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I nspired by impossibility theorems of social choice theory, many democratic theorists have argued that
aggregative forms of democracy cannot lend full democratic justification for the collective decisions
reached. Hence, democratic theorists have turned their attention to deliberative democracy, according

to which “outcomes are democratically legitimate if and only if they could be the object of a free and
reasoned agreement among equals” (Cohen 1997a, 73). However, relatively little work has been done to
offer a formal theory ofdemocratic deliberation.This article helpsfill that gapbyofferinga formal theory of
three different modes of democratic deliberation: myopic discussion, constructive discussion, and debate.
We show that myopic discussion suffers from indeterminacy of long run outcomes, while constructive
discussion and debate are conclusive. Finally, unlike the other two modes of deliberation, debate is path
independent and converges to a unique compromise position, irrespective of the initial status quo.

INTRODUCTION: THE NEED FOR A FORMAL
THEORY OF DEMOCRATIC DELIBERATION

Democracy is an institutional arrangement for
making binding collective decisions; specifi-
cally, it is concerned with making binding col-

lective decisions among a wide range of people residing
in a political body and who are all regarded as free and
equal. This contrasts with other types of political sys-
tems—such as dictatorship or aristocracy—in which
only a few enjoy suchmoral status. Onemay not always
agree with the specific collective decision reached
through a democratic process, but the implementa-
tion of a collective decision, once reached, involves
the use of state force and coercion. Hence, to respect
the moral status of free and equal citizens (including
those who disagree with the specific policy), a col-
lective decision reached in a democracy must be
justified. But, how?

Many scholars have pointed out that the mere fact
that a collective decision has been reached through
a particular voting procedure, say, a majority vote, is in
itself insufficient to lend full justification to the collective
decision at hand. It has been known since the work of
Marquis de Condorcet in the eighteenth century that
majority voting can produce voting cycles, even when
each voter has a transitive ranking of alternatives. The
existence of voting cycles causes problems for demo-
cratic legitimacy, as they create thepossibility that given

any choice by society, there is amajority of citizens who
prefer a different social alternative to the one chosen. In
such situations, there is no Condorcet winner—an al-
ternative that beats all others in pairwise majority
votes—and thus no social alternative that can be un-
ambiguously regarded as the “best” social choice on
majoritarian grounds.

Kenneth Arrow ([1951] 1963) extended Condorcet’s
insight and went further by showing that every voting
mechanism will fail to satisfy at least one among
a number of reasonable and seemingly innocuous
conditions of fairness and rationality.1 Kenneth May
(1952) has shown that the only voting procedure that
treats both the voters and the social alternatives im-
partially and responds positively to changes in voter
preferences is majority rule. However, Charles Plott
(1967) has shown thatwhenever there aremultiple issue
dimensions, the majority core (defined as the set of
social alternatives that cannot be beaten by a pairwise
majority vote) is generically empty. Richard McKelvey
(1976, 1979) and Norman Schofield (1978) have shown
that in this situation, the top cycle typically engulfs the
entire space of alternatives, so that a suitable choice of
voting agenda can lead society to eventually adopt any
given social alternative starting from any given status
quo by a sequence of pairwise votes. The implication is
that thismakes it possible for those who have the power
to control the agenda to obtain any desired outcome by
strategically manipulating the agenda. A related idea is
that voters themselves can manipulate choices by
misrepresenting their preferences; Allan Gibbard
(1973) and Mark Satterthwaite (1975) have shown that
the only single-valued social choice functions that are
free of strategic manipulation are dictatorial, and John
Duggan and Schwartz (2000) have shown that the im-
possibility result extends even when social ties are
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1 When there are at least three alternatives and the domain of pref-
erences is unrestricted, the following axioms are inconsistent: Pareto
Efficiency, Independence of Irrelevant Alternatives, Non-
dictatorship, and Social Rationality.
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possible. This is just a representative handful of results
published in the field of social choice theory.As one can
see, the field of social choice theory is replete with
impossibility theorems.

William Riker has argued that these negative results
of social choice theory demonstrate that electoral
outcomes are simply “meaningless” and can never be
regarded as the “fair and true amalgamations of the
voters’ judgments” (Riker 1982, 238). As a conse-
quence, elections can never truly justify a given col-
lective decision, and the only meaningful role elections
may perform is to periodically replace incompetent and
disliked political officials to prevent society from falling
into tyranny2 (Riker 1982, 239–46).

Those who wished to preserve the notions of dem-
ocratic justification and legitimacy through aggregative
voting mechanisms simply denied the practical rele-
vance of social choice theory (Mackie 2003). Others
who thought aggregative voting mechanisms fall short
of fully justifying collective decisions, but who, none-
theless, wished to preserve a notion of democratic
justification or legitimacy in democratic theory, turned
their theoretical attention to deliberative democracy.
Deliberative democratic theory is founded on the basic
principle that “outcomes are democratically legitimate
if and only if they could be the object of a free and
reasoned agreement among equals” (Cohen 1997a, 73).
According to deliberative democratic theorists, the fact
that a given political outcome has survived the test of
reasoned public deliberation serves as the basis for its
very justification and legitimacy.

Then, how exactly does this process of reasoned
public deliberation—that is, the process of presenting
arguments and exchanging reasons for or against pro-
posed options—confer justification for the proposals
that survive this process?

Some scholars have argued that reasoned public
deliberation lends justification because the proposals
that are sustained and survive through the process of
deliberation are simply better in terms of its overall
quality. Simply put, outcomes of deliberative proce-
dures tend tobemore rational, better supportedbyhard
or soft evidence, and can even be closer to some ob-
jective standard of correctness or truth (Bohman and
Rehg 1997, xix). This way of explaining the value of
public deliberation and its connection to political jus-
tification presumes that there exist some procedure-
independent criteria of rightness or correctness that the
procedure of public deliberation is able to track. Many
epistemic democrats (Estlund 1997; Landemore 2013;
List and Goodin 2001; see also; Hong and Page 2004)
hold this view.

Another group of scholars have claimed that post-
deliberation outcomes are more justified than simple
non-deliberative aggregative outcomes because the
very procedure of reasoned public deliberation
embodies or manifests core values of basic human
morality and political justice, and it forces participants

to be attentive toward the common good (Christiano
1997, 252–3; Cohen 1997a, 76–7; Knight and Johnson
1997, 280; Rawls 1997, 133–4).

Finally, a number of scholars have argued that rea-
soned public deliberation may also complement (or
even nullify the need for) aggregative voting mecha-
nisms: by generating unanimous agreement (Elster
1997, 11–2; Habermas 1990); by “induc[ing] a shared
understanding regarding the dimensions of conflict”
(Knight and Johnson 1994, 282); or by inducing “single-
peaked preferences” among the voters, which prevents
majority rule from generating majority cycles (Dryzek
and List 2003; see also; List et al. 2013).

In sum, there is an abundance of work in deliberative
democratic theory that might be used to salvage dem-
ocratic justification and legitimacy from the impossi-
bility results of social choice theory. Yet, in contrast to
social choice theory, therehasbeen relatively littlework
done to construct a formal theory of democratic de-
liberation itself. As some have pointed out, unlike the
“systematic analysis of the normative and analytical
properties of votingprocedures”of social choice theory,
“[n]o comparable analysis exists for deliberative de-
mocracy” (Knight and Johnson 1997, 282). The litera-
ture is beginning to fill this gap in the theory of
deliberative democracy, as there is an increasing
number scholars who are offering formal theories of
democratic deliberation (Dietrich and List 2013; Hafer
andLanda 2007;Landa andMeirowitz 2009; Patty 2008;
Patty and Penn 2011, 2014; Perote-Pena and Piggens
2015). This article presents a formal theory of demo-
cratic deliberation that contributes to this growing line
of research in a way summarized in the next section.

OVERVIEW OF OUR THEORY

Here, we give an overview of our formal theory of
deliberation. Our focus is on the dynamics and out-
comes of three different modes of deliberation: (i)
myopic discussion, in which positions on an issue are
compared and subject to argument in a relatively free-
flowing manner; (ii) constructive discussion, in which
deliberation follows an argument-climbing dynamic,
and (iii)debatebetweenopposingparties, eachofwhom
seeks to employ rhetorical tactics to reach her favored
position. The analysis of debate layers the structure of
a non-cooperative game on top of the framework of
deliberation, and in this case, theevolutionof thedebate
doesnot arisemechanically as the resultofbehavioral or
cognitive assumptions imposed on the participants;
instead, it is derived endogenously, from the equilib-
rium incentives of the participants.

The modeling framework takes as primitive notions:
(a) a set of positions to be considered, (b) a set of
arguments that can be made for or against different
positions, and (c) an assessment of the effectiveness of
these arguments. Here, we do not consider the specific
verbal formulations that different arguments can pos-
sibly take, but rather, we will generally conceive an
argument as a case of using a particular reason to
support one position over another. The effectiveness of

2 Riker calls this conception of democracy “liberal,” as opposed to
“populist.”
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arguments is modeled by a “set-valued relation” on the
set of positions, where given any positions x and y, the
set p(x, y) consists of the set of arguments/reasons that
are effective for x against y. From fundamental
assumptions about the effectiveness of arguments, it is
deduced that each argument can be viewed as a ranking
of positions. A contribution of our approach is that it
makes explicit the order in which positions are in-
troduced and arguments are applied, or “protocol,” so
that we can impose different consistency conditions
governing deliberative dynamics. Having isolated this
aspect of deliberation, we examine the outcomes of
different dynamics and see whether they satisfy the
desiderata proposed by deliberative democratic theo-
rists.We investigate three forms of deliberation that are
distinguished by different deliberative dynamics.

First, we consider a myopic discussion, in which
positions are introduced and arguments applied
according to an exogenous protocol. An initial status
quo position is given, and this evolves in a context-free
way: if the position-argument pair given by the protocol
is such that the position is superior to the status quowith
respect to the argument, then it becomes the new status
quo. It turns out that myopic discussion is susceptible to
cycles. We show that myopic discussion can be con-
clusive (i.e., converges on a single position) only under
restrictive conditions, and that the long run outcomes of
myopic discussion can be highly indeterminate. The
result is that amyopic discussion, despitebeing a formof
democratic deliberation, fails to achieve many ideals of
deliberative democracy.

Next, we provide a model of constructive discussion,
in which positions are again considered according to an
exogenous protocol, but, unlike myopic discussions,
once a position x is justified as status quo via a particular
argument a, no other position y can be justified via the
sameargumentunless it is superior toxaccording to that
argument. This precludes the possibility of cycles that
plagued myopic discussion, and it implies that con-
structive discussions follow an “argument-climbing”
dynamic. We show that a constructive discussion must
eventually conclude with a position that is top ranked
according to some argument, lending the outcome of
a constructive discussion a strong justification according
to at least one reason or criterion. However, we also
show that these outcomes are path dependent: under
general conditions, every position that is top ranked
according to some argument can be supported as the
conclusion of a constructive discussion. The upshot is
that although constructive discussion does better than
myopic discussion (specifically, it concludes with an
unanimous agreement on a single position), it still fails
to confer full democratic justifcationor legitmacy, as the
conclusion reached through constructivediscussion is to
an extent arbitrary.

Finally, we present a model of debate, in which two
participants have diametrically opposed preferences,
and the protocol is formed endogenously as the equi-
librium path of play of a two-player, zero-sum,
extensive-form game of perfect information. We show
that there is a unique Nash equilibrium outcome of this
game, a fortiori, this is also the unique subgame perfect

equilibriumoutcome. Specifically, assume for simplicity
that the number of arguments available to the partic-
ipants is odd.Then there is auniqueposition, sayx*, that
is top ranked for some argument and such that nomore
than half of the arguments have top-ranked position
preferred tox*byparticipant 1, andnomore thanhalfof
the arguments have top-ranked positions preferred to
x* by participant 2. We show that this compromise
position is the unique equilibrium outcome of the de-
bate game and is thus the unique conclusion of any
debate, irrespective of the initial status quo. As a mode
ofdemocraticdeliberation, adebatehasmanyattractive
properties; in particular, the outcome of a debate is
unique and path independent, has strong justification
according to at least one reason or argument, and
represents fair and equal concessions on the parts of the
participants. Surprisingly, far from resulting in conflict
and extreme polarization, it is the addition of di-
ametrically opposed preferences as well as the added
strategic incentives among the participants that enable
debate to meet the many lofty ideals of deliberative
democracy.

A FORMAL MODEL OF ARGUMENTS

One important premise of deliberative democratic
theory is that it is the force of better reasons and better
arguments that determine the legitimacy of political
outcomes. “Deliberation is reasoned,” says Cohen, “in
that the parties to it are required to state their reasons
for advancing proposals, supporting them, or criticizing
them. They give reasons with the expectation that those
reasons (and not, for example, their power) will settle
the fate of their proposal” (Cohen 1997a, 74). During
democratic deliberation, “no force except that of the
better argument is exercised” (Habermas 1975, 108). In
this section, we model the most basic and important
component of a theory of democratic deliberation:
arguments (or equivalently, for us, reasons).

Let A be any nonempty, finite set, which we will in-
terpret as a set of arguments or reasons that can be
given, and let X be a set consisting of at least two
positions; in general,Xmaybe infinite, butwe assume it
is finite formany of our results.3 In what follows, wewill
use the terms “reason” and “argument” in-
terchangeably, depending on the context. A binary
relationonX is any subsetP4X3Xoforderedpairs of
elements fromX; as is customary, we write xPy instead
of (x,y)2P,meaning thatxandyare “in the relation”P.
Abinary relationPonX is asymmetric if for all positions
x, y2X, it is not the case that both xPy and yPx hold, so
that they do not bear the relation to each other; it is
transitive if for all positions x, y, z 2 X, xPy and yPz
together imply xPz; and it is total if for all distinct
positions x, y 2 X, either xPy or yPx. Following the

3 We take the set of positions as exogenously given, but a different line
of inquiry would investigate the origins of the set of positions. It is
possible that individual incentives to develop costly positions de-
termine interesting or useful properties that could be leveraged in the
analysis of deliberation.
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standard convention, we write xPyPz to denote the
conjunction xPy and yPz. A partial order is a binary
relation that is asymmetric and transitive, and a linear
order is a partial order that is total; such a relation canbe
represented by a ranking of positions, with no two
positions tied at the same level. A position x ismaximal
with respect to an asymmetric relation P if there is no
positiony such thatyPx. It iswell-knownthat ifX isfinite
andP is apartial order, then there isat least onemaximal
element of P.

A set-valued relationonX is amapping p:X3X→ 2A

that associates a setp(x, y)4Aof reasons/arguments to
each ordered pair (x, y) 2 X3 X of positions; here, we
interpret p(x, y) as the set of arguments that can be
effectivelyused to support thepositionxoverpositiony.
We can obtain any binary relation P on X as a special
case by specifying that A is a singleton set, say A5 {1},
and then defining the mapping p such that p(x, y)5 {1}
holds if xPy, and p(x, y)5 ; otherwise; thus, set-valued
relations generalize the usual concept of a binary re-
lation.Wemaintain theassumption thatp isasymmetric,
in the sense that for all positions x, y2X, we havep(x, y)
\p(y,x)5;; inwords, noargument that is effective forx
against y is effective for y against x.4 In particular, for all
positionsx2X,wehavep(x,x)5;.That is, noargument
can be used simultaneously to both support and reject
a position against itself. In this sense, our set-valued
relation p is irreflexive.

