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1 Introduction

In 1969, the centennial of Mendeleev’s discovery of the periodic table was

commemorated by an international conference devoted to the periodicity and

symmetry of the elementary structure of matter. It was held in the Vatican

and brought together a selected audience of first-rate atomic and nuclear

scientists. In 1971, the proceedings were published in a joint publication of

the Academy of Sciences of Torino and the National Academy in Rome.[1]

Among the many interesting contributions, the American cosmologist

John Archibald Wheeler described a mind-boggling journey from ‘Mendeleev’s

atom to the collapsing star’. According to Wheeler, Mendeleev was con-

vinced that the atom is not ‘deathlike inactivity’ but a dynamic reality and

Mendeleev expressed his hope that the discovery of an orderly pattern would

‘hasten the advent of a true chemical mechanics’.[2]
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This hope has certainly been met by Schrödinger’s wave mechanics, which

provides an accurate tool to simulate the properties of the elements. However,

the overall structure and symmetry of the periodic table continues to defy

understanding. The quest for an effective universal force law at the basis of

the mechanics of multi-electron atoms forms the topic of this contribution.

2 Bertrand’s Theorem

The search for central force laws should start with Bertrand’s theorem in clas-

sical mechanics. In 1873, the French mathematician Joseph Louis Bertrand

presented to the Paris Academy a short note on central force laws that give

rise to stable orbits.[3, 4] For a proper understanding of the research question

which Bertrand was addressing, we start from an everyday experiment. A

mass attached to a string can easily be swept around in a perfectly circular

orbit by simply pulling on the string. The only requirement is that the force

should be fixed and directed towards the center of the orbit. If we want the

mass to go faster, we simply have to pull harder. Newtonian mechanics tells

us that there exists a simple relationship between the centripetal force, F ,

which we have to exert, and the speed of revolution, v:

F =
mv2

r
. (1)

Here m is the mass and r is the radius of gyration. So if the string is longer

and the force stays the same, the mass will reach a higher speed. As this

simple experiment shows, a fixed central attraction force can give rise to a

closed circular orbit, provided the speed of revolution and the radius are in

line with Eq. (1). However, the resulting orbit is ‘fragile’. Any change of F ,

v, or r leads to a loss of stability, which often results in chaotic behavior.

What Bertrand was looking for are attraction forces for which a body,

launched arbitrarily with a speed less than a certain limit and pulled towards

a given center, necessarily describes a closed curve about this center. In the

solar system, the planets are attracted to the center of mass of the system by

2



the gravitational force, and — happily for us — the solar system is robust

and does not collapse but maintains stable orbits for ages. To guarantee

the stability of such a system, we cannot invoke a fixed stable force, nor

invisible ropes of a constant length; we need ‘force laws’, which impose a

functional form that relates the attraction force to the distance. Bertrand’s

communication to the Academy, which is since then known as Bertrand’s

Theorem, proved that there are only two force laws with this property:

1. Newton’s law of gravitation where the force is inversely proportional to

the square of the distance to the center,

2. A central force which is directly proportional to the distance to the

first power.

Both these laws are treated by Newton in his Principia.[5] The law of grav-

itation gives rise to the Kepler orbits, which are ellipses with the center

of attraction in one of the focal points of the ellipse. Bertrand called this

law ‘the one from Nature’, since it describes the stability of the solar system.

Later on, exactly the same distance dependence was found to be valid for the

electrostatic attraction between point charges of opposite sign, as expressed

in Coulomb’s law. This attraction force gives rise to a potential which is

inversely proportional to the distance ∼ 1/r, as shown in Figure 1.

The second law, which Newton lapidary expressed as ‘the force is as the

distance’, is in fact a generalization of Hooke’s law, which states that in a

spring the elastic restoring force for small distortions from the equilibrium

is simply proportional to the extent of elongation or contraction. It gives

rise to the harmonic oscillator, the three-dimensional form of which is the

spherical oscillator. The corresponding potential is a parabolic, as shown in

Figure 2.

In this case, Newton demonstrated that an elliptic orbit, with the center

of attraction in the center of the ellipse, requires a centripetal force which

is proportional to the distance. As a corollary he also noted the ‘inverse

problem’ that such a force must give rise to elliptic orbits, at least if the
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Figure 1: Left: the attraction potential corresponding to an inverse square

force law. Right: the corresponding orbit is an ellipse with the attraction

hole in one of the focal points.

velocity is below the escape limit.

