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§1 Introduction

§1.1 Why are we so many?
¶1 · Why is our species so successful? I am meaning successful in an empirical way: by
counting the number of Homo sapiens individuals, or by weighing the mass of all the
members of our species. Nevertheless, big numbers on these are also the symptoms of a
pest. So, to be clear, let me rephrase the question: Why are we so many?
¶2 · An answer is that we are occupying more and more lands. Another that we can live
in high density areas, like cities. These are answers, however, to another question: How
are we so many? Of course, a good answer to the why question should also explain how
it is achieved, but here in this paper we will focus on the ultimate cause.
¶3 · An answer in the right direction is that we are very clever, the cleverest species, so
we can use all the resources on Earth for our own benefit. However, this answer explains
only as much as the meaning of the word ‘clever’ is explained. Otherwise the explanation
becomes empty or circular.
¶4 · Trying to avoid the emptiness and circularity, there is another answer: we are so
many because we are the brainiest species, where braininess is also measured in some
empirical way, for example as brain weight divided by body weight. Letting aside any
doubt about the truth of the fact that we are the brainiest species, this asks for a new
explanation: Why and how does more brain make a more successful species? It could
seem obvious to you, but as far as this question is unanswered, and remember that brains
are expensive resources, the big brain explanation does not explain anything.
¶5 · Perhaps we need big brains to have a language. This would explain why only the
brainiest species has a language, and surely a language is a tool that helps us to survive,
but then we should have to address two new questions:
◦ Why and how does language make us the most successful species?
◦ How much brain is needed to have a language?

Spoiler: Our answer here to the last question will be that not too much, in fact much
less than a chimpanzee brain. So language does not require the biggest brain.
¶6 · Anyway, the importance of properly answering the ‘Why are we so successful?’ ques-
tion has prompted many answers, some following the lines mentioned above, and many
others from other assumptions and theories. Instead of discussing these many answers
here, I will present my own answer as clearly as I can, so that any interested party can
judge it by himself.

§1.2 Contents
¶1 · Why is our species so successful? Why are we so many? Because we are Turing
complete. Turing completeness is a very interesting computing property: Turing com-
pleteness is the capacity of some hardware to do by software whatever hardware does.
Then, section §2 is devoted to present computing and completeness as defined by Turing
(1936 and 1937). In subsection §2.1, supplemented by annex §7.1, we present the Turing
machine, which we use to define what is hardware and what is software. Then, in subsec-
tion §2.2, we review the limits of computing, both in theory, where Turing computing is
equivalent to recursion, and in practice, where Turing computing is real computing, save
for time or tape limitations. In subsection §2.3, we present the universal Turing machine,
which is the prototype for Turing complete devices, and its complete language. Turing
completeness is realizable under different engineering recommendations, as revised in sub-
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section §2.4. And in fact, as shown in subsection §2.5, we are Turing complete because
we can be instructed to imitate any Turing machine on any data exactly, save for time
or tape limitations and slips.
¶2 · Our explanation of why being Turing complete is the cause of our success is in section
§3. We start in subsection §3.1 arguing that software is much cheaper than hardware,
implying that, beyond a breaking point of complexity, Turing complete devices are much
more profitable. Then, in subsection §3.2, we revise the computing foundations by Turing
(1936) to conclude that computing is for problem solving, and then that a computing
device is a resolver. In subsection §3.3, supplemented by annex §7.2, we argue that
Turing completeness is evolutionarily disruptive, which is the key statement in the paper,
by assuming that evolution is the resolver of the survival problem, and by noting that
a Turing complete resolver can solve universally and quickly in cheap software what
evolution would solve by a trial and error procedure on generations of material living
beings, that is, limitedly and slowly in expensive hardware. In subsection §3.4, we argue
that we are the only Turing complete species, because no other species shows a problem
solving creativity as ours, by far. And, in subsection §3.5, we explain why only us are
Turing complete. In summary, we are so successful because only our species is Turing
complete and Turing completeness is evolutionarily disruptive.
¶3 · In section §4, we explore some philosophical consequences of being Turing complete.
If our species is the only Turing complete species, as we argue, then our species is unique
(§4.1). Being Turing complete, we are free to imagine any way to solve our problems in
our complete language, so creativity is the mark of Turing complete resolvers (§4.2 and
§4.3). Language exceeds reality by adding possibilities, and language exceeds actuality
by adding change (§4.4). Will is our verbalized intention (§4.5). Explaining something is
expressing its intentionality, so explaining is the sending side of the semantic communi-
cation channel, and understanding is the receiving end (§4.6 and §4.7). As both ends of
the semantic channel are built in our brains, we experience our will as an inner voice, or
an internal dialog, called the stream of consciousness (§4.8). Dualism can be explained if
our cognition consists of a Turing complete intentional layer built on top of perception,
an observation that is compatible with subjectivism (§4.9). Being Turing complete, we
can be instructed to follow whatever rules, and the study of rule systems is the subject of
philosophy (§4.10). Culture is the set of learned rules that prevail in a society (§4.11). We
even enforce rules on top of the genetic codes and the laws of nature, creating artificial
worlds where other species cannot survive, and perhaps not even us if we persist (§4.12).
¶4 · In section §5, we examine the theory presented in this paper. Firstly, in subsection
§5.1, we justify why we use computing by Turing: because his theory is realizable. And
any further doubts on computationalism are explained away in subsection §5.2, just by
acknowledging that computing is for solving problems, which could be the first law of
cognition. To link evolution to problem solving, we assume that solving more problems
is evolutionarily better, resulting a mathematical problem theory summarized in subsec-
tion §5.3, where a series of resolvers of increasing problem solving power finishes when
it reaches a Turing complete brain. The relation between problem solving and brain
evolution is confirmed by domestication, as shown in §5.4, though, in subsection §5.5, we
note that Turing completeness is not concerned with brain size. Another fundamental
cognitive law, software is much cheaper than hardware, is discussed in subsection §5.6.
All these results together imply that Turing completeness is evolutionarily disruptive.
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And we are so successful because, as stated by the fundamental law of cognition, which
is the law of Post presented in subsection §5.7, in calculating capacity, we are just Tur-
ing complete. Nevertheless, we would not be as successful as we are should we had to
compete against other Turing complete resolvers, so the remaining question is: Why are
we the only Turing complete species? Why only us? Collaboration, discussed in §5.8,
is one of the causes, perhaps the key one, but collaboration is not enough as shown by
other collaborative species that are not Turing complete. In subsection §5.9, the relation
between collaboration and language leads us to compare the concept of recursion in lin-
guistics with our view here, where we assimilate the recursive languages to the complete
languages of Turing complete devices.
¶5 · Finally, in section §6, we conclude summarizing the argument used in this paper to
answer the question: Why are we so many? Because, being the unique Turing complete
species, we can resolve problems cheaply and quickly that evolution would only solve
after performing trial and error procedures on populations of developed adults for several
generations, if ever. And we can resolve those problems universally, cheaply, and quickly
just by thinking about them in our complete language, or by speaking about them with
other conspecifics in a complete natural language, while no other species can do this.

§2 Turing completeness

§2.1 The Turing machine
¶1 · Turing completeness is the capacity of some hardware to compute by software what-
ever hardware can compute. And therefore, to understand Turing completeness, we have
to distinguish hardware from software, and we have to establish the computing limits of
hardware. Fortunately, we can follow Turing on both.
¶2 · The classic reference of computing is its founding paper by Turing (1936), where he
presents his a-machine, now deservedly known as Turing machine, which is his mathemat-
ical model for computing devices. A Turing machine is a finite state computing module
attached to a potentially infinite tape.
¶3 · The tape is read and write memory, and it is divided in squares, where each square
can contain one symbol out of a finite set of symbols, or none. When a square contains no
symbol, we say that it is blank. For simplicity, we will consider that blank is also a symbol,
the null symbol. Each square has exactly one neighbor square to the left and one neighbor
square to the right, meaning that the tape is infinite and that no computation will abort
because of a lack of squares, though the number of non-blank squares will always be finite.
Another way of seeing it is that the tape is finite but potentially infinite, and that new
blank squares are created whenever either end of the tape is going to be overstepped.
¶4 · The finite state computing module is a finite-state automaton. As those finite-state
automata later investigated by Mealy (1955) and others, the finite state computing mod-
ule is in each moment in exactly one state out of a finite set of states, and the next state
and the output depend on the current state and the input. In the case of the Turing
machine computing module, the finite set of states includes an initial state, the input is
read from the scanned square of the tape, and the output is a pair composed of a symbol
and a movement, where the symbol is written to the scanned square and the movement
is right or left or halt, so the next scanned square will be the neighbor one to the right,
or the neighbor one to the left, or none halting the computation. The computation is
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executed in a loop with four stages —read symbol, transition state, write symbol, and
move— that is finished whenever the movement is halt. So a table defining the next state
and the pair of symbol to write and movement to do for each possible current state and
read symbol determines completely the Turing machine behavior. We will say that the
pair of current state and read symbol is the index, and that the triplet of next state,
symbol to write and movement to do is its corresponding instruction. Together, the in-
dex with its corresponding instruction form a 5-tuple. As the number of states and the
number of symbols are both finite, the table is finite.
¶5 · Being a finite-state automaton, the finite state computing module of a Turing machine
is physically implementable, if the number of states is not astronomic. See that even a
small 1MiB memory can store 8 × 1024 × 1024 bits, so it can be in 28×1024×1024 states,
which are a lot. And below, in §2.4, we will see that a tiny amount of memory, much
less than 1MiB, is enough to achieve the maximum computing power. Thus, while the
tape is unbounded external memory, the states of the finite state computing module are
stored in a finite internal memory, where external and internal refer to the finite state
computing module.
¶6 · The computation by a Turing machine starts from a well-defined situation. We will
assume without loss of generality that in the initial situation the state is the initial state
and the scanned square is the leftest non-blank square, if any; if all are blank, then any one
goes, as any one is as good as any other. From that initial situation, the Turing machine
follows the instructions given in the table until it reaches a halt movement. Some more
details and examples are provided in annex §7.1.
¶7 · So the Turing machine transforms the string of symbols that was written on the tape
when it started into the string of symbols that was written on the tape when it halted.
From this point of view, each Turing machine implements a function from the set of
strings of symbols to the set of strings of symbols, where the strings are finite in length
and its symbols are drawn from a finite set. By definition, any function implemented by
a Turing machine is a computable function. Note that not all these functions are total
functions, because there is not any guarantee that a Turing machine on an initial string
will reach a halt movement, and then the function implemented by the Turing machine
is not defined for those input strings on which the machine never halts.
¶8 · In Turing’s (1936) model of computing, the Turing machine is the computing device,
so it is hardware, while what is written on the tape is software. The Turing machine can
also be interpreted as a function, and then what is written on the tape is data, because
the tape is from where the function arguments, or input data, are read, and to where the
function results, or output data, are written. The tape is also used to store intermediate
results, or temporal data. Then, data is synonymous with software.
¶9 · Under these definitions, the table of a Turing machine is the full description of its
hardware since, as said above, nothing more is needed to determine its behavior. And in
order to understand Turing completeness later, it will help to see that a Turing machine
table is a specification of hardware, not of software, but let us go step by step.
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§2.2 Real computing
¶1 · The strings of symbols are equivalent to numbers, because there
is a bijective function from the finite strings of symbols drawn from a
non-empty set of k symbols to the set of natural numbers N, achieved
by letting that each symbol represents a distinct number from one to
k. It is called a bijective base-k numeration. For example, if the set
of symbols is {A, B, C}, by pairing A ↔ 1, B ↔ 2, and C ↔ 3, we can
map any number, as for example fifteen, to a string, in this case to
string AAC, because 15 = 1× 32+1× 31+3× 30, and conversely, any
string of symbols, for example ABC, can be mapped to a number, in
this case to eighteen, because 1 × 32 + 2 × 31 + 3 × 30 = 18. Zero
maps to the empty string. Bijective numerations are computable and
decidable, and then we can effectively translate both ways between the
computable functions from strings to strings implemented by Turing
machines and the functions from natural numbers to natural numbers
of arithmetic.

