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We construct exact ’t Hooft-Polyakov monopole solutions in a non-Hermitian field theory with local non-
Abelian SU(2) gauge symmetry and a modified antilinear CPT symmetry. The solutions are obtained in 
a fourfold Bogomolny-Prasad-Sommerfield scaling limit giving rise to two different types of monopole 
masses that saturate the lower energy bound. These two masses only coincide in the Hermitian limit and 
in the limit in which the symmetry breaking vacuum tends to the trivial symmetry preserving vacuum. 
In the two theories corresponding to the two known Dyson maps these two masses are exchanged, 
unlike the Higgs and the gauge masses, which remain the same in both theories. We identify three 
separate regions in parameter space bounded by different types of exceptional points. In the first region 
the monopole masses are finite and tend both to zero at the boundary exceptional point, in the second 
the monopole masses become complex and in the third only one of the monopole masses becomes 
zero at the boundary exceptional point, whereas the other tends to infinity. We find a self-dual point in 
parameter space at which the gauge mass becomes exactly identical to the monopole mass.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Ever since Dirac demonstrated 89 years ago [1] that the postulate of the existence of magnetic monopoles provides an explanation for 
the quantization of the electric charge, they have remained an appealing theoretical concept, despite the fact that up to now magnetic 
monopoles have not been observed in nature. See [2,3] for a very recent update on the experimental searches of magnetic monopoles in 
particle colliders and of cosmic origin that have been carried out, are currently performed and on future plans.

The concept of monopoles became an integral part of particle physics, notably of any theory aiming at the formulation of grand 
unification of all fundamental forces, after ’t Hooft [4] and Polyakov [5] noticed that gauge theories almost inevitable contain monopole 
solutions. Subsequently the mechanism for the emergence of monopoles, together with their properties and relations to the internal 
structures of particular gauge theories have been extensively studied and many aspects are very well understood, see e.g. [6,7]. Here we 
are especially interested in the relation of their masses to the gauge particles and whether the intriguing features found in Hermitian 
theories also hold in non-Hermitian versions. Especially if the property found by Montonen and Olive [8] is still valid, that in non-Abelian 
gauge theories the soliton solutions become equivalent to gauge massive fields in a dual theory.

Thus our aim is to study the properties of the monopole solutions in a non-Hermitian field theory with local non-Abelian gauge 
symmetry and a modified antilinear CPT symmetry. We build on our previous investigations [9–11], and further elaborate on a particular 
model studied in [11] for which the Higgs masses have been identified in all PT-regimes. Variants of this model have also been investigated 
with different types of methods in [12–17].

We construct the monopole solutions in a fourfold Bogomolny-Prasad-Sommerfield (BPS) [18,19] scaling limit that has also been suc-
cessful in the Hermitian setting. We shall investigate the properties of these solutions and in particular establish whether the Montonen-
Olive strong-weak duality still holds.

Our manuscript is organised as follows: In section 2 we recall the non-Hermitian field theory previously studied in [11] and set up 
the equations of motion whose asymptotic solutions tend to the vacuum solutions. In sections 3 we discuss the Bogomolny energy bound 
for our theory. In section 4 we carry out the BPS-limit in form of a fourfold scaling limit obtaining two different types of masses from 
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the monopole solutions. In section 5 we discuss the properties of these masses and identify physical regions in the parameter space. Our 
conclusions are stated in section 6.

2. Soliton solution in a non-Hermitian model with S U (2) gauge symmetry

Here we consider the non-Hermitian SU (2) gauge theory with matter fields in the adjoint representation. This is a non-Hermitian 
extension of the Lagrangian studied in [4,20] which is known to possess monopole solutions with finite energies

S =
∫

d4x
1

2
T r (Dφ1)

2 + 1

2
T r (Dφ2)

2 − c1
m2

1

2
T r(φ2

1) + c2
m2

2

2
T r(φ2

2)

−iμ2T r(φ1φ2) − g

4

(
T r(φ2

1)
)2 − 1

4
T r(F 2). (2.1)

Here we take g, μ ∈R, mi ∈R and discrete values ci ∈ {−1, 1}. The two fields {φi}i=1,2 are Hermitian matrices φi(t, �x) ≡ φa
i (t, �x)T a where 

φa
i (t, �x) is a real-valued field. The three generators {T a}a=1,2,3 of SU (2) in the adjoint representation are defined by three Hermitian 

matrices of the form (T a)bc = −iεabc , satisfying the commutation relation [T a, T b] = iεabc T c . One can check that T r(T a T b) = 2δab . The 
field strength tensor is defined as Fμν = ∂μ Aν − ∂ν Aμ − ie[Aμ, Aν ] where the gauge fields are Aμ = Aa

μT a .
This action is invariant under the following local SU (2) transformation of the matter fields and gauge fields

φi → eiαa(x)T a
φie

−iαa(x)T a
, (2.2)

Aμ → eiαa(x)T a
Aμe−iαa(x)T a + 1

e
∂μαa(x)T a. (2.3)