Hence both cases give rise to elliptical orbits, but with different sym-

metries: the Kepler orbit has a line of symmetry along the major axis of

the ellipse, while the oscillator orbit has two lines of symmetry along the

major and minor axes of the ellipse. In fact, Newton observed that these

two unique potentials are to a certain extent each others dual.[6] We briefly

present Newton’s result in the Appendix.

3 Quantum Mechanics

3.1 Stability and conservation

The two cases distinguished by Bertrand in classical mechanics also are

paradigmatic in quantum mechanics. The analogue of the planet gravitating

around the sun on Kepler orbits is of course Schrödinger’s hydrogen atom,

with gravity being replaced by the purely electrostatic Coulomb attraction,

and the negatively charged electron ‘orbiting’ the positively charged nucleus.
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Figure 2: Left: a parabolic attraction potential corresponding to a force

proportional to the distance. Right: The corresponding orbit is an ellipse

with the attraction hole in the center.

The analogue of the force-equals-distance law is the quantum mechanical

spherical oscillator which is ubiquitous in physics, and which furnished the

model potential on which the quark model of Gell-mann was based. Not

surprisingly then, the harmonic oscillator is often called ‘the mother of all

quantum systems.’

But what is so special about these two cases, which link the macrocosm

of classical mechanics to the microcosm of quantum mechanics? Both cases

stand out because in both cases the motions of the orbiting particle conserve

quantities, that in turn explain the stability of the orbit. In the case of the

Kepler system the conserved quantities are the angular momentum and the

Runge-Lenz vector. Both are vectorial quantities and thus involve each three

Cartesian components.

The angular momentum is a vector which is perpendicular to the orbit

and thus conserves the plane of revolution. In order to destabilize this plane,

an extra torque force should be exerted. This explains why the planetary
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orbits have not deviated much from a common ecliptic plane since the origin

of the solar system. The special feature of the Kepler orbit, however, is the

conservation of an extra vectorial quantity, known as the Runge-Lenz vector

(or the Hermann-Bernoulli-Laplace-Hamilton-Runge-Lenz vector to be his-

torically correct).[7] This vector is perpendicular to the angular momentum

and points along the major axis of the ellipse. Conservation of this vector

implies that the in-plane orientation of the ellipse is maintained and that the

precession of this orientation due to many-body effects is damped.1

In quantum mechanics both these quantities are replaced by three oper-

ators which commute with the Hamiltonian. The set of these six operators

forms an algebra, which has been identified as the algebra of the SO(4) Lie

group, standing for the special orthogonal group of rotations in four dimen-

sions. The principal quantum number n is an eigenvalue of this algebra, and

takes on the values:

n = 1, 2, 3, . . . , ∞. (2)

If the algebra is limited to the three angular momentum operators only, the

group is reduced to the SO(3) group, which is the symmetry of a sphere in

three dimensions and reflects the obvious spherical symmetry of the problem.

It gives rise to the orbital angular momentum quantum number l, which

stands for the angular dependence of the orbits. The l quantum number

takes on the values from zero to a maximum of n − 1 in integer steps. For

any given value of n, there are therefore n values of l:

l = 0, 1, 2, 3, . . . , n− 1.

s, p, d, f, . . .
(3)

Hence, in wave mechanics the trajectories of the electron no longer follow

planetary orbits, but the connection is maintained through the conserved

quantities.

1If the major and minor axes of the ellipse would not retain their fixed orientation in

the plane, the orbit would no longer be closed. The major axis would start to precess, and

a ‘rosette’ would be traced out over time. The orbit is then said to be space-filling.

6



Similar analogies can be drawn between the spherical oscillator in classical

and quantum mechanics. In this case, conserved quantities can be gathered

in a Lie algebra with eight operators, which generate the SU(3) group. This

is an acronym for the special unitary group in three dimensions. We will

not consider this further in the present context. Both the SO(4) and SU(3)

algebras are prime examples of Lie algebras. They explain why the corre-

sponding problems can be solved exactly, and their solutions have given us

the quantum numbers that describe the physical states of the hydrogen atom

and quark matter. In fact, much of the success of quantum mechanics is due

to the exact solvability of these simple model systems, and the quantum

numbers coming out of these treatments play an undeniable key role in the

whole of physics.