A set-valued relation p is total if for all distinct
positionsx, y2X andall arguments a2A, either a2p(x,
y) or a2 p(y, x), or equivalently, for all distinct x, y 2X,
we have p(x, y) [ p(y, x) 5 A. This means that an ar-
gument will always cut one way or the other between
two positions, and it captures the idea that arguments
can reflect fine distinctions between positions. For ex-
ample, if an argument a compares positions by some
quantitive measure, it is enough that the measure is
sufficientlyfinegrained thatno twodistinct positionsare
exactly at the same level. This condition may be con-
sidered restrictive, but this is a matter of interpretation:
instead of an argument a that is “incomplete,” in the
sense that it fails to compare two positions, we can often
substitute a more refined argument that combines
a lexicographically with other criteria that can be used
when a does not apply.5 We say p is transitive if for all
positions x, y, z 2X, we have p(x, y)\ p(y, z)4 p(x, z).
In other words, transitivity of p means that whenever
a given reason a 2 A is an effective argument for x
againstyand is alsoaneffectiveargument foryagainstz,
then the same reason a is an effective argument for x
against z as well.

Next, having introduced the concept of set-valued
relation, we establish that the properties of p can be
analyzed bymeans of a collection of binary relations on
the set of positions. For each argument a2A, define the
constituent relationPa onX as follows: xPay holds if and
only if a 2 p(x, y). Clearly, as p is asymmetric, each
relation Pa is asymmetric. Next, we state a Lemma
showing that other properties of p aremirrored in these
relations as well: p is total if and only if each Pa is total,
and p is transitive if and only if each Pa is transitive, i.e.,
a partial order. Thus, we can represent an asymmetric,
set-valued relation p by a collection {Pa|a 2 A} of
asymmetric relations. The proof of the Lemma, along
with all other formal results, is relegated to the Ap-
pendix: Technical Material.

Lemma:The set-valued relation p is total if andonly if for
all a2A,Pa is total.Moreover, p is transitive if andonly if
for all a 2 A, Pa is transitive.

Our model of arguments can be both related to and
distinguished from other notable approaches that have
been proposed in the literature. Patty and Penn (2011,
2014) take as primitives afinite setXof alternatives, and
a setp of binary relations onX, where eachP belonging
to p is a possible “principle” that judges the merits of
alternatives in X. Thus, their primitives are similar to
ours, but their focus is different: rather than in-
vestigating the implications of different deliberative
dynamics, they impose axioms on “procedures,” which
for each (X, p) pair, determine a finite sequence of
alternatives and a single principle P 2 p that is used to
justify thefinal alternative in the sequence.We return to
the work of these authors following Theorem 4, on
constructive discussion.

Dung (1995) also offers amodel of arguments, but his
terminology isdifferent thanours: his arguments areour
positions, and he begins with a binary relation on
arguments called “attacks.” Given this relation, he
proposes the concept of “preferred extension,” which
produces a set of arguments that is internally consistent
and can be defended from outside attack. In fact, his
conflict-free condition is the familiar concept of internal
stability; and then his requirement that a preferred
extension be amaximal admissible set adds aweakened
form of external stability. Thus, the preferred exten-
sions are closely related to the stable solutions (von
NeumannandMorgenstern 1944): every stable solution
is a preferred extension, but the latter exist even when
the former do not.6 Compared to our approach, Dung’s
analysis is based on a single relation on positions, rather
than a collection of constituent relations for each ar-
gument, so (like the social choice concepts discussed at
the end of the section) he does not exploit the full
structure of a set-valued relation p; moreover, he
imposes versions of internal and external stability,
whereas we examine the implications of particular
deliberative dynamics.

4 Weviewasymmetryasunrestrictive.Consideranexample inwhichx
is a taxdecrease, andy is a tax increase.Onemight be concerned that if
a is theeconomicgrowthargument, thenonepersonmightargue thatx
is superior to y on the basis of a, while another might argue that y is
superior to x on the same grounds, apparently violating asymmetry.
Here, we would say that there are really two arguments: a9 is that
personal incomes and profits are higher, so that a9 2 p(x, y); and a0 is
that environmental and social costs are lower, so that a0 2 p(y, x).
5 In theAppendix: TechnicalMaterial, we provide an example of this
in the context of buying a home.

6 In some cases, the preferred extension is empty—this violates the
usual external stability condition, and is difficult to interpret in the
context of deliberation.
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Recall that anasymmetric relation is a linearorder if it
is total and transitive. Combining the observations of
the Lemma, we conclude that p is total and transitive if
and only if eachPa is a linear order. That is, whenever p
is total and transitive, each reason a 2A can be seen as
a standard or criterion according towhichwe are able to
totally order all the different positions in X. Next, we
illustrate this with an example:

Example (Which Car Should We Buy?): There are
three alternatives under consideration for the purchase
of a new car—a luxury sedan (L), a minivan (V), and
a sports car (S)—and three criteria are relevant—fuel
economy (f), cost (c), andperformance (p). Then the set
of positions and set of arguments are

• X 5 {L, V, S}
• A 5 {f, c, p}.

Assuming that each argument is total (so that no two
types of car are equal by any criterion) and transitive,
the Lemma implies that we can summarize the effec-
tiveness of the arguments by three linear orders, Pf, Pc,
and Pp. For concreteness, we borrow from the classical
Condorcet paradox,7 and we assume the following
rankings of cars by the three criteria:

Pf Pc Pp

L V S
V S L
S L V:

Thus, the luxury sedan ismost fuel efficient (followed
by the minivan and the sports car), the minivan is
cheapest (followed by the sports car and luxury sedan),
and the sports carhas thebestperformance (followedby
the luxury sedan andminivan). k

Let us say that a position x isunassailable if there is no
position that is superior to it by any argument, i.e., for all
y2X, p(y, x)5 ;, and we denote the set of unassailable
positions byUA. Anunassailable position, if any,would
be a very strong candidate for a collective agreement, as
we would not be able to find a different position that is
superior to it on any grounds. However, such a position
may not be available—in our previous “Which Car
Should We Buy?” example, there is no unassailable
position—and the need for deliberation may be most
pressing precisely when such a compelling position
cannot be found, i.e., when UA is empty.

To address the situation in whichUA is empty, given
two positions, x and y, we say x dominates y, and write
x�Py, if both of the followinghold:p(x, y)„ ;, and for all z
2 X, we have p(z, x) 4 p(z, y).8 That is, there is an
argument for x over y, and for all positions z, every
argument for z over x is also an argument for z over y. If

x dominates y, then this implies that there exists no
argument according to which y is better than x. In this
case, it is clear that ywould not be a plausible choice: in
order for y to be chosen, some argument would have to
eliminate x, but then itwould eliminate y aswell.We say
position x is undominated if there is no y that dominates
it, and we let UD denote the set of undominated
positions, i.e, UD ¼ x 2 X jey 2 X such that y�Px

� �
.

Note that if a position is unassailable, then it is undo-
minated. Hence, UA 4 UD. Theorem A.1, in the
Appendix: Technical Material, shows that the domi-
nance relation �P is a partial order, implying that whenX
is finite, an undominated position always exists, even if
there is no unassailable one. Furthermore, we give
a characterization of the undominated positions: a po-
sition x is undominated if for every distinct position y,
p(x, y) „ ;; and assuming p is total, the converse holds as
well.

Using the Lemma, when X is finite and p is total and
transitive, each linear order Pa has a position, denoted
xa, uniquely ranked at the top of the ordering. Such
a position is clearly undominated, and these positions
will possess the following strong stability property: for
all a 2 A and all y 2 X\{xa}, we have a 2 p(xa, y). In-
formally, for every position y distinct from xa, the po-
sition xa is superior to y by argument a. In terms of our
car example, the luxury sedan is best in terms of fuel
economy, the sports car is best in terms of performance,
and the minivan is best in terms of cost. Hence, fuel
economy is an effective argument to support the luxury
sedan against both the sports car and the minivan;
performance is an effective argument to support the
sports car against both the luxury sedan and the mini-
van; and cost is an effective argument to support the
minivan against both the luxury sedan and the sports
car.

To delvemore deeply into the structure of set-valued
relations, and to facilitate the study of myopic dis-
cussions in the next section,wedefine theprojectionofp
as the binary relation P* onX such that for all positions
x, y2X, xP*y holds if and only if p(x, y) „ ;, i.e., there is
at least one argument in favor of x over y.9 In terms of
this relation, we can equivalently define the set UA of
unassailable positions as the set of maximal elements of
P*. The transitive closure of P* is denoted P‘ and de-
fined as follows: for all positions x, y 2 X, xP‘y holds if
and only if there is a path from x to y, i.e., there exist
a natural number k and positions x1,…, xk2X such that
xP*x1P*/xk21P*xk5 y. The transitive closure relation
is transitive, as the name suggests, but it is not neces-
sarily asymmetric. We say x is maximal with respect to
P‘ if and only if for all y2X, yP‘x implies xP‘y; and we
define the top cycle, denoted TC, as the set of maximal
elements ofP‘. Informally, if a position x belongs to the
top cycle, then whenever somebody constructs a chain
of arguments that shows that some other position y is
superior to x, then it is always possible to counter this
move by supplying another chain of arguments that
shows that x is superior to y.

7 Tobeclear,while rankings in theCondorcetparadoxrepresentvoter
preferences, they do not correspond to voter preferences—even by
analogy—inour framework; see thediscussionat theendof the section
for connections to social choice theory.
8 Note that since p is irreflexive, a necessary condition for x to
dominate y is that p(y, x) 5 ;, i.e., y is not superior to x by any
arguments; this condition is not sufficient, however. 9 Equivalently, one can define P* as the union of the relations Pa.

Chung and Duggan

18

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
12

.1
55

.1
43

.2
28

, o
n 

28
 D

ec
 2

01
9 

at
 0

3:
09

:2
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/S
00

03
05

54
19

00
06

74

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0003055419000674


Aspositions in the top cycle have thisminimal degree
of plausibility, one may think of the top cycle as a “first
cut” of candidate positions to which we should restrict
our choice, when forced to take a position. Because the
definition of the top cycle is permissive, it will likely
contain any compelling position; for example, every
unassailablepositionbelongs to the topcycle, i.e.,UA4
TC. The top cycle has the desirable property that it is
generally non-empty even when there are cycles, but it
can be very large, which may be problematic in the
context of democratic deliberation when we have to
make a specific policy choice.

Discussion (Connections to Social Choice): Several
of the conceptsdefinedaboveappear ina specialized form
in the literature on social choice theory, specifically the
tournament literature.Givenafinite setX, a tournament is
a binary relation P on X that is asymmetric and total. As
discussed above, any tournament P can be formalized as
aset-valuedrelation, inwhichcasethecore,uncoveredset,
and top cycle of the tournament (Moulin 1986) coincide
with the sets UA, UD, and TC defined above; thus, our
concepts specialize to familiar ideas in this setting. If the
relation P is asymmetric, but not necessarily total, or
a generalized tournament, then again UA corresponds to
the core of a tournament, but it is known that there are
multiple ways to extend the notions of the uncovered set
and top cycle (Duggan 2013; Schwartz 1986). In fact,
applyingourdefinitionofUD,weobtaintheuncoveredset
of Gillies (1959), and our definition of TC yields the
GOCHA set of Schwartz (1986).

However, the structure imposed in our theory is
richer than that of the tournament framework, where
a single binary relation on X is assumed. In our
framework, we essentially begin with a collection of
constituent relations, Pa. Recall, however, that our top
cycle is determined by the projection P*—which is just
a binary relation on X. That is, TC does not depend on
the “internal structure” of P*, making it similar to the
top cycle from social choice theory. Note, however, that
the projection P* may be asymmetric and total, but it
need not satisfy either condition. Thus, our formulation
of TC extends the GOCHA set of Schwartz to relations
violating asymmetry.10 In contrast, our definition of the
undominated setUD does rely on the internal structure
of P*, in the sense that two set-valued relations, say p
andp9,maydeterminedistinctundominated sets, even if
they have the same projections. As we will see, our
formulations of discussion (myopic and constructive)
and debate in the remainder of the article all rely on this
internal structure as well.

In fact, there is an implicit structure underlying the
tournament framework not dissimilar to ours. In that
literature, the tournament relation P is often inter-
preted as being generated by voting in the following
way: there is a number n of voters and a profile (P1,…,

Pn) of voter preferences, where eachPi is a linear order
ofX; then the relation xPy is defined to hold if we have
xPiy for at least k voters, where k is a fixed quota. It is
assumed that k > n

2 to ensure asymmetry of P, and
often it is assumed that k ¼ nþ 1

2 , so that voting is by
majority rule, and no ties are possible, i.e., P is total. In
other words, the relation P has internal structure gen-
erated by voting with respect to the quota k. In our
framework, if we index arguments as a1,…, an, we have
a profile (Pa1, …, Pan) of relations, one for each argu-
ment, and xP*y is defined to hold if we have xPaiy for at
least one argument.11 If we view each argument as
avoter, thenour frameworkappears similar to the social
choice one, with two differences. First, we in general
allowPai tobeanyasymmetric relation; translated to the
social choice context, this means we allow for voters
with intransitive preferences. Second, because xP*y
holds if x is superior to y for at least one argument, we
essentially set the quota to k 5 1 to generate P*, con-
sistent with our observation that P* may violate
asymmetry. Thus, the internal structure of P* differs
from that considered in the tournament literature,
and our analysis of deliberation examines three dif-
ferent deliberative dynamics that are built upon this
structure. ||

MYOPIC DISCUSSION

A frequently asked question among scholars of de-
liberative democratic theory is whether the partic-
ipants in deliberation will eventually reach rational
consensus or unanimous agreement at the end of
deliberation. Many democratic theorists have sug-
gested that deliberative democracy should, at least at
the theoretical level, target unanimous agreement as
its ultimate aim (Cohen 1997a; Elster 1997; Gaus
1997; Harbermas 1990). However, many critics have
argued that full consensus or unanimous agreement is
unlikely to be achieved in realistic circumstances,
especially, inmodern pluralistic societies (Knight and
Johnson 2007; Rawls [1999] 2005; Elster 1997;
Christiano 1997).

In many political circumstances, time is limited, and
a collective decision may have to be made after some
durationofdeliberation, even if that deliberation fails to
reach unanimous agreement. Many democratic theo-
rists. tend to advert back to aggregative mechanisms in
this situation. For instance, even Cohen, who deems
unanimous agreement as the ultimate aim of ideal de-
liberation, acknowledges that “[e]ven under ideal
conditions there is no promise that consensual reasons
will be forthcoming” and “[i]f they are not, then de-
liberation concludes with voting, subject to some form
of majority rule” (Cohen 1997a, 75). Here, the reliance
on aggregative mechanisms is treated by deliberative
democratic theorists not as something desirable in itself,
but as a “necessary evil” that must be resorted to for
practical purposes.

10 In fact, our concept can be found by going back further to the
literature on finiteMarkov chains (Doob 1953). Think ofX as a set of
states, and assume that from each state x, we transition with equal
probability over states y such that yP*x. This defines aMarkov chain,
and our TC is precisely the union of ergodic classes of this chain. 11 We thank an anonymous referee for suggesting this interpretatoin.
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In this section, we introduce the concept of discussion
and explore the dynamics of one particular type of
discussion, namely, myopic discussion. We then ex-
amine whether myopic discussions can fulfill one of the
ideals of deliberative democracy by leading the par-
ticipants to reach a unanimous agreement on a single
position. One of the major characteristics of a de-
liberative democracy is that its process is dynamic in the
sense that “[a]lthough a decision must stand for some
period of time, it is provisional in the sense that it must
be open to challenge at some point in the future”
(Gutman and Thomson 2004, 9). To incorporate this
feature, our model of discussion will consist of a se-
quence of rounds in which positions are retained or
replaced on the basis of arguments exchanged during
each round of the discourse.

