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ABSTRACT

According to the Bad Company objection, the fact that Frege’s infamous Ba-
sic Law V instantiates the general definitional pattern of higher-order abs-
traction principles is a good reason to doubt the soundness of this sort of de-
finitions. In this paper I argue against this objection by showing that the defi-
nitional  pattern  of  abstraction  principles  –  as  extrapolated  from  §64  of
Frege’s Grundlagen– includes an additional requirement (which I call the spe-
cificity condition) that is not satisfied by the Basic Law V while is satisfied by
other higher-order abstractions such as Hume’s Principle. I also show that the
failure of this additional requirement in the case of Basic Law V is engende-
red by an essential feature of Frege’s conception of logic and thus that Frege
himself should not have regarded the Basic Law V as a definition by abstrac-
tion.
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Frege’s Logic.

RESUMO

Segundo a objeção da Má Companhia, o fato de que a infame Lei Básica V
de Frege proporciona o padrão de definição geral dos princípios de abstração
superior é uma boa razão para duvidar da validade deste tipo de definições.
Neste artigo, eu argumento contra esta objeção, mostrando que o padrão de
definição dos princípios de abstração — como extrapolados a partir do §64
do Grunlagen de Frege — inclui um requisito adicional (que denomino como
a condição de especificidade) que não é satisfeito pela Lei Básica V, embora
seja satisfeito por outras abstrações de ordem superior, tal como o Princípio
de Hume. Mostro também que a falha deste requisito adicional no caso da
Lei Básica V é engendrada por uma característica essencial da concepção de
Frege da lógica, e que, assim, o próprio Frege não deveria ter tomado a Lei
Básica V como uma definição por abstração.
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1. Introduction

Frege’s early attempt to provide logical foundations to arithmetic is

based on a special sort of definitions which have been named abstraction prin-

ciples. Although Frege neither used this terminology nor explicitly formulated

a rigorous condition on what it takes for a definition to be an abstraction prin-

ciple, it is commonly agreed that an abstraction principle is an implicit defini-

tion of instances of a certain concept, where conditions of identity between

them are framed in terms of a an equivalence relation. One of Frege’s most

famous examples of an abstraction principle is the implicit definition of the

concept of ‘direction of a straight line’: the direction of a line a is identical to

the direction of a line b iff line a is parallel to line b. In general, the definitio-

nal pattern of a first-order abstraction principle is formally represented as fol-

lows:

∀x∀y[R(x, y) ↔ σ(x) = σ(y)] (AP)

where R is a first-order equivalence relation and σ is the so-called abstraction

operator. It has to be said that abstraction principles which play an effective

role in Frege’s logicist project are second-order, i.e. the equivalence relation

appearing on the left limb of the bi-conditional is second-order. For instance,

Hume’s Principle – i.e. the implicit definition of cardinal numbers – is framed

in terms of the relation of equinumerousity: the concept F is equinumerous to

the concept G iff the cardinal number of F is identical to the cardinal number

of G. We schematically represent a second-order abstraction principle as fol-

lows:

∀X ∀Y [Rx(Xx,Yx) ↔ σx(Xx) =σx(Yx)] (AP2)

where X, Y are second-order variables, R is a second-order equivalence relati-

on, and σ is a second-order abstraction operator (an operator that when com-

bined with a monadic conceptual expression forms a singular term). Another

famous (and notorious) example of higher-order abstraction is Frege’s Basic
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Law V which says that whenever two concepts are co-extensional they have

the same value-range:

∀X ∀Y [∀x(Xx ↔ Yx) ↔ εx(Xx) = εx(Yx)] (BLV)

where ε is the value-range operator. It is well-known that the Basic Law V le-

ads to Russell’s paradox and thus is inconsistent. This fact has induced a gene-

ral  objection against  the soundness  of  definitions  by abstraction which has

been traditionally called the Bad Company objection. The objection may be

summarized  as  follows:  if  the  definitional  pattern  of  abstraction principles

only requires that the relation appearing in the left limb is an equivalence rela-

tion, then this definitional pattern cannot be the base for formulating correct

definitions, for the relation of co-extensionality appearing in the left limb of

the Basic Law V is an equivalence relation, yet the correspondent abstraction

principle is inconsistent. Thus abstraction principles that are reasonably con-

sistent – such as Hume’s Principle – are in bad company, for they share the

same definitional pattern with the Basic Law V.

