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【Abstract】In the present paper, we prove the normalization theorem and the 
consistency of the first-order classical logic with disjunctive syllogism. First, 
we propose the natural deduction system SCD for classical propositional logic 
having rules for conjunction, implication, negation, and disjunction. The rules 
for disjunctive syllogism are regarded as the rules for disjunction. 
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1 Introduction

There are two most important results of Gerhard Gentzen; his Haupt-
satz and the consistency proof for arithmetic. The Hauptsatz is often
called the cut-elimination theorem or the normalization theorem. It
states that every derivation can be transformed into a derivation that
contains no unnecessary detour.1 One of the main consequences of
the normalization theorem is the consistency of a system. Although
Gentzen (1935) first introduced natural deduction system, he thought
that natural deduction system was not suitable for proving the nor-
malization theorem in the case of classical logic. His classical natu-
ral deduction system consists of rules for intuitionistic logic with the
law of excluded middle. Gentzen (1935, 1936, 1938) therefore in-
vented another logical calculus, called sequent calculus, and proved
the normalization theorem and the consistency of arithmetic.

Unlike Gentzen, Prawitz (1965, 1971) formalized a natural de-
duction system for classical logic as the system employing rules for
minimal logic with the rule for classical reductio ad absurdum. In
this case, the rule for ex contradictione quodlibet is regarded as a
special instance of the rule for classical reductio. He gave the nor-
malization theorem for the classical natural deduction system. His
classical system has no rules for disjunction and existential quantifi-
cation. So to speak, in his system, disjunction and existential quan-
tification are not primitive logical operators.

Gunnar Stålmarck (1991) and Yuuki Andou (1995) proved the
1The stated normalization theorem is one of the so called the weak normaliza-

tion. The normalization theorem is divided into two directions, such as the strong
and the weak normalization theorem. The strong normalization theorem says that
every derivation can be transformed into the unique derivation that contains no un-
necessary detour regardless of the order in which transforming methods are applied.
In the present paper, we only consider the weak normalization theorem
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normalization theorem for the first-order classical natural deduction
system with full logical operators. To prove the normalization theo-
rem, the system should have proper reduction procedures that elimi-
nate unnecessary detours in the target derivation. Their reduction pro-
cedures for a derivation using the rule for classical reductio are dif-
ferent from the reductions suggested by Prawitz (1965). For instance,
Prawitz’s reduction transforms the conclusion of the rule for classical
reductio into a subformula of the conclusion which can be reduced
to an atomic formula.2 On the other hand, Stålmark and Andou’s
procedures transform the conclusion of the rule into a consequence
of the conclusion which may not always be atomic. The difference
between their reduction methods obscures the point on whether the
normalization theorem straightforwardly implies the consistency of
the system.

Although Stålmark and Andou proved the normalization theo-
rem for the first-order classical system with full logical operators,
their proofs are complicated in comparison with Prawitz’s. More-
over, there seems to be a lot more thing to prove the consistency of
the system from their normalization theorem. For instance, it should
be proved that there is no derivation of an absurdity whose last step is
the rule for classical reductio. Since an absurdity operator is regarded
as an atomic formula, it is not enough to show that every conclusion
of the rule for classical reductio is convertible into an atomic for-
mula.

In this paper, we propose an alternative proof of the normaliza-
tion theorem which straightforwardly implies the consistency of the

2Roughly put, a subformula of the conclusion is the formula consisting of the
conclusion. An atomic formula is the formula having no logical operators. A precise
definition of them will be introduced in the next section.
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system. We prove the normalization theorem for the first-order clas-
sical natural deduction system with disjunctive syllogism. In stead
of using the standard or-rules, we will introduce rules for disjunctive
syllogism as the rules for disjunction and prove the weak normaliza-
tion theorem for the first-order classical natural deduction with dis-
junctive syllogism. Our result has direct consequences, such as the
consistency of the system.

Section 2 introduces a natural deduction system SCD for classi-
cal propositional logic with disjunctive syllogism. Unlike Prawitz’s
system for weak classical logic which only has conjunction, implica-
tion, and negation, our system has whole rules for logical operators
including disjunction. Moreover, Section 3 shows the normalization
theorem for SCD and the consistency of it as the direct consequence
of the normalization. In Section 4, we extend our results to the first-
order classical logic with disjunctive syllogism.