We imagine discussion proceeding sequentially
over an unbounded number of rounds such that in
each round m, there is a current status quo position
zm, which is subject to a challenge by position
xm and argument am. Formally, a sequence
D ¼ xm; am; zmð Þf g‘m¼1 inX3A3X is a discussion if
for all m, we have:

• zm11 2 {xm, zm},
• zm11 5 xm „ zm implies am 2 p(xm, zm).

If xm5 zm11, then we say xm is justified by argument am,
and if xm 5 zm11 „ zm, then xm is inserted by the ar-
gument am; the difference is that if position xm is the
status quo in round m, i.e., zm 5 xm, then it can be
justified by an argument as the new status quo in round
m 1 1, but not technically inserted (as it was the status
quo previously). The sequence P ¼ xm; amð Þf g‘m¼1 of
position-argument pairs introduced to challenge the
status quo position is a protocol, and we say the dis-
cussion is open if the following holds: for all position-
argument pairs (x, a) and all rounds m, if there is
a position y such that xPay, then there exists n$m such
that (xn, an)5 (x, a). A position-argument pair (x, a) for
which there exists a position y with xPay is said to be
potentially effective, so that an open protocol is one in
which each potentially effective position-argument pair
appears infinitely often.According toCohen, a defining
characteristic of a deliberative democracy is “continu-
ity,” meaning that when there are no time constraints,
theprocess of deliberation should ideally continue“into
the indefinite future” (Cohen 1997a, 72). Our as-
sumption that discussions are infinite is meant to reflect
the open-ended nature of this type of discourse, and our
assumption that each position-argument pair appears
infinitely often in an open discussion implies that any
position is vulnerable to replacement by any argument
for which it is not top-ranked.

Thus, a discussion must follow a given protocol, and
a new position can replace the status quo only if it is
superior according to the currently salient argument.Of
course, the second condition in our definition of dis-
cussion gives only a necessary condition for re-
placement of the status quo, so the definition is too
broad: given any protocol, we could select an arbitrary
position z, even one ranked last according to all

arguments, and set zm 5 z for all m. What is needed is
a restriction on discussion that includes a sufficient
condition for replacement of the status quo, ruling out
discussions that stabilize at implausible positions.

Our first step in this direction is to define a myopic
discussion as an open discussion such that if position xm

is superior to zm according to argument am, then it
becomes the status quo in the next round. Formally, it is
an open discussion xm; am; zmð Þf g‘m¼1 such that for all
m, we have:

zmþ1 ¼ xmif am 2 p xm; zmð Þ
zmelse:

�

In such adiscussion, a position replaces the status quo
by any argument according to which it is superior, re-
gardless of the history of discussion. It may be, for
example, that in some roundm, position x is inserted by
an argument a against status quo z, and in some later
round, the same position is inserted by the same ar-
gument against the same status quo.

Because they evolve in a context-free way, myopic
discussions permit cycles and can, in principle, repeat ad
infinitum. To illustrate this, we return briefly to the car
example, andweprovide amyopicdiscussion that cycles
through the various models of car. Intuitively, such
a discussion is not constructive, a point to which we
return in short order.

Example (MyopicDiscussionMayGenerateCycles):
In the car purchase example, set the initial status quo
equal to the sports car, i.e., z1 5 S, and consider the
following discussion,

and so on, repeating thereafter with periodicity six.
Here, the length of the cycle reflects the fact that there
are six potentially effective position-argument pairs,
each of which must appear infinitely often in the pro-
tocol. Indeed, theminivan is rankedabove the sports car
in terms of fuel economy, and the luxury sedan is ranked
above the minivan on that basis, and these position-
argument pairs appear at the beginning of the protocol.
We then use the pairs (S, c) and (V, c), and the last two
rounds in the above segment use the pairs (L, p) and (S,
p). In each round m, the status quo faces a position xm

that is superior according to am, and the new position is
inserted as status quo, fulfilling the definition of myopic
discussion. ||

We can summarize the long run dynamics of a dis-
cussion D by the limit set, denoted L Dð Þ, of positions
that appear as status quo infinitely often in the dis-
cussion; formally, we specify that x 2 L Dð Þ if and only if
for all n, there existsm$ n such that x5 zm. Assuming
the set of positions is finite, since all positions outside
the limit set appear in the discussion only finitely many
times, a discussion eventually reaches a period after

xm V L S V L S /
am f f c c p p /
zm11 V L S V L S /
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which the only positions inserted as status quo are
positions in the limit set. Since a discussion is a sequence
(i.e., there is an infinite number of rounds), every dis-
cussion will have a non-empty limit set: D Dð Þ 6¼ ;.
However, the existence of a non-empty limit set does not
imply that myopic discussion will reach unanimous
agreement. If the limit setcontainsmorethanoneposition,
then a myopic discussion cycles through the different
positions in the limit set, representing perpetual dis-
agreement in the myopic discussion.

The next result characterizes the long run outcomes of
myopicdiscussion. Ingeneral, notmuchcanbesaid,but for
every position xoutside the limit set andevery argument a,
there must be some position in the limit set that is not
vulnerable to x by argument a. When p is total, however,
the implications are sharper: every myopic discussion
eventually reaches the top cycle and remains thereafter.

Theorem 1 (Long Run Outcomes of Myopic Discus-
sion): Assume the set X of positions is finite. For every
myopic discussion D and every position x 2 XnL Dð Þ
outside the limit set and every argument a 2 A, there is
a position y 2 L Dð Þ in the limit set such that a Ï p(x, y).
Moreover, if the set-valued relation p is total, then for
everymyopic discussionD, the limit set is contained in the
top cycle: L Dð Þ⊆TC.

Our goal is to examine whether the dynamics of
myopic discussion can satisfy deliberative democracy’s
ideal of unanimous agreement. Although we model
a discussion as an infinite sequence xm; am; zmð Þf g‘m¼1,
this is not to say that it cannot be resolved in a finite
amountof time.Wesayadiscussion is conclusive if there
is someroundafterwhich the statusquo isnever revised,
i.e., there existsm such that for all n$m, we have zn5
zm, in which case it concludes with the position zm. For
a conclusive discussion, the continuation for an infinite
number of rounds is merely a technicality, for discourse
essentially ends once the status quo has reached its final
position. Thus, when a discussion is conclusive, we can at
least say itmeetsonedesideratumofunanimousagreement.

Unfortunately, myopic discussion can be conclusive
only under stringent conditions, for such a discussion
can be conclusive only if it concludes with an un-
assailable position—and as we have seen with our car
example, there may be no unassailable position. This
negative result is an immediate corollary of Theorem 1:
if a myopic discussion D is conclusive, then L Dð Þ con-
sists of a single position, say y, and then the first part of
Theorem 1 implies that for every other position x and
every argument a, we must have a Ï p(x, y), implying
that y is unassailable. If there is nounassailable position,
then myopic discussion cannot be conclusive and will
cycle through the limit set ad infinitum.

Corollary: Assume the set X of positions is finite. If
a myopic discussion D ¼ xm; am; zmð Þf g‘m¼1 is con-
clusive, then it concludeswith some unassailable position
x: there is a natural number m such that for all n$m, we
have zm 5 x.

We have shown that a myopic discussion can cycle
through the limit set endlessly, and it can be conclusive

only under special circumstances. But how bad can it
get?When p is total, Theorem 1 implies that these long
run outcomes must belong to the top cycle, giving an
upper bound on the indeterminacy of myopic discus-
sion, but the next result shows that this bound can be
attained:we specify a protocol that reaches the top cycle
from any initial status quo and then cycles through the
entire top cycle thereafter. In fact,weuse aprotocol that
is rotating, in the sense that for some natural number n,
the first n position-argument pairs are (x1, a1), …, (xn,
an), and the protocol repeats this pattern endlessly.12

Theorem 2 (Indeterminacy of Myopic Discussion):
Assume the set X of positions is finite, and the set-valued
relation p is total. There is a rotating protocol
P ¼ xm; amð Þf g‘m¼1 such that for every myopic discus-
sionD ¼ xm; am; zmð Þf g‘m¼1 for this protocol, the limit set
coincides with the top cycle: L Dð Þ ¼ TC.

Theorem 2 implies that the limit set of a myopic
discussion can coincide with the top cycle and, thus, be
quite large. Worse yet, the top cycle can contain posi-
tions that are dominated, so an implication is the pos-
sibility that myopic discussion can visit dominated
positions an infinite number of times. We provide an
example illustrating this possibility in the Appendix:
Technical Material following the proof of Theorem 2.

We end this section by noting an apparent analogy
between Theorem 1 and 2 and results of Ordeshook and
Schwartz (1987), who analyze the possible outcomes of
sincere and strategic voting in binary voting agendas. The
frameworks are conceptually distinct, as those authors
workwith voting agendas, inwhich the alternatives under
considerationcandependonpreviousvotes inanarbitrary
way (see their Figures 3–5 for examples of the possible
variety); moreover, they assume majority voting is rep-
resented by a tournament (an asymmetric, total relation),
whereaswe assume a set-valued relationp and rely on the
internal structure of p. The strongest parallel—albeit
a superficial one—is provided by their Theorems 3 and 4,
which prove that when voting is strategic, the set of out-
comesobtainablebydifferent voting agendas is contained
in the top cycle, and that in fact all alternatives in the top
cycle are obtainable by a specific subset of agendas.
However, these results concern strategic voting, whereas
myopic discussion is definedbyadynamic that is closest to
sincere voting. For the case of sincere voting, Ordeshook
and Schwartz show that almost every alternative can be
obtained by using different agendas, including those
outside the top cycle.13

CONSTRUCTIVE DISCUSSION

The analysis of the previous section has revealed that
myopic discussion, as a mode of democratic de-
liberation, fails to meet many ideals of deliberative

12 Formally, there exist n positions x1,…, xn and arguments a1,…, an
such that for all m, (xm, am) 5 (xm (mod n), am (mod n)).
13 They show that any alternative that is not a Condorcet loser can be
obtained—that set of alternatives comprising the“kitchen sink” set, in
the terminology of Ordeshook and Schwartz.
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democracy. Unless there is an unassailable position,
myopic discussion is inconclusive andmay cycle endlessly
through positions, and it necessarily fails to produce
unanimous agreement. Furthermore, the long-run be-
havior ofmyopic discussion can be too broad ranging and
returnrepeatedlyto inferiorpositions:notonlycanits limit
set be large, but the limit set ofmyopicdiscussion caneven
contain dominated positions, even when p is total and
transitive. Thus, simply adding a process of deliberation
does not, per se, solve the problem of democratic justifi-
cation and legitimacy raised by many impossibility theo-
rems of social choice theory. If democratic deliberation is
to deliver democratic justification and legitimacy, thenwe
need to impose further structure on democratic de-
liberation itself.

In this section, we introduce the concept of a “con-
structive discussion” by imposing further structure on
discussion to restrict the evolution of the status quo. A
constructive discussion is an open discussion {(xm, am,
zm)} such that if a position xhaspreviously been justified
by an argument a, then a new position y can only be
inserted by that same argument if it fares better than x
according to a, i.e., yPax. That is, starting in roundm, the
new status quo for round m 1 1 is

zmþ1 ¼
xm if am 2 p xm; zmð Þ; and for all k ¼ 1; . . . ;m� 1;

xk ¼ zkþ1 and am ¼ ak implies xmPamxk;

zm else:

8<
:

This type of discourse differs from a myopic discussion
in that it is context-dependent: the ability to insert
a position as status quo by a particular argument
depends on the specific history of the discussion,
namely, thepositionmust farebetterwith respect to that
argument than any previous status quo that was itself
justified by that argument.

Whenp is transitive, this restriction imposesa senseof
directionality on a discussion, and the next result shows
the cycles that afflictmyopicdiscussionare impossible in
a constructive discussion: we prove that constructive
discussion is conclusive, and in fact, it must conclude
with a position that is maximal for some argument.14

Moreover, ifp is also total, then this concluding position
must be undominated, conferring a degree of consensus
on the final outcome of discussion.

Theorem 3 (Conclusiveness of Constructive Discus-
sion):Assume that the set X of positions is finite, and that
the set-valued relation p is transitive. Every constructive
discussion D ¼ xm; am; zmð Þf g‘m¼1 is conclusive, i.e.,
there is a position x and somem such that for all n$m, zn

5x.Moreover, there is anargument a2Asuch that for all
y 2 X, a is not an argument for y over x, i.e., a Ï p(y, x).
Finally, if p is also total, then x 5 xa, and x is
undominated.

Theorem 3 shows that in a constructive discussion,
which allows deliberation to continue indefinitely,

deliberation led by an exogenously enforced protocol
will never oscillate but will always conclude with some
position that is maximally justified by some argument.
In this situation, all other arguments have already been
applied with full force, and thus they cannot be used to
insert a different position as status quo—so, under the
rules of constructive discussion, there is agreement
that the construction can proceed no further. More-
over, when p is total, the position to which a con-
structive discussion eventually converges is
undominated.

As a mode of democratic deliberation, constructive
discussion possesses many desirable properties that
myopic discussion lacks: it concludeswith agreement on
some position; the final position to which a constructive
discussion converges is maximally justified and, hence,
best in terms of at least one argument; and in case p is
total, a constructive discussion will never conclude with
a position that is dominated by another position.
Nevertheless, Theorem 3 ensures that constructive
discussion eventually converges to some position.
However, the result does not ensure that the process of
constructive discussion converges to the same position
for every constructive discussion; rather, it leaves open
the possibility that the conclusion can depend on the
initial status quoandprotocol used.Weknow that every
constructive discussion D is conclusive, so we can let
l Dð Þ denote the concluding position of the discussion.
Then we define L ¼ l Dð ÞjD is a constructive discussionf g
as the set of possible conclusions of constructive dis-
cussion, and we say constructive discussion is path de-
pendent if |L|. 1; and otherwise it is path independent.

The next result establishes path dependence of
constructive discussion; in fact, we show that if p is total
and transitive, then every maximal position xa can be
obtained as the conclusion of constructive discussion.
Combined with Theorem 3, an implication is that the
positions that can be concluded from constructive dis-
cussion are exactly the maximal positions.

Theorem 4 (Path Dependence of Constructive Dis-
cussion): Assume that the set X of positions is finite, and
that the set-valued relation p is total and transitive. For
every argument a2A, themaximal position xa is reached
as the conclusion of some constructive discussion, i.e.,
there exists a constructive discussion D such that
l Dð Þ ¼ xa, and thus the set of outcomes that can be
concluded from constructive discussion is just the set of
maximal positions: L5 {xa|a 2A}. In particular, if there
exist arguments a, a9 2 A such that xa 6¼ xa9, then con-
structive discussion is path dependent.

Next,we illustrateTheorem4 in the context of our car
purchase example, and we see that each car type can be
obtained as the conclusion of a constructive discussion.
Thus, while there is agreement that the conclusion of
suchadiscussion cannotbe changed, given thehistoryof
the discourse, the conclusion is dependent on the par-
ticular discussion leading to it, and in this sense, it is
arbitrary.

