
Chapter 1
Deontic Logics based on Boolean Algebra

Pablo F. Castro and Piotr Kulicki

Abstract Deontic logic is devoted to the study of logical properties of normative
predicates such as permission, obligation and prohibition. Since it is usual to ap-
ply these predicates to actions, many deontic logicians have proposed formalisms
where actions and action combinators are present. Some standard action combina-
tors are action conjunction, choice between actions and not doing a given action.
These combinators resemble boolean operators, and therefore the theory of boolean
algebra offers a well-known mathematical framework to study the properties of the
classic deontic operators when applied to actions. In his seminal work, Segerberg
uses constructions coming from boolean algebras to formalize the usual deontic no-
tions. Segerberg’s work provided the initial step to understand logical properties of
deontic operators when they are applied to actions. In the last years, other authors
have proposed related logics. In this chapter we introduce Segerberg’s work, study
related formalisms and investigate further challenges in this area.

1.1 Introduction

The so-called boolean operators (or, and, not) are commonly used in ordinary lan-
guage as basic connectors in phrases to put together propositions, subjects and verbs.
George Boole in his famous text An Investigation of the Laws of Thought [5] was one
of the first mathematicians (if not the first) to study the mathematical properties of
these connectors, his work is considered a cornerstone of modern logic, and can be
thought of as capturing some universal laws of logic. One of the main contributions
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of George Boole to logic was the characterization of logical reasoning by means of
algebraic equations. Since then, boolean algebra and its generalizations (boolean al-
gebras with operators [15, 16]) have been used to study the mathematical properties
of logics by means of algebras. A boolean algebra is made up of a non-empty set of
elements, binary operators +,×, the unary operator − and two distinguished con-
stants 0 and 1. Several (complete) axiomatizations of boolean algebras have been
proposed in the literature; the following axiomatization comes from [12].

• −0 = 1 and 0 =−1 (Zero and One laws).
• x×0 = 0 and x+1 = 1 (Absorption of zero and one laws).
• x×1 = x and x+0 = x (Identity laws).
• x×−x = 0 and x+−x = 1 (Inverse laws).
• −(−x) = x (Involution law).
• x× x = x and x+ x = x (Idempotent laws).
• −(x× y) =−x+−y and − (x+ y) =−x×−y (De Morgan laws).
• x× y = y× x and x+ y = y+ x (Commutativity laws).
• x× (y× z) = (x× y)× z and x+(y+ z) = (x+ y)+ z (Associativity laws).
• x× (y+ z) = (x× y)+(x× z) and x+(y× z) = (x+ y)× (x+ z) (Distributivity

laws).

This set of axioms is not the smallest one possible, but it exposes the standard prop-
erties of boolean algebras. It is straightforward to see that these properties are true
for set intersection, set union and set complement in any field of sets. One may
think of logical propositions such as it is raining or the wall is white as elements of
a boolean algebra; and therefore the boolean operators allow us to construct more
complicate statements, such as: it is raining or it is sunny; the wall is not white;
it is raining and the wall is white. As a consequence, propositional logic can be
seen as a boolean algebra, the formal technique to connect both worlds is called
Lindenbaum-Tarski algebra, which is a boolean algebra made up of equivalence
classes of sentences and the corresponding operations [29].

Two useful concepts that we will use through this chapter are those of ideal and
filter; an ideal I of a boolean algebra B is a non-empty set I ⊆ B satisfying the
following conditions:

1. If x ∈ I and y ∈ I, then x+ y ∈ I,
2. If x ∈ I and y ∈ B, then x× y ∈ I.

The dual notion of ideal is called filter: a filter is a non-empty subset F ⊆ B such
that it satisfies:

1. If x ∈ F and y ∈ F , then x× y ∈ F ,
2. If x ∈ F and y ∈ B, then x+ y ∈ F .

An ideal that is not a (proper) subset of another ideal is called maximal ideal; on
the other hand, maximal filters are called ultrafilters; and they are one of the key
notions of boolean algebra, for instance, ultrafilters are usually used for proving
Stone’s representation theorem [29]. We do not intend to introduce boolean algebras
in detail in this chapter, good references are [29, 12].
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Let us take another possible intuitive view of a boolean algebra: we may think of
actions as elements of a boolean algebra, and so action combinators are the opera-
tions in this algebra. For instance, one may think of the action of driving as the set
of all the ways in which one may drive: driving fast, driving slow, etc. Let us note
that the boolean operators capture the way in which these sets can be combined;
for example, consider the action of driving and the action of drinking, the boolean
operators allow us to consider the following actions: driving or drinking; driving
and drinking; not driving, etc. Roughly speaking, the first action expresses a choice
between actions: one may perform any of these actions; the second one expresses
an execution of two actions at the same time: one is driving and drinking; while the
third one captures the notion of alternative action: one performs an action other then
driving.

That is, at first sight, boolean algebras provide a useful mathematical framework
to study basic properties of actions when they are combined in a simple way. In that
framework different properties of actions can be analyzed. One type of such prop-
erties is the normative value of actions, which is investigated within deontic logic.
Deontic logic can be most generally defined as a logic for rational agents acting in
situations in which some kind of norms regulating their behaviour is present. The
norms can be of a various nature - moral, legal, technical, organizational. Deon-
tic action logic is a branch of this discipline in which norms are applied to actions
(alternatively norms might be linked with states of affairs).

Within deontic action logic, the deontic value of boolean combinations of basic
actions is worthy of being investigated. For example, if the action of drinking is
permitted to be performed in any scenario (that is, it is allowed in a strong sense),
then it is natural to think that we are allowed to drink while performing any other
action (e.g., drinking while driving); in the interpretation of actions given above, this
implies that permitted actions form an ideal in the algebra of actions. We discuss
these ideas in detail in section 1.3.

Let us remark that deontic logic is naturally related to the study of the logical
properties of actions; St. Anselm, who investigated the properties of the Latin ex-
pressions facere and non facere, is considered the precursor of the formal study of
actions and related concepts; his work has been an inspiration for contemporary au-
thors, the reader can find a detailed introduction to the history of logic of actions
in [28]. Modern logic of actions starts with the works of Belnap (stit logic) [3],
Kanger [19], von Wright [34] and Segerberg [27] between others. In this text, we
focus on those works where boolean algebras are used as a formalism to capture the
properties of actions when combined with deontic predicates.

The chapter is organized as follows. In the next section we briefly review the his-
tory of deontic logic before Segerberg’s work. In section 1.3 we introduce Segerberg
formalism with some remarks; in section 1.4 we introduce review some contempo-
rary works in deontic logic based on boolean algebra. Finally, in the last sections,
we investigate future lines of research, and present some final remarks.
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1.2 Deontic action logic before Segerberg

Elements of logic of norms, preferences and imperatives were present all along the
history of logic. First traces of formalization of deontic reasonings can be found
already in the works of Aristotle, Aquinas and G.W. Leibniz. In modern times it
was followed by the works of authors (philosophers, logicians and theorists of law)
such as B. Bolzano, A. Hofler, E. Husserl, G.E. Moore, E Westermarck, P. Lapie,
E. Mally, K. Menger, W. Dubislav, J. Jorgensen, A. Ross, A. Hofstadter, J.C.C.
McKinsey, R.M.Hare, R. Rand, but these works lack formal development or clarity
in the understanding of the nature of norms. Thus, they cannot be treated as mature
logical systems. We shall not present the details of those works, one can find a
detailed presentation in [18].

The beginning of contemporary deontic logic is connected with von Wright’s
work published in 1951 [33], in which he presented the first system of that kind
with the use of techniques of formal logic as we understand it by now.1

There are two main assumptions of this system. Firstly, deontic notions (from
which von Wright is interested in obligation, permission and forbiddance) are ap-
plied to actions. Secondly, deontic notions are treated as modal operators along with
alethic, epistemic and existential modalities. Thus, obligatory is understood as an
analogous of (alethic) necessary, (epistemic) known and (existential) for all, permit-
ted – possible, undecided and for some, and finally forbidden – impossible, falsified
and for some but not for all.

After von Wright’s first paper, most of the work in deontic logic followed the
second assumption neglecting the first one. What was created then is usually called
standard deontic logic formally built in the same way as other modal systems, in
which propositions are arguments of modal operators. It was Segerberg who re-
versed this tendency.