↔ 0
A ↔ 1
B ↔ 2
C ↔ 3
AA ↔ 4
AB ↔ 5
AC ↔ 6
BA ↔ 7
BB ↔ 8
BC ↔ 9
CA ↔ 10
CB ↔ 11
CC ↔ 12
AAA ↔ 13
AAB ↔ 14
AAC ↔ 15

¶2 · Turing (1937), page 153, wrote:

The purpose of the present paper is to show that the computable (Turing 1936)
functions introduced by the author are identical with the λ-definable (Church
1935) functions of Church and the general recursive (Kleene 1935) functions due
to Herbrand and Gödel and developed by Kleene. It is shown that every λ-
definable function is computable and that every computable function is general
recursive. [. . . ] If these results are taken in conjunction with an already available
(Kleene 1936) proof that every general recursive function is λ-definable we shall
have the required equivalence of computability with λ-definability.

The diagram can help us to see Turing’s (1937) plan to use Kleene’s (1936) proof.

recursive function ⇒ λ-definable function

⇑ ⇓
computable function

¶3 · Kleene (1936) had already shown the equivalence of λ-definability with recursion
“by proving that all recursive functions, in a wide sense of the term recursive, due to
Herbrand and Gödel, are λ-definable; and conversely, all λ-definable functions of the
type in question are recursive” (page 343).
¶4 · We can express the identity of computable with recursive functions proved by Turing
(1937), with the help of Kleene (1936), as a mathematical theorem:

every recursive function is computable

and

every computable function is recursive.

¶5 · This theorem states the limits of Turing machines: the set of all functions imple-
mented by all Turing machines is equal to the set of all recursive functions from natural
numbers to natural numbers. As a mathematical theorem, it applies to mathematical
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objects, and here we are mostly interested in real computing, so we need to see how it
applies to real computing devices.
¶6 · Turing’s (1936) model of computing separates the computing capacity from the infini-
ties cleanly. A Turing machine has not time limitations, and it is a finite-state automaton
attached to an infinite tape, which is just external memory with some minimal require-
ments: read and write one symbol, move one position. This way computing abstracts
away the limitations of a device in speed and memory from its computing capacity. In
other words, any real computation is a Turing computation, though some Turing com-
putations would be aborted when performed by real computing devices because of a lack
of time or a lack of external memory. Real computing is Turing computing; and Turing
computing is real computing, save for lack of time or lack of tape. And neither lack of
time nor lack of tape refer to the computing capacity of the finite state computing module.
Additionally, in real computing, there can be errors, which are caused by environmental
factors that are out of our control, but we will ignore them here.
¶7 · In summary, all computing results derived from Turing (1936) can be applied to real
computing just by adding the “save for time or tape limitations” provision. In particular,
save for time or external memory limitations, any recursive function can be implemented
by real hardware. It should be stressed that these limitations refer to available time and
to external memory capacity, and that they do not refer to computing capacity. There-
fore, under Turing’s model, real computing approaches theoretical computing as much
as desired, just by adding more time and more external memory to real computing. So,
Turing’s computing is real computing in the limit, and the approximation is indepen-
dent of computing capacity. That is, in computing capacity, Turing’s computing and real
computing are exactly the same. This is, perhaps, why Turing’s model is so successful.

§2.3 The universal Turing machine
¶1 · The universal Turing machine was also defined by Turing (1936). This is the first
paragraph of section 6, pages 241–242, titled “The universal computing machine”:

It is possible to invent a single machine which can be used to compute any com-
putable sequence. If this machine U is supplied with a tape on the beginning of
which is written the S.D [standard description] of some computing machine M,
then U will compute the same sequence as M. In this section I explain in outline
the behavior of the machine. The next section is devoted to giving the complete
table for U .

¶2 · This means that a universal Turing machine is a Turing machine that can mimic the
behavior of any Turing machine, including the universal ones. To do it, part of the input
data entered to the universal Turing machine U is a full description of the Turing machine
to imitateM, basically a coded version of its table, a description that we will call program.
Those programs are written on the tape, so they are software, and therefore universal
Turing machines are Turing complete, because they have the capacity to compute by
software whatever hardware can compute. In fact, the universal Turing machine is the
mathematical model for Turing complete devices, and Turing completeness is also known
as universal computing. Summarizing, the table of U is the specification of the hardware
of a Turing complete device U , and the program is the specification of the hardware of
any computing device M coded for the Turing complete device U .
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¶3 · Turing complete devices need a language in which to write those programs. We will
call the language of a Turing complete device a complete language. For example, Turing
(1936) used Turing machines’ standard descriptions S.D as complete language, but this
is not the only possible complete language. Any complete language has to fulfill two
requirements: the syntactic requirement and the semantic requirement.
¶4 · The syntactic requirement refers to the set of well-formed expressions, in this case,
the set of well-formed programs. The Turing complete device has to imitate any Turing
machine, and therefore it is required that we can express any Turing machine in the
complete language. The number of Turing machines is equal to the number of natural
numbers, as proved by Turing (1936), where the set of natural numbers N is an infinite
enumerable set. This means that any infinite enumerable set can be used as syntax of a
complete language, because then we can map each possible Turing machine to a different
syntactic object, and thus any Turing machine can be expressed in the complete language.
Now we can already state the syntactic requirement for completion: the set of syntactic
objects has to be infinite enumerable, or bigger. In mathematical terms, |Sc| ≥ ℵ0, where
Sc is the set of the syntactic objects of a complete language, and ℵ0 is the smallest infinite
cardinal number, which is also the cardinality of the natural numbers, ℵ0 = |N|.
¶5 · Any infinite set can be the syntax of a complete language, because then we can
express any Turing machine in the language. But, in addition, the Turing complete device
has to take any syntactic object expressing a Turing machine and effectively imitate it.
This is the semantic requirement for completion, because the Turing complete device
has to know the meaning of the syntactic object to perform the imitation. Viewing
each Turing machine as the function that it implements, and given the equivalence of
the computable functions with the recursive functions proved by Turing, the syntactic
requirement grants that any recursive function is expressible in the complete language,
and the semantic requirement grants that any such expression effectively results in the
calculation of the recursive function by the Turing complete device. Because of this,
we will call any semantics needed to fulfill the semantic requirement for completion a
functional semantics. And because any recursive function can be expressed and calculated
in a complete language, we say that a complete language is a recursive language.
¶6 · An important mathematical property of any complete language is full reference.
Proof Gödel (1930) showed that there is an effective bijection G between the set of
finite strings of symbols drawn from any non-empty enumerable set and a proper subset
of the natural numbers, now known as Gödel numbers, G ⊂ N. So, if Γ is a non-empty
finite set of symbols, and Γ∗ is the set of finite strings of symbols drawn from Γ, then it
exists a Gödel numbering G : G ↔ Γ∗. Effective means that both G and G∈, which is
the characteristic function of G, G = {x | G∈(x)}, are computable and decidable, so we
can effectively go from any string to its corresponding Gödel number and, in the other
direction, we can effectively determine whether or not a number is a Gödel number, and
if it is, then we can effectively go from that Gödel number to its corresponding string.
As the strings of symbols are equivalent to numbers, see §2.2, we have another natural
bijection, the bijective base-|Γ| numeration N : N ↔ Γ∗, which is also computable and
decidable. We will call string N (g), when G∈(g) is true (meaning that g is a Gödel
number), the name of string G(g). It is always possible to implement Gödel and natural
numberings in a complete language, because all computable functions are available in it.
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Therefore, in any complete language there are means to effectively name each and every
string of symbols, and thus any complete language is full referable. Q.E.D.

§2.4 Real universality
¶1 · A universal Turing machine is a Turing machine, and therefore what we have seen
in §2.2 applies: any real Turing complete device computes exactly as a universal Turing
machine, save for time or tape limitations, that is, provided that the real Turing complete
device has enough time to perform the computation, and that it can access as much
external memory as it needs. This means that any recursive function can be programmed
into and calculated by a real Turing complete device, save for time or tape limitations.
¶2 · The function is the mathematical concept that abstracts causal change. Whenever
something is transformed causally into something, we can use a function to describe math-
ematically the transformation. For that reason, functions are widely used in physics, and
in science generally. And then we can say that Turing completeness is the computing
capacity of some real devices to calculate, save for time or tape limitations, any algo-
rithmic rule for change given to them as data. Here ‘algorithmic’ is synonymous with
‘computable’, with ‘recursive’, and with ‘programmable’; please, serve yourself.
¶3 · In §2.1 we left pending a question: How much internal memory is enough? Although
it seems that it cannot be answered —enough for what—, in fact it can be answered
because Turing completeness is the maximum computing capacity. Any computation,
which is any computation that any Turing machine can compute, can be computed by a
universal Turing machine, and the universal Turing machine is a Turing machine, so it
has a finite number of states stored in its finite internal memory. Therefore, the finite
internal memory of a universal Turing machine is enough to compute any computation
at all, and the question can then be reformulated: How much internal memory does a
universal Turing machine need?
¶4 · Shannon (1956) showed “that a universal Turing machine can be constructed using
one tape and having only two internal states.” Two is a small number indeed, but
as Shannon finished, what is interesting “is to find the minimum possible state-symbol
product for a universal Turing machine”, because the state-symbol product is the size of
the Turing machine table. And, for example, Neary and Woods (2006) found universal
Turing machines with the state-symbol products 3 × 11, 5 × 7, 6 × 6, 7 × 5 and 8 × 4,
for two-symbol (blank and another symbol) imitated Turing machines. And these are
not the last values, because mathematicians are still investigating, but they show us that
Turing machines internal memories do not need to be astronomical, and in fact internal
memories can be tiny, even those of universal Turing machines. The conclusions are
that the finite state computing modules of Turing machines, including universal Turing
machines, are realizable, and that, above some tiny amount, the computing capacity of
a device is independent of its internal memory.
¶5 · Universal Turing machines are Turing machines, so they are mathematical objects
under Turing’s model of computing. As seen above, this means that real hardware
can be Turing complete, and in fact some real hardware is Turing complete. Any full-
programmable computer is Turing complete because, save for time or external memory
limitations, it can be programmed to compute any recursive function. We are sure be-
cause we can program it to execute a conditional loop on the 5-tuples defining any Turing
machine, so the imitation will be exact, save for time or tape limitations. For example,
and to compare ideal mathematical complexity with practical engineering complexity,
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the Intel 4004 microprocessor used 2300 transistors, where a microprocessor is a Turing
complete finite state computing module in a chip, and the 4004 was in 1971 the first com-
mercially available microprocessor; see Betker, Fernando & Whalen (1997). And while
mathematicians were trying to decrease the state-symbol product, engineers have been
instead increasing the number of transistors in a chip.
¶6 · There are more differences between the theoretical and the practical view of Turing
completeness. For example, the syntactic requirement for completion —the syntax of a
complete language has to be infinite— is theoretical, and then it is independent of the
use and the implementation of the complete language. From the practical point of view,
we can recommend that the syntax of a complete language should be a recursive set, in
the sense of Post (1944). Following this recommendation, syntax parsing is decidable,
that is, the function implementing syntax parsing is total, so given any string of symbols
there is a program that always determine whether or not the string of symbols belongs to
the complete language. This is just a first recommendation, and it still leaves open many
possibilities for the syntax of a complete language: using Chomsky (1959) hierarchy,
should it be context-sensitive, or context-free, or regular, or even something in between?
Well, it will depend on the use of the complete language, and also on its implementation,
which includes the implementation of its functional semantics. For example, Lisp is
a complete language created by McCarthy (1960), and the syntax of Lisp is context-
free. While the mathematical requirement is absolute, engineering recommendations are
concerned with applicability, so they have to consider its use and implementation.