Example (Path Dependence of Car Purchases): In
the car purchase example, one possible constructive

14 A close reading of the proof of Theorem 3 shows that the con-
clusiveness of constructive discussion does not rely on the assumption
that constructive discussion is open.
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discussion is as follows: beginning with the luxury sedan
as status quo, the minivan becomes the new status quo
because it is cheaper; the sports car becomes the next
status quo because it performs better; and finally, the
luxury sedan becomes the status quo because it is more
fuel efficient.At this point, the protocol can be specified
arbitrarily, because the status quo cannotbe changed, as
all arguments have beenused tomaximal effect. Thus, if
the first three rounds of constructive discussion proceed
as

x1; a1; z1
� � ¼ V; c; Lð Þ;
x2; a2; z2
� � ¼ S; p; Vð Þ;
x3; a3; z3
� � ¼ L; f ; Sð Þ;

then the conclusionof thediscussion is the luxury sedan,
L. Similarly, if the first three rounds are

x1; a1; z1
� � ¼ S; f ; Vð Þ;
x2; a2; z2
� � ¼ L; p; Sð Þ;
x3; a3; z3
� � ¼ V; c; Lð Þ;

then the conclusion of the discussion is the minivan, V.
Finally, if the first three rounds are

x1; a1; z1
� � ¼ L; p; Sð Þ;
x2; a2; z2
� � ¼ V; c; Lð Þ;
x3; a3; z3
� � ¼ S; f ; Vð Þ;

then the conclusion of the discussion is the sports car,
S. Thus, every car that is top ranked according to
one of the criteria is a possible conclusion of con-
structive discussion, i.e., L5 {L, V, S}, as dictated by
Theorem 4. k

Theorem 4 might seem similar to Patty and Penn
(2011)’s Theorem 11, in that each characterizes the
outcomes determined by sequences of positions (or
alternatives) satisfying different consistency con-
ditions. As noted, Patty and Penn consider proce-
dures, which map each pair (X, p), where p is a set of
possible principles, to a decision sequence (x1,…, xM)
in X and a principle P 2 p. They then impose two
axioms on procedures: (i) no alternative x earlier in
the sequence is superior to any alternative y later in
the sequence according to P, i.e., we cannot have xPy
(internal stability); and (ii) for every alternative z not
in the sequence, there is some alternative w in the
sequence that is superior according to P, i.e., wPz
(external stability). Then, the final outcome xM is
interpreted as being justified by the decision se-
quence. Their Theorem 11 shows that if we fix a single
possible principle p 5 {P}, then the set of outcomes
that can be justified by a legitimate procedure is the
Banks set of P (Banks 1985). Their analysis does not
apply to constructive discussion: because a procedure
determines a single principle that justifies the decision
sequence, whereas constructive discussion involves
multiple arguments, it is not possible to formalize
constructive discussion as a procedure in the sense of
Patty and Penn. Moreover, although constructive
discussion is conclusive, and thus determines a finite
sequence (x1,…, xM) of positions, these sequences do
not satisfy anything like the internal stability axiom

used by those authors.15 Thus, our Theorem 4 and
their Theorem 11 are quite different, both technically
and in spirit.

As well, the path dependence result of Theorem 4
differs from those of McKelvey and Schofield, as they
consider a very different mechanism: their in-
determinacy is obtained by varying a binary voting
agenda, with a multidimensional space of alternatives
and a profile of preferences over alternatives for each
voter as backdrop; indeed, for specific configurations of
voter preferences in which the majority core is non-
empty, their conclusion of indeterminacy does not hold.
In contrast, Theorem 4 is formulated in a model of
deliberation in which preferences do not play a role;
rather, the indeterminacy arises from the effectiveness
of arguments as the protocol of position-argument pairs
is varied. And whileMcKelvey and Schofield show that
for typical profiles, almost any alternative is possible,
our indeterminacy conclusion is limited to the maximal
positions.

One important reason why Riker (1982) viewed
electoral outcomes as meaningless relates to what he
conceived tobe the inherent arbitrarinessofall electoral
outcomes: with the same profile of individual prefer-
ences, we may reach radically different outcomes
depending on the specific voting procedure adopted.
This is why electoral outcomes, according to Riker,
cannot serve as the “true amalgamations of voters’
judgments” (Riker 1982, 238). If it is this arbitrariness of
voting outcomes that makes it difficult for aggregative
voting mechanisms to fully ground democratic justifi-
cation or legitimacy, then Theorem 4 shows us that
democratic deliberation, in the form of constructive
discussions, may not take us far.

In their 1997 paper, Knight and Johnson conjectured
that “there is very good reason to suspect that the
outcome of political debate depends heavily upon
factors such as the sequence inwhich participants speak
and the point at which debate is terminated” (Knight
and Johnson 1997, 291). Theorem 4 shows that Knight
andJohnson’s suspicion is a theoretical possibility inour
model of constructive discussion, and it instructs us that
we cannot assume that discussion—even in the con-
structive sense considered in this section—will solve the
standard problems of aggregative forms of democracy.

A STRATEGIC MODEL OF DEBATE

One advantage of constructive discussion over myopic
discussion, as Theorem 3 shows, is that it eventually
reaches unanimous agreement on a single position.
However, a critic might claim that, once we allow de-
liberation to proceed endogenously among parties who
have diametrically opposed preferences over which
position should be chosen, convergence or agreement

15 In addition, constructive discussion determines the sequence (x1,
…, xM) of positions only after a protocol is specified; so to formalize
constructivediscussion in their framework,wewouldhave toassociate
with each (X, p) pair a protocol used to generate the decision
sequence.
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may quickly break down and may lead to conflict or
even extreme polarization (Gutman and Thomson
2004, 54). In this section, we explore this possibility and
consider analternative to constructivediscussion,which
we call “debate,” such that the protocol arises endog-
enously and is the product of strategic behavior on the
part of participants.

We define a debate as an equilibrium path of play in
a particular extensive form game of perfect information
that we call the debate game.16 By perfect information,
the participants of the debate game knowall pastmoves
taken in previous rounds, i.e., each participant knows
which position has been inserted or retained by which
argument in which round, and so forth. Normally, de-
liberative democratic theorists assume that democratic
deliberation embodying idealized deliberative pro-
cedure occurs under idealized circumstances by ideally
rational agents (Cohen 1997a; Estlund 1997; Habermas
1990;Rawls 1997), and it is natural to assume, consistent
with the assumption of perfect information, that ideally
rational agents would remember what positions have
been insertedor retainedbywhatarguments inprevious
rounds of the debate game.

The players of the debate game are two participants,
numbered 1 and 2, who alternately argue for different
positions, with player 1 moving in all odd rounds, and
player 2moving in all even rounds.An initial status quo z1

2X is given, and in any roundm, the active player can put
forth any position xm and argue for this using any argu-
mentam; formally, theactionsetofaplayeratanyhistory is
X3A. Inanyroundmof thedebategame,actions (x1,a1),
…, (xm, am) determine a sequence (z2,…, zm11) of status
quo positions as follows: for each t 5 1, …, m,

ztþ1 ¼
xt if at 2 p xt; ztð Þ; and for all k ¼ 1; . . . ; t � 1;

xk ¼ zkþ1 and at ¼ ak implies xtPat xk;
zt else:

8<
:

Note that if x1 5 z1, then the position x1 is justified as
statusquo, i.e.,x15z2, byanyargument.Wecansee that
the evolution of the status quo in the debate game
follows the same rule as that of constructive discussion:
if a position x has previously been justified by an ar-
gument a, then a new position y can only be inserted as
status quo by that same argument if it is ranked higher
than x according to a, i.e., yPax.

A history of length m, denoted hm 5 ((x1, a1, z1),…,
(xm, am, zm)), lists arguments made for different posi-
tions, along with the sequence of status quo positions
determined by the players’ actions for the first m
rounds,17 and an infinite history, denoted
h‘ ¼ xm; am; zmð Þf g‘m¼1 lists positions, arguments, and
status quo positions for each roundm5 1, 2,…As the
debate game uses the same transition rule for the status
quo as constructive discussion, Theorem 3 implies that

every history is conclusive, in the sense that the status
quo eventually settles on a single position that is re-
peated infinitely thereafter; formally, there is a position
x and roundm such that for all k$m, we have zk5 x.18

A (pure) strategy for player i 5 1, 2 is a mapping,
denotedsi, fromeveryhistoryatwhich theplayer is active
into the set of possible actions. Given an initial status quo
z1, a pair of strategies (s1, s2) then determines a path of
play, which consists of the sequence of positions, argu-
ments,andstatusquopositionsgeneratedbythechoicesof
the players. Formally, this is the unique infinite history
h‘ ¼ xm; am; zmð Þf g‘m¼1 such that for each roundm, (i) if
m is even, thenwe haves1((x

1, a1, z1),…, (xm, am, zm))5
(xm11, am11), and (ii) ifm is odd, then s2((x

1, a1, z1),…,
(xm, am, zm)) 5 (xm11, am11).

To complete the description of the game, we specify
a payoff to each player for each possible infinite history
by assigning utilities to the position associated with that
history. Specifically, since the status quoalonganygiven
history eventually settles down on a single position, we
simply associate a history with the concluding position,
andwe specify that eachparticipant receivesutility from
it. Formally, let u1(x) and u2(x) denote the utilities of
participants 1 and 2, respectively, from any position x.
We then assign a payoff to each infinite history h‘ as
follows: we have noted that any given history h‘ con-
cludes with a final position, say x, that eventually
becomes the status quo and remains so; then we specify
that participant 1’s payoff from h‘ is u1(x), and par-
ticipant 2’s payoff from the history is u2(x). Thus, each
player cares only about the conclusion of the debate
game, and they evaluate the concluding position
according to the utility functions u1 and u2.

Because the setXof positions isfinite, we canwithout
loss of generality index it in the order of participant 1’s
preference, so that X 5 {x1, …, xn} and u1(x1) , u1(x2)
,/, u1(xn). We assume that the participants of the
debate game have opposing preferences, so the debate
is competitive as well as constructive. Formally, the
debate game is competitive, in the sense that for all
distinct x, y 2X, either u1(x). u1(y) and u2(x), u2(y)
hold, or the reverse inequalities hold. Given the above
indexing, this means that u2(x1) . u2(x2) ./. u2(xn).
Thus, moving from one position to another will always
generate disagreement, i.e., one participant will favor
such a move while the other participant will disfavor
the move. Moreover, since we consider only pure
strategies, we can without loss of generality (by
amonotonic transformationofpayoffs) further assume
the game is zero sum, i.e., for all x2X, we have u1(x)1
u2(x) 5 0.19

Discussion (Competitive Debate): An assumption
that is almost universally endorsed by deliberative
democratic theorists is that, in modern pluralistic

16 Fora referenceonnon-cooperativegamesand the conceptsofNash
equilibrium and subgame perfect equilibrium, see Osborne and
Rubinstein (1994).
17 Technically, our inclusion of the status quo positions zm form$ 2 is
redundant, as they follow from the initial status quo and actions taken
in each round.

18 As remarked in footnote13, theproofofTheorem3doesnotuse the
assumption that constructive discussion is open, and thus it applies
equally well to the debate game.
19 Nothing of substance relies on this monotonic transformation; we
use it only to introduce themore familiar“zero-sum” terminology, and
to more readily invoke results from zero-sum games.
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societies, political deliberation occurs under conditions
of irreconcilable moral and political disagreement.
“A deliberative democracy is a pluralistic associa-
tion” explains Cohen (1997a, 72), and, according to
Gaus, this entails that, evenunder relatively favorable
circumstances, “sincere reasoners will find them-
selves in principled disagreements” (Gaus 1997, 231).
Gutman and Thomson explain that “the general aim
of deliberative democracy is to provide the most
justifiable conception for dealing with moral dis-
agreement in politics” (Gutman and Thomson 2004,
10, emphasis added). Knight and Johnson go further
to claim that the whole purpose of democratic de-
liberation is to resolve “political conflict” (Knight and
Johnson 1994, 285).

We seek a model of debate that reflects these con-
ditions of irreconcilable moral and political disagree-
ments, and the formal expression of the conditions is in
the assumption of competitive payoffs. In our setting,
this is equivalent to the assumption of zero-sum utility,
i.e., u1(x) 1 u2(x) 5 0 for all positions; again, because
the payoffs of the two participants of the debate game
are ordinal, any competitive game can be viewed as
a zero-sum game, by a monotonic transformation that
does not affect the set of equilibria.20 We emphasize
that the assumption of zero-sum utility for positions
does not imply that the final position reached through
theprocessofdebatewill bepartisan, in the sense that it
attends to the interests of the “winners”while ignoring
the interests of the “losers,” in which case ourmodel of
debate would run counter to the general spirit of de-
liberation sought by deliberative democratic theorists
who see democratic deliberation as a device for
achieving the common good (Cohen 1997a, 1997b;
Elster 1997; Gutman and Thomson 2004). What is
essential is the existence of disagreement in the model
of debate, and thus we model debate as both con-
structive and competitive, in accordance with the de-
liberative environment assumed by deliberative
democratic theorists. k

Weanalyze the debate game as a two-player, zero-sum
game game of perfect information, and we employ con-
cepts of Nash equilibrium and subgame perfect equilib-
rium tounderstand thebehaviorof rational participants in
adebate.Toapply theformerconcept,weviewtheplayers
aschoosingstrategiess1ands2 simultaneously,beforethe
debate game is played; then s 5 (s1, s2) is a Nash
equilibrium if neither player i 5 1, 2 can increase her
payoff, i.e., obtain a more desirable conclusion, by uni-
laterally deviating to another strategy s9

i . The concept of
subgame perfect equilibrium applies this notion at all
subgames in the larger extensive form game: after any
finite history hm, we can imagine that the players simul-
taneously have the opportunity to revise their strategies

for the remainder of the game, and a subgame perfect
equilibrium is a pair of strategies such that neither player
cangainbyunilaterally revisingher strategy followingany
suchhistory.Essentially, subgameperfection removes the
possibility of “non-credible” threats that could conceiv-
ably play a role in Nash equilibria.

A debate is any path of play h‘ ¼ xm; am; zmð Þf g‘m¼1
generated by a Nash equilibrium of the debate game.
We establish that the debate game possesses a subgame
perfect equilibrium, and since every subgame perfect
equilibrium is Nash, the existence of a debate follows.
We use notation and results from the previous section;
in particular, we denote a debate by D, and we have
alreadyobserved that everydebate is conclusive, so that
the limit set L Dð Þ of a debate is a singleton, denoted
l Dð Þ.

Since constructive discussion, in general, is path de-
pendent, we are now interested in whether debate,
which endogenizes the protocol governing the discus-
sion, similarly suffers from the problem of path de-
pendence, or whether strategic incentives of the players
isolate a unique position that does not depend on the
initial status quo. The debate game does generally
possess multiple Nash equilibria, but our equilibrium
characterization establishes that all Nash equilibria
determine the same outcome, and that this position is
independent of the initial status quo: the unique con-
clusion of debate is a compromise position that can be
identified by the primitives of the model. In what fol-
lows,we letL� ¼ l Dð ÞjD is a debatef gdenote the set of
possible conclusions of debate.