Von Wright, already in his first paper, points out a few more important issues. He
distinguishes types of actions from individual actions. He calls the first ones acts,
and understands them as properties of individual actions defining a type and act-
individuals - particular actions. In his system he uses the first ones. He assumes that
there is a finite number of atomic acts from which one can create complex acts using
boolean operators. He called such complex actions molecular complexes. The same
symbols were used for the operators for creating complex acts as well as for truth
functions. That made it easy to shift to standard deontic logic. However, at that stage
they were intuitively divided and consequently the nesting of deontic operators was
not possible.

Von Wright did not introduce any formal semantics for his first deontic system.
Instead, he formed several laws of deontic logic which he used as a foundation of
his system. They were described as follows.

• A Principle of Deontic Distribution

1 von Wright in [35] lists three ‘founding fathers’ of modern deontic logic: himself, J. Kalinowski
and O. Becker. All of them published their first papers on deontic logic in early 1950s we shall
concentrate on the work of von Wright is closest to.
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“If an act is a disjunction of two other acts, then the proposition that the disjunc-
tion is permitted is the disjunction of the proposition that the first act is permitted
and the proposition that the second act is permitted” ([33] page 7).
Let us remark that an analogous principle for conjunction does not hold.

• A Principle of Permission
“Any given act is either itself permitted or its negation is permitted” ([33] page
9).

• A Principle od Deontic Contingency
“A tautologous act [an act that is performed no matter what an agent does] is not
necessarily obligatory, and a contradictory act is not necessarily forbidden” ([33]
page 11).

Since nesting of deontic operators is not allowed, the Principle of Deontic Dis-
tribution and the Boolean character of operators on acts imply that every deontic
proposition can be transformed to a form called by von Wright absolutely perfect
disjunctive normal form. This normal form can be used for the verification of deon-
tic propositions.

Some other contributions to deontic logic of action logic, which occurred be-
tween the first works of von Wright on deontic logic and Segerberg’s works, are
also worth mentioning. The first of them is a strict distinction between names of ac-
tions and propositions introduced in [17]. That was related to a division of the field
to deontic logic of action (ought-to-do logic) and deontic logic of states (ought-to-be
logic).

Another important contribution was the introduction of formal semantics into de-
ontic action logic. It took the form of 3-valued matrices. In [17] a matrix for nega-
tion was presented and in [10] the idea was extended to conjunction and disjunction
of actions (being the concept of action or ‘inner’ counterparts of operators of the
propositional calculus). Aquist in [2] has shown that using matrices results in some
intuitive difficulties, but nonetheless the general idea of applying formal semantics
defining the meaning of deontic notions on the basis of the way that complex actions
are constructed from basic ones is important for further development of the field.

Finally, it was pointed out that deontic logic must be closely related to the theory
of action. An interesting formulation of that idea is given in [35]. He concludes that
there are branches of logic which are related to deontic logic to such extent that they
may be regarded as extensions or offshoots of it. In particular, that applies to the
formal theory of action and the logic of change.

The presentation of action logic introduced in the same paper of von Wright is
also interesting and important for our further investigations. Actions are linked to
and characterized by their results. Symbol [p]x is used to express the fact that action
x results in state p. Then, deontic notions are applied to actions via states, which are
the results of the actions.

In such a presentation, action theory and deontic logic are put in one system
which for that reason can be regarded as a hybrid one. Segerberg, as we describe in
details in the next section, divides it strictly, leaving the deontic part in the system
itself and shifting action theory to the semantics of the system.
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1.3 Segerberg’s deontic logic

In [26], Segerberg proposes to study the properties of the standard deontic oper-
ators using the mathematical theory of boolean algebras. The basic idea behind
Segerberg’s work is to interpret actions as elements of a boolean algebra and deon-
tic operators as sets of elements in this algebra; intuitively, deontic operators denote
the set of elements that make them true. These sets satisfy some well-known prop-
erties: they are closed for boolean conjunction and boolean inclusion; that is, they
are ideals of the corresponding algebra. As explained in the introduction, fields of
sets are boolean algebras, and then, there is a, more or less, straightforward way of
getting an intuitive semantics based on sets: actions are interpreted as sets of out-
comes, and then the permission and prohibition operators are interpreted as sets of
outcomes that fulfill some requirements; these conditions imply that these sets de-
scribe ideals in the underlying boolean algebra of sets; and so both approaches to
the semantics are equivalent. In the following we introduce the syntax and seman-
tics of Segerberg’s logic with some remarks that will be useful in the next sections,
the interested reader can find the details in [26].

Vocabularies are made up of a denumerable set of action letters: {a,b,c, . . .}2,
we consider two action constants 0 and 1. Actions may be combined with the use
of action operators: negation represented by an overline, parallel execution (t) and
free choice (sqcap). Atomic formulae are Perm(α) (α is allowed), Forb(α) (α is
forbidden) and α = β (α and β denote the same action). We also have the standard
propositional combinators: If ϕ and ψ are formulae, then ϕ ∧ψ , ϕ ∨ψ , ϕ → ψ and
¬ϕ are formulae. There are two equivalent ways of providing the semantics of this
logic: one is interpreting actions as elements of a boolean algebra, the other one is
by interpreting them as subsets of a set of possible outcomes. Let us introduce both
semantics.

Consider structures of the form A = 〈A,×,+,−,0,1,F,P〉, where 〈A,×,+,
−,0,1〉 is a boolean algebra, F and P are ideals of this algebra and F ∩P = {0}
(i.e., they are disjoint ideals). We can define a valuation function, which maps ac-
tions to elements of the boolean algebra, as follows:

• v(0) = 0.
• v(1) = 1.
• v(α uβ ) = v(α)× v(β ).
• v(α tβ ) = v(α)+ v(β ).
• v(α) =−v(α).

Using v we define a satisfaction relationship ²A between boolean algebras, valuation
functions, and formulae, as follows:

• A ,v ²A α = β ⇐⇒ v(α) = v(β ).
• A ,v ²A Forb(α)⇐⇒ v(α) ∈ F .
• A ,v ²A Perm(α)⇐⇒ v(α) ∈ P.

2 In [26], these letters are called event letters, since this terminology may cause some confusion
with the meaning given to the word event in other related logics, we call them action letters.



1 Deontic Logics based on Boolean Algebra 7

• A ,v ²A ϕ ∧ψ ⇐⇒A ,v ²A ϕ and A ,v ²A ψ .
• A ,v ²A ϕ ∨ψ ⇐⇒A ,v ²A ϕ or A ,v ²A ψ or both.
• A ,v ²A ¬ϕ ⇐⇒ not A ,v ²A ϕ .
• A ,v ²A ϕ → ψ ⇐⇒ not A ,v ²A ϕ or A ,v ²A ψ , or both.

We say that ² ϕ (ϕ is algebraically valid) iff A ,v ² ϕ for every deontic action
algebra A and every valuation v. Furthermore, given a set of formulae Γ , we say
that Γ ² ϕ , if for every valuation v and every algebra A , we have that, if A ,v ² ψ ,
for every ψ ∈ Γ , then A ,v ²A ϕ .

Another interpretation of deontic operators is obtained by using set theory, we
say that a structure F = 〈U, Ill,Leg〉 is a deontic action frame (or deontic model) if
U is a set and Ill,Leg⊆U are two subsets of U such that Ill∩Leg = /0. We can think
of U as the set of all possible outcomes. In this setting, the set Leg is the set of legal
outcomes, and the set Ill is the set of illegal outcomes. A valuation is a function v
from actions letters to the powerset of U . We can extend the definition of v using the
usual set operators.

• v(0) = /0.
• v(1) = U .
• v(α uβ ) = v(α)∩ v(β ).
• v(α tβ ) = v(α)∪ v(β ).
• v(α) = U− v(α).

We can define a relationship ² between deontic models and formulae in a similar
way that we defined ²A ; we only introduce definitions for the deontic operators, the
other ones are as usual.

• F ,v ² Perm(α)⇐⇒ v(α)⊆ Leg.
• F ,v ² Forb(α)⇐⇒ v(α)⊆ Ill.

We say that ² ϕ if F ,v ² ϕ for every valuation v and model F . Similarly, we define
the relationship Γ ² ϕ between formulae.

