perhaps the most glaring exception. The closure
properties of :£'J, are very similar to those of 5''J,. In most cases, slight modifications
of the above proofs carryover to the type 1 languages.

V Theorem 11.9. Let l be an alphabet. Then (J'J, is closed under reversal,
homomorphism, inverse homomorphism, substitution, concatenation, union, and
intersection.

Proof. Both proofs given for reversal carry over without modification. In the
cognitive approach, the states added to the mirror image Turing machine keep the
tape head within the confines of the input word, and hence if the original machine
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was a LBA, the new version will also be a LBA. In the generative approach,
reversing the characters in type 1 productions still results in a type 1 grammar. That
is, if the original grammar had no contracting productions, neither will the new
grammar.

Proving that the union of two type 1 languages is type 1 is similar to the proof
given in Theorem 11.6, although care must be taken to avoid extraneous produc
tions of the form Z,~ A. Building an intersection machine from two linear bounded
automata can be done exactly as described in Theorem 11.7. The remaining closure
properties are left for the exercises.
a

It is clear from our definitions that VI ~ ~I, but we have yet to prove that
VI c ~I' That the inclusion is proper and ~I is truly a larger class than VI will be
shown to be a consequence of the material considered in Chapter 12. Apart from
this one missing piece, we have over the course of several chapters encountered the
major components of the following hierarchy theorem.

V Theorem 11.10. Let ~ be an alphabet for which II~II;::: 2. Then

~=~=~=~C~C~=~C~=~C~=~

Proof. The cognitive power of deterministic and nondeterministic finite auto
mata was shown to be equivalent in Chapter 4, and their relation to regular expres
sions was investigated in Chapter 6. These were all shown to describe the type 3
languages in Chapter 8. In Chapter 9, Theorem 9.1 and Corollary 9.1 showed that
the context-free languages (over alphabets with at least two symbols) properly
contained the unambiguous context-free languages, which in turn properly con
tained the regular languages. In Chapter 10, the (nondeterministic) pushdown
automata were shown to recognize exactly the type 2 languages. The context
sensitive language {x E{a, b,c}*//xl. = [x], = Ixlc}is not context free, so the type 1
languages properly contain the type 2 languages. In this chapter, the linear bounded
automata were shown to be recognize exactly the type 1 languages and Turing
machines were shown to accept the type 0 languages. Corollary 12.4 will show that
the type 1 languages are properly included in the type 0 languages.
a

EXERCISES

11.1. By making the appropriate analogies for states and input, answer the musical question
"How is a Turing machine like an elevator?" What essential (missing) component
prevents an elevator from modeling a general computing device?

11.2. Let I = {a, b, c}and let L = {w Iw = wr
} .

(a) Explicitly define a deterministic, one-tape, one-head Turing machine that will
recognize L.
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(b) Justify that there exists a linear bounded automaton that accepts L.
(c) Describe how nondeterminism or additional tapes and heads might be employed

to recognize L.
11.3. Let I = {a}. Explicitly define a deterministic, one-tape, one-head Turing machine that

will recognize {anln is a perfect square}.
11.4. Let I = {a, b, c}.

(a) Explicitly define a deterministic, one-tape, one-head Turing machine that will
recognize {akbncml(k =Fn)l\(n =Fm)}.

(b) Explicitly define a deterministic, one-tape, one-head Turing machine that will
recognize {x E {a, b, c}* Ilxla =F Ix Ib 1\ Ix Ib =F IxIc}·

11.5. (a) Recall that there are several common definitions of acceptance that can be
applied to Turing machines. Design a machine M for which

L(M) =L1(M) = Lz(M) =L3(M) = {x E {a, b, c]" Ilxla= Ixlb = Ixle } .

(b) For any Turing-acceptable language L, is it always possible to find a correspond
ing machine for which L (M) =L1(M) = Lz(M) = L3(M) = L? Justify your answer.

11.6. Let L = {ww IwE {a, b, c}*}.
(a) Explicitly define a deterministic, one-tape, one-head Turing machine that will

recognize L.
(b) Justify that there exists a linear bounded automaton that accepts L.
(c) Describe how nondeterminism or additional tapes and heads might be employed

to recognize L.

11.7. Given an alphabet I = {a., az, a3, ... , an},associate each word with the base n number
derived from the subscripts. Thus, a3aZa4 is associated with 324, a, with 1, and Awith
O. These associated numbers then imply a lexicographic ordering of I *, with

(a) Given an alphabet I, build a Turing machine that, given an input word x, will
replace that word with the string that follows x in lexicographic order.

(b) Using the machine in part (a) as a submachine, build a Turing machine that will
start with a blank tape and sequentially generate the words in l* in lexicographic
order, erasing the previous word as the following word is generated.

(c) Using the machine in part (a) as a submachine, build a Turing machine that will
start with a blank tape and sequentially enumerate the words in I * in lexico
graphic order, placing each successive word to the right of the previous word on
the tape, separated by a blank.

(d) Explain how these techniques can be used in building a deterministic version of a
nondeterministic Turing machine.

11.8. Define a semi-infinite tape as one that has a distinct left boundary but extends indefi
nitely to the right, such as those employed by DFAs.
(a) Given a Turing machine satisfying Definition 11.1, define an equivalent two-track

Turing machine with a semi-infinite tape.
(b) Prove that your construction is equivalent to the original.

11.9. Let I = {a}. Explicitly define a deterministic, one-tape, one-head Turing machine that
will recognize {an In is a power of 2}= {a, aa, aaaa, ... }.

11.10. Define a three-head Turing machine that accepts {x E {a, b, c]" I Ix la = Ix Ib = Ix Ie}.
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Assume that all three heads start on the leftmost character. Is there any need for any
of the heads to ever move left?

11.11. Let I be an alphabet. Prove that every context-free language is Turing-acceptable by
providing the details for the construction discussed in Lemma 11.1.

11.12. Let I be an alphabet. Prove that every type 1 language is a LBL by providing the
details for the construction discussed in Theorem 11.3.

11.13. Let M= <I, r, S, sO, B> be a linear bounded automaton. Show how to convert M
into a three-track automaton that never scans any cells but those containing the
original word by:
(a) Explicitly defining the new alphabets.
(b) Explicitly defining the new transitions from the old. (Hint: From any state, an old

transition "leaving" the word to scan one of the delimiters must return to the
word in a unique manner.)

(c) Prove that for words of length at least 2 your new strict linear bounded automaton
accepts exactly when M does.

11.14. By adding appropriate new symbols (of the form ~ and suitable transitions:
(a) Modify the strict linear bounded automaton defined in Exercise 11.13 so that it

correctly handles strings of length 1.
(b) Assume that a strict LBA that initially scans a blank is actually scanning an empty

tape. If we expect to handle the empty string, we cannot insist that a strict linear
bounded automaton never scan a cell that is not part of the input string, since the
tape head must initially look at something. If we instead require that the tape
head of a strict LBA may never actively move to a cell that is not part of the input
string, then the dilemma is solved. Show that such a strict LBA can be found for
any type 1 language.

11.15. Refer to Theorem 11.4 and show, by inducting on the number of transitions, that

(\:Is,t E S U {h})(\:Ia, 13,"1, w E (I U r)*)

(ctsf3 htw iff (3i,j, m, n E N)(Wctsf3#J]~ [#m"Ytw#"]))

11.16. State and prove the general induction statement needed to rigorously prove Theorem
11.5.

11.17. If G= <I, r, Z, P> is a grammar for a type 0 language:
(a) Explain why the following construction may not accept L (G) *: Choose a new start

symbol W, and form G. = <I,ru{W}, W,P U{W~A,W~WW, W~Z}>.
(b) Give an example of a grammar that illustrates this flaw.
(c) Given a type 0 grammar G = <I,r,Z,p>, define an appropriate grammar G.

that should accept the Kleene closure of L(G).
(d) Prove that the construction defined in part (c) has the property that

L(G.) =L(G)*.

11.18. Let I be an alphabet. Prove that '!J"£ is closed under:
(a) Homomorphism
(b) Inverse homomorphism
(c) Concatenation
(d) Substitution

11.19. (a) Show that any Turing machine Al accepting L = LI(AI) has an equivalent Turing
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machine A2 for which L = L2(A2 ) by explicitly modifying the quintuple for Al and
proving that your construction behaves as desired.

(b) Show that any Turing machine A2 accepting L = L2(A2) has an equivalent Turing
machine A3 for which L = L3(A3) by explicitly modifying the quintuple for A2 and
proving that your construction behaves as desired.

11.20. Let ~ be an alphabet. Prove that 01: is closed under:
(a) Homomorphism
(b) Inverse homomorphism
(c) Concatenation
(d) Substitution
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DECIDABILITY

In this chapter, the nature and limitations of algorithms are explored. We will first
look at the general properties that can be ascertained about finite automata and
FAD languages. For example, we might like to be able to enter the state transition
table of a DFA into a suitably sized array and then run a program that determines
whether the DFA was connected. An algorithm for checking this property was
outlined in Chapter 3. Similarly, we have seen that it is possible to write a program
to check whether an arbitrary DFA is minimal. We know this property can be
reliably checked because we proved that the algorithms in Chapter 3 could be
applied to ascertain the correct answer for virtually every conceivable DFA. There
are an infinite number of DFAs about which the question can be posed, and yet our
algorithm decides the question correctly in all cases. In the following section we
consider questions that can be asked about more complex languages and machines.

In the latter part of this chapter, we will see that unlike the questions in
Sections 12.1 and 12.2, there are some questions that are in a fundamental sense
unanswerable in the general case. That is, there cannot exist an algorithm that
correctly answers such a question in all cases. These questions will be called
undecidable. An undecidable question about Pascal programs is considered in detail
in Section 12.3 and is independent of advanced machine theory. The concept of
undecidability is addressed formally in Section 12.4, and other undecidable prob
lems are also presented.

12.1 DECIDABLE QUESTIONS ABOUTREGULAR LANGUAGES

Recall that a procedure is a finite set of instructions that unambiguously specifies
deterministic, discrete steps for performing some task. In this chapter, the task will
generally involve providing the correct answer to some yes-no question. Most

405
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questions that involve a numerical answer can be rephrased as a yes-no question of
similar complexity. For example, the question "What is the minimum number of
states necessary for a DFA to accept the language represented by the regular
expression R?" has the yes-no analog "Does there exist a DFA with fewer than,
say, five states that accepts the language represented by the regular expression R?"
Clearly, if we can answer the first question, the second question is easy to answer.
Conversely, if questions like the second one can be answered for any number we
wish (rather than just five), then the answer to the first question can be deduced.

Recall also that an algorithm is a procedure that is guaranteed to halt in all
instances. Note that "guaranteed to halt" does not mean that there is a fixed time
limit on how long it may take to finish the procedure for all inputs; some instances
may take far longer than others. For example, the question "Does there exist a DFA
with fewer than ten states that accepts the language represented by ab(b U c)"?"
will probably take less time to answer than "Does there exist a DFA with fewer than
ten states that accepts the language represented by a*b«b*d U c*b)d U e)"?"