As remarked by Linnebo (2009) “The bad company problem shows

that a deeper understanding is needed of the conditions under which abstracti-

on is permissible”. In other words, the fact that a relation R is an equivalence

relation is not enough to ensure that the correspondent bi-conditional (AP2)

should count as an abstraction principle, i.e. as a valid definition. A possible

reply to the bad company objection is based on a deeper analysis of the defini-

tional pattern that characterizes abstraction principles resulting in new require-

ments on the relation appearing in the left limb such that the Basic Law V

may be shown to fail to satisfy these requirements that other reasonably con-

sistent abstraction principles meet. This is the strategy that I pursue in this pa-

per. In section 2 I will analyze the definitional pattern of abstraction principles

by considering the passage in which Frege introduces this sort of definitions; I

will argue that in order to formulate a permissible abstraction principle, the

equivalence relation R must satisfy what I call the specificity condition. In sec-

tion 3 I will show that differently from Hume’s Principle, the Basic Law V do-
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es not satisfy the specificity condition. In section 4 I will try to spell out what

feature of the relation of co-extensionality in Frege’s system of logic prevents

the Basic Law V to be a permissible abstraction principle.

2. The definitional pattern of abstraction principles

The notion of definition by abstraction is introduced by Frege in §64

of his  Grundlagen, where he introduces the famous example of the implicit

definition of the concept of ‘direction of a straight line’:

The judgment ‘line a is parallel to line b’, [...] can be taken as an
identity. If we do this, we obtain the concept of direction and say:
‘The direction of line a is identical with the direction of line b’. Thus
we replace the symbol || by the more generic symbol =, through re-
moving what is specific in the content of the former and dividing it
between a and b. We carve up the content in a way different from
the original way, and this yields us a new concept. (FREGE, 1950),
pp. 74-75

The main difficulty concerning this passage consists in the understan-

ding of the crucial notion of ‘content’ (Inhalt) and the way this notion is han-

dled. For instance, it is not clear how to understand the fact that a certain part

of the content of the relation of parallelism is “removed” and successively “di-

vided” between a and b. What seems to be clear from the passage is that the

sentence ‘the direction of a is identical to the direction of b’ may be obtained

by performing certain content preserving operations on the sentence ‘line a is

parallel to line b’; as a result, the two sentences express the same content. To

my knowledge, the relevant literature has focused mainly on attempts to defi-

ne such a relation of identity of content between sentences ((HALE, 1997),

(POTTER; SMILEY, 2001), (YABLO, 2008)) rather than on spelling out the

operation of content removal and division described in the passage. Albeit this

paper does not aim at entirely explaining away Frege’s metaphorical language,

some hints on the definitional pattern Frege is trying to present may be extra-

polated.

I understand the passage as saying that the same content may admit

different internal organizations that result in different syntactic structures. For

instance, being C of the sentence ‘a || b’, we may obtain a different internal or-

234



Perspectiva Filosófica, vol. 47, n. 2, 2020

ganization of C by performing the procedure described in the passage on C as

already organized according to the syntactic structure of ‘a || b’. In particular,

we may remove part of the content of the relation of parallelism and attach it

– in an unspecified way – to the content of ‘a’ and ‘b’. As a result, the “remain-

der” of the content of the relation of parallelism after removing its “specific

content” is the content of the relation of identity; and the outcome of atta-

ching this content to ‘a’ and ‘b’ is the content of new singular terms, i.e. ‘the

direction of a’ and ‘the direction of b’. Thus the two limbs of an abstraction

principle have the same content in virtue of the fact that what is removed

from one constituent of the content is attached to others.

As mentioned in the previous section, there is a general agreement on

the fact that the relation R appearing in the left limb of an abstraction princi-

ple  must  be  an  equivalence  relation.  Yet  Frege  seems  to  suggest  that  so-

mething more is required, something that at first glance may appear almost

trivial, but as we will see is a fundamental requirement to rule out some abs-

traction principles as unsound. Frege explicitly appeals to a specific part of the

content of an equivalence relation; moreover, when he says that we replace a

relational symbol “by the more generic symbol” of identity, he seems to sug-

gest that what is specific in the content of an equivalence relation R is what

makes it more specific than identity, i.e. what characterizes the difference in

content between R and =. In what sense does an equivalence relation R is mo-

re specific than an identity (i.e. has a content including a specific part with

respect to the relation of identity)? Frege does not give any hint regarding su-

ch a comparison between equivalence relations. Thus a hypothetical answer to

the previous question must be formulated outside of the context of Frege’s

texts.

