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Abstract

By a classical result of Kotlarski, Krajewski and Lachlan, patholog-
ical satisfaction classes can be constructed for countable, recursively
saturated models of Peano arithmetic. In this paper we consider the
question of whether the pathology can be eliminated; we ask in ef-
fect what generalities involving the notion of truth can be obtained
in a deflationary truth theory (a theory of truth which is conservative
over its base). It is shown that the answer depends on the notion of
pathology we adopt. It turns out in particular that a certain natural
closure condition imposed on a satisfaction class - namely, closure of
truth under sentential proofs - generates a nonconservative extension
of a syntactic base theory (Peano arithmetic).

1 Preliminaries

1.1 Basic concepts

The notion of a satisfaction class was introduced in order to characterize
semantics for nonstandard formulas.! Given any nonstandard model M of
Peano arithmetic (PA), an arithmetical predicate Sent(z) with an intuitive
reading “x is a sentence of the language of PA” will define in M a set con-
taining nonstandard numbers. These numbers can be treated as nonstandard
arithmetical sentences (sentences in the sense of M).

In an attempt to describe semantics for such nonstandard languages one
defines a satisfaction class: a subset of the universe of the model in question,
which - when treated as an interpretation of the truth predicate - will indeed
behave in a “truthlike” manner, i.e. it will satisfy Tarski’s compositional
truth axioms. A membership in such a class serves us then as an explication
of the notion of truth for nonstandard sentences. Formally, a satisfaction



class will be defined in terms of the theory PA(S) , which is Peano arith-
metic with Tarski’s “inductive axioms”, characterizing the notion of truth.
A precise definition of this theory is given below. In what follows it will be
assumed that the language of arithmetic contains function symbols for the
successor operation, addition and multiplication.? We denote as “T'm¢(z)”
an arithmetical formula with the intuitive reading “x is a closed term of the
language of arithmetic”; in an analogous manner, Sent(z), and Var(z) read
“r is a sentence” and “x is a variable”.

Definition 1 Let PA(S) be Peano arithmetic with the following additional
axtoms:

1.Vt s, [Tme(t) A Tme(s) = (Tr(Tt = s7) = val(t) = val(s))]

2. Vp[Sent(y) = (Tr("—") = ~Tr(y))]

5. Vo, p[Sent(Y) A Sent(p) = (Ir(Tp Ay™) = Tr(p) NTr(¥))]
}. Yo(z)Va[Var(a) = (Tr(Vap(a)T) = VoTr(Tp(0) )]

The expression “Vp(z)” is taken to express a quantification over for-
mulae with at most one free variable. The dot notation is used here in
its usual sense; the expression “VoT'r("¢(0)")” means that every result
of substituting a numeral for a free variable in ¢ is true.>  Observe
that in PA(S) we do not have axioms of induction for formulas of the
extended language (with the truth predicate). The theory obtained by sup-
plementing also these additional induction axioms will be denoted as PA(S).

The notion of a satisfaction class is then defined in the following way.

Definition 2 Let M be a model of PA and let S be a subset of M. We say
that S is a satisfaction class for M iff (M,S) = PA(S) .

In effect a satisfaction class is an interpretation of the predicate “T'r”
which makes the truth axioms true. If in addition (M, S) = PA(S), then we
say that S is an inductive satisfaction class for M.

Which models of PA have a satisfaction class? An answer to this ques-
tion was provided by Kotlarski, Krajewski and Lachlan in [11] (from now
on the abbreviation “KKL” will be used): it turns out that such a class
can be constructed for every countable, recursively saturated model of PA.
There is however a disconcerting twist: many satisfaction classes will contain
pathological sentences. A precise formulation of this result is given below.