This action is also symmetric under modified CPT symmetry where one of the matter fields φ1 transforms as scalar field and the matter 
field φ2 transforms as pseudo-scalar. This antilinear symmetry is an important indicator for the reality of the classical masses of the 
matter fields as extensively discussed in [9,17]

CPT : φ1(t, �x) → φ1(−t,−�x) , φ2(t, �x) → −φ2(−t,−�x) , i → −i. (2.4)

The equations of motion for the fields φi and Aμ are

(
DμDμφi

)a + 1

2

δV

δφa
i

= 0 , Dν F νμ
a − eεabcφ

b
1(Dμφ)c + eεabcφ

b
2(Dμφ)c = 0. (2.5)

One of the problems often associated with non-Hermitian field theories is the incompatibility of the set of equations of motion [12]. To 
overcome these issues we employed the Pseudo-Hermitian method which consists of mapping the non-Hermitian model to a Hermitian 
model through a similarity transformation. This is a common procedure used in the PT symmetric quantum mechanics [21,22], and in 
close analogy also their field-theoretic versions were studied for several different models [23,17]. The similarity transformations for our 
model eq. (2.1) have already been introduced in [11]

η± =
3∏

a=1

exp

(
±π

2

∫
d3x
a

2φ
a
2

)
. (2.6)

The adjoint action of η± maps the complex action in eq. (2.1) into the following real action

η±Sη−1± =
∫

d4x
1

2
T r (Dφ1)

2 − 1

2
T r (Dφ2)

2 − c1
m2

1

2
T r(φ2

1) − c2
m2

2

2
T r(φ2

2) − c3μ
2T r(φ1φ2) − g

4

(
T r(φ2

1)
)2 − 1

4
T r(F 2)

≡
∫

d4x
1

2
T r (Dφ1)

2 − 1

2
T r (Dφ2)

2 − V − 1

4
T r(F 2), (2.7)

where the parameter c3 takes the value ±1 for η± respectively. Notice that this model is very similar to those with the actions considered 
in [4,20], but with second order coupling term μ2T r(φ1φ2) and negative sign in the kinetic term of φ2.

Next one can use the simple scaling argument [24] to show that monopole solutions with finite energy require the monopole to 
asymptotically approach the vacuum solution V [φ0] = 0 (note that one can add a constant to the action so that this asymptotic condition 
is equivalent to δV [φ0] = 0). The explicit values of the vacuum solutions φ0

α and A0
μ are found by solving δV = 0 and Dμφα = 0 [25]

(φ0
1)a = ±Rr̂a ≡ h0±

1 r̂a , (φ0
2)a = ∓ c2c3μ

2

m2
2

Rr̂a ≡ h0±
2 r̂a,

(A0
i )

a = − 1
e εabcr̂b∂i r̂c + r̂a Ai = − 1

er ε
iaj r̂ j + r̂a Ai , (A0

0)
a = 0, (2.8)

where r = (x, y, z), R2 ≡ (c2μ
4 − c1m2

1m2
2)/(2gm2

2) and overhat indicate the normalisation r̂ = r/
√

x2 + y2 + z2. The Ai are arbitrary 
functions of space-time. This vacuum solution is sometimes called the Higgs vacuum [26] to distinguish it from the usual much simpler 
vacuum solution where A0

μ = 0. The asymptotic condition can be written more explicitly if we consider the spherical ansatz

(φcl
α )a(�x) = hα(r)r̂a , (Acl)a = ε iaj r̂ j A(r) , (Acl)a = 0, (2.9)
i 0
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where the subscript cl denotes the classical solutions to the equations of motion eq. (2.5). Here we are only considering the static ansatz 
to simplify our calculation, but one may of course also consider the time-dependent solution. For the monopole solution to have finite 
energy, we require the two matter fields of eq. (2.9) to approach the vacuum solutions in eq. (2.8) at spacial infinity

lim
r→∞ h1(r) = h0±

1 = ±R , lim
r→∞ h2(r) = h0±

2 = ∓ c2c3μ
2

m2
2

R. (2.10)

Also notice that at some fixed value of the radius r, the vacuum solutions φ0
α and monopole solutions φcl

α both belongs to the 2-sphere 
in the field configuration space. For example, φ0

1 belong to the 2-sphere with radius R because (φ0
1)2 = R2. Moreover, these vacuum and 

monopole solutions belong to the homotopy group π2(S2) =Z. It maps the 2-sphere in the space-time to 2-sphere in the field configu-
ration space, which implies that there are n ∈Z many topologically inequivalent solutions that can be explicitly written by replacing r̂a in 
eq. (2.8), (2.9) with

r̂a
n =

⎛
⎝ sin(θ) cos(nϕ)

sin(θ) sin(nϕ)

cos(θ)

⎞
⎠ . (2.11)

