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Abstract 

On the grounds that the Einstein-Podolsky-Rosen argument is an example of reasoning by 

reductio ad absurdum, and that a counterexample is unacceptable, unless all its elements meet all 

the necessary conditions, its conclusions are invalidated. The arguments in this paper are strictly 

logical. Einstein, Podolsky and Rosen made a mathematical assumption that is incompatible with 

quantum mechanics. 

Résumé 

Parce que l'argument d'Einstein-Podolsky-Rosen est un exemple du raisonnement par reductio ad 

absurdum, et qu'un contre-exemple est inacceptable, à moins que tous ses elements rencontrent 

toutes les conditions nécessaires, ses conclusions sont infirmées. Les arguments en cet article par 

sont strictement logiques. Einstein, Podolsky et Rosen ont fait une prétention mathématique qui 

n'est pas compatible avec la mécanique quantique. 
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  In the second section of their celebrated paper [1], Einstein, Podolsky, and Rosen, consider a system made 

of two subsystems I and II. They attempt to prove that the entire system can be prepared in such state that 

when the two subsystems are not supposed to interact, “as a consequence of different measurements 

performed upon the first system, the second system can be left in states with different wave functions” that 

can be the eigen-functions of non-commuting operators. 

  They suppose that the subsystems I and II have been interacting from t = 0  to t T=  and no longer after 

that. To represent the state of the complete system at a time t Tf > , they consider an expansion of the 

form: 

 
Ψ x x x u xn n

n
1 2 2 1

0

,b g b g b g=
=

∞

∑ψ  (1) 

Where “ψ n x2b g  are to be regarded merely as the coefficients of expansion of Ψ  into a series of 

orthogonal functions u xn 1b g ” that are the eigen-functions of an operator $A , with eigen-values a a1 2, ,L . 

(We have introduced the symbol t f  instead of t , used by Einstein et al, because we will use t  as a 

variable in Schrödinger’s equation.) 

  A measurement of the physical quantity corresponding to $A  is performed at time t f , giving a result of 

ak . In consequence, subsystem II is left in a state described by the wave function ψ k x2b g  and the whole 

system is described by the wave function 

 Ψ x x x u xk k1 2 2 1,b g b g b g= ψ  (2) 

Therefore, the state of subsystem II at time t f  depends on the state of the physical quantity of subsystem I 

that is chosen to be measured at that time. (Because we can select any other physical property of subsystem 

I to measure at time t f , getting similar results, but with a different set of eigen-functions.) 
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  Later, Einstein et al introduce an assumption that is not compatible with quantum mechanics, as we will 

prove. They consider a particular case where the system is made of two particles and (1) can be written as: 

 
Ψ x x e dpi x x x p

1 2
1 2 0, /b g b g= − +

−∞

∞

z h
 (3) 

where x0  is some constant. 

  They choose this wave function because they are interested in proving that, in particular, subsystem II, 

after measuring x  or p  for subsystem I, can be left in states where x  or p , respectively, have definite 

values. This, according with their criterion of reality, would imply that those two physical magnitudes have 

simultaneous reality. However, they do no provide any proof that such a state could emerge as a result of 

temporal evolution, as specified by Schrödinger equation, which is explicitly required by their general 

description of the physical situation: “…We can then calculate with the help of Schrödinger’s equation the 

state of the combined system I+II at any subsequent time; in particular, for any t T> . Let us designate the 

corresponding wave function by Ψ …” 

   Instead of providing that proof, as it is logically necessary, they limit themselves to write “Let us suppose 

that the two systems are two particles and that Ψ x x e dpi h x x x p
1 2

1 2 0, /b g b g= − +z … ” This cannot but cast 

doubts on the validity of assumption (3), unless we are willing to accept it because it has not been proved to 

be invalid. 

   The argument by Einstein et al is an example of reasoning by reductio ad absurdum [2]. This method of 

proof proceeds by stating a proposition and then demonstrating that it leads to a contradiction. As to the 

logical structure of this kind of argument, we remind the reader that [3 p. 57]: 

“We must be certain that, in showing that the negation of a statement we wish to prove leads to a 

false conclusion, we use only premises known to be true as well as a logically valid argument. For 

if the negation of our statement is not the only statement whose truth value is uncertain, or if the 
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argument used is not logically valid, then we could arrive to a false conclusion, even if the 

negation of our statement happens to be true.” 

The wave function (3) is just one of the elements of an elaborated counterexample. An argument that is 

intended to prove that the statement that quantum mechanics is a complete theory is false, on the grounds 

that a quantum system can evolve by itself to a state where two complementary physical properties have 

simultaneous reality. 

   Below we prove that (3) cannot emerge as a result of temporal evolution, as described by Schrödinger 

equation. 

   Our first consideration is that, according to (3), the wave function at time t f  is equal to 

 Ψ x x x x x1 2 1 2 02,b g b g= − +π δh  (4) 

   Let us introduce the new coordinates: 

 
X

m x m x

m m
= +

+
1 1 2 2

1 2

 (5) 

And 

 x x x= −1 2  (6) 

The hamiltonian between T  and t f  is given by: 

 
$H

M X x
= − ∂

∂
− ∂

∂
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Where m1  is the mass of subsystem I, m2  is the mass of subsystem II, M m m= +1 2 , and 

µ = +m m m m1 2 1 2/ b g .  

