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Abstract This article provides a novel perspective on the vexed is-
sue of the relation between probability and rational acceptability,
exploiting a recently-noted structural parallel with the problem of
judgment aggregation. After offering a number of general desider-
ata on the relation between finite probability models and sets of ac-
cepted sentences in a Boolean sentential language, it is noted that a
number of these constraints will be satisfied if and only if acceptable
sentences are true under all valuations in a distinguished non-empty
set W. Drawing inspiration from distance-based aggregation pro-
cedures, various scoring rule based membership conditions for W
are discussed and a possible point of contact with ranking theory is
considered. The paper closes with various suggestions for further
research.
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1 Introduction

The formal modeling of doxastic states appears to operate at different lev-
els of granularity. At the finer end of the scale, we encounter for instance–
in the so-called Bayesian tradition–‘graded’ representations in terms of
sets of real-valued functions over some formal language. At the coarser
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end, we find–most notably in some areas of the belief-revision literature–
‘all-or-nothing’ representations in terms of sets of sentences or valuations.
These differences in modeling choices seemingly map onto a correspond-
ing heterogeneity in folk psychological practice. Belief reports do indeed
come both in the form of attributions of degrees of confidence, aka ‘cre-
dences’, (e.g. ‘I am pretty sure that he needs help.’) and in the form of
unqualified attributions of ‘full’ belief (e.g. ‘He believes in fairies.’).

Whilst a unification of these various types of models, and of the phe-
nomena they purport to represent, would be an extremely desirable achieve-
ment, it unfortunately seems fair to say that the history of attempts to
provide a single, overarching framework–in particular a reduction of the
coarser level of description to the finer one–encourages a certain amount
of pessimism. In what follows, however, I hope to show that this pessimism
is premature. The current track record of the unificationist camp is indeed
poor; there is no disputing that. But, as Chandler (2010) has argued, the
root cause of this mediocre performance is easy to pinpoint: the blame lies
in the uncritical endorsement of a rather dubious would-be constraint on
the relation between graded and all-or-nothing belief. This putative con-
straint, which I shall call Independence, turns out to be a close cousin of
a homonymous troublemaker discussed in the judgment aggregation liter-
ature. Loss of Independence, one might say, paves the way to unification.
But now since existing proposals invariably satisfy the constraint, it is of
interest to see what kinds of alternatives may be on offer. The aim of this
article is to outline and briefly discuss a family of such alternatives, in-
spired by recent work on the problem of judgment aggregation.

The paper will proceed as follows. Section 2 presents the basic frame-
work and notation employed throughout, discuss some desiderata on the
mapping between degrees of confidence and full belief and present some
baseline results. Section 3 spells out the relationship between the task at
hand and the problem of judgment aggregation, offering a brief overview
of a family of distance-based aggregation methods that have enjoyed a cer-
tain degree of popularity in the recent computer science literature. Section
4 then outlines a corresponding family of scoring rule -based mappings
from degrees of confidence onto sets of accepted sentences. To illustrate
this general approach, a sample of noteworthy members of this family are
presented and some of their respective properties flagged out. Section 5
notes that these distance-based mappings suggest yet a further potential
unificatory strategy, this time pertaining to the vexed issue of the relation
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between probabilistic and ranking-theoretic models of belief. Section 6
briefly concludes with some suggestions for future research.

2 Formal preliminaries

For the purposes of the current paper, the credal state of mind of a ratio-
nal agent will be assumed to be representable by a probability modelM.
Whilst more expressive types of representations, such as sets of probabil-
ity models, are of course available, this simplification will help keep the
discussion focused. M will be defined as a pair 〈L,Pr〉, where: (i) L is a
sentential language constructed from a finite set P of m atomic sentences
by means of the usual Boolean connectives ∧, ∨ and ¬, and (ii) Pr is a
probability function with domain L, obeying the following standard ax-
ioms, where ` denotes the relation of classical consequence and > and ⊥
respectively denote an arbitrary classical tautology and an arbitrary clas-
sical contradiction: for any ϕ, ψ ∈ L, (i) if ϕ ` ⊥, then Pr(ϕ) = 0, (ii)
if > ` ϕ, then Pr(ϕ) = 1, (iii) if ϕ ` ψ, then Pr(ϕ) ≤ Pr(ψ) and (iv) if
ϕ ∧ ψ ` ⊥, then Pr(ϕ ∨ ψ) = Pr(ϕ) + Pr(ψ).

V will denote the set of valuations {v1, v2, . . . , v2m} of L, which are total
functions from L to the set of classical truth values {0, 1}. Furthermore,
JϕK will denote the set of valuations that validate ϕ (i.e. {v ∈ V : v(ϕ) = 1})
and conversely, where W is some set of interpretations, ϕW will be used
to denote an arbitrary sentence such that W = {v ∈ V : v(ϕW) = 1}.
By abuse of notation, we shall sometimes write v for {v} and vice versa.
Finally, a rational acceptance function Acc is a particular kind of function
that maps pairs of probability models M = 〈L,Pr〉 and sentences ϕ ∈
L onto {0, 1}. The intended interpretation is that Acc(M, ϕ) = 1 iff it
is rationally permissible to fully believe ϕ given that one’s credences are
representable by M.1,2 Acc(M, · ) is, in other terms, the ‘characteristic
function’ of the belief set that is rationally permissible givenM.

Clearly, in order to ensure that the set of accepted sentences is ‘well-
behaved’, one should require the following:

Zero-Normalisation: For any probability model M = 〈L,Pr〉 and
sentence ϕ ∈ L, if ϕ ` ⊥ then Acc(M, ϕ) = 0.