An interesting way of understanding the higher specificity of the rela-

tion of parallelism with respect to identity may come from some fundamental

algebraic  properties  of  equivalence relations.  The idea is  the following:  an

equivalence relation is a congruence with respect to a restricted range of pro-

perties – commonly referred to as  invariant properties – while identity is a

congruence with respect to all properties. In other words, two parallel lines are
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indistinguishable with respect to their  orientational properties,  whereas  two

identical lines are indistinguishable with respect to all properties. As a conse-

quence, an equivalence relation R may be understood as a relation of partial

or restricted indistinguishability while an identity is understood as a relation of

total or general indistinguishability. Given an equivalence relation R, the more

restricted is the range of  R-invariant properties, the more specific  R is with

respect to the relation of identity. This higher specificity of an equivalence re-

lation R may be formalized in terms of a restricted quantification over proper-

ties. Being  IR the higher-order predicate ‘X is an  R-invariant property’,  the

following holds for every two individuals a and b:

Rab → ∀X [IR(X) → (Xa ↔ Xb)]  (∗)

a = b → ∀X [Xa ↔ Xb]  (∗∗)

In other words, the relation  R is concerned with a specific range of

properties  IR, whereas the relation of identity is concerned with all possible

properties that individuals may have. The formulas (∗) and (∗∗) may be used to

formulate a crucial requirement that a relation R must satisfy in order to run

Frege’s principle of content recarving. According to the quoted passage of

§64, the content of an abstraction operator is formed using the specific part of

the content of an equivalence relation R and when we remove this part from

the content of  R we obtain the content of the relation of identity. Whatever

expressions like “removing” and “dividing” a content might mean, it is clear

that if there is no “specific part” of the content of R, there is no available con-

tent to be “divided” to define the content of the abstraction operator.   There-

fore an equivalence relation  R must satisfy the following condition: R must

express a content that includes “a specific part”. According to the previous re-

mark, a relation  R expresses a content including a specific part only if  R is

more specific than the relation of identity, which in turn may be understood as

the fact that  R admits a range of invariant properties that does not coincide

with the totality of properties. In other words, to determine whether R is more

specific than identity we have to check whether there is a property  φ that is
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not an R-invariant property. How may this requirement on properties be ex-

pressed? According to (∗) if a property φ is such that given two R-related indi-

viduals a and b, either a has φ and b lacks φ, or a lacks and b has φ. In other

words, if Rab is true and a property φ may be used to distinguish between a

and b, then φ is not an R-invariant property, i.e. R is more specific than iden-

tity. We may summarize this reasoning by stating the following requirement:

Specificity condition (first-order)

A first-order equivalence relation R expresses a content including a spe-

cific part iff there are two individuals a, b and a property φ such that:

Rab ∧ [(φ(a) ∧ ¬φ(b)) ∨ (φ(b) ∧ ¬φ(a))] (SC)

The specificity condition may appear as a trivial requirement: it suffi-

ces that an equivalence relation R is not the relation of identity for R to satisfy

(SC). It is immediately evident that the relation of parallelism satisfies this re-

quirement, for surely there are two distinct straight lines a and b that are pa-

rallel. As we will see, the specificity requirement becomes interesting when

we consider higher-order equivalence relations:

Specificity condition (higher-order)

A second-order equivalence relation R expresses a content including a

specific part iff there are two concepts F, G and a second-order pro-

perty Φ such that:

Rx(Fx, Gx) ∧ [(Φx(Fx) ∧ ¬Φx(Gx)) ∨ (Φx(Gx) ∧ ¬Φx(Fx))] (SCHO)