§2.5 We are Turing complete
¶1 · Our species, Homo sapiens, is Turing complete, meaning that each individual member
of our species is Turing complete. There are many ways to show that we are Turing
complete. The direct way is to show that, given the table of any Turing machine, we can
imitate the computations of that Turing machine on whatever data precisely, save for
time or tape limitations and slips, where a slip is a human error of execution. And that is
what we can do when we understand how Turing machines work, and then understanding
Turing (1936) proves that we are Turing complete. In fact, it is enough to understand
the sections of the paper where the Turing machine is explained, §1, §2, and §3, or an
equivalent text, as for example §2.1 and §7.1 here.
¶2 · Understanding any complete language shows that we are Turing complete, too. Take,
for example, Lisp. Lisp is a complete language because the table of any Turing machine
can be expressed in Lisp, see §7.1, so any Turing machine can be imitated by a computer
running a Lisp interpreter, save for time or tape limitations. Now, to understand the
Lisp manual by McCarthy et al. (1962) means that we can calculate the result of any
Lisp program by ourselves. This, being Lisp a complete language, means that we can
calculate any recursive function given to us as data (the Lisp program) exactly, save for
time or tape limitations and slips. This argument can be applied, mutatis mutandis, to
any other complete language.
¶3 · The fact that the Lisp manual by McCarthy et al. (1962) is written in English shows
that English is a complete language if Lisp is a complete language, which it is, because
it means that understanding English is enough to understand Lisp. Again, we can apply
the same argument, mutatis mutandis, to any pair of complete language and natural
language. See that if a natural language is complete, then we can explain any complete
language in it, but that if a natural language is not complete, then no complete language



www.ramoncasares.com 20230727 TC 12

can be explained in it. This shows that most, if not all, natural languages are complete.
In any case, assuming that any human child will acquire English if raised in an English
speaking community is assuming that we are Turing complete. And again, this argument
can be applied, mutatis mutandis, to any other complete natural language.
¶4 · The fact that we are Turing complete has many consequences, and some of them will
be developed below, but by now you should already understand what Turing completeness
is, and to look for some of the consequences by yourself is an enlightening exercise that
I strongly recommend you. So, please, pause a bit, and explore it by yourself!

§3 Evolution

§3.1 Software is much cheaper than hardware
¶1 · As we have seen in §2.1, computing by Turing (1936) distinguishes software from
hardware, where software is what is written on the tape, and hardware is the computing
device. Again, we are most interested in real computing, so we need to translate hardware
and software from Turing’s computing to real computing.
¶2 · Hardware is the computing device, or the matter the computing device is made of,
which is just matter. Actual real computing devices can be made of silicon, as for example
the Intel 4004 microprocessor, see Betker, Fernando & Whalen (1997). But they can also
be made of other materials, as organic matter in the case of the brain, or metal and wood
in the case of the mechanical computers of Babbage. We will assume here that, in the
general case, to deal with hardware is to deal with matter. Hardware is matter seen from
the computational point of view.
¶3 · Software, or data, is what is written on the tape, which is just memory. So we should
investigate writing on real tapes and to real memories. And, for example, if the real tape
is a binary magnetic tape, then we only need two stable magnetic states, which can be
the two ends of the hysteresis loop of the material. In this case, some energy is needed
to change the state. There are some other types of real memory that require energy to
keep what is written, as for example random-access memory (RAM) used in personal
computers built with transistors and capacitors, where the charge in the capacitor stores
the information. As no real capacitor is leak-free, some energy is needed to keep its
charge. We will assume here that, in the general case, to deal with software is to deal
with energy. Software is energy seen from the computational point of view.
¶4 · To transport software, as for example the programs and other data that make an
application, we can use light carried by an optical fiber cable, where light is emitted and
absorbed in photons, which are massless elementary particles. This shows that we do
not need to move matter to transport software, and that moving energy is enough. Of
course, to transport hardware we have to move matter. Again, software is energy and
hardware is matter seen from the point of view of computing.

Matter · Hardware
Energy · Software

¶5 · The physical relationship between matter and energy was given by Einstein (1905):

E = mc2.
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In this very famous equation, E stands for energy, m for mass, and c denotes the speed
of light. As c is big, c2 is much bigger, meaning that a tiny amount of mass can be
transformed into a huge amount of energy, as shown by an atomic bomb exploding, or by
a nuclear power station generating electricity. In this case, software is much cheaper than
hardware, where ‘much’ means ‘c2 times’. Then, the power of a Turing complete device
transforming hardware computations into software computations is somehow related to
the power of an atomic bomb transforming matter into energy. It is perhaps only a
coincidence that the first full-programmable computers were used to calculate the first
atomic bombs.
¶6 · Of course, to build a computing device we do not need to transform pure energy into
matter, because just by rearranging some already existing materials we can construct
a computing device, but even rearranging matter is more expensive than rearranging
energy. Thus, hardware is a matter arrangement, software is an energy arrangement, and
Turing completeness is the capacity of some matter arrangements to mimic any matter
arrangement by taking an energy arrangement as input.
¶7 · In any case, software has to be executed by hardware, so in the case of a Turing
complete device we have the following progression. For one function, for example for ad-
dition, an adder machine is cheaper than a full-programmable computer with a program
for addition. Even for the four arithmetic operations —addition, subtraction, multipli-
cation and division—, a basic calculator is cheaper than a computer with a calculator
program. However, beyond some point, if software is much cheaper than hardware, the
full-programmable computer wins. And the fact that there are now much more computers
than calculators proves that software is much cheaper than hardware.
¶8 · More formally, we can compare the cost of n computing devices, where each one
calculates a function, with the cost of a Turing complete computing device plus the cost
of the software needed to calculate those n functions and, if software is much cheaper
than hardware, then by increasing n there will be a point beyond which the second is
cheaper. If the cost of building a computing device i is Hi, the cost of building a Turing
complete device is U , the cost of the program i that imitates the computing device i in
the Turing complete device is Si, and Si � Hi, then for some number b, which we will
call the breaking point :

0

Cost

n

n∑
i=1

Hi

U+
n∑

i=1

Si

U

b

b−1∑
i=1

Hi ≤ U +
b−1∑
i=1

Si ,

b∑
i=1

Hi > U +
b∑

i=1

Si .

And therefore, beyond the breaking point,
that is, for any n > b:

n>b∑
i=1

Hi � U +
n>b∑
i=1

Si .

¶9 · As soon as it was possible to build full-programmable computers for a price that was
below a critical point, they won over non-programmable calculators, because software is
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much cheaper than hardware. Just by using the software to imitate a calculator, a full-
programmable computer can do whatever the hardware calculator can do, because the
full-programmable computer is Turing complete. While the calculator can only perform
a fixed set of operations, those that are built in its hardware, the same Turing complete
hardware, by using some other software, can compute any computable function, including
calculations sequencing the basic four operations. And that was just an example; the
complete field of application of full-programmable computers is too broad to be detailed
here, and in fact our modern society depends too much on they. Full-programmable
computers pervade our modern society.

§3.2 Computing is for problem solving
¶1 · Mathematics is not concerned with the use of its models, and this applies to Turing’s
computing model, too. But we are interested in the rôle that computing plays in evolution,
so we must answer a question: What is the use of computing?
¶2 · Computing was founded by Turing (1936) to serve as a mathematical model for
problem solving. Turing defines his machine to prove that the Entscheidungsproblem,
which is the German word for ‘decision problem’, is unsolvable. After defining the Turing
machine, he shows that there is not any Turing machine that can solve the problem.
However, this proof is valid only under the assumption that the set of Turing machines
exhausts the ways of solving problems, where each Turing machine is a way of solving,
because then that no Turing machine solves a problem implies that there is no way of
solving it. This assumption is Church’s (1935) thesis reformulated for problem solving
by computing.
¶3 · For now, we can put aside Church’s thesis, because it is just an assumption that
mathematicians need to perform a proof, but we should keep in mind these two key
ideas:
◦ computing is for problem solving, and
◦ each Turing machine is a way of solving,

where a Turing machine implements a recursive function.
¶4 · That a function is a way of solving makes sense, because the function is the mathe-
matical abstraction for causal transformations, so to go from a problem to its solutions
a function is needed. Therefore, from the problem solving point of view, we will call a
recursive function a resolution. As any recursive function is a resolution, and a generic
solution can be the solution to any problem, then, given a problem, what we need is not
any resolution, but a valid resolution for that problem. A valid resolution for a problem
is a function that returns exactly the set of the solutions to that problem. Usually, a
solving resolution is enough, where a solving resolution for a problem is a function that
returns some of its solutions, only solutions and at least one. Note that, if problem π
has at least one solution, then a valid resolution for problem π is a solving resolution for
problem π.
¶5 · A Turing machine is then a resolver, because it implements a recursive function,
which is a resolution, a way of solving. In other words, if Turing machine M implements
a solving resolution for problem π, then it returns at least one problem π solution, and it
does not return any non-solution of the problem π, so we can take anything that Turing
machine M returns to solve problem π. Thus, we can say that Turing machine M is a
particular way of solving problem π, and that Turing machine M solves problem π in a
specific way.
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¶6 · In this context, a Turing complete resolver is a resolver that can be programmed to
solve any problem that any resolver can solve. As seen in §3.1, beyond some critical
number of problems, if software is much cheaper than hardware, then a Turing complete
resolver will be more profitable than the equivalent set of hardware resolvers.