3.2 Force laws and quantum numbers

But this is not all. There is still a deeper connection between the force

laws and the quantization. This stems from a separate consideration of the

radial and angular components of the momentum. In the hydrogen atom,

the energy is inversely proportional to an integer number n, which is the

principal quantum number. It is given by:

n = 1 + nr + l. (4)

Here nr is the radial quantum number and l corresponds to the angular or

orbital quantum number. The radial quantum number nr counts the number

of radial phase changes of the wavefunction when going from r = 0 to r =∞.

As an example: the 1s orbital is described by a monotonously decreasing

exponential, having a cusp at the origin and approaching a zero asymptote

towards infinity. This function has no radial nodes and thus nr(1s) = 0.

For the 2s orbital there is one sign change in the radial interval, and hence

nr(2s) = 1, and so on, yielding: nr(ns) = n− 1.

The orbital quantum number l counts the number of angular nodes. These

are recognized by the presence of nodal planes in the orbital graphs. The
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Table 1: Radial and angular quantum numbers, nr and l, for the states of

the hydrogen atom and the spherical oscillator.

Hydrogen Oscillator

nr l n nr l n

1s 0 0 1 1s 0 0 0

2s 1 0 2 1p 1 0 1

2p 0 1 2 2s 0 1 2

3s 2 0 3 1d 2 0 2

3p 1 1 3 2p 1 1 3

3d 0 2 3 1f 0 2 3

4s 3 0 4 3s 2 0 4

4p 2 1 4 2d 1 2 4

4d 1 2 4 1g 0 4 4

4f 0 3 4

2pz orbital has a different sign on the northern and southern hemisphere,

and hence becomes zero in the equatorial plane. Consequently one has:

l(2pz) = 1. An orbital such as dxz obviously has two orthogonal nodal planes,

one coinciding with the equatorial xy-plane, the other being the upright yz-

plane. In more complicated cases such as d+2 or dz2 it becomes less obvious to

delineate these phase changes, and the application of the angular momentum

operator is required. The contributions of nr and l to the principal quantum

number of hydrogen are listed in Table 1.

The fact that both quantum numbers appear with the same weight in

Eq. (4) can be understood when transposing it to the classical limit. It

then means that the “frequency of revolution is the same as the frequency

of excursions in the radial direction”. This is self-evident for the ellipse in
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Figure 3: Energy spectrum of the spherical oscillator.

Figure 1 with the center of attraction in one of the focal points. One full

turn around the perimeter will visit the perihelion point exactly once.

For the harmonic oscillator, the energy eigenvalues in units of ~ω are

determined by a different expression:

E = 2nr + l +
3

2
. (5)

Here the term 3/2 is the zero-point energy of the oscillator. The sum 2nr + l

corresponds to the number of boson excitations. The states of the oscillator

are also listed in Table 1, and the spectrum is shown in Figure 3. Since now

the radial frequency appears with a double weight, the same extrapolation

will dictate that the radial frequency is twice as large as the angular one.

Hence for the classical elliptic trajectory, when going around the center once,

the shortest distance to the center will be visited twice, as is precisely the

case for the elliptical orbit in Figure 2 with the attraction center in the origin.
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4 The chemical orbit

This is precisely the point where Wheeler steps in.[2] For him, the chemical

mechanics, which finds its expression in the periodic table, is not limited to

the quantum mechanics of the hydrogen atom, but points to a more univer-

sal force law, at the basis of the internal symmetry of the periodic system.

Crucial to this chemical mechanics, according to Wheeler, is the so-called

‘Madelung rule’, to which we turn next.

4.1 The Madelung rule

The Madelung or (n+ l, n) rule was discovered in 1936 by the German physi-

cist Erwin Madelung, and is generally defined as follows:

Definition 4.1. (The Madelung (n+ l, n) rule): With increasing nuclear

charge Z, one-electron orbitals are filled according to increasing N = n + l,

with n the principal quantum number and l the orbital quantum number.

For fixed N , the orbitals are filled in order of increasing n.