It is important to keep in mind that algorithms are intended to provide a
general solution to a vast array of similar problems and are (usually) not limited to a
single specific instance. As an example, consider the task of sorting a file containing
the three names:

Williams
Jones
Smith

A variety of sorting algorithms, when applied to this file, will produce the correct
output. It is also possible to write a program that ignores its input and always prints
the lines

Jones
Smith
Williams

This program does yield the correct answer for the particular problem we wished to
solve, and indeed it solves the sorting problem for all files that contain exactly these
three particular names in some arbitrary order (there are six such files). Thus, this
trivial program is an algorithm that solves the sorting problem for these six specific
instances. A slightly more complex program might be capable of printing two or
three distinct answers, depending on the input, and thus solve the sorting problem
for an even larger (but still finite) class of instances.

It should be clear that producing an algorithm that solves a finite set of
instances is no great' accomplishment, since these algorithms are guaranteed to
exist. Such an algorithm could be programmed as one big case statement, which
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identifies the particular input instance and produces the corresponding output for
that instance. Algorithms that apply to an infinite set of instances are of much more
theoretical and practical interest.

V Definition 12.1. Given a set of instances and a yes-no question that can be
applied to those instances, we will say that the question is decidable if there is an
algorithm for determining in each instance the (correct) answer to the question.
Ll

A more precise definition of decidability is presented in Section 12.4, based on
the perceived relationship between Turing machines and algorithms. As mentioned
earlier, if the set of instances is finite, an algorithm is guaranteed to exist, no matter
how complex the question appears to be.

EXAMPLE 12.1

A typical set of instances might be the set of all deterministic finite automata over a
given alphabet!'; a typical question might be whether a given automaton accepts at
least one string in !,*.

It is possible to devise an algorithm to correctly answer the question posed in
Example 12.1 for every finite automaton A = <!', S, so, 5, F>. The first idea that
might come to mind is to simply look at strings from!' * in an orderly manner and
use "5 to determine whether that string is accepted by A; if we find a string that does
reach a final state, it is clear that the answer to the question should be
"YES-L (A) 10," while if we never find a string that is accepted, the answer should
be "NO-L(A) = 0." This procedure is guaranteed to halt and give the correct
answer if the language isindeed nonempty. However, the procedure will never halt
and answer NO (in a finite amount of time) because there are an infinite number of
strings in I* that must be checked. A modification of this basic idea is necessary to
produce a procedure that will halt under all circumstances (that is, to produce an
algorithm).

V Theorem 12.1. Given any alphabet!' and a DFA A = <!', S, so, 5, F>, it is
decidable whether L(A) = 0.

Proof. Let n = liS II· Since both!' and Sare finite sets,

B = {X-} U!, U!,2 u··· u !,n-l

is a finite set, and we can examine each string of this set and still have a procedure
that halts. There is clearly an algorithm for determining the set C of all states that
are reached by these few strings. Specifically,

C ={5(so, x) Ix E!'* 1\ Ixl < n} ={"5(so, x) Ix E B}.

, ,
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Note that Theorem 2.7 implies that if a string (of any length) is accepted by A then
there is another string of length less than n that is also accepted by A. Consequently,
it is sufficient to examine only the "short" strings contained in B rather than
examine all of I *. If any ofthe strings in B lead to a final state (that is, if C n F =F O),
then the answer to the question is clearly "NO-L(A) is not empty," while if
C n F = O, then Theorem 2.7 guarantees that "YES-L (A) is empty" is the correct
answer. We have therefore constructed an algorithm (which computes C and then
examines C n F, both of which can be done in a finite amount of time) for determin
ing whether the language accepted by a given machine is empty.
Ii.

The definition of C does not suggest the most efficient algorithm for calcu
lating the set C; better strategies are available. The technique is similar to that
employed to find the state equivalence relation EA. C is actually the set of connected
states SC, which can be calculated recursively as indicated in Definition 3.10. Note
that Theorem 12.1 answers the question posed in Example 12.1. The set of instances
to which this question applies can easilybe expanded. It can be shown that it is
decidable whether L (A) =°for any NDFA A by first employing Definition 4.5 to
find the equivalent DFA Adand then applying the method outlined in Theorem 12.1
to that machine. It is possible to find a much more efficient algorithm for answering
this question that does not rely on the conversion to a DFA (see the exercises).

Just as the algorithm for converting an NDFA into a DFA allows the empti
ness question to be answered for NDFAs, the techniques in Chapter 6 justify that
the similar question for regular expressions is decidable. That is, since every regular
expression has an equivalent DFA, the question of whether a regular expression
describes any strings is clearly decidable. Similar extensions can be applied to most
of the results in this section. Just as we can decide whether a DFA A accepts any
strings, we can also decide if A accepts an infinity of strings, as shown by Theorem
12.2. This can be proved by a related appeal to Theorem 12.1, but an efficient
algorithm for answering this question depends on the following lemma.

V Lemma 12.1. Let I be an alphabet, A = <I, S, sO, 8, F> be a finite automa
ton, n =IISII, and M={xlx EL(A) 1\ Ixl;:=::n}. Then, ifMi0, M must contain a
string of minimal length (call it xm), and furthermore Ixml < 2n.

Proof. The proof is obtained by repeated application of the pumping lemma
with i = 0 (see the exercises and Theorem 2.7).
Ii.

A question similar to the one posed in Theorem 12.1 is "Does a given DFA
accept a finite or an infinite number of strings?" This is also a decidable question, as
demonstrated by the following theorem. The proof is based on the observation that
a DFA A that accepts no strings of length greater than some fixed constant must by
definition recognize a finite set, while the pumping lemma implies that if L (A)
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, . '

contains a sufficiently long string, then L(A) must contain an infinite number of
related strings.

V Theorem 12.2. Given any alphabet I and a DFA A= <I, S, so, 8, F>, it is
decidable whether L(A) is an infinite set.

Proof. Let n = liSII· Clearly, if A accepts no strings of length n or greater,
then L(A) is finite. From the pumping lemma, we know that if A accepts even one
string of length equal to or greater than n, then A must accept an infinite number
of strings. We still cannot check all the strings of length greater than n and have
a procedure that halts, so Lemma 12.1 will be invoked to argue that if a long string
is accepted by A, then a string whose length is in the range n :5 Ix I< 2n must
be accepted, and it is therefore sufficient to check the strings in this limited
range. Thus, our algorithm will consist of computing the intersection of
{'8(so,Y) jy E I* /\ n :5ly1< 2n} and F. L (A) is infinite iff this intersection is non
empty.
~

If we were to write a program that consulted the matrix containing the state
transition tablefor A to actually determine {'8(so,Y) Iy E I* /\ n :5ly1< 2n}, it would
be very inefficient to implement this computation as implied by the definition.
Repeatedly looking up entries in the state transition table to determine '8 for each
word in this large class of specified strings would involve an enormous duplication of
effort. It is far better to recursively calculate R; = {'8(so, x) Ix E Ii}, which represents
the set of all states that can be reached by strings of length exactly i. This can be
easily computed by defining Ro= {so} and using the recursive formula

Ri+l = {8(s, a) [a E I, s E R;}

Successive sets can thereby be calculated from Ro. When R; is reached, it is checked
against F, and the algorithm halts and returns Yes if they have a common state.
Otherwise, Rn+1 through R2n- 1 are checked, and No is returned if no final state
appears in this group. This method is easily adaptable to nondeterministic finite
automata by setting Roto be the set of all start states and adjusting the definition of
Ri+l to conform to NDFA notation.

The involved arguments presented in Lemma 12.1 and the proof of Theorem
12.2 are necessary to justify that the above efficient recursive algorithm correctly
answers the question of whether a finite automaton accepts an infinite number of
strings. However, if we were simply interested in justifying that it is decidable
whether L (A) is infinite, it would have been much more convenient to simply adapt
the result of Theorem 12.1. In particular, we could have easily built a DFA that
accepts all strings of length at least n, form the "intersection" machine, and apply
Theorem 12.1 to the new machine.

Specifically, if A is an n -state deterministic finite automaton, consider the
DFA An = <I, fro, r.. rz, ... .r.}, ro,8n , [r.}'> , where 8n is defined by
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(Vi = 0, 1, ... ,n)(Va E I)(8n(r;, a) = rmax{i+1, n})

It is easy to show that L (An) = {x E I * I Ix I ~ n}, and building An as specified in
Lemma 5.1 produces a DFA for which Lf/c") = {x EL(A)llxl ~ n}. The question of
whether L(A) is infinite now becomes the question of whether L(An) is nonempty,
which was shown to be decidable by Theorem 12.1.

An indication of the nature of the automaton An is given in Figure 12.1. The
above argument provides a much shorter and clearer proof of Theorem 12.2, but it
should not be construed to be the basis of an efficient algorithm. Forming the
intersection of A and Aninvolves well over n Z states, and thus applying the technique
described in Theorem 12.1 to An may involve more than n Z iterations. For our
purposes, we will henceforth be content to discover whether various tasks are
merely possible and not be concerned with efficiency.

Figure 12.1 The automaton An

The following theorem answers a major question about DFAs: "Are two given
deterministic finite automata equivalent?" At first glance, this appears to be a hard
question; an initial strategy might be to check longer and longer strings, and answer
"No, they are not equivalent" if a string is found that is accepted by one machine
but is not accepted by the other. As in the proof of Theorems 12.1 and 12.2, we
would again be faced with the task of determining when we could confidently stop
checking strings and answer "Yes, they are equivalent."

Such a strategy can be made to work, but an easier method is again available.
We are essentially checking whether the start state of the first machine treats strings
differently than does the start state of the second machine. This problem was
addressed in Chapter 3, and an algorithm that accomplished this sort of checking
has already been presented. This observation provides the basis for the proof of the
following theorem.

V Theorem 12.3. Given any alphabet I and two DFAs A1= <I, 51,SOl' 81, Fl.>
and Az= <I, 5z,SOz' 8z,F2>, it is decidable whether L (A1) = L (Az).

Proof. Without loss of generality, assume that 51 n 5z= 0, and construct a
new DFA defined by A = <I, 51 U 5z,SOl' 8, Fl. U F2>, where

(Vs.51U 5z)(Va E I) 8(s, a) = {~:~:: :~: ~: ~t
Corollary 3.5 outlines the algorithm for constructing EAfor this machine, and it
should be clear from the definition of A that sOIEASOz ~ L (A1) = L (Az).
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EXAMPLE 12.2

Consider the two machines Al and A2 displayed in Figure 12.2. The machine A
constructed according to Theorem 12.3 would look like the diagram inside the
dotted box shown in Figure 12.3. This new machine is very definitely disconnected,
and in this example sal is not related to S02 by EA since these two states treat ab
differently (ab is accepted by Al and rejected by A2) . The reader is encouraged to
generate another example using two equivalent machines, and verify that the two
original start states would indeed be related by EA.

r
I

I

I

I

I

~

b

a,b

\
I

I

I

I
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~

Figure 12.2 The automata discussed in
Example 12.2

Figure 12.3 The composite machine
discussed in Example 12.2

The following theorem explores the relationship between the complexity of a
given regular expression and the size of the corresponding minimal DFA.