Segerberg proved that the two notions of validity coincide. We do not present the
proof here, the interested reader can consult [26].

Theorem 1. For every set of formulae Γ and formula ϕ , we have:

Γ ² ϕ ⇔ Γ ²A ϕ

The logic has a simple axiomatic system:

1. Axioms of boolean algebra for =.
2. Axioms for equality.
3. Forb(α tβ )↔ Forb(α)∧Forb(β ).
4. Perm(α tβ )↔ Perm(α)∧Perm(β ).
5. α = 0↔ (Forb(α)∧Perm(α)).

The unique deduction rule is the ancient modus ponens. If we have a proof (in the
standard sense) of a formula ϕ , we say that ` ϕ ; we also use this notation when we
assume ϕ as an extra axiom. Note that axioms 3 and 4 state that prohibition and
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permission form ideals, while the last formula says that they denote disjoint sets.
Using Lindenbaum-Tarski algebras we can prove the (strong) completeness of this
system:

Theorem 2. Γ ` ϕ ⇔ Γ ² ϕ .

We do not reproduce the proof of this theorem, but it can be found in [26]. Let us
explain the main technique used for the proof, since it will be useful in the next
sections. Given a maximal consistent set of formulae Σ , we can define a relation of
equivalence between actions, as follows:

α ≡Σ β ⇐⇒ (α = β ) ∈ Σ

Since Σ is maximal, it is straightforward to prove that it is closed for the axiomatic
system presented above, and therefore = is an equivalence relation. Each action has
an associated equivalence class:

αΣ = {β | α = β ∈ Σ}

Using these ideas we can define the following algebra (the so-called Lindenbaum-
Tarski algebra):

〈∆/Σ ,uΣ ,tΣ ,−Σ ,0Σ ,1Σ ,PΣ ,FΣ 〉
where:

• ∆/Σ = {αΣ | α is an action }, is the set of equivalence classes of actions.
• αΣ uΣ βΣ = (α uβ )Σ .
• αΣ tΣ βΣ = (α tβ )Σ .
• −Σ αΣ = (−α)Σ .
• PΣ = {αΣ | Perm(α) ∈ Σ}.
• FΣ = {αΣ | Forb(α) ∈ Σ}.

This algebra is a model for the set Σ , and therefore this proves the strong com-
pleteness of the system w.r.t. the algebraic models; to prove the completeness w.r.t.
deontic models it is necessary to use the stone representation theorem to obtain a
canonical model. Notice that the deontic operators induce ideals on the Lindebaum-
Tarski algebra; these ideals are then used for defining the model. The Lindenbaum-
Tarski construction will be useful for proving the completeness of related logics in
section 1.4.

An important principle in jurisprudence (and therefore in deontic logic) is the
so-called Closure Principle: what is not forbidden is allowed. Note that this prin-
ciple is not a theorem of the system shown above. Because of this, Segerberg calls
this logic Basic Open Deontic Logic (or BOD for short). The non-validity of the
closure principle in this logic can be proven by inspecting the deontic models where
we may have some outcomes that do not belong to Ill or Leg. Deontic logics that
satisfy the closure principle are called closed, one is tempted to add the following
restriction to models to obtain a closed logic: U = Ill ∪Leg, which seems to guar-
antee the closure principle; however, as shown in [27], these kinds of models are
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equivalent to the standard models (that is, they satisfy the same formulae in BOD).
This seems surprising at first sight; however, this is a consequence of the impos-
sibility of capturing individual outcomes using terms – action terms denote sets of
outcomes, and the syntactical construction of the logic do not allow us to distinguish
between singleton sets and sets with many elements. In section 1.4, we review some
logics where it is possible to assert that individual outcomes are either permitted
or forbidden. A possible solution to this issue is proposed by Segerberg using the
following axiomatic schema:

Forb(a)∨Perm(a) (being a an action letter) (1.1)

or, equivalently:
¬Forb(a)→ Perm(a) (1.2)

However, as stated in [31], this axiom induces some problems. Let us, for example,
consider two actions smoke and driving. We may say that:

` smokeudriving 6= /0

That is, driving while smoking is possible. Suppose now that driving is allowed,
this fact is formalized as follows: ` Perm(driving). But, since ` drivingu smokev
driving, using the axioms we get:

` Perm(drivingu smoke)

by formula 1.1 and the fact that smoke 6= /0 we get:

` Perm(smoke)

Summarizing, we get the following property:

α uβ 6= /0∧Perm(α)→ Perm(β ) (1.3)

which is not intuitively true. In section 1.4 we introduce some related logics that
intend to tackle this issue.

It is possible to define other operators using permission and prohibition. One
operator that is important in deontic logic is obligation; there are at least two ways
of defining obligation in Segerberg’s logic:

• OblP(α) = ¬Perm(α).
• OblF(α) = Forb(α).

The first one uses permission to define obligation, and the second one uses the prohi-
bition operator. Intuitively, the first version of obligation says that an action is oblig-
atory if and only if doing any other action is not allowed. In contrast, the second
one says that an action is obligatory when it is forbidden to perform an alternative
action. Let us write the satisfaction condition for the two versions of obligation:

• F ,v ² OblP(α)⇐⇒U− v(α)* Leg.
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• F ,v ² OblF(α)⇐⇒U− v(α)⊆ Ill.

A problematic issue with the first version of obligation (as already noted in [31]) is
that strict refinements of forbidden actions are forbidden and obligatory at the same
time, that is:

α v β ∧Forb(β )∧α 6= β → Forb(α)∧OblP(α)

For example, suppose the following statements:

• ` Forb(kill) (it is forbidden to kill).
• ` kgentlyv kill (killing gently is a way of killing).
• ` kgently 6= kill (there are some ways of killing that are not gentle).

From these statements we can deduce: ` Forb(kgently)∧OblP(kgently), the first
part of the formula is intuitively true, but the second one does not fit with the intu-
itions: from the prohibition to kill we obtain that we are obliged to kill gently. This
is a variation of the well-known paradox of the gentle killer, though no contrary-to-
duty reasoning is involved in this case.

Let us take a look at the second version of obligation. Note that this version of
obligation makes true the so-called Ross’ paradox:

OblF(α)→OblF(α tβ )

which can be interpreted by saying: if you are obliged to send a letter, then you are
obliged to send a letter or to burn it; which contradicts the common sense. Summa-
rizing, the two versions of obligations described above do not capture the intuitive
properties surrounding the concept of duty. In the next section we investigate other
ways of defining obligation to avoid the problems explained above.

Segerberg presents his deontic logic of action just in a short paper. However,
from today’s perspective its content is important as well as inspiring. To sum up
Segerberg’s contribution to deontic action logic and his position towards problems
occurring in it, let us point out the following issues.

• Segerberg’s system is based on an action theory more sophisticated than truth
value tables (as in Kalinowski’s works); as a result, a deontic qualification of
complex actions is not a simple function of generators. Thus, deontic qualifica-
tion is essentially connected with complex actions.

• Segerberg introduces a novel semantics (defined using a domain of outcomes).
He stresses the inspiration received from von Wright’s paper [35], but in his paper
he performs a strict separation between the axiomatic system and the semantics.

• Permission and forbiddance are not inter-definable in Segerberg’s system. That
creates the opportunity to discuss problems of openness and closeness of deontic
action logic.

• Segerberg uses an infinite algebra of actions. Later works show that finite struc-
tures seems to be sufficient and much more handy.

• There is no operator corresponding to sequence of actions. Many things become
much more interesting, but also complicated, when this combinator is introduced.
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We point out some ways of introducing it in the deontic context presented in later
works.

• In Segerberg’s paper obligation is a defined notion. However, both definitions
given in it leads to some counterintuitive consequences. We shall discuss the
issue of obligation in more details in the next section.