Since we require the monopole and vacuum solutions to smoothly deform into each other at spacial infinity, both solutions need to share 
the same integer n usually referred to as the winding number. It is important to note that winding numbers of φ1 and φ2 need to be 
equal to satisfy Dφ1 = Dφ2 = 0 and therefore we will denote the winding numbers of φ1 and φ2 as n collectively. If they are not equal we 
would have Dφ1 = 0 but Dφ2 	= 0. Next, let us insert our ansatz eq. (2.9) into the equations of motion eq. (2.5) by also making an explicit 
choice for A(r)

(φcl
α )a = hα(r)r̂a

nα
, (Acl

i )a = ε iaj r̂ j
n

(
u(r) − 1

er

)
. (2.12)

This ansatz is more in line with the original ansatz given in [18,19], compare to eq. (2.9). Inserting these expressions into the equations 
of motion eq. (2.5) we find

u
′′
(r) + u(r)

[
1 − u2(r)

]
r2

+ e2u(r)

2

{
h2

2(r) − h2
1(r)

}
= 0, (2.13)

h
′′
1(r) + 2h

′
1(r)

r
− 2h1(r)u2(r)

r2
+ g

{
c1

m2
1

g
h1(r) + c3

μ2

g
h2(r) + 2h3

1(r)

}
= 0, (2.14)

h
′′
2(r) + 2h

′
2(r)

r
− 2h2(r)u2(r)

r2
+ c2m2

2

{
h2(r) + c3

μ2

m2
2

h1(r)

}
= 0. (2.15)

Notice that these differential equations are similar to the ones discussed in [18,19], but with the extra field h2 and extra differential 
equation eq. (2.15). In the Hermitian model the exact solutions to the differential equations were found by taking the parameter limit 
called the BPS limit [18,19] where parameters in the theory are taken to zero while keeping the vacuum solution finite. Here we will 
follow the same procedure and take the parameter limit where quantities in the curly brackets of eq. (2.14) and (2.15) vanish but keeping 
the vacuum solutions eq. (2.8) finite. We will see in section 4 that we also find the exact solutions in this limit. However, before we solve 
the differential equations, let us discuss the energy bound of the monopole.

3. The energy bound

The energy of the monopole can be found by inserting the monopole solution into the corresponding Hamiltonian of eq. (2.7).

h =
∫

d3x T r
(

E2
)

+ T r
(

B2
)

+ T r
{
(D0φ1)

2
}

+ T r
{
(Diφ1)

2
}

− T r
{
(D0φ2)

2
}

− T r
{
(Diφ2)

2
}

+ V , (3.1)

where E, B are Ei
a = Fa

0i , Bi
a = − 1

2 ε i jk F jk
a , i, j, k ∈ {1, 2, 3}. The gauge is fixed to be the radiation gauge (i.e. Aa

0 = 0, ∂i Aa
i = 0). Notice 

that our monopole ansatz eq. (2.12) is static with no electric charge Ea
i = 0 and therefore the above Hamiltonian simplifies to

E =
∫

d3x T r
(

B2
)

+ T r
{
(Diφ1)

2
}

− T r
{
(Diφ2)

2
}

+ V

= 2
∫

d3x Bi
a Bi

a + (Diφ1)
a(Diφ1)

a − (Diφ2)
a(Diφ2)

a + 1

2
V . (3.2)

Here, we simplified our expression by dropping the subscripts Acl
i → Ai , φcl

α → φα . We also keep in mind that these fields depend on the 
winding numbers n ∈ Z. In the Hermitian model (i.e., when φ2 = 0) one can rewrite the kinetic term as B2 + Dφ2 = (B − Dφ)2 + 2B Dφ

and find the lower bound to be 
∫

2B Dφ. Here we will follow the similar procedure but we introduce some arbitrary constant α, β ∈ R
such that B2 = α2 B − β2 B where α2 − β2 = 1. This will allow us to rewrite the above energy as

E = 2
∫

d3x α2
{

Bi
a + 1

(Diφ1)
a
}2

− β2
{

Bi
a + 1

(Diφ2)
a
}2

+ 2
{
αBi

a(Diφ1)
a + βBi

a(Diφ2)
a} + 1

V , (3.3)

α β 2
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To proceed from here, we need to assume extra constraints on α and β such that the following is true

∫
d3x α2

{
Bi

a + 1

α
(Diφ1)

a
}2

− β2
{

Bi
a + 1

β
(Diφ2)

a
}2

≥ 0, (3.4)

∫
d3xV ≥ 0. (3.5)

This allows us to write the lower bound on the energy as

E ≥ 2
∫

d3x
{+αBi

a(Diφ1)
a + βBi

a(Diφ2)
a}

= 2
∫

d3x α
{

Bi
a∂iφ

a
1 + eBi

aεabc Ai
bφc

1

}
+ β

{
Bi

a∂iφ
a
2 + eBi

aεabc Ai
bφc

2

}

= 2
∫

d3x α
{

Bi
a∂iφ

a
1 +

(
−eεabc Ai

b Bi
c
)