V Theorem 12.4. Given any alphabet I and a regular expression R over I, it is
decidable whether there exists a DFA with fewer than five final states that accepts
the language described by R.

Proof. Given R, Lemma 6.2 indicates the algorithm (generated by the con
structions presented in Theorems 5.2,5.4, and 5.5) for building some NDFA that
accepts the regular set corresponding to R. Definition 4.5 outlines the algorithm for
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converting this NDFA into a DFA. Theorem 3.7 and Corollary 3.5 indicate the
algorithms for minimizing this DFA. Counting the number of final states in this
minimal machine will allow the question to be answered correctly.
Ll

The careful reader may have noticed that the minimal machine described in
Chapters 2 and 3 was only advertised to have the minimum total number of states
and has not yet been guaranteed to have the smallest number oi final states (perhaps
there is an equivalent machine with many more nonfinal states but fewer final
states). An investigation of the relationship between the final states of the minimal
machine and the equivalence classes comprising the right congruence generated by
this language will show that no equivalent machine can have fewer final states than
the minimal machine has (see the exercises).

The proofs of Theorems 12.3 and 12.4 are good examples of using existing
algorithms to build new algorithms. This technique should be applied whenever
possible in the following exercises. It is certainly useful in resolving the following
question about grammars.

Given two right linear grammars G1 = <01>I,S1>P1> and G2= <02,I, S2,P2>,
it is clearly decidable whether G2 is equivalent to G1. An algorithm can be formed
that simply:

1. Uses the construction presented in Lemma 8.2 to find AG1 and AG2•

2. Converts these NDFAs to two DFAs called A1 and A2.
3. Appeals to the algorithm presented in Theorem 12.3 to correctly answer the

question.

A trivial extension of this idea proves the following theorem.

V Theorem 12.5. It is decidable whether two given regular grammars
G1 = <01> I, S1> P1> and G2= <02,I, S2,P2> are equivalent.

Proof. See the exercises.

Most of the decidability questions we have asked about languages recognized
by finite automata or described by regular expressions can also be answered for
languages generated by grammars through a similar transformation of existing
algorithms. Such algorithms are generally not the most efficient ones available, and
it can often be instructive to develop a new method from scratch. This is especially
true of the following question, which has no analog in the realms of finite automata
or regular expressions.

V Theorem 12.6. It is decidable whether a given right-linear grammar
G = <0, I, S, P> contains any useless nonterminals.



Sec. 12.1 Decidable Questions About Regular Languages 413

Proof. Recall that a nonterminal is useless if it can never appear in the deri
vation of any valid terminal string. Essentially, only two things can prevent a
nonterminal X from being effectively used somewhere in a valid derivation: either X
can never appear as part of a partial derivation that begins with only the start
symbol (no matter how many productions we apply), or, once X is generated, it can
never lead to a valid terminal string.

Finding the members of il that can be produced from S is a simple recursive
procedure: Begin with Zo= {S} and form ZI by adding to Zo all the nonterminals
that appear on the right side of productions that are used to replace S. Then form ~
by adding to ZI all the nonterminals that appear on the right side of productions that
are used to replace members of Z), and so on. More formally:

Zo= {S}

and for i ~ 1,

Zi+1 = Z, U{YE ill(3x E I*)(3TE Z;) , T-,)xY is a production in P}

Clearly, Zo~ ZI ~ ... ~ Z; ~ ... ~ il, and as was shown for similar collections of
nested entities (such as EoA, EIA, ... in Chapter 3), after a finite number of steps we
will reach the point where Zm = Zm+1 and Zm will then represent the set of all
nonterminals that can be reached from the start symbol S.

In a similar fashion, we can generate another nested sequence of sets
Wo, W), ... , where Wi represents the set of all nonterminals that can produce a
terminal string in i or fewer steps. We are again guaranteed to reach a point where
W n = W n+ ), and W n will indeed be the set of all nonterminals that can ever produce a
valid terminal string.

Zm n W n is thus the set of all useful members of il, and il - (Z; n W n) is
therefore the set of all useless nonterminals.
t:.

EXAMPLE 12.3

G4 = <{S, A, B, C, V, W, X},{a, b, e},S, {S-,) abAlbbBleeV, A-,) scjex, B-,) ab,
C-,) AIeS, V -,) aV IeX, W-,) aa laW, X-,) bV IaaX}> contains three useless. non
terminals, V, W, and X. Recursively calculating the sets described in the above
proof yields:

z, = {S}

ZI={S,A,B,V}

~={S,A,B,V,C,X}

~={S,A,B,V,C,X}

WO= { }

WI ={C,B, W}

Wz={C,B,W,A,S}

W3={C,B, W,A,S}

Thus W cannot be generated from the start symbol, and V and X cannot produce
terminal strings. The useful symbols are ~ n W z = {S,A, B, C}.
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The techniques employed here should look somewhat familiar. They involve
iteration methods similar to those developed in Chapter 3. In fact, it is possible to
apply the connectivity algorithms for nondeterministic finite automata to this
problem by transforming the right-linear grammar G into the NDFA AG, as defined
in the proof of Lemma 8.1. The automaton corresponding to the grammar in
Example 12.3 is shown in Figure 12.4. Note that the state labeled <W> is
inaccessible, which means that it cannot be reached from <S>. This indicates that
there is no sequence of productions starting with the start symbol S that will produce
a string containing W.

Checking whether a nonterminal such as V can produce a terminal string is
tantamount to checking whether the language accepted by A~ is nonempty, where
A~ is AG with the start state moved to the state labeled <V>. Since both L (A~) and
L(A~D are empty, V and X are useless.

12.2 OTHER DECIDABLE QUESTIONS

It is fairly easy to find succinct algorithms that answer most of the reasonable
questions one might ask about representations of regular languages. For each of the
more complex classes of languages, there are many reasonable questions that are
not decidable. Several of these will be presented in the following sections. In this
section, we consider some of the answerable questions that can be asked about the
more robust machines and grammars.

V Theorem 12.7. Given any context-free grammar G,it is decidable whether
L(G) = 0.

Proof. In Theorem 9.3, a scheme was presented that specified how to build
several automata that would be used to identify the useless nonterminals in
G = <I, I', S, P >. Since L (G) =0 iff the start symbol S is useless, there is an
algorithm for testing whether L (G) = 0.
a

It is also possible to tell whether a context-free grammar generates a finite or
an infinite number of distinct words. The proof is based on the same principle that
was employed in the pumping theorem proof: the presence of long strings implies
that some useful nonterminal A must derive a nontrivial sentential form containing
A. The start state S must produce a useful sentential form containing A, and A can
then be used to generate an infinite series of distinct strings.

V Theorem 12.8. Given any context-free grammar G, it is decidable whether
L(G) is infinite.

Proof. Let G == <I, I', S, P> be a context-free grammar. By Theorem 9.5,
there exists a Chomsky normal form grammar G' = <I, I", S, pi> that is equiv-
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Figure 12.4 The automaton discussed in Example 12.3
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alent to G. Let n = 21f' 1. By Theorem 9.7, any string in L(G) of length n or
greater can be pumped and will imply that L(G) is infinite. An argument similar
to that of Lemma 12.1 will show that it is sufficient to check strings in the set
{y Iy E I * 1\ n ::s Iy 1< 2n} for membership in L (G). There are only a finite number
of derivation sequences that can produce words in this range. The algorithm for
determining whether L (G) is infinite will check whether

{y Iy EL(G) 1\ n::S Iyl <2n}

is empty; if so, L (G) is finite, and L (G) is infinite otherwise.
a

The exercises explore more efficient methods for searching for a string that
can be pumped. The intimate correspondence between context-free grammars and
pushdown automata guarantees that similar questions about PDAs are decidable.

V Corollary 12.1. Given any pushdown automaton P, it is decidable whether:

a. L(P) is empty.
b. L (P) is finite.
c. L(P) is infinite.

Proof. By Theorem 10.3, every PDA P has a corresponding context-free
grammar Gp• The algorithms described in Theorems 12.7 and 12.8 can be applied to
Gp to determine the nature of L(Gp) , and since L(P) =L(G p) , the same questions
about P are likewise decidable.
a

Given a particular word x and a context-free grammar G, it is decidable
whether x can be generated by G. In fact, this question can be decided for context
sensitive grammars, too. The proof heavily relies on the fact that no sentential form
longer than x can possibly generate x in the absence of contracting productions in
the grammar.

V Theorem 12.9. Given any context-sensitive grammar G and any word x, it is
decidable whether x E L (G).

Proof. Let G = <I, r, S, P> be a context-sensitive grammar and let x E I *.
It is possible to construct a (finite) graph and apply existing algorithms from graph
theory to answer the question of whether G generates x. The nodes of the graph will
correspond to the strings from (I UI')" of length n or less. The (directed) edges
from a node representing a given sentential form w lead to the strings (of length n or
less) that can be generated from w by applying a single production from P. Both the
sentential form x and S will appear in this graph, and the question of whether
x E L(G) is equivalent to the question of whether there is a path from S to x. There
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are many standard algorithms for determining paths and components in a graph,
and thus the question of whether x E L (G) is decidable.
A

The generation of all the edges in the graph generally involves more effort
than is needed to answer the question. A more efficient method is similar to the
recursive calculations used to find the set of connected states in a DFA. Beginning
with {S}, the production set P can be consulted to determine the labels of nodes that
can be derived from S in one step. These new labels can be added to the set of
accessible sentential forms, and the added nodes can be checked until no new labels
are found. The set of sentential forms will then consist of

{wE(!'ur)*IS~w 1\ Iwl::5n}

and contain all words in L(G) of length ::5n. If we are only interested in the specific
word x, then the algorithm can return Yes as soon as x appears in the set of
accessible sentential forms and would return No if x did not appear by the time the
set stopped growing.

The above algorithm will suffice for any grammar that does not contain con
tracting productions, but can clearly give the wrong answers when applied to type 0
grammars. Since the length of sentential forms can both grow and shrink in un
restricted grammars, the word x may actually be generated by a sequence of produc
tions that at some point generates a sentential form longer than x. Such a sequence
would not be considered by the method outlined in Theorem 12.9, and the algo
rithm might answer No when the correct answer is Yes. We could define a pro
cedure that looked at larger and larger graphs (consisting of more and longer
sentential forms), which would halt and answer Yes if a derivation sequence for x
was discovered. If x actually can be generated by G, this method will eventually
uncover the appropriate sequence. We therefore have a procedure that will reliably
tell us if a word can be generated by an unrestricted grammar. Unless we include a
specification of when to stop and answer No, this procedure is not an algorithm. In
later sections, we will see that it is impossible to determine, for an arbitrary type 0
grammar G, ifan arbitrary word x is not generated by G. The question of whether
x EL(G) is not decidable for arbitrary grammars.

It turns out that there are many reasonable questions such as this one that
cannot be determined algorithmically. We begin our overview of undecidable prob
lems with an analysis of a very reasonable question concerning Pascal programs.
Subsequent sections consider undecidable questions concerning the grammars and
machines covered in this text.

