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Abstract

Conventional wisdom holds that the von Neumann entropy corresponds to

thermodynamic entropy, but Hemmo and Shenker (2006) have recently argued

against this view by attacking von Neumann’s (1955) argument. I argue that

Hemmo and Shenker’s arguments fail due to several misunderstandings: about

statistical-mechanical and thermodynamic domains of applicability, about the

nature of mixed states, and about the role of approximations in physics. As a

result, their arguments fail in all cases: in the single-particle case, the finite

particles case, and the infinite particles case.
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Does Von Neumann Entropy Correspond to

Thermodynamic Entropy?

Abstract

Conventional wisdom holds that the von Neumann entropy corresponds to

thermodynamic entropy, but Hemmo and Shenker [2006] have recently argued against

this view by attacking von Neumann’s [1955] argument. I argue that Hemmo and

Shenker’s arguments fail due to several misunderstandings: about statistical mechanical

and thermodynamic domains of applicability, about the nature of mixed states, and

about the role of approximations in physics. As a result, their arguments fail in all cases:

in the single-particle case, the finite particles case, and the infinite particles case.
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1 Introduction

According to conventional wisdom in physics, von Neumann entropy corresponds to

phenomenological thermodynamic entropy. The origin of this claim is von Neumann’s

(1955) argument that his proposed entropy corresponds to the thermodynamic entropy,

which appears to be the only explicit argument for the equivalence of the two entropies.

However, Hemmo and Shenker (H&S) (2006) – and earlier, Shenker (1999) – have

argued that this correspondence fails, contrary to von Neumann. If so, this leaves

conventional wisdom without explicit justification.

Correspondence can be understood, at the very least, as a numerical consistency

check: in this context, this means that the von Neumann entropy has to be included in

calculating thermodynamic entropy to ensure consistent accounting in contexts where

both thermodynamic and von Neumann entropy are physically relevant. Successful

correspondence provides strong evidence of equivalence. While it does not guarantee

equivalence, it seems to be at least a necessary condition for equivalence. If

thermodynamic entropy and von Neumann entropy correspond, then we have reason to

think that von Neumann entropy is rightfully thermodynamic in nature, since proper

accounting of thermodynamic entropy would demand von Neumann entropy. By

contrast, a failure of correspondence seems to entail that the von Neumann entropy is

not thermodynamical in nature, since it is irrelevant to thermodynamic calculations in

contexts where both entropies are physically significant (e.g. when a system has both

quantum degrees of freedom and is sufficiently large to warrant thermodynamical

considerations).

Although Henderson (2003), in my view, has successfully criticized Shenker’s earlier
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argument, little has been done in the philosophical literature to evaluate H&S’s more

recent arguments.1 This lacuna is striking because, as I mentioned, von Neumann’s

argument appears to be the only explicit argument for correspondence for the two

entropies.

My goal in this paper is to fill this lacuna by providing a novel set of criticisms to

H&S. Here’s the plan: I introduce key terms (§2) and then present von Neumann’s

thought-experiment which aims to establish the correspondence between thermodynamic

entropy and von Neumann entropy; along the way, a novel counterpart to the usual

argument for correspondence is discussed (§3). I then present and criticize H&S’s

arguments for the single-particle case in the context of thermodynamics (§4.1) and in the

context of statistical mechanics (§4.2), the N-particles case (§4.3), and the

infinite-particles case (§4.4). I conclude that their argument fails in all cases – in turn,

we have good reasons to reject their claim that the von Neumann entropy fails to

correspond to thermodynamic entropy, and hence the claim that von Neumann entropy

is not thermodynamic in nature.

1It is only slightly better in the physics literature: Deville and Deville (2013) appears to

be the only paper to critique H&S. On the philosophical side, one (very recent) exception

is Prunkl (ms), though she restricts discussion to the single-particle case and appears to

conflate information entropy with thermodynamic entropy. See §4.1/§4.2 for why this is

not obviously right.
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2 Key Terms

Let me first define the notions of thermodynamic entropy and von Neumann entropy.

Following H&S, I define the change in thermodynamic entropy STD between two

thermodynamic states in an isothermal quasi-static process,2 as:

∆STD =
1

T

∫
P dV (1)

We will restrict our discussion to ideal gases in equilibrium (i.e. systems where pressure

P , volume V , and temperature T remain constant).

Next, the von Neumann entropy SVN, for any pure or mixed quantum system, is

defined as:

SVN = −kTr(ρ log ρ) (2)

where k is the Boltzmann constant and Tr(.) is the trace function. Generally, the

density matrix ρ is such that:

ρ =
i∑

n=1

pi |ψi〉 〈ψi| (3)

where ψ1, ψ2, ... ψn correspond to the number of pure states in a statistical mixture

represented by ρ, with p1, p2, ... pn being their associated classical probabilities (which

must sum to unity). In the case where there is only one pure state possible for a system

(e.g. when we are absolutely certain about its quantum state), then n = 1, with

2There is no change in temperature in an isothermal quasi-static process, which is why

T is taken to be constant. As a matter of historical note, von Neumann uses an isothermal

set-up in his argument, with a box containing a quantum ideal gas coupled to a (much

larger) heat sink ensuring constant temperature over time (von Neumann 1955, 361/371).
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probability 1, so the appropriate density matrix is ρ = |ψ〉 〈ψ|. For such a system in a

pure state (i.e. represented by a single state vector in Hilbert space), SVN = 0. For

mixed states (i.e. states which cannot be represented by a single state vector in Hilbert

space, hence mixture of pure states or a mixed state), Tr(ρ log ρ) < 1 and SVN > 0 in

general. A mixed state is often said to represent our ignorance about a system – this will

suffice as a first approximation (more on how to interpret this ignorance in §4.2).

Prima facie, SVN and STD appear to share nothing in common, apart from the word

‘entropy’. However, von Neumann claims that there are important correlations between

the two, which suggests a correspondence between STD and SVN.

3 Von Neumann’s Thought-Experiment

For the sake of parity, I adopt H&S’s presentation of von Neumann’s

thought-experiment,3 which aims to show that changes in thermodynamic entropy can

only be made consistent with the laws of thermodynamics if we considered the von

Neumann entropy as contributing to the calculation of the thermodynamic entropy. Fig.

1. depicts the stages of the thought-experiment.

We begin, in stage one, with a box with a partition in the middle. On one side of the

partition there is a gas at volume V , constant temperature T , and constant pressure P .