Unit-Normalisation: For any probability model M = 〈L,Pr〉 and
sentence ϕ ∈ L, if > ` ϕ then Acc(M, ϕ) = 1.
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Deductive Closure: For any probability model M = 〈L,Pr〉, sen-
tence ϕ ∈ L and set of sentences Γ ⊆ L, if for any ψ ∈ Γ, Acc(M, ψ) =

1 and Γ ` ϕ, then Acc(M, ϕ) = 1.

These correspond, respectively, to the claims that it is never permissible to
accept a contradiction, always permissible to accept a tautology and always
permissible to accept the logical consequences of what one is permitted to
accept. It seems, however that one should not require

Opinionation: For any probability modelM = 〈L,Pr〉 and sentences
ϕ, ψ ∈ L, either Acc(M, ϕ) = 1 or Acc(M,¬ϕ) = 1.

which states that, for any sentence ϕ that a rational agent S can entertain,
S always accepts either ϕ or its negation. Another important and fairly
uncontroversial constraint is the following:

Non-Unanimity: For some probability modelM = 〈L,Pr〉 and some
sentence ϕ ∈ L, Pr(ϕ) < 1 and Acc(M, ϕ) = 1.

This reflects the commonly-held intuition that one can accept sentences
whose truth one is not one hundred percent certain of. Perhaps more con-
troversial, but in my view prima facie plausible, is

Structurality: For any model M = 〈L,Pr〉, any automorphism π
ofM and any sentence ϕ ∈ L, Acc(M, ϕ) = Acc(M, π(ϕ)), where
an automorphism π of a probability model M = 〈L,Pr〉 is a 1 : 1
function L 7→ L, such that, for any ϕ, ψ ∈ L, (i) π(ϕ ∧ ψ) = π(ϕ) ∧
π(ψ), (ii) π(¬ϕ) = ¬π(ϕ), (iii) π(ϕ ∨ ψ) = π(ϕ) ∨ π(ψ) and (iv)
Pr(ϕ) = Pr(π(ϕ)).

This principle can be understood as stating that the acceptability of a sen-
tence with respect to a model M supervenes on the logical and proba-
bilistic properties of M. As Douven and Williamson (2006) point out,
Structurality, Deductive Closure and Zero-Normalisation jointly entail

Lottery-Proofness: For any finite probability model M = 〈L,Pr〉
such that for any v, v∗ ∈ V , Pr(ϕv) = Pr(ϕv∗) and any sentence ψ ∈ L,
if Pr(ψ) < 1, then Acc(M, ψ) = 0.3

which states that no contingent sentence is rationally acceptable with re-
spect to a finite uniform probability model.4 Douven and Williamson ap-
peared to reject this principle. In fact, however, as argued by Chandler
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([2010, pp.8–9]), this property is intuitively correct, if one grants one of
the working assumptions of this paper, namely that acceptability is de-
termined by a credal state modeled as a single probability model. The
grounds for Douven and Williamson’s objection may have been rooted in
a tacit commitment to the following principle:

Monotonicity: For any pair of probability modelsM = 〈L,Pr〉 and
M∗ = 〈L∗,Pr∗〉 and sentences ϕ ∈ L and ψ ∈ L∗, if Pr(ϕ) ≤ Pr∗(ψ)
then Acc(M, ϕ) ≤ Acc(M∗, ψ).

Indeed, it is easy to show the following:

Theorem 2.1. Lottery-Proofness, Monotonicity and Non-
Unanimity are jointly inconsistent.

In response to this, it was argued that no clear justification for Monotonic-
ity had been given and that, in view of the prima facie plausibility of
Structurality, Deductive Closure and Zero-Normalisation, as well as
the independent plausibility of Lottery-Proofness, Monotonicity ought
to be rejected. The same line can be taken with respect to the somewhat
weaker

Independence: For any pair of probability modelsM = 〈L,Pr〉 and
M∗ = 〈L∗,Pr∗〉 and sentence ϕ ∈ L,L∗, if Pr(ϕ) = Pr∗(ϕ) then
Acc(M, ϕ) = Acc(M∗, ϕ).

By a similar chain of reasoning to the one above, Independence can be
shown to be incompatible with the conjunction of Lottery-Proofness and
a seemingly unobjectionable strengthening of Non-Unanimity to the claim
that there exists a rational-valued sub-unit probability sentence that is ra-
tionally acceptable (calls this Non-Unanimity+). But it would seem en-
tirely arbitrary to insist that no rational-valued sub-unit probability sen-
tence is rationally acceptable, but maintain that some irrational-valued sub-
unit probability sentence is so. So denying the stronger version of Non-
Unanimity, presumably leads to denying the weaker one, which, I submit,
is unacceptable. So Independence must surely be given up too. Finally, to
the aforementioned desiderata, it is clear that one should furthermore add

Responsiveness: For some pair of probability models M = 〈L,Pr〉
and M∗ = 〈L,Pr∗〉 and some sentence ϕ ∈ L, Acc(M, ϕ) ,
Acc(M∗, ϕ).
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This states that the underlying probability distribution makes a difference
as to whether or not a sentence is rationally acceptable.

Let us briefly take stock. We have argued that the following are to
be categorically endorsed: Unit-Normalisation, Zero-Normalisation, De-
ductive Closure, Non-Unanimity+, Lottery-Proofness and Responsive-
ness. We have more tentatively endorsed Structurality and have cate-
gorically rejected Opinionation. In the light of Theorem 2.1, Independence,
and hence Monotonicity, has also been categorically rejected, due the en-
dorsement of Non-Unanimity+ and Lottery-Proofness.