In this case it makes no sense to say that R meets the specificity condi-

tion whenever is distinct from identity, for there is no defined identity relation

between  concepts:  identity  is  characteristic  of  objecthood.  However,  even

though there is no relation of identity between concepts, it is possible to define

a relation of distinguishability which is expressed by the fact that there is a se-
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cond-property property that one concept has and the other lacks. It is evident

that the relation of equinumerousity satisfies the specificity condition; let F be

the concept defined by the open formula x = a and G defined by x = b. Cle-

arly,  F and  G are equinumerous (both have only one instance). The second-

order property ‘X has a as instance’ is a property that F has and G lacks, thus

the property ‘X has  a as instance’ may be used to distinguish between two

equinumerous concepts. The main result of this section is that the definitional

pattern of an abstraction principle is not limited to the fact that the relation

appearing in the right-limb must be an equivalence relation, for the specificity

condition must also be met in order to run the procedure of content recarving

and provide a content to the abstraction operator. In the next section we will

see that the relation of co-extensionality – which appears in the right limb of

the Basic Law V – does not meet this requirement. This is a crucial point to

argue that the Basic Law V is not a bad company to Hume’s Principle, for – in

virtue of the fact that it does not instantiate the same definitional pattern – it is

not even a company.

3. Basic Law V

As anticipated at the end of the previous section, in this section I will

show that the relation of co-extensionality does not satisfy the specificity con-

dition in both Frege’s system of logic and standard higher-order logic, and

thus cannot be conceived as an instance of the definitional pattern of abstracti-

on principles. The main consequence of this fact is that the Basic Law V can-

not be considered as a “bad company” for Hume’s Principle. As a preliminary

historical remark, notice that the view that according to Frege the Basic Law

V should be obtained by recarving the content of the relation of co-extensio-

nality is not uncontroversial. Frege never justifies the truth of this axiom by

invoking the procedure of §64; he rather seems to consider the Basic Law V

as a primitive logical law2. The fact that in the Grundgesetze he considers the

two limbs of the Basic Law V as being “gleichbedeutend” (i.e. identical in me-

aning) is no evidence for the thesis that they should be identical in content: for

2  (FREGE, 2013, p.14)
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at the time the  Grundgesetze was written, the word “gleichbedeutend” is un-

doubtedly translated as “identical in reference”, thus identical in truth value.

As a consequence, nothing in Frege’s mature writings suggests that he ascri-

bed a relation between the two limbs of the Basic Law V stronger than logical

equivalence.  However,  in  the essay  Function and Concept (FREGE, 1952)

Frege seems to suggest that a sentence saying that two concepts are co-exten-

sional expresses the same sense as a sentence saying that their extensions coin-

cide (as highlighted in (BURGE, 1984) ); hence, if we assume that identity of

sense implies identity of content – i.e. that the notion of content is coarser in

grain than the notion of sense – then Frege’s example suggests that the two

limbs of the Basic Law V are identical in content. And this fact represents a

good reason to suppose that an identity of extensions is obtained by a content

recarving procedure from the content of the relation of co-extensionality. The

main purpose of this paper is to show that the Basic Law V cannot be consi-

dered as a bad company of Hume’s Principle due to the fact that it does not

satisfy the definitional pattern described in §64 of the Foundations. Thus it is

not crucial for our purpose to show that Frege should have considered the Ba-

sic Law V and Hume’s Principle as different instances of the same definitional

pattern.

In the remaining part of this section I will show that the Basic Law V

cannot be considered as an instance of the definitional pattern described in

Grundlagen §64 in virtue of the fact that it fails to satisfy the specificity con-

dition. We will start by formulating this condition for the relation of co-exten-

sionality, i.e. the equivalence relation that appears in the left limb of the Basic

Law V:

Specificity Condition (BLV)

The relation of co-extensionality expresses a content having a specific

part iff there are two concepts F, G and a second-order concept Φ such

that:
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∀x(Fx ↔ Gx) ∧ [Φx(Fx) ∧ ¬Φx(Gx)] ∨ [Φx(Gx) ∧ ¬Φx(Fx)] 

(SCBLV)

The fact that the relation of co-extensionality does not satisfy (SC-

BLV) in the formal system of the  Grundgesetze may be proven by showing

that the following principle – which I call the Principle of Extensional Equiva-

lence – holds: for every higher-order open formula Φx(Xx) where the variable

X occurs free,

∀x(Fx ↔ Gx) → (Φx(Fx) → Φx(Gx)) (PEE)

The Principle of Extensional Equivalence says that two co-extensional

concepts are interchangeable salva veritate in all contexts. In other words, the-

re is no higher-order formula that may distinguish between two co-extensional

concepts. The proof of (PEE) in Frege’s system will be presented through an

adaptation of Frege’s notation to make it understandable even to the reader

who is not familiar with the concept script. Let ι be an operator that when ap-

plied to a value range  v returns the value  c if  c is the only element of  v,

otherwise the false. Following §34 of (FREGE, 2013) we define the mem-

bership operator as follows:

(a ∈ b) = ι εz[∃g (b = εu g(u) ∧ g(a) = z)] (DEF)

which says that the function a ∈ b of the arguments a, b has the same value as

the function  g of the argument  a if there is a function  g such that the value

range of g is b, otherwise the value of a ∈ b is the False.