2 Natural Deduction SCD for Classical Propositional
Logic with Disjunctive Syllogism

In this section, we introduce a natural deduction system SCD for clas-
sical propositional logic with disjunctive syllogism. In Section 2.1,
we borrow some terminologies, standard natural deduction rules for
classical propositional logic, and reduction procedures from Prawitz
(1965, 1971). Section 2.2 briefly investigates the problem of reduc-
tion procedures for derivations employing rules for classical reductio
with disjunction. Then, we propose the natural deduction system SCD

for classical propositional logic with disjunctive syllogism.
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2.1 Preliminaries: Rules for Weak Classical Propositional Logic

To begin with, we will introduce some terminologies and natural de-
duction rules. Our language has constants and quantifiers, ∧, ∨,→,
⊥, ¬, ∀, and ∃ for conjunction, disjunction, implication, absurdity,
negation, universal quantification, and existential quantification re-
spectively. Let x, y be free variables and s, t be closed terms. We
use ϕ , ψ , and σ for arbitrary formula. For any formula ϕ , ϕ is an
atomic formula if ϕ is ⊥ or a formula having no logical operators;
otherwise, it is a complex formula. Each formula consists of its sub-
formulas. The notion of subformula is defined inductively by (1) ϕ

is a subformula of ϕ , (2) if ψ ◦σ is a subformula of ϕ then so are ψ ,
σ where ◦ is ∨ or ∧ or →, (3) if ◦ψ is a subformula of ϕ , then so
is ψ[x/t] where ◦ is ∀ or ∃ or ¬.3 Let D be a derivation of a given
natural deduction system, used in the same manner as ‘deduction’ in
Prawitz (1965). Following Prawitz, we shall use the following con-
ventions: if a derivation D ends with a formula ϕ , we write as shown
on the left below and ϕ is called an ‘end-formula.’ If it depends on a
formula ψ , we write as shown on the right below.

D

ϕ

ψ

D

ϕ .

Then, we have the natural deduction system SC for weak classical
propositional logic which has rules only for ∧,→, and classical re-
ductio styled by Prawitz (1965). In SC, ϕ ∨ψ can be taken to be the
formula ¬ϕ → ψ and ∨ is not a primitive logical operator.

3ψ[x/t] means the substitution of x for t in ψ . Moreover, ◦ can be

A

and

E

.

A

and

E

will be introduced in Section 4.
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D1

ϕ1

D2

ϕ2 ∧I
ϕ1∧ϕ2

ϕ1∧ϕ2 ∧E(i=1,2)
ϕi

[ϕ]1

D1

ψ
→ I,1

ϕ → ψ

ϕ → ψ

D2

ϕ
→ E

ψ

[¬ϕ]1

D

⊥
⊥C,1

ϕ

The negation of ϕ , i.e. ¬ϕ , is defined by ϕ → ⊥. We call the for-
mulas directly above the line in each rule, ‘premise,’ and the formula
directly below the line, ‘conclusion.’ Assumptions which can be dis-
charged are in the square brackets, e.g. [ϕ]. The open assumptions of
a derivation are the assumptions on which the end-formula depends.
A derivation is called closed if it contains no open assumptions, oth-
erwise it is called open. A major premise of the elimination rule for a
constant is the premise containing the constant in the elimination rule
and all other premises are minor premises. The maximum formula is
the conclusion of an introduction rule or of⊥C−rule at the same time
the major premise of an elimination rule. A cut in a derivation is a
sequence of two rules, such that the first one is an introduction rule
(or ⊥C−rule) ending with the maximum formula of the second one,
which is an elimination rule. Prawitz (1965, pp. 36-38) introduces
reduction procedures to remove the cut. We now have Prawitz’s re-
duction procedures for ⊥C−, ∧−, and→−rules.

Let us consider any two derivations D1 and D2 having the same
end-formula. We say that a derivation D′ is an immediate subderiva-
tion of D1 if D′ is an initial part of D1 ending with a premise of the
last inference step in D1. Let D1BD2 mean that D1 reduces to D2 by
applying a single reduction step to an immediate subderivation D′ of
D1. For our convenience’s sake, we will introduce standard reduction
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procedures B∧ and B→ for ∧ and→ respectively.

D1

ϕ1

D2

ϕ2 ∧I
ϕ1∧ϕ2 ∧E(i=1,2)

ϕi B∧

Di

ϕi

[ϕ]1

D1

ψ
→ I,1

ϕ → ψ

D2

ϕ
→ E

ψ B→

D2

ϕ

D1

ψ

Moreover, Prawitz (1965, p. 40) introduces auxiliary reduction pro-
cedures for derivations using⊥C−rule with conjunction and implica-
tion in its conclusion. When the maximum formula ϕ∧ψ (or ϕ→ψ)
is derived by ⊥C−rule from the derivation D of ⊥ from the assump-
tion [¬(ϕ ∧ψ)] (or [¬(ϕ → ψ)]), it is reduced by the following re-
duction procedure D⊥C(∧) (or D⊥C(→)

) as below.