Can we find a function that simultaneously satisfies all of these con-
straints? It turns out that the range of possible avenues is limited by the
following elementary result:

Theorem 2.2. Unit-Normalisation, Zero-Normalisation and De-
ductive Closure hold iff there exists a non-empty set W ⊆ V of val-
uations such that, for any ϕ ∈ L, Acc(M, ϕ) = 1 iff W ⊆ JϕK.

So we need a procedure to select this non-empty set W of valuations, and
one that will yield an acceptance function that fares well on the remaining
desiderata. How should this be done?

3 Taking cue from judgment aggregation

In a recent article, Douven and Romeijn (2007) hint at the existence of a
striking parallel between the issue of individual-level rational acceptability
or sentences relative to a probability model and the issue of group-level
rational acceptability of sentences relative to the opinions of a set of agents,
aka the problem of rational judgment aggregation.

In formal terms, the problem of rational judgment aggregation involves
the characterisation of a two-place aggregation function Agg, this time
mapping pairs of opinion models M and sentences in L onto {0, 1}, such
that Agg(M, ϕ) = 1 iff ϕ is rationally acceptable, at the group level, with
respect to M. An opinion model is a pair 〈L,O〉, where O, known as an
‘opinion profile’, is an n-tuple 〈ψ1, . . . , ψn〉 of classically consistent sen-
tences in L. These sentences are known as ‘opinions’, and represent the
respective full beliefs of the members of a group of n rational agents.5

In cases in which the range of Pr is a subset of the rational numbers Q,
we could think of the problem of rational acceptability as a special case of
the problem of judgment aggregation in which (i) the opinions aggregated
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are maximally strong consistent sentences in L and (ii) the aggregation
function Agg is subject to the following constraints:

Anonymity: For any opinion models M = 〈L, 〈ψ1, . . . , ψn〉〉 and
M∗ = 〈L, 〈π(ψ1), . . . , π(ψn)〉〉, with ψi ∈ L(1 ≤ i ≤ n), where
π is a permutation of 〈ψ1, . . . , ψn〉, and any ϕ ∈ L, Agg(M, ϕ) =

Agg(M∗, ϕ).

Duplication: For any opinion model M = 〈L, 〈ψ1, . . . , ψn〉〉 and
M∗ = 〈L, 〈ψ1, . . . , ψn, ψ1, . . . , ψn〉〉, with ψi ∈ L(1 ≤ i ≤ n), and
any ϕ ∈ L, Agg(M, ϕ) = Agg(M∗, ϕ).

Indeed, we could view an assignment of rational-valued probabilities to
maximally strong consistent sentences as a function returning the relative
frequencies of corresponding opinions in the opinion set of a maximally
opinionated group.

The parallel deepens when we turn to the kinds of constraints
that are typically imposed on aggregation functions. We find, for
instance, endorsements of precise aggregation-theoretic analogues of
Unit-Normalisation, Zero-Normalisation, Deductive Closure, Non-
Unanimity+ and Responsiveness. Furthermore, although the analogue of
Opinionation is an admittedly widespread constraint, this has also oc-
casionally been waived. Finally, concerns with respect to the obvious
analogue of Independence, which is crucially involved in a number of
aggregation-theoretic impossibility results6, have also been raised.

In view of all this, it will come as little surprise that recent develop-
ments in the aggregation literature suggest an attractive answer to the ques-
tion posed at the end of the previous section. Konieczny, Lang and Mar-
quis (2004) provide an overview of a large family of aggregation functions
based on the notion of distance between valuations and opinion profiles.7

The idea behind this class of proposals is strikingly simple: first (i) provide
a measure of the distance between the various valuations ofL and the tuple
of individual-level opinions, then (ii) select, as adopted at the group level,
all and only those sentences that are validated by all the valuations that
are close enough. As we shall see, Konieczny et al. take ‘close enough’ to
mean ‘closest’. It is however worth noting that alternative options could be
explored. One could also for instance select all and only those valuations
that are situated within some suitably chosen distance t. I shall return to
this kind of variant in the next section. 8

7



With some relevant simplifications, the calculation of the distance be-
tween a valuation v and an opinion profile O proceeds as follows.

Step 1: For every v∗ ∈ V , provide a measure of the distance between
v and v∗.

Step 2: For every ψ inO, construct a measure of the distance between
v and ψ, by aggregating the distances between v and the valuations
that validate ψ.

Step 3: Construct a measure of the distance between v and O, by
aggregating, in turn, the distances between v and each ψ in O.

So we start off with a ‘distance’ function d mapping pairs of valuations
onto R+. The requirements imposed by Konieczny and his colleagues are
very minimal:

Definition 3.1. d is a distance between valuations iff it is a total
function from V×V to R such that, for every v, v∗ ∈ V, (i) d(v, v∗) ≥ 0
(Positivity), (ii) d(v, v∗) = d(v∗, v) (Symmetry), and (iii) d(v, v∗) = 0
iff v = v∗ (Minimality).9

Of course, one could just take d as primitive and simply add a further argu-
ment to the aggregation function. Primitivism regarding distance between
valuations is not unheard of in philosophical circles (e.g. Hilpinen 1976),
but it is somewhat mysterious and unparsimonious nevertheless. Indeed,
Konieczny et al do not even discuss the option and focus instead on two
particular alternatives, both of which are, incidentally, bounded above (by
1), which does not seem to be an undesirable feature. One of these alter-
natives is what they call the ‘drastic distance’ (dD):

Definition 3.2. dD(v, v∗) := 0 if v = v∗ and equal to 1 otherwise.