Theorem 1 (KKL) Let M be a countable, recursively saturated model of
PA. Let ¢ be an element of M such that for a given nonstandard a in M :

ME‘“%="0£0V..V0#0""

a times

Then M has a satisfaction class containing ¢.*

More precisely, a sentence ¢ mentioned in Theorem 1 can be specified in
the following way. Define ¢y as (0 # 0)7, define ¢41 as ¥y V ¥ We can
characterize then our ¢ from Theorem 1 as 1), for a nonstandard a € M.

Intuitively, a satisfaction class containing ¢ is pathological: the sentence
¢ is clearly false (it is obtained by iterating an obviously false disjunct); but
the model thinks it is true - i.e. it belongs to the satisfaction class for this
model.

From Theorem 1 the following corollary can be obtained:

Corollary 1 PA(S) s a conservative extension of PA.

This is due to the well known fact that for each infinite model M we can
find an elementarily equivalent, recursively saturated structure K of the same
cardinality as M (see e.g. [9], Proposition 11.4, p. 14). Observe however that
Corollary 1 has nothing to do with the pathology mentioned in Theorem 1
- it is just the possibility of constructing a satisfaction class for an arbitrary
countable, recursively saturated model of PA which makes it true.

On the other hand, PA(S) with full induction for the extended language
is not conservative over PA. In PA(S) one can prove e.g. that all theorems
of PA are true, from which consistency of PA follows - and the last statement
is clearly not derivable in PA itself.

In this paper I am going to discuss the question of whether the pathology
mentioned in Theorem 1 can be eliminated. The next subsection presents
philosophical motivations for my investigations.

1.2 Philosophical motivations

The main motivation for this research stems from a recent philosophical
debate on deflationism and conservativeness.’ The following two claims seem
to be central to deflationary standpoint:

(1) Truth is insubstantial.



(2) The truth predicate is a purely logical device - its only role consists in
permitting us to produce generalizations of the sort “All substitutions
of the law of excluded middle are true” - without the truth predicate
we wouldn’t have the linguistic means for expressing our simultaneous
acceptance of all the sentences belonging to an infinite set.

Conservativeness condition was proposed as an explication of (1): a the-
ory of truth built over some syntactic base theory B should not permit us to
establish any new facts in the language of B - facts which cannot be proved
already in B. Otherwise it would seem that our notion of truth has indeed a
lot of nonsemantic content and can’t be called “insubstantial” in any decent
sense of this word. It should be stressed at this point that this explication
enables the deflationist to propose truth theories which are quite rich indeed,
at least in comparison with austere proposals like Horwich’s minimal theory,
having just T-sentences as axioms. Considering some richer theories, involv-
ing not just T-sentences but also compositional principles, McGee wrote:

The conservativeness theorems show that the disquotationalist is
permitted to avail herself of a theory of truth a lot richer than
what we get merely by taking the T-sentences as axioms. [...]
Taking the richer theory as axiomatic is something the disquota-
tionalist is permitted to do without endangering her standing as
a disquotationalist. ([15], p. 108.)

This approach will be adopted also in the present paper. On this proposal
the deflationist is construed as an adherent of conservative truth theories - his
claim would be that such theories are adequate for all the purposes we might
have in introducing the truth predicate into our language. These purposes are
characterized by thesis (2): it is the generalizing role of truth that matters.
In this context the crucial issue is which generalizations involving the notion
of truth should be decided by an adequate truth theory. (Some of them, like
“All theorems of B are true”, are clearly beyond the scope of any conservative
truth theory built over B.) This issue was discussed by Halbach in [7]. He
wrote:

As far as I can see, only one really sensible answer has emerged.
A natural strengthening of the T-sentences is achieved by picking
the “inductive clauses” for truth. They allow the deflationist to

prove many interesting generalizations in a natural way. ([7], p.
184.)

And in a footnote he added:



Now, after nearly seven decades of addiction to them, the “induc-
tive” clauses have proven to be natural axioms and all general-
izations not provable from them seem to be better left undecided
by a good theory of truth. ([7], p. 192, footnote 23.)