1.4 Contemporary deontic action logics and boolean algebra

Several deontic logics with boolean operators have been proposed since the work
of Segerberg. We distinguish between two kinds of logics; first, those logics that
interpret deontic operators as sets of events/outcomes that fulfill these operators,
among these logics we can cite those of Castro and Maibaum [7], R. van der Mey-
den [22] and Fiadeiro and Maibaum [9] as well as the work of Trypuz and Kulicki
[31] enriching Segerberg’s logic to obtain a more appealing version of obligation.
On the other hand, the other kinds of logics are related to Dynamic Logic [13], this
approach was initiated by J. J. Meyer in [23]; in this seminal work, Meyer relates
modalities with deontic operators using violation markers. This line of research was
followed by J. Broersen in his thesis [6], and by other authors. These works are re-
lated with Boolean Modal Logic defined by Gargov and Passy in [11], many of the
properties of Dynamic Deontic Logics are inherited from the corresponding proper-
ties of Boolean Modal Logic, we present the details below. All these logics have a
common feature of having terms for actions as well as operators to combine them;
deontic operators can be used to state prescriptions over these action terms.

1.4.1 Deontic Dynamic Logics

Dynamic logic was introduced by Harel in [13]. This logic makes use of the box
and diamond modalities to express the concepts of necessity and possibility, respec-
tively. The novel part is that we have an infinite number of action letters; actions are
combined with modalities to express the notion of causality, for example:

[a]ϕ

means: after executing action a, ϕ becomes true; on the other hand:

〈a〉ϕ

says that it is possible to execute action a and finishing in a state of affairs where
ϕ is true. Furthermore, we can combine actions as follows: if α and β are actions,
then α ;β is an action, α∗ is an action and α t β is an action. Roughly speaking,
; expresses sequential composition (b is executed after a), ∗ expresses the Kleene
operator: a is executed n times; and t is the non-deterministic choice between ac-
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tions α and β . The semantics of dynamic logic is given by models made up of a
non-empty set of worlds W , a relationship Ra ⊆W ×W for each action letter a, and
an interpretation function mapping propositional letters to sets of worlds. In this
setting, the action combinators are interpreted as usual relational operators. For ex-
ample, the sequential composition is interpreted as the relational composition; the
non-deterministic choice is interpreted as the relational union and the star operator
is interpreted as the reflexive-transitive closure of relations. There exist sound and
complete axiomatic systems for dynamic logic; however, as a consequence of the
fact that the star operator is not elementary, the logic is not compact – the details
can be found in [13].

One important variation of dynamic logic is the so-called Boolean Modal Logic
[11] (or BML), where the boolean operators are used for combining actions; the
semantics of these operators is given by means of the usual relational constructions.
One important point about this logic is that the complement enables the introduction
of the window operator, an operator that allows us to inspect any state related or not
to the actual state, some authors have pointed out that this operator violates in some
sense the principle of locality implicit in modal logics, see [4]. BML has sound and
complete axiomatic systems, though this logic is not strongly complete nor compact.

John Jules Meyer uses the constructions of Dynamic Logic to define what he
calls Dynamic Deontic Logic [23]; In this work, deontic constructions are reduced
to dynamic logic constructions using a violation constant which indicates that a
violation has been produced. Meyer proposes to use the following combinators: ;
(composition), t (non-deterministic choice), u (parallel execution), and − (alter-
native action). An algebra of actions, resembling boolean algebras, is proposed for
these action combinators; however, the properties of this algebra of actions are not
investigated by the author (indeed it is possible to prove that there is not decidable
axiomatizations for these kinds of algebras [21]). Using modalities, Meyer defines:

Forb(α)↔ [α ]v.

That is, an action is forbidden if and only if every execution of this action yields a
violation. Using prohibition, Meyer defines the rest of the deontic predicates:

• Obl(α)↔ Forb(α) (obligation) and,
• Perm(α)↔¬Forb(α) (permission).

Broersen [6] called this approach goal oriented norms since, for evaluating the truth
value of a deontic predicate, only the resulting state of an action is important and not
what happens during its execution. In [6] the boolean operators are used in combina-
tion with the deontic operators and the modalities; in this setting, Broersen obtains
a sound and complete dynamic deontic logic with boolean operators; however, this
logic is not compact.

Several criticisms have arisen to this approach. For example in [22], the follow-
ing formula is exhibited as a paradox of dynamic deontic logic: 〈α〉Perm(β ) →
Perm(α;β ), which can be read as if after shooting the president it is allowed to
remain silent, then it is allowed to shoot the president and remain silent, which
is undoubtedly undesirable; these kinds of problems are inherent in goal oriented
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norms, Broersen has proposed the so-called process-oriented norms to deal with
this problem, see [6] for the details.

In [1] these ideas are used to establish a more serious paradox: Forb(α) →
[α]Obl(β uβ ), i.e., after executing a forbidden action, we are obliged to perform an
impossible action, which is not intuitively true. In spite of these facts, Meyer’s ap-
proach is interesting since in deontic dynamic logic a clear division between predi-
cates and actions is established and, as Meyer argues, some paradoxes vanish in this
approach, mainly since here we have a notion of time or state change. Moreover,
some problematic statements, like nested deontic constraints, are no longer express-
ible. In the following section we introduce another branch of deontic action logic,
initiated from the ideas of Segerberg, in which deontic operators are not captured
by using modalities, instead an algebra is used to formalize the concept of norm.

1.4.2 Deontic Logics based on Atomic Boolean Algebras

Segerberg used boolean algebra to give the semantics of deontic operators; in [7, 31]
a variation of this approach is taken: the set of action letters is considered finite
and therefore the underlying algebra of actions becomes atomic. Atomic boolean
algebras have some good properties, from the topological point of view, the atoms
allow us to refer to the points of the underlying space: there is a one-to-one mapping
between the set of atoms of a boolean algebra and the set of its maximal ideals (or
ultrafilters); the maximal ideals (or ultrafilters) can be thought of as points of the
field of sets which is isomorphic to the boolean algebra (by the Stone theorem).
Roughly speaking, we can refer in the language to the most specific actions that
can be executed. For example, consider that we have two possible actions: driving
and drinking, if we abstract ourselves from the other possible actions, we obtain the
(canonical) boolean algebra of figure 1.1. Note that the atoms in this algebra are:
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Fig. 1.1 Canonical Boolean Algebra for three actions

drivingtdrinking, drivingtdrinking, drivingtdrinking, drivingtdrinking. Every
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atom can be identified with an ultrafilter. For example, the atom drivingudrinking
can be identified with the filter shown in figure 1.2. This filter can be thought of as

1

drivingtdrinking

hhhhhhhhhhhhhhh
drivingtdrinking drivingtdrinking

WWWWWWWWWWWWWWWW

driving
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Fig. 1.2 Filter identified with atom drivingudrinking

stating a set of weakly allowed actions. In the same way, coatoms identify maximal
ideals, and therefore sets of strongly allowed actions. Consider, for example, the
coatom: drinkingt driving, in this case we obtain the ideal shown in figure 1.3.
This ideal may, for example, identify a set of strongly permitted actions. Let us

drivingtdrinking

driving
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(driving≡ drinking)

hhhhhhhhhhh
VVVVVVVVVVVV

drinking
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drivingudrinking

sssssss
drivingudrinking

MMMMMMM
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0

VVVVVVVVVVVVVVV

gggggggggggggggg

Fig. 1.3 Ideal corresponding to coatom drinkingudriving

note that atoms are monomials made up of atomic letters (or negation of them)
composed by the u operator; that is, it is straightforward to determine which action
terms denote atoms in the corresponding boolean algebra and which do not. Let
us note that, if we add the restriction drivingt drinking = 1, then the diagrams
above can be simplified, for example, the action drivingudrinking is an impossible
action (that is, it is equal to 0). In some sense, this restriction says that no other
actions are possible. This view of restricting ourselves to a finite number of actions
has many interesting consequences, and, of course, triggers philosophical questions.
One may think that the number of possible actions is potentially infinite; however,
usually we are interested in reasoning about a particular set of actions, and a finite
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set (which may be very large) seems to be enough in most of the scenarios. No
much expressivity is lost when the set of actions is restricted to a finite set, but the
possibility of talking about atoms is gained, and this allows us to express interesting
properties about the logic.