The other is the normalised weighted Hamming distance (dHq):

Definition 3.3. dHq(v, v
∗) :=

∑
p∈S q(p), where S := {p ∈ P : v(p) ,

v∗(p)} and q is a total function from P to R+ such that
∑

p∈P q(p) =

1.10

If we take q to be a constant function, treating all mismatches symmetri-
cally, we obtain the familiar normalised Hamming distance (dH).
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Definition 3.4. dH(v, v∗) :=
|S |
|P|

, where S is defined as in Definition

3.3.

Once a measure of the distance between valuations has been settled on, we
obtain distances between valuations and opinion profiles in steps 2 and 3
by means of two successive distance aggregation procedures. Konieczny
et al. offer three constraints on such procedures:

Definition 3.5. g is a distance aggregation function iff it is a function
from R+n to R+, such that (i) g is non-decreasing in every argument,
(ii) g(r1, r2, . . . , rn) = 0 iff r1 = r2 = . . . = rn = 0 and (iii) g(r) = r.

To these, one would presumably want to add the following internality re-
quirement:

(iv) min{r1, r2, . . . , rn} ≤ g(r1, r2, . . . , rn) ≤ max{r1, r2, . . . , rn}.

Step 2 establishes the distance d′ between valuations and sentences, by
aggregating the distances between these valuations and the valuations that
validate the sentences. Although there is a fair amount that could be said
here, given (iv), which is satisfied by Konieczny et al.’s own proposal for
d′, the specifics of this step are of no great relevance to the present paper.
Indeed, in the cases that we are interested in, the ψi are maximally strong
consistent sentences, and the JψiK are singletons, so we will wind up with
the same value for d′(v, ϕ) whatever the particular d′ we settle on. Of more
central concern to the present case is Step 3, in which we aggregate the
distances d′(v, ψi) between v and the ψi in O to obtain a distance D(v,O)
between v andO. There is a large number of available options here, such as
the max and min functions, as well as various weighted and non-weighted
means:

As mentioned earlier, Konieczny et al. simply make use of distances
between valuations and opinion profiles to establish a total preorder in V ,
taking as acceptable, at the group level, all and only those sentences that
are validated by the valuations that are in the minimal set. This leaves us
with:

For any opinion modelsM = 〈L,O〉 and ϕ ∈ L, Agg(M, ϕ) = 1 iff
v(ϕ) = 1, for any v ∈ V such that, for any v∗ ∈ V , D(v,O) ≤ D(v∗,O).
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It is worth taking a brief look at some of the general properties of the
resulting proposal, in the case of interest in which the opinions are maxi-
mally strong. By the aggregation-theoretic analogue of Theorem 2.2, we
already know that Agg will satisfy the analogues of Unit-Normalisation,
Zero-Normalisation and Deductive Closure. Responsiveness straightfor-
wardly holds by virtue of definitions 3.1 and 3.5. Anonymity, which we
are keen to preserve in the present context, obviously corresponds to sym-
metry of D, i.e. its invariance under argument permutation. This fails for
weighted means (with non-uniform weighting function). In the presence
of Anonymity, the analogue of Structurality would be secured by the
symmetry of the distance matrices of dD and dH along their main diagonal.
The analogue of Independence, however, needn’t hold:

Example 3.3. Let P = {ϕ, ψ}, O1 = 〈ϕ∧ψ, ϕ∧¬ψ,¬ϕ∧ψ,¬ϕ∧¬ψ〉
and O2 = 〈ϕ ∧ ψ, ϕ ∧ ψ,¬ϕ ∧ ψ,¬ϕ ∧ ¬ψ〉. Let d = dD and D be the
arithmetic mean function. It is easily verified that all valuations are
equidistant from O1 but that the sole member of Jϕ ∧ ψK is uniquely
closest to O2. Hence Agg(M1, ϕ ∧ ψ) = 0 but Agg(M2, ϕ ∧ ψ) = 1.

The same example demonstrates that Opinionation can also fail, since we
also have Agg(M1,¬(ϕ∧ψ)) = 0. Finally, the analogue of Non-Unanimity
fails in some cases, for instance if we set d = dH and D = max.

4 Acceptance and scoring rules

We can adapt and generalise the kind of strategy outlined in the previous
section in the following manner:

(a) Provide a measure D of the distance between the v ∈ V and Pr,
which, we shall assume, satisfies constraints of both positivity and
minimality (see Definition 3.1).

(b) Use this to select a set W of ‘close enough’ valuations, such that, for
any v, v∗ ∈ V , if v ∈ W and D(v∗,Pr) ≤ D(v,Pr), then v∗ ∈ W.

(c) Define Acc as follows: For any ϕ ∈ L, (i) if W = ∅, then
Acc(M, ϕ) = 1 iff > ` ϕ, (ii) otherwise Acc(M, ϕ) = 1 iff
W ⊆ JϕK.11
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Regarding membership conditions for W, we have two salient options. The
first of these, the analogue of which was endorsed by Konieczny et al., we
shall call ‘Min’, for ‘minimising’. The second, whose analogue has, to
the best of my knowledge, yet to be discussed in the aggregation-theoretic
literature, we shall call ‘Sat’, for ‘satisficing’.

Min: v ∈ W iff v ∈ V and ∀v∗ ∈ V(D(v∗,Pr) ≥ D(v,Pr)).

Sat: v ∈ W iff v ∈ V and D(v,Pr) ≤ t, for some appropriate t ∈ R+.