Each gas particle starts off having the pure state spin-up along the x-direction
∣∣ψ↑

x

〉
,

which is equivalent to a superposition of spin-up and spin-down pure states along the

3It is not clear to me that von Neumann’s original 1932/1955 argument is exactly the

same as the argument H&S reproduces. However, for the sake of argument, I will refer to

H&S’s version as von Neumann’s argument in this paper.
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z-direction, labelled
∣∣ψ↑

z

〉
and

∣∣ψ↓
z

〉
respectively. According to standard quantum

mechanics, the state of each particle is thus 1√
2
(
∣∣ψ↑

z

〉
+
∣∣ψ↓

z

〉
).

In this context, particles with quantum behavior may be taken to be ideal gases, i.e.

sets of particles each of which do not interact with other particles and take up

infinitesimal space. Following von Neumann’s assumptions (von Neumann 1955, 361),4

each gas particle is understood as a quantum particle with a spin degree of freedom

contained inside a large impenetrable box, and each gas particle is put inside an even

larger container isolated from the environment (i.e. the box we began with). This

ensures that each spin degree of freedom is incapable of interacting with other particles.

These boxes’ sizes also ensure that the positions of these boxes (and hence of the

particles) can be approximately classical. Since the container is much larger than each

gas particle, this ensures that the gas particles take up negligible space relative to the

massive container. Accepting these assumptions, we may then take these quantum

particles to behave like an ideal gas.5 Following H&S, we further assume that the

position degrees of freedom of the gas particles have no interaction with the spin degrees

of freedom at this point, and “due to the large mass of the boxes, the position degrees of

freedom of the gas may be taken to be classical and represented by a quantum

mechanical mixture”. (Hemmo and Shenker 2006, 155)

Moving on, stage two involves a spin measurement along the z-axis on all the

particles in the container, with a result being an equally weighted statistical mixture of

4These assumptions are borrowed from Einstein (1914). For more, see Peres (Peres

2002, 271).
5I shall follow everyone in this debate in assuming that the above set-up is physically

possible.
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particles with either
∣∣ψ↑

z

〉
or
∣∣ψ↓

z

〉
states. As a result, the spin state of each particle is

then represented instead by a density matrix ρspin, such that:

ρspin =
1

2
(
∣∣ψ↑

z

〉 〈
ψ↑
z

∣∣+
∣∣ψ↓

z

〉 〈
ψ↓
z

∣∣) (4)

More precisely, there should be terms for the measurement device too, when truly

considering the entire system. ρspin describes only the subsystem (i.e. the quantum ideal

gas) sans measurement device, i.e. a state with the measurement device traced out –

this is in line with von Neumann’s focus on the entropy changes due to changes in the

subsystem (von Neumann 1955, 358–379). I follow Henderson (2003) and H&S in

talking about the system’s state as though I have already traced the measurement device

out whenever measurement is involved.

Stages three and four are where the particles are (reversibly) separated according to

their spin states by a semi-permeable wall into two sides of the box, each with volume

V .6 As a result of this separation, we in effect double the mixture’s volume. The gas

expands to fill up volume V on each side.

Stage five involves an isothermal and quasi-static compression of the mixture so that

we return to a total volume V (effectively halving the volume on each side of the box),

while pressure on both sides becomes equal. Importantly, due to this compression, STD

decreases due to the decrease in volume.

6This semi-permeable wall can be assumed to be a black box which reversibly separates

particles to different sides based on their different orthogonal/disjoint states; see (von

Neumann 1955, 367–370) for discussion. I follow everyone in the debate in accepting this

assumption.
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Stage six brings all the particles into the pure spin state
∣∣ψ↑

x

〉
quasi-statically and

without work done, while stage seven removes the semi-permeable wall, such that the

system returns to its original state.

Fig. 1: from top to bottom, stage one to stage seven, as described by H&S.

Now consider how SVN and STD change across the various stages. Stage seven ends

with the body of gas having the same thermodynamic state (same V , same P , and

constant T ) as stage one. Furthermore, all the thermodynamic transformations

performed were reversible, and removing the wall alone does no additional work. Thus,

the system at stage one must have the same thermodynamic entropy as stage seven, i.e.

∆STD = 0, since STD depends only on the initial and final state of the system.
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∆SVN = 0 from stage one to seven too, since the system is in the same state in both the

first and seventh stages.

Since stage six does not involve thermodynamic transformations, there is no change

in STD. Likewise, the transformation of ρspin to
∣∣ψ↑

x

〉
here does not change SVN as the

transformation can be performed unitarily. This is possible as a result of our separation

of the gases to different sides of the box according to their spin-eigenstates - given this,

we can perform unitary operations on each side of the box (or perform the more general

measurement procedure recommended by (von Neumann 1955, 365-367)), to transform

them into the same state as stage one. Both unitary transformations and von Neumann’s

procedure do not increase SVN, and so there is no change in SVN at stage six as a result.

There are no changes in STD or SVN in stages three and four. While there is an

increase in the gas’s volume, as noted above, from V to 2V , and hence an accompanying

increase in STD by n.R.log 2,7 there is also a compensating change in the

thermodynamic entropy of mixing8,9 by −n.R.log 2 which exactly compensates this

7Here, n refers to the number of moles of gas in the system, and R is the gas constant.
8Henderson (2003) explains the mixing entropy, describing the mixing of different gases,

crisply: “After separation, each separated gas occupies the original volume V alone. To

return to the mixture, each gas is compressed to a volume ciV (where c is the concen-

tration of the ith gas). The compression requires work W = −n.k.T
∑

i ci log ci to be

invested, and the entropy of the gas is reduced by ∆S = −n.k.
∑

i ci log ci. An increase

in entropy of the same amount must then be associated with the mixing step of removing

the partitions. This is the ‘mixing entropy’.” (Henderson 2003, 292) Separation simply

results in a decrease in entropy of the same amount.
9Tim Maudlin raised the following objection to the applicability of the entropy of mix-

11

Copyright The Philosophy of Science Association 2020.  
Preprint (not copyedited or formatted).  
Please use DOI when citing or quoting. DOI: https://doi.org/10.1086/710072.

This content downloaded from 138.075.043.119 on June 08, 2020 20:50:22 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



increase in STD.10 Since the particles are in orthogonal spin states at this stage, there

are no quantum effects (e.g. ‘collapse’ effects) from simply filtering the gases with the

semi-permeable walls, and hence SVN does not change either.11

However, importantly, there is a decrease in STD in stage five, of −n.R.log 2 due to

the isothermal compression and decrease in volume. Yet, nowhere else is there any

further change in STD. We have to account for why the overall change in STD from the

first to the seventh stages is 0.