[¬ϕ]2
[ϕ ∧ψ]1

∧E
ϕ
→ E

⊥
→ I,1¬(ϕ ∧ψ)

D

⊥
⊥C,2

ϕ

[¬ψ]3
[ϕ ∧ψ]4

∧E
ψ
→ E

⊥
→ I,4¬(ϕ ∧ψ)

D

⊥
⊥C,3

ψ
∧I

ϕ ∧ψ

[¬ψ]3
[ϕ → ψ]1 [ϕ]2

→ E
ψ
→ E

⊥
→ I,1¬(ϕ → ψ)

D

⊥
⊥C,3

ψ
→ I,2

ϕ → ψ

The main role of these standard reduction procedures is to elimi-
nate cuts. When the derivation has no cut (or maximum formula),
we say that it is in normal form. Let R be a set of reduction proce-

dures. A reduction procedure

ϕ1, ...,ϕn

D

ψ B

ϕ1, ...,ϕn

D′

ψ in R is closure under

substitution iff, for any derivation
D1

ϕ1 , ...,

Dn

ϕn , a reduction procedure
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D1

ϕ1 , ...,

Dn

ϕn

D

ψ B

D1

ϕ1 , ...,

Dn

ϕn

D′

ψ is in R as well. Every reduction procedure in R
is to be closed under substitution of derivations for open assump-
tions, and ‘normal derivation’ and its related notions are defined in
the following ways4

Definition 2.1. A sequence <D1, ...,Di,Di+1, ... > of derivations is
a reduction sequence relative to R iff DiBDi+1 relative to R where
1 6 i for any natural number i. A derivation D1 is reducible to Di

(D1 � Di) relative to R iff there is a sequence < D1,D2, ...,Di >

relative to R where for each j < i, DjBDj+1; D1 is irreducible rela-
tive to R iff there is no derivation D′ to which D1BD′ relative to R
except D1 itself. A derivation D is normal (or in normal form) rel-
ative to R iff D is irreducible relative to R, i.e. D has no maximum
formula.

Let RC be a set of reduction procedures having B→, B∧, D⊥C(→)
,

and D⊥C(∧) . Prawitz (1965, Ch. 3) first showed that every conclusion
of ⊥C−rule can be transformed into an atomic formula, and then
he proved the weak normalization theorem that, for every derivation
D in SC, there is a normal derivation D′ in SC such that D � D′

relative to RC.5 His weak normalization theorem has direct conse-
quences, such as the inversion corollary and the consistency of SC.
The inversion corollary is the result that every closed derivation in

4In Definition 2.1, for any term x and y, let x 6 y mean that x is less than or equal
to y. For our convenience’s sake, we drop the ‘relative to R in the suggested notions
if there is no misunderstanding.

5More precisely, Prawitz (1965, Ch.3) proved the weak normalization theorem
for SC with ∀−rules. However, in this section we only consider a system SC for
weak classical propositional logic.
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SC can be reduced to one using an introduction rule in the last step,
as a closed normal derivation is of exactly that form. No introduction
rule derives ⊥. The consistency of SC is readily proved by the inver-
sion corollary. These results were not satisfactory because they were
proved in SC for weak classical logic. Although Stålmarck (1991)
and Andou (1995) proved the normalization theorem for full first or-
dwer classical logic, since their reductions transform the maximum
formula ending with ⊥C−rule into a consequence of the maximum
formula, it is unclear whether their results directly imply the inver-
sion corollary and the consistency of their systems. In other words,
their reductions transform a maximum formula derived by ⊥C−rule
into a conclusion of the elimination rule of the maximum formula.
The conclusion of the elimination rule is not always a subformula of
the maximum formula. When it is assured that the conclusion is a
subformula of the maximum formula, it is easily proved that every
conclusion of ⊥C−rule can be reduced to an atomic formula. Then,
it should be established that ⊥C−rule does not have ⊥ as its con-
clusion in the reduced derivation. They did not prove the inversion
corollary and the consistency of the full first-order classical logic,
which requires further work.

Instead of proving the inversion corollary and the consistency
from Stålmarck (1991) and Andou (1995), we introduce an alterna-
tive system for classical propositional system with disjunctive syllo-
gism. Then, unlike Prawitz’s weak classical logic, the system has a
logical operator for disjunction. We can not only prove the normal-
ization theorem for the system but also its direct consequences, i.e.
the inversion and the consistency of the system.
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2.2 Rules for Classical Propositional Logic with Disjunctive
Syllogism

Prawitz’s proof of the normalization theorem for weak classical propo-
sitional logic SC uses auxiliary reduction procedures D⊥C(∧) and D⊥C(→)

which apply derivations having a maximum formula derived by ⊥C-
rule. When the conclusion of ⊥C−rule is a maximum formula of the
form ϕ ∧ψ (or ϕ → ψ), the reduction procedure D⊥C(∧) (or D⊥C(→)

)
makes it into a derivation of a subformula of ϕ ∧ψ (or ϕ → ψ). His
weak classical logic neither employed the rules for disjunction (and
existential quantification) nor regarded them as primitive logical op-
erators. He might have difficulty reducing the disjunctive formula to
its subformula. The following is the reduction procedure for ∨.