Regarding D, the literature is already replete with various suggestions un-
der the name of so-called ‘scoring rules’. It turns out however that most
proposals in usage satisfy

≥Pr-Reversal: D(v∗,Pr) ≥ D(v,Pr) iff Pr(ϕv) ≥ Pr(ϕv∗).

These include the family of exponential scores, of which the well-known
Brier score is a member, as well as the logarithmic score (Dlog), which we
will return to in the next section:

Definition 4.1. Dlog(v,Pr) := − log(Pr(ϕv)).

Given ≥Pr-Reversal, whatever the particular choice of D, the upshot of
Min would be that it is permissible to accept all and only those sentences
that are true in all the most probable worlds. Call the resulting function
‘Acc1’. This does have the arguable drawback of allowing for acceptance
of sentences in whose truth one has an arbitrarily small degree of confi-
dence. Opting for Sat avoids this consequence, since it permits acceptance
of all and only those sentences that are true in all the those worlds whose
probability exceeds a certain threshold. Call the resulting function ‘Acc2’.
It is easily checked that both Acc1 and Acc2 satisfy both Structurality
and Consensus Preservation, and violate Opinionation. Furthermore Non-
Unanimity fails for Acc1 and does so for Acc2 as well, unless we set t to
0.12

Interestingly enough, some relevant functions do violate ≥Pr-Reversal.
One particularly interesting example, which isn’t found in the scoring rule
literature but whose analogue appears to be taken quite seriously in the
aggregation literature, is the following:

DH(v, Pr) =
∑

v∗∈V Pr(ϕv∗)dH(v, v∗)
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There are a number of potential issues worth noting here, however. To
begin with, as has been famously noted in the verisimilitude debate, the
Hamming distance is not invariant under translation (see Miller’s (1974)
well-known criticism of Tichý (1974, 1976)).

Example 4.1. Let L1 be built up from the set of atomic sentences
P1 = {ϕ, ψ, χ} and L2 from P2 = {ϕ, β, γ}. Let the binary relation
R pair up sentences in L1 with their synonymous counterparts in L2

and let 〈ϕ↔ ψ, β〉, 〈ϕ↔ χ, γ〉 ∈ R. We have, in R, 〈ϕ∧ψ∧χ, ϕ∧β∧
γ〉, 〈¬ϕ∧ψ∧χ,¬ϕ∧¬β∧¬γ〉 and 〈¬ϕ∧¬ψ∧¬χ,¬ϕ∧β∧γ〉. Now
dH(Jϕ ∧ ψ ∧ χK, J¬ϕ ∧ ψ ∧ χK) = 1/3 < dH(Jϕ ∧ ψ ∧ χK, J¬ϕ ∧ ¬ψ ∧
¬χK) = 1. However, the ordering is reversed when we substitute the
following L2 counterparts: dH(Jϕ ∧ β ∧ γK, J¬ϕ ∧ ¬β ∧ ¬γK) = 1 >
dH(Jϕ ∧ β ∧ γK, J¬ϕ ∧ β ∧ γK) = 1/3.

But this, so the worry might go, is bad news, since it is easy to show that it
will result, given either Min (call the resulting function ‘Acc3’) or Sat (call
the resulting function ‘Acc4’), in an undesirable translation-sensitivity of
acceptability.13, 14

Setting this issue aside, both Acc3 and Acc4 violate the following prop-
erty of Consensus Preservation, which could be argued to be intuitively
compelling:

Consensus Preservation: For any finite probability model M =

〈L,Pr〉 and sentence ϕ ∈ L, if Pr(ϕ) = 1 then Acc(M, ϕ) = 1.15

To illustrate the result for Acc3:

Example 4.2. Let P = {ϕ, ψ} and Pr(¬ϕ∧ψ) = Pr(ϕ∧¬ψ) = 1/2 . Let
D = DH. It is easily verified that all valuations are equidistant from
Pr and hence, although Pr(¬(ϕ↔ ψ) = 1, Acc(M,¬(ϕ↔ ψ)) = 0.

For these reasons, and pending further discussion of the normative status
of the constraints flouted, it seems fair to treat both Acc3 and Acc4 with a
certain degree of caution.

To wrap up this section, it is worth briefly considering an issue that
has been somewhat overlooked in the literature on probability and accept-
ability, namely the behaviour of acceptability under probability model re-
finement or coarsening. Indeed, it has been put to me that the following
property may be desirable:
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Preservation under Refinement: Where M+ = 〈L+,Pr+〉 is a re-
finement of M = 〈L,Pr〉, for any ϕ ∈ L, if Acc(M, ϕ) = 1, then
Acc(M+, ϕ) = 1.

Preservation under Coarsening: Where M+ = 〈L+,Pr+〉 is a re-
finement of M = 〈L,Pr〉, for any ϕ ∈ L, if Acc(M+, ϕ) = 1, then
Acc(M, ϕ) = 1.

Where a refinement is defined as follows:

Definition 4.2. M+ = 〈L+,Pr+〉 is a refinement ofM = 〈L,Pr〉 and
M a coarsening of M+ iff L ⊂ L+ and, for any ϕ ∈ L, Pr(ϕ) =

Pr+(ϕ).

It is worth noting that Smith (forth.) appears to have recently–albeit
cautiously–endorsed the second of the above principles, which plays a cru-
cial role in the impossibility result that is central to his paper.