In what follows we will concentrate exclusively on the notion of arithmeti-
cal truth; Peano arithmetic will play the role of a base theory B. Accordingly,
the relevant truth axioms will characterize the notion of truth just for the
language of arithmetic. The scope of our investigation is thus rather limited -
obviously one could consider both weaker and stronger base theories in place
of PA." However, it should be kept in mind that building a truth theory
over PA is treated here not as an aim in itself, but as a convenient paradigm
case - in my opinion philosophical claims endorsed by the deflationist would
be worthless if they fail a model test, provided by the task of constructing a
suitable notion of arithmetical truth.

In effect the “inductive” clauses for truth mentioned by Halbach form the
set of axioms of PA(S) . Should we rest happy with PA(S) then? That
would be a rather hasty conclusion.® There is no need for us to disagree
with Halbach: the clauses in question seem to enjoy a privileged status in
(nearly) all discussions on the subject. But their special character stems
from the fact that these natural truth axioms combine nicely with induction
for formulas of the extended language (with the truth predicate), producing
a strong theory which we denoted as PA(S). In other words: if we have
all the induction there is to have, we do not need any additional truth ax-
ioms to derive strong and natural truth-theoretical conclusions. However,
this sort of consideration hardly matters in our context. We do not have this
induction - accepting it would mean that we are opting quite outrightly for
a nonconservative truth theory, prejudging the issue against the deflation-
ist. And it would be interesting to know how far we can go (conservatively)
beyond PA(S) in pursuing the aim of proving truth-theoretical generaliza-
tions. This is exactly the point where an attempt to eliminate pathology from
a satisfaction class can provide us with some information. Theorem 1 shows
that the following generalization is not provable in PA(S) : take a false
sentence «, produce a disjunction of an arbitrary length with o as the only
disjunct, and the result of your operation will also be false. This raises the
question of which generalizations can be salvaged? It is quite possible that
various interesting generalizations involving the notion of truth not derivable
in PA(S) can nevertheless be obtained in some natural truth theory which
contains PA(S) , but is still conservative over PA. In my opinion it is a
serious issue, which should be considered by the deflationist insisting on the
generalizing role of truth as the main reason for its usefulness.



2 Some known results

In this section I will formulate some results established elsewhere in the
literature. However, in order to discuss in a precise manner the issue of
eliminability of pathologies, we must first answer two questions: (a) what
does it mean to “eliminate” pathology? (b) what is pathology?

As to (a): imagine that a set P of pathological instances is somehow char-
acterized. An elimination of pathology could be achieved by constructing,
for an arbitrary countable, recursively saturated model of PA, a satisfaction
class which does not contain any member of P. Another way would consist
in proving a conservativeness result: our aim would be to show that if we
extend PA(S) with an axiom of the form “No element of P is true”, we
obtain a conservative extension of PA.°

As to (b), there are various possible approaches one could take. In or-
der to suggest some directions (and at the same time to stress the specific
deficiencies of PA(S) as a theory of truth) let us ask why exactly we are
inclined to think about KKL’s case as pathological. I discern below three
reasons for that.

(1) The pathological sentence ¢ presented by KKL belongs to the class
Ap (indeed, it is even quantifier free!). It is a well known fact that we
have an arithmetical truth predicate Tra,(.) available for Ay sentences of
the language of arithmetic (see e.g. [5], p. 56, Theorem 1.70). And it is not
difficult to prove that in our model ¢ will not belong to the extension of T'ra,
(since Tra,(.) is arithmetical, we are free to use induction for it). In effect
in PA(S) we have no guarantee that our general notion of truth coincides
with the partial ones. This, I think, presents a problem. A truth theorist
opting for PA(S) would have to handle somehow the question about the
relation between arithmetically expressible notions of truth and the general,
arithmetically inexpressible concept. What is the link between them? Should
we treat the former ones as limited variants of the latter? If so, in what sense?
Some explanation is needed here.!® Anyway, we pinpoint here the first reason
of pathologicality of ¢ and we generalize it in the following manner: a class
P of pathological cases will consist of all the sentences 1 (in the sense of
the model M) such that for some natural number n, M = Tr,("—¢™"), with
“T'r,(.)” being an appropriate partial truth predicate.