Application of the (n+ l, n) rule gives rise to the following orbital sequence:

n+l=1︷ ︸︸ ︷
{1s}︸︷︷︸
dim=2

�
n+l=2︷ ︸︸ ︷
{2s}︸︷︷︸
dim=2

�
n+l=3︷ ︸︸ ︷

{2p < 3s}︸ ︷︷ ︸
dim=8

�
n+l=4︷ ︸︸ ︷

{3p < 4s}︸ ︷︷ ︸
dim=8

�
n+l=5︷ ︸︸ ︷

{3d < 4p < 5s}︸ ︷︷ ︸
dim=18

�

n+l=6︷ ︸︸ ︷
{4d < 5p < 6s}︸ ︷︷ ︸

dim=18

�
n+l=7︷ ︸︸ ︷

{4f < 5d < 6p < 7s}︸ ︷︷ ︸
dim=32

�
n+l=8︷ ︸︸ ︷

{5f < 6d < 7p < 8s}︸ ︷︷ ︸
dim=32

� . . . ,

where the orbitals have been grouped in sets of constant N = n+ l (see also

Table 2). The dimensions of these sets correspond to a series of repeated

‘double squares’:[8, 331]

2− 2− 8− 8− 18− 18− 32− 32− . . . . (6)

The hydrogenic dimensions appear exactly twice in the Madelung sequence

— a phenomenon known as the ‘period doubling’.
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Table 2: Application of the Madelung rule according to which the orbitals in

neutral atoms are filled in order of increasing n+ l, and n for fixed n+ l.

n+ l l = 3 l = 2 l = 1 l = 0 Nmax
n+l Zi → Zf Xi → Xf

1 — — — 1s2 2 1→ 2 H → He

2 — — — 2s2 2 3→ 4 Li → Be

3 — — 2p6 3s2 8 5→ 12 B → Mg

4 — — 3p6 4s2 8 13→ 20 Al → Ca

5 — 3d10 4p6 5s2 18 21→ 38 Sc → Sr

6 — 4d10 5p6 6s2 18 39→ 56 Y → Ba

7 4f 14 5d10 6p6 7s2 32 57→ 88 La → Ra

8 5f 14 6d10 7p6 8s2 32 89→ 120 Ac → 120

According to Goudsmit and Richards, the Madelung rule ‘is remark-

ably well obeyed throughout the periodic table.’[9, 664] Indeed, both the

Madelung rule and the period doubling are considered to be of paramount

importance to the periodic system. The Madelung rule flawlessly accounts

for the overall structure of the periodic table, by predicting the onset of the

different blocks in the periodic table, such as the start of the transition metal

block (3d-block) after the 4s-block, or the inset of the lanthanide and actinide

series (f -block elements) after the 6s- and 7s-elements respectively.

It can also be used as the basis for a novel representation of the periodic

law, which is known as the ‘eight-period’ or ‘left-step’ periodic table (LSPT).

The LSPT was first introduced by the amateur biologist Charles Janet in

1929, and offers a number of advantages as compared to the conventional

format of the periodic law. First, the periods in the LSPT are characterized

by a constant value of N = n+ l, which suggests the possibility of elevating

N to a new quantum number for the periodic system. Second, the period

doubling is clearly highlighted in the LSPT. The pairing of the periods gives
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the LSPT its stepped profile, and leads to the set of cardinalities in Eq. (6).

Third, the ordering of the blocks, when read from right to left, follows the

natural filling of the orbitals (s-p-d-f).

4.2 The Löwdin challenge

Until this day, however, the Madelung rule has remained an empirical (or ‘lex-

icographic’) rule. As a result, Allen and Knight have named it a ‘somewhat

mysterious algorithm’.[10, 83] In 1969, during the centennial anniversary of

Mendeleev’s discovery, Per-Olov Löwdin published ‘Some Comments on the

Periodic System of the Elements’, and noticed how remarkable it was that

‘in axiomatic quantum theory, the simple (n+ l, n) energy rule has not yet

been derived from first principles’ (i.e. on the basis of the many-electron

Schrödinger equation).[8, 332]

The search for such an ab initio derivation of the Madelung rule is now

known as the ‘Löwdin challenge’, and is considerd the ‘oldest and largest

standing problem in quantum chemistry’.[10, 83] Many claims to a successful

derivation have appeared in the scientific literature since Löwdin’s plea, but

most have been dismissed.[11]