Our characterization of Nash equilibria of the de-
bate game rests on the idea of a compromise position.
When the number |A| of arguments is odd, we define
the compromise position x* as the unique position such
that x* is top ranked for some argument, the number of
argumentswith a top rankedposition better than x* for
player 1 is less than |A|/2, and the number of arguments
with a top ranked position better than x* for player 2 is
also less than |A|/2. Formally, x* 5 xa for some a 2 A,
and

�
a2A

Ia;1 x�ð Þ # Aj j
2

; (1)

and

�
a2A

Ia;2 x�ð Þ # Aj j
2

: (2)

where Ia,i(x) is an indicator equal to one if ui(x
a) . ui(x)

and equal to zero otherwise. When |A| is even, there
may be one or two positions that are top ranked by
different arguments and satisfy both (1) and (2). We
say x* is the compromise position if it is the unique
position satisfying the inequalities, or if there are two
such positions, then it is the one preferred by player 1;
formally, letting xk and xl solve (1) and (2) with k,l,
we define x* 5 xl.

The next theorem establishes that when p is total and
transitive, the unique Nash equilibrium outcome of the
debate game is the compromise position, regardless of

20 Observe that in a version of the debate game with general pref-
erences over positions, the participants’ preferences over the Pareto
frontier are nevertheless competitive: if two positions are Pareto ef-
ficient, then the participants must have opposing preferences over
them.Thus, one intuition for our zero-sumassumption is that debate is
restricted to the Pareto efficient positions.
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the initial status quo. An immediate implication is that
debate, in contrast to constructive discussion, does not
suffer from the problem of path dependence.21,22

Theorem 5 (Path Independence of Debate):Assume X
is finite, and p is total and transitive. Then there is at least
one debate, and the conclusion of every debate is the
compromise position: L* 5 {x*}.

The next example provides an extended illustration
of the idea of debate and the result of Theorem 5 in the
context of the car purchase example, in which we
imagine a husband and wife debating about which
among the three possible cars to buy as a family car.

Example (ConstructiveDebate aboutCarPurchase):
In the car purchase example, let thewife be player 1 and
the husband be player 2, and assume u1(S) . u1(L) .
u1(V), while u2(S) , u2(L) , u2(V). Note that the top
ranked positions of the arguments are xf 5 L, xc 5 V,
and xp 5 S. Because there are three arguments in this
example, the compromise position is uniquely defined
by (1) and (2), and it is just x*5 L. By Theorem 5, the
unique conclusion of the debate between the husband
andwife is thus the luxury sedan, regardless of the initial
status quo. The theorem does not state that there is
a unique debate, but the construction used in the proof
provides one debate in this example. Given any status
quo z1, the path of play of the constructed equilibrium is
as follows: the wifemoves first in round 1with (x1, a1)5
(V, c), which changes the status quo in round 2 to z25V;
then the husbandmoves in round 2with (x2, a2)5 (S,p),
which changes the status quo in round 3 to z3 5 S; and
the wife moves in round 3 with (x3, a3) 5 (L, f), after
which the status quo remains zm 5 L for all future
rounds m $ 4.

For an intuitive story, let the initial status quo be any
position, say, the luxury sedan, so that z15L. First, it is
the wife’s turn to argue for a position. The wife’s ideal
outcome is the sports car. However, she knows that if
she inserts the sports car on the basis of performance
now, i.e., if she plays (x1, a1)5 (S,p), then this creates an
opening for her husband: he can eliminate the sports car
from the debate by inserting the luxury sedan on the
basis of fuel economy in round 2, which will eventually
lead the debate to conclude with the minivan, which is

her worst position. So, the wife, instead, preempts this
by proposing the minivan on the basis of cost herself by
saying, “Why don’t we consider the minivan? It’s the
cheapest among the three and you seem to like it very
much.” That is, she plays (x1, a1) 5 (V, c), and as
a consequence, the status quo changes to the minivan:
z2 5 V.

Now, it is the husband’s turn to argue for a position.
The current status quo is the minivan, his favorite po-
sition, andhence, the husbandwouldwant to preserve it
as thefinal outcome, if possible.He couldmaintain it for
the current period by responding, for example, “Yes,
you’re right. It’s a really goodprice,”which corresponds
to formally proposing (x2, a2)5 (V, c). However, if the
husband does that, then this creates an opening for his
wife: she can eliminate the minivan with the luxury
sedanon thebasis of fuel economy in round3,which (for
similar reasons as before) will eventually lead the de-
bate to conclude with the sports car, which is his worst
position. So, the husband preempts this by proposing
the sports car on the basis of performance himself,
saying, “Actually, how about we consider the sports
car? It has the best performance and you seem to really
like it,” which corresponds to (x2, a2) 5 (S, p). As
a consequence the status quo changes to the sports car:
z3 5 S.

Finally, it remains for the wife to argue for a position.
The current status quo is the sports car, her favorite
position, but there is noway for her tomaintain it, as the
only argument that has not been used to its full extent is
fuel economy, according to which the luxury sedan is
ranked first. And, since the husband strictly prefers the
luxury sedan to the sports car, he will surely insert the
luxury sedan on the basis of fuel economy sooner or
later if thewifedoesnot do soherself.Hence, thedebate
will eventually conclude with the luxury sedan, which is
the car that is maximally justified by the fuel economy
argument and is, consistent with Theorem 5, the com-
promise position in this example. k

Several points are noteworthy, both technical and
philosophical. First, just like constructive discussions,
every debate is conclusive, avoiding the cycling
problems that afflict myopic discussions. Second, the
unique conclusion of every debate is the compromise
position, independent of the initial status quo; thus, in
contrast to constructive discussion, debate is path
independent. Third, when the total number of posi-
tions is odd, neither player has an advantage in debate,
as the two make symmetric compromises at position
x*, the middle-ranked position of each player. When
the total number of positions is even, player 1 has an
advantage, but only a slight one. This means that the
procedure of a constructive debate itself incorporates
fairness, in the sense that everybody in a constructive
debate is situated roughly equally, and no player has
a significant advantage in their ability to effect a final
position in their favor. Fourth, the incentives of
constructive yet competitive debate do lead to an
outcome that is maximally justifiable with respect to
some argument, consistent with the argument climb-
ing properties of constructive discussion. This means

21 In the Appendix: Technical Material, we discuss a different ap-
proach to modeling strategic interaction among participants that
extends the Bipartisan set of Laffond, Laslier, and Le Breton (1993,
1997). In this approach,weassumeparticipants simultaneouslychoose
positions in a strategic form game, and a participant cares only about
the net number of arguments in favor of her position.
22 The cheap-talk literature on deliberation with private information
has shown that strategic incentives can create path dependencies, as
the outcome can depend on the voting rule or order of message
transmission. Theorem 5 does not contradict these results, as the
mechanism considered in our paper is very different: that work
considers cheap talk prior to a vote between two alternatives (Austen-
Smith and Feddersen 2006) or messages from reputation-concerned
experts prior to a choice between two alternatives by a single decision
maker (Ottaviani and Sorensen 2001); in contrast, we consider de-
liberation in which an arbitrary, finite set of positions is narrowed
down to a single one by a process of argumentation.
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that the compromise position is not simply a com-
promise, in the sense that everybody settles with
something that meets some low bar of mutual ac-
ceptability, but rather it is a position that is regarded as
best by both parties with respect to at least one
argument.

Lastly, note that the strategic incentives faced by
the participants in our model of debate are consistent
with the general framework of deliberative demo-
cratic theory. Although the normative conditions of
deliberative democratic theory preclude purely
selfish or self-centered considerations, different
people are still allowed to form different policy
preferences (concerning which policy would be best
for the group) on the basis of their different con-
ceptions of the public or common good. As already
noted, democratic pluralism is an assumption that is
universally endorsed by deliberative democratic
theorists in general. And, even if the debate partic-
ipants are assumed to respond solely to what Har-
bermas calls the “force of better argument”
(Habermas 1975, 108), this does not rid democratic
deliberation of all strategic considerations, for in
democratic deliberation, each participant must
consider how to best utilize the set of common rea-
sons accepted by all to construct arguments that
would persuade other similarly-motivated-but-
politically-divergent participants to reach an agree-
ment on a policy position that she sincerely believes
to be best—not just for her, but for society as
a whole.23

CONCLUSION

No democratic theorist presumes that successful dem-
ocratic deliberation can happen automatically. This is
why so many deliberative democratic theorists have
strived to clearly define the institutional requirements
and rules of ideal deliberative procedure (Cohen 1997a,
1997b; Estlund 1997; Gutman and Thomson 2004;
Habermas 1990). Usually, deliberative democratic
theorists have emphasized that ideal deliberative pro-
cedure should include: (a) both formal and substantive
equality among the participants of deliberation, (b)
freedom to express one’s opinions and propose new
positions, (c) fair equal opportunity to speak and par-
ticipate in deliberation, and (d) reciprocity in the sense
that positions should be supported by reasons that all
endorese. In this way, “the ideal deliberative procedure
is meant to provide a model for institutions to mirror”
(Cohen 1997a, 73). The thought is that when real-world
democratic institutions approximate the institutional
requirements of ideal deliberative procedure, this will
lead society to arrive at democratic decisions that are
fully justified by reasoned agreement through demo-
cratic deliberation. However, for most deliberative

democratic theorists, whether approximating ideal
deliberative procedurewould really be enough to arrive
at democratically legitimate decisions remains an ed-
ucated guess. It is in this capacity that we believe formal
analysis can empower normative philosophical
theorizing.

In this article,wehave seen through the lens of formal
analysis that not only can democratic deliberation take
many different forms, but different forms of democratic
deliberation can either fail or succeed to confer dem-
ocratic legitimacy in ways that were not entirely ap-
parent prior to conducting such formal analyses. All
three modes of democratic deliberation that we have
discussed in the paper—namely, myopic discussion,
constructive discussion, and competitive debate—are
consistent with the general characterizations of ideal
deliberative procedure laid forth by deliberative dem-
ocratic theorists; their underlying structure manifests
equality, freedom of expression, fair equal opportunity
to speak, and reciprocity. However, the three modes of
democratic deliberation differ in the extent to which
they confer democratic legitimacy to their final out-
comes or the lack thereof. Unless there is an unassail-
able position, myopic discussion is inconclusive and can
result in continual disagreement. Constructive discus-
sion resolves this issueandconverges toa singleposition
via an argument-climbing dynamic, but is inherently
path dependent, and, hence, arbitrary. In contrast to
these two other modes of democratic deliberation, the
model of debate generates an outcome that is unique,
path independent, and best with respect to at least one
reasonor argument.Moreover, this outcome represents
a compromise among the participants, and thus it has
some justification in termsof fairness. For these reasons,
it might be said that, among the three modes of dem-
ocratic deliberation considered in this article, debate
confers better democratic justification or legitimacy to
its resulting outcomes than constructive or myopic
discussions. Far from generating conflict and extreme
polarization, it was the very addition of diametrically
opposed disagreements, along with the endogenous
formation of the agenda by strategic players, that led to
the greater degree of legitimacy under debate.
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Doob, J. L. 1953. Stochastic Processes. NewYork: JohnWiley&Sons.
Dryzek, John, and Christian List. 2003. “Social Choice Theory and

Deliberative Democracy: A Reconciliation.” British Journal of
Political Science 33: 1–28.

Duggan, John. 2013. “UncoveredSets.” Social Choice andWelfare 41:
489–535.

Duggan, John, andThomas Schwartz. 2000. “StrategicManipulability
without Resoluteness or Shared Beliefs: Gibbard-Satterthwaite
Generalized.” Social Choice and Welfare 17: 85–93.

Dung, PhanMinh. 1995. “On the Acceptability of Arguments and Its
Fundamental Role in Nonmonotonic Reasoning, Logic Pro-
gramming and N-Person Games.” Artificial Intelligence 17 (2):
321–57.

Elster, Jon. 1997. “The Market and the Forum: Three Varieties of
Political Theory.” In Deliberative Democracy: Essays on Reason
and Politics, eds. James Bohman and William Rehg. Cambridge,
MA: MIT Press, 3–34.

Estlund, David. 1997. “Beyond Fairness and Deliberation: The Ep-
istemic Dimension of Democratic Authority.” In Deliberative
Democracy:Essays onReason andPolitics, eds. JamesBohmanand
William Rehg. Cambridge, MA: MIT Press, 173–204.

Gaus, Gerald. 1997. “Reason, Justification, and Consensus: Why
Democracy Can’t Have It All.” InDeliberative Democracy: Essays
on Reason and Politics, eds. James Bohman and William Rehg.
Cambridge, MA: MIT Press, 205–42.

Gibbard, Allan. 1973. “Manipulation of Voting Schemes: A General
Result.” Econometrica 41 (4): 587–601

Gillies, Donald B. 1959. “Solutions to General Non-Zero-Sum
Games.” In Contributions to the Theory of Games IV: Annals of
Mathematics Studies. Vol. 40, eds. Albert William Tucker and
Robert Duncan Luce. Princeton, NJ: Princeton University Press.

Gutman, Amy, and Dennis Thomson. 2004. Why Deliberative De-
mocracy? Princeton, NJ: Princeton University Press.

Habermas, Jürgen. 1975. Legitimation Crisis, trans. Thomas McCarthy.
Boston: Beacon Press; London: Heinemann.

Habermas, Jürgen. 1990. “Discourse Ethics: Notes on a Program of
Philosophical Justification.” In Jürgen Habermas, Moral Con-
sciousness and Communicative Action, trans. C. Lenhardt and S.W.
Cicholsen. Cambridge, MA: MIT Press, 43–115.

Hafer, Catherine, and Dimitri Landa. 2007. “Deliberation as Self-
Discovery and Institutions for Political Speech.” Journal of The-
oretical Politics 19 (3): 329–60.

Hong, Lu, and Scott Page. 2004. “Groups of Diverse Problem Solvers
Can Outperform Groups of High-Ability Problem Solvers.” Pro-
ceedings of the National Academy of Sciences 101 (46): 16385–9.

Knight, Jack, and James Johnson. 1994. “Aggregation and De-
liberation: On the Possibility of Democratic Legitimacy.” Political
Theory 22 (2): 277–96.

Knight, Jack, and James Johnson. 1997. “What Sort of Equality Does
Deliberative Democracy Require?” In Deliberative Democracy:
Essays on Reason and Politics, eds. James Bohman and William
Rehg. Cambridge, MA: MIT Press, 279–320.

Knight, Jack, and James Johnson. 2007. “The Priority of Democracy:
A Pragmatist Approach to Political-Economic Institutions and the
Burdern of Justification.” American Political Science Review 101
(1), 47–61.

Laffond, Gilbert, Jean-Francois Laslier, andMichel Le Breton. 1993.
“TheBipartisanSetofaTournamentGame.”GamesandEconomic
Behavior 5: 182–201.

Laffond, Gilbert, Jean-Francois Laslier, andMichel Le Breton. 1997.
“A Theorem on Symmetric Two-Player Zero-Sum Games.”
Journal of Economic Theory 72: 426–31.

Landa, Dimitri, and Adam Meirowitz. 2009. “Game Theory, In-
formation, and Deliberative Democracy.” American Journal of
Political Science 53 (2): 427–44.

Landemore, Helene. 2013. Democratic Reason. Princeton, NJ:
Princeton University Press.

List, Christian, and Robert Goodin. 2001. “Epistemic Democracy:
Generalizing the Condorcet Jury Theorem.” The Journal of Po-
litical Philosophy 9 (3): 277–306.

List, Christian, Robert Luskin, James Fishkin, and Lain McLean.
2013. “Deliberation, Single-Peakedness, and the Possibility of
Meaningful Democracy: Evidence from Deliberative Polls.” The
Journal of Politics 75 (1): 80–95.

Mackie, Gerry. 2003. Democracy Defended. New York: Cambridge
University Press.

May, Kenneth. 1952. “ASet of Independent Necessary and Sufficient
Conditions for SimpleMajorityDecision.”Econometrica 20: 680–4.