  The first part of (7) corresponds to the kinetic energy of the center of mass, and the second to the kinetic 

energy of the internal motion. 

   Using (5) and (6) we have 

 Ψ X x x x,b g b g= +2 0π δh  (8) 

Which depends only on x . Therefore, at time t f , Ψ  is an eigen-function of the operator 

 
P i

XX = − ∂
∂

h  (9) 

with the eigen-value PX = 0 . And it must be so for any time between T  and t f , because $ , $ $H PX = 0 .   

In consequence, the wave function has the form: 

 Ψ X x t x t, , ,b g b g= ψ  (10) 

for any time between T  and t f , where ψ x t,b g  is a solution of the Schrödinger’s equation: 

 
i

t x
h

h∂
∂

= − ∂
∂

ψ
µ

ψ2 2

22
. (11) 

  This equation is formally identical to the equation of a single free particle, and quantum mechanics 

predicts that the corresponding wave functions spread in space as time goes on, instead of collapsing 

themselves into delta functions [4, pp. 104-106]. 



 6

  The solution of (12) with the final condition ψ π δx t x xf,d i b g= +2 0h  can be obtained from the non-

relativistic propagator, using time reversal. It describes a temporal succession of non-normalizable states, 

where the square of the modulus of the wave function depends only on time. According to quantum 

mechanics, the square of the modulus of a physically acceptable wave function has to be integrable. 

  Notice that we had enough grounds in our last remark to reject (4), as soon as we wrote (8).   This failure 

of (4)  to serve its intended purpose in the argument by Einstein et al, cannot be fixed by replacing it by a 

narrow superposition of eigen-states of the operator $ $x x1 2− . Because a narrow superposition has not a 

definite value of x x1 2− .  

   In addition, the function δ x x+ 0b g  is symmetric with respect to −x0 . Therefore, the expected value of 

the operator $ /v i x= − ∂ ∂h , corresponding to the relative velocity, is equal to zero at time t f , and at any 

other time between T  and t , because $ , $ $H v = 0 . Therefore, the wave function (10) does not correspond 

to the general idea of a system made of two particles that are flying apart after they have interacted. In 

consequence, unless we assume that the forces of nature can be turned off at will, the wave function (4) 

does not match the (incomplete) description of the physical situation, as given by Einstein et al. 

 Were our arguments not enough to have our claim accepted, we state that it is not sound to believe that 

assumption (3) is consistent with quantum mechanics on the grounds that it has not been proved that it is 

inconsistent [ad ignorantium fallacy]. 

   The final conclusion of the EPR paper, that the wave function does not provide a complete description of 

physical reality, is strongly dependent on the validity of (3) at time t f , as well as on some other 

philosophical considerations that we have decided not to address in our main argument. Therefore, that 

conclusion is invalidated. 
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Concluding Remarks 

   The invalidation of (3) casts doubts on the validity of the assumption that “…If without in any way 

disturbing a system, we can predict with certainty (i. e. with probability equal to unity) the value of a 

physical quantity, then there is an element of physical reality corresponding to this physical quantity…” 

introduced by Einstein, Podolsky, and Rosen in the same paper, with no more foundation than (3), on the 

basis that “we regard (it) as reasonable”. The same doubts fall then over Bohm’s conclusion [5 pp. 619-23] 

that the world cannot “correctly be analyzed into elements of reality, each of which is a mathematical 

quantity appearing in a complete theory” and, furthermore, on the current interpretation of Bohm’s 

experiment. 

   Actually, according to quantum mechanics, if there is something we can predict without (in absolutely 

any way) perturbing a quantum system, it is the wave function, using Schrödinger’s equation. Then, all we 

need is to accept that the square of the modulus the wave function is a physical quantity, which might be 

justified on the grounds that it is reasonable [6 p. 2], to jump to the conclusion that the square of the wave 

function, and therefore, the quantum potential, corresponds to an element of reality. Then we should accept 

that the de Broglie-Bohm theory is true, in the sense that it corresponds to reality. However, the de Broglie-

Bohm theory was never accepted by Einstein, whose views about reality were addressed—by himself—in 

[7 p. 2]: 

“We are accustomed to regard as real those perceptions which are common to different 

individuals, and which, therefore, are in some sense impersonal. The natural sciences, and in 

particular, the most fundamental of them, physics, deal with such sense perceptions.” 

   Here we have a (necessary and) sufficient condition of reality, stated in terms of what we perceive and 

measure, not in terms of what we predict. If we agree with the implicated meaning of the term reality, 

again, as a formal definition, we have to endorse Bohr’s opinion that there is not a microscopic quantum 

reality: because we cannot perceive subatomic particles, neither measure them; all we can perceive and 

measure are the changes of state of macroscopic bodies,  that we presume to be induced in them by their 

interactions with quantum corpuscles. However this conclusion is not as relevant as it might seem at first 
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sight: Because it is grounded on the very definition of the term reality, and the definition of a term can 

always be revised. 

   As a final remark we have to say that from the fact that the EPR paper does not prove that quantum 

mechanics is incomplete we cannot conclude that quantum mechanics is complete. We consider that a 

theory is complete if: (a) the representation used by the theory is complete and the corresponding 

interpretation is unambiguous; (b) the axioms are logically consistent; (c) the theory does not leave any 

sensitive question without a sensitive answer; and (d) the theory is true. As D. Aerts has proved [2], there is 

evidence that quantum mechanics does not meet the conditions (a) and (c). 
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