§3.3 Turing completeness is evolutionarily disruptive
¶1 · Seeing brains as computing devices, the advantage of a Turing complete brain against
one that is not Turing complete is also huge beyond the breaking point, and because
of the very same reason: implementing a function in software is much cheaper than
implementing the same function in hardware. However, to see it clearly, we should see it
from the point of view of problems.
¶2 · Life can be assimilated to the survival problem. From this point of view, which
is the problematic view of life, evolution is a problem resolver. Evolution solved some
subproblems of the survival problem by designing systems, as the cardiovascular system,
and it solved their sub-subproblems by designing organs, as the heart.
¶3 · But evolution cannot solve the problems faced by moving individuals in their day-
to-day living, because those problems depend on casual circumstances. For solving those
problems faced by moving individuals, evolution designed the nervous system, the brain
organ, and even the specialized nervous tissue and neuron cell. Then, broadly speaking,
the function of the nervous system is to deal with information, and the function of the
brain is to take information from the body, calculate what to do in order to resolve
according to the circumstances, and send the resulting command information back to the
body. In other words, the brain is the resolver of the problems of the moving individual.
¶4 · There is a delicate interaction between the brain and the rest of the body, which is
calibrated by the proper distribution of responsibilities between the two problem resolvers
involved, evolution and the brain. For example, heart beat rate can be autonomous, as
shown by a separated heart beating, but the brain can command to increase the beat
rate when running, for example, to flee from a predator.
¶5 · Not all living individuals are Turing complete, so we might wonder what difference
does this make. A resolution is a function that takes a problem and returns solutions,
right and wrong solutions. And, being a recursive function, a Turing complete individual
can express and calculate, that is, imagine, any resolution in his complete language, while
a more limited individual will apply its limited set of resolutions to any problem. The
key point is that a single Turing complete individual can imagine any possible way of
solving a problem, and then he can execute any of the imagined resolutions that returns
right solutions, while an individual that is not Turing complete can only apply those
resolutions that are implemented in the hardware of its body, mainly in the hardware of
its brain.
¶6 · In addition, once a single Turing complete individual has designed a resolution that
solves a problem, that resolution can be stored so that any Turing complete resolver can
use it later as such, that is, without any additional design, which can be expensive. Then,
under Turing completeness, resolved by anyone once is resolved for everyone forever after.
This way Turing complete problem solving is shareable and cumulative, showing a ratchet
effect and explaining why it is so spreadable and irreversible; often explosive.
¶7 · Species that are not Turing complete need a genetic change to modify their set of
resolutions, while Turing complete individuals can apply new resolutions without any
hardware change, but just by a software change. So the timing of creativity depends
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on evolution until Turing completeness is achieved, and it does not depend on evolution
after that point for the species that achieve Turing completeness. We will call every point
where an evolutionary path achieves Turing completeness an evolutionary singularity. In
other words, an evolutionary singularity is any evolutionary moment when the brain
surpasses evolution in problem solving. You can find another explanation in annex §7.2.
¶8 · In summary, creativity is slow until an evolutionary singularity and creativity ex-
plodes after every evolutionary singularity because, after achieving Turing completeness,
finding and performing new ways of solving the survival subproblems becomes cheap,
cumulative, and available to single individuals while, before achieving it, any single new
way of solving them required genetic changes on species over evolutionary time spams.
Thus, Turing completeness is evolutionarily disruptive.

§3.4 We are the only Turing complete species
¶1 · Being disruptive, it should be easy to distinguish a Turing complete species from one
that it is not Turing complete. Now, we will list some characteristics that any Turing
complete species should show. Our aim here will be to find some Turing complete species
other than us.
¶2 · Each ecological niche can be seen as a survival problem, because each niche is defined
by the conditions that a species has to satisfy in order to survive in it. Then a Turing
complete species, which can solve problems universally, cheaply, and quickly, can occupy
nearly any niche. We can survive in nearly any climate because if, for example, it is cold,
then we resolve to use cloths. And similarly for nearly any other condition. A Turing
complete species can survive in very different niches.
¶3 · A Turing complete individual, when facing a new niche where it is easier to transform
the environment than to transform its body, will resolve to modify the environment. As
this will be usually the case, Turing complete species will perform niche construction
extensively, creating a variety of artificial ecosystems.
¶4 · A tool is a device that facilitates a transformation. Then, from the problematic point
of view, a tool is the physical implementation of a resolution, that is, tools are realizations
of resolutions. For example, when a problem solution is a wood object, then the resolution
can consist in cutting some wood, which we can only perform with a tool such as a saw.
A Turing complete individual can imagine and build tools to solve problems and even to
build tools, when a tool is considered the solution of a subproblem. A Turing complete
species uses tools extensively.
¶5 · And we should not forget the characteristic that defines Turing completeness: A
Turing complete individual can be programmed, or instructed, to calculate any recursive
function in his complete language. Failing to calculate just one recursive function is
disqualifying. For example, if a species cannot learn to count up to any number, then
that species is not Turing complete. Note that the converse is not true, so a species that
counts is not Turing complete if it fails to calculate any other recursive function. There
is a longer list of Turing complete characteristics in §4.
¶6 · Our species, Homo sapiens, qualifies easily on all of the characteristics, but it seems
that no other species qualifies. No other species has an external complete language for
communication, though it could be that a species had an internal complete language for
thinking about which we were not aware. However, if that were the case, then that species
would show creativity in building a variety of artificial ecosystems, in using and devising
tools extensively, in occupying many niches, and in solving its problems in different and
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new ways. Given that no other species shows a level of creativity in the same order of
magnitude than us, our conclusion is that we are the only Turing complete species.
¶7 · And the same conclusion was reached by Hofstadter (2007 and 2013), pages 246 and
549: “This [Gödel-Turing] threshold was crossed on the species level somewhere along the
way from earlier primates to ourselves”, where his Gödel-Turing threshold for evolution
corresponds to our evolutionary singularity. So it was crossed along the way, but where?
To my knowledge, no other species is as creative as ours, by far. Even our closest relatives
ever, Neanderthals, keep behaving the same way for more than two hundred thousand
years, according to Fagan (2010), page 80. If this is true, then our best guess is that
Homo neanderthalensis was not Turing complete, and that the only Turing complete
species ever is our species Homo sapiens.

§3.5 Why only us?
¶1 · Turing completeness is evolutionarily disruptive, but it is not evolutionarily easy or
otherwise there would be other Turing complete species with us. This raises the question:
Why only us?
¶2 · The main reason is that evolution has not foresight. Evolution works as a short-
sighted enterprise that asks its executives that every step has to be profitable. Taking
always the easiest next step constrains very much the possible paths to anywhere, and
also to Turing completeness. Our task here will be to find a point in the evolutionary
landscape from where the path of least resistance goes to Turing completeness.
¶3 · Firstly, the point should be in an area of enough complexity. We saw in §3.1 that
Turing completeness is advantageous only beyond the breaking point. This means that
Turing completeness is not for every species, but only for those that face a number of
problems that is greater than the breaking point. We have not determined the breaking
point for evolution precisely, but we can assume that insects are below that point, and
that apes are above it.
¶4 · Secondly, Turing completeness requires a language, and only collaborative species can
benefit from using one, as argued by Tomasello (2008). Collaboration happens whenever
a problem is shared by two or more individuals that are resolving it together. In collab-
oration, communicating true information is useful, while in competition it is not. So the
evolutionary path to Turing completeness has to pass through an area where collabora-
tion is required. Collaboration can be a stringent condition because natural selection is
basically competitive, as shown by the subtitle of its founding book by Darwin (1859):
On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured
Races in the Struggle for Life. However, although it took some time to explain scientifi-
cally the evolution of cooperation, see Axelrod & Hamilton (1981), and of altruism, see
Wilson (2008), collaboration, which is a sort of altruistic cooperation, see Casares (K),
is certainly possible, as shown by multicellular organisms and by honey bees.
¶5 · Taking together both conditions, collaboration and complexity, they seem to filter out
all species but one, ours. A cell is too simple to be Turing complete, so cell collaboration
in multicellular organisms is not enough. The same is true for honey bees; insects are too
simple to take advantage of Turing completeness, so the collaborative honey bees never
evolved a complete language. On the other hand, chimpanzees are complex enough, but
they are not altruistic enough, see Tomasello (2008) §5.1.1, so they did not evolve Turing
completeness, either.
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¶6 · But, for some reason, some of our ancestors were in a situation that fostered collabo-
ration. As chimpanzees do not collaborate, and here we are differentiating collaboration
from cooperation as in Casares (K), this happened after the chimpanzee-human split,
about six million years ago according to Patterson et al. (2006), or it caused the split.
Then, a new species started to evolve collaborative traits, mainly by enhancing collab-
orative communication. From that point, the evolutionary path went down enhancing
communication until a protolanguage first, and then a complete language was achieved,
see Casares (H). If even Neanderthals were not Turing complete, my guess is that Turing
completeness was achieved in the time frame of the anatomically modern Homo sapiens,
but before the African exodus, so let us say from 60k to 300k years ago.
¶7 · New behaviors related to the solution of problems, such as feeding, mating, and
surviving, should proliferate after achieving Turing completeness. And being a tool the
physical realization of a resolution, then an explosion of new tools should start whenever
an evolutionary singularity happens. So the archaeological record of human tools should
point to our evolutionary singularity, that is, to the moment when we achieved Turing
completeness.

§4 Humanity

§4.1 Uniqueness
¶1 · Every species is unique. Nevertheless, if Turing completeness is evolutionarily dis-
ruptive and we are the only Turing complete species, as I am arguing, then we are “more
unique” than other species. At the very end of §2, I encouraged you to investigate the
consequences of being Turing complete, and now I will do it myself: in this section §4, I
will explore our human uniqueness, as it results from being Turing complete. However,
before going to the details, two warning notes are in order.
¶2 · This section §4 is more tentative than the others, and then it should be read in a
different mode. My main intention here is to show that many concepts that are completely
alien to science from other points of view are at least addressable from the problem solving
point of view of both evolution and computing presented in this paper.
¶3 · The politically correct position is to say that our species is not fundamentally different
from other species, and here I am arguing otherwise. But I honestly believe that we are
the only Turing complete species and that this is the cause of our too much dominant
position in nearly every ecological niche on Earth. Seeing it objectively, we are a pest for
nearly every other species, causing the extinction of many of them. In this case, political
correction defending that we are just a species like any other can be used to ignore our
responsibilities, while understanding our unique position among all species can contribute
to resolve the global problems that we are causing. Amen.
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§4.2 Creativity
¶1 · Turing completeness is defined by a single condition: pan-computability. A universal
Turing machine, which is the prototype of Turing completeness, is every Turing machine
that can compute whatever any Turing machine can compute, but no more. This means
that to perform any specific computation you can, either build the Turing machine specific
for that computation, or write the program for that specific computation on a universal
Turing machine. Either way the outcome of the computation will be the same, and
the only differences would be that the first can run faster, and that the second can
be implemented faster, once you have a universal computer. The second is better for
modeling, because writing software models is much faster and much cheaper than building
hardware models, but, again, the results of the computations are the same.
¶2 · In other words, creativity is the only exclusive feature of Turing complete problem
resolvers. And this explains an elusive fact: every time a specific behavior is presented as
uniquely human, it is later rejected when it is found in another species. The point is not
that we behave in some specific way to solve a problem, but that we are free to imagine
any way to solve our problems. Creativity is the mark of Turing complete resolvers.