As von Neumann argues, only one possibility remains. While STD remains constant

in stage two, notice that there was an increase in SVN, of

−N.k.− log 2 = N.R
NA

.log 2 = n.R.log 2,12 as a result of the spin measurement. This is

equivalent to the change of STD in stage five. The state of each particle changes from a

ing in this context when a version of this paper was presented at a summer school. Mixing

should have a thermodynamic effect only when differences between the gases are already

assumed to be thermodynamically relevant: for example, mixing differently colored gases

should not have a thermodynamic effect unless the difference in color is thermodynamically

relevant. It is, however, not clear whether the difference in spin is a thermodynamically

relevant one, and might amount to begging the question. This is a good point, but one

that I am setting aside for now, since everyone in the debate accepts the assumption that

separating the gases here decreases the entropy of mixing. As we shall see later, a more

fundamental issue arises with using the entropy of mixing in the ‘single particle’ case.
10see (H&S 2006, 157, fn. 4).
11This is argued for in (von Neumann 1955, 370–376).
12N is the total number of particles: since each particle is assumed to be non-interacting

and independent from others under the ideal gas assumption, their entropies are additive.

NA is Avogadro’s number.
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pure state 1√
2
(
∣∣ψ↑

z

〉
+
∣∣ψ↓

z

〉
) to a mixed state represented by ρspin, and hence SVN for the

gas increases on the whole. In order to ensure that entropic changes are consistent, von

Neumann thinks that we should accept SVN’s contribution to STD in this context, where

both quantum effects and thermodynamical considerations are at play. Without

accepting SVN in our entropic accounting, we end up with a violation of thermodynamics

since we have a reversible thermodynamic cycle with non-zero change in STD, contra the

Second Law. In other words, we should accept that SVN corresponds to STD.

Furthermore, the correspondence of SVN and STD in this context can be defended

from another perspective, apart from considerations about consistency from the

thermodynamic perspective: consistent accounting from the perspective of quantum

mechanics also demands correspondence. This is simply a change in perspective with

regards to the thought-experiment, but, to my knowledge, this argument has not been

explicitly made in the literature, thus underselling the case for correspondence in von

Neumann’s thought experiment.

Instead of arguing for correspondence by considering thermodynamic consistency, i.e.

ensuring that ∆STD = 0 throughout the cycle, we can also consider consistency from the

quantum mechanical perspective. We started and ended with the same spin state, and so

it should be the case that ∆SVN = 0 throughout the cycle. Yet, there is an inconsistency:

if we only consider the increase of SVN in stage two as a result of measurement, we

should end in stage seven with an increase in SVN, not ∆SVN = 0. As described, there is

nowhere else in the thought-experiment where SVN changes. However, there is a decrease

in STD in stage five due to the thermodynamic process of isothermal compression, exactly

balancing out the increase in SVN. Hence, we can ensure consistency, i.e. that

∆SVN = 0, only by taking SVN to correspond to STD. In other words, just as the
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thermodynamic accounting of STD is consistent only if we consider SVN, the quantum

entropic accounting of SVN is also consistent only if we consider STD. Consistency from

a quantum mechanical perspective also demands correspondence between SVN and STD.

Though the debate has largely focused only on how the thought-experiment

demonstrates one direction of correspondence, of SVN to STD as a result of

thermodynamical considerations, the correspondence demonstrated by this

thought-experiment in fact goes both ways. Of course, since von Neumann was focused

on demonstrating the thermodynamic nature of SVN (specifically the irreversibility of

measurement), rather than the quantum nature of STD, it was natural that he chose to

approach it the way he did.

4 Hemmo and Shenker’s Arguments

H&S disagree with von Neumann’s argument, and criticize it by considering three cases:

the single-particle case, the finite but large N particles case, and the infinite particles

case.

4.1 Single Particle Case - Thermodynamics

H&S first consider von Neumann’s argument in the single particle case (see Fig. 2).

They claim that the argument does not go through here, since STD actually remains

constant, contrary to our thought-experiment’s description. In other words, using

thermodynamical considerations, they find that SVN should not be included in our

accounting for STD.

Here’s their argument. Consider the stages where there are entropic changes. In
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stage two when the spin measurement was performed, SVN increases as before, since it

tracks the change of the particle’s spin state from pure to mixed.

Contrariwise, STD does not change in stage five (isothermal quasi-static compression)

nor anywhere else (this will be important later). After stage two, the single particle is in

either the
∣∣ψ↑

z

〉
state or the

∣∣ψ↓
z

〉
state. After stages three and four, with the expansion

and separation via semi-permeable wall, there is a particle only in one side of the box,

and not the other. We make an STD-conserving location measurement13 to figure out

which side of the box is empty and which side the particle is at, so as to compress the

box against the empty side. The compression is then performed as per before. However,

this compression does not decrease STD:14 to restore the volume of the ‘gas’ to V no

work needs to be done, since we are compressing against vacuum. Since there is a change

in SVN in this cycle, but no change in STD, the apparent answer, in order to do our

entropic accounting, is to ignore, not incorporate, SVN into STD. Hence SVN does not

correspond to STD.

13Prunkl (ms) claims that the location measurement leads to a violation of the Second

Law. If true, this makes H&S’s argument even more problematic. Here, for the sake of

argument, I assume that the location measurement is unproblematic.
14As an anonymous reviewer rightfully notes, the location measurement is important for

ensuring ∆STD = 0 here. Without the location measurement, we might end up compress-

ing in the wrong direction against the side with the gas, rather than the empty vacuum

- this will have thermodynamic effects since we are doing work on the gas. However, the

H&S set-up emphasizes the location measurement, and I will play along for the sake of

argument.
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Fig. 2: from top to bottom, stage one to stage seven for the single particle case as described by H&S.

Their analysis is problematic. Though their ultimate point in this analysis – that STD

16
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fails to corresponds to SVN – still holds, it does not hold in the way they claim. In fact,

the way it fails suggests to us that we should disregard the single particle case.

For the single particle case, they claim that “... [STD] is null throughout the

experiment.” (H&S 2006, 162) This then allows them to claim that thermodynamic

accounting for STD is consistent only if we did not consider SVN. This then supports

their claim that SVN does not correspond to STD since adding SVN into the

thermodynamic accounting actually renders the otherwise consistent calculations

inconsistent.