D1

ϕi ∨Ii=1,2
ϕ1∨ϕ2

[ϕ1]
1

D2

ψ

[ϕ2]
2

D3

ψ
∨E,1,2

ψ B∨

D1

ϕi

Di+1

ψ

Unlike the reduction procedures for ∧ and→, the conclusion of the
derivation reduced by B∨ is not always a subformula of ϕ1 ∨ ϕ2.
Conclusions of ∧E− and → E−rules are subformulas of their ma-
jor premises whereas the conclusion of ∨E−rule is the consequence
of its major premise which is not always a subformula of its major
premise. When ϕ1∨ϕ2 is a maximum formula derived by ⊥C−rule,
these characteristics of ∨E−rule make it difficult to present a reduc-
tion procedure in which the conclusion of ⊥C−rule is a subformula
of ϕ1∨ϕ2.

Stålmarck (1991) and Andou (1995) proposed an alternative re-
duction procedure applying to derivations of a disjunctive formula
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derived by ⊥C−rule.

[¬(ϕ1∨ϕ2)]
1

D1

⊥
⊥C,1

ϕ1∨ϕ2

[ϕ1]
1

D2

ψ

[ϕ2]
2

D3

ψ
∨E,1,2

ψ B∨

[¬ψ]4
[ϕ1∨ϕ2]

1

[ϕ1]
2

D2

ψ

[ϕ2]
3

D3

ψ
∨E,2,3

ψ
→ E

⊥
→ I,1¬(ϕ1∨ϕ2)

D1

⊥
⊥C,4

ψ

Their reduction procedure transforms the derivation of the maximum
formula ϕ1∨ϕ2 into the derivation of the consequence ψ of ϕ1∨ϕ2.
If Prawitz wanted to have a process reducing the maximum formula
to its subformula, Stålmark and Andou’s proposal is unsatisfactory.
There is no guarantee that ψ is a subformula of ϕ1∨ϕ2.

Following Gentzen (1935, 1936, 1938), Prawitz (1965, 1971, 2015)
proved the normalization theorem for weak classical logic and its ex-
tension to first-order arithmetic. The main purpose of the normaliza-
tion theorem is to prove the consistency of the intended systems. In
order to have the consistency proof, the normalization theorem must
imply the inversion corollary that, for every closed derivation D in
a system S, there is a derivation D′ in S such that the last step of D
is an introduction or ⊥C−rule having an atomic formula as its con-
clusion. Plus, it should be established that there is no closed normal
derivation D of⊥ derived by⊥C−rule in the system. The conclusion
of→ E− and ∧E−rules are subformulas of their maximum formula,
and there is no I-rule deriving ⊥. It is natural to think that there is no
closed normal derivation of ⊥ in S.

On the contrary, Stålmark and Andou’s reduction transforms the
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maximum formula derived by ⊥C−rule into the consequence of the
maximum formula. The problem is that the atomic formula ⊥ can be
a conclusion of ∨E−rule. Although, in their systems, every conclu-
sion of ⊥C−rule can be converted into an atomic formula, it should
be further proved that such conclusion is not⊥. Prawitz’s style reduc-
tion procedures for ⊥C−rule do not raise the problem because they
concern elimination rules whose conclusions are subformulas of their
major premises. If there are rules for disjunction whose elimination
rules derive only subformulas of their major premise, Prawitz’s style
reductions for ⊥C−rule can be applied, and it will be directly proved
the inversion corollary and the consistency from the normalization
theorem.

For the alternative proof of the normalization theorem for clas-
sical propositional logic regarding disjunction as a primitive logical
operator, we introduce rules for disjunctive syllogism as the rules for
disjunction, Y, and the reduction procedures for Y.

[¬ϕ1]
1

D1

ϕ2

[¬ϕ2]
2

D2

ϕ1
YI,1,2

ϕ1 Yϕ2

ϕ1 Yϕ2

D3

¬ϕ1
YE1

ϕ2

ϕ1 Yϕ2

D4

¬ϕ2
YE2

ϕ1

[¬ϕ1]
1

D1

ϕ2

[¬ϕ2]
2

D2

ϕ1
YI,1,2

ϕ1 Yϕ2

D3

¬ϕ1
YE1

ϕ2 BY1

D3

¬ϕ1

D1

ϕ2

[¬ϕ1]
1

D1

ϕ2

[¬ϕ2]
2

D2

ϕ1
YI,1,2

ϕ1 Yϕ2

D4

¬ϕ2
YE2

ϕ1 BY2

D4

¬ϕ2

D2

ϕ1

YE−rules have the form of disjunctive syllogism. Disjunctive syl-
logism is one of the main inference rules for disjunction. We may
accept Y−rules as the alternative rules for disjunction. Then, Y is re-
garded as a principal operator for disjunction. As the conclusion of
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YE−rule is a subformula of its major premise, we have a Prawitz’s
style auxiliary reduction procedure D⊥C(Y)

for ⊥C−rule whose con-
clusion is ϕ1 Yϕ2.