§4.3 Freedom
¶1 · Freedom is the source of creativity, because without freedom one cannot be creative.
¶2 · When facing a problem, being Turing complete makes a whole difference. It means
that one is free to imagine and to perform any resolution. That is, anything that can be
expressed in the complete language of the Turing complete individual can be examined,
evaluated, and executed. Well, some resolutions cannot be executed but, if something
impossible is tried, then something was wrongly evaluated.
¶3 · This freedom contrasts with the fixed ways of solving their problems of non-Turing-
complete resolvers. As in the case of a basic calculator, where you can only select one out
of a fixed set of operations, their ways of solving are fixed. As long as those fixed ways
solve all the problems they face, they will survive, and all surviving species but one are
in this situation. However, though some of them show a variety of behaviors, they lack
the freedom we have.
¶4 · This is a good moment to note that Turing complete problem solving is more open
and then more difficult than more restricted forms of problem solving, because Turing
complete problem resolvers have much more chances to be wrong. We can also say that
Turing complete problem resolvers are free to be wrong. Therefore, as only we are free
to be wrong, or right, only we are responsible. We cannot put the blame on others.
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§4.4 Language
¶1 · To have a complete language and to be Turing complete is the same thing.
¶2 · An important mathematical property of complete languages is full reference, see §2.3,
which includes self reference: any of the complete language objects can be referred from
within the complete language. This was firstly shown by Gödel (1930) when he was
able to assign a different natural number, now called Gödel number, to each arithmetic
expression, or sequence of expressions, including the natural numbers themselves! In the
case of natural language, the word ‘Bible’, for example, refers to a whole text, and the
sentence ‘this sentence is false’ is a statement about itself. By the way, that sentence
shows the funny things that self reference can express. But what is important here is that
we can refer to anything that can be said the same way that we refer to any real object.
Using arbitrary sounds to refer to real objects is something that dogs can already do, as
shown by Pavlov (1927), so our ancestors surely had this capacity before reaching Turing
completeness. And now, in our complete language, we can think of imagined concepts
the same way we think of real objects. Language exceeds reality.
¶3 · That our language is complete means that we can express and calculate any recursive
function in it, that is, we can imagine any algorithmic rule for change in our complete lan-
guage. So in our complete language we can imagine any possible causal change whatever,
whether it is happening or not. A complete language can then describe what is actually
happening, what could possibly would have been happening, and even the impossible
happening. Changes are objects of the complete language. Language exceeds actuality.
¶4 · Taking both properties together, full reference and change representation, they extend
our world enormously. By the first, we can think about any complete language object,
and by the second, changes are complete language objects. Therefore, as language objects
can be real or imagined, we can refer to any object, real or imagined, and to any change,
real or imagined, in our complete language. If actual reality has three spatial dimensions,
then our world as extended by our complete language has two additional dimensions:
possibility or freedom, and change or time.
¶5 · So in our case, resolving a problem in cheap software results in resolving it by thinking
about it in our complete language, or by discussing the problem with other persons to re-
solve it collaboratively together. Then, that talk is cheap is mostly beneficial, though that
our complete language exceeds reality and actuality implies that there can be lies in any
human language. We should interpret that falsehood pays for freedom and completeness.

§4.5 Will
¶1 · If you were an engineer who had to add Turing completeness to an already working
species, where would you add it? Turing completeness is so powerful that you can enter-
tain the idea that it can be added anywhere, but a little thinking can persuade you that
it would be more profitable to use it where it is more needed, that is, Turing complete-
ness should help to resolve the most important problems for the individual. Fortunately,
every complex species has a system for prioritizing problems. So, on top of perception,
a complex species needs attention, to be aware of urgent threats, and it needs intention,
to decide how to face the most urgent threat. From this cursory analysis, it seems that
the best way to proceed would be to implement a Turing complete intention.
¶2 · In the case of a non-Turing-complete species, intention is reduced to choose one
resolution out of a finite set, for example flee or fight when a predator is coming. That
decision can be made using the weighted sum model, for which neural networks are
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especially well suited. A weighted sum implementation of intention is efficient and it
gives its results very quickly.
¶3 · The process is different when we implement a Turing complete intention. The prob-
lems that attention prioritize are then translated to the complete language where possible
resolutions are generated and compared until one that is considered the best is executed.
Translation: The problems that need attention are verbalized and possible plans are
devised, examined and evaluated until one is judged fit for execution. A verbalized im-
plementation of intention is flexible, but it does not give its results quickly.
¶4 · We can get the best of both by keeping the efficient weighted sum intention and
adding the verbalized intention to it, so when a decision is needed quickly, weighted sum
intention is used, and when time is not pressing, verbalized intention is chosen. This
can be implemented in parallel, working both simultaneously, and when a decision is
needed the verbalized one is preferred, if available, but if the verbalized decision is not
yet available, then the weighted sum one is used. In other words, at first the weighted
sum decision is adopted, but if a verbalized decision is available later, then the verbalized
decision vetoes the previous one.
¶5 · This cognitive architecture, consisting in a Turing complete intention on top of percep-
tion and triggered by attention, would explain that human execution errors, also known
as slips, are caused by attention dysfunctions, as proposed by Reason (1990). Then the
provision for human Turing completeness, which is “save for time or tape limitations and
slips”, can be reformulated as “save for time or tape limitations and attention failures”.
¶6 · Intention is not free. Intention is related to problem resolution, which all complex
enough species have to implement in order to survive. The result of adding verbalization
in the complete language to intention is will. Will is free.

§4.6 Explaining
¶1 · To explain why a person did something, we have to show in detail the intentional
process that resulted in his behavior; in other words, we have to uncover his will. So,
firstly we should describe which problem he was facing, that is, to which problem he was
attending. Sometimes this can be assumed, but it would be impossible to understand
what he did if we do not know what problem he was trying to solve by doing what he did.
And sometimes the motive is the only important point, but more frequently the way is
also important, and then we should list the possible plans he could had followed, and we
should show that the plan he actually accomplished was the best for him to undertake
given his circumstances, from his point of view.
¶2 · We can use the same schema to explain other complex living beings behavior, because
they have attention and intention, and other simpler living beings behavior, because they
face problems that they solve using resolutions designed by evolution. In the case of
evolution, the problem is the survival problem, always, so it can be omitted, and the
evolutionary ways of solving are those described by Darwin and other biologists.
¶3 · Currently, explaining non-living events is easier, but less convincing. A scientific
explanation is indeed an impoverished explanation, because we assume that non-living
entities do not face problems. From this assumption, it follows that for non-living entities
neither problems nor solutions have any meaning. What about resolutions? Well, a
resolution is a program, an algorithmic rule, so in this case the resolution is the law of
nature that rules what happens. Then, the scientific explanation just says that, given the
law of nature and the state of things, the only possible outcome was what it happened.
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For science, nature is the simplest resolver, that is, nature is a mechanism that behaves
always and unconditionally the same way. Although they were surely less useful, the
explanations of natural events were more convincing when gods governed nature!
¶4 · We see other living beings as resolvers, that is, as pursuing their goals, and ultimately
struggling for their survival. We also see evolution as pursuing a goal, producing surviving
beings, even though we know that evolution is blind so it only follows the path of least
resistance, as a projectile following its ballistic trajectory. And when we ask ‘what is the
universe for?’, we are assuming that the universe is also pursuing its goal, a mysterious
goal. To me, this shows that we can only explain what happens from the problem solving
point of view by mirroring the way we solve our problems.

§4.7 Understanding
¶1 · From the problem solving point of view, a question is the expression of a problem,
and its answer is the expression of its solution. In some languages, the type of question
restricts the answers. For example, in English a who-question asks for a person. Now,
it is interesting to see that how-questions ask for resolutions, and then a resolution is a
solution, and specially that why-questions ask for explanations.
¶2 · As seen in §4.6, an explanation is a discourse, or text, in a complete language that,
given a solution, describes and justifies both the problem that the solution solves and the
resolution used by the resolver to find the solution. An explanation can be unconvincing
if the justifications are unconvincing: why was that problem and no other problem at-
tended, why was not other resolution devised, why was this resolution judged better than
that other, and more. Each of those why-questions would ask for its corresponding ex-
planation, resulting in a potentially unending tree of explanations, and of why-questions.
¶3 · The tree shape is typical of problem solving. Usually, a complex problem can be
decomposed in several, hopefully simpler, subproblems and some of these can be further
decomposed, producing a tree of related subproblems. Here, we will not follow more
deeply the convoluted shape of problem solving, see the details in Casares (P), but the
conclusion is that in order to express problem solving fully, with all of its questions,
answers, and explanations, a complete language is required. More precisely, full problem
solving requires a functional semantics on an infinite tree-structured syntax, see Casares
(S). Note that simpler ways of problem solving, as for example trial and error problem
solving, do not need any language at all.
¶4 · In between there could be semi-complete languages in which semi-explanations are
possible, but here I will assume that evolutionarily their locations are near and uphill
Turing completeness, so they are always in the path to a complete language. To show that
this assumption is sensible, we should compare our natural language with other animal
communication systems. All other animal communication systems are closer to the finite
set of buttons of a basic calculator that are needed to choose the operation to apply than
to the textual programs that command the operation of a full-programmable computer,
which closely resemble our natural language. That is, all other animal communication
systems use expressions that are fixed in meaning and that cannot be combined to produce
more complex expressions, see Casares (H). My conclusion is that there is not any semi-
complete language in nature. Of course, in our own evolutionary path, it is very possible
that some of our ancestors spoke a semi-complete language.
¶5 · The conclusion is then that explaining requires a complete language. Semi-explaining
requires a semi-complete language, but there are not semi-complete languages in nature,
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except temporarily, and there is none currently, so we can forget about semi-complete
languages here. Therefore, only Turing complete resolvers can explain what happens,
and understanding requires a complete language.

§4.8 Consciousness
¶1 · Explaining and understanding are the sending and the receiving end, respectively,
of the semantic communication channel. If I am right, then both ends are implemented
in human intention, or will, where the semantic communication is done in a complete
language. Then, will is a verbalized intention that we experience as an inner voice, or an
internal dialog, called the stream of consciousness. Complete language properties, mainly
full reference and change representation, determine the properties of conscious thinking.
¶2 · A resolver is an agent of change. Therefore, a language that can refer to change
is needed to explain a resolver. As representing change seems to be an innovation of
complete languages, only Turing complete resolvers can explain themselves to themselves.
This conscious thinking about one-self is called self-consciousness.
¶3 · Turing complete resolvers can explain any resolver whatever, including themselves
and other Turing complete resolvers, in their complete language. Therefore, a Turing
complete resolver can elaborate theories of mind, that is, models of wills, of his own will
and of others wills.
¶4 · In fact, because of full reference, Turing complete resolvers can explain any agent
whatever in their complete language. Then, Turing complete resolvers can elaborate
theories of anything because, at last, any computing device can be modeled exactly
by a Turing complete computing device. The possibility of mirroring in our complete
language anything that happens, including our own thinking, easily evokes the concept
of consciousness as reflection.
¶5 · By the way, the semantic communication channel was excluded by Shannon (1948)
on purpose from his mathematical theory of communication, as he explains in the second
paragraph of the introduction, page 379. This was possibly necessary to state a mathe-
matical theory, but to me, see Casares (B), it is not entirely true that: “These semantic
aspects of communication are irrelevant to the engineering problem.”