An example of a pathology with a standard, but non-zero quantifier rank
can be obtained by adding to “0 # 0” a quantifier prefix of a standard com-
plexity, but containing nonstandardly long sequences of similar quantifiers
(e.g. for rank 1 we could consider a formula “Jzy...x,0 # 07 with a nonstan-
dard).

(2) The second reason of the pathological character of KKL’s formula ¢ is



that its negation is provable in pure logic (and the model thinks it is “true”!).
Indeed, it is easy to prove by induction in M that

Va Pro(=(0#0V ..V 0 #0)).

vV
a times

That is: no matter how long the disjunction is, its negation is provable in
logic. On this approach, the set of pathologies would be simply the set of all
sentences disprovable in first order logic. (As an example, we could consider
expressions of the form “Jxg...z,p = —¢” for a nonstandard number a. The
quantifier ranks of such sentences can be arbitrarily large, depending on the
choice of ¢. Their negations are provable in pure logic, but they are made
true by some satisfaction classes.) In an attempt to eliminate the pathology
one could try to construct a satisfaction class which makes logic true.

(3) The third option to consider is based on the following fact:

Fact 1 Let S be a satisfaction class for M containing . Then there is a
sentence ¥ provable in sentential logic such that "—y € §.

Proof.

Define 1 as the sentence: “@ = 0 # 0”. Obviously ¢ is provable in
sentential logic, but it cannot belong to S because otherwise “0 # 0” would
belong to S, which is impossible. Therefore "= € §.

O

In view of the above fact we could demand that a satisfaction class does
not contain any sentence disprovable in sentential logic - it is the class of
such sentences that would be considered pathological on this approach.

In what follows I will comment briefly on (1) and (2), presenting results
on (in)eliminability of pathologies obtained elsewhere in the literature.

2.1 Partial truth predicates

The pathology understood in the sense of (1) turns out to be eliminable. In
fact, a theory obtained from PA(S) by adding axioms which stipulate that
partial truth predicates coincide with the general one for appropriate classes
of formulae, is a conservative extension of PA. This result is an immediate
corollary from the following theorem obtained by Engstrom:

Theorem 2 Let M be a countable, recursively saturated model of PA and
let n be a natural number. Then M has a satisfaction class S such that:



(M, S) =V € Xy [Trs, () = Tr(y)].

For the proof, see [3], p. 56-57. By an easy argument from compactness,
it follows that a theory obtained from PA(S) by adding as new axioms all
sentences of the form “Vy € ¥, [T'rs, (¢) = Tr(¢)]” for all natural numbers
n, is a conservative extension of PA.

2.2 First order logic

The theorem formulated below was obtained by Ciesliniski in [2]:
Theorem 3 The following theories are equivalent:

T PA(S) + V¢ [Pro(¢) = Tr(y)]
T,  PA(S) + V¢ [Pro.(¢) = Tr(¥)]
Ty Ag-PA(S)

The expression “Pryg(¢)” denotes an arithmetical formula with a natural
reading “1 is provable in logic”; “Prp.(v)” is a formula of the extended
language which reads “i is provable from true premises”. In effect T} is a
theory obtained by supplementing PA(S) with the membership condition
for first order logic: “All first order tautologies are true”. T3 contains a
closure condition: “Truth is closed under first order provability”. Both 77 and
T, turn out to be equivalent with the theory denoted here as Ag-PA(S). It is
PA(S) supplemented with all the induction axioms for just those formulas
of the extended language, which belong to the class Ag. However, Ay-PA(S)
is not a conservative extension of PA - Ay induction for the extended language
permits us to prove consistency of Peano arithmetic. It turns out that the
pathology in the sense (2) is ineliminable - a satisfaction class which makes
logic true cannot be constructed for an arbitrary recursively saturated model
of PA. In general, a conservative truth theory is too weak to prove the truth
of first order logic.