[¬(ϕ1 Yϕ2)]
1

D

⊥
⊥C,1

ϕ1 Yϕ2 D⊥C(Y)

[¬ϕ2]
3

[ϕ1 Yϕ2]
1 [¬ϕ1]

2

YE1
ϕ2 → E

⊥
→ I,1¬(ϕ1 Yϕ2)

D

⊥
⊥C,3

ϕ2

[¬ϕ1]
5

[ϕ1 Yϕ2]
4 [¬ϕ2]

6

YE2
ϕ1 → E

⊥
→ I,4¬(ϕ1 Yϕ2)

D

⊥
⊥C,5

ϕ1
YI,2,6

ϕ1 Yϕ2

Let SCD be an extension of SC by adding Y−rules, and let RCD

be an extension of RC by adding BY and D⊥C(Y)
.6 Then, we call SCD

the natural deduction system for classical propositional logic with
disjunctive syllogism. In the next section, we will prove the normal-
ization theorem and the consistency of SCD.

3 Proofs of the Normalization Theorem and the
Consistency of SCD

In this section, we shall prove the (weak) normalization theorem for
SCD in Section 3.1 and the consistency of SCD in Section 3.2.

Theorem 3.1 (Normalization for SCD). For every closed derivation
D in SCD, there is a closed normal derivation D′ in SCD such that
D�D′ relative to RCD.

Corollary 3.2 (Consistency of SCD). There is no closed normal deriva-
tion of ⊥ in SCD.

6A system S′ is an extension of S if S′ is S itself or results from S by adding
further rules. A set R′ is an extension of R if R′ results from R by adding reduction
procedures which are closed under substitution in R′.
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3.1 The Proof of the Normalization Theorem for SCD.

For the proof of theorem 3.1, we first introduce some primary defini-
tions, and then we prove the result.

Definition 3.3 (The Degree of a Formula). The degree d(ϕ) of a
formula ϕ is defined by d(⊥) = 0, d(α) for an atomic formula α ,
d(ϕ ◦ψ)= d(ϕ)+d(ψ)+1 for binary operators ◦, d(◦ϕ)= d(ϕ)+1
for unary operator ◦. The degree d(D) of a derivation D is defined
by max{d(ϕ) | ϕ is a maximum formula in D}.

d(ϕ) is the number of operators in ϕ . d(D) is the maximal degree of
maximum formulas in D. d(D) = 0 if there is no maximum formula
in D. We say that ϕ is a maximal maximum formula in D if d(ϕ) =
d(D).

Definition 3.4 (The Cut Degree of a Derivation). Let MD be a set
of maximal maximum formulas in D, i.e. MD = {ϕ|ϕ is a maximal
maximum formula in D and d(ϕ) = d(D)}. Then, the cut degree
cd(D) of D is defined by an ordered pair (d(D), |MD|).7

cd(D) is the maximal degree of a maximum formula with the num-
ber of such formulas. If D has no maximum formulas, put cd(D) =

(0,0). We will systematically lower the cut degree of a derivation
until all maximum formulas have been eliminated. The ordering on
cd(D) is lexicographic: (d(D), |MD|)< (d(D′), |MD′ |)=de f (d(D)<

d(D′))∨ (d(D) = d(D′)∧|MD|< |MD′ |).

Lemma 3.5. Let Φ be any formula in SCD. Let D be any closed
derivation of Φ in SCD where Φ is the conclusion of ⊥C−rule. Sup-
pose that d(D) = d(Φ)> 0 and all other conclusions of ⊥C−rule in

7For any set M of formulas, |M| means the cardinality of M, i.e. the number of
formulas in M.
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D have degree less than d(Φ). Then, there is a closed derivation D′

of Φ in SCD such that D�D′ relative to RCD and d(Φ) = 0.

Proof. Let Σ be a subderivation of D which has the form

[¬Φ]1

Σ

⊥
⊥C,1

Φ

Then, Φ has one of the forms ϕ ∧ψ,ϕ → ψ,¬ϕ , and ϕ Yψ . The
application of reduction procedures in RCD reduces the degree of Φ.
Hence, by successively repeating the application of reduction proce-
dures, we finally get a derivation D′ of Φ in which d(Φ) = 0.

Lemma 3.6. Let Φ be any formula in SCD. Let D be any closed
derivation of SCD having a maximal maximum formula Φ in the last
inference rule. Suppose that d(D) = d(Φ) = n and all other maxi-
mum formulas in D have degree less than n. Then, there is a deriva-
tion D′ in SCD such that D�D′ relative to RCD and d(D′)< n.