φa
1

}
+ β

{
Bi

a∂iφ
a
2 +

(
−eεabc Ai

b Bi
c
)

φa
1φc

2

}

= 2
∫

d3x α
{

Bi
a∂iφ

a
1 + ∂i Bi

aφa
1

} + β
{

Bi
a∂iφ

a
2 + ∂i Bi

aφa
1

}
= 2

∫
d3x α∂i

(
Bi

aφ1
a) + β∂i

(
Bi

aφ2
a)

= lim
r→∞

⎛
⎜⎝2α

∫
Sr

dSi Bi
aφ1

a + 2β

∫
Sr

dSi Bi
aφ2

a

⎞
⎟⎠ , (3.6)

where in the fourth line we used Di Ba
i = 0 which can be shown from the Bianchi identity Dμεμνρσ F a

ρσ = 0. The last line is obtained by 
using the Gauss theorem at some fixed value of the radius r. Since we are integrating over the 2-sphere with large radius, we can use the 
asymptotic conditions eq. (2.10) and replace the monopole solutions {φa

α, Ba
i } with the Higgs vacuum {(φ0

α)a, (B0
i )

a}

E ≥
(

2αφ0
1

a + 2βφ0
2

a
)

lim
r→∞

∫
Sr

dSi(B0
i )

a

=
(

±2αRr̂a
n ∓ 2β

μ2

m2
2

Rr̂a
n

)
lim

r→∞

∫
Sr

dSi(B0
i )

a, (3.7)

where the upper and lower signs of the above energy correspond to the upper and lower signs of the vacuum solutions in eq. (2.8). The 
explicit value of B0

i can be obtained by inserting eq. (2.8) into

(B0
i )

a = −1

2
εi

jk
(
∂ j A0

k − ∂k A0
j + e A0

j × A0
k

)a
. (3.8)

After a lengthy calculation this expression can be simplified to Ba
i = φ̂0

1

a
Bi = r̂a

n Bi where Bi is defined as

Bi ≡ −1

2
εi jk

{
∂ j Ak − ∂k A j + 1

e
r̂n ·

(
∂ j r̂n × ∂kr̂n

)}
. (3.9)

Notice that integrating the first term over the 2-sphere gives zero by Stokes theorem 
∫

S ∂ × A = ∫
∂ S A = 0 where one can show that 

Stokes’s theorem on closed surface gives zero by dividing the sphere into two open surfaces. The second term is a topological term which 
can be evaluated [27] as∫

dSi Bi = −4πn

e
. (3.10)

This is the magnetic charge of the monopole solutions. Notice that we could have chosen Ba
i = φ̂0

2

a
Bi instead, which also leads to 

∫
dSi Bi =

− 4πn
e since we require winding numbers of φ1 and φ2 to be equal. Finally we find our lower bound of the monopole energy

E ≥ 2R

(
±α ∓ β

c2c3μ
2

m2
2

)
r̂a

nr̂a
n

(−4πn

e

)
= −8πn

e
R

(
±α ∓ β

c2c3μ
2

m2
2

)
. (3.11)

Notice that we have some freedom to choose α, β ∈ R as long as our initial assumptions eq. (3.4) are satisfied. We will see in the next 
section that we can take a parameter limit of our model which saturates the above inequality and gives exact values to α and β .
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4. The fourfold BPS scaling limit

Our main goal is now to solve the coupled differential equations eq. (2.13)-(2.15). Prasad, Sommerfield and Bogomolny [19,18] managed 
to find the exact solution by taking the parameter limit which simplifies the differential equations. The multiple scaling limit is taken so 
that all the parameters of the model tend to zero with some combinations of the parameter remaining finite. The combinations are taken 
so that the vacuum solutions stay finite in this limit. Inspired by this, we will take here a fourfold scaling limit

g,m1,m2,μ → 0 ,
m2

1

g
< ∞ ,

μ2

g
< ∞ ,

μ2

m2
2

< ∞. (4.1)

This will ensure that the vacuum solutions eq. (2.8) stays finite, but crucially the curly bracket parts in eq. (2.14), (2.15) vanish. There 
is a physical motivation for this limit in which the mass ratio of the Higgs and gauge mass are taken to be zero (i.e. mHiggs << mg ) as 
described in [28]. We will see in the next section that the same type of behaviour is present in our model, hence justifying eq. (4.1). The 
resulting set of differential equations, after taking the BPS limit is similar to the ones considered in [19,18] with the slightly different 
quadratic term in eq. (2.13). It is natural to consider a similar ansatz as given in [19,18]

u(r) = evr

sinh (evr)
, (4.2)

h1(r) = −α

(
v coth (evr) − 1

er

)
≡ −α f (r), (4.3)

h2(r) = −β

(
v coth (evr) − 1

er

)
≡ −β f (r). (4.4)

where α, β ∈ R were introduced in section 3 and f (r) ≡ {
v coth (evr) − 1

er

}
. One can check that this ansatz indeed satisfies differential 

equations eq. (2.13)-(2.15) in the BPS limit. We have decided to put a prefactor α and β in front of eq. (4.3), (4.4) to satisfy the differential 
equation eq. (2.13). Note that if we take α = 1 we get exactly the same as given in [18,19], which is known to satisfy the first order 
differential equation called Bogomolny equation Bi − Diφ = 0. The ansatz eq. (4.2)-(4.4) only differs from the ones given in [18,19] by the 
prefactors α and β , and therefore our ansatz should satisfy Bogomolny equation with the appropriate prefactor to cancel the prefactor in 
eq. (4.3), (4.4)