McKelvey, Richard. 1976. “Intransitivities in Multi-Dimensional
Voting Models and Some Implications for Agenda Control.”
Journal of Economic Theory 12: 472–82.

McKelvey, Richard. 1979. “General Conditions for Global Intransi-
tivites in Formal Voting Models.” Econometrica 47: 1085–1112.
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Appendix: Technical Material

This appendix contains technical material omitted from the
body of the paper. We begin by proving the Lemma, which
decomposes properties of a set-valued relation into properties
of its constituent relations.

Lemma:The set-valued relation p is total if andonly if for all a2
A,Pa is total.Moreover, p is transitive if andonly if for all a2A,
Pa is transitive.

Proof: First, assume p is total, and consider any distinct x,
y2X. Since p is total, we have a2 p(x, y) or a2 p(y, x), which
implies xPay or yPax, and thus Pa is total. Conversely, assume
eachPa is total, and considerdistinctx,y2Xanda2A. SincePa

is total, either xPay or yPax, which implies a2 p(x, y) or a2 p(y,
x), and thus p is total. Second, assume p is transitive, and
consider any x, y, z 2X and a 2A such that xPayPaz. Then a 2
p(x, y)\ p(y, z). Since p is transitive, we have a2 p(x, z), which
implies xPaz, and thusPa is transitive. Conversely, assume each
Pa is transitive, and consider x, y, z2X and a2 p(x, y)\ p(y, z).
Then xPayPaz, and transitivity of Pa implies xPaz, i.e., a 2
p(x, z). We conclude that p(x, y) \ p(y, z)4 p(x, z), and thus
p is transitive. □

Next, we present an example that illustrates the permis-
siveness of the assumption that a set-valued relation is total:
namely, by refining arguments appropriately, it is often pos-
sible to transform a situation inwhich the condition is violated
into one in which it is satisfied.

Example (Buying a Home): There are three alternatives
under consideration for the purchase of a new home: two
downtownapartments (BandC) andonesuburbanhouse (H).
Two possible criteria for choosing between these options are
square footage (f) and speed of elevator (e). Let’s assume that
the house is bigger than apartment B, which is bigger than
apartment C, and assume that the elevator to C is faster than
the elevator to B; of course, the house has no elevator, so it
cannot be compared to the apartments by this criterion. Then
the set of positions and set of arguments are

• X 5 {B, C, H}
• A 5 {e, f }.

and we have the following:

p B;Cð Þ ¼ ff g; p B;Hð Þ ¼ ;; p C;Bð Þ ¼ ef g; p C;Hð Þ ¼ ;;
p H;Bð Þ ¼ p H;Cð Þ ¼ ff g:
In particular, we have e Ï p(B, H) [ p(H, B), so the set-

valued relation p is not total. Here, e is interpreted as “has
a faster elevator than,” but we can reformulate the example
with a more refined argument e9, which means “has a faster
elevator than, or if that doesn’t apply, has greater square
footage than.” Formally, we model the set of arguments asA9
5 {e9, f}, and we reformulate p as p9, defined as

p9 B;Cð Þ ¼ ff g; p9 B;Hð Þ ¼ ;;p9 C;Bð Þ ¼ e9f g; p9 C;Hð Þ ¼ ;;
p9 H;Bð Þ ¼ e9; ff g; p9 H;Cð Þ ¼ e9; ff g:
This reinterpretation is harmless, in the sense that it does not
affect the topcycleorundominated set, but it allowsus toapply
our results for total, set-valued relations to the modified
model. k

Next,wenote that thedominance relation �P isapartialorder,
implying that whenX is finite, an undominated position exists,
and we give a characterization of the undominated positions:
a position x is undominated if for every distinct position y,
p x; yð Þ 6¼ ;, and assuming p is total, the converse holds as well.

TheoremA1: The dominance relation �P is a partial order; and
thus if the set X of positions is finite, then there is an undomi-
nated position. Moreover, given any position x 2 X, if
p x; yð Þ 6¼ ; for everyy2X\{x}, thenx isundominated.Assuming
the set-valued relation p is total, then for all positions x, y 2 X,
x�Py holds if and only if for all arguments a 2A, we have xPay;
and thus if x is undominated, then for every other position y 2
X\{x}, we have p x; yð Þ 6¼ ;.

Proof: To see that �P is asymmetric, suppose otherwise to
deduceacontradiction.Then thereexistpositionsx,y2X such
that x�Py and y�Px. By y�Px, it follows that for all z2X, we have
p(z, y)4 p(z, x). Setting z5 x, and using irreflexivity of p, this
implies p x; yð Þ⊆p x; xð Þ ¼ ;. But x�Py implies p x; yð Þ 6¼ ;,
a contradiction. Thus, �P is indeed asymmetric. For transi-
tivity, consider any positions x, y, z 2 X and assume x�Py�Pz.
Then there exists a2 p(x, y)4p(x, z) (now using y�Pz for the
inclusion), so that p x; zð Þ 6¼ ;. Consider any position s and
argument a2 p(s, x)4p(s, y)4p(s, z). Then a2 p(s, z), and
we conclude that p(s, x) 4 p(s, z), and that x�Pz. Thus, �P is
a partial order. If X is finite, it follows immediately that �P
admits a maximal element, i.e., an undominated position.
Now, consider any position x2X, and assume that for all y2
X\{x}, we have p x; yð Þ 6¼ ;, and consider any y 2 X. If y
dominated x, then setting z 5 x, we would have
; 6¼ p x; yð Þ⊆ p x; xð Þ ¼ ;, a contradiction; thus, y does not
dominate x, and we conclude that x is undominated. Last,
assume p is total, and suppose that a position x is undo-
minated but for some position y, we have p x; yð Þ ¼ ;. Since p
is total, this implies p(y, x) 5 A. Clearly, p y; xð Þ 6¼ ;. Now
consider any position z. Since p(z, y) 5 p(z, y) \ p(y, x) 4
p(z, x), by transitivity of p, it follows that y dominates x,
a contradiction. □

Next, we provide a decomposition of the top cycle into
separate components. Formally, given a subset Y 4 X of
positions, we write YP‘x if every element of the set bears the
transitive closure, P‘, to x, i.e., for all y 2 Y, yP‘x. Then
a nonempty set Y of positions is a component if both of the
following conditions hold: for all x 2 Y, we have (Y\{x})P‘x;
and there is no superset of Z Q Y such that for all y 2 Y, we
have (Z\{y})P‘y. Roughly, a component is maximal (with
respect to set inclusion) among sets that bear P‘ (i.e., the
transitive closure of P*) to each of their elements. For ex-
ample, assumeX5 {x, y, z,w} andP*5 {(x, y), (y, z), (z, x), (y,
w)}.Here, the unique component isY5 {x, y, z}. To verify that
Y is a component, note that yP*zP*x, so Y\{x}P‘x, and by
symmetry, it follows that the first condition in the definition is
fulfilled; and the only superset is Z5X, and since w does not
bear P* to x, y, or z, we do not have ZP‘x.

Next, we show that the top cycle consists of the union of
components; moreover, if X is finite and a position x 2 X\TC
does not belong to the top cycle, then there is a component Y
such that YP‘x. Note that the result implies that when X is
finite, the top cycle is nonempty.

TheoremA2:The top cycle is the union of components, i.e., TC
5 [{Y|Y is a component}. Moreover, if the set X of positions is
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finite, then for every position x 2 X\TC outside the top cycle,
there is a component Y such that YP‘x. Finally, if the set-valued
relation p is total, then TC consists of a single component, and
UA 4 UD 4 TC.

Proof: First, let x 2 TC be a position in the top cycle, and
define Y 5 {y 2 X|yP‘x} [ {x}. If Y 5 {x}, then it is clearly
a component, so assume Y contains at least one position
distinct from x. Note that for all y2Y\{x}, because x ismaximal
with respect toP‘, we have xP‘y. Now consider y2Y and z2
Y\{y}. If z 5 x, then we have shown zP‘y; and otherwise, we
have zP‘xP‘y, which again implies zP‘y. Since z 2 Y is ar-
bitrary, we thus have (Y\{y})P‘y. Given y2Y and z2X\Y, we
cannot have zP‘y, for that would imply zP‘x, which is im-
possible since zÏY.We conclude thatY is a component. Thus,
the top cycle is contained in the union of components. Second,
let Y be any component, let x 2 Y be a position in Y, and
consider any y 2X such that yP‘x. If y5 x, then xP‘y follows
immediately, so assume y „ x. If y 2 Y, then by definition of
a component, we have (Y\{y})P‘y, which implies xP‘y. To
show that xbelongs to the top cycle, it then suffices to rule out
y 2X\Y. Suppose toward a contradiction that yÏY. In caseY5
{x}, we can set Z5 Y [ {y} to arrive at (Z\{x})P‘x, contradicting
the assumption thatY is a component. In the remaining case that
Y contains positions distinct from x, given any z 2 Y, we have
yP‘xP‘z,whichimpliesyP‘z.Again,wearriveat(Z\{z})P‘z,and
since z 2 Y is arbitrary, this contradicts the assumption that Y is
a component. We conclude that x belongs to the top cycle, and,
therefore, the top cycle consists of the union of components.

Next, assumeX isfinite, andconsiderx2X\TC. LetY5 {y2
X|yP‘x}, which is nonempty and finite. We claim that there is
a maximal element of P‘ inY, i.e., a position y* 2 Y such that
for all z 2 Y, if zP‘y*, then y*P‘z. Indeed, we can define ~P as
the asymmetric part ofP‘, so that for all s, t2X, s~Pt if and only
if sP‘t but not tP‘s. It is then straightforward to check that ~P is
a partial order, and thus it admits maximal elements inY, and
these fulfill the claim. DefineZ5 {z2X|zP‘y*}[ {y*}. By the
initial argument of the proof, it follows thatZ is a component,
and by transitivity of P‘, we have ZP‘x, as required.

Last, assumingp is total, consider any componentsY andZ. If
these components are singleton and consist of the sameposition,
then clearlyY5Z.Otherwise,we can choosedistinct positions y
2 Y and z 2 Z. Since p is total, we can assume without loss of
generalitythatyP*z.Consideranyx2Zandanyy92(Y[Z) \ {x}.
In case y92Z, then y9P‘x follows immediately from the fact that
Z is a component, so assume y92Y. In case y9„ y andx5 z, then
we have y9P‘yP‘x; and in case y9 „ y and x „ z, then we have
y9P‘yP‘zP‘x. In all cases,wehave y9P‘x. Since y92Y and x2Z
werearbitrary, it followsbydefinitionofacomponentthatY[Z
4 Z, i.e., Y 4 Z. Since Z is a component, we therefore have
zP‘y, anda symmetric argument impliesZ4Y, i.e.,Y5Z.We
conclude that there isa single component, andbythefirstpartof
the theorem, this coincides with the top cycle.We have already
notedthatUA4UD.Now,consideranyundominatedposition
x2UD.ByTheoremA1, it follows that for ally2X\{x},wehave
xP*y, and thus xP‘y, and this implies x2TC.We conclude that
UD 4 TC. □

Next, we prove Theorems 1–5 from the body of the paper.

Theorem 1 (Long Run Outcomes of Myopic Discussion):
Assume the set X of positions is finite. For every myopic dis-
cussion D and every position xÏXnL Dð Þ outside the limit set

and every argument a 2 A, there is a position y 2 L Dð Þ in the
limit set such that a Ï p(x, y). Moreover, if the set-valued
relation p is total, then for every myopic discussion D, the
limit set is contained in the top cycle: L Dð Þ⊆TC.

Proof: First, assume X is finite, and let D be a myopic dis-
cussion. Consider any position x 2 XnL Dð Þ and argument a,
and suppose toward a contradiction that for all y 2 L Dð Þ, we
have a2p(x, y). For each z 2 XnL Dð Þ, there existsmz such that
for all n $ mz, we have zn „ z. Since X is finite, we can let
m ¼ max mzjz 2 ZnL Dð Þf g, whichmeans that for alln$m, we
have zn 2 L Dð Þ. Since xPazm, the definition of an open dis-
cussion implies that (x,a) appears infinitelyoften inD, i.e., there
exist arbitrarily large n$m such that (xn, an)5 (x, a). For each
such n, we have a 2 p(x, zn) by supposition, and thus the status
quo in round n1 1 is zn11 5 x. But this implies that x 2 L Dð Þ,
a contradiction. Thus, the first part of the theorem holds. Sec-
ond, assume p is total, and consider any myopic discussion D.
We claim that for all x2TC and all y2X\TC, we have p(x, y)5
A. Indeed, since x is in the top cycle and y is not, we cannot have
yP*x, and thus p y; xð Þ ¼ ;. Since p is total, we have p(x, y)5A,
as claimed. Now, choose any x 2 TC, and note that since p is
total, there is a position y such that xP*y, and by definition of
open discussion, there exists m such that xm 5 x. By the pre-
ceding claim, it follows that zm112TC. Indeed, if zm2TC, then
this holds trivially; and if zm Ï TC, then the claim implies am 2
p(x,zm), so thatzm+15 x2TC.Then foralln.m, the statusquo
remains in the top cycle, which implies L Dð Þ⊆TC. □

Theorem 2 (Indeterminacy of Myopic Discussion): Assume
that the set X of positions is finite, and that the set-valued
relation p is total. There is a rotating protocol
P ¼ xm; amð Þf g‘m¼1 such that for every myopic discussionD ¼
xm; am; zmð Þf g‘m¼1 for this protocol, the limit set coincides with

the top cycle: L Dð Þ ¼ TC.

Proof: Assume X is finite and p is total. If the top cycle
consists of just one alternative, say x, then since p is total, we
have p(x, y)5A for all y 2X\{x}, and any protocol in which x
appears gives us the result. Henceforth, we assume |TC| $ 2.
We say a subset Y4X of positions isHamiltonian ifY4 TC
and there exist distinct positions x1,…, xn 2 Y such that Y 5
{x1,…, xn} and x1P*x2P*/xnP*x1. That is, Y is a subset of the
topcycle, and theelementsofY canbe indexedx1,…,xn in such
a way that there is a P*-cycle in line with this indexing; ob-
viously, in this case, we can also re-index positions so that
xnP*xn21P*/x1P*xn. Let H denote the collection of Ham-
iltonian sets. By TheoremA2, the top cycle consists of a single
component, and since it contains at least two distinct alter-
natives, say x, y2 TC, we then have (TC\{y})P‘y and (TC\{x})
P‘x, which yields xP‘yP‘x. This gives us aP*-cycle containing
both x and y, i.e., alternatives x1,…, xk 2 X such that
x1P*x2P*/xkP*x1with x5 xi and y5 xj for some i, j5 1,…, k.
By choosing the shortest such cycle we ensure that the
alternatives x1,…, xk are distinct, and then Y 5 {x1,…, xk} is
Hamiltonian, and thusH is nonempty. Since it is finite, we can
chooseaHamiltonian setY 2 H that ismaximalamongHwith
respect to set inclusion. We claim that Y 5 TC, for suppose
toward a contradiction thatTC n Y 6¼ ;.Wediscern two cases.