We shall first discuss some remarks about the semantics in the finite case. The
semantics is given by means of structures: 〈Out, Ill,Leg〉, similar to the ones used
by Segerberg. Note that atomic action terms are intended to express actions where
no ambiguity is left, that is, each atomic action describes the actions letters involved
during the execution of the action; an intuitive semantic restriction (in this case)
is that atomic action terms denote at most one outcome; roughly speaking, these
actions are deterministic. This restriction can be added as follows:

|I (δ )| ≤ 1 (1.4)

where | − | denotes the cardinality of sets, and δ denotes an action term that is
an atom in the boolean algebra of actions. The basic axioms of this logic are the
following:

• Perm(α tβ )≡ Perm(α)∧Perm(β ).
• Forb(α tβ )≡ Forb(α)∧Forb(β ).
• α = 0≡ Forb(α)∧Perm(α).

Of course, we have the usual axioms for equality and boolean algebras. This system
is equivalent to Segerberg’s system (BOD). In addition to the standard operators we
can define the weak version of them:

• Permw(α) = ¬Forb(α)
• Forbw(α) = ¬Perm(α)

Below we investigate the interpretation of the weak deontic operators.
We may use the atoms to introduce some further axioms. In the following we

analyze the possible extensions of BOD, we follow the ideas of [31] to classify the
systems.

1.4.3 Extensions of BOD

1.4.3.1 The Basic Closed System

As remarked above, Segerberg points out that closeness in BOD can be introduced
by the following axiom:

Forb(ai)∨Perm(ai) for every action letter ai (1.5)

as we shown in section 1.3, this axiom has some paradoxical consequences, imply-
ing that actions that can be performed together must have the same deontological
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status. Furthermore, when we have a finite number of actions: a0, . . . ,an, the atomic
term:

a0u . . .uan (1.6)

deserves special attention; note that this term can be interpreted as saying that no
action of the actual agent is executed; moreover, this action may be thought of as
denoting some behavior of an external agent. Let us note that formula 1.5 is not
expressible enough to state that action term 1.6 is allowed or forbidden. Note that,
if we have an infinite number of actions, there is no way to capture the notion of
external actions, though this might be achieved by dividing the actions into internal
and external ones, but this complicates the syntax of the logic. If we want to ensure
closedness in the finite case, we must add the following axiom:

Perm(a0u . . .uan)∨Forb(a0u . . .uan) (being a0, . . . ,an all the action letters.)
(1.7)

We call the system BOD+Axiom 1.5 Basic Closed System (BCS). In this system,
any atomic action term δ is allowed or forbidden; that is, we have the following
theorem: ` Perm(δ )∨Forb(δ )

1.4.3.2 The Atomic Closed System

It is possible to use the atoms to state the closeness of the system at a low level, that
is, we can state that the atomic actions are allowed or forbidden:

Forb(δ )∨Perm(δ ) for every atomic term δ (1.8)

This axiom, in contrast to axiom 1.5, avoids the paradox expressed by formula 1.3;
note that, if two atomic actions have a non-empty intersection, then they are the
same action. This axiom is adequate to models satisfying the following principle:

E = Ill∪Leg

We call the system BOD+Axiom 1.8 Atomic Closed System (ACS). Note that in
this system the term a0u . . .uan may denote some outcomes that can be interpreted
as outcomes of external actions.

1.4.3.3 The Standard Atomic Closed System

As we remarked above, the action a0 u . . .u an may be thought of as the action of
doing nothing; however, if we consider a special action skip to denote this particular
event, then the action a0u . . .uan denotes an impossible action; that is, we have:

a0u . . .uan = 0 (1.9)

or by duality:
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a0t . . .tan = 1 (1.10)

We call the system ACS+Axiom 1.9 Standard Atomic Closed System or SACS.
This system is presented in [7] under the name DPL, and in [31] is called DAL5.
There are some interesting remarks about this logic; first, let us note that the Hasse
diagram of the canonical boolean algebra for two actions (driving and drinking).

drivingtdrinking = 1

driving
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driving⊕drinking

OO

drinking
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drivingudrinking

OO 55kkkkkkkkkkkkkk
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55kkkkkkkkkkkkkk
drivingudrinking
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OO

drivingudrinking = 0

iiRRRRRRRRRRRRRR

OO 55llllllllllllll

Where driving⊕ drinking = (drivingu drinking)t (drivingu drinking) is the ex-
clusive or between drinking and driving. Note that, the definition of Permw(−)
together with axiom 1.10, implies that the weak permission is semantically inter-
preted as the union of filters defined by the atoms which are strongly permitted.
Weak permission does not define a filter since it is not closed for u.

1.4.3.4 The Relationship between BOD, BCS, ACS, SACS, SCS

The relationship between these logics is shown by the diagram in figure 1.4 [31],
where an arrow from one system to another means that all the theorems of the source

SCS

BCS

;;xxxxxxxx
SACS

ccGGGGGGGGG

ACS

OO

BOD

YY444444444444444

;;wwwwwwwww

Fig. 1.4 Relation between the different logical systems
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system are theorems in the target system. The picture can be completed if we add
subsystems along the diagram; let us remark that the system SCS seems to be too
strong to be accepted, as it is shown by formula 1.3, the other systems can be ac-
cepted or not, depending on the level of closure that we intend to capture.

1.4.4 The Obligation Operator

The formalization of the obligation has been controversial from the beginnings of
deontic logic; in particular, in deontic action logics there exist several variations of
the concept of obligation, in this section we review the usual ones. Meyer defines
obligation as follows:

OblF(α) = Forb(α) (1.11)

That is, an action is obligatory iff doing any alternative action is forbidden. Obli-
gation is defined as the complement of an ideal (prohibition) and therefore the in-
terpretation of this operator defines a filter in the underlying boolean algebra. As a
consequence, this version of obligation has the following properties:

• OblF(1)
• OblF(α uβ )≡OblF(α)∧OblF(β )

Moreover, this obligation holds the so-called Ross’ paradox:

OblF(α)→OblF(α tβ )

which admits the following reading: if you are obliged to send a letter, then you
are obliged to send a letter or to burn it. Note that an obliged action (following
this definition) may have some illegal outcomes, that is, an obliged action may not
be allowed; this does not satisfy the principle: Obl(α)→ Perm(α), which may be
desirable in some contexts.

Another definition of obligation can be obtained by using the permission, as fol-
lows:

OblP(α) = ¬Perm(α)

Roughly speaking, an action is obligatory (following this definition) when some
outcomes of alternative actions are not allowed. This operator has the following
properties:

• OblP(α tβ )≡OblP(α)∨OblP(β ).
• OblP(α tβ )→OblP(α)∧OblP(β ).

As remarked in [31], a problematic property of this variation of obligation is the
following one:

Forb(β )∧α v β ∧α 6= β →OblP(α)

That is, specific ways of performing forbidden actions are obligatory, which is para-
doxical.
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Let us present another possible definition of obligation, introduced in [7]. The
definition is as follows:

OblPF(α) = Perm(α)∧Forb(α)

Roughly speaking, an action is obligeatory if it is allowed and any alternative action
is forbidden. This definition does not hold the Ross’ paradox, moreover it satisfies
some intuitive properties [7]:

• OblPF(α)→ Perm(α)
• OblPF(α)∧OblPF(α)≡ (α = 0)

However, this definition of obligation satisfies the following property (called exten-
sionality in [31]):

OblPF(α)∧OblPF(β )→ α = β

That is, only one action can be obligatory per time; this seems paradoxical as we
can devise scenarios where this is not the case.

Trypuz and Kulicki have proposed another version of obligation which intends
to improve the definitions of obligation given above. The idea is to add a new set
Req of required outcomes, and therefore we can introduce the obligation as a new
operator as follows:

OblN(α)⇐⇒I (α)⊆ Req

We may add the requirement that Req is not empty: Req 6= /0. The properties of this
new version of obligation are the following:

• OblN(α)∧OblN(β )→Obl(α uβ )
• ¬OblN(0)

Of course, if we want to obtain: OblN(α)→ Perm(α), we should add the following
requirement:

Req⊆ Leg

However, the following principle cannot be proven for this version of obligation:

OblN(α)→ Forb(α)

To summarize, when we introduce the notion of atom in the basic logic we obtain
several extensions of this logic, these extensions are obtained by adding different
levels of closeness as well as different versions of obligation; it is not our intention
to favor one deontic system over others, we leave this to the reader. In the follow-
ing section we discuss some possible lines of future work; in particular, it seems
interesting to extend deontic logics with boolean algebras with operators that also
support the concept of atom and coatom.
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1.4.5 A Deontic Logic Built on Synchronous Kleene Algebra

The language of DAL built on synchronous Kleene algebra

In a recent paper [25], another system (on the technical side inspired by the use of
algebraic structures in the papers of Segerberg [26] and Castro and Maibaum [7])
based on intuitions similar to the system of Meyer from [23] is presented. Formally,
the space of actions is represented there by an algebraic structure called synchronous
Kleene algebra, defined in [24]. Such algebra differs from boolean algebra by having
the operator of sequential composition on its elements instead of negation (comple-
ment). A kind of action complement is introduced into the system by definition, as
a non-primitive notion. The work opens new possibilities for deontic action logic
offering a new, interesting semantic tool.