Consequently, both the validity and the utility of the Madelung rule have

been called into question in recent years. One of the main voices in this debate

is Eugen Schwarz, who deplores the importance that is generally given to the

(n+ l, n) rule.[12, 13, 14, 15] According to Schwarz, the Löwdin challenge is

impossible to meet since the Madelung rule is just an “approximate rule of

thumb [. . .] at variance with too many facts.”[14, 441] Instead of praising the

n+ l rule, we should be talking about the ‘n+ l blunder’, dixit Schwarz.[12,

3412]

In order to back up this claim, Schwarz does raise a number of important

issues which would benefit from closer scrutiny. But in our opinion, Schwarz

dismisses the Madelung rule for the wrong reasons, and thereby fails to recog-

nize the crucial role the (n+ l, n) rule has to play in the study of the periodic

law.
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4.3 Interpreting the Madelung rule

Three interpretations of the Madelung rule can be distinguished in the sci-

entific literature. The first two interpretations fail to hold in general — a

point made most explicit by Schwarz. For Schwarz, this is sufficient to throw

the Madelung rule into the dustbin of chemistry. But he thereby overlooks

a possible third interpretation, which does apply universally. When Wheeler

embarked on his quest for a ‘chemical mechanics’, he probably had the second

interpretation in mind (see further).

First interpretation. According to the first (and most common) interpreta-

tion, the Madelung rule is an Aufbau principle which provides the energy

ordering of the different nl states:

E(1s)� E(2s) < E(2p)� E(3s) < E(3p)� E(4s) < E(3d)� . . . . (7)

But this order is erroneously assumed to be fixed and universal. For example,

according to the above energy sequence, the Aufbau process of a scandium

atom proceeds as follows:

Sc3+([Ar])→ Sc2+ ([Ar]4s1)→ Sc+ ([Ar]4s2)→ Sc ([Ar]3d14s2). (8)

The 4s orbital is thus filled before the 3d orbital, as dictated by the Madelung

order in Eq. (7). But this is contradicted by the empirical date which shows

that configurational reorganizations occur when adding electrons to a bare

nucleus. As a result, the 3d orbital is initially lower in energy as compared

to the 4s orbital, and is therefore filled first:

Sc3+([Ar])→ Sc2+ ([Ar]3d1)→ Sc+ ([Ar]3d14s1)→ Sc ([Ar]3d14s2). (9)

This refutes the simplistic interpretation of the (n+ l, n) rule as a fixed en-

ergy ordering principle, which could somehow account for the entire building-

up process of atoms from scratch.

Second interpretation. According to the second interpretation, the Madelung

rule merely predicts the final electronic configuration of neutral atoms. That

13



is, the Madelung rule establishes in which nl spin orbital the differentiating

electron should go. This clearly holds true for the scandium example above

where the predicted Madelung-configuration and the experimentally obtained

configuration for a neutral scandium atom are seen to agree.

However, even this weaker interpretation of the Madelung rule does not

hold universally. Terry L. Meek and Leland C. Allen [16] have listed 19

elements with anomalous configurations that differ from those predicted by

the Madelung rule (Table 3). Having said that, each of these 19 elements

also has excited states near the ground state which do satisfy the Madelung

rule. As a result, it is not clear how much weight should be attached to these

exceptions.2

Third interpretation. According to the third and final interpretation, the

Madelung rule foretells the onset of atomic subshell occupations in the Auf-

bau sequence of the periodic system. As noted above, it correctly predicts

the start of the transition metals, lanthanide and actinide series. It thus

accounts for the (at first sight ad hoc looking) layout of the different s-, p-,

d- and f -blocks in Mendeleev’s system, and this without exception. In doing

so, it moreover discloses the period doubling as another characteristic feature

of the periodic table.

4.4 The chemical orbit

In his 1971 contribution, Wheeler adhered to the second interpretation of

the empirical Madelung rule, which leads to the conclusion that the energy

of the outer electron is governed by the n+ l rule:

E = n+ l = nr + 2l + 1. (10)

Interestingly, Wheeler adds in a footnote a further comment, instigated by

a question of the Italian nuclear physicist and Nobel laureate Emilio Segrè.