They are right to say that the stage five compression (after location measurement)

has no thermodynamic effect because we are compressing against vacuum: no work needs

to be done, and so ∆STD = 0 for stage five. However, I claim that ∆STD 6= 0 for the

single particle case overall, because ∆STD 6= 0 in stages three and four in this context.

As far as I can tell, H&S did not analyze stage three and four, i.e. the isothermal

expansion and separation, in terms of the single particle case at all. Rather, they seem

to have assumed that ∆STD = 0 in these stages as with the original case of the

macroscopic gas.15 However, this assumes that there is both a change in entropy of

n.R.log 2 due to isothermal expansion and a change in the entropy of mixing of

−n.R.log 2 due to separation, as they say so themselves for the original case: “The

increase of thermodynamic entropy due to the volume increase ∆S = 1
T

∫
P dV is

exactly compensated by the decrease of thermodynamic mixing entropy ∆S =∑
wk ln wk (where wk is the relative frequency of molecules of type k) due to the

separation.” (H&S 2006, 157, fn. 4, emphasis mine)

In the single particle case, it makes sense that isothermal expansion should still

15Prunkl (ms) appears to do the same.
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increase STD, since the single particle ‘gas’ is expanding against a piston and doing work.

However, it does not make physical sense to speak of the entropy of mixing here at all,

since there is no separation of gases in the single particle case. The entropy of mixing is

explicitly defined for systems where different gases are separated from/mixed with one

another via semi-permeable walls, but a single particle cannot be separated from/mixed

with itself. The quote above makes this conceptual point explicit: by H&S’s own lights,

the relative frequency of a single particle is simply unity (and null for particles of other

types), so the entropy of mixing is 1 ln 1 = 0. There is no thermodynamic entropy of

mixing in the single particle case.

Discounting the entropy of mixing, however, we find that ∆STD = n.R.log 2 6= 0 for

stages three and four, and hence for the entire process, contrary to H&S’s claim.

Interestingly, correspondence does fail to obtain between STD and SVN, since ∆STD+

∆SVN = 2n.R.log 2 6= 0, despite the process being reversible ex hypothesi : incorporating

SVN into thermodynamic accounting violates the Second Law.

However, on this new analysis, we gain some clarity as to why the single particle case

is problematic. While it is true that incorporating SVN into the thermodynamic

accounting violates the Second Law, STD accounting by itself also violates the Second

Law (contrary to H&S). Even without considering SVN, ∆STD 6= 0 despite the process

being reversible. Thermodynamic accounting is inconsistent here no matter what we do,

which suggests that the reversible process they described for the single particle case is

thermodynamically unsound: if so, any argument H&S make in this context may be

disregarded.

The upshot: I agree with H&S that correspondence fails for the single particle case,

but not why it fails. It is not because the process they described is already
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thermodynamically consistent without taking SVN into account. Rather, it is because

the process is already thermodynamically inconsistent anyway.

In recent work, John Norton argued that thermodynamically reversible processes for

single-particle systems are impossible in principle, which might explain why the process

described by H&S is thermodynamically unsound: it was not justified to assume the

process was reversible for a single particle system. For Norton, a reversible process is

“loosely speaking, one whose driving forces are so delicately balanced around equilibrium

that only a very slight disturbance to them can lead the process to reverse direction.

Because such processes are arbitrarily close to a perfect balance of driving forces, they

proceed arbitrarily slowly while their states remain arbitrarily close to equilibrium

states.” (Norton 2017, 135) Norton notes that these thermodynamic equilibrium states

are balanced not because there are no fluctuations, but because these fluctuations are

negligible for macroscopic systems. However, fluctuations relative to single-particle

systems are large, and generally prevent these systems from being in equilibrium states

at any point of the process, rendering reversible processes impossible in the single

particle case. (Norton 2017, 135) If reversible processes are impossible for single particle

systems in general, then it should come as no surprise that the particular single particle

reversible process used by H&S is likewise thermodynamically unsound, as my analysis

above suggests. If so, H&S’s claim that correspondence fails in this process is simply

besides the point, since this process is not thermodynamic at all.

Since any reversible process cannot be realized for single particle systems in general,

the issue seems not to be with any particular process per se, but with the single particle

case simpliciter. To my knowledge, no one prior to H&S discussed von Neumann’s

experiment in terms of a single particle; von Neumann (1955), Peres (1990, 2002),
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Shenker (1999) and Henderson (2003) all explicitly or implicitly assume a large (or

infinite) number of particles. This is for good reason. As H&S acknowledge, and as we

have seen: “The case of a single particle is known to be problematic as far as arguments

in thermodynamics are concerned”. (H&S 2006, 158) Matter in phenomenological

thermodynamics is assumed to be continuous.16 A ‘gas’ composed of one particle can be

many things, but it is surely not continuous in any commonly accepted sense. In other

words, it is just not clear whether the domain of thermodynamics should apply to the

single-particle case at all.

As Myrvold (2011) notes, Maxwell also made a similar claim with regards to

phenomenological thermodynamics in general ; it does not and should not hold in the

single particle case. On his view, the laws of phenomenological thermodynamics, notably

the Second Law, must be continually violated on small scales:

If we restrict our attention to any one molecule of the system, we shall find

its motion changing at every encounter in a most irregular manner.

If we go on to consider a finite number of molecules, even if the system to

which they belong contains an infinite number, the average properties of this

group, though subject to smaller variations than those of a single molecule,

are still every now and then deviating very considerably from the theoretical

mean of the whole system, because the molecules which form the group do

not submit their procedure as individuals to the laws which prescribe the

behaviour of the average or mean molecule.

16See Compagner (1989) for a discussion of the so-called ‘continuum limit’ as a coun-

terpart to the thermodynamic limit in phenomenological thermodynamics.
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Hence the second law of thermodynamics is continually being violated, and

that to a considerable extent, in any sufficiently small group of molecules

belonging to a real body. As the number of molecules in the group is

increased, the deviations from the mean of the whole become smaller and less

frequent [...] (Maxwell 1878, 280)

The Second Law, and hence phenomenological thermodynamics, should not be expected

to hold true universally in small scale cases, and especially not in the single-particle case.

Von Neumann and everyone else in the debate should have recognized this point. Why,

then, should it matter that the thought-experiment succeeds or fails in this case?

Phenomenological thermodynamics does not apply to single-particle cases. There is thus

no profit in trying to establish correspondence between SVN and STD in this case.