Case 1: for all x 2 TC\Y, if xP*xi for some i5 1,…, k, then
xP*xj for all j5 1,…, k. That is, if any position x 2 TC\Y bears
P* to at least one element ofY, then it bears the relation to all
elements of Y. For each y 2 Y, we have (TC\{y})P‘y, so there
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are positions x 2 TC n Y and y 2 Y such that xP�y, and thus
for all i 5 1,…, k, we have xP*xi. Case 1.1: there is some i 5
1,…, k such that xiP*x.Without loss of generality, assume i5
1, so x1P*x. By assumption, we have xP*x2, and thus we have
x1P*xP*x2/P*xkP*x1, but then Y [ {x} is Hamiltonian,
contradictingmaximality ofY. Case 1.2: there is no i5 1,…, k
such that xiP*x. Since (TC\{x})P‘x, there exist distinct
y1; . . . ; y‘ 2 X with y1 2 Y and y1P*y2P*/ylP*x. Since x
belongs to the top cycle, all of the alternatives y1,…, yl
belong to the top cycle aswell. Let jbe thehighest index such
that yj 2 Y, and note that by the assumption of Case 1.2, we
have j,l. Since yj2Y, wemaywrite yj5xi for some i51,…,
k, and thus we have

x1P� x2P� � � � xi P� yjþ1P� � � � y‘P� xP� xiþ1 P� � � � x2P�x1

but then Y [ {yj11,…, yl, x} is Hamiltonian, contradicting
maximality of Y.

Case 2: there exist x2TC\Y and i, j5 1,…, k such that xP*xi
and not xP*xj. Case 2.1: i. j. Then without loss of generality,
wecanchoose i tobe the lowest index subject to i. jandxP*xi.
Then it is not the case that xP*xi21, and since p is total, this
impliesp(xi21, x)5A, and in particular, xi21P*xP*xi, and thus
we have

x1P�x2P� � � � xi�1P�xP�xiP�xiþ1 � � � xkP�x1;

but thenY[ {x} isHamiltonian, contradictingmaximality ofY.
Case 2.2: i , j. Without loss of generality, assume i ¼ 1, so
xP�x1. Thenwe can choose j to be as high as possible subject to
the constraint that not xP�xj. Sincep is total, this implies xjP*x,
and identifying xk11 with x1, we can then write xjP*xP*xj11.
Thus, again Y [ {x} is Hamiltonian, contradicting maximality
of Y. We conclude that Y 5 TC.

Thus, letting the number of elements of the top cycle be n1,
we can index the top cycle set as TC ¼ x1; . . . ; xn1f g so that
xn1P

�xn1�1P� � � � x2P�x1P�xn1 .We define a rotating protocolP
that consists of three phases.

Phase 1: Note that for all i 5 1,…, n1, xi11P*xi implies
there exists ai11 2 A such that ai11 2 p(xi11, xi), where we
identify xn1þ1 with x1, so that a1 2 p x1; xn1ð Þ. For the first
roundsm5 1,…, n1 of the protocol, we set x

m5 xm and am5 am.
Phase 2: Let E consist of all remaining position-argument

pairs that are potentially effective, i.e., it consists of any (x, a)
such that there exists ywith xPay and such that there is no i5
1,…, n with (x, a) 5 (xi, ai). Index this set as
E ¼ xn1þ1; an1þ1ð Þ; . . . ; xn2 ; an2ð Þf g, and in rounds m 5
n111,…, n2, we set xm 5 xm and am 5 am, extending the
definition of the protocol to the first n2 rounds.

Phase3: In roundsm5n211,…,n21n1,we specify that the
protocol again run through the elements of the top cycle in the
order of their indexing, so xm ¼ xm�n2 and am ¼ am�n2 ,
extending the definition of P to the first n1 1 n2 rounds.

We complete the specification of the protocol P by re-
peating this sequence thereafter with periodicity n5 n1 1 n2.
Now, consider a myopic discussionD ¼ xm; am; zmð Þf g‘m¼1 for
this protocol. Note that z2 2 TC. Indeed, if z1 2 TC, this holds
because either z2 „ z1, in which case x1P*z1 implies z2 5 x1 2
TC, or z25 z1; and if z1 Ï TC, then this holds because x1P*z1,
which again implies z25 x12TC. Then the status quo remains
in the top cycle thereafter. Next, we claim that for every
multiple of n5n11n2, sayan (wherea is a positive integer),
the status quo in round an 1 1 is xn1. Indeed, note that in

roundsm5 (a2 1)n,…,an,an1 1, the status quo evolves as
z(a21)n,…, zan11, and specifically, in rounds

a� 1ð Þnþ n1 þ 1; . . . ; a� 1ð Þnþ n2 þ 1;

the status quo is determined by the potentially effective pairs
(x, a) 2 E in Phase 2. In the last round of this phase, say,l5
(a2 1)n1 n21 1, the status quo belongs to the top cycle, i.e.,
zl 5 xi for some i 5 1,…, n1, and at this point, the protocol
enters Phase 3 and runs through the top cycle in order of
indexing. In the subsequent i 2 1 rounds,

a� 1ð Þnþ n2 þ 2; . . . ; a� 1ð Þnþ n2 þ i;

if the status quo changes, then it is replaced by the challenging
position, i.e., forallm5 (a21)n1n211,…, (a21)n1n21 i21,
if zm11 „ zm, then zm11 5 xm. After this, the status quo evolves
according to the cycle: if the status quo changes in roundm1 1,
where m 5 (a 2 1)n 1 n2 1 j, then we have zm11 5 xj,
zmþ2 ¼ xjþ1; . . . ; zanþ1 ¼ xn1 . And if the status quo does not
changeduringthose i21rounds, then inroundm5 (a21)n1n2
1 i, the status quo zm 5 xi is challenged by position is xi, and so
zm11 5 xi, and then we have zmþ2 ¼ xiþ1; . . . ; zanþ1 ¼ xn1 . In
both cases, at the end of Phase 3, the status quo is zanþ1 ¼ xn1 , as
claimed.

To show that L Dð Þ ¼ TC for every myopic discussion
consistent with the protocolP, consider any position x 2 TC,
and let an be any multiple of n5 n11 n2. By the above claim,
the status quo in roundan1 1 is zanþ1 ¼ xn1 . At this point, the
protocol enters Phase 1, and the status quo evolves as zan125
x1, zan13 5 x2,…, za nþn1þ1 ¼ xn1 . Since the positions
x1; . . . ; xn1 exhaust the top cycle, we have xi5 x for some i, and
thus zan1i11 5 x. Since a is an arbitrary positive integer, it
follows that x belongs to the limit set of D, as required. □

Next, we provide an example to demonstrate the possibility
thatmyopicdiscussioncanvisitdominatedpositionsan infinite
number of times.

Example (Myopic Discussion May Visit Dominated Posi-
tion):Assume there are four positions, X5 {A, B, C,D}, and
two arguments, A 5 {a, a9}. Define two linear orders, Pa and
Pa9, as follows:

Pa Pa9

C D
D A
A B
B C

and let pbe the corresponding set-valued relation: for all x, y2
X, a 2 p(x, y) if and only if xPay, and a9 2 p(x, y) if and only if
xPa9y. ByTheorem1, p is total and transitive, and byTheorem
2,D dominates bothA andB, because it is ranked higher than
both positions by each argument; and bothA andD dominate
B, because they are ranked higher than B by each argument.
Note thatAP*BP*CP*DP*A, so the top cycle contains every
position. Nevertheless, by Theorem 2, there is a rotating
protocol such that every myopic discussion for that protocol
cycles through the four positions endlessly. k

Theorem3 (Conclusiveness of ConstructiveDiscussion):Assume
that the set X of positions is finite, and that the set-valued relation p
is transitive.Every constructivediscussionD ¼ xm; am; zmð Þf g‘m¼1
is conclusive, i.e., there is a position x and some m such that for all
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n $ m, zn 5 x. Moreover, there is an argument a 2 A such
that for all y 2 X, a is not an argument for y over x, i.e., a Ï
p(y, x). Finally, if p is also total, then x 5 xa, and x is
undominated.

Proof: Let D ¼ xm; am; zmð Þf g‘m¼1 be a constructive dis-
cussion. To show that D is conclusive, suppose toward
a contradiction that zm21 „ zm for infinitely many m. Let
xmk ; amk ; zmkð Þf g‘k¼1 be a subsequence such that for all k,

zmk�1 6¼ zmk . Since A and X are finite, there must be natural
numbers k , l with k $ 2 such that xmk�1;

�
amk�1; zmk�1Þ ¼ xm‘�1; am‘�1; zm‘�1

� �
. Letting x ¼ xmk�1 ¼

xm‘�1, we have x ¼ zmk by the assumption that zmk�1 6¼ zmk ,
and similarly, x ¼ zm‘ . Letting a ¼ amk�1 ¼ am‘�1, it follows
that x is re-inserted by argument a after it was previously
inserted by the same argument. To see that this is impossible,
letTdenote the setof rounds tbetweenmk21andml21such
that some position xt is inserted by argument a, i.e.,

T ¼ tjmk � 1# t#m‘ � 1; xt ¼ ztþ1 6¼ zt; a ¼ at
� �

:

We can index this set as T 5 {t1,…, tn} so that the indexing of
rounds is increasing, i.e.,

mk � 1 ¼ t1 , t2 , � � � , tn ¼ m‘ � 1:

Then by definition of constructive discussion, we have

x ¼ xtnPaxtn�1Pa � � � xt2Paxt1 ¼ x:

But transitivity ofp implies thatPa is transitive, byTheorem
1, and thus xPax, contradicting asymmetry of Pa. Thus, D is
conclusive, and we can let x denote the unique element of the
limit set.

To prove the second part of the theorem, suppose toward
a contradiction that for every argument a 2 A, there is a po-
sition y 2 X such that a 2 p(y, x). Since X is finite and x is the
conclusionofD, there existsm such that zn5 x for alln$m, so
that x remains status quo after round m. Letting a 5 am, our
supposition yields a position y such that a 2 p(y, x), but since
thediscussion is open, thereexistsn.m such that (xn,an,zn)5
(y, a, x), and then y is inserted by a, i.e., zn11 5 y „ x, a con-
tradiction. We conclude that there is an argument a such that
for every position y, we have a Ï p(y, x).

Finally, assume p is total, so that Pa is a linear order, by
Theorem1. It follows immediately that x is top ranked inPa, so
that x5 xa. Then for every position y2X\{x}, we have a2 p(x,
y), which is nonempty, and Theorem A1 implies that x is
undominated. □

Theorem 4 (Path Dependence of Constructive Discussion):
Assume that the setXofpositions isfinite, and that the set-valued
relation p is total and transitive. For every argument a 2A, the
maximal position xa is reached as the conclusion of some
constructive discussion, i.e., there exists a constructive discus-
sionD such thatl Dð Þ ¼ xa, and thus the set ofoutcomes that can
be concluded from constructive discussion is just the set of
maximal positions: L 5 {xa|a 2 A}. In particular, if there exist
arguments a, a9 2 A such that xa „ xa9, then constructive dis-
cussion is path dependent.

Proof: Assume p is total and transitive, and consider any
argument a and the position xa, which is top ranked according
to the linear order Pa. Let ~A⊆A be the set of arguments with
top ranked alternative equal to xa, i.e., ~A ¼ ~a 2 Ajx~a ¼ xa

� �
.

If there is no argument a9 such that xa9 „ xa, then Theorem 3

immediately yields l Dð Þ ¼ xa for every constructive discus-
sion, so henceforth assume thatAn~A 6¼ ;. Letting k ¼ ~A

�� �� and
l5 |A|, we can indexAn~A asAn~A ¼ a1; . . . ; a‘�kf g and ~A as
~A ¼ a‘� kþ1; . . . ; a‘f g. Furthermore, let E denote the set of
potentially effective position-argument pairs (x, a9) such that x
is not top ranked according to a9, and index this set as E 5
{(xl11, al11),…, (xn, an)}.

Define the protocolP ¼ xm; amð Þf g‘m¼1 such that for rounds
m5 1,…,l, we have xm ¼ xam and am 5 am, and for rounds
m5l1 1,…, n, we have xm 5 xm and am 5 am; and repeat
this sequence thereafter. That is, the initial status quo is chal-
lenged by argument a1 and the position that is top ranked for it,
then the new status quo is challenged by argument a2 and the
position that is topranked for it, and soon; in roundsm5l2k
1 1,…,l, the position-argument pair (xa, am) challenges the
status quo zm; and in roundsm5l1 1,…, n, the remaining
pairs in E appear in the protocol. LetD be the constructive
discussion for this protocol with initial status quo z1 ¼ xa1 ,
which means that the first roundm5 1 trivially determines
status quo z2 ¼ z1 ¼ xa1 in the second round, and in round
l2 k1 1, the status quo does not equal xa. By Theorem 3,
this discussion concludes in a position x that is top rankedby
some argument, and we claim that x 5 xa.

For each argument a9, let ma9 be the first round in which xa9

challenges the status quo, i.e., ma9 5 min{m|xm 5 xa9}. By con-
struction,ma9 #l. Note that prior to roundma9, no position has
been inserted as status quo by the argument a9, and clearly
xma9 ¼ xa9Pa9zma9 ,andthusxa9 is insertedasstatusquoinroundma9.

In particular, xa challenges the status quo zl2k11 in round
l2 k1 1, becomes the new status quo in roundl2 k1 2,
and remains so through roundl1 1, i.e., zl2k125/5 zl115
xa.Wemust show that no argument a9 2 An~A can replace xaas
status quo in roundsn1 1onward. For an induction argument,
assume xa remains the status quo until roundm. n, so that zm

5 xa. Clearly, xa remains the status quo in the next round if xm

5 xa, so assume (xm, am)5 (x, a9) with xm „ xa. In case a9 2 ~A,
then it is not the case that xPa9xa95 xa, and thus the status quo
remains zm11 5 xa. In case a9 2 An~A, note that xa9 was pre-
viously inserted as status quo by argument a9 in roundma9, and
it is not the case that xPa9xa9, and thus the status quo again
remains zm11 5 xa. We conclude that for all m . n, zm 5 xa,
which implies l Dð Þ ¼ xa. Since a was arbitrary, we have
proven L 5 {xa|a 2 A}, and thus if there are arguments with
distinct top ranked positions, then constructive discussion is
path dependent. □

Theorem 5 (Path Independence of Debate): Assume X is fi-
nite, andp is total and transitive.Then there is at leastonedebate,
and the conclusion of every debate is the compromise position:
L* 5 {x*}.

Proof: The proof shows, by induction, that the compro-
mise position x* is the unique subgame perfect equilibrium
outcome. An immediate implication is that the compromise
position is a Nash equilibrium outcome.Moreover, because
the debate game is a two-player, zero-sum game, it follows
that equilibrium payoffs are unique: the value of the game
for player 1 is u1(x*), and the value of the game for player 2
is u2(x*) 5 2u1(x*). Every Nash equilibrium gives the
players their values, and the only position that gives the
value of the game to each player is x*, and we conclude that
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the compromise position is the unique Nash equilibrium
outcome.

Given any history hm21 of the extensive form of this game,
some status quo zm is determined, and we can consider the
strategic form of the subgame at history hm. Again, this will be
a two-player, zero-sum (non-symmetric) game. We solve,
recursively, for the equilibrium outcomes of these subgames.
In such a subgame, for each argument a 2 A, we can identify
the set Xa(hm21, zm) of positions that can be inserted by ar-
gument a over each position previously justified by a as

Xa hm�1; zm
� � ¼ x 2 X for all k ¼ 1; . . . ;m� 1; xk ¼ zkþ1

and ak ¼ a implies zm 6¼ xPaxk

����
� �

:

At the initial history h0, before any actions have been taken,
the condition defining this set is vacuously satisfied, so that
Xa(h0, z1)5X. In general, the setXa(hm21, zm)may be empty
for some histories. Recall that if xm215 zm21, then xm215 zm

is justified as status quo by am21, and thus it follows from the
above definition that xm�1=2Xam�1

hm�1; zm
� �

, as the position
cannot be re-inserted by the same argument.