Moreover, contratry-to-duty obligations, that are not expressible in the earlier
mentioned systems, are introduced in the form of a reparation connected with obli-
gation and prohibition. Thus, formulas OblC (α) and ForbC (α) state respectively
that α is obligatory (forbidden) and if an agent breaks such a norm it is bound
by another norm expressed by C , which is a reparation. Formulas Obl⊥(α) and
Forb⊥(α) are understood as an absolute obligation and forbiddance.

Formally, we can define the language of the system as follows3:

α := a | 0 | 1 | α uα | α tα | α;α

C :=⊥ | Perm(α) | ForbC (α) |OblC (α) | C → C

where a is an element of a finite set A of basic actions.
Let further Au be the set of actions composed from basic actions from A using

onlyu operator. Intuitively, the set Au contains actions that are parallel executions of
an arbitrary number of basic actions. By analogy to boolean algebra of actions, we
will call the elements of Au quasiatoms4. The difference is that atoms of BA can be
described by parallel executions of basic actions or negation (complement) of them.
Kleene algebra lacks boolean negation and quasiatoms contain only ‘positive’ parts
of atoms. At this point we do not prejudge the semantic relation between atoms of
BA and quasiatoms, this can be figured out from the formal semantics of the system.
We shall write that quasiatom α is contained in quasiatom β (α ⊆ β ), when the set
of basic atoms from which α is composed is contained in the set of basic actions
from which β is composed.

0 is interpreted, as in boolean algebra of actions, as an impossible action. In
contrast 1 is understood differently, as ‘skip’ or ‘doing nothing’.

3 We omit propositional constants originally used in [25].
4 In [25] such formulas are called ×-formulas.
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Axioms of synchronous Kleene algebra

The following axioms of boolean algebra listed in our Introduction (applied to the
language of the system) are also axioms of synchronous Kleene algebra:

• Absorption of Zero,
• Identity Laws,
• Commutativity Laws,
• Associativity Laws,
• Distributivity of t over u,
• Idempotency of t.

Absorption of 1 does not hold since, as mentioned above, 1 has a different meaning
here than in boolean algebra. The system does not include idempotency of u. In-
stead of the latter law, the following weak idempotency of u (idempotency for basic
actions) is used:

If a ∈ A, then α uα = α
The following formulas complete the axiomatization of equality in synchronous

Kleene algebra of actions:

• α;(β ;γ) = (α;β );γ (Associativity of ;).
• α;1 = 1;α = α (Identities of 1 with respect to ;).
• α;0 = 0;α = 0 (Absorption of zero with respect to ;).
• α;(β t γ) = (α;β )t (α;γ) and (α tβ );γ = (α;γ)t (β ;γ) (Distributivity of ;

over t).
• If α,β ∈ Au, then (α;γ)u (β ;δ ) = (α uβ );(γ uδ ) (Weak distributivity of u

over ;).

The system of deontic logic from [25] is defined semantically (no axiomatization
for deontic notions is given). The following notions and facts are used to define a
valid deontic proposition. We use the content of the definitions from [25], slightly
changing the way they are presented there5.

Canonical form

The inductive definition of canonical forms is the following:

(i) 0 is in canonical form.
(ii) If for all i ∈ I:

(1) either (a) β i = α i
1;α i

2, (where α i
1 ∈ Au and α i

2 6∈ {0,1} is in canonical form),
or

(b) β i = α i
1, where α i

1 ∈ Au∪{1}
and

5 As the present paper has a character of a review we refrain from criticizing particular intuitions
behind the system and proposing alternative solutions.
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(2) for all i, j ∈ I if i 6= j, then α i
1 6= α j

1 ,
then α = ti∈Iβ i is in canonical form.

Each α i
1 plays the role of a unique possible first step of compound action α – the

first step of action β 1. Action α i
1 cannot be equal to 0, since in that case α would

also be equal to 0. In case (a) it must be a quasiatom. In case (b), action β 1 is a one
step action (α i

1 is its first and its last step). In that case α i
1 is a quasiatom or equals

1. Thus quasiatoms and 1 are in canonical form (when, in case (b), I is a singleton).
Each α i

2 is the rest of action β i. Action α i
2 cannot equal 0 (for the same reasons

as α i
1) or 1 (because of identity of 1 w.r.t. ;).

For any action α there exists α ′ in canonical form s.t. α = α ′ ([24] Th. 2.8).

Action complement

Action complement is not a principal combinator but it is a function defined induc-
tively as follows.

(i) Complement of 0 is 1, complement of 1 is 0, in symbols 0 = 1, 1 = 0.
(ii) Let α 6∈ {0,1} be an action in canonical form, i.e. α = ti∈Iβ i, where for all

i ∈ I β i = α i
1 or β i = α i

1;α i
2 as in the definition of canonical form.

Let further X1 be the set of α i
1 s.t. i ∈ I and β i = α i

1;α i
2 (β i is not a one step

action), X1 = {γ ∈ Au | ¬∃i∈I α i
1 ⊆ γ}. Moreover, let δ j ( j ∈ J) be all quasiatoms

s.t. ∃α∈X1 α ⊆ δ j and I j ⊆ I be indexing set s.t. I j = {i ∈ I | α i
1 ⊆ δ j}.

Complement α of action α is defined by the following equation:

α = tX1 t t j∈J(δ j;ti∈I j α i
2)

Intuitively, a complement of a multiple step action is a free choice between dif-
ferent ways of not doing the first step of the action and doing the first step, and
different ways of not doing the other steps. A complement of an action cannot have
more steps then the original action. That makes the construction finite.

Proposition 2.8 from [25] states that the complement operation returns a deontic
action which is in canonical form.

Rooted tree

Let A be a set of basic actions. A rooted tree with labelled edges is an acyclic
conected graph 〈N ,E ,A〉 with a designated node r. N is a set of nodes, r ∈ N
is a designed node called root node. E is the set of directed labelled edges between
nodes (in symbolical notation m α−→ n stands for the edge from node m to node n
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with label α), where labels are taken from the set 2A∪{Λ}.

Intuitively, nodes represent states and edges – actions that can lead from one state
to another by performing an action specified by a label. Empty label represents skip
action 1, label Λ represents the impossible action 0 and all the other labels represent
quasiatoms built from the elements of the label. For that reason, we use the same
variables for labels as for actions. Multiple edges starting from one node represent
the free choice operator.

A path in the rooted tree is understood in a way usual for graphs. A path which
cannot be extended (there is no edge starting from its last node) is called final. The
final nodes on each final path are called leaf nodes. When an edge e is an element of
the set of edges E of a tree T we shall write in short that e is an element of T (e∈ T ).

Theorem 2.10 from [25] states that for any action in canonical form there exists
a rooted tree corresponding to that action. For arbitrary action α we shall use the
symbol T (α) to refer to the tree corresponding to the action in canonical form equal
to α .

Normative structure

Let A be a set of basic actions. A normative structure is a triple K = (W ,RA,ρ), in
which:

• W is a set of worlds;
• RA is a function returning a labelled patrial accessibility function Rα : W −→W

for each set of basic actions α ⊆ A;
• ρ is a marking function which marks each world with markers from the set
{◦a,•a | a ∈ A} in such a way that no world can be marked by both ◦a and •a for
any a ∈ A.

A pointed normative structure 〈K, i〉 is a normative structure with designated
world i (i ∈ W ). As for trees, we shall call an element e = s α−→ s′ of a partial
accessibility function Rα also an element of K (symbolically: e ∈ K).