Proof. We consider all possible maximum formulas in the last in-
ference rule and check the degrees of the derivations after the appli-
cations of reduction procedures. Since D is not normal, there is no
case that d(D) = 0. Also, by Lemma 3.5, every maximum formula
derived by ⊥C−rule is convertible into an atomic formula.

If Φ has the form of ϕ → ψ , D has the form below left and it
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reduces to the derivation D′ below right by B→.

[ϕ]1

D1

ψ
→ I,1

ϕ → ψ

D2

ϕ
→ E

ψ B→

D2

ϕ

D1

ψ

Since d(D1) and d(D2) are less than n, d(D′) < n. The case that Φ

has the form of ¬ϕ is similar to the case of ϕ→ψ . It is easy to prove
the case that Φ has the form of ϕ ∧ψ .

If Φ has the form of ϕ Yψ , D has the form below left and it
reduces to the derivation D′ below right by BY1 .

[¬ϕ1]
1

D1

ϕ2

[¬ϕ2]
2

D2

ϕ1
YI,1,2

ϕ1 Yϕ2

D3

¬ϕ1
YE1

ϕ2 BY1

D3

¬ϕ1

D1

ϕ2

If d(¬ϕ1)< D(ϕ1Yϕ2), then d(D′)< d(D). If d(¬ϕ1) = d(ϕ1Yϕ2)

and ¬ϕ1 in D′ is not a maximum formula, then d(D′) < d(D). If
d(¬ϕ1) = d(ϕ1 Yϕ2) and ¬ϕ1 in D′ is a maximum formula, then D′

has the form left below. We apply B→ to D′ and have the derivation
D′′ below right.

[ϕ1]
i

...
⊥
→ I,i¬ϕ1

...
ϕ1 → E

⊥
...

ϕ2 B→

...
ϕ1

...
ϕ2
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Then, d(D′′) < d(D). The case of BY2 is similar. By all cases, the
proof is done.

Lemma 3.7. For any closed derivation D in SCD, if (0,0)< cd(D),
then there is a closed derivation D′ such that D�D′ relative to RCD

and cd(D′)< cd(D).

Proof. Suppose that (0,0) < cd(D). Then, there is a maximum for-
mula in D. Choose a maximum formula Φ that d(D) = d(Φ) and
all other maximum formulas in D have degree less than d(Φ). By
Lemma 3.5 and 3.6, there is a closed derivation D′ in SCD such that
D � D′ relative to RCD and d(D′) < d(D). If D has the only one
maximum formula, d(D′)< d(D) or |MD′ |= 0. In both cases, cd(D)

gets smaller, i.e. cd(D′)< cd(D).

Now, we prove the normalization theorem for SCD, i.e. Theorem
3.1. By Lemma 3.7, for any derivation D in SCD, cd(D) can be low-
ered to (0.0) in a finite number of steps. Therefore, all derivations in
SCD have their normal derivation.

3.2 The Consistency of SCD.

In order to prove the consistency of SCD as the corollary of Theorem
3.1, we need to prove the inversion corollary (Corollary 3.10). For
our purpose of proving the inversion corollary, we introduce some
definitions. We say that a top-formula in a derivation D is a formula
occurrence that does not stand immediately below any formula oc-
currence in D. An end-formula in D is the formula occurrence in
D that does not stand immediately above any formula occurrence
in D. It is natural to think that, for any closed derivation D in SCD,
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a top-formula in D is an assumption. Then, we have the following
definitions.

Definition 3.8. A thread is a sequence of formulas ϕ0, ...,ϕn in a
derivation D such that ϕ0 is a top-formula in D, ϕi is a premise im-
mediately above ϕi+1 where 0 6 i 6 n−1, and ϕn is the end-formula
of D. A branch is an initial part of a thread in a derivation D which
stops at the first minor premise or at the end-formula of D. A main
branch is a branch which stops at the end-formula of D and contains
no minor premise.

A branch can only pass through introduction rules and through
major premises of elimination rules. We prove two lemmas for the
inversion corollary and the consistency of SCD.

Lemma 3.9. Let D be any closed normal derivation in SCD, there is
no application of I−rule or⊥C−rule which precedes the application
of E−rule in a branch of D.

Proof. Suppose an application of I−rule, in short, an I−application,
precedes an application of E−rule, in short, an E−application, in a
branch of D. Then, there is a last I−application that precedes the first
E−application. However, since D is normal, it is clearly impossible.

Corollary 3.10 (Inversion Corollary). For every closed derivation
D in SCD, there is a derivation D′ in SCD such that D �D′ relative
to RCD and the last step of D′ is an I−rule or ⊥C−rule having an
atomic formula as its conclusion.

Proof. By Theorem 3.1, every closed derivation D in SCD has its
normal derivation D′. Suppose that the last step of D′ is an E−rule.