The degree of damage which this result inflicts on the deflationist is a
debatable issue. Some authors claim that various generalities involving the
notion of truth (notably “Peano arithmetic is true”) do not have to be prov-
able in a truth theory as such - on the contrary, additional non-truth-theoretic
principles may be used in order to derive them, and the deflationist is com-
mitted only to conservativeness of his specific set of “truth-theoretic” axioms
over the base theory.!! But even so, the question still remains about the pos-
sible room for manoeuvre for the deflationist, compiling his list of “specifically



truth-theoretic” axioms. Which of them are admissible if we take conserva-
tiveness as our guiding constraint? In the sections to follow some further
candidates will be considered.

3 Truth and propositional logic

The results described in the last section still leave us with the question:
which truth-theoretic generalizations can be salvaged? Which of them are
accessible to an adherent of a conservative truth theory? A natural start-
ing point for further investigation is propositional logic. We saw that truth
of propositional logic is not derivable in PA(S) (Fact 1); but what about
possible (conservative over PA) extensions of PA(S) 7 A still more general
question would concern possible closure conditions, which could be imposed
(conservatively) on a set of true sentences. We would like to have a satis-
faction class which is closed under logic in some nontrivial and not too weak
sense of the word. How far can we go in this direction without compromising
conservativeness?

In this section I want to show a (partial) answer to this question - a
result concerning the closure condition for propositional logic. It turns out
that closure of truth under propositional logic produces a nonconservative
truth theory (in fact this extension is again Ag-PA(S)). This is the content
of the theorem formulated below.

Theorem 4 Denote by T a theory: PA(S)” + Vi[Priet(v) = Tr(y)].
Then T = Ag-PA(S).

In the above formulation, Pr¢"(z) is a one place predicate of the ex-
tended language (with the truth predicate) which reads: “z is provable from
true premises in sentential logic” (no special rules or axioms for handling
quantifiers are allowed). In effect apart from PA(S) , T contains an addi-
tional axiom stating that truth is closed under propositional logic.

It is very easy to show in Ag-PA(S) that truth is closed under sentential
logic, so I will take as obvious that 7" C Ag-PA(S). Our task is to prove the
opposite inclusion.

Proof. Let M be a model of T; we are going to show that M satisfies
induction for Ay formulas of the extended language. We start with defin-
ing, for an arbitrary A, formula ¢ of the extended language, a translation
function F,(.).'? This one place function takes as arguments (codes of) finite



valuations (variable assignments) in M and produces as values formulas (pos-
sibly nonstandard) of the language of PA in such a way that the following
condition is satisfied:

(") (M, Tr) = plm] iff (M, Tr) = Tr(Fy(m)).

The idea of constructing F|, is as follows: just substitute numerals for
free variables occurring in ¢ in a way required by the valuation m (so e.g.
if ¢ is a formula "v5 + v3 = vg !, the translation function for a valuation m
will produce a formula "ms + m3 = mg ', with numerals for the appropriate
objects belonging to the sequence m). A special treatment will be needed
though for a case of a bounded quantifier - we translate a formula with
such a quantifier into a conjunction, whose length in a given model may be
nonstandard. The inductive definition of F|, proceeds as follows:

o Fy_i,(m)="sub(t;,m) = sub(ty, m)”

o P val(t,m) if val(t,m) is an arithmetical sentence
=1 040" otherwise

o [ ,(m)="=Fy(m)”
o Fpny(m) ="F,(m) A Fy(m)”

L4 FVvi<ngo(m> - /\a<mj F‘P(mmil)

We check (*) for the bounded quantifier case, leaving other cases for a
reader to verify. We claim that the following conditions are equivalent:

1. (M, Tr) = Yu; < vje[m],

2. Va <pr m;(M,Tr) = gm-2],

3. Ya <ar m;(M,Tr) |= Tr(F,(m:%)),
4 (M, Tr) ETr(Aepm, Folmye)),

5. (M, Tr) = Tr(Faycuyp(m)).