Indeed, if we took seriously Maxwell’s claim that the Second Law fails at small scales, a

failure of thermodynamic entropic accounting might even be expected ; it does not rule

out the possible thermodynamic nature of SVN even though the sum of SVN and STD

might be inconsistent with the Second Law. In short, it is not clear why the

single-particle case is relevant to the discussion at hand.

H&S’s reasoning is untenable, because they fail to respect the context of

phenomenological thermodynamics by bringing it into a context where it is not expected

to hold. Instead, it seems more appropriate that the single-particle case is precisely

beyond the purview of classical thermodynamics, requiring an analogue that only

corresponds to classical thermodynamics at the appropriate scales and limits. We may

then take SVN to be the analogue of STD in this case, only approximating STD as the

system in question approaches the context suitable for traditional thermodynamic
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analysis. If so, we may see von Neumann as merely demonstrating that SVN corresponds,

not at all domains but in the domain where thermodynamics is taken to hold, to STD.

4.2 Single Particle Case Redux - Statistical Mechanics and

Information

Given the foregoing discussion, H&S might insist that SVN fails to correspond to STD

even when take into account a more relevant domain for single particles – statistical

mechanics.

After directly arguing that SVN does not correspond to STD (H&S 2006, 162–165),

they further argue that SVN does not correspond to information entropy (more on this

below) in the single-particle case. Prima facie, this should seem irrelevant to von

Neumann’s argument, which was to establish the correspondence of the thermodynamic

STD and quantum SVN: why should information entropy’s failure to correspond with

SVN be a worry at all?

Here’s one plausible worry, on a charitable reading. If information entropy

corresponds to STD, and H&S shows that SVN fails to correspond to information

entropy, then we might conclude, indirectly, that SVN does not correspond to STD after

all.17 This argument assumes that information entropy does correspond to STD, an

assumption H&S seem to hold as well: this is in line with the so-called ‘subjectivist’

17Caveat: I am not committed to the information entropy’s relationship to thermody-

namics. One may, like Earman and Norton (1998, 1999), be skeptical that information

entropy is related to STD at all, in which case H&S’s argument here is simply irrelevant.
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view of statistical mechanics.18 Furthermore, my above argument against the

misapplication of phenomenological thermodynamics does not seem to apply here, since

this argument is being made in the context of statistical mechanics and its particle

picture, with no commitment to phenomenological thermodynamics.

However, H&S do not do much to motivate the linkage between information entropy

and STD; indeed, in their words, “a linkage between the Shannon information and

thermodynamic entropy has not been established” (H&S 2006, 164). Without this link,

the failure of correspondence between the information entropy and SVN appears, at best,

irrelevant to the correspondence between STD and SVN. Nevertheless, I will take a

charitable view here and assume that there is a correspondence between information

entropy and STD, for the sake of assessing their argument. Here’s a plausible (if

arguable) sketch: if one were a subjectivist like Jaynes (1957), one might take the Gibbs

entropy in statistical mechanics to be a special case of the information entropy. After all,

both have the form:

−
∑
i

pi ln pi (5)

with i being the number of possible states with associated probabilities of occurring pi,

with the Gibbs entropy being multiplied by an additional Boltzmann’s constant k.19 We

know that statistical mechanics corresponds to phenomenological thermodynamics at the

thermodynamic limit so we can think of the Gibbs entropy, and hence information

entropy, as corresponding to STD. I take this to be in line with what H&S have in mind:

“to the extent that the Shannon information underwrites the thermodynamic entropy, it

18Notably, see Jaynes (1957).
19Using the so-called Planck units, where k = 1, Gibbs entropy and information entropy

are then formally equivalent.

23

Copyright The Philosophy of Science Association 2020.  
Preprint (not copyedited or formatted).  
Please use DOI when citing or quoting. DOI: https://doi.org/10.1086/710072.

This content downloaded from 138.075.043.119 on June 08, 2020 20:50:22 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



does so via statistical mechanics” (2006, 165). Assuming that the above picture is

plausible, a failure of correspondence between SVN and the information entropy provides

evidence against the correspondence between SVN and STD.

Their argument comes into two parts. Ignoring STD for the time being (which does

not change throughout the cycle for the single-particle case – see §4.1), they claim that

we can consider the stage five location measurement to be a decrease in information

entropy of ln 2, as a result of learning information about which one of two parts of the

box the particle is in. On first glance, this seems to resolve the arithmetic inconsistency

in entropic accounting: ln 2 is exactly the increase in SVN as a result of the spin state

changing from a pure state
∣∣ψ↑

x

〉
to the mixed state ρspin in stage two. In other words, for

both the information and von Neumann entropy’s accounting to be correct (i.e. net

change of zero across the cycle), we must consider SVN as corresponding to information

entropy. Now, since information entropy also corresponds, ex hypothesi, to STD, we have

an indirect argument for the correspondence of SVN to STD.

However, H&S claim that this argument fails for collapse interpretations, i.e.

interpretations of quantum mechanics on which a superposed quantum state ontologically

collapses into a pure state upon measurement (either precisely or approximately).20 They

allow that, on no-collapse interpretations, e.g. Bohmian or many-worlds interpretations,

the location measurement in stage five does not decrease SVN, since the state of the

system never changes in light of measurements, and so the above argument goes through.

Let us see what they could mean by this claim by following the state of the particle

through the cycle. At stage two, everyone agrees that the state of the system is ρspin

20On GRW-type approaches, though, collapse occurs with or without measurement, but

measurement increases the likelihood of collapse, roughly speaking.
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following the z-spin measurement; SVN increases by ln 2. At this point, the particle’s

position degrees of freedom remain independent from its spin degrees of freedom, as per

our ideal gas assumption, though we might assume the particle starts out on the left half

of the box, with the mixture of position states ρpos(L) with ‘L’ representing the left side.

(Consider Fig. 1 but with only one particle). Following the semipermeable wall’s

filtering at stages three and four, the location of the particle becomes classically

correlated with the spin. Let’s say that the semipermeable wall sends
∣∣ψ↑

z

〉
particles to

the left, represented by ρpos(L), and
∣∣ψ↓

z

〉
particles to the right, represented by ρpos(R).