Let ξ be a metavariable and f a first-order function of one argument,

by considering the following instance of (DEF):

(ξ ∈ εu  f (u)) = ι εz [∃g (εu  f (u) = εu  g(u) ∧ g(ξ) = z)]

and by applying the Basic Law V, it follows that:
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ξ ∈ εu  f (u) = f (ξ) (T1)

In other words, for every function f and every term ξ, the expression ‘ξ

∈ εu  f (u)’ is coreferential to the expression ‘f (ξ)’. We can now prove the Prin-

ciple of Extensional Equivalence. Let A(f (ξ)) a formula in which the function

f occurs applied to a term ξ (ξ may be a Roman, German, or uppercase Greek

letter). A sketch of the proof follows:

(7) A(f (ξ)) (Assumption)

(8) ∀x(f (x) = g(x)) (Assumption)

(9) A(ξ ∈ εu  f (u)) (by (T1), 1, and Leibniz’s Law )

(10) εu   f (u) = εu g(u) (by Basic Law V, 2, and Modus Ponens)

(11) A(ξ ∈ εu g(u)) (by Leibniz’s Law on 3 and 4)

(12) A(g(ξ)) (by (T1), 5, and Leibniz’s Law )

Which proves that for every formula A in which the function f occurs,

if  A(f  (ξ))  and  if  f and  g are  co-extensional,  then  A(g(ξ)).  Therefore,  in

Frege’s system co-extensional functions are always replaceable salva veritate.

Hence there is no higher-order formula of Frege’s system that may distinguish

between co-extensional functions which, in turn, means that the relation of co-

extensionality does not satisfy the specificity condition. Considered that – as

argued in the previous section – the specificity condition should be included as

a requirement that an equivalence relation must satisfy in order to run the con-

tent recarving procedure and thus introducing the corresponding abstraction

principle, the definitional pattern of abstraction principles extrapolated from

§64 of the  Grundlagen is not applicable to the relation of co-extensionality.

As a consequence, the Basic Law V and Hume’s Principle are not instances of

the same definitional pattern, i.e. the Basic Law V is not a bad company for

Hume’s Principle, for it is not even a company. Notice that the fact that the re-

lation of co-extensionality does not satisfy the specificity condition implies

that it expresses no specific content in Frege’s logic, thus there is no available

content to form the value range operator.

241



Perspectiva Filosófica, vol. 47, n. 2, 2020

Contemporary higher-order logic deserves some additional comments.

The formula  (PEE)  is  valid  in  both  standard  and  Henkin’s  semantics  for

higher-order logic; given the incompleteness of higher-order logic, we cannot

take this fact as a proof of the fact that the formal system treats conceptual ex-

pressions in a pure extensional way. However, as remarked in (HECK, 2012)

(p. 137), the principle of extensional equivalence may be proven by induction

in the complexity of higher-order formulas. Therefore, both Frege’s logic and

standard higher-order logic are purely extensional, i.e. they allow for the repla-

cement of co-extensional conceptual expressions in every formula salva veri-

tate.

One may object that the proposed argument is circular when applied

to Frege’s system, for – as previously mentioned – we use the Basic Law V to

prove the principle of extensional equivalence. Notice that to show that the re-

lation of parallelism satisfies the specificity condition we did not need to assu-

me the abstraction principle of directions; similarly, to show the same fact

regarding the relation of equinumerousity, we did not need to assume Hume’s

Principle.

Such a circularity may induce a new version of the bad company ob-

jection: given that the Basic Law V is false (due to Russell’s paradox), we can-

not conclude that (PEE) is valid in Frege’s system of logic. As a consequence,

the relation of co-extensionality may still satisfy the specificity condition and

thus the Basic Law V may still be a company for Hume’s Principle; in particu-

lar, given the falsity of the Basic Law V, it will be a bad company. The objec-

tion may be replied by remarking that the Basic Law V may be dispensable in

the proof of (PEE); indeed, it is very plausible to assume that we may adapt

the proof of (PEE) in standard higher-order logic described by Heck (2012)

to Frege’s system. In the next section we will try to understand in further de-

tails which feature of both Frege’s logic and Frege’s conception of higher-

order predication prevents the relation of co-extensionality to satisfy the speci-

ficity condition.
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4. Frege’s logic and higher-order predication

In this section we will try to understand more deeply in virtue of whi-

ch characteristic  of  Frege’s  logical  system the relation of co-extensionality

fails to satisfy the specificity condition. We have seen that the relation of co-

extensionality fails to satisfy the specificity condition due to the fact that the

principle  of  extensional  equivalence  is  provable  in  Frege’s  logical  system.