The Normalization Theorem for Classical Natural Deduction 161

Then, by Lemma 3.9, no I−rule (or ⊥C-rule) preceds the E−rule in
D′. Since a top-formula in D′ is an assumption discharged by I−rule,
D′ is to be an open derivation, which is contrary to the fact that D′ is
a closed normal derivation.

By the inversion corollary, every closed derivation in SCD can be
transformed into one using I−rule or ⊥C−rule in the last step, as
a closed normal derivation has the same form. When the last step of
the derivation is a ⊥C−rule, then we need an additional lemma.

Lemma 3.11. There is no closed normal derivation of ⊥ derived by
⊥C−rule in SCD.

Proof. Suppose the opposite. Then, there should be a normal deriva-
tion D of⊥ from the assumption [¬⊥] which does not apply⊥C−rule.
Since ¬⊥ is a tautology, D is to be a closed normal derivation of ⊥.
By the inversion corollary, the last step of D is an I−rule. However,
no I−rule derives ⊥. Hence, there is no such D.

By Lemma 3.11, ⊥C−rule in SCD does not derive ⊥. Also, if the last
step is an I−rule, since no I−rule derive⊥, there is no closed normal
derivation of⊥. Therefore, the consistency of SCD, i.e. Corollary 3.2,
is proved.

In the next section, we extend our results to the first-order classi-
cal logic with disjunctive syllogism.

4 An Extension to the First-Order Classical Logic with
Disjunctive Syllogism

When Prawitz (1965) proved the normalization theorem for weak
classical logic, his system does not contain rules for ∨ and ∃. Like
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∨E−rule, the conclusion of ∃E−rule is not always a subformula of
its major premise. In order to have Prawitz-style reduction procedure
for ⊥C−rule concerning universal and existential quantifications, we
define existential quantification in terms of Y. Also, the universal
quantification can be defined in terms of ∧.

It is often said that existential quantification can be defined by fi-
nite disjunctions and universal quantification can be defined by finite
conjunctions. Likewise, we define

E

xϕx in terms of Y and

A

xϕx in
terms of ∧. At first, we introduce abbreviations of finite conjunctions
and disjunctions as below.

∧
i60

ϕi =
de f

ϕ0, and
∧

i6n+1

ϕi =
de f

∧
i6n

ϕi∧ϕn+1 (1)

∨
i60

ϕi =
de f

ϕ0, and
∨

i6n+1

ϕi =
de f

∨
i6n

ϕi Yϕn+1 (2)

Now, for a unary predicate ϕ and an n−ary predicate ψ , we define

A

xϕx and

E

xϕx in terms of ∧ and Y respectively.

A

xϕx =de f
∧
i6l

ϕ(ti), and

A

x1

A

x2...

A

xnψ(x1, ...,xn) =
de f

∧
i6l

A

x2...

A

xnψ(ti,x2, ...,xn) (3)

E

xϕx =de f
∨
i6l

ϕ(ti), and

E

x1

E

x2...

E

xnψ(x1, ...,xn) =
de f

∨
i6l

E

x2...

E

xnψ(ti,x2, ...,xn) (4)

Then,

E

I− and

E

E−rules, and reduction procedures for

E

are stated
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as follows.

[¬
∨

ϕ(tn−1)]
1

D1

ϕ(tn)

[¬ϕ(tn)]
2

D2∨
ϕ(tn−1) E

I,1,2E

xϕx

E

xϕx

D3

¬ϕ(tn) E

E1∨
ϕ(tn−1)

E

xϕx

D4

¬
∨

ϕ(tn−1) E

E2
ϕ(tn)

[¬
∨

ϕ(tn−1)]
1

D1

ϕ(tn)

[¬ϕ(tn)]
2

D2∨
ϕ(tn−1) E

I,1,2E

xϕx

D3

¬ϕ(tn) E

E1∨
ϕ(tn−1) B E

E1

D3

¬ϕ(tn)
D2∨

ϕ(tn−1)

[¬
∨

ϕ(tn−1)]
1

D1

ϕ(tn)

[¬ϕ(tn)]
2

D2∨
ϕ(tn−1) E

I,1,2E

xϕx

D4

¬
∨

ϕ(tn−1) E
E2

ϕ(tn) B E
E2

D4

¬
∨

ϕ(tn−1)

D1

ϕ(tn)

Moreover, we can find an auxiliary reduction procedure for⊥C−rule
concerning

E

.

[¬ E

xϕx]1

D

⊥
⊥C,1E

xϕx D⊥C(

E

)

[¬ϕtn]
3

[

E

ϕx]1 [¬
∨

ϕtn−1]
2

E

E2
ϕtn → E

⊥
→ I,1¬ E

xϕx
D

⊥
⊥C,3

ϕtn

[¬
∨

ϕtn−1]
5

[

E

ϕx]4 [¬ϕtn]
6

E

E1∨
ϕtn−1

→ E
⊥

→ I,4¬ E

xϕx
D

⊥
⊥C,5∨

ϕtn−1 E

I,2,6E

xϕx

Rules for

A

and reduction procedures B Aand D⊥C(

A

)
for

A

are given
in a similar way to the standard rules and reductions for ∀ suggested
by Prawitz (1965).