As such, the (mixed) state of the particle is now:

ρparticle =
1

2

( ∣∣ψ↑
z

〉 〈
ψ↑
z

∣∣⊗ ρpos(L) +
∣∣ψ↓

z

〉 〈
ψ↓
z

∣∣⊗ ρpos(R)

)
(6)

For no-collapse interpretations, H&S agree that the state of the particle stays the same

as above after the location measurement in stage five. We perform the compression in

stage five and remove the partition at the end of stage six, thereby removing the classical

correlations between position and spin. No further change in either information entropy

or SVN occurs, and hence the correspondence goes through (H&S 2006, 164) - the spin

state remains mixed until unitarily transformed into a pure state and completing the

cycle.

For collapse interpretations, they claim that the location measurement decreases SVN

by ln 2, because, on collapse interpretations, the state of the particle upon the

measurement, depending on which side the particle is found, becomes:
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ρparticle =


∣∣ψ↑

z

〉 〈
ψ↑
z

∣∣⊗ ρpos(L)∣∣ψ↓
z

〉 〈
ψ↓
z

∣∣⊗ ρpos(R)

(7)

The spin state of the system here effectively goes from being a mixed state to a pure

state as a result of this measurement: SVN decreases by ln 2. Summing up the entropy

changes, there was a decrease of ln 2 in information entropy, and a net change of zero for

SVN as a result of the increase in stage two and the decrease in stage five. Overall, then,

the change is not zero but −ln 2; our accounting has gone awry, and there is a failure of

correspondence between SVN and information entropy. If this is right, SVN does not

correspond to STD.

However, I think that H&S are wrong to claim that SVN decreases following the

location measurement for collapse interpretations. As Prunkl (Prunkl ms, 11–12) notes,

there is an inconsistency here. Everyone, including H&S, agrees that the spin state of

the particle is mixed – not pure – after stage two’s spin measurement, even on collapse

interpretations (H&S 2006, 160). In that case, why does the particle’s spin become pure

after the location measurement?

I think this results from a confusion over the nature of mixed states. In particular,

they seem to have adopted what Hughes (Hughes 1992, §5.4, §5.8) call the “ignorance

interpretation” of mixed states, confusing what I call classical and quantum ignorance.

They seem to be assuming that mixed states simply represents classical ignorance, i.e.

the lack of knowledge about a particular system: a system represented by a mixed state

really is in a pure state, but we know not which. This is why the location measurement

is supposed to reveal to us the pure state of this system (by revealing which side it is on
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and hence the correlated spin state) and hence ‘wash away’ our classical ignorance of the

real state of the system - post-measurement, we know exactly which pure state this

system is in, unlike pre-measurement; hence SVN decreases.

However, as Hughes (Hughes 1992, 144/150) argues, this interpretation of mixed

states – as representing classical ignorance about which pure state a particular system is

in – cannot be the right interpretation of all mixed states. To begin, a mixed state can

be decomposed in non-unique ways in general. Here’s a simple example: a mixed state

representing a mixture of
∣∣ψ↑

z

〉
and

∣∣ψ↓
z

〉
can also represent a mixture of

∣∣ψ↑
x

〉
and

∣∣ψ↓
x

〉
and so on. If we insist that a mixed state represent our classical ignorance about the real

state of a particular system, then we end up having to say that a system’s state is really

both either
∣∣ψ↑

z

〉
or
∣∣ψ↓

z

〉
, and either

∣∣ψ↑
x

〉
or
∣∣ψ↓

x

〉
. Of course, this is impossible given

quantum mechanics. The defender of the classical ignorance interpretation might insist

that we simply pick one pair of possible pure states but not both at once. In general,

however, there’s no way to do that non-arbitrarily given some density matrix.

Furthermore, this problem only worsens when we consider that there are usually more

than just two ways to decompose a density matrix - a principled choice based on the

mixed state alone is not feasible. The mixed state cannot be a representation of classical

ignorance.

Instead, to paraphrase Hughes (Hughes 1992, 144–145), mixed states should be

(minimally) interpreted as such: if we prepared in the same way an ensemble of systems,

each described with the same mixed state, i.e. a mixture of pure states with certain

weights, then the relative frequency of any given measurement outcome from the

ensemble is exactly what we would get if the ensemble comprised of various

‘sub-ensembles’ each in one of the pure states in the mixture, with the relative frequency
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of each sub-ensemble in the ensemble given by the corresponding weights.

In other words, the sort of quantum ignorance relevant in the right interpretation of

mixed states is not whether we are ignorant about the real state of this particular

system, but whether we are ignorant about the measured states of an ensemble of

identically prepared systems like this one. If this is right, quantum ignorance cannot be

‘washed away’ upon measurement of a single system unlike the sort of ignorance H&S

were implicitly assuming, and it seems like this quantum ignorance is precisely what

remains after the location measurement.

This was roughly Henderson’s (2003) criticism against Shenker (1999), which is why

it is puzzling that H&S (2006) commit the same mistake:

This preparation produces the pure states [
∣∣ψ↓

z

〉
] and [

∣∣ψ↑
z

〉
] with equal

probabilities. In a particular trial, the observer may take note of the

measurement result, and he therefore discovers that he has say a [
∣∣ψ↑

z

〉
]. If he

applies a projective measurement in the [{
∣∣ψ↑

z

〉
,
∣∣ψ↓

z

〉
}] basis, he could predict

that he will measure [
∣∣ψ↑

z

〉
]. However, this does not mean that, if someone

handed him another state prepared in the same way, he could again predict

that the outcome of his measurement would be [
∣∣ψ↑

z

〉
]. In this sense the

observer does not know the state of the system which is being prepared, and

it is because of this ignorance that the state is mixed. Looking at the

measurement result does not remove the fact that there is a probability

distribution over the possible outcomes. (Henderson 2003, 294)

This applies to the location measurement in stage five too: measuring the location of the

particle in this case does not change the state of the particle from a mixed one to a pure
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one even on collapse interpretations. Firstly, it seems quite irrelevant whether we adopt

a collapse or no-collapse interpretation, because the collapse mechanism applies to

superposed pure states, not statistical mixtures. If anything, collapse had already

happened in the stage two measurement procedure, yet everyone including H&S (H&S

2006, 160) accepts that the system is in a mixed state after stage two even for collapse

interpretations. More importantly, there remains a probability distribution over the

states of the particle as a result of stage two’s spin measurement, even after the location

measurement. Given an ensemble of particles prepared from stages one to five in the

same way, we are still not be able to predict with certainty whether an ensemble of

particles would all be measured on the left or right sides of the box (and hence all

spin-up or spin-down) as a result of the mixed state resulting from stage two, only that

half of the ensembles will be on the left and the other half will be on the right. Quantum

ignorance remains – the system remains in a mixed state even after the location

measurement, as:

ρparticle =
1

2

( ∣∣ψ↑
z

〉 〈
ψ↑
z

∣∣⊗ ρpos(L) +
∣∣ψ↓

z

〉 〈
ψ↓
z

∣∣⊗ ρpos(R)

)
(8)

This is exactly the state of the system in no-collapse interpretations, i.e. quantum

ignorance does not discern between collapse and no-collapse interpretations. What has

gone away is the classical ignorance that H&S (mistakenly) assumed was relevant for

mixed states, ignorance about this particular system’s state. By measuring the system’s

location, we come to learn of the correlations between location measurement and the

particle’s spin. This ignorance does not change the mixed state to a pure state: instead,

this loss of classical ignorance – gain in information – is represented as a decrease in

29

Copyright The Philosophy of Science Association 2020.  
Preprint (not copyedited or formatted).  
Please use DOI when citing or quoting. DOI: https://doi.org/10.1086/710072.

This content downloaded from 138.075.043.119 on June 08, 2020 20:50:22 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



information entropy just as before, and this information is what we use to perform the

compression in stage five.

As a result, there is no additional decrease in SVN in stage five for collapse

interpretations; the entropy accounting lines up after all, as with no-collapse

interpretations: the decrease in information entropy does correspond to the increase in

SVN, and so information entropy does correspond to SVN after all. H&S’s argument

does not establish the failure of correspondence between SVN and STD via the failure of

SVN and information entropy to correspond.

To sum up, their arguments in the single-particle case are either ill-motivated and

irrelevant to von Neumann and our discussion of correspondence when considered in

terms of phenomenological thermodynamics, or outright fails when considered in the

more relevant domain of (informational approaches to) statistical mechanics. Either way,

their argument does not support the failure of correspondence between SVN and STD.21

21Let me briefly note that their argument in the two particles case fails for similar

reasons. On the one hand, from the perspective of phenomenological thermodynamics,

their argument is irrelevant: following Maxwell and others, two particles do not a ther-

modynamic system make. On the other hand, in the domain of statistical mechanics,

the analysis in terms of information entropy is irrelevant from non-informational views of

statistical mechanics. From an informational perspective, however, their argument rests

again on the supposed difference between collapse and no-collapse interpretations of mixed

states. Since this difference is non-existent, their argument likewise fails apart in that case.
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4.3 Finitely Many Particles

H&S’s argument in the case of finitely many particles rests on the assumption of

equidistribution, i.e. that the particles will be equally distributed across the left and

right sides of the box after separation by the semi-permeable wall.

Assuming equidistribution, the increase in SVN given the spin measurement in stage

two is Nln2 (H&S 2006, 169). Furthermore, the decrease in thermodynamic entropy in

the fourth stage is Nln2 as well. The entropic accounting therefore seems to work out.

However, H&S press further on the ‘rough’ nature of equidistribution when N is

large but finite: they claim that the change in SVN will only only be Nln2 when N is

infinite, since equidistribution only truly holds when N →∞. In other cases, SVN will

strictly only approximate STD, and hence SVN and STD combined will never be exactly

zero; hence, “Von Neumann’s argument goes through as an approximation” (H&S 2006,

169). However, they claim that this state of affairs suggest, instead, that von Neumann’s

argument strictly fails : “[...] since Von Neumann’s argument is meant to establish a

conceptual identity between the quantum mechanical entropy and thermodynamic

entropy, we think that such an implication is mistaken [...] no matter how large N may

be, as long as it is finite, the net change of entropy throughout the experiment will not

be exactly zero.” (H&S 2006, 169)

As I have already discussed in §4.1, it is not clear to me that von Neumann’s goal really

was to establish strict identity (what they call “conceptual identity”), i.e.

correspondence between SVN and STD in all domains. Rather, it seems to be the

establishing of correspondence only in domains where STD is taken to hold. If so, their

argument here simply misses the point.
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Furthermore, as is well-known, the particle analogue of thermodynamics, statistical

mechanics, become equivalent to phenomenological thermodynamics only when N =∞,

viz. when N arrives at the thermodynamic limit. As such, to complain that SVN does

not match up to STD outside of this domain is to demand the unreasonable, since it is

not clear that even statistical mechanics, the bona fide particle analogue of

thermodynamics, can satisfy this demand. Since SVN approximates STD the same way

statistical mechanical entropies approximate STD (and becomes equivalent at N =∞),

and physicists generally accept that statistical mechanics corresponds to

thermodynamics nevertheless, why should this problem of approximation be particularly

problematic for SVN? I think H&S take too seriously the notion of conceptual identity

involved in von Neumann’s thought-experiment to be strict equality, though I suspect a

better way to understand von Neumann’s strategy is to understand SVN as an

approximation to STD that is more fundamental than STD in small N cases, but

becomes part of the STD calculus in domains where STD applies.

To have a case against SVN as a quantum analogue of STD in the case of finitely

many particles, H&S must explain what exactly the problem is with approximations in

this case, if it has worked out so well for the case of statistical mechanics and

thermodynamics. If not, they might just be “taking thermodynamics too seriously’.22

One might say something stronger: unless they can justify why we cannot use

approximations at all in science, they do not have a case at all. As they note themselves,

STD is itself only on average approximately −Nln2 (H&S 2006, 169), only being equal

to −Nln2 when N =∞. So, in fact, the approximate quantity of SVN, ∼ Nln2, exactly

matches the approximate quantity of STD, ∼ −Nln2, in the case of finitely many

22See Callender (2001).
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particles. Unless there is something wrong with approximations in physics in general,

this, then, is in fact a case of SVN corresponding to STD, contrary to their argument.

4.4 Infinitely Many Particles

H&S consider von Neumann’s argument in the infinite particles case in two different

ways: one as N →∞ and one as N =∞. As they rightly point out, the two cases are

very different for calculations of physical quantities.

Consider stage two and stage five in this context. H&S emphasize that a spin

measurement is “a physical operation which takes place in time” (H&S 2006, 170),

which constrains what is physically possible.

For the case where N →∞, stage two is to be understood as a succession of physical

measurements where “we measure individual quantities of each of the particles

separately and only then count the relative frequencies” (H&S 2006, 170), before coming

up with a density matrix describing this state. In this case, as with the case described in

§4.3, SVN approaches Nln2 as N →∞. Their complaint here consist of two premises:

one, that, as with §4.3, SVN never reaches Nln2 unless N =∞. Two, that since

measurements are physical measurements, we can never perform an infinite series of

these measurements, and so we can never measure infinite particles. A fortiori the

measurable SVN can never arrive at Nln2, and so the entropic accounting is again

supposed to be inconsistent if we consider both SVN and STD.