Thus our question becomes:  how the proof of the principle of extensional

equivalence in Frege’s logical system may be blocked? The proof of the prin-

ciple of extensional equivalence uses basic features of higher-order logic, such

as Leibniz’s Law and Modus Ponens whose validity in the present context is

considered out of question. The only point that is debatable is the theorem la-

beled (T1), which says that for every first-order function f and argument ξ, the

expression ‘f (ξ)’ may always be replaceable by ‘ξ ∈ εu  f (u)’ salva veritate. It is

important to notice that (T1) does not says that the incomplete expressions ‘f

(...)’ and ‘... ∈ εu  f (u)’ are names of the same function, yet names of different

co-extensional functions. Nevertheless, if ‘f (...)’ and ‘... ∈ εu  f (u)’ denote dif-

ferent functions, it should be in principles possible to assert something true of

one and false of the other, thus making the principle of extensional equivalen-

ce fail. In informal examples, we use free variables to substantivize functions,

as in the expression ‘the concept  x is a horse’.  And this makes possible to

construct examples of sentences in which the intensional difference between

functions implies an extensional difference between sentences: the sentence

‘John grasps the concept x is a horse’ may not have the same truth-value as the

sentence ’John grasps the concept x is in the value range of the concept ‘y is a

horse’’, perhaps by assuming that John grasps the concept horse while being

innocent of the notion of value range. Hence the possibility of expressing con-

texts in which the principle of extensional equivalence fails relies on the possi-

bility of substantivizing functions.

In Frege’s concept script there is no way of substantivizing functions.

More precisely, Frege does not use predicate letters that can be used as functi-

on names to form higher-order predications directly applied to functions; mo-

reover, there are no symbols of the language denoting empty argument places;
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not even free variables, given that even Roman letters used to express genera-

lity have a defined (implicit) scope, thus acting as bound variables. When Fre-

ge wants to denote a function in his informal comments, he either uses meta-

variables such as ‘ξ’ or dots standing for empty argument places. This point

may be clarified a bit further. Given a first-order function f, I define a direct

higher-order predication of f as a formula in which f occurs with no specifica-

tion of its argument or using a free variable as argument. For instance ‘square

root is a continuous function’ or ‘the concept x is a horse is difficult to grasp’

are cases of direct higher order predication. On the other hand, I define an in-

direct higher-order predication on f as a formula in which f occurs with its ar-

gument placed filled by a proper name of an object, a bounded variable, or a

variable with a restricted scope. In Frege’s logic only indirect higher-order

predication is possible, for there are no letters denoting function names which

may be used without argument specification and the argument places of first-

order functions may be filled either by uppercase Greek letters (proper names

of objects) or by German letters (bounded variables) or by Roman letters (va-

riables with restricted scopes)3.

The impossibility  of  substantivizing functions  –  and  thus  of  direct

higher-order predication – is not something that Frege overlooked or that es-

caped his attention; it is considered as a desirable feature of his logical system,

for it allows for the reduction of orders, as he clearly says:

First-order functions can be used instead of second-level functions
in what follows. This will now be shown. As was indicated, this is
made possible by the fact that the functions appearing as arguments
of  second-level  functions  are  represented  by  their  value-ranges,
although of course not in such a way that they simply concede their
places to them, for that is impossible. (FREGE, 2013, p.52)

In spite of the fact that Frege recognizes that we cannot simply replace

a function name by the name of its value range, Frege holds that value ranges

shall be considered as representative objects of concepts in higher-order predi-

3  There is also the case of lowercase Greek letters used to represent schematically higher-
order functions, as in the expression Mβ( f (β) ). However, the presence of the index β in Mβ

clearly suggests that higher-order functions act as variable binders, thus allowing the substi-
tution Mβ( β ∈ εu  f (u) ).
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cation4; as a consequence, a higher-order predication applied to a concept f (x)

may always be converted into a first-order one applied to the value range of f

(x).