2Demkov and Ostrovsky [17] have made an interesting and rather telling comparison

in this regard between the hydrogenic (n, l) and Madelung (n + l, n) order.
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Table 3: Ground state electronic configurations for 19 elements with anoma-

lous configurations that do not follow Madelung’s rule. [Data obtained from

the National Institute of Standards and Technology (NIST) Atomic Spectra

Database. Available online: http://physics.nist.gov/asd]

Element Predicted Madelung Experimentally obtained

ground state configuration ground state configuration

Cr [Ar] 3d44s2 [Ar] 3d54s1

Cu [Ar] 3d94s2 [Ar] 3d104s1

Nb [Kr] 4d35s2 [Kr] 4d45s1

Mo [Kr] 4d45s2 [Kr] 4d55s1

Ru [Kr] 4d65s2 [Kr] 4d75s1

Rh [Kr] 4d75s2 [Kr] 4d85s1

Pd [Kr] 4d85s2 [Kr] 4d10

Ag [Kr] 4d95s2 [Kr] 4d105s1

La [Xe] 4f16s2 [Xe] 5d16s2

Ce [Xe] 4f26s2 [Xe] 4f15d16s2

Gd [Xe] 4f86s2 [Xe] 4f75d16s2

Pt [Xe] 4f145d86s2 [Xe] 4f145d96s1

Au [Xe] 4f145d96s2 [Xe] 4f145d106s1

Ac [Rn] 5f17s2 [Rn] 6d17s2

Th [Rn] 5f27s2 [Rn] 6d27s2

Pa [Rn] 5f37s2 [Rn] 5f26d17s2

U [Rn] 5f47s2 [Rn] 5f36d17s2

Np [Rn] 5f57s2 [Rn] 5f46d17s2

Cm [Rn] 5f87s2 [Rn] 5f76d17s2

Segrè asked if the formula often employed in spectroscopy for the correlation

of atomic energy levels could also lead to this rule. The formula Segrè refers

15



Table 4: Empirical quantum defect ∆nl for the rubidium atom.

s p d f

3.13 2.64 1.35 0.016

to is the empirical correction to the Rydberg expression for atomic spectra,

and goes back to the early days of atomic spectroscopy. A comparison of the

energy level diagrams in the alkali series to the hydrogen spectrum shows

that the same pattern appears but energies are shifted. It was realized that

the single outer electron in the alkali elements is moving about an atomic

core, whose field shows marked deviations from the Coulomb field of a point

charge. In order to cast the energies of the valence electrons in a Rydberg

type formula, it is required to use effective quantum numbers which show a

quantum defect with respect to the hydrogenic quantum numbers:

n∗ = n−∆nl. (11)

The defect ∆nl represents an empirical expression for the screening of the

outer electrons by the core. Observations show that it is nearly independent

of n, and is a rapidly decreasing function of l. This is consistent with the

dominant role of the angular momentum in the screening properties. As an

example, in Table 4 are listed values of ∆nl for the rubidium atom.[18, 19]

By approximating the defect as ∆nl ∼ a−bl the effective quantum number

is rewritten as:

n∗ = n−∆nl = 1− a+ nr + (1 + b) l. (12)

So for a = 0 and b = 1 the empirical formula would converge to the Madelung

expression.

From the perspective of Bertrand’s Theorem two important aspects relate

to the kinematic viewpoint of Wheeler. Firstly, since the angular frequency

is twice the radial frequency it can be inferred that the orbit of a classical
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e-

Figure 4: The chemical orbit as a double necklace.

particle in such a modified force field would involve two turns around the

center before reaching the same closest radial distance again. Such an orbit

was termed the ‘chemical orbit’ or ‘double necklace’ by Wheeler [2] and his

collaborator Powers [20], as shown in Figure 4. Secondly, since Bertrand’s

Theorem does not yield other power laws than the two elliptic cases, it can

be concluded that there is no simple universal force law that would stabilize

classical chemical orbits, irrespective of the initial conditions.

5 Contribution from optics

5.1 Maxwell’s fish-eye lens

The direct problem, originating from Wheeler’s contribution, is how to infer

a potential that would have the characteristics of the chemical orbit as its

solution. An intriguing answer to this question was proposed by Demkov and

Ostrovsky [21] who came forward with a potential, derived from a century

old problem in optics, published in the Cambridge and Dublin Mathematical

Journal in 1853. This journal was founded as the Cambridge Mathematical

Journal in 1837 to support the revival of pure mathematics in Victorian
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England.[22] Not being patronized by an Academy or Society, its financial

situation was often precarious and it heavily relied on the contributions of

volunteers. In 1845 it was renamed the Cambridge and Dublin Mathematical

Journal in an attempt to gain support from Trinity college in Dublin.