12.3 AN UNDECIDABLE PROBLEM

Having now developed a false sense of security about our ability to produce
algorithms for determining many properties about machines and languages, we now
step back and see whether there is anything we cannot do algorithmically. A simple
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counting argument will show that there are too many things to calculate and not
enough algorithms with which to calculate them all. It may be helpful to review the
section on cardinality in Chapter 0 and recall that there are different orders of
infinity. A diagonalization argument showed that the natural numbers could not be
putin one-to-one correspondence with the real numbers; there are simply too many
real numbers to allow such a matching to occur. A similar mismatch occurs when
comparing the (countable) number of algorithms to the (uncountable) number of
possible yes-no functions.

By definition, an algorithm is a finite list of instructions, written over some
finite character set. As such, there are only a countable number of different
algorithms that can be written. It may be helpful to consider the set of all Pascal
programs and view each file that contains the ASCII code for a program, which is
essentially a sequence of zeros and ones, as one very long binary integer. Clearly, an
infinite number of Pascal programs can be written, but no more programs than
there are binary integers, so the number of such files is indeed countable.

Now consider the possible lists of answers that could be given to questions
involving a countable number of instances. We will argue that there are an uncount
able number of yes-no patterns that might describe the answers to such questions.
Notice that the descriptions for automata, grammars, and the like are also finite,
and thus there are a countable number of DFAs, a countable number of grammars,
and so on, that can be described. The questions we asked in the previous sections
were therefore applied to a countable number of instances, and these instances
could be ordered in some well-defined way, much as the natural numbers are
ordered. If we think of a yes response corresponding to the digit 1 and a no response
corresponding to 0, then the corresponding series of answers to a particular ques
tion can be thought of as an unending sequence of Os and Is. By placing a dec
imal point at the beginning of the sequence, each such pattern can be thought
of as a binary fraction, representing a real number between .00000 ... = 0 and
.111111... = 1. Conversely, each such real number in this range represents a
sequence of yes-no answers to some question. Since there are an uncountable
number of real numbers between 0 and 1, there are an uncountable number of
answers that might be of interest to us. Some of these answers cannot be obtained
by algorithms, since there are not enough algorithms to go around. Thus, there
must be many questions that are not decidable.

It is not immediately apparent that the existence of undecidable questions is
much of a drawback; perhaps all the "interesting" questions are decidable. After
all, there are an uncountable number of real numbers, yet all computers and many
humans seem to make do with just the countable number of rational numbers.
Unfortunately, there are many simple and meaningful questions that are un
decidable. We discuss one such question now; others are considered in the next
section.

Just about every programmer has had the experience of running a program
that never produces any output and never shows any sign of halting. For programs
that are fairly short, this is usually not a problem. For major projects that are
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expected to take a very long time, there comes an agonizing moment when we have
to give up hope that it is on the verge of producing a useful answer and stop the
program on the assumption that it has entered an infinite loop. While it would be
very nice to have a utility that would look over a program and predict how long it
would run, most of us would settle for a device that would simply predict whether or
not it will ever halt.

It's a good bet that you have never used such a device, which may at first seem
strange since a solution to the halting problem would certainly provide information
that would often be useful. If you have never thought about this before, you might
surmise that the scarcity of such programs is a consequence of anyone of several
limiting factors. Perhaps they are inordinately expensive to run, or no one has taken
the time to implement an existing scheme, or perhaps no one has yet figured out
how to develop the appropriate algorithms. In actuality, no one is even looking for a
"halting" algorithm, since no such algorithm can possibly exist.

Let us consider the implications that would arise if such an algorithm could be
programmed in, say, Pascal. We can consider such an algorithm to be implemented
as a Boolean function called HALT, which looks at whatever program happens to
be in the file named data.p and returns the value TRUE if that program will halt,
and returns FALSE if the program in data.p would never halt. Perhaps this function
is general enough to look at source code for many different languages, but we will
see that it is impossible for it to simply respond correctly even when looking solely at
Pascal programs.

The programmer of the function HALT would likely have envisioned it to be
used in a program such as CHECK, shown in Figure 12.5. We will use it in a slightly
different way and show that a contradiction arises if HALT really did solve the
halting problem. Our specific assumptions are that:

1. HALT is written in Pascal.
2. HALT always gives a correct answer to the halting problem, which means:

a. It always returns an answer after a finite amount of time.
b. The answer returned is FALSE if the Pascal program in data.p would

never halt.
c. The answer returned is TRUE if the Pascal program in data.p would halt

(or if the program in data.p will not compile).

Consider the program TEST in Figure 12.6, which is structured so that it will
run forever if the function HALT indicates that the program in the file data.p would
halt, and simply quits if HALT indicates that the program in data.p would not halt.
Some interesting things happen if we run this program after putting a copy of the
source code for TEST in data.p.

If HALT does not produce an answer, then HALT certainly does not behave
as advertised, and we have an immediate contradiction. HALT is supposed to be an
algorithm, so it must eventually return with an answer. Since HALT is a Boolean
function, we have only two cases to consider.
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program CHECK;
{ envisioned usage of HALT

function HALT: boolean;
begin

{ marvelous code goes here
end { HALT }

Decidability Chap. 12

begin { CHECK }
if HALT then

writeln( 'The program in file data.p will halt')
else

writeln( 'The program in file data.p will not halt')
end { CHECK }.

Figure 12.5 A possible usage of HALT

Case 1: HALT returns a value of TRUE to the calling program TEST. This has
two consequences, the first of which is implied by the asserted behavior of HALT.

i, If halt does what it is supposed to do, this means that the program in data.p
halts. We ran this program with the source code for TEST in data.p, so TEST
must actually halt.

The second consequence comes from examining the code for TEST, and noting
what happens when HALT returns TRUE.

ii. The if statement in the program TEST then causes the infinite loop to be
entered, and TEST runs forever, doing nothing particularly useful.

Our two consequences are that TEST halts and TEST does not halt. This is a clear
contradiction, and so case 1 never occurs.

Case 2: HALT returns a value of FALSE to the calling program TEST. This
likewise has two consequences. Considering the advertised behavior of HALT, this
must mean that the program in data.p, TEST, must not halt. However, the code for
TEST shows that if HALT returns FALSE we execute the else statement, write
one line, and then stop. TEST therefore halts. TEST must again both halt and not
halt.

Whichever way we turn, we reach a contradiction. The only possible conclu
sion is that the function HALT does not behave as advertised. It must either return
no answer, or give an incorrect answer.

It should be clear that the problem cannot be fixed by having the programmer
who proposed the function HALT fiddle with the code; the above contradiction will
be reached regardless of what code appears between the begin and end statements
in the function HALT. We have shown that any such proposed function is guaran
teed to behave inappropriately when fed a program such as TEST. In actuality,
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program TEST;
{ to be placed in the file data.p
var FOREVER: boolean;

function HALT: boolean;
begin

{ marvelous code goes here
end; { HALT}

begin { TEST }
FOREVER: = false;
if HALT then

repeat
FOREVER: = false;

until FOREVER
else

writeln ( I This program halts I )

end { TEST }.

Figure 12.6 Another program incorporating HALT
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there are an infinite number of programs that cause HALT to misbehave, but it was
sufficient to demonstrate just one failure to justify that no such function can solve
the general problem.

The above argument demonstrates that the halting problem for Pascal pro
grams is undecidable or unsolvable. That is, there does not exist a Pascal program
that can always decide correctly, when fed an arbitrary Pascal program, whether
that program halts.

If we were to define an algorithm as "something that can be programmed in
Pascal," we would have shown that there is no algorithm for deciding whether an
arbitrary Pascal program halts. One might suspect that this is therefore not a very
satisfying definition of what an algorithm is, since we have a concise, well-stated
problem that cannot be solved using Pascal. It is generally agreed that the problem
does not lie with some overlooked feature that was inadvertently not incorporated
into Pascal. Clearly, all programming languages suffer from similar inadequacies.
For example, an argument similar to the one presented for Pascal would show that
no C program can be devised that can tell which C programs can halt. Thus, no
other programming language can provide a more robust definition of what an
algorithm is.

There are variations on this theme that likewise lead to contradictions. Might
there be a Pascal program that can check which C programs can halt? If you believe
that every Pascal program can be rewritten as an equivalent C program, the answer
is definitely no; a Pascal program that checks C programs could then be rewritten as
a C program (which checks C programs), and we again reach a contradiction.

It is generally agreed that the limitations do not arise from some correctable
inadequacy in our current methods of implementing algorithms. That is, the limita
tions of algorithmic solutions seem to be inherent in the nature of algorithms.
Programming languages, Turing machines, grammars, and all other proposed sys-
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tems for implementing algorithms have been shown to be subject to the same lim
itations in computational power. The use of Turing machines to implement algo
rithms has several implications that apply to the theory of languages. These are
explored in the following sections.

12.4 TURING DECIDABILITY

In the previous section, we saw that no Pascal program could always correctly
predict when another Pascal program would halt. A similar statement was true for C
programs, and Turing machines, considered as computing devices, are no different;
no Turing machine solves the halting problem.

Each of us is probably familiar with the way in which a Pascal program reads a
file, and hence it is not hard to imagine a Pascal program that reacts to the code for
another Pascal program. As long as the input alphabet contains at least two sym
bols, encodings can be defined for the structure of a Turing machine, which allows
the blueprint for its finite state control to be placed on the input tape of another
Turing machine. A binary encoding might be given for the number of states,
followed by codes that enumerate the moves from each of the states. Just as we are
not presently concerned about the exact ASCII codes that define the individual
characters in a file containing a Pascal program, we need not be concerned with the
specific representation used to encode a Turing machine on an input tape.

Consider input tapes that contain the encoding of a Turing machine, followed
by some delimiter, followed by an input word. Assume there exists a Turing
machine H that, given such an encoding of an arbitrary machine and an input word,
always correctly predicts whether the Turing machine represented by that encoding
halts for that particular word. This assumption leads to a contradiction exactly as
shown in the last section for Pascal programs. We would be able to use the machine
H.as a submachine in another Turing machine that halts exactly when it is not
supposed to halt, and thereby show that H cannot possibly behave properly.

V Theorem 12.10. Given a Turing machine M and a word w, it is undecidable
whether M halts when the string w is placed on the input tape.

Proof. The proof is essentially the same argument that was presented in the
last section.
~

We will see that the unsolvability of the halting problem will imply that it is not
decidable whether a given string will cause a Turing machine to halt and print Y. If a
word is accepted, this fact can eventually be discovered, but we cannot reliably tell
which words are rejected by an arbitrary Turing machine. If we could, we would
have an algorithm for computing the complement of any Turing-acceptable lan
guage. In the next section, we will show that there are Turing-acceptable languages
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that have complements that are not Turing-acceptable, which means that a general
algorithm for computing complements cannot exist.

A problem equivalent to the halting problem involves the question of whether
an arbitrary type 0 grammar accepts a given word. This can be seen to be almost the
same question as was asked of Turing machines.

yo Theorem 12.11. Given a type 0 grammar G and a word w, it is undecidable
whether G generates w.