Bb
i + 1

α
(Diφ1)

b = 0, (4.5)

Bb
i + 1

β
(Diφ2)

b = 0, (4.6)

where φα ≡ hα(r)r̂n . If we compare these equations to the terms appearing in the energy of the monopole eq. (3.3), then we can saturate 
the inequality in eq. (3.11) by

E[φ1, φ2] = −8πnR

e

(
±α ∓ β

c2c3μ
2

m2
2

)
, (4.7)

where upper and lower signs correspond to the vacuum solutions eq. (2.8). Note that this equality is true up to a constant given by 
∫

d3xV
which can be removed by introducing an appropriate constant in the action eq. (2.7). We can calculate the explicit forms of α and β by 
comparing the asymptotic conditions in eq. (2.10)

lim
r→∞ h±

1 = h0±
1 = ±R , lim

r→∞ h±
2 = h0±

2 = ∓ c2c3μ
2

m2
2

R, (4.8)

with the asymptotic values of eq. (4.2)-(4.4)

lim
r→∞ u(r) = 0 , lim

r→∞ h±
1 (r) = −αv , lim

r→∞ h±
2 (r) = −βv. (4.9)

Comparing the eq. (4.8) and eq. (4.9) we find the algebraic equations for α and β . Using α2 − β2 = 1 and assuming m4
2 ≥ μ4, we find the 

two set of real solutions

α = (±)
m2

2

l
, v = ∓(±)

Rl

m2
2

, β = ∓(±)
c2c3μ

2

l
, (4.10)

where l =
√

m4
2 − μ4. The plus-minus signs in the brackets correspond to the two possible solutions to the algebraic equation of α. These 

need to be distinguished from the upper and lower signs of v and β which correspond to the vacuums solutions eq. (2.8). Inserting the 
explicit values of α and β to the energy eq. (4.7) we find

E[φ1, φ2] ≡ (±)
8πnR

em2

(
∓m4

2 − μ4

l

)
, (4.11)
2
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where we observe two distinct energies for two vacuum solutions eq. (2.8). Notice that we need to take extra care when choosing the 
plus or minus sign in the brackets as wrong choices lead to negative energies. To see this explicitly let us consider the monopole solutions 
with vacuum solutions {h0+

1 , h0+
2 } as boundary conditions. The corresponding energy is

E = (±)
−8πnR

em2
2

(
m4

2 + μ4

l

)
. (4.12)

Then notice that the upper sign in the brackets leads to the positive energy only when n < 0 and the lower sign leads to the positive 
energy when n > 0. This allows us to choose the right sign for the α in eq. (4.10). This implies that the monopole solutions eq. (4.2)-(4.4)
takes the following forms

Winding {h1,h2} u Mass

n > 0

{
m2

2
l f (r),− c2c3μ

2

l f (r)

}
eRlr

m2
2 sinh (eRlr/m2

2)

8πnR
em2

2

(
m4

2+μ4

l

)

n < 0

{
−m2

2
l f (r), c2c3μ

2

l f (r)

}
−eRlr

m2
2 sinh (−eRlr/m2

2)

8πnR
em2

2

(
m4

2+μ4

l

) (4.13)

where at rest the mass is equivalent to the energy of the corresponding monopole solutions. We can repeat the same analysis for the case 
when the monopole solutions asymptotically approach {h0−

1 , h0−
2 } and find the different set of monopole solutions. We summarise here 

all possible solutions and its corresponding masses

Winding {h0
1,h0

2} {h1,h2} u Mass

n > 0 {h0±
1 ,h0±

2 }
{

m2
2

l f (r),∓ c2c3μ
2

l f (r)

}
±eRlr

m2
2 sinh (±eRlr/m2

2)
M±

n < 0 {h0±
1 ,h0±

2 }
{
−m2

2
l f (r),± c2c3μ

2

l f (r)

}
∓eRlr

m2
2 sinh (∓eRlr/m2

2)
M±

(4.14)

Where M± = 8π |n|R(m4
2 ± μ4)/em2

2l ≥ 0. We can combine these solutions and find

{h0
1,h0

2} {h1,h2} u Mass

{h0±
1 ,h0±

2 }
{

Sign(n)
m2

2
l f (r) , Sign(n)

∓c2c3μ
2

l f (r)}
}

±Sign(n)eRlr
m2

2 sinh (±Sign(n)eRlr/m2
2)

M±
(4.15)

So we find two monopoles with two distinct masses characterised by the upper and lower signs of the vacuum solutions eq. (2.8) which 
can be interchanged by choosing opposite sign for c2c3. This is because changing the sign of c2c3 exchanges the vacuum solutions eq. 
(2.8), resulting in swapping of the monopole solutions. Note that the two masses and solutions only coincide in the Hermitian limit μ = 0.