§4.9 Subjectivism
¶1 · The theory proposed here is founded on the distinction between software and hard-
ware, which is the computational version of the physical one between energy and matter,
as we saw in §3.1. And both are closely related to Descartes’ dualism based on the
fundamental distinction between mind and body. Body, matter and hardware are per-
ceivable and permanent objects, while mind, energy and software are the agents that
move, transform and drive the objects.
¶2 · These are the kind of explanations that would result should our cognition were ba-
sically a Turing complete intentional layer built on top of perception, as I am arguing
here. Then, perception would present the objects composing the actual reality, and the
intentional Turing complete layer, being able to represent possibility and change, would
reason about possible movements, transformations and modifications of the perceived
objects. To me, the dualism of Descartes, or the disagreement between Parmenides and
Heraclitus, shows the workings of our cognition, and in particular that our cognition was
developed by evolution in two main stages.
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¶3 · If I am right in this, which is further elaborated in Casares (K & I), then the equiva-
lence of energy and mass of relativity and the wave-particle duality of quantum mechan-
ics are two signs showing that our cognition is limited and distorting. Nevertheless, the
noumenal warning by Kant should be attended: what is out there is out of our reach.
And this, together with the truism that our cognitive machinery is as it is, implies that
all of our knowledge is subjective. This just means that all we know is as it is because
our cognition is as it is. A triviality, isn’t it?
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§4.10 Philosophy
¶1 · As our complete language is external, we can use it to communicate with other Turing
complete resolvers. For example, a cooking recipe is just the list of rules that should be
followed to transform some raw ingredients into an edible dish, and a cooking book is a
list of cooking recipes that anyone who understands the complete language in which it
is written can follow. The point is that, being Turing complete, we can be instructed to
follow whatever rules.
¶2 · The core of being Turing complete is being able to be instructed, or programmed, to
follow whatever rules. This seems nice, but it can also be ugly, because it means that we
can be programmed to do anything, whether it is good or bad. To decide which rules are
good and which are bad is the realm of ethics and morality.
¶3 · The legal system of a state, which is the list of rules that anyone living in the state has
to obey, is not possible without Turing complete citizens speaking a complete language.
Note also that the state is not a real object, but an imagined concept. To decide which
rules are good and which are bad for the state is the realm of law and politics.
¶4 · Because we are Turing complete, we assume that reality is governed by algorithmic
rules. Then, the task of physics, and of science generally, is looking for the laws that rule
reality, or, in other words, is translating reality to language. To determine which rules
govern reality is the realm of physics and science.
¶5 · Engineering and medicine try to take advantage of physics and science to resolve
practical problems. To determine which rules resolve our practical problems is the realm
of engineering and medicine.
¶6 · If we are interested in the consequences of applying any rule system whatever, without
any constriction, we should study mathematics and logic. To determine what any rule
system entails is the realm of mathematics and logic.
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¶7 · Mathematics, logic, engineering, medicine, physics, science, law, politics, ethics, and
morality, that is, everything that was called philosophy in antiquity, is characteristic of
Turing complete individuals.

§4.11 Culture
¶1 · Our ability to deal with rules extends beyond philosophy. For example, we can
imagine entire worlds to whatever level of detail in our complete language and, when the
imagined world is fictitious, the result is literature. If the set of rules is not imagined, but
designed to be fun, or just competitive, then the result is a game or a sport. The Homo
ludens concept by Huizinga (1938) comes from here, because only a Turing complete
species can enact and follow arbitrary systems of rules.
¶2 · This leads us to culture, which is very close to play, or as Huizinga (1938) has put
it, page 46: “In the twin union of play and culture, play is primary.” Nevertheless,
young children and other species play is imitative, and imitation is not creative. That is,
primary play does not follow arbitrary rules.
¶3 · A specific culture is the system of norms that prevail in a specific society. When it is
used in general, culture is the set of norms found in societies. Then, for example, Shinto
is part of the culture of Japan, and philosophy is part of culture. The characteristic of a
cultural norm is that it is learned, and then every cultural norm is a rule, but not every
rule is a norm. For example, a law of nature, as gravitation, is a rule that every society
follows, but that it is not part of culture because it is not learned. The same happens to
the rules that govern bees societies because, being genetically coded, they are not learned.
¶4 · Culture is not directly related to socialization, but to learning.
◦ Bees live in very cohesive societies with individual specialization but they have no
culture because they cannot learn.

◦ Chimpanzees live in sparse societies without individual specialization and they have
a primary culture because they are good imitators.

◦ We modern humans live in very cohesive societies with individual specialization and
we have full culture because we are Turing complete.

¶5 · However, individual learning is not enough to have a culture. If the rules learned
by an individual are only for himself, then his society cannot incorporate those learned
rules into its culture. To develop a culture, the learners in the society have to include
imitation in their set of resolutions. So, the minimum for a culture seems to be a society
of imitative learners; learners in the technical sense of Casares (P), see §5.3 and §7.2.

§4.12 Artificial worlds
¶1 · Culture creates an artificial normative world on top of both the genetic codes and the
laws of nature. And this new level of rules on the top has consequences that fall down to
the other levels: an increasingly cultured Earth is causing the extinction of many species
when they are deprived of suitable ecosystems, and we are starting to hack the genetic
codes with consequences that are difficult to foresee. We should be optimistic, but only
because the pessimistic view is too bad to hold sanely.
¶2 · As it is usually easier to modify the environment than to modify our body, we usually
prefer to change the environment to fit our bodies, rather than doing the converse, see
§3.4. So we fit the environment to our bodies, rather than fitting our bodies to the envi-
ronment by restricting ourselves to those environments to where our body is fitted. This
results in an intensive use of tools, such as fire and clothes, for example. Domestication of
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plants and animals should be understood in the same way: domestic plants and animals
are used as tools. And it results also in the modification of lands and seas to fit our
necessities in always increasing areas, occupying and modifying nearly every ecosystem
on Earth. For a Turing complete resolver, everything is a tool.
¶3 · We saw in §3.3 and §7.2 that Turing completeness is evolutionarily disruptive because
the rate of change of evolution is very slow compared with that of societies of Turing
complete individuals. In other words, evolution cannot follow our quick ways of doing.
And then, when we modify, sometimes to null, nearly every ecosystem for whatever reason
we think we need, many of those other species that were surviving on those ecosystems
get extincted. We are causing a massive extinction. But our own survival depends on the
survival of life, so we cannot keep going as we are currently going. We are responsible
for the whole life on Earth.
¶4 · In summary, we are the dominant species on Earth because Turing completeness
provide us with a great power, and with great power comes great responsibility.

§5 Discussion

§5.1 Realization
¶1 · Before discussing, we should discuss what to discuss about. And I will not discuss
about §1, because it is just the introduction, that is, some text paving the way for what
follows. Regarding §2, most of it is mathematical or just factual, and then not amenable
to discussion. Perhaps the only question open to discussion in §2 is why I have chosen
the computing theory by Turing instead of any other.
¶2 · The reason could be that it was Turing (1936) who introduced the key concept of this
paper, which is Turing completeness, also known as universal computing, but it is not. I
have chosen Turing’s computing because it is the most realizable version of computing.
As we saw in §2.2, computing by Turing separates the non-implementable infinities from
the realizable computing power cleanly, so Turing’s computing is real computing, save for
time or tape limitations, and these limitations do not refer to computing power. Then, as
we saw in §2.4, even Turing completeness is realizable, and in fact there are real Turing
complete computers, which can be programmed to calculate any recursive function, save
for time or tape limitations.
¶3 · The factual existence of Turing complete computers should prevent any realization
problem. And this is mostly the case, except for some philosophers who argue that just
running a computer program cannot realize a mind. That deserves some discussion, of
course, but I will address it in the next subsection.
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§5.2 Meaning
¶1 · Take for instance Searle (1980), page 422, who asks:

But could something think, understand, and so on solely in virtue of being a
computer with the right sort of program? Could instantiating a program, the
right program of course, by itself be a sufficient condition of understanding?

He answers both with a resounding ‘no’, and then he gives us the reason.

Because the formal symbol manipulations by themselves don’t have any intention-
ality; they are quite meaningless; they aren’t even symbol manipulations, since
the symbols don’t symbolize anything. In the linguistic jargon, they have only
a syntax but no semantics. Such intentionality as computers appear to have is
solely in the minds of those who program them and those who use them, those
who send in the input and those who interpret the output.

¶2 · I think he is right, almost completely. A computation by itself has not any meaning.
However, if computing is for problem solving, as we argue in §3.2, then the computation
has the intention of solving the problem of its resolver. Computers are tools that help us
in solving our problems, so in this case we are those resolvers who are giving meanings
to the computations, as Searle affirms; see also Casares (J).
¶3 · In the case of living beings, whether they are Turing complete or not, the meanings
of their computations can be ultimately traced back to the survival problem, which is the
mother of all problems. Of course, Turing complete resolvers can explain and understand
what happens in their complete language, while those that are not Turing complete
cannot. Nevertheless, if the theory in this paper is right, then intention does not depend
on being mindful or mindless, but on being a resolver or not.
¶4 · In summary, computing by itself is meaningless, but computing is for problem solv-
ing, and then computing is a means to an end. And this should dispel any doubts on
computationalism, or at least those introduced by Searle (1980 & 1992) and Putnam
(1988) that are discussed in Casares (I & J). Therefore, we fully agree with computation-
alism: the brain is a computing device. This just means that the computacional point of
view is the proper one from which to see brain cognitive properties. For example, Turing
completeness is a computational property, so it can only be seen from that point of view.
¶5 · Anyway, the simple picture of a syntax completely disengaged from semantics, as
presented by Searle (1980) above, needs a correction for Turing complete computing,
because Turing completeness requires a functional semantics, which is a semantics of
syntax. Functional semantics is part of syntax because it does not need a resolver to
compute it, and it is part of semantics because it gives a precise meaning to some syntactic
objects; you can find more details in Casares (S).
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§5.3 Problem solving
¶1 · Problem solving is the core of the theory presented in this paper. Problem solving is
the nexus that bonds together the mathematics of computing with the biology of evolution
and the physics of brains. We have already discussed two links: brains are computing
devices, and computing is for problem solving. Taking both together, it follows that the
brain is the resolver of the problems of the moving individual, as seen in §3.3. As brains
are products of evolution, we need a link between evolution and problem solving.
¶2 · The link between problem solving and evolution is the evolutionary assumption that
solving more problems is sometimes evolutionarily advantageous. Thus, at least on some
evolutionary threads, those computing brains that are able to solve more problems have
more evolutionary opportunities. Another general assumption is that, other things equal,
solving problems cheaply is better than solving them expensively, so solving problems in
software is better than solving them in hardware. The mathematical implications of
these assumptions are examined in the problem theory presented in Casares (P), and
the evolutionary assumption is confirmed in domestication, as we will see in the next
subsection, §5.4.
¶3 · The problem theory in Casares (P) defines a series of five resolvers of increasing
computing capacity that exhibits the following property: all problems solved by a resolver
are also solved by the next resolver in the series if certain condition is satisfied.
◦ A mechanism implements a solution; a behavior, for example.
◦ An adapter implements a set of solutions.
The adapter condition is that its set includes the mechanism solution.

◦ A perceiver implements a function from solutions to solutions.
The perceiver condition is that it implements the identity function i.

◦ A learner implements a set of functions from solutions to solutions.
The learner condition is that its set includes the perceiver function.