In 1853 as a rare instance of interference in editorial matters, the pub-

lisher MacMillan suggested to attract more readers by introducing a Prob-

lems Page. The solutions would then appear in the next issue. One of these

problems was to find a refraction law for a transparent medium such that

all the rays proceeding from a given point would meet accurately at another

point. The next issue then gave the solution which since then is known as

Maxwell’s fish-eye lens. The problem and its solution were anonymous, as was

quite often the case in those days since “it was the material presented which

was important and it was a matter of accepted social form that the author

should not draw attention to himself by self-advertisement.”[22] Anonymity

was not entirely inspired by noble motives though, as it also enabled an at-

tack to be mounted without the wider world being aware of the identity of

the attacker.

Only later, when the collected works of Maxwell were published, this

problem was included, thus establishing Maxwell’s authorship.[23] The so-

lution considered a spherical lens, made of a transparent medium with a

gradient index of refraction, provided by the function:

n(r) = n(0)
a2

a2 + r2
. (13)

Here n(0) is the value of the refractive index in the center of the sphere. In a

note the author explained that the possibility of the existence of a medium

of this kind possessing such remarkable optical properties was suggested to

him by the contemplation of the structure of the crystalline lens in fishes.

The functioning of this lens can be illustrated through the analogy of the

propagation of flexural waves in an elastic plate.[24] The desired gradient

index profile in the plate was obtained by tuning the thickness. In this way

a mechanical analogue of the fish-eye lens could be built. Flexural waves

emitted from a point-like pulse on one side of the lens travel through the
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Figure 5: Illustration of the focusing property of a fish-eye lens by the flexural

waves in an elastic plate. The contour lines indicate the spatial modulation

of the thickness of the plate, corresponding to the refractive index in optics.

The source is a Gaussian 60 kHz pulse at the top of the lens. The pulse

propagates through the lens and is recovered at the bottom (from Ref. [24]).

medium, and are collimated again at precisely the opposite point on the

sphere. Figure 5 presents the results of a simulation which proves to be in

close correspondence with the experiments.

Later on Wilhelm Lenz (the same Lenz as in the Runge-Lenz vector)

provided a generalization of this refraction law,[25] which was expressed as

follows:

n(r) = n(0)

(
r
a

)µ−1

1 +
(
r
a

)2µ . (14)

For the index µ = 1 this expression reduces to Maxwell’s fish-eye lens, where

the image point is exactly opposite the source. For a general value of the

index, the image point is obtained at an angle of π/µ, e.g. for µ = 2, image

points will be found at π/2, π, and 3π/2. This equation has found important

technological applications in the field of optics, but at present we are more

19



interested in its potential relevance for electronic motions inside the atom.

For this we have to cross the bridge that links optics to mechanics.

5.2 The optical-mechanical analogy

In the history of physics, mechanics and optics have always been closely

related, finally culminating in Schrödinger’s wave mechanics in which the

particle and wave nature came together. The optical-mechanical analogy, as

expressed by Hamilton, refers to the isomorphism between the trajectories of

a particle moving in a potential, and that of a light ray propagating through a

medium.[26] It stems from analogous conservation laws and can be expressed

as an equivalence between the momentum of a particle and the refraction

index of a light ray:

p(x)⇔ n(x). (15)

In turn the momentum may be related to a potential energy by:

p2

2m
= E − V (x). (16)

Here E is a constant energy. In this way the refractive law for the generalized

fish-eye lens may be turned into an attractive potential. A classical particle

moving at zero energy is thus expected to describe characteristic orbits that

would visit the focal points of the fish-eye lens. By combining Eqs. (14) and

(16), with E = 0 this potential is easily obtained:

Veff (r) = − 2v

r2a2
[
(r/a)−µ + (r/a)µ

]2 , (17)

with v, µ and a constant parameters. For integer values of µ the trajectory of

the particle will resemble a rose window with µ lobes. Hence for one turn it

will exhibit µ radial oscillations, corresponding to the quantum rule µnr + l.