5. Monopole mass and physical region

In this section, we will compare the monopoles masses with Higgs and massive gauge masses. We will analyse different versions of 
the model characterised by choosing different values of ci . It was found in [11,16] that mapping the theories with respect to two different 
Dyson maps eq. (2.6) does not effect the Higgs and gauge masses as they depended on μ4. Here we find that different Dyson maps 
corresponds to exchanging the two monopole solutions eq. (4.15).

5.1. Higgs mass and exceptional points

Let us begin by recalling the results from our previous work [11]. The Higgs masses squared and gauge mass of our model defined in 
eq. (2.1) are

m2
0 = −c2

m4
2 − μ4

m2
2

, m2± = K ±
√

K 2 − 2c1c2m2
1m2

2 + 2μ4 , mg = e
|Rl|
m2

2

, (5.1)

where K = −c1m2
1 − c2

m2
2

2 + 3μ4

2c2m2
2

. We recall that for some values of parameters, our masses can become complex, which is a common 
feature of non-Hermitian theories. The region where all Higgs masses are real were investigated in [11,16]. There are two non-overlapping 
physical regions for c1 = c2 = ±1 in our model eq. (2.1), which are equivalent to −c1 = c2 = ±1 in [11]. Notice that in the BPS limit we 
have m0 = m± = 0, but mg and M± stays finite, such that the ratios mHiggs/mg vanish in the BPS limit. This is in line with the Hermitian 
case [28], providing the physical interpretation mHiggs << mg for the BPS limit.

We have observed that some boundaries of the physical region admit interesting behaviour where the gauge masses vanish. In par-
ticular, there are two distinct points (boundaries) called zero exceptional points of type I and I I where the gauge masses vanish in each 
case. At the type I I zero exceptional points, the vanishing of gauge masses is not surprising because the vacuum manifold collapse to a 
point and the broken symmetry is restored. However, at the type I zero exceptional point the vacuum manifold is finite and therefore the 
symmetry is still broken, nonetheless the gauge mass still loses its mass. The mass matrix for Higgs fields is also non-diagonalisable at 
this point, indicating that this point is a novel feature of the non-Hermitian theory. The type I zero exceptional point which we will call 
0EP, occurs when m4 = μ4.
2
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5.2. Mass swapping of monopoles with similarity transformations

The monopole solutions of the type eq. (4.2)-(4.4) can not exist in the physical region c1 = c2 = 1. To see this, recall that we assumed 
m4

2 −μ4 ≥ 0 in order to find the solutions to α and β in eq. (4.10). Since we want our Higgs masses to be positive, we require m4
2 −μ4 ≤ 0

for c1 = c2 = 1 and m4
2 −μ4 ≥ 0 for c1 = c2 = −1. Therefore we will only find the real solutions to α and β in eq. (4.10) when c1 = c2 = −1. 

This implies that the monopole solutions of type eq. (4.2)-(4.4) can only exist for the case c1 = c2 = −1. This restricts our monopole 
solutions eq. (4.15) to be

{h1,h2} Mass{
m2

2
l f (r), c3

μ2

l f (r)

}
M+ = 8π R

em2
2

(
m4

2+μ4

l

)
{

m2
2

l f (r),−c3
μ2

l f (r)

}
M− = 8π R

em2
2

l

(5.2)

here we took the winding number n = 1. Let us denote the solutions with the same signs to be (+, +) solution and the opposite signs to 
be (+, −) solution. Then for example, if c3 = 1 then the first solution of above table is a (+, −) solution. In summary we have

Solution Mass when c3 = 1 Mass when c3 = −1
(+,+) solution M+ M−
(+,−) solution M− M+

(5.3)

The Higgs masses and gauge masses are independent of the sign of the non-Hermitian coupling c3, but here we see that the monopole 
masses depend on the signs of the non-Hermitian coupling. This implies that the monopole mass depends on the similarity transformation 
in eq. (2.6), where choosing η± corresponds to c3 = ±1. So we observe that the different monopole masses, resulting from different 
solutions, can be exchanged by using different similarity transformations.