◦ A subject implements a function from functions to functions.
The subject condition is that it implements the universal function u.

In other words, the subject condition is to be Turing complete.
¶4 · The names of the resolvers in the series try to describe their main properties.
◦ A mechanism has a body implementing a fixed behavior, so it can only survive in a
specific, benign, and very stable environment, as it is the case of some extremophile
archaea that act mechanically.

◦ An adapter has a body that can execute a set of behaviors, so that, in order to adapt
itself to the current situation, it can choose one of them by using a trial and error
procedure or a trigger condition, as a deciduous tree does.

◦ A perceiver has a brain implementing a fixed function that translates sensations into
perceptions, so it chooses its body behavior on its perceived reality, which is a model
of the exterior. Perception translates adaptation to software. A frog is a perceiver.

◦ A learner has a brain that implements a set of functions, so it can modify its perceived
reality in fixed ways. When its current model fails, it selects a new one, thus learning
something new about its external environment. A dog is a learner.

◦ A subject learns in software. A Turing complete subject can reason about any model
and about any learning strategy, effectively translating to software the whole problem
solving process, because it can compute in software whatever hardware can compute.
A Turing complete subject can resolve problems theoretically, that is, out of the
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hardware loop, inside his own mind. A Turing complete subject can solve more
problems in cheap software than a learner in expensive hardware. Only we Homo
sapiens are Turing compete subjects.

¶5 · This mathematical series defines a resolvers hierarchy that could be seen as a frame-
work for the evolution of cognition. And in annex §7.2, you can find a problem solving
comparison between evolution and Turing completeness.

§5.4 Domestication
¶1 · Looking for some confirmation of the relation between brain evolution and problem
solving I was lead to domestication, which is the most significant experiment on evolution,
particularly on the effects of selection. And one of the effects of mammals domestication
is a smaller brain size compared with their counterparts in the wild, see Kruska (1988).
¶2 · As Kruska (2005) has put it, in page 93: “No brain size increase ever occurred due
to domestication.” His conclusion on domestication, page 100, is:

Thus, brain size changes due to domestication must zoologically be evaluated
as special adaptations occurring on a species level and being directed to the
special ‘ecological niche’ of domestication even though this description might be
considered very broad.

The question is then: Why does the ‘ecological niche’ of domestication require less brain?
It seems clear to me that the ‘ecological niche’ of domestication is one in which some
very important survival subproblems of the domesticated subspecies are solved for them
by us: domesticated animals do not need to look for food because we do it for them, we
also protect them from their predators, and we even take care of their reproduction.
¶3 · Therefore, these three assumptions are enough to explain the conclusions reached by
Kruska (2005) on mammals domestication and feralization.
◦ The brain is a problem resolver.
◦ Brain tissue is energetically expensive; see for example Aiello & Wheeler (1995).
◦ Constructing is more expensive than destroying, as formulated by the second law of
thermodynamics and translated to evolution as the rule of Dollo (1893).

¶4 · Then, when a species is domesticated, the brain tissue that was resolving those prob-
lems that were dispensed by us become useless, so animals that have these brain areas less
developed will be more energetically efficient, and then they will have more chances of
being artificially selected. This means that the energy budgets that are naturally selected
in the wild are different from those that are artificially selected under domestication, and
that domestication, being an easier niche, favors littler brains because they waste less
energy. This, together with the cheapness of destruction, explains the evolutionary quick
decrease in brain size of domesticated subspecies.
¶5 · On the other hand, the irreversibility of evolution formulated by the rule of Dollo
prevents that feral animals, which are domestic animals that go back to the wild, do
increase their brains quickly. In other words, brain construction should keep the usual
evolutionary pace.
¶6 · It is left as an exercise to the reader to explain why the argument for decreasing brains
under domestication would not work as well for Turing complete species as it works for
learners. For a hint, please read the next subsection.
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§5.5 Brain size
¶1 · We saw in §3.1 that Turing completeness is advantageous only beyond the breaking
point, meaning that Turing completeness requires some complexity. But we also saw in
§2.4 that real Turing completeness can be achieved using 2300 transistors, meaning that
Turing completeness does not require too much complexity. Comparing a transistor to
a neuron, though neuron connectivity is much greater than transistor connectivity, and
given that there are about thirty billion (30 000 000 000 = 30G) neurons in the brain of a
chimpanzee, see Herculano-Houzel & Kaas (2011), it seems that with less than one tenth
of millionth of a chimp brain we can already implement Turing completeness. Having
such a big margin of error, and though the estimate is very rough indeed, we have to
conclude that Turing completeness is not concerned with brain size.
¶2 · Turing completeness can even save some neurons. In a Turing complete brain, non-
critical and less frequently used functions do not have to be implemented in hardware, be-
cause they could be coded and executed in software, should they were eventually needed.
So evolution can abandon the neural circuits that implement those functions, or rather
repurpose them, explaining, perhaps, why our brains are equal to or even a bit smaller
than Neanderthals brains, see Holloway (1985). In any case, as Turing completeness re-
quires thousands rather than billions of neurons, it is not behind the jump from the 30G
neurons of great apes to the 85G neurons of humans, Neanderthals or us. Instead, the
development of a huge lexicon for protolanguage could be behind this jump.

§5.6 Cheapness
¶1 · While §2 is mathematical and §4 is philosophical, §3 is scientific, or empirical. This
explains why our discussion here in §5 is mainly about §3.
¶2 · The statement that software is much cheaper than hardware, see §3.1, which is based
in the parallel relation between energy and matter, is also empirical. See that, in the
E = mc2 equation, the c2 is big only because of the units of measurement we use, and
those units are what they are because we are as we are, as Protagoras would say. In
the speed of light units, c = 1 and then E = m, but life is very slow compared with
light. That is, for us one gram of mass is so tiny that we neglect it when we weigh our
bodies, but one gram of energy is what exploded in Hiroshima in 1945 killing a hundred
thousand people. Nevertheless, in other corners of the universe it could be that ‘software
is c2 times cheaper than hardware’ does not mean that ‘software is much cheaper than
hardware’.
¶3 · Anyway, what is important to us here is that Turing completeness is evolutionarily
disruptive because, for evolution on Earth, software is much cheaper than hardware, as
we affirm in §3.3.
¶4 · So far we have discussed four of the main thesis of this paper: ‘software is much
cheaper than hardware’ (§3.1), ‘computing is for problem solving’ (§3.2), ‘solving more
problems is evolutionarily better’, and their consequence: ‘Turing completeness is evolu-
tionarily disruptive’ (§3.3). The remaining ones, ‘we are just Turing complete’ (§3.4) and
‘we are the only Turing complete species’ (§3.5), will be discussed next.
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§5.7 Post’s law
¶1 · The statement ‘computing is for problem solving’ of §3.2 is mathematical in origin, as
it derives from Turing’s (1936) intention to prove mathematically the unsolvability of some
mathematical problems. However, as we already noted in §3.2, that mathematical proof
needs an extra-mathematical assumption, Church’s (1935) thesis, which affirms that the
set of Turing machines exhausts the ways of solving problems, where each Turing machine
is a way of solving, that is, where each Turing machine is a resolver; for an unsuccessful
attempt to falsify Church’s thesis, see Casares (E).
¶2 · Note that, save for time or tape limitations and slips, if we are Turing complete, then
each of us can simulate any Turing machine, and that if we are just Turing complete,
then the set of problems that each of us can solve individually is precisely equal to the
set of problems that Turing machines can solve globally. Then, for Post (1936), and I
agree completely with him, Church’s thesis is a law of nature stating the limitations of
the computing power of our species Homo sapiens. Or rather, see Casares (C), Church’s
thesis is a consequence of Post’s law: in calculating capacity, we are just Turing complete.
¶3 · We should be aware of the difference between the ‘we are Turing complete’ of §2.5 and
Post’s law: the former says that ‘we are at least Turing complete’, and Post’s law states
that ‘we are just Turing complete’. So ‘we are Turing complete’ is an expression of the
fact that each of us satisfies the definition of a Turing complete computing device, while
Post’s law goes further and intends to characterize our calculating capacity as individuals
of the species Homo sapiens precisely.

§5.8 Disruption
¶1 · In subsection §3.5, we explained why only us are Turing complete: because evolution
has not foresight, because Turing completeness is advantageous only beyond the breaking
point of complexity, and because Turing completeness requires a complete language, and
a language is useful only for collaboration.
¶2 · Both Bingham (1999) and Tomasello (2008) argue that collaboration was the key that
started the evolutionary path to our species, and I agree, although collaboration is not
enough as shown by other collaborative species that are not Turing complete, see §3.5.
As chimpanzees and the other great apes do not collaborate, this happened after the
chimpanzee-human split 6M years ago, or it caused the split. So for some million years
there were some species of collaborative hominins, but nothing disrupting happened; in
fact all of those species are now extinct except one, ours. We can assume that the number
of hominins was between 10 000 and 100 000 most of the time, see for example Hawks et
al. (2000), but then something really disrupting happened and thereafter our population
has increased dramatically, so it is 8 000 000 000 now (2023) and increasing. A population
of 8G is unexpected for a vertebrate, and even more for one as big as us.
¶3 · Bingham’s (1999) explanation for the disruption is that, on top of the genetic evo-
lution, our species was involved in an extra-genetic evolution that took place because
the brain is a Darwinian processor. This, he says, results in a cognitive explosion, but
I dissent: evolution and equivalent Darwinian processors are learners, and a cognitive
explosion needs a Turing complete subject, as argued in §3.3 and §7.2.
¶4 · Tomasello (2008) focuses on the differences between us and current great apes, and
therefore his explanation is better for times around the chimpanzee-human split than for
the cognitive disruption that happened much later. Then, his analysis of collaboration
is detailed and convincing, while his explanation of the cognitive disruption is vague.
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He refers to recursion as the key, but he believes that no particular hardware devices
are needed for grammar, see for example page 281. In this point he is in complete
disagreement with Chomsky, see Tomasello (2009), and with me. My point, applicable
also to Bingham’s theory, is that Turing completeness is a property of some hardware,
and therefore some specific brain devices are required to implement a complete language
in which full recursion can be expressed and calculated.