The first equivalence is obvious, the second holds by the inductive as-
sumption, the last one by the definition of F' for the case of a bounded
quantifier. The crucial step comes with the third of these equivalences: in
order to obtain it we use the assumption that propositional logic preserves
truth. It is this assumption which permits us to move freely between “all
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members of a given conjunction are true” and “the conjunction itself is true”,
where the conjunction in question is of arbitrary length.

With (*) at hand, we are ready to show that our model (M, Tr) satisfies
Ag induction. Let ¢(z) be a A formula of the extended language and let’s
assume that (M, Tr) = Jze(x). We will argue that in such a case there is
the smallest object in (M, T'r) satisfying ¢(x) - this amounts to proving the
least number principle, equivalent with induction. So fix a number a such
that (M,Tr) = ¢(a). By (*) we obtain: (M,Tr) = Tr(F,(a)). Our next

observation is that in such a case:

(M, Tr) | Tr(Vyco(Fo(0) A Aoy 7Fp()))-

I will explain the idea behind the above step. What we use here is the
principle which could be dubbed “propositional minimalization”: take any
finite sequence of sentences (p;...p,), then if some sentence in this sequence
is true, then there is the first sentence in this sequence, which is true. What
is crucial here is that this principle can be “translated” into propositional
tautologies. Assume for example that p, holds. Then by propositional logic
we obtain the consequence:

mV (pQ A _'pl) \4 (p3 A 7p2 A —'p1) V..V (pn AT Pp—1 N A ﬂpl)

For k < n, the kth disjunct of the above formula can be read as stating:
“pi is the first true sentence in the relevant sequence”. By applying this to
our case, we find out that the implication:

Fo(a) = Ve (Fp(0) A Necy 7Fo(€)))

is a propositional tautology, so it is true (by our initial assumption),
therefore since its antecedent is true, its subsequent is also true.

Now: since the above disjunction is true, there must be one particular
disjunct which is true. This remark may sound obvious, but we ask the
reader not to treat it too lightly. We have no right to it when working
in PA(S) without any additional assumptions (remember KKL’s patho-
logical example!). In our context however it is fully justified: closure of
truth under propositional logic guarantees it (if the negation of every dis-
junct was true, the negation of the whole disjunction would follow from
the set of true sentences in propositional logic). So pick a b such that
(M,Tr) & Fy(b) N\, 7F,(c)). And now it is enough to translate back,
using (*) again. We obtain: (M,Tr) = ¢(b) and (M,Tr) = Vv < b—p(v).
This ends the proof since it means that b is the smallest number satisfying
.13

OJ
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4 Perspectives for further work

As we saw, the outcome is that closure of truth under propositional logic
is a strong condition, producing a nonconservative extension of PA. This
however still leaves open some interesting possibilities. When discussing first
order logic (with quantifiers), we observed that the following two conditions
are equivalent:

e closure condition: Truth is closed under first order provability,

e membership condition: All first order tautologies are true.

But for propositional logic, all we have at the moment is the information
about the closure condition: we know that it is strong indeed. How about the
membership condition of the form “All propositional tautologies are true”?
We saw that this generalization is not provable in PA(S) , but it might - just
might - be that when added to PA(S) , it does not produce new arithmetical
theorems.