We started with the four different possible theories Sc1c2 in eq. (2.1) which can be transformed into many different theories un-
der appropriate similarity transformations. Here we considered two similarity transformations η± which gives 8 possible theories 
η± Sc1c2η

−1± ≡ sc1c2± . We have observed in [11] that only s++± and s−−± admit positive gauge masses. This is somewhat reminiscent 
of how φ4 theory can only admit symmetry breaking when the sign in the mass term is opposite to the sign in the φ4 term. If we focus 
on the (+, +) solution then it appears at first sight that the two theories s−−+ and s−−− are inequivalent as the mass of the (+, +)

solution changes. However, notice that the masses are swapped between (+, +) and (+, −) solutions, therefore the two theories s−−+
and s−−− are in fact equivalent with respect to the internal symmetry of exchanging the two monopole solutions. This internal symmetry 
can be seen in eq. (5.2) where choosing the different Dyson map (i.e. different values for c3) leads to two monopole solutions to swap. 
Let us summaries this

Theories Gauge mass Mass of (++) solution Mass of (+−) solution
s++± mg do not exist do not exist
s−−+ mg M+ M−
s−−− mg M− M+

(5.4)

5.3. Finite energy condition violation

As discussed in section 5.1, the gauge mass vanishes at the zero exceptional point μ4/m4
2 = 1. We notice that in this parameter limit 

our two monopole masses eq. (5.3) vanish or diverge

lim
μ4

m4
2
→1

8π |n|R
em2

2

l = 0 , lim
μ4

m4
2
→1

8π |n|R
em2

2

(
m4

2 + μ4

l

)
→ ∞. (5.5)

We have taken here R =
√

(m2
1m2

2 − μ4)/2gm2
2 since our monopole solution can only exist when c1 = c2 = −1. From now on we keep this 

choice and take c1 = c2 = −1. The monopole solutions eq. (5.2) also diverge at the zero exceptional point. This is a similar effect to how 
Higgs fields are no longer identifiable at the zero exceptional point because they diverge and the Hamiltonian is no longer diagonalisable. 
Let us denote the two monopole masses as M− ≡ Mcov and M+ ≡ Mdiv for converging and diverging masses at 0EP limit. The converging 
mass can be written in terms of the gauge mass as

Mcov = 8π |n|
e

Rl

m2
2

= 8π |n|
e2

mg . (5.6)

Therefore we see that only one of the monopole masses satisfies the Montonen-Olive duality [8], whereas the other mass does not satisfy 
this duality due to an additional factor (m4

2 + μ4)/(m4
2 − μ4).

Let us rewrite the monopole and gauge masses in terms of the finite quantities in the BPS limit eq. (4.1)

mg = e√
2

√
(X − Y Z)(1 − Z 2), (5.7)

Mcov = 8π |n|
e

√
(X − Y Z)(1 − Z 2), (5.8)

Mdiv = 8π |n|√
X − Y Z

1 + Z 2

√
2
, (5.9)
e 1 − Z
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Fig. 1. Both panels are plotted for X = 1, Y = 0.8, |n| = 1 with different values for e. The dashed lines in panel (b) indicates the self-dual points where the gauge mass and 
the monopole mass coincide at Z−

0 = 0.689, Z+
0 = 1.45.

where m2
1/g ≡ X, μ2/g ≡ Y , μ2/m2

2 ≡ Z . Therefore the 0EP corresponds to Z = 1. One can view the parameters Y an Z as a measure 
of how strong the non-Hermitian term is coupled to the Hermitian theory. Notice that two monopole masses eq. (5.8), (5.9) are real 
and positive when the gauge mass eq. (5.7) is real and positive. This implies that the physical region of monopole masses and gauge 
mass coincide when c1 = c2 = −1 and Z 	= 1. Moreover, monopole masses and Higgs masses eq. (5.1) are both real and positive when 
c1 = c2 = −1 and Z 	= 1. This is because the physical region of Higgs masses is a subset of the physical region of the gauge mass as seen 
in [11].

Let us plot eq. (5.7)-(5.9) for n = 1, X > Y (i.e. m2
1 > μ2) with a weak and a strong coupling e = 2, e = 10, respectively. The three 

regions are separated by the two types of exceptional points discussed in section 5.1. Region 1 is bounded between the Hermitian limit 
Z → 0 and the above 0EP of type I at Z = 1, where the vacuum manifold stays finite. We see here that one of the monopole masses, Mdiv , 
diverges at the 0EP. This violates our initial assumption eq. (2.10) of the finite energy of the monopole. The reason for this is because the 
monopole solution eq. (5.2) is ill-defined at the 0EP, therefore, one can not continuously deform the monopole solutions to the vacuum 
solutions eq. (2.8). In fact, the finite energy condition eq. (2.10) is also violated in the region 2 as the monopole solutions are complex, 
but the vacuum solutions are real and therefore they can not continuously be deformed into each other by taking r → ∞. In region 3, the 
finite energy condition is restored as both the monopole and the vacuum solutions are complex. In summary:

Region 1 Region 2 Region 3
Monopole Real Complex Complex
Vacuum Real Real Complex

(5.10)

In the strong coupling case e = 10, we find self-dual points, Z±
0 , at which the gauge mass mg and the monopole mass Mdiv become 

equal and interchange their relative size in both regions 1 and 3. This phenomena only occurs when the gauge mass is bigger than the 
monopole mass in the Hermitian limit Z → 0. To see this, consider the monopole masses when Z = 0 M0 = Mdiv |Z=0 = Mcov |Z=0. Then 
one can show that mg < M0 implies e2 < 8

√
2|n|π . On the other hand, solving mg = Mdiv one finds

(Z±
0 )2 = e2 ± 8

√
2|n|π

e2 ∓ 8
√

2|n|π > 0 =⇒ e2 > 8
√

2|n|π. (5.11)

Therefore mg < M0 contradict (Z±
0 )2 > 0. Note that, the existence of the self-dual points Z±

0 only depends on the values of e and |n| and 
not on X and Y .