Now Independence obviously guarantees the satisfaction of both con-
straints. However, both are violated–and hence so to is Independence–by
both Acc1 and Acc2

16. The following simple example illustrates the point
for Acc1:

Example 4.3. Let P = {ϕ} and P+ = {ϕ, ψ}. Furthermore, let
Pr(ϕ) = 0.6, Pr+(ϕ ∧ ψ) = 0.3 Pr+(ϕ ∧ ¬ψ) = 0.3, Pr+(¬ϕ ∧ ψ) = 0.4
Pr+(¬ϕ ∧ ¬ψ) = 0. It is easily verified that we have Acc1(M, ϕ) = 1
and Acc1(M,¬ϕ) = 0, but Acc1(M+, ϕ) = 0 and Acc1(M+,¬ϕ) = 1.

But do the principles constitute intuitive desiderata in the first place? This
far from clear. If constraints on the preservation of acceptability under
model coarsening or refinement are indeed in order, these should at the
very least be restricted to changes in granularity that are not accompanied
by the loss or acquisition of further information. The above conditions
are simply too strong. A more promising, weaker constraint would be
invariance of acceptability in the presence of a relation of conservative
refinement between the two models:

Definition 4.3.M+ = 〈L+,Pr+〉 is a conservative refinement ofM =

〈L,Pr〉 iff (i) L ⊂ L+ (ii) for any maximally strong consistent ϕ ∈ L,
and maximally strong consistent ϕ+

1 , ϕ
+
2 ∈ L

+, such that ϕ+
i 0 ¬ϕ,

with 1 ≤ i ≤ 2, Pr+(ϕ+
1 ) = Pr+(ϕ+

2 ).17
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It is easy to show that the resulting weakened principles are both satisfied
by Acc1. This follows pretty immediately from the fact that, for any max-
imally strong consistent sentences ϕ1, ϕ2 ∈ L, the sets of L+-valuations
Jϕ1K and Jϕ2K will have the same cardinality. Matters, however, are some-
what different for Acc2, when t > 0. The weakening of Preservation under
Refinement clearly fails. The weakening of Preservation under Coarsen-
ing, however, holds.

5 Probability and ranking theory

For a number of years, Wolfgang Spohn has been floating a fairly influen-
tial model of rational degrees of belief that appears, on the face of it, to be a
genuine alternative to the probabilistic view. This well worked-out model,
known as ‘ranking theory’ ships with a number of attractive features, in-
cluding various credence update procedures, as well as a story regarding
the relation between graded and full belief. Ranking functions are defined
as follows:

Definition 5.1. A ranking function κ is a function fromL to R+∪{∞}

such that, for any ϕ, ψ ∈ L, (i) if ϕ ` ⊥, then κ(ϕ) = ∞, (ii) if
> ` ϕ, then κ(ϕ) = 0, (iii) if ϕ ` ψ, then κ(ψ) ≤ κ(ϕ) and (iv)
κ(ϕ ∨ ψ) = min{κ(ϕ), κ(ψ)}.

A rank of ∞ plays a role that is somewhat analogous to that of a credence
of 0 in probabilistic frameworks. In particular, the rank of ∞ is invariant
under strict ranking-theoretic conditionalisation, just as a credence of 0
is invariant under strict probabilistic conditionalisation, as the following
definition of a conditional ranking functions makes clear:

Definition 5.2. Where κ is a ranking function with domain L, ϕ, ψ ∈
L and κ(ϕ) < ∞, the quantity κ(ψ | ϕ) = κ(ψ ∧ ϕ) − κ(ϕ) is the
conditional rank of ψ given ϕ.18

Adapting the notation to harmonise with the present paper, the account
of acceptability on offer is the following, where Acc denotes this time a
function from pairs of ranking modelsM = 〈L, κ〉 and sentences ϕ ∈ L:

Min Rank: For any ranking models M = 〈L, κ〉 and all ϕ ∈ L,
Acc(M, ϕ) = 1 iff κ(ϕ) < κ(¬ϕ).
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In a recent article, Spohn (2009) ponders over the ‘suprisingly complex
and fascinating’ relation between the ranking-theoretic and probabilistic
pictures. He notes some superficial connections and suggests a potential
explanation:

. . . translate the sum of probabilities into the minimum of
ranks, and the quotient of probabilities into the difference
of ranks. Thereby, the probabilistic law of additivity turns
into the law of disjunction, the probabilistic law of multipli-
cation into the law of conjunction (for negative ranks), and
the definition of probabilities into the definition of conditional
ranks. . . [T]ake any probabilistic theorem, apply the above
translation to it, and you are almost guaranteed to get a ranking
theorem. . . The translation of products and quotients of prob-
abilities suggests that negative ranks simply are the logarithm
of probabilities. [ibid, p. 209]19

He does then however note that the suggested picture may not be so clear,
mentioning discrepancies regarding conditional independence and ‘posi-
tive and non-negative instantial relevance’, as well as the translation of
sums of probabilities.

However, the translation is not fool-proof. . . The issue is not
completely cleared up. . . [The view of ranks as logarithms of
probabilities] does not seem to fit with the translation of sums
of probabilities. But it does fit when the logarithmic base is
taken to be some infinitesimal i. . .

But the discussion in the previous section suggests a somewhat more
straightforward picture of the relationship between ranks and probabili-
ties. Indeed, it is worth noting the following alternative formulation of
Min Rank:

For any ranking modelsM = 〈L, κ〉 and all ϕ ∈ L, Acc(M, ϕ) = 1
iff, for any v ∈ W, v(ϕ) = 1, where W = {v ∈ V : κ(ϕv) = 0}.

It is easily verified that, in virtue of the constraints on ranking functions,
W is guaranteed to be non-empty.