LetA(hm21, zm) be the set of active arguments forwhich the
set of insertable positions is nonempty, i.e.,

A hm�1; zm
� � ¼ a 2 AjXa hm�1; zm

� � 6¼ ;� �
;

and let a(hm21, zm) 5 |A(hm21, zm)| be the number of such
arguments. Let X*(hm21, zm) 5 {xa 2 X|a 2 A(hm21, zm)}
consist of positions top ranked for at least one argument in
A(hm21, zm). For future use, observe that if xm21 is top ranked
by argument am21, then am21 Ï A(hm21, zm). To see this,
suppose toward a contradiction that am21 2 A(hm21, zm). In
case xm21 „ zm21, then position xm21 is inserted as status quo
by argument am21, and it cannot be re-inserted by the same
argument, which implies xm21ÏXam21

(hm21, zm). In case xm21

5 zm21, we have already noted xm�1=2Xam�1
hm�1; zm
� �

. In
either case, the position xm21 cannot be inserted again using
am21, and sincexm21 is top rankedaccording toam21, it follows
that no other position can be inserted using the argument.
Thus, Xam�1

hm�1; zm
� � ¼ ;, as required.

Next, we define a notion of compromise position at (hm21,
zm). If thenumbera(hm21,zm)of activearguments isodd, then
define the compromise position x*(hm21, zm) at (hm21, zm) as
the unique solution x 2 X*(hm21, zm) satisfying the
inequalities

�
a2A hm�1;zmð Þ

Ia;1 xð Þ# a hm�1; zm
� �

2
; (A1)

and

�
a2A hm�1;zmð Þ

Ia;2 xð Þ# a hm�1; zm
� �

2
: (A2)

Whena(hm21,zm) is even, theremaybeoneor twopositions in
X*(hm21, zm) satisfying both (A1) and (A2). We set x*(hm21,
zm) equal to the unique position x 2 X*(hm21, zm) satisfying
(A1) and (A2), or, if there are two such positions, say xk and xl
withk,l, thecompromiseposition isdefinedby twocases: in
casem is odd, then set x*(hm21, zm)5 xl, and in casem is even,
then set x*(hm21, zm) 5 xk.

The proof of the theorem follows from an induction ar-
gument on the numbera(hm21, zm) of active arguments. First,
consider any (hm21, zm) such thata(hm21, zm)5 1, and let abe

the argument such that A(hm21, zm) 5 {a}. In this case, we
claim that the unique subgame perfect equilibriumoutcome is
the compromise position x*(hm21, zm)5 xa. Indeed, if zm5 xa,
then it is not possible to change the status quo, and the debate
ends with the compromise outcome. Otherwise, zm „ xa.
Suppose that the outcome from (hm21, zm) is x „ x*. For some
player i, wehaveui(x*).ui(x), but then i can insert position x

a

with argument a to obtain that as the final outcome, a con-
tradiction. Thus, the compromise position xa is the unique
subgame perfect equilibrium outcome, as claimed.

Next, assume the claim is true when the number of active
arguments is 1, 2,…, k. Formally, assume that for all (hm21,
zm) with |A(hm21, zm)| # k, the unique subgame perfect
equilibrium outcome at this subgame is the compromise
position x*(hm21, zm). For the induction argument, consider
any (hm21, zm) with |A(hm21, zm)|5 k1 1.We prove that the
unique subgame perfect equilibrium outcome is the com-
promise position by considering four cases.

Case 1: |A(hm21, zm)| is odd, and m is odd. Then player 1
moves. Let x minimize u1 over X*(hm21, zm), let
a 2 A hm�1; zm

� �
satisfy x ¼ xa, and suppose that player 1

justifiesxbyargumenta. Lethm ¼ hm�1; x; a
� �

be the resulting
history, and note that the status quo becomes zmþ1 ¼ x.
Then by our observation above, the set of active arguments
becomes

A hm; zmþ1� � ¼ A hm�1; zm
� �n af g:

Since the number of active arguments has decreased, the
induction hypothesis implies that the unique equilibrium
outcome is the compromise position at (hm, zm11), say x*, and
this satisfies

�
a2A hm;zmþ1ð Þ

Ia;1 x�ð Þ#a hm; zmþ1
� �

2
(A3)

and

�
a2A hm;zmþ1ð Þ

Ia;2 x�ð Þ#a hm; zmþ1
� �

2
: (A4)

Since u1 x�ð Þ$ u1 xð Þ, we have

�
a2A hm;zmþ1ð Þ

Ia;1 x�ð Þ ¼ �
a2A hm�1;zmð Þ

Ia;1 x�ð Þ;

and since

a hm; zmþ1
� �

2
¼ a hm�1; zm

� �
2

� 1
2
; (A5)

it follows that x* satisfies (A1).
Moreover, a(hm, zm11) is even, and thus there may be one

or two positions satisfying (A3) and (A4). If there is just one,
then it must appear at the top of at least two arguments, and
thus, the inequality in (A4) holds strictly at x*, i.e.,

�
a2A hm;zmþ1ð Þ

Ia;2 x�ð Þ,a hm; zmþ1
� �

2
: (A6)

If there are two positions satisfying (A3) and (A4), then the
compromise position is the position preferred by player 2, and
again the above inequality holds strictly. Since u2 xð Þ$ u2 x�ð Þ,
we have
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�
a2A hm�1;zmð Þ

Ia;2 x�ð Þ# 1þ �
a2A hm;zmþ1ð Þ

Ia;2 x�ð Þ
 !

,1þ a hm; zmþ1
� �

2

¼ a hm�1; zm
� �

2
þ 1
2
;

where the second inequality follows from (A6), and the equality
follows from (A5), and therefore x* satisfies (A2).

We conclude that x* is in fact the compromise position at
(hm21,zm).Wehaveshown that athistoryhm, if player1 inserts
x by argument a, then her payoff in the continuation of the
game is u1(x*). In equilibrium at the subgame following hm21,
player 1’s actions are optimal, and thus her equilibriumpayoff
in the subgame is at least equal to u1(x*). It remains to be
shown that player 1 cannot obtain a higher payoff by main-
taining the status quo or inserting a different position by
another argument. Suppose that player 1 maintains the status
quo, so that zm11 5 zm, and thus A(hm, zm11)5A(hm21, zm)
and X*(hm, zm11) 5 X*(hm21, zm). Continuation play then
determines an outcome x9 following this history hm. Let �x
minimize u2 over X*(hm, zm11), and let �a 2 A hm; zmþ1

� �
satisfy �x ¼ x�a. Then by a symmetric argument, player 2 can
insert �xby argument �a and obtain the compromise position x*.
Since player 2’s equilibrium strategy is optimal athm, it follows
thatu2(x9)$u2(x*), andwededuce thatu1(x9)#u1(x*). Thus,
player 1 cannot obtain a better outcome than x* by main-
taining the status quo.

Now, suppose that at hm21, player 1 inserts a different
position ~x by an argument ~a, and let ~hm be the resulting history
with status quo ~zmþ1 ¼ ~x. Then the set of active arguments
becomes

A ~h
m
; ~zmþ1

	 

¼ A hm�1; zm

� �n ~af g;
and the positions top ranked for some active argument make
up the set

X� ~h
m
; ~zmþ1

	 

¼ X� hm�1; zm

� �n ~xf g:
Since the number of active arguments has decreased, the
induction hypothesis implies that the equilibrium outcome is
the compromise position at ~h

m
; ~zmþ1

	 

, say ~x�, and this

satisfies

�
a2A ~h

m
;~zmþ1ð Þ

Ia;1 ~x�ð Þ#
a ~h

m
; ~zmþ1

	 

2

; (A7)

and

�
a2A ~h

m
;~zmþ1ð Þ

Ia;2 ~x�ð Þ#
a ~h

m
; ~zmþ1

	 

2

: (A8)

Ifu1 ~xð Þ, u1 x�ð Þ, thenx* satisfies (A7) and (A8), and it follows
that the compromise position at ~h

m
; ~zmþ1

	 

is equal to the

compromise position at (hm, zm11), i.e., x� ¼ ~x�. Thus, player 1
does not obtain a higher payoff than u1(x*).

The remaining case is u1 ~xð Þ > u1 x�ð Þ. Then comparing the
left-hand sides of (A3) and (A7) evaluated at x*, we have

�
a2A hm;zmþ1ð Þ

Ia;1 x�ð Þ$ �
a2A ~h

m
;~zmþ1ð Þ

Ia;1 x�ð Þ;

and comparing the left-hand sides of (A4) and (A8), we have

�
a2A hm;zmþ1ð Þ

Ia;2 x�ð Þ# �
a2A ~h

m
;~zmþ1ð Þ

Ia;2 x�ð Þ:

It follows that for every solution x to (A7) and (A8), we have
u1(x) # u1(x*), and in particular, u1 x�ð Þ$ u1 ~x�ð Þ. Again, we
conclude that player 1 cannot obtain a payoff higher than
u1(x*). Therefore, for a history h

m21 and status quo zm in case
1, the unique equilibriumoutcome is the compromise position
at (hm21, zm), namely, x*.

Case 2: |A(hm21, zm)| is odd, and m is even. This case is
symmetric toCase 1, interchanging the roles of players 1 and2.

Case 3: |A(hm21, zm)| is even, andm is odd. The argument in
this case is similar to that for Case 1. Again, player 1 moves.
Define x and a as in Case 1. If player 1 inserts x by argument a,
then again the induction hypothesis is applied, with the impli-
cation that the unique equilibrium at (hm, zm11) is the com-
promise position x*, now the unique solution to (A3) and (A4),
since a(hm, zm11) is odd. Since u1 x�ð Þ$ u1 xð Þ, we again have

�
a2A hm;zmþ1ð Þ

Ia;1 x�ð Þ ¼ �
a2A hm�1;zmð Þ

Ia;1 x�ð Þ;

and again

a hm; zmþ1
� �

2
¼ a hm�1; zm

� �
2

� 1
2
;

which implies that x* satisfies (A1). Since u2 xð Þ$u2 x�ð Þ, we
have

�
a2A hm�1;zmð Þ

Ia;2 x�ð Þ ¼ 1þ �
a2A hm;zmþ1ð Þ

Ia;2 x�ð Þ
 !

;

and it follows that

�
a2A hm�1;zmð Þ

Ia;2 x�ð Þ,a hm�1; zm
� �

2
þ 1
2
;

and thus x* satisfies (A2).
Theremaybeoneor twopositions satisfying (A1)and(A2).

If there is just one, then we have shown that x* is equal to the
compromise position at (hm21, zm). If there are two, say x* and
x̂, then we must show that u1 x�ð Þ > u1 x̂ð Þ. Otherwise, x� , x̂,
and the inequality in (A1) must hold with equality at x*, i.e.,

�
a2A hm�1;zmð Þ

Ia;1 x�ð Þ ¼ a hm�1; zm
� �

2
:

But this implies

�
a2A hm;zmþ1ð Þ

Ia;1 x�ð Þ ¼ a hm; zmþ1
� �

2
þ 1
2
;

contradicting the fact thatx* is thecompromisepositionat (hm,
zm11). Thus, u1 x�ð Þ > u1 x̂ð Þ, as desired.

Chung and Duggan

34

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
12

.1
55

.1
43

.2
28

, o
n 

28
 D

ec
 2

01
9 

at
 0

3:
09

:2
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/S
00

03
05

54
19

00
06

74

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0003055419000674


We conclude that x* is, in fact, the compromise position at
(hm21, zm). We must then show that player 1 cannot obtain
a payoff higher than u1(x*) by maintaining the status quo or
inserting a different position by another argument. Paralleling
the argument for Case 1, if player 1 maintains the status quo,
then by inserting �x by �a, player 2 can obtain x*, and it follows
that player 1 cannot be better off as a result. If player 1 inserts
a different ~x by argument ~a, then either u1 ~xð Þ, u1 x�ð Þ, in
which case the equilibrium outcome by the induction hy-
pothesis remains x*; or u1 ~xð Þ > u1 x�ð Þ, in which case the
resulting equilibrium outcome, ~x� is equal or less than x*, and
again player 1 cannot obtain a payoff higher than u1(x*).

Case 4: |A(hm21, zm)| is even, and m is even. This case is
symmetric to Case 3, interchanging the roles of players 1
and 2. □

Finally, we end with a discussion of the Bipartisan set of
Laffond, Laslier, and Le Breton (1993) and an extension of
this concept to a model of debate between two win-motivated
participants.

Discussion (Bipartisan Debate):Assuming a finite number
of possible alternatives, recall that a tournament on X is an
asymmetric, total relation P. Laffond, Laslier, and Le Breton
(1993) consider a two-player, symmetric, zero-sum game
between twoparties definedas follows: if party 1 choosesx and
party 2 chooses y, then party 1 receives a payoff of 1 if xPy,
a payoff of21 if yPx, and zero if y5 x; and party 2’s payoff is
negative one times this. That is, interpreting xPy as the situ-
ation in which alternative x beats y, each party wants to beat
the other. It is known that this game has a pure strategy
equilibrium if and only if there is a Condorcet winner, i.e., an
alternative x such that for all y „ x, xPy. In the absence of such
a winning alternative, there is no pure strategy equilibrium,
but the authors show that there is a unique mixed strategy
equilibrium, and the support of the equilibrium strategy, i.e.,

the set of alternatives that are chosenwithpositiveprobability,
is the Bipartisan set of the tournament.

An analogue to the bipartisan set can be defined in the setting
ofadebatebetweentwoparticipants.Onesimplewaytodothis is
to let each the participants choose positions simultaneously;
given position x for participant 1 and position y for participant 2,
wecanspecifyapayoffof1 toparticipant1 if there isanargument
forxoverybutnot the reverse, i.e.,p x; yð Þ 6¼ ; ¼ p y; xð Þ; andwe
specify that participant 1’s payoff is21 if p y; xð Þ 6¼ ; ¼ p x; yð Þ;
andparticipant2’spayoff isnegativeonetimes this.BecauseP* is
not a tournament, the result of Laffond, Laslier, and Le Breton
(1993)doesnotapply,andthisgamecanhavemultipleequilibria.
Because the game is zero sum, however, there will be a unique
mixed strategy equilibrium with a support set that contains the
support of all other equilibria. This approach does not account
for the possibility that xmay be stronger relative to y than vice
versa, in the sense that there are more arguments that favor x
than favor y.

Interestingly, we can extend the approach to capture this.
Assume there are a finite, odd number of arguments, and that
p is total. For each pair of positions x and y, let p(x, y) be the
number of arguments in favor of xover y, minus the number in
favor of y over x, i.e.,

p x; yð Þ ¼ #p x; yð Þ �#p y; xð Þ:
By the preceding assumptions,p(x, y) is oddwhenever x and y
are distinct, and then it follows from Laffond, Laslier, and Le
Breton (1997) that there is a unique mixed strategy equilib-
rium of the game, and the support set of the equilibrium
strategy provides a natural extension of their concept. Ob-
viously, the support of this equilibrium strategy will be a sin-
gleton consisting of the compromise position x* only in the
very special case that p(x*, y) . 0 for all y „ x*; thus, the
equilibrium incentives in this simultaneous-move game differ
markedly from the debate game analyzed in Section 6. k
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