§5.9 Recursion
¶1 · Chomsky (2005) defends the Universal Grammar theory. The main point of this the-
ory is that language has a genetic component, meaning that language needs some specific
hardware devices. This is in agreement with the theory presented in this paper. To me,
the best argument in favor of Universal Grammar is that, after putting a chimpanzee
baby in the same environment than a human child, the human will acquire language and
the chimp will not. But Chomsky seems to prefer the poverty of the stimulus argument,
which is based on the observation that children acquire the correct grammars for their
natural languages in spite of only hearing a relatively short and surely incomplete sam-
pling of sentences. For Chomsky, Universal Grammar restricts the natural languages that
can be acquired. And this does not agree with our theory here, which predicts that we
could learn any complete language, but it can be explained by distinguishing learning a
language from acquiring a language, as done in Casares (U).
¶2 · Chomsky’s belief that language evolved for thinking, rather than for communication,
is mainly supported by our theory. Ultimately, a complete language is needed for full
problem solving in cheap software, and this agrees with Chomsky’s idea. Nevertheless, if
collaboration was the catalyst that enabled our evolution to Turing completeness because
only collaborative problem solving benefits from communication, then communication was
crucial for the evolution of language, see Casares (K, S & B).
¶3 · Another point where Chomsky’s theories agree with the theory presented here is in
postulating that implementing recursion was the main innovation of language. Again,
the details spoil the agreement. To me, in general, the understanding of recursion in
linguistics is biased, see for example Watumull et al. (2014) and Casares (R & H). And
in particular, for Chomsky, recursion is the capability of building a discrete infinity of
hierarchical structures, see Berwick & Chomsky (2016) and Casares (M). Meanwhile, for
me, the main point of implementing full recursion, which is achieved only by building a
Turing complete device, is the possibility of calculating by cheap software whatever more
expensive hardware can calculate.
¶4 · Well, I find myself repeating here arguments already made elsewhere in this very
same paper, so this seems a good moment to conclude.



www.ramoncasares.com 20230727 TC 33

§6 Conclusion
¶1 · Why are we so many? Because only we are Turing complete. Turing completeness,
which is the capacity of some hardware to compute by software whatever hardware can
compute, is the ultimate cause of our success as species, and the argument that supports
this answer is based on an empirical fact around Post’s law and on a consequence that
derives from three other laws (or theses).
◦ Question: Why are we so many?
◦ Turing: Computing is for solving problems.
◦ Einstein: Software is much cheaper than hardware.
◦ Evolution: Solving more problems is evolutionarily better.
◦ Consequence: Turing completeness is evolutionarily disruptive.
◦ Post: In calculating capacity, we are just Turing complete.
◦ Fact: We are the only Turing complete species.
◦ Answer: Because only we are Turing complete.

¶2 · Only we the members of the species Homo sapiens can solve problems universally,
cheaply, and quickly, and we can do it individually and collectively:
◦ Universally, as in universal Turing machine.
◦ Cheaply, by resolving any problem in software, either by thinking or by speaking.
◦ Quickly, often explosively, compared with evolution.
◦ Individually, by thinking about the problem in our complete language.
◦ Collectively, by discussing the problem in a complete natural language with other
conspecifics with whom we are resolving it collaboratively together.
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§7 Annexes

§7.1 A formal Turing machine
¶1 · A Turing machine has four main components, in addition to the tape: the states Σ,
the symbols Γ+, the movements Π, and the table τ .
◦ The set of states Σ has to be finite, and the initial state S has to be in it, S ∈ Σ.
◦ The set of symbols Γ+ has to be finite, and the blank symbol, written as a dot · so we
can see it, has to be in it, · ∈ Γ+. The blank symbol represents the null symbol, so
it builds empty strings. And Γ is the non-empty set of non-blank symbols, so · 6∈ Γ,
and Γ+ = Γ ∪ {·}.

◦ The set of movements Π has three elements: left, written <; right, written >; and halt,
written =. Then, Π = {<, =, >}.

◦ The table τ is a total function Σ×Γ+ → Σ×Γ+ ×Π, so it can be written as a table
of |Σ| × |Γ+| rows and five columns.

¶2 · For example, this is the table for a Turing machine S2 that implements the successor
function in base two. We need two non-blank symbols to write base two numerals, so
Γ = {0, 1}, and then |Γ+| = 3. We have added a header to help in reading each 5-tuple:
C for the current state, R for the read symbol, N for the next state, W for the written
symbol, and M for the movement. Two states and three symbols make a six-row table.

C R N W M

S · T · <

S 0 S 0 >

S 1 S 1 >

T · S 1 =

T 0 T 1 =

T 1 T 0 <

¶3 · To see how this specific Turing machine S2 works, we can see what happens if we
write the string 1101 on the tape, where the numeral 1101 in base 2 is number thirteen.
That is, we will write the four symbols 1, 1, 0, and 1 from left to right in four consecutive
squares. Then, the initial situation will be as follows.

. . . S1 1 0 1 . . .

There are two infinities of blanks, one to the left and one to the right, that can be omitted
since each one represents an empty string, though we have kept three blanks on each side
for didactic purposes. The scanned square is the one that has attached to it the current
state, which is S at the start. Now, S1 is the index of the third row in the table, so the
instruction to do is S1>, and therefore the next situation is as follows.

. . . 1 S1 0 1 . . . Thence the machine repeats the instruction.

. . . 1 1 S0 1 . . . Now the index is S0, so the instruction is S0>.

. . . 1 1 0 S1 . . . And, again, the instruction for index S1 is S1>.

. . . 1 1 0 1 S. . . For S ·, it is T · <, so the machine changes the state.

. . . 1 1 0 T1 . . . And, for index T1, the instruction is T0<.

. . . 1 1 T0 0 . . . Now, the instruction for T0 is the halt ing T1=.

. . . 1 1 T1 0 . . . Therefore, we have reached the final situation.
Then the result of the computation, from which all blanks are omitted because they
represent empty strings, is the string 1110, which is fourteen in base 2. We can summarize
it, thus: S2〈1101〉 ↪→ 1110. Now you should try yourself S2〈11〉 ↪→ 100, and others.
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¶4 · Another way of seeing this Turing machine S2 is as a Lisp description.
(loop

(set! symbol (read tape))

(cond

((eq? state S)

(cond

((eq? symbol .) (set! state T) (write . tape) (move < tape))

((eq? symbol 0) (set! state S) (write 0 tape) (move > tape))

((eq? symbol 1) (set! state S) (write 1 tape) (move > tape))))

((eq? state T)

(cond

((eq? symbol .) (set! state S) (write 1 tape) (return))

((eq? symbol 0) (set! state T) (write 1 tape) (return))

((eq? symbol 1) (set! state T) (write 0 tape) (move < tape))))

))

¶5 · That Lisp description of S2 can be simplified just by omitting what is not necessary:
to set an already set state and to write an already written symbol. And, when the
movement is halt, the next state is irrelevant. This is a simplified Lisp description of S2.

(loop

(set! symbol (read tape))

(cond

((eq? state S)

(cond

((eq? symbol .) (set! state T) (move < tape))

((eq? symbol 0) (move > tape))

((eq? symbol 1) (move > tape))))

((eq? state T)

(cond

((eq? symbol .) (write 1 tape) (return))

((eq? symbol 0) (write 1 tape) (return))

((eq? symbol 1) (write 0 tape) (move < tape))))

))

¶6 · Note that a Turing machine S1 implementing the successor function in bijective base
one would be simpler, just two 5-tuples: S.S1= and S1S1>. You can verify that this
Turing machine S1 will transform the string 111, for number three in bijective base-1,
into the string 1111, which is base-1 four: S111 → 1S11 → 11S1 → 111S. 7→ 111S1.
That is, S1〈111〉 ↪→ 1111. And S1〈 〉 ↪→ 1, S1〈1〉 ↪→ 11, S1〈11〉 ↪→ 111, and so on.

§7.2 The evolutionary singularity
¶1 · From the problematic point of view, life is the problem of survival and evolution is
its resolver. But evolution works on living beings, each one facing its own individual
survival problem and subproblems, which depend on its particular circumstances. So, a
way to increase their survival chances is to extend the set of problems that individual
living beings solve, thus resulting the evolution of cognition.
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¶2 · The problem theory in Casares (P) distinguishes solutions from resolutions. A solu-
tion solves the problem, so it is the final target. However, sometimes we do not know any
solution to a problem, and how to find a solution to a problem is another problem, its
metaproblem. Then, when we do not know any solution to a problem, we have to solve
first the metaproblem of the problem, where the metaproblem solution is a resolution.
Therefore, a resolution is a way to go from a problem to its solutions, and then mathemat-
ically a resolution is a function. For instance, in a problem of arithmetical calculation,
the solution is a number and the resolution is an algorithm, which is, for example, the
algorithm for division when ‘by dividing’ is the solution to its metaproblem.

It takes 3 eggs to make a cake. How many cakes can you make with 72 eggs?

¶3 · The problem theory presents a set of five resolvers in a series of increasing computing
power where each resolver in the series solves at least all the problems that the previous
resolver solved; see also §5.3. The series of five resolvers is: mechanism, adapter, perceiver,
learner, and subject, which can be defined using the distinction between solution and
resolution.
◦ A mechanism implements a solution. It represents the case when we know a solution
to the problem, so we can apply it routinely.

◦ An adapter implements a predicate on solutions, which is mathematically equivalent
to a set of solutions. It represents a trial and error on a set of possible solutions.

◦ A perceiver implements a function on solutions to solutions. It represents the case
when we transform a problem into an analogue problem. A special but important
case is when the function is a solving resolution, and then it represents the case when,
though we do not know a solution, we know a way to find one. In this special case,
the analogue problem is the metaproblem.

◦ A learner implements a predicate on functions or on resolutions, or equivalently it
implements a set of functions or of resolutions. It represents a trial and error on a
set of possible analogies or resolutions.

◦ A subject implements a function on functions to functions. When that function is the
function implemented by a universal Turing machine, the subject is Turing complete.
It represents an analogy on analogies, or a resolution on resolutions.

¶4 · Using this problem theory, this series describes broadly the evolution of cognition: it
produced resolvers that were mechanisms at first, next adapters, followed by perceivers,
then learners, and finally Turing complete subjects. And, using this theory, evolution is
a learner, because evolution is a trial and error on resolvers.
¶5 · Let us now compare problem solving by evolution with problem solving by a Turing
complete species. Evolution is a learning process that has to wait until its prospective
hardware resolutions are completely developed adults to find whether they fit or not,
while a Turing complete subject is a living individual who can imagine any software
resolution in his complete language, or rather, if the problem was already resolved by a
conspecific, one who can be readily instructed in his complete language on how to solve
it. Then, comparatively, problem solving by evolution is limited, expensive, and slow,
while problem solving by a Turing complete species is universal, cheap, and quick.
¶6 · An evolutionary singularity is any evolutionary moment when a species surpasses
evolution in problem solving. Therefore, whenever evolution produces a Turing complete
species there is an evolutionary singularity.
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Gödel (1930): Kurt Gödel, ,,Über formal unentscheidbare Sätze der Principia Mathemat-
ica und verwandter Systeme I“; in Monatshefte für Mathematik und Physik, vol. 38,
pp. 173–198, 1931, doi: 10.1007/BF01700692. Received November 17, 1930. English
translation in Davis (1965).

Hawks et al. (2000): John Hawks, Keith Hunley, Sang-Hee Lee, and Milford Wolpoff,
“Population Bottlenecks and Pleistocene Human Evolution”; in Molecular Biology
and Evolution, vol. 17, no. 1, pp. 2–22, 2000,
doi: 10.1093/oxfordjournals.molbev.a026233.

Herculano-Houzel & Kaas (2011): Suzana Herculano-Houzel and Jon H. Kaas, “Gorilla
and Orangutan Brains Conform to the Primate Cellular Scaling Rules: Implications
for Human Evolution”; in Brain, Behavior and Evolution, vol. 77, no. 1, pp. 33–44,
2011, doi: 10.1159/000322729.

Hofstadter (2007): Douglas R. Hofstadter, I Am a Strange Loop; Basic Books, New York,
2007, isbn: 978-0-465-03079-8.

Hofstadter (2013): Douglas R. Hofstadter, “The Gödel-Turing Threshold and the Human
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