But now we can see what is a really quite remarkable similarity with
the kind of proposal made in the previous section. In both cases, we start
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with some positive real -valued function f on the elements of V (previous
section) or on the set of strongest consistent sentences in L (current sec-
tion). This enables us to select a lower set W of valuations, such that if
v ∈ W and f (v∗) ≤ f (v), or f (ϕv∗) ≤ f (ϕv), then v∗ ∈ W. Acceptability is
then identified with truth in all elements of W.

And the similarity is all the more striking if we recall the logarith-
mic distance Dlog, briefly mentioned earlier on. Indeed, the range of the
function is R+ ∪ {∞}, just as is the case with ranking functions, with
Dlog(v,Pr) = − log(Pr(ϕv)) = ∞ iff Pr(ϕv) = 0. This suggests an interpre-
tation of ranks of maximally strong consistent sentences as renormalised
negations of logarithms of their probabilities. Given Min Rank, the details
of the renormalisation then have to depend on whether we opt for Min or
opt for Sat, to ensure consistency. Here are two simple correspondences
that would do the trick:

For any v ∈ V , κ(ϕv) = minv∗∈V(− log(Pr(ϕv∗))) + log(Pr(ϕv)) (for
Min)

For any v ∈ V , κ(ϕv) = t −max{t,− log(Pr(ϕv))} (for Sat)

We then straightforwardly recover the ranks for the remainder of the sen-
tences in the language using Definition 5.1, obtaining a many-to-one map-
ping from probability function onto ranking functions. Interestingly, this
would somewhat vindicate Spohn’s intuition about a logarithmic connec-
tion between ranks and probabilities. The vindication, however, would
only be partial: the connection would not quite be the one anticipated.

6 Concluding comments

Due to space limitations and to the amount of ground to be covered, we
have had to keep the model rather simple. The most obvious shortcoming
is perhaps the chronic lack of expressiveness of the language. A move from
a sentential to a predicate or modal language would yield a significant gain
in realism. Another, admittedly somewhat minor, irritant is the current
limitation to finitely generated languages. The infinitary case certainly
does raise some further issues. For instance, proposals based on distance-
minimising, rather than satisficing, need to address the issue of what to
say with respect to the acceptability of a contingent sentence in the case in
which there is an infinite sequence of ever-closer valuations. On the current
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proposal, we would wind up with mandatory suspension of judgment, since
W would be empty. There may however be a case for claiming that this
kind of case, highlights what one might call a ‘deontic blindspot’ a point
at which rationality fails to yield any recommendation whatsoever. But
there are also technical complications prior to that stage, when it comes
to computing the distances themselves. It is far from clear, in particular,
how to suitably generalise the concept of normalised Hamming distance
without running the risk of having W = V .
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Appendix

Proof of Theorem 2.1. Assume Non-Unanimity. It follows that there exists
a model M = 〈L,Pr〉 and sentence ϕ ∈ L such that Pr(ϕ) = p < 1 but
Acc(M, ϕ) = 1. Since, as is well-known, there exists a rational number
between any two distinct real numbers, there exists a rational number q =

m/n (with m, n ∈ N), such that p < q < 1. LetM∗ = 〈L∗,Pr∗〉 be a uniform
probability model, such that the cardinality of the set of valuations of L∗

is equal to m. Let ψ denote an arbitrary sentence validated by exactly n
of the valuations. Now by Lottery-Proofness, Acc(M∗, ψ) = 0, since
Pr(ϕ{w1,...,wm}) = q < 1. By Monotonicity, however, Acc(M∗, ϕ{w1,...,wm}) ≥
Acc(M, ϕ) = 1. Contradiction. �

Proof of Theorem 2.2. Let S := {ϕW : W ⊆ V} and ϕW � ϕW∗ iff W∗ ⊆ W.
Let L be the lattice 〈S ,�〉. Let B ⊆ S denote the set of ϕ ∈ S s.t.
Acc(M, ϕ) = 1. Zero-Normalisation is true iff ϕ∅ = ⊥ < B. Unit-
Normalisation and Deductive Closure are true iff B is a filter of L. So
the three conditions are true iff B is a proper filter of L. But every proper
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filter is the intersection of a set of ultrafilters. For each of these ultrafilters
u, there is some v ∈ V s.t. u = {ϕ ∈ S : v(ϕ) = 1}. �

Notes

1Note that the assumption made here, that acceptability is a function of an underlying
probability model, whilst commonplace in the literature, is not entirely uncontroversial. It
rules out, for instance, the views that the acceptability of a sentence depends also depends
on the practical payoffs associated with true/false negatives/positives (see Rudner 1953)
or again that it is relative to a specific question, modeled as a partition of the language
(Levi 1967). A discussion of these issues is however beyond the scope of the present
paper.

2In what follows I will be using the expressions ‘full belief in the truth of’ and ‘accep-
tance of’ interchangeably.

3The name for this constraint originates in (Chandler 2010), and derives from the fact
that were it to be violated, Structurality and Deductive Closure could be marshalled,
lottery paradox -style, to yield a violation of Zero-Normalisation. The lottery paradox
-proofness involved was dubbed ‘weak’ in the original paper for reasons that do not apply
to the current model.

4In fact, Douven and Williamson prove a slightly stronger result, making use of a
principle that its strictly weaker than Deductive Closure, namely:

Aggregativity: For any probability modelM = 〈L,Pr〉 and sentences ϕ, ψ ∈ L, if
Acc(M, ϕ) = 1 and Acc(M, ψ) = 1, then Acc(M, ϕ ∧ ψ) = 1.