However, it is clear that their argument is moot given a clear understanding of the

sort of thermodynamics we are interested in (see §4.3). While it is true that SVN will

never reach Nln2, recall that STD (or, more likely, one of its statistical mechanical
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analogues, given the domain of finitely many particles merely approaching ∞ rather than

N =∞) will likewise never reach Nln2. In other words, it does not matter that we can

never perform an infinite series of these measurements, and hence never come to know of

SVN at the thermodynamic limit, since we can likewise never have a thermodynamic

entropy equivalent to Nln2 unless we are at the thermodynamic limit. The two

entropies, then, in fact correspond in this case.

What of the second case? Here, H&S concede that “arithmetically Von Neumann’s

argument goes through at the infinite limit” (H&S 2006, 172), which makes sense

because, as I have insisted so far, von Neumann’s strategy was never to demonstrate the

strict identity of SVN and STD, i.e. the correspondence of SVN and STD in all domains.

Instead, it was to show that SVN corresponds to STD only in the domain where

phenomenological thermodynamics hold, in all other cases merely approximating STD in

large N cases or replacing it altogether (in e.g. single-particle cases). I maintain that

H&S’s main mistake was to confuse the domain where phenomenological

thermodynamics hold, with domains where they do not hold.

H&S complain that “[...] real physical systems are finite. This means that Von

Neumann’s argument does not establish a conceptual identity between the Von Neumann

entropy and thermodynamic entropy of physical systems. Identities of physical properties

mean that the two quantities refer to the same magnitude in the world.” (H&S 2006,

172) In line with what I have said in §4.1, it seems that there was no physically

meaningful theoretical term in phenomenological thermodynamics that could refer to

some quantity in the single-particle case, which was why von Neumann needed to come

up with a new measure of entropy to begin with. Furthermore, extending a concept to a

new domain does not require strict identity, as we have seen and understood for a long
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time in the case of statistical mechanics and phenomenological thermodynamics.

As Peres (2002) summarizes: “There should be no doubt that von Neumann’s

entropy. . . is equivalent to the entropy of classical thermodynamics. (This statement

must be understood with the same vague meaning as when we say that the quantum

notions of energy, momentum, angular momentum, etc., are equivalent to the classical

notions bearing the same names).” (Peres 2002, 174) ‘Equivalence’ here should not be

understood in terms of strict (or conceptual) identity i.e. correspondence at all domains.

Rather, we should understand equivalence loosely as correspondence in the suitable

domains of application, and successful extension of old concepts in these domains to new

domains. As Peres noted above, ‘equivalence’ should be understood in the context of

discovery, where one is trying to develop new concepts which are analogous to old ones

in different domains. For von Neumann, we have a theory (phenomenological

thermodynamics) that is well-understood, but also another theory (quantum mechanics)

that we want to understand in light of the former theory. Finding correspondence

provides us with ways to extend concepts from the original theory to the new theory: for

example, with SVN we may now define ‘something like’ STD whereas before there was no

way to talk about these cases. The same goes for statistical mechanics: by finding a

correspondence between e.g. temperature to mean kinetic energy in the thermodynamic

limit, we can extend the notion of ‘something like’ temperature beyond its original

domain into systems with small numbers of particles, whereas before there was, again, no

way to talk about these cases.

I see nothing wrong in these cases in the context of discovery. We should give up a

strong and untenable notion of conceptual identity in this context. If so, H&S’s

objection loses much bite.
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They further claim that “the fact that the behavior of the two quantities coincides

approximately for a very large number of particles is not enough, because in any

ensemble of finite gases there are systems in which the identity will not be true. This

means that in a real experiment the Von Neumann entropy is not identical with the

thermodynamic entropy.” (H&S 2006, 172) This again reveals a confusion between

phenomenological and statistical thermodynamics. If they want to talk about particles

at all, it seems they must adopt some form of statistical mechanical picture with

microscopic variables, given phenomenological thermodynamics’ emphasis on purely

macroscopic variables like volume or temperature. Yet, if so, they must recognize that

thermodynamic entropy STD is in general not strictly identical to statistical mechanical

entropy, e.g. the Gibbs entropy or information entropy (briefly discussed in §4.2) either.

Their complaint about approximate coincidences not being enough for (the relevant sort

of) equivalence thus weakens significantly, especially since they must assume some such

equivalence (which cannot be strict identity) to even talk about particles within the

context of phenomenological thermodynamics to begin with. Furthermore, statistical

mechanics is evidently empirically successful in explaining and predicting traditionally

thermodynamic phenomena despite this ‘non-equivalence’ – it is not clear why this

‘non-equivalence’ should matter if, for all practical purposes, statistical mechanics is the

conceptual successor of thermodynamics. Of course, if they could come up with a

principled reason why approximations should not be allowed period, while accounting for

statistical mechanics’ empirical success in accounting for thermodynamic behavior, then

this could change. As of now, I see no such argument forthcoming.
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5 Conclusion, and Some Open Questions

Given the above, I hope to have shown that H&S’s argument against the correspondence

of SVN and STD – to my knowledge the only one in the philosophical literature – fails to

hold in all three cases considered (§4.1 – §4.4), as a result of their misunderstanding

about domains where phenomenological thermodynamics should hold and domains

where it should not. This is compounded with misunderstandings about the role of

approximations and the relevant interpretation of density matrices and ignorance in

quantum mechanics. I conclude that their argument fails on the whole; the

correspondence holds for now.

Of course, even if H&S’s claims were debunked, this does not yet amount to a

positive argument for the equivalence between von Neumann entropy and

thermodynamic entropy. Even assuming correspondence, correspondence does not entail

equivalence. However, the former does provide good prima facie reasons to believe the

latter, especially given the novel take on correspondence I provided in the end of §3: we

can accept the correspondence based on thermodynamic considerations about the Second

Law and STD accounting, but also based on quantum mechanical considerations about

SVN accounting. The correspondence supports a ‘two-way street’ – equivalence –

between STD and SVN.

While I hope to have conclusively refuted H&S’s argument, this is but the beginning

of further inquiry into questions arising from this supposed correspondence. Amidst the

tangle of entropies, there remains much more housekeeping to be done for philosophers

of physics.
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