K is deterministic as for each set of basic actions there is at most one world
connected by the relation. The relation informs us what actions can be executed in
each world. Markers on the successor world inform us which actions are obligtory
(◦a) and which are forbidden (•a). Marking function ρ marks each world for each
basic action a ∈ A with ◦a, •a or nothing, that means that actions leading to that
world can be obligatory, forbidden or neutral.
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Relationship between normative structures and rooted trees

For a tree T = (N ,E ,A) and normative structure K = (W ,RA,ρ) let S ⊆N ×W
be the simulation relation of the tree node by the world of the structure s.t.:

tS s iff the following two conditions hold:

(i) for every edge t α−→ t ′ ∈ T there exists an element of a labelled accesibility

relation s α ′−→ s′ ∈ K s.t. α ⊆ α ′ and t ′S s′;
(ii) for every edge t α ′−→ t ′ ∈ T and every element of a labelled accesibility rela-

tion s α ′−→ s′ ∈ K if α ⊆ α ′, then t ′S s′.

We shall write that a tree T with root r is simulated by a normative structure K
w.r.t. a world s (TSsK) if and only if rS s.

In the definition, the label of the edge α of the tree is included in the label α ′ of
the accessibility relation in the normative structure. Prisacariu and Schneider moti-
vate this by the idea that, respecting an obligatory quasiatomic action constructed
from elements of α means executing any quasiatomic action in which it is included.
Intuitively a tree representing an action is represented by a normative structure if
every possible way of executing any step of the action allows to execute another
step of the action. Because the inclusion of α in α ′ is used, any step can be executed
in parallel with any other quasiatomic action.

This simulation relation can be strengthened to a strong simulation by changing
the conditions α ⊆ α ′ in (i) and (ii) into the equivalence α = α ′. Then, since K
is a deterministic condition, (ii) is redundant. We shall use symbol S ′ for strong
simulation. In this case, only the exact execution (with no other actions executed in
parallel) of quasiatomic steps is considered.

The notion of simulation can be also weakened by dropping existential condition
(i) from the definition. Such relation will be called partial simulation and it will be
symbolically represented by S̃ . In this case some steps of the action defining the
simulated tree may not be executable, but if a step is executable, then the tree start-
ing from the end of the step is partially simulated.

Now we define fragments of deontic structures, generated by rooted trees, which
we shall call simulating structure6 and non-simulating reminder.

Let T be a rooted tree, K = 〈W ,RA,ρ〉 a deontic structure and i ∈W a world s.t.
TSiK.

KT,i
sim = (W ′,R′A,ρ ′) is a simulating structure w.r.t. T and i when it is the least

sub-structure of K respecting the following conditions:
(i) i ∈W ′;

6 In [25] it is called maximal simulating structure.
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(ii) if t α−→ t ′ ∈ T and s α ′−→ s′ ∈ K and tS s and α ⊆ α ′, then s′ ∈ W ′ and

s α ′−→ s′ ∈ R′A;
(iii) ρ ′ = ρ |W ′.

KT,i
rem = (W ′′,R′′A,ρ ′′) is a non-simulating reminder of K w.r.t. T and i when it is

the least sub-structure of K respecting the following conditions:

(i) if s ∈ KT,i
max and there exist α ′ and s′ s.t. s α ′−→ s′ ∈ KT,i

max and s α−→ s′′ 6∈ KT,i
max,

then s,s′′ ∈W ′′ and s α−→ s′′ ∈ R′′A;
(ii) ρ ′′ = ρ |W ′′.

Validity

Now we are ready to define valid deontic formulae. The satisfaction of a deontic for-
mula C w.r.t. a pointed normative structure 〈K, i〉 (K, i |= C ) is defined inductively
as follows.

• K, i 6|=⊥
• K, i |= C1 → C2 iff whenever K, i |= C1, then K, i |= C2
• K, i |= OblC (α) iff the following conditions hold:

1. T (α)SiK;

2. if t
β−→ t ′ ∈ T (α) and s

β ′−→ s′ ∈ K and tS s and β ⊆ β ′ and a ∈ β , then
◦a ∈ ρ(s′);

3. if s
β ′−→ s′ ∈ KT (α),i

rem and a ∈ β ′, then ◦a 6∈ ρ(s′);
4. if t is a leaf of a final path of T (α) starting from its root and tS ss, then

K,s |= C .

• K, i |= ForbC α iff the following conditions hold:

1. T (α)S̃iK;

2. if σ is a final path of T (α) s.t. σSiK and t
β−→ t ′ ∈ σ and s

β ′−→ s′ ∈ K and
tS s and β ⊆ β ′ and a ∈ β ′, then •a ∈ ρ(s′);

3. if σ is a final path of T (α) starting from its root s.t. σSiK and t is a leaf of σ
and tS s, then K,s |= C .

• K, i |= Perm(α) iff the following conditions hold:

1. T (α)SiK;

2. if t
β−→ t ′ ∈ T (α) and s

β ′−→ s′ ∈ K and tS s and β ⊆ β ′ and a ∈ β , then
•a 6∈ ρ(s′)

We say that C is satisfied in normative structure K (K |= C ) iff it is satisfied in
every world of K. A deontic formula C is valid (|= C ) if it is satisfied in any deontic
structure.
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Let us now examine briefly the intuitive meaning of the definition of satisfaction.
The first condition for obligation states that an obligatory action must be executable.
The second one states that at each step all alternative executions of the step (defined
by the free choice operator) are indeed obligatory. The third one states that no other
possible alternative transition from any world in the normative structure is obliga-
tory. Finally, the fourth condition states that, at the end of any alternative path in the
normative structure (violating the obligation defined in the considered proposition),
a proposition defining a reparation holds.

In the first conditions for obligation only weak simulation is used. Thus, the im-
possible action is regarded as forbidden. The second condition states that, if the con-
sidered action can be executed in a certain way, described by a path in the respective
tree, then any world, corresponding to a node in that path, marks the corresponding
action as forbidden (according to the intuition that forbidding a sequence means for-
bidding all the actions on that sequence). The third and last condition states that a
successful realization of a forbidden action leads to a world in which a proposition
defining a reparation holds.

The two conditions for a permitted action state respectively that any permitted
action is possible, and that any step of such an action is not forbidden (although it
may be executable in parallel with a forbidden action).

Properties of deontic notions in the system

Most of the basic axioms of DAL based on BA concerning permission and forbid-
dance are valid in the discussed system based on Kleene algebra7:

Perm(α tβ )≡ Perm(α)∧Perm(β );

ForbC (α tβ )≡ ForbC (α)∧ForbC (β );

ForbC (0).

Moreover, formula:

ForbC (α)→ ForbC (α uβ )

is also valid. However, unlike in those systems, permission and forbiddance are
not symmetrical here. The following formulas are not valid:

Perm(0);

Perm(α)→ Perm(α uβ ).

The non-validity of the former makes it possible for the following formula to be
valid:

7 Proofs of the facts concerning validity and non-validity of formulae stated here can be found in
[25].
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Perm(α)→¬ForbC (α).

Let us now apply the criteria that were used in [30] to compare various de-
ontic action logics of permission and forbiddance based on boolean algebra, esp.
Segerberg’s system: closedness and treatment of ‘doing nothing’. Although the set
of basic action is finite, the absence of the classical complement makes it impossi-
ble to use the notion of atom from boolean algebra. Instead, the actions from Au,
which we called quasiatoms, can be used. The logic from [25] is closed neither for
basic actions nor for quasiatoms. On the other hand ‘doing nothing’ is represented
by action 1 which is quite different from the one considered in [30].

As for obligation the following formulas are valid:

¬OblC (0);

OblC (1);

OblC (α)→ Perm(α).

Moreover, the following formulas are not valid:

OblC (α)→OblC (α uβ );

OblC (α uβ )→OblC (α);

OblC (α)→OblC (α tβ );

OblC (α tβ )→OblC (α);

OblC (α)∧OblC (β )→OblC (α uβ ).

The last formula, however, becomes valid if we add the following condition to
the semantics of obligation:
there exists γ s.t. T (α u γ) is isomorphic to a simulating substructure of K w.r.t.
T (α) and i.

The obligation modified in such a way is called in [25] a natural obligation.
For natural implication the following interesting formula is also valid:

OblC1(α)∧OblC2(β )→OblC1∨C2(α uβ ).