5The reader familiar with the judgment aggregation literature will notice a consider-
able amount of simplification going on here. For instance, I am rather severely restricting
the class of possible opinion models, which, in the aggregation-theoretic literature, no-
tably involve opinion profiles that are tuples of possibly inconsistent sets of sentences in
L. For reasons that will become clear shortly, these expository niceties can be dispensed
with.

6See most notably Theorem 2 (a) of (Dietrich and List 2008), in which, in contrast to
many other previous results, Opinionation plays no role.

7Distance based approaches to aggregation are also more recently discussed in Miller
and Osherson (2009) and Pigozzi (2006).

8On this option, to ensure that the set of selected valuations isn’t empty, one could
specify that, in the event that all valuations are further than t, all valuations are selected.

9Strictly-speaking, this is not a distance, as the triangle inequality d(v, v∗)+d(v∗, v∗∗) ≥
d(v, v∗∗) need not be respected.

10In fact, Konieczny et al. use the non-normalised counterpart; the normalisation is
introduced here to harmonise with the range of dD.

11Clause (i) is crucial here. Without it, in the event that stage (b) allows for W to be the
empty set, we would have a violation of Zero-Normalisation, since, obviously, ∅ ⊆ JϕK,
for all ϕ ∈ L, including contradictions.

12Both suggestions were very briefly mentioned by Chandler (2010), where the con-
nection with distance-based aggregation functions had not been drawn.
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13This is of course not a suitable occasion to address the controversial issue of the
normative status of a requirement of translation-invariance. The issues at play are complex
and, as far as I can see, remain unresolved at this point. See (Zwart 2001), chapter 5 for a
detailed overview of the debate.

14In the original draft of this paper, I had suggested that the issue of translation-
sensitivity of distance-based methods had been overlooked in the judgment aggregation
literature. As an anonymous referee pointed out to me, however, I was wrong. Indeed, the
issue is in fact briefly discussed in a recent piece by Cariani et al (2008). There, they first
offer a theorem (Theorem 5, p. 17) to the effect that translation sensitivity is a property,
not only of the Hamming distance, but of any distance measure that is not ‘trivial’, in the
following sense:

A measure d of distance between valuations is trivial iff there exists r ∈ R+ such
that, for all v,w ∈ V, d(v,w) = r × dD(v,w).

After presenting this result, they then go on to say:

In short, only trivial distance measures are translation-invariant. . . Thus
any judgment aggregation procedure that depends on a non-trivial distance
measure will fail translation-invariance.

Now the inference from translation-sensitivity of the distance measure to translation-
sensitivity of the corresponding aggregation procedure seems basically correct, given cer-
tain assumptions about the latter. But these assumptions are not provided and neither is
the precise derivation: a little more work is required to establish the result, as Cariani et
al have acknowledged in recent correspondence.

15The restriction to finite models is important here. Universal quantification over all
probability models–finite or otherwise–would yield a principle that is incompatible with
the conjunction of Aggregativity and Zero-Normalisation. Note, furthermore, that Con-
sensus Preservation entails Responsiveness.

16When t > 0, since for t = 0, Independence is satisfied.
17As an anonymous referee has pointed out to me, there may be grounds to hold that

conservative refinements are perhaps not as informationally innocent as I have suggested
and hence that a requirement of preservation of acceptability under such refinements may
not be in order. Indeed, the standard Bayesian suggestion of modeling a lack of opinion-
ation with respect to a partition P by a uniform probability distribution over P, faces a
number of apparent difficulties: Bertrand-style paradoxes, counterintuitive prescriptions
in Ellsberg’s urn decision problem, and so on. Whilst I do share the referee’s worries
here, a constraint of preservation under conservative refinement remains the best that can
be achieved within the orthodox Bayesian framework that was assumed from the outset
of this paper.

18This is the definition given in (Spohn 2009). Just as the standard ratio definition
for conditional probability precludes conditionalisation on probability 0 sentences, it pre-
cludes conditionalisation on rank∞ sentences. There are however alternative accounts of
both conditional probabilities and conditional ranks that, rightly or wrongly, waive this
prohibition. The former will presumably be well-known to the reader. Regarding the
latter, we have the following proposal from (Huber 2009):
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κ(ψ | ϕ) =

{
κ(ψ ∧ ϕ) − κ(ϕ) if ψ 0 ⊥;
∞ if ψ ` ⊥.

The reason for setting the conditional rank to ∞ in case ψ ` ⊥ is presumably to prevent
ψ from receiving a rank of 0 upon conditionalisation on a sentence ϕ of rank∞ (since we
would then have κ(ψ ∧ ϕ) − κ(ϕ) = ∞ − ∞ = 0), and having κ(· | ϕ) violate clause (i) of
Definition 5.1.

Somewhat curiously, however, note that here, contrary to what was the case in Def-
inition 5.2, we no longer have the result that κ(ψ | ¬ψ) = ∞. Indeed, let κ(¬ψ) = ∞ and
ψ 0 ⊥. By the above proposal, κ(ψ | ¬ψ) = κ(ψ ∧ ¬ψ) − κ(¬ψ) = ∞ −∞ = 0. This result
could however be avoided by simply swapping ψ ` ⊥ (resp.ψ 0 ⊥) for ψ ∧ ϕ ` ⊥ (resp.
ψ ∧ ϕ 0 ⊥) in the above definition.

19In Definition 5.1, we took the range of κ to be R+ ∪ {∞}. In some publications,
however, including the one from which this quote was taken, the range is stated to be
N ∪ {∞}. But this second option obviously doesn’t square with the conjecture that ranks
are logarithms of potentially real-valued probabilities.
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