Next let us consider the X < Y (i.e. m2
1 < μ2) case. This case is equivalent to the X > Y but with regions 1 and 3 exchanged. This 

means that the behaviour observed in the strongly non-Hermitian region in X > Y of Fig. 1 is equivalent to the behaviour observed in the 
weakly non-Hermitian region in X < Y of Fig. 2.

Finally let us look at the X = Y (i.e. m2
1 = μ2) case. We see that the regions 2 collapses as the two boundaries coincide (Fig. 3). The 

gauge and monopole masses mg and Mcov behave similarly to the X > Y case but we see an interesting behaviour of the monopole 
mass Mdiv at the 0EP. As we discussed in previous cases, the finite energy condition fails at the 0EP therefore one would expect to find 
unbounded energy. However, we observe that the monopole mass Mdiv is finite even at the 0EP. This can be verified by looking at the 
asymptotic value of Mdiv at Z = 1

lim
Z→1

( Mdiv |X=Y ) = 8π
√

X

e
lim
Z→1

(√
1 − Z(1 + Z 2)√

1 − Z 2

)
= 8π

√
X

e

√
2. (5.12)

At the 0EP the monopole solutions (5.2) are ill-defined and violate the finite energy condition eq. (2.10). However for X = Y = 1 they 
remain finite.

In the three cases we considered above, we see that the monopole mass can reach infinity with finite values of Z . For example, the 
region 1 of the Fig. 1 can not be physical as Mdiv diverges at Z = 1. We see that the only physical region (i.e. no diverging mass with 
finite values of Z ) is the region 1 of the case X < Y and X = Y .
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Fig. 2. Both panels are plotted for X = 1, Y = 1.2 with different values for e. The dashed lines in panel (b) indicates the self-dual points where the gauge mass and the 
monopole mass coincide at Z−

0 = 0.689, Z+
0 = 1.45.

Fig. 3. Both panels are plotted for X = 1, Y = 1 with different values of e. The dashed lines in panel (b) indicates the self-dual points where the gauge mass and the monopole 
mass coincide at Z−

0 = 0.689, Z+
0 = 1.45.

6. Conclusion

We found and analysed the ’t Hooft-Polyakov monopole in the non-Hermitian model possessing SU (2) symmetry and anti-linear 
CPT symmetry using the pseudo-Hermitian approach. Following the procedure outlined in [18,19] we have found two exact monopole 
solutions eq. (5.2) in the BPS limit which saturated the lower bound of the energy. These monopole solutions can only exist in one of the 
two physical regions characterised in [11] by c1 and c2. We have considered four theories Sc1,c2 eq. (2.1) which were mapped to 8 theories 
via two similarity transformations eq. (2.6). These transformations were previously found to not affect the Higgs masses and gauge masses 
as they have no dependencies on the similarity transformation parameter c3. Here we observed two distinct masses for each monopole 
solutions to be interchangeable under different similarity transformations, as they depend on c3.

At first sight that seemed to suggest that the two theories with different similarity transformations are not physically equivalent. This 
is a well known feature in the quantum mechanical setting, where different types of similarity transformations lead to different sets of 
observables, i.e. different physical theories [29]. Much to our surprise the interchange of the monopole masses for the different similarity 
transformations is, however, compensated by the internal structure that leads to different monopoles emerging from different soliton 
solutions. Thus, as discussed in section 5.2, overall the two theories resulting from the different similarity transformations can be seen as 
equivalent. It will be very interesting to investigate in future whether this feature survives when considering more complicated similarity 
transformations.

The behaviour of the gauge and monopole masses were investigated as function of the non-Hermitian coupling Z = μ2/m2
2. Three 

disconnected regions were found in Z ∈ (0, ∞) where finite energy condition failed in one of the regions, resulting in complex energies. 
At one of the boundary (0EP of type I) of the region, the monopole mass diverged to infinity, signalling that the theory is unbounded at 
this boundary. However, the monopole mass can have finite non-zero value even at 0EP of type I when two boundaries (0EP of type I
and I I) coincide.

The issue of finite energy at the boundary requires further investigation as it is peculiar to observe a finite energy of the solution which 
is ill-defined at the boundary. Here we have considered here a classical theory and of course it will be very interesting to investigate its 
quantisation in detail.
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