The way the definitions of obligation and prohibition are constructed guarantees
that reparation is inevitable. Any possible execution of violating action by definition
must end in a situation in which the deontic proposition describing a reparation
holds. In particular for Obl⊥(α) there is no final path of T (α) strongly simulated
by K. Intuitively, this means that it is impossible to violate absolute obligation and



28 Pablo F. Castro and Piotr Kulicki

such an obligation can be understood as necessity. A similar fact holds for absolute
forbiddance and consequently, it that can be interpreted as impossibility.

1.4.6 Conflicts between actions and specialized algebras

In the systems described above, we considered those action algebras generated by a
finite set of basic actions. In the most straightforward situation all the combinations
of basic actions are possible. However, it is not necessarily true. If actions a and
b cannot be executed together, then their parallel combination is impossible, this
can be expressed in symbols by the equation: au b = 0. As an obvious example
we can take actions: ‘turn left’ and ‘turn right’. Moreover, some actions, essentially
available for an agent, may be impossible in some situations. For example, we can
consider the action ‘turn left’ when there is no left turn available on the crossroads.

The above mentioned facts can be used to enrich the expressive power of deontic
logic based on boolean (or Kleene) algebra. In [25], the notion of conflict often
found in legal contracts is introduced as a relation imposing more structure into the
algebra. It is defined as a symmetric and irreflexive relation over basic actions and
symbolically represented by #. Its meaning is ensured by the following formula:

a#b→ aub = 0.

It can be further used in the deontic context to derive the following law:

α#β →¬(OblC (α)∧OblC (α)).

In [32], the possibility of defining multiple action algebras based on the same set
of basic actions was used to formulate a strategy of building a system of norms. By
that strategy, first, each situation in which an agent can find itself should be ana-
lyzed. The possible actions for all situations should be recognized and formulated
in a boolean algebra. The deontic notions can be then introduced for each situation
separately, defining what in each situation is permitted, forbidden and obligatory.
Finally, actions can be collected from specific situations and used to formulate a
general algebra of actions for agents. It is shown how to construct the characteris-
tics of deontic notions for this algebra from their specification in specific situations.

1.5 Future Challenges

In section 1.3 we reviewed the logic defined by Segerberg, while in section 1.4
we have described several related logics that use a boolean algebra of actions and
provide different formalizations of the deontic operators. In this section we discuss
some further work about deontic action logic based on boolean algebra.



1 Deontic Logics based on Boolean Algebra 29

1.5.1 First-order deontic action logics

First, we review possible extensions of the logics described above aimed to embrace
first-order reasoning. First-order deontic logics have been a topic of discussion since
the beginning of deontic logic; for example, Hintikka [14] discusses the intuitive
properties of first-order operators when combined with deontic operators; first-order
operators are also explicit in the foundational work of Stig Kanger about ethical the-
ory [20]. The main difficulty in deontic action logic to deal with first-order operators
is the interplay between quantifiers and actions. In [8], the authors propose to intro-
duce generalized boolean operators to deal with parameters, for example, consider
the following term: ⊔

x
a(x)

where a is an action letter. Roughly speaking, this operator is a non-deterministic
execution of action a with some parameter x. For example, we may consider the
following term: ⊔

x
pay tax(x)

can be read as saying that some person pays its taxes. Some interesting questions
arise when the first-order operators are introduced. For example, the proof of com-
pleteness in the propositional case relies on the fact that the underlying boolean
algebra of terms (denoting actions) is atomic, and therefore the atoms in this alge-
bra can be used to build a canonical model. It is not straightforward (at first sight) to
preserve this property when the quantifiers are added; adding parameters to actions
produces a boolean algebra of terms which is not atomic. The relationship between
deontic operators and first-order predicates seems an interesting topic to investigate,
for instance, it is not obvious at first sight which of this properties should be true:

• ∀x : Perm(α(x))→ Perm(
⊔

x α(x)).
• Perm(

⊔
x α(x))→∀x : Perm(α(x)),

and similar properties for weak permission and the existential operator. For exam-
ple, it seems obvious that the first property should be true: if all the persons are
permitted to drink, then any chosen person will be allowed to drink. Similarly, the
second property also seems true: if a person (selected in a non-deterministic way)
is allowed to drink, then all the person are allowed to drink. These properties are
more complicated when obligation is involved, we refer the reader to the discussion
in [20] about this properties. For example, in the logic propose by Kanger, we can
write Ax : O(Px), this is a quantification over actions; the intuitive meaning of this
expression is: every action of type P is obligatory to be performed. In the same way,
we can write: O(Ax : Px) which must be read as: it is obligatory that every act of type
A is performed. The formula Ax : O(Px)→O(Ax : Px) is discarded with intuitive ex-
amples of the style: in some settings, everyone ought to pay fines, but it is not true
in every deontically perfect world, that everyone should pay fines. As explained in
[8], reasoning about these logics can be very hard. Introducing generalized boolean
operators, on the other hand, can allow us to obtain logics expressive enough to cap-
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ture interesting problems. In a similar way, cylindric algebras seem to be another
possible way of extending boolean algebra of actions to obtain a framework where
elementary operations can be captured; from our point of view these topics deserve
further investigation and discussion.

1.5.2 Boolean Algebras with Operators

Boolean algebras with operators are obtained by enriching boolean algebras with a
collection of additional operators fi which satisfy:

• are join preserving:

fi(x0, . . . ,x j ∨ yk, . . . ,xn) = fi(x0, . . . ,x j, . . . ,xn)∨ fi(x0, . . . ,yk, . . . ,xn)

• are normal for each argument: fi(. . . ,0, . . .) = 0.

These extra operators allow us to capture other intuitive combinators of actions.
Many useful formalisms can be captured as BAO, for example: modal logics, rela-
tion algebras, relevance logics, geometries, etc. Between these algebras, relational
algebras are those which are extension of boolean algebras and in addition they have
the following operators:

• ; – composition of relations.
• −1 – converse of relations.
• e – identity for composition.

These operators satisfy the following axioms:

• (xt y)t z = xt (yt z)
• xt y = yt x
• x = xt yt xt y
• x;(y;z) = (x;y);z
• x;e = x
• (xt y);z = (x;z)t (y;z)
• (x−1)−1 = x
• (x;y)−1 = y−1;x−1

• x−1;x;yt y = y

All the axioms of boolean algebra can be deduced from this set of formulae. Relation
algebras are very expressive; however, they are not representable and the axiomatic
system shown above is not complete with respect to the calculus of relations (there
do not exist finite axiomatizations of relation algebras); also the system is not decid-
able. If one intends to add operators such as ; or −1, a correct way to start is looking
at the theory of relation algebras []. It seems interesting to try to capture the meaning
of the following predicates using algebraic methods:

Perm(α;β )
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(which means that it is allowed to perform β after performing α), or:

Perm(α−1)

These kinds of operators have been discussed in the literature [6]; however, no al-
gebraic methods are used by those authors; it seems an interesting trend of future
research to investigate the interplay between deontic operators and these relational
combinators. Another interesting algebras are the so-called residuated boolean al-
gebras [], there exist residuated algebras that have finite axiomatization and that
support the notion of atom, and therefore they provides an expressive framework
where it is possible to express action properties.

1.6 Further Remarks

In this chapter we have reviewed those deontic action logics that are based on
boolean algebra; this line of research was initiated by Segerberg, and continued by
several authors []; the main characteristics of this approach is that deontic notions
such as permission, prohibition and obligation can be captured using algebraic no-
tions like ideals, filters, etc. However, one problematic issue of Segerberg’ s logic is
the lack of expressiveness to capture the closure principle of jurisprudence. We have
introduced logics that use boolean atomic algebras to capture deontic operators; the
main benefit of doing this is the possibility of using the atoms to state properties of
the operators, in particular, this is important when capturing the closure principle.
Future lines of research include the investigation of formalisms that allow one to
introduce first-order reasoning and the use of boolean algebras with operators. We
think that the main contribution of these formalisms is the possibility of studying the
properties of deontic operators by means of well-known mathematical concepts like
ideal, filters, etc. Furthermore, the use of algebraic tools seems to be a promising
way of reasoning about more complicated action operators such as composition and
iteration.
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