Proof. If this question were decidable, it would provide an algorithm for
solving the halting problem, which is known to be undecidable. That is, if there
existed an algorithm for deciding whether w E L (G), there would also be an algo
rithm for deciding whether w is accepted by a Turing machine. The Turing machine
algorithm would operate as follows:

Given an arbitrary Turing machine M, modify M to produce M I , an equivalent
machine that halts only when it accepts. Use Definition 11.8 to find the correspond
ing type 0 grammar GM " which is also equivalent to M. The algorithm that predicts
whether w EL(G M,) can now be used to decide whether M halts on input w.

This scheme would therefore solve the halting problem for an arbitrary Turing
machine, and hence the algorithm that predicts whether w E L (G) cannot exist.
Thus, w E L (G) is undecidable for arbitrary type 0 grammars.
~

Given the intimate correspondence between Turing machines and type 0
grammars, it is perhaps not surprising that it is just as hard to solve the membership
question for type 0 grammars as it was to solve the halting problem for Turing
machines. We now consider a question that may initially appear to be more trac
table than the halting problem. However, it will be shown to be unsolvable by the
same reasoning used in the last theorem: if this question could be decided, then the
halting problem would be decidable.

yo Theorem 12.12. Given an arbitrary Turing machine T, it is undecidable
whether T accepts A.

Proof. Assume that there exists an algorithm for deciding whether T accepts
A. That is, assume that there exists a Turing machine X that, when fed an encoding
of any Turing machine T, halts with Y when T would accept A and halts with N when
ever T rejects A. X can then be used to determine whether an arbitrary Turing
machine M would accept an arbitrary word x. Given a machine M and a string x, it is
easy to modify M to produce a new Turing machine TMx , which accepts A exactly
when M accepts x. TM

x
is formed by adding a new start state that checks whether the

read head is initially scanning a blank (that is, if A is on the input tape). If not,
control remains in this state, and TM

x
never halts. However, if the initially scanned

symbol is a blank, new states are used to write x on the input tape and return the
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read head to the leftmost symbol of x. Control then passes to the original start state
of M. In this manner, TM. accepts A exactly when M accepts x.

This correspondence makes it possible to use the Turing machine X as a
submachine in another Turing machine XH that solves the halting problem. That is,
given an input tape with an encoding of a machine M followed by the symbols for a
word x, XH can be easily programmed to modify the encoding of M to produce the
encoding of TM. and leave this new encoding on the input tape before passing
control to the submachine X. XH then accepts exactly when TM. accepts A, which
happens exactly when M halts on input x. XH would therefore represent an
algorithm for solving the halting problem, which we know cannot exist. The portion
of the machine that modifies the encoding of M is quite elementary, so it must be
the submachine X that cannot exist. Thus, there is no algorithm that can accomplish
the task for which X was designed, that is, determining whether an arbitrary Turing
machine T accepts the empty string.
d

The conclusion that X was the portion of XH that behaves improperly is akin to
the observation in the previous section that the main part of the Pascal program
TEST was valid, and hence it must be the function HALT that behaves incorrectly.

12.5 TURING-DECIDABLE LANGUAGES

We now consider languages whose criteria for membership is related to the halting
problem. Define the language D to be those words that either are not encodings of
Turing machines or are encodings of machines that would halt with Y when pre
sented with their own encoding on their input tape. The language D is Turing
acceptable, since a multitape machine could copy the input word to a second tape,
check whether the encoding truly represented a valid Turing machine, and then use
the "directions" on the second tape to simulate the action of the encoded machine
on the original input. The multitape machine would halt with Y if the encoding was
invalid or if the simulated machine ever accepts.

On the other hand, the complement of D is not Turing acceptable. Let U be
the set of all valid encodings of Turing machines that do not halt when fed their own
encodings. Then U = - D, and there does not exist a machine T for which L (T) = U.
If such a machine existed, it would have an encoding, and this leads to the same
problem encountered with the HALT function in Pascal. This encoding of T is
either a word in U or is not a word in U; both cases lead to contradictions. If the
encoding of T belongs to U, then by definition of U it does not halt when fed its own
encoding. But the assumption that L (T) = U requires that T halt with Y for all
encodings belonging to U, which means T must halt when fed its own encoding. A
similar contradiction is also reached if the encoding of T does not belong to U.
Therefore, no such Turing machine T can exist, and U is an example of a language
that is not Turing-acceptable.
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We have finally found a language that is not type O. A counting argument
would have shown that, since there are only a countable number of type 0 grammars
and an uncountable number of subsets of 1*, there had to be many languages over I
that are not in ~I ( = f'J~J We now see that some of these unrepresentable languages
are meaningful sets for which it would be quite desirable to be able to recognize or
generate.

V Theorem 12.13. If 11111 === 2, then f'JI is not closed under complementation.

Proof. Encodings of arbitrary Turing machines can be effectively accom
plished with only two distinct symbols in the alphabet. The Turing-acceptable
language D described above has a complement U that is not Turing-acceptable.
b.

Our original criteria for belonging to the language L accepted by a Turing
machine M implied that M would eventually halt when presented with any word in
L, but we had no guarantees about how M will behave when presented with a word
that is not in L. M may halt with N on the tape, or M may run forever. Indeed, we
have just seen a Turing-acceptable language for which this will be the best we can
hope for. Turing machines therefore embody procedures, which are essentially a
deterministic set of step-by-step instructions. We now consider the languages
accepted by the subclass of Turing machines that correspond to algorithms, pro
cedures that are guaranteed to eventually halt under all circumstances.

V Definition 12.2. Let I be an alphabet. Define '1eI to be the collection of all
languages that can be recognized by Turing machines that halt on all input.
b.

Languages in '1eI are called Turing-decidable languages. A trivial modification
shows that L E '1eI if there exists a Turing machine that not only halts upon placing a
Y after the input word on an otherwise blank tape for accepted words, but similarly
preserves the input word and prints N for each rejected string. Such devices will be
referred to as halting Turing machines.

V Theorem 12.14. '1eI is closed under complementation.

Proof. Let L be a Turing-decidable language. Then there must exist a Turing
machine H for which L(H) = L and that halts with Y or N for all strings in 1*. The
finite-state control of H can be easily modified to produce a Turing machine H' for
which L (H') = - L. All that is required is to replace every transition in H that prints
N with a similar transition that prints Y and likewise make sure that N will be printed
by H' whenever H prints Y.
b.

This result has some immediate consequences.
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V Corollary 12.2. There is a language that is Turing acceptable but not Turing
decidable. That is, 'ZItI C ?II.

Proof. Definition 12.2 implies that 'ZItI C,?II. By Theorems 12.13 and 12.14,
these two classes have different closure properties, and thus they cannot be equal.
Therefore, 'ZItI C ?II'
Ll

Actually, we have already seen a language that is Turing acceptable but not
Turing decidable. D was shown to be Turing acceptable, but if D were Turing
decidable, then its complement would be Turing decidable by Theorem 12.14.
However, ~D = U, and U is definitely not Turing decidable since it is not even
Turing acceptable.

0I, the context-sensitive languages, is another subclass of ?II. It is possible to
determine how 'ZItI relates to 0I and thereby insert 'ZItI into the language hierarchy.

V Corollary 12.3. Every context-sensitive language is Turing decidable. That
is, 0I C, 'ZItI.

Proof. This is actually a corollary of Theorem 12.9. Given a type 1 language
L, there is a context-sensitive grammar G that generates L. The proof of Theorem
12.9 presented an algorithm for determining whether an arbitrary word can be
generated by G. This algorithm can be implemented as a Turing machine TG that can
determine whether a given word can be generated by G and always halts with the
correct answer. Thus, L is Turing decidable.
Ll

These implications provide the missing element in the proof of Theorem
11.10, as stated in the next corollary.

V Corollary 12.4. The class of context-sensitive languages is properly con-
tained in the class of Turing acceptable languages. That is, 0I C ?II.

Proof. By the previous corollaries, 0Ic' 'ZItI and 'ZItI C ?II.

Actually, the context-sensitive languages are properly contained in 'ZItI. This
will be shown by exhibiting a language that is recognized by a Turing machine that
halts on all inputs,but that cannot be generated by any context-sensitive language.
The following proof, based on diagonalization, should by now look familiar.

V Theorem 12.15. Let I be an alphabet for which IIIII ;::: 2. There is a language
that is Turing decidable but not context sensitive. That is, 0IC 'ZItI'

Proof. By Corollary 12.3, 0I C, 'ZItI, and it remains to be shown that there is a
member of 'ZItI that is not a member of 0I' By the technique described in Theorem
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12.9, every context-sensitive grammar can be represented bya halting Turing ma
chine, and each such Turing machine has an encoding of its finite-state control.
Define L to be the set of all encodings of Turing machines that:

1. Represent context-sensitive grammars.
2. Reject their own encoding.

Providing a scheme for encoding the quadruple for a context-sensitive grammar is
.left for the exercises. Any reasonable encoding scheme will make it a simple task to
determine whether a candidate string represents nonsense or a valid context
sensitive grammar.

L can therefore be recognized by a halting Turing machine that:

1. Checks if the string on the input tape represents the encoding of a valid
context-sensitive grammar.

2. Calculates the encoding of the corresponding Turing machine.
3. Simulates that Turing machine being fed its own encoding.

This process is guaranteed to halt, since the Turing machine being simulated is
known to be a halting Turing machine. Thus, L E ~};. However, if LEO};, we find
ourselves in a familiar dilemma. If there is a context-sensitive grammar GL that
generates L, then this grammar would have a corresponding Turing machine TL,

which would have an encoding XL' IfXL did not belong to L, then by definition of Lit
would be an encoding of a machine (Ti.) that did not reject its own encoding (XL)'

Thus, TL recognizes XL, and therefore the corresponding grammar GL must generate
XL' But then XL E L (Gd = L, contradicting the assumption that ~L did not belong to
L. If on the other hand XL belongs to L, then, by definition of L, TL must reject its
own encoding (xd, and thus XL $. L (Td = L (Gd = L, which is another contradic
tion. Thus, no such context-sensitive grammar GL can exist, and L is not a context
sensitive language.
Ii.

The above diagonalization technique can be generalized; given any enum
erable class '€ of languages whose members are all represented by halting Turing
machines, there must exist a halting Turing machine that recognizes a language not
in'€ (see the exercises). The following theorem summarizes how the other classes of
languages discussed in the text fit in the language hierarchy.