Let SPCD be a natural deduction system which is an extension of
SCD by adding rules for

E

and

A

. Let RPCD be a set of reductions
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that is an extension of RCD by adding B E, B A, D⊥C(

E

)
, and D⊥C(

A

)
.

We say that a system S′ is a conservative extension of S if every
formula derivable in S′ is already derivable in S. Then, the following
theorems, and corollary are established.

Theorem 4.1. SPCD is a conservative extension of SCD.

Theorem 4.2 (Normalization for SPCD). For every closed derivation
D in SPCD, there is a closed normal derivation D′ in SPCD such that
D�D′ relative to RPCD.

Corollary 4.3 (Consistency of SPCD). There is no closed normal
derivation of ⊥ in SPCD.

SPCD is the system for first-order classical logic with disjunctive syl-
logism. Since SPCD is a conservative extension of SCD, by Theorem
3.1 and Corollary 3.2, Theorem 4.2 and Corollary 4.3 can be easily
proved.

5 Conclusion

The systems SPCD for the first-order classical logic with disjunctive
syllogism has whole logical operators ∧,Y,→,¬, A

, and

E

. Also, if a
vacuous discharge is permissible for YI− and ⊥C−rule, the standard
∨I− and ∨E−rules are definable in terms of Y−rules.

D

ϕ
∨I

ϕ ∨ψ is de f ined by

[¬ϕ]1
D

ϕ
→ E

⊥
⊥C, /0

ψ

D

ϕ
YI,1, /0

ϕ Yψ
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ϕ ∨ψ

[ϕ]1

D2

σ

[ψ]2

D3

σ
∨E,1,2

σ is de f ined by

[¬σ ]3

[ψ]4

D3

σ
→ I,4

ψ → σ

ϕ Yψ

[¬σ ]3

[ϕ]1

D2

σ
I,1

ϕ → σ [ϕ]2

→ E
σ
¬I,2⊥

¬I,2¬ϕ
YE1

ψ
→ E

σ
¬E

⊥
⊥C,3

σ

One might be tempted to reject YI−rule on the ground that it does
not satisfy the complexity condition proposed by Michael Dummett
(1991, p. 258).

... the minimal demand we should make on an introduc-
tion rule intended to be self-justifying is that its form be
such as to guarantee that, in any application of it, the
conclusion will be of higher logical complexity that any
of the [premises] and than any discharged hypothesis

The complexity condition depends on Dummett’s philosophical ground
that I−rule should be self-justifying and exhaustively determine the
meaning of a principal logical operator. Peter Milne (1994) argues
that it is not clear that there is such proof-theoretic ground. So to
speak, some are not obliged to confer meaning on the formula intro-
duced. He had claimed that it is impossible for→ I−rule (or¬I−rule)
to determine the meaning of ¬ without circularity. Moreover, Milne
(2002) thought that the complexity condition is, in his own phrase,
“exorbitant.” Whether I−rule should satisfy the complexity condi-
tion is still an open question.

In the present paper, we have proved the normalization and the
consistency of SPCD which is the system for the first-order classi-
cal logic with disjunctive syllogism. Unlike Prawitz’s, our proofs
deal with whole logical operators. That is, disjunction and existential
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quantification are not considered to be logical operators in Prawitz’s
proof of normalization for weak classical logic. Whereas Stålmarck
(1991) and Andou (1995) did not prove the inversion corollary and
the consistency of their system, we have proved both results by us-
ing Prawitz’s style reduction procedures with Y−rules. Further re-
searches are required if the results are extended to the first-order
arithmetic.
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선언적 삼단논법을 지닌 1차 고전 자연연역 체계의   
정형화 정리

최 승 락

이 글에서 우리는 선언적 삼단논법을 지닌 1차 고전 자연연역 

체계의 정형화 정리와 일관성을 증명할 것이다. 먼저, 우리는 선언

적 삼단논법에 관한 규칙을 선언에 관한 규칙으로 고려하여 연언, 
선언, 조건언, 부정언을 지니는 고전 명제논리 체계 SCD를 제시할 

것이다.  
SCD의 정형화 정리와 일관성 정리 증명을 제시하고 우리는 SCD

를 1차 고전논리에 관한 자연연역 체계 SPCD로 확장할 것이다. 
SPCD는 SCD의 보존적 확장임이 보여질 것이며 SPCD의 정형화 정리

와 일관성도 증명될 것이다. 

주요어: 고전논리, 일관성, 선언적 삼단논법, 전도 따름정리, 정형

화 정리