This leads to the role of Basic Law V in Frege’s logic and to the main

point  of  this  paper.  As  shown  by  Wright  (1983),  Frege  could  have  done

without the Basic Law V and derive the axioms of arithmetic directly from

Hume’s Principle plus standard higher-order logic. However, Frege did not re-

gard the possibility of deriving the axioms of arithmetic and of defining num-

bers as logical objects as the only role of value ranges in his logical system. As

remarked by Heck (2012) and as shown by the previous quotation, Frege re-

garded the Basic Law V as having the virtue of  lowering the orders, i.e. of

converting a higher-order predication into a first-order one by introducing va-

lue ranges as representative objects of functions. Hence, the additional and

crucial role of the Basic Law V is that of making the logic purely extensional

by reducing assertion about concepts to assertions about their value ranges. In

other words, Frege regarded the Basic Law V as the principle that makes ex-

plicit that co-extensional concepts are replaceable salva veritate in all contexts.

I have shown that this amounts to say that the Basic Law V does not satisfy

the  specificity  condition  which  implies  that  it  is  not  a  bad  company  for

Hume’s Principle. Therefore, Frege’s conception of logic requires that the Ba-

sic Law V is not an abstraction principle on a par with the others; the special

role he ascribes to the Basic Law V implies that the relation of co-extensiona-

lity must be a sort of identity between concepts, i.e. an absolutely general

higher-order equivalence relation with no specific content. Thus the fact that

the Basic Law V does not instantiate the definitional pattern described in §64

of Grundlagen is not an unexpected consequence of Frege’s axiomatization,

yet is essential to the role that value ranges play in Frege’s logic.

5. Conclusion

In this paper I have proposed an argument showing that the bad com-

pany objection may not be as harmful as it is commonly thought. More preci-

sely, I have shown that the objection relies on the false assumption that the
4  (RUFFINO, 2000), (RUFFINO, 2003)
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Basic Law V is an instance of the definitional pattern behind all abstraction

principles. My argument is based on the assumption that the definitional pat-

tern of abstraction principles is not characterized just by the requirement that

the relation appearing in the left limb is an equivalence relation. By analyzing

the passage in §64 of the Grundlagen, I have shown that a further condition

must be met, i.e. what I have called the specificity condition. Notice that this is

a particular view on what abstraction principles are: one may consider abstrac-

tion principles from a different perspective, i.e. independently of how Frege

introduces and justifies them, and thus may not accept a requirement extrapo-

lated from §64 of the Grundlagen as a necessary condition for the truth of an

abstraction principle. Moreover, I have argued that, according to Frege’s con-

ception of logic and to his view on the role of value ranges of functions, it is

essential to the possibility of reducing the orders that the relation of co-exten-

sionality does not satisfy the specificity condition and thus that the Basic Law

V shall not instantiate the definitional pattern extrapolated from Grundlagen

§64. It is worth clarifying that this paper is not directly concerned with the

problem of the inconsistency of the Basic Law V. I have not tried to argue

that the Basic Law V is inconsistent in virtue of the fact that in Frege’s system

of logic the relation of co-extensionality does not satisfy the specificity condi-

tion. Another point that is worth highlighting is that the argument I have pre-

sented  is  not  aimed  at  formulating  a  complete  list  of  requirements  that

abstraction principle must satisfy in order to be acceptable. In other words, I

am not saying that given an equivalence relation R, if R satisfies the specificity

condition, then the corresponding abstraction principle is true. There might be

further requirements that the proposed analysis fails to capture. As a conse-

quence, this paper has mainly a negative aim: it shows that being the specifi-

city condition a necessary condition, and given that the Basic Law V fails to

satisfy this condition, then it cannot be counted as an instance of the same de-

finitional pattern of Hume’s Principle. However, I presented no argument to

the effect that the specificity condition is also sufficient; hence, there may be

other inconsistent abstraction principles that satisfy the specificity condition,
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thus showing that a deeper analysis of the definitional pattern of abstraction

principles is still needed.

On the other hand, I have presented an interesting alternative approa-

ch to the philosophical issues regarding abstraction principles by turning more

attention on the way Frege introduces this sort of definitions and the justifica-

tion for their truth that he seems to suggest based on the procedure of content

recarving.
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