V Theorem 12.16. Let!' be an alphabet for which 11!'11 ;:::·2. Then

~}; = W};= ~}; = '§}; C sth C '€}; = <;p}; C :£}; = V}; C ~}; C ~}; = '!J}; C pC!'*)

Proof. The relationship between the type 0, type 1, type 2, and type 3
languages was outlined in Theorem 11.10. Theorem 10~8 showed that sth properly
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lies between the type 3 and type 2 languages. Corollary 12.2 and Theorem 12.15
show that 'lItt. properly lies between the type 1 and type 0 languages and also show
that the type 1 languages are a proper subset of the type 0 languages. The existence
of languages that are not Turing acceptable shows that <fJt. is properly contained in
p(I*). A counting argument shows that proper containment of <fJt. in p(I*) also
holds even if I is a singleton set.
a

The relationships between six distinct and nontrivial classes of languages are
characterized by Theorem 12.16. Each of these classes is defined by a particular
type of automaton. The trivial class of all languages, p(I*), was shown to have no
mechanical counterpart. We have seen that type 3 languages appear in many useful
applications. Program design, lexical analysis, and various engineering problems
are aided by the use of finite automata concepts. Programming languages are always
defined in such a way that they belong to the class alt., since compilers should
operate deterministically. The theory of compiler construction builds on the mate
rial presented here; syntactic analysis, the translation from source code to machine
code, is guided by the generation of parse trees for the sentences in the program,
which in turn give meaning to the code. The type 0 languages represent the funda
mental limits of mechanical computation. The concepts presented in this text
provide a foundation for the study of computational complexity and other elements
of computation theory.

EXERCISES

12.1. Verify the assertions made in the proof of Theorem 12.1 concerning Theorem 2.7.
12.2. Prove Lemma 12.1.

12.3. Given an FAD language L, the minimal DFA accepting L, and another machine Bfor
which L(B) = L, prove that the number of nonfinal states in the minimal machine
must be equal to or less than the number of nonfinal states in B.

12.4. Given two DFAs Al = <I, Sb so" ~h, F;> and Az= <I, Ss, S02' ~lz, ~>, show that it is
decidable whether L(AI ) ~L(Az).

12.5. Given any alphabet I and a DFA A = <I, S, se,8, F>, show that it is decidable
whether L(A) is cofinite. (Note: A set Lis cofinite ifjits complement is finite, that is,
ifjI* - L is finite.)

12.6. Given any alphabet I and a DFA A= <I,S,so,8,F>, show that it is decidable
whether L(A) contains any string of length greater than 1228.

12.7. Given any alphabet I and a DFA A= <I,S,so,8,F>, show that it is decidable
whether A accepts any even-length strings.

12.8. Given any alphabet I and regular expressions R I and R, over I, show that it is
decidable whether R I and R, represent languages that are complements of each
other.

12.9. Given any alphabet I and regular expressions R I and R, over I, show that it is
decidable whether R I and R, describe any common strings.
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12.10. Given any alphabet I and a regular expression R 1 over I, show that it is decidable
whether there is a DFA with less than 31 states that accepts the language described by
R1 •

12.11. Given any alphabet I and a regular expressions R 1 over I, show that it is decidable
whether there is a DFA with more than 31 states that accepts the language described
by R1 • (You should be able to argue that there is a one-step algorithm that always
supplies the correct yes-no answer to this question.)

12.12. Given any alphabet I and a regular expression R over I, show that it is decidable
whether there exists a NDFA (with A-moves)with at most one final state that accepts
R.

12.13. Given any alphabet I and a DFA A = <I, S, sO, 8, F>, show that it is decidable
whether there exists a NDFA (without A-moves) with at most one final state that
accepts the same language A does.

12.14. Given any alphabet I and regular expressions R1 and Rz over I, show that it is
decidable whether R1 = Rz.

12.15. Given any alphabet I and regular expressions R1 and Rz over I (which represent
languages L1 and Ls, respectively), show that it is decidable whether they generate the
same right congruences (that is, whether RL 1 = RLz) '

12.16. Prove Theorem 12.5.

12.17. Outline an efficient algorithm for computing {3(so,Y)[Y EI* /\ n s; Iyl <2n} in the
proof of Theorem 12.2, and justify why your procedure always halts.

12.18. Consider intersecting the set {3(so,y) Iy E I* /\ 5n ::; Iy 1< 6n} with F to answer the
question posed in Theorem 12.2. Would this strategy always produce the correct
answer? Justify your claims.

12.19. Show that it is decidable whether two Mealy machines are equivalent.

12.20. Show that it is decidable whether two Moore machines are equivalent.

12.21. Given any alphabet I and a regular expression R, show that it is decidable whether R
represents any strings of length greater than 28. Give an argument that does not
depend on finite automata or grammars.

12.22. Given any alphabet I and a right-linear grammar G, show that it is decidable whether
L(G) contains any string of length greater than 28. Give an argument that does not
depend on finite automata or regular expressions.

12.23. Refer to the proof of Theorem 12.6 and prove that Zo~ Z, ~ ... ~ Z; ~ ... ~ n.
12.24. Refer to the proof of Theorem 12.6 and prove that if (3m E N)(Zm = Zm+l) then Zm

will then represent the set of all nonterminals that can be reached from the start
symbol S.

12.25. Refer to the proof of Theorem 12.6 and prove that (3m E N)(Zm = Zm+l)'
12.26. (a) Refer to the proof of Theorem 12.6 and give a formal definition of Wi.

(b) Prove that Wo~ W I ~ •.. ~ Wn ~ ••• ~n.
12.27. Refer to the proof of Theorem 12.6 and prove that if (3m E N)(W m = Wm+l) then Wm

will represent the set of all nonterminals that can produce valid terminal strings.

12.28. Refer to the proof of Theorem 12.6 and prove that (3m E N)(Wm = Wm+l).
12.29. Let A be an arbitrary NDFA (with A-moves). A string processed by A may successfully

find several paths through the machine; it is also possible that a string will be rejected
because there are no complete paths available.
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(a) Show that it is decidable whether there exists a string with no complete path in A.
(b) Show that it is decidable whether there exists a string that has at least one path

through A that leads to a nonfinal state.
(c) Show that it is decidable whether there exists a string accepted by A for which all

complete paths lead to final states.
(d) Show that it is decidable whether all strings accepted by A have the property that

all their complete paths lead to final states.
(e) Show that it is decidable whether all strings have unique paths through A.

12.30. Given two DFAs Al = <z, 51,so" 31,FI>and A2= <~, 52,so" 32,F2>:
(a) Show that it is decidable whether there exists a homomorphism between Al and

A2 •

(b) Show that it is decidable whether there exists an isomorphism between Al and A2 •

(c) Show that it is decidable whether there exist more than three isomorphisms
between Al and A2 • (Note: There are examples of disconnected DFAs for which
more than three isomorphisms do exist!)

12.31. Given any alphabet ~ and a regular expression R I over ~, show that it is decidable
whether R I describes an infinite number of strings. Do this by developing an
algorithm that does not depend on the construction of a DFA, that is, does not
depend on Theorem 12.2.

12.32. Given a Mealy machine M and a Moore machine A, show that it is decidable whether
M is equivalent to A.

12.33. Given any alphabet ~ and regular expressions RI and R2 over ~, show that it is
decidable whether the language represented by R2 properly contains that of RI •

12.34. It can be shown that it is decidable whether L(A) = f/J for any NDFA A by first finding
the equivalent DFA Ad and applying Theorem 12.1 to that machine.
(a) Give an efficient method for answering this question that does not rely on the

conversion to a DFA.
(b) Give an efficient method for testing whether L(A) is infinite for any NDFA A.

Your method should likewise not rely on the conversion to a DFA.
12.35. Given a DPDA M, show that it is decidable whether L(M) is a regular set.
12.36. (a) Refer to Theorem 12.9 and outline an appropriate algorithm for determining

paths in the graphs discussed.
(b) Give the details for a more efficient recursive algorithm.

12.37. Prove that 'Je}'. is closed under:
(a) Union
(b) Intersection
(c) Concatenation
(d) Reversal

12.38. Let L = L2(T) for some Turing machine T that halts on all inputs. That is, let L consist
of all strings that cause T to halt with Y somewhere on the tape. Prove that there exists
a halting Turing machine T" for which L = LlT) = L(1'). T' must:

1. Halt on all input.
2. Place a Y after the input word on an otherwise blank tape for accepted words.
3. Place an N after the input word on an otherwise blank tape for rejected words.

12.39. (a) Assume there is a Turing machine M'll that determines whether an encoding of a
Turing machine T belongs to some set X. Let the class of languages recognized by
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Turing machines with encodings in X be denoted by '€. Prove that if every
encoding in X represents a halting Turing machine then there must exist a halting
Turing machine that recognizes a language not in '€.

(b) Apply part (a) to prove Theorem 12.15.
12.40. (a) Outline a scheme for encoding the quadruple of context-sensitive grammars suit

able for use by a Turing machine. You may assume that there are exactly two
terminal symbols, but note that your scheme must be able to handle an un
restricted number of nonterminals.

(b) Outline the algorithm that a Turing machine might use to decide whether an input
string represented the encoding of a valid context-sensitive grammar.

12.41. Show that it is undecidable whether L (X) = 0for:
(a) Arbitrary Turing machines X
(b) Arbitrary halting Turing machines X
(c) Arbitrary context-sensitive grammars X
(d) Arbitrary linear bounded automata X

12.42. Show that it is undecidable whether L(X) = ~* for:
(a) Arbitrary Turing machines X
(b) Arbitrary halting Turing machines X
(c) Arbitrary context-sensitive grammars X
(d) Arbitrary linear bounded automata X
(e) Arbitrary context-free grammars X
(0 Arbitrary pushdown automata X •

12.43. Consider the set E of all encodings of Turing machines that halt on input A.. Prove or
disprove:
(a) EE~};

(b) Ee~};

(c) EeO};

12.44. Consider the set N of all encodings of Turing machines that do not halt on input A..
Prove or disprove:
(a) NE~};

(b) N.~};

(c) NEO};
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.s41:,358
Absorption laws, 3
Accept, 31, 35, 122

by empty stack, 330, 335
by final state, 41
circuitry, 51-53
Pascal implementation, 37

Acceptor. (see Finite automaton)
Accepting state, 23
Accessible state, 87
Addition automaton, 238-40
Algorithm, 86, 406

for finding connected states,
100, 107-8, 114

for finding the state equivalence
relation:

in a DFA, 103-7
in a FST, 224-25
in a MSM, 236

for reducing a DFA, 107
for reducing a transducer, 225,

236
for solving language equations,

185,189
Alphabet, 24

auxiliary, 366, 384
binary, 24
input, 30, 119,211,329,366,

384
output, 211
stack,329

Ambiguous context-free gram
mar, 290

Ambiguous context-free lan
guage, inherently, 296

Applications
of finite automata, 54, 123,

129-31,138-39
of finite-state transducers,

237
ASCII alphabet, 41-42, 47, 51
Associative laws, 3, 181
Automaton:

induced by a right congruence,
69,71-72

(see Finite automaton, Linear
bounded automaton,
Mealy sequential machine,
Moore sequential machine,
Pushdown automaton,
Turing machine)

Auxiliary tape of a PDA, 330

Backus-Naur form, 18,44, 127,
253

Balanced parentheses language,
372

Basic machines, 182-83
Basis step, 16
Biconditional, 2
Bijection, 11,94
Binary alphabet, 24
Binary operator, 146
Black box model, 28
Blank symbol, 366
BNF. (see Backus-Naur form)
Bottom of the stack, 328

symbol, 329

'€1:,296
Clanguage,40,421
Canonical form, 260, 276-78, 301

Chomsky normal form, 308
Greibach normal form, 310
principle disjunctive, 22

Cardinality, 13
Cartesian product, 5, 151,352
Characteristic function, 9
Chomsky normal form, 308
Circuit diagram, 3, 48, 50, 53,