From this observation one can also immediately infer that the opposite ratio

between radial and angular oscillations can simply be achieved by turning µ

into a whole fraction. For µ = 1
2

the trajectory will be characterized by half

a radial oscillation for one full turn, or one radial oscillation for two angular
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oscillations, as required for the chemical orbit. This is the potential proposed

by Demkov and Ostrovsky to describe the multi-electronic atom.[21] It should

be clear though that this treatment does not yield a universal force law for

the Madelung atom, as it does not describe bound states but refers to an

isolated solution at zero energy.

6 Conclusion

Ultimately one is facing a paradox that on the one hand the Madelung rule

hints at the existence of a universal force law that would regulate the me-

chanics in a multi-electronic atom, while on the other hand the unbreakable

truth of Bertrand’s theorem seems to exclude the existence of such a law.

The only escape from contradiction is to rethink the premises for Bertrand’s

law and the way they reflect on quantum mechanics. Along this vein, in our

recent monograph we have explored the possibility of a more general pattern,

not from the point of view of potentials, but from the point of view of the

Lie algebras.[11] By imposing the Madelung rule in the manifold of bound

states of the Coulomb atom we arrived at a non-linear Lie group structure.

In essence this group still has the characteristics of the hydrogen SO(4) sym-

metry, but its structure parameters are no longer constants but functions of

the operators representing the quantum numbers n and l + 1
2
. This reflects

the generalization of Kepler’s law to a structure where n and l quantum

numbers are combined.

7 Appendix

Book 1 of the Newton’s Principia is concerned with the motion of bodies. In

proposition 7, corollary 3, Newton addresses the following problem: suppose

a particle follows a given orbit, whether acted upon by a force FC centered

at a point C, or a force FS acting towards a center S. What is then the ratio

of the forces FC and FS? The text of the corollary is then as follows:
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The force by which body P revolves in any orbit around the center of

forces C is to the force by which the same body P can revolve in the

same orbit and in the same periodic time around any other center of

forces S as the solid CP ×SP 2 — contained under the distance of the

body from the first center of forces C and the square of its distance

from the second center of forces S — to the cube of the straight line

CG, which is drawn from the first center of forces C to the tangent of

the orbit PG and is parallel to the distance SP of the body from the

second center of forces. For the forces in this orbit at any point of it

are the same as in a circle of the same curvature.[27]

The ratio can thus be written as:

FC
FS

=
CP × SP 2

CG3
. (18)

Figure 6A shows the configuration of these points. In proposition 10, Newton

then proves that the centripetal force tending to the center C of an elliptic

orbit is as the distance, as exemplified by Hooke’s law. The next proposition

11 is the famous proposition where Newton identifies the centripetal force to-

wards the focus of an elliptic orbit as the inverse square law. This proposition

is followed by a typical “idem aliter” clause, where the same result is proven

in yet another way. The importance of this clause is that it really shows the

duality between the two force laws considered in Bertrand’s theorem.

In Figure 6B, the point P describes an elliptic orbit around the center C

according to the force is as distance law. S and H denote the focus points

of the ellips. The dashed line represents the tangent to the orbit in P . The

lines EC and IH are parallel to the tangent through the center and the focus

point respectively. The force FS that is oriented to the focus S and gives rise

to the same orbit, is then related to the force FC as:

FC
FS

=
CP × SP 2

EP 3
. (19)

Here we have applied Eq. (18), noting that the distance CG in Figure 6A

corresponds to EP in Figure 6B. Since FC ∼ CP , one thus has:

FS ∼
EP 3

SP 2
. (20)
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Figure 6: Comparison of attraction force to the center (C) and the focus (S)

of an elliptical orbit.

Now, since the triangles ∆SEC and ∆SIH are proportional, one has:

SE =
SC

SH
SI =

1

2
SI

= EI. (21)

Also since the triangle ∆IPH is isosceles, one has:

IP = PH. (22)

In an ellipse, the length a of the semi-major axis equals the average distance

between a point on the ellips and the foci, hence:

a =
SP + PH

2
=
EP + SE + PH

2
=
PE + EI + PI

2
= EP. (23)

Hence the distance EP is fixed, and thus Eq. (20) reduces to:

FS ∼
1

SP 2
. (24)

Q.E.D.
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