A still more general approach would involve also (some of) the logic of
quantifiers. The guiding question is what natural and nontrivial closure con-
ditions can be conservatively imposed on the set of true sentences. It seems
to me that a promising candidate to consider is closure of truth under proofs
of finite length. Take some complete, axiomatic logical system S and consider
a theory obtained by supplementing PA(S) with a set of axioms, containing
for each natural number n a sentence of the form “For every ), if ¢ is S-
provable from true premises in n steps, then 1) is true”. The theory obtained
in this way will prove that applying finitely many logical manipulations to
true sentences will produce true results. And the question would be: for
which logical manipulations, i.e. for which logical systems, is the resulting
theory a conservative extension of PA. (If e.g. S is a system containing all
propositional tautologies as axioms, membership condition for propositional
logic would follow trivially from a resulting theory.) From a philosophical
point of view, it seems that such a theory could offer the deflationist a decent
compromise between conservativeness and generalization, conceived of as a
rationale for introducing the truth predicate into our language. The matter
seems to well deserve some further investigation.!?

Notes

1[16] and [14] are classical texts in this area of research. For a review of results on
satisfaction classes, see [13].
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2The classical paper [11] describes a satisfaction class for a relational structure - i.e. for
a model of arithmetic formulated in relational language. A construction of a satisfaction
class for a model of arithmetic with function symbols is presented in [9].

3In other, perhaps more conspicuous notation, the formula in question could be written
as: “VoTr(sub(p(z), name(v)))”. In this version the expressions “sub” and “name” are
used as function symbols; they correspond however to formulas (provably functional in
PA) “z = sub(z,y)” and “y = name(x)”. The first of them represents in PA a recursive
function of substitution, which for a term y and a formula = with one free variable, produces
the result of substituting y for a free variable in x. The second represents a recursive
function giving as value, for a number x, a numeral denoting x.

4See [11]. Cf. also [3] for a discussion of various types of pathologies in satisfaction
classes.

®Horwich’s book [8] is an exposition of deflationism as a philosophical standpoint. For
the conservativeness debate, see [10] and [17].

50n truth as a device for expressing infinite conjunctions, see [6].

7An interesting possible choice of a weak base theory would be IAq - arithmetic with
induction for Ay formulas only. Analyzing truth theories built over 1Ay could possibly
shed some light on familiar (and notorious) open problems concerning IA itself. On the
other hand, ZFC could be a natural choice of a strong base theory; the aim would be
then to characterize the notion of truth for the language of set theory.

8 Just to make it clear: I am not attributing such a conclusion to Halbach. This would
be in fact a grave misinterpretation, out of tune with the main points he makes in the
quoted paper.

90bviously this makes sense only if we are able to characterize the class P with the
linguistic means we have at our disposal within our theory.

10The problem does not arise if move to full PA(S), because there we are able to prove
that partial notions of truth indeed do coincide with the general one for appropriate classes
of formulae.

HFor example Field in [4] argues, that induction for formulas with arbitrary new pred-
icates (including truth predicate) is arithmetical and not truth-theoretic; accordingly the
deflationist may use it freely.

12Guch translation functions were introduced by Kotlarski in [12], although the charac-
terization I give differs in some respect from his definition (the main difference concerns
the last clause - the quantifier case).

13In the above proof we reasoned with our function F, in a rather informal manner.
In a more rigorous treatment one would have to observe that the function in question is
recursive and work with an appropriate formula representing this function in PA.

4Tn my proof of Theorem 4 I used a stronger closure assumption when I moved from “a
disjunction is true” to “some member of this disjunction is true”. I do not know whether
it is possible to justify such a move with merely a membership condition at hand.

15The relation of n-step provability received a lot of attention in logical literature. The
main motivation for this research was the so called Kreisel’s Conjecture. Given the set Az
of the usual axioms of PA and a logical system S, assume that there is a uniform upper
bound on the lengths of proofs of ¢(n) from Az in S (i.e. for every natural number n,
there is a S-proof of p(n) from Ax in k steps, with k being fixed). Is it true then that the
general statement “Vz(x)” can be obtained in PA? The answer seems to depend on the
choice of our proof system and the question is whether in our case we also encounter a
similar phenomenon of system dependency. Fore more information on n-step provability,
see [1].
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