133,140,244
Circuit implementation:

of deterministic finite auto
mata,46

of nondeterministic finite auto
mata,131

of nondeterministic finite auto
mata with lambda-moves,
139-40

of finite-state transducers,
242-44

Closure, 146-47
effective, 151
Kleene, 158
of language classes, 146,202-3,

274-75,319-23,352-60,
399-401

reflexive and transitive, 255,
262,335,370

unit, 306
Closure properties:

of context-free languages,
319-23

of deterministic context-free
languages, 359-60

of finite automaton definable
languages, 148-69

of Turing-acceptable languages,
399-401

under language homo
morphism, 164-65,320,
359-60,399-400

CNF. (see Chomsky normal form)
Coalescence of states, 88, 222,

235
Codomain of a function, 8
Cofinite, 21, 170
Cognitive device, 257
Comment recognition, 56
Commutative laws, 3, 181
Complementation, 142, 148, 162,

322,359,425
Complete parse tree, 285
Composition of functions, 11
Concatenation:

of languages, 153-57,275,321,
400

of strings, 25
Configuration:

of a pushdown automaton, 335
of a Turing machine, 370

Congruence. (see Right congru
ence)

Congruence modulo n, 6
mod 2 languages, 43
modular arithmetic, 78

Connected machine, 87, 220
Connected version

ofa DFA, 98
of a transducer, 220

Connectives, 1
Context-free grammar, 260

ambiguous, 290
decidable questions, 414
equivalence with pushdown

automata, 339
unambiguous, 296
pure, 260

Context-free language, 260, 284
closure properties, 319-23
deterministic, 358
inherently ambiguous, 296
unambiguous, 296

Context-sensitive grammar, 258
decidable questions, 416

433
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Context-sensitive grammar (cont.)
pure, 258

Context-sensitive language,
258-59,386

Contracting production, 257
Converse relation, 12
Correspondence, one-to-one, 11,

94
Countable set, 15,418
Countably infinite set, 14
Counting automaton, 328-29, 338
Cross product, 5, 151,352

2/)>;,147
DCFL. (see Deterministic

context-free languages)
Dead state, 117
Decidability, 405, 407

of equivalence of DFAs, 410
of equivalence of regular gram

mars, 412
of emptiness

of regular set, 407
of context-free language, 414

of finiteness
of regular set, 409
of context-free language, 414

of membership in CSL, 416
8 function. (seeExtended state

transition function)
8 function. (see State transition

function)
DeMorgan's laws, 3, 151
Denumerable, 15
Derivation, 262, 284-85

leftmost, 289
rightmost, 289

Derivation Tree, 285
Deterministic context-free lan

guages,358
closure properties, 359-60

Deterministic finite automaton,
28

circuit implementation, 46
homomorphism, 93
induced by a right congruence,

69,71-72
isomorphism, 87,94
minimization, 97
software implementation,

32-40
Deterministic pushdown automa

ton, 354
Deterministic Turing machine,

366,380
DFA. (see Deterministic finite

automaton)
D flip-flop, 47, 131
Diagonalization technique, 418,

427

Directly derives, 254, 262
Disjoint sets, 7
Disjunctive normal form. (see

Principle disjunctive nor
mal form)

Distinguishable states, 88-89, 222
Distributive laws, 3, 181
DO loop lookahead, 301
Domain of a function, 8
DPDA. (see Deterministic push

down automaton)
Duality, principle of, 3

Editors, text, 54-56
Effective closure, 151
Empty language, 41
Empty set, 41,179
Empty stack criteria for PDA

acceptance, 330, 335
Empty string, 27
Empty word, 27
Encoding of states and alphabets,

47-52
End-of-file (EOF) packet, 57-58
End-of-string <EOS>, 47-49,

131
End markers for LBA, 384
Enumerate, 15
Enumeration of move sequences,

381
EOF packet, 57-58
<EOS>, 47-49,131
e, 27, 179
e-move,134
Equality:

of sets, 4
of strings, 26

Equation system, 187
algebraic, 185, 188
derived from automaton, 191,

200
derived from grammars, 269

70
solution of, 185, 189, 198, 199

Equipotent, 13
Equivalence. (seeEquivalent)
Equivalence class, 6, 66
Equivalence relation, 5, 65

rank of, 68
right congruence, 65-68
between states (see State equiv-

alence relation)
Equivalent CFG corresponding to

PDA,346
Equivalent CSG corresponding to

a strict LBA, 395
Equivalent DFA corresponding to

an NDFA, 124-25, 130-31
Equivalent finite automata, 74,

97, 123, 127

Index

Equivalent finite-state trans
ducers, 217-23, 228-31,
232-36

Equivalent FST corresponding to
a MSM, 228

Equivalent grammars, 263
Equivalent logical expressions, 2,

16
Equivalent MSM corresponding

to a FST, 229-30
Equivalent NDFA without

lambda-moves, 136
Equivalent PDA corresponding to

CFG,339-40
Equivalent pushdown automata,

, 336,338,349,351
Equivalent regular expressions,

181
Equivalent representations, 264
Equivalent states, 88-89, 222
Equivalent Turing machine corre-

sponding to a type 0 gram
mar, 391

Equivalent type 0 grammar corre
sponding to a Turing ma
chine, 389

Evaluation of computer per
formance,56-57

Existential quantifier, 4
Extended output function, 214,

227
Extended state transition func

tion, 33, 120, 136, 214, 227
C implementation, 40
Pascal implementation, 35

»; 339
Factorial function, 17
FAD. (seeFinite automaton de

finable language)
Fetching instructions, 56
Final state, 30,119,211,329

criteria for PDA acceptance,
335

Finite automata, equivalent, 74,
97, 123, 127

Finite automaton, 23, 28
C implementation, 40
derived from regular expres-

sion, 182-84
deterministic, 28, 30
minimal deterministic, 87
nondeterministic, 119
Pascal implementation, 35

Finite automaton definable lan
guage,41

closure properties, 148-69
Finite rank, of a relation, 68, 70,

80
Finite set, 14, 170, 209, 409, 416
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Language (cont.}
hierarchy, 261, 401, 427
infinite, 171
inherently ambiguous, 296
homomorphism, 163, 164-65,

320,359-60,399-400
operators, 148-69,201
parsing, 285-301, 355
programming, 32-40, 56, 60,

63,65,138,163,355,
417-22

regular, 179
reverse of, 82,128-29,172,

206-7
Turing-acceptable, 257, 370
Turing-decidable, 424-25
type k, 257,259,260,269
unrestricted, 257
(see Context-free language,

Context-sensitive lan
guage, Regular language,
Turing-acceptable lan
guage)

Language acceptor. (see Finite au
tomaton)

Language generator. (see Gram
mar)

LBA. (see Linear bounded au-
tomaton)

Left-linear grammar, 267
Left-linear set equations, 199
Leftmost derivation, 289
Left recursion, 310

elimination of, 311-15
Length:

of a derivation, 310
of a path, 75
of a string, 25

with respect to b, 26
preservation, 164, 214

Letter. (see Symbol)
LEX, 138
Lexicographic order, 381, 402
Linear bounded automaton, 376,

384
strict, 392

LL(k) grammar, 301, 356-57
Logic gates, 2, 46
Lookahead. (see LL(k) grammar)

M modulo its state equivalence re
lation, 100,222,235

Machine. (see Automaton)
Mathematical induction. (see In

duction)
Mealy sequential machine. (see

Finite-state transducer)
Minimal deterministic finite au

tomaton, 54, 74, 95, 86-87
Minimization of deterministic

finite automata, 97

Minimization of finite-state
transducers, 217

Minimization of logic circuitry, 2,
50

Minimization of Moore sequential
machines, 234-36

Minimum-state machine, 102,
225,236

Modulo. (see Congruence modulo
n, M modulo its state
equivalence relation)

Moore sequential machine, 225
minimization, 234-36

MSM. (see Moore sequential ma
chine)

Multihead Turing machine,
377-78

Multiple transitions, 118, 380
Multitape Turing machine, 379
Multitrack Turing machine,

376-77
Mutual exclusion laws, 3

.N...,162
Natural numbers, 4, 15
NDFA. (see Nondeterministic

finite automaton)
NDPA. (see Nondeterministic

pushdown automaton)
Nerode's Theorem, 70
Nondeterministic finite automa

ton, 116,266,303-6,338
circuit implementation, 131,

139-40
with lambda transitions, 134

Nondeterministic pushdown au
tomaton, 329

Nondeterministic Turing machine,
380

Nongenerative production, 306
Nonterminal, 255

left-recursive, 310
useful, 302
useless, 302

Normal forms, 260, 276-78, 308,
310

(see also Canonical forms)

0... ,386
Ogden's lemma, 318
n. (see Output alphabet)
lii function. (see Extended output

function)
eo function. (see Output function)
One-to-one correspondence, 11,

94
One-to-one function, 10
Onto function, 10
Opcodes,56

Index

Operator:
binary, 146
language, 148-69,201
unary, 147

Order, lexicographic, 381, 402
Ordered pair, 335
Ordered quadruple, 256, 258,

260, 262, 267
Ordered quintuple, 30, 119, 366
Ordered septuple, 329
Ordered sextuple, 211, 226
Ordered triple, 31, 335
Output alphabet, 211
Output circuitry, 244
Output function, 211

extended, 214, 227

13'...,339
Packets, in Kermit protocol, 57
Pairwise disjoint, 7
Palindrome, 82

center-marked, 82
Parenthesis checker, 372
Parse trees, 284

complete, 285
Parsing, 285-301, 355
Partial state equivalence relation,

103,224,236
Partition, 7, 70

induced, 7
induced by a DFA, 68

Pascal, 65, 417-21
begin-end pairs, 163
comments, 56, 63
DFAimplementation,32-39

Path:
in the graph corresponding to a

CSG,416
through an automaton, 75-77

Pattern matching, 55-56, 123,
129, 130

PCNF. (see Pure Chomsky normal
form)

PDA. (see Pushdown automaton)
PDNF. (see Principle disjunctive

normal form)
Performance evaluation, 56-57
PGNF. (see Pure Greibach nor-

mal form)
Pop off stack, 328
Postfix arithmeticlanguage, 63
Post system, 374
Power set, 13, 124
Precedence rules, 180
Predicate, 3-4
Prefetching instructions, 56-57
Prefix language, 172
Preorder traversal of parse tree,

289-90
Prime length language, 82, 175
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Finite state control, 28-29, 211,
366

Finite-state transducer, 211
circuit implementation, 242-44
homomorphism, 218, 232
isomorphism, 218, 232
minimization, 217

Finite transducer definable, 216
Flip-flop:

D, 47,131
SR,131

V,4
Formula, statement, 1, 16-17
FORTRAN identifier grammar,

253-54
FORTRAN identifier language,

41-42
FORTRAN lookahead problem,

301
FST. (see Finite-state transducer)
FTD. (see Finite transducer de

finable)
Function, 8

codomain, 8
composition, 11
characteristic, 9
domain, 8
factorial, 17
one-to-one, 10
onto, 10
homomorphism, 93, 218, 232
identity, 13,65,81,165,203
injective, 10
inverse, 12
isomorphism, 94, 218, 232
output, 211

extended, 214, 227
recursive, 17, 33, 374
range, 10
state transition, 30, 33, 119,

211,366,384
extended, 33, 120, 136,214,

227
surjective, 10
translation, for transducer, 215
well-defined, 8, 69, 96

'9>:,264
Garbage state, 117
Gates, logic, 2, 46
GCD. (see Greatest common di-

visor)
Generation of a language, 257
Generative device, 257
GNF. (see Greibach normal form)
Godel, K., 374
Grammar, 253

ambiguous, 290
context-free, 260
context-sensitive, 258
decidable questions, 412-16

hierarchy, 261, 401, 427
left-linear, 267
LL(k), 301, 356-57
pure, 258, 260
regular, 267, 269
right-linear, 262
unambiguous, 290
unrestricted, 256

Graph, 31, 416
Greibach normal form, 310

'iJe>:,425
Halting problem, 417

in C, 421
in Pascal, 419
for Turing machines, 374

Halt state, 366
Head:

multiple, 377-78
read, 28, 210
read/write, 330, 365
write, 210

Head recursion, 58-59
Height of a parse tree, 316
Hierarchy:

of grammars, 253
of languages, 261, 401, 427

Homomorphism:
between deterministic finite au

tomata,93
between finite-state trans

ducers,218
between Moore sequential ma

chines, 232
language, 163

closure properties, 164-65,
320,359-60,399-400

Identity element, 180
Identity function, 13,65,81,165,

203
Identity relation, 5, 91
Ill-defined. (see Well-defined)
Implementation:

of deterministic finite auto
mata:

with hardware, 46
with software, 32-40

of nondeterministic finite auto
mata,131

of nondeterministic finite auto
mata with lambda-moves,
139-40

of finite-state transducers,
242-44

Implies, 4
Increasing condition, 313
Induced partition, 7
Induced relation, 67
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Induction, 15,33-34, 126
strong, 21

Inductive step, 16
Infinite automata, 80
Infinite set, 14,409,416
Infix language, 84
Inherently ambiguous language,

296
Initial set, 68, 90,115,199
Initial state, 30, 119,211
Injective function, 10
Input alphabet, 30,119,211,329
Input tape, 28
Instance of a question, 407
Integer, 4
Intersection:

of two languages, 151-53, 163,
322,359,399-400

with a regular set, 352-53
Inverse function, 12
Inverse homomorphism, 165-67
Isomorphic automata, 95-97, 219
Isomorphism:

between deterministic finite au
tomata, 87, 94

between finite-state trans
ducers,218

between Moore sequential ma
chines, 232

ith partial state equivalence re
lation, 103,224,236

ith partial state set relation, 107

Kermit protocol, 57-58, 237-38
Kleene closure, 158,274,321,

359-60,400

:£>:,386
A. (see Empty string)
A-calculus,374
A-closure, 135
A-move, 134
A-transition, 134
Language, 37

accepted by a deterministic fi
nite automaton, 41

accepted by a nondeterministic
finite automaton, 122

accepted by a pushdown autom
aton:

via empty stack, 335
via final state, 335

ambiguous, 290
cofinite, 170
context-free, 260, 284
context-sensitive, 257
equations, 185,269-74
FAD, 41
finite, 170,209
generation of, 257
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Principle disjunctive normal form,
2,50

Procedure,86,405
(see Algorithm)

Production, 18,254-55
A-rule, 261
contracting, 257
nongenerative, 306
unit, 306
useful, 302
useless, 302

Programming language, 32-40,
56,60,63,65,138,163,
355,417-22

Protocol, Kermit, 57-58, 237-38
Pumping lemma, 75
Pumping theorem, 315
Pure:

Chomsky normal form, 308
context-free grammar, 260
context-sensitive grammar, 258
Greibach normal form, 310

Pushdown automaton, 327
closure properties, 352-60
configuration, 335
decidable questions, 416
deterministic, 354-60
equivalence with context-free

grammars, 339, 346
equivalence with other PDAs,

336,338,349,351
nondeterministic, 329
two-stack, 352

Pushdown stack, 328-9
Push onto stack, 328

Quadruple, 256, 258, 260, 262,
267

Question, 407
Quintuple, 30, 119,366
Quotient:

of two languages, 169-70
with a regular language, 169

Ill;, 182
Range of a function, 10
Rank of a relation, 68
Rational number, 4
Read head, 28, 210
Read/write head, 330, 365
Real number, 4
Recognizer. (See Finite automa

ton)
Recursion, 17,58-59

left, 310
elimination of, 311-15

Recursive function, 17, 33, 374
Reduced deterministic finite au

tomaton,91
Reduced machine, 91, 222

Reduced transducer, 222
Reduced version

ofa DFA, 100
of a transducer, 222, 235

Refinement, 7-8, 71, 104,224-25
Reflexive relation, 5, 65-66
Reflexive and transitive closure,

255,262,335,370
Regular expression, 179

identities, 181
Regular expression grammar,

254-55,286-87,340,345
with unique delimiters, 355
deterministic, 356-57

Regular grammar, 267, 269
(see Right-linear grammar,

Left-linear grammar)
Regular language, 201 (see Regu

lar set)
Regular set, 179

closure properties, 201-3
decidability problems, 405-13
derived from DFA, 184

Reject, 31, 35, 122
Relabelling of states, 91 (see Ho

momorphism, Isomor
phism)

Relation, 5
converse, 12
equivalence, 5, 65
identity, 5, 91
induced by a language, 67
induced by a machine, 68
refinement, 7-8, 71, 104,

224-25
reflexive, 5, 65-66
rank, 68
right congruence, 66
state equivalence, 88-89, 222

ith partial, 103,224,236
symmetric, 5, 65-66
transitive, 5, 65-66

Relatively prime language, 78
Replacement rule. (seeProduc

tion)
Reset circuitry, 51
Reverse:

ofalanguage, 128-29, 172,
206-7

of a string, 82, 172
tape processing for addition,

239
Right congruence, 65

corresponding to a DFA, 71-72
induced by a language, 67
induced by a DFA, 68

Right-linear grammar, 261
constructed from a DFA, 264
equivalence of left-linear gram

mar, 269
yielding a NDFA, 266

Right-linear set equations, 185-99
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Rightmost derivation, 289
Roman numeral language, 64

Sack and stone automaton, 328
Scientific notation language,

43-46
Semantics, 287
Sentence, 25
Septuple, 329
Sequential machine. (see Finite

state transducer)
Set, 4

cardinality, 13
countable, 15,418
denumerable, 15
empty, 41, 179
equations (seeLanguage equa-

tions)
finite, 14
infinite, 14
uncountable, 15,418

Sextuple, 211, 226
Ship transmission example, 123
:r. (seeAlphabet)
:r\ 27
:r + ,27-28
:r*,27-28
Simulating machine behavior,

376-81
<SOS>, 51,131
Stack, 328-29

alphabet, 329
bottom symbol, 329

Start-of-string <SOS>, 51, 131
Start state, 30, 119, 211, 329, 366,

384
Start symbol, 255
State:

accessible, 87
accepting, 23
active, 122, 131
dead, 117
disconnected, 88
distinguishable, 88-89, 222
final, 30, 119,211,329
garbage, 117
halt, 366
inaccessible, 88
initial, 30, 119,211
reachable, 87
start, 30, 119,211,329,366,

384
unreachable, 88

State equivalence relation:
decidability application, 410
for DFAs, 88-89
for transducers, 222
partial, 103,224,236

Statement, logical, 1
State transition diagram, 31-32
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State transition function, 30, 33,
119,211,366,384

extended, 33, 120, 136,214,227
State transition table, 31-32
Stone and sack automaton, 328
String, 25

concatenation, 25
empty, 27
matching, 55-56, 123, 129, 130
reverse of, 82

Submachine, 368,372
Subset, 4

proper, 5
Substitution:

regular set, 201
closure properties, 202-3, 320,

359-60, 399-400
context-free language, 319

Substring, 27
Subtraction grammar, 291-96,

319
Suffix language, 172
Surjective function, 10
Symbol, 24, 28

blank, 366
buffer, 349
end markers for LBA, 384
nonterminal,255
terminal, 255

Symmetric relation, 5, 65-66
Syntax, 18

correctness, 287
diagrams, 18

'!f>:,381
Tail recursion, 33, 58-59
Tape:

auxiliary, 330
blank,366
input, 28
multitrack,376-77
output, 211
stack,328
two-dimensional,379

Tape head, 28, 210, 330
Terminal set, 90,115,187,191,

199
Terminal symbol, 255
3,4
Top of a stack, 328
Traffic signal emulation, 240-42,

248-49

Transducer. (see Finite-state
transducer, Moore se
quential machine)

Transition function. (see State
transition function)

Transitive relation, 5, 65-66
Translation function for trans

ducer, 215
Tree. (see Derivation tree, Parse

trees)
Truth tables, 1-2,50,53, 132,

243-44
Turing-acceptable language, 257,

370
closure properties, 399-401

Turing-decidable language,
424-25

Turing, A., 374
Turing machine, 366

acceptance criteria, 370-71
blank symbol, 366
bounded:

on one end, 376
on both ends (see Linear-

bounded automaton)
configuration, 370
corresponding grammar, 389
deterministic, 366
encoding, 422
halt state, 366
halting problem, 374
linearly bounded, 376, 384

strict, 392
moves, 366-67
multihead,377-78
multitape,379
multitrack,376-77
nondeterministic, 380
submachines, 368, 372
two-dimensional,379
undecidable problems, 422

Turing's World, 24, 367, 372, 375
Type 0 grammar. (see Un

restricted grammar)
Type 0 language. (see Turing

acceptable language)
Type 1 grammar. (see Context

sensitive grammar)
Type 1 language. (see Context

sensitive language)
Type 2 grammar. (see Context

free grammar)
Type 2 language. (see Context

free language)

Index

Type 3 grammar. (see Regular
grammar)

Type 3 language. (see Regular set)

OU>:,296
Unambiguous context-freegram-

mar, 296
Unary operator, 147
Uncountable, 15,418
Undecidable problems:

Pascal halting problem, 417-22
Turing machine halting prob

lem, 422
word acceptance by a Turing

machine, 423-24 "
word generation in a type 0

grammar, 423
Union, 148-50,274,321,359,

399-400
Unique minimum-state machine,

102,225,236
Unit closure, 306
Unit production, 306
Universal quantifier, 4
UNIX, 138
Unrestricted grammar, 256
Unsolvable problem. (see Un-

decidable problems)
Useful nonterminal, 302
Useful production, 302
Useless nonterminal, 302
Useless production, 302

Vending machine, 29, 54, 212

W>:,162
Well-defined function, 8,69, 96
Word. (see String)
Write head, 210

\f>:,325

Yield in one step, 254, 262
Yield in k steps, 255, 262

~>:, 381


