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1 Inductive Inference

There are two senses of “evidence.” The first is the “having evidence” sense. When we 
have A as evidence, A is part of a body of evidence we possess. The second sense is that 
of “evidence for.” When A is evidence for B, A confirms B—that is, raises its probability. 
When we have A as evidence and A is evidence for B, we are in a position to infer from 
A to B—concluding that B is true, or that B is probable, or that B is more probable than it 
would otherwise be.

The inferences we draw from our evidence are of different kinds. Traditionally, inferences 
are divided into deductive and inductive. In a valid deductive argument, it is impossible for 
the premises to be true and the conclusion false; so if we are sure of A and deductively infer 
B from A, we can be sure of B as well.1 While philosophers have focused much of their 
energy on understanding deductive inference, our everyday inferences are more often induc-
tive in form. In a good inductive argument, our premises support our conclusion to some 
degree, but it is possible for the premises to be true and the conclusion false. Consequently, 
inductive inferences only let us move from evidence to conclusion with some degree of 
probability.

This last point requires clarification, as the literature is divided on exactly how a good 
inductive inference supports its conclusion. On one conception, an inductive inference 
should make its conclusion more probable than not (see, e.g., Hurley 2006: 44–45). On 
another conception, it need only make its conclusion more probable than it would other-
wise be (see, e.g., Carnap 1950: 205–206). The former fits with a conception of inference 
more generally as a cognitive process that results in belief.2 The latter fits with a conception 
of inference more generally as a cognitive process that includes not only changes in first-
order beliefs, but also changes in degrees of belief and/or beliefs about probabilities.3 It also 
makes inductive inferences more closely analogous to inductive arguments, inasmuch as the 
latter category includes arguments that confirm, but do not make more probable than not, 
their conclusions (Swinburne 2004: 4–6).4

This chapter focuses on the question of what kinds of inductive inferences there are, with 
the goal of helping us better understand and improve our ordinary inferential practices. 
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In order to include more reasoning under the scope of this discussion, I adopt the second 
conception of inductive inference, on which it includes any reasoning from premises to a 
conclusion (taken to be) confirmed by those premises.

Little formulaic work in the past century has aimed at giving a typology of different 
kinds of inductive inference. But the following are among the most common inductive infer-
ence forms mentioned in introductory logic and critical reasoning textbooks, encyclopedia 
articles, and philosophical discussions:5

• Abduction
• Analogical inference
• Bayesian inference
• Causal inference
• Direct inference
• Enumerative induction
• Inverse inference
• Inference to the best explanation
• Predictive inference
• Statistical inference
• Universal inference

This chapter proceeds as follows. First, in Section 2, I draw on the technical literature on 
graphical models of explanation to give a principled typology of inductive inferences. Then, 
in Section 3, I classify the previous forms within this typology. Finally, in Section 4, I note 
some philosophical implications of this typology.

2 A Typology of Inductive Inference

We are wondering whether various members of an extended family are smokers. We know 
that the only causal factor that influences whether someone smokes is parental habits: if a 
parent smokes, their child is more likely to smoke than if that parent does not smoke. We 
have the partial family tree given in Figure 33.1, with the relatives denoted by their relation 
to one individual, Jane. Suppose we learn that Father smokes. What can we infer?

First, we might infer that Jane smokes. We cannot infer this with certainty. It is possible 
that Father smokes but has not passed this habit on to Jane. But that Father smokes makes 
it more likely that Jane smokes.

Second, we might infer that Grandfather smokes. We cannot infer this with certainty. It 
is possible that Father picked up smoking without learning it from Grandfather. But Grand-
father’s smoking is one way we might explain Father’s smoking, and that Father smokes 
thus makes it more likely that Grandfather smokes.

Third, we might draw further inferences from our two preliminary conclusions. Just 
as Father’s smoking makes it more likely that Jane smokes, Grandfather’s smoking makes 
it more likely that Uncle smokes, and Jane’s smoking makes it more likely that Daughter 
smokes. So we can further infer (with some probability) that Daughter smokes and that 
Uncle smokes.

There is one further inference we cannot make. We cannot infer from the preliminary 
conclusion that Jane smokes that Mother smokes. This is because our only reason to think 



Evidence and Inductive Inference

437

that Jane smokes is that Father’s smoking might cause Jane to smoke. We cannot say, 
“Father smokes, which will probably lead to Jane smoking, which is probably explained by 
Mother’s smoking.” Since the only reason we have to think that Jane smokes is that Father’s 
smoking predicts this, there is nothing residual to account for that Mother’s smoking could 
help explain.

This example lets us divide inductive inferences into two kinds: direct and indirect. Our 
first two inferences were direct: we moved from Father’s smoking to Jane’s smoking and 
Grandfather’s smoking without any intermediate steps. Our last two (legitimate) inferences 
were indirect: we moved from Father’s smoking to Daughter’s smoking and Uncle’s smok-
ing, but only by moving through Jane’s and Grandfather’s smoking.

Within direct inferences, we can distinguish upwards inferences from downwards infer-
ences. Downwards inferences move from cause to effect—parent to child—and upwards 
inferences move from effect to cause—child to parent.6

Within indirect inferences, we can distinguish different combinations of direct inferences, 
with the direct inferences starting either at our evidence or at the conclusion of an earlier 
direct inference. Combinations of two or more upwards inferences are indirect upwards 
inferences. Combinations of two or more downwards inferences are indirect downwards 
inferences. Finally, if we begin with a (direct or indirect) upwards inference followed by 
a (direct or indirect) downwards inference, we have a sideways inference. Sideways infer-
ences let us move from an observed effect to other hypothetical effects of an underlying 
explanation.

This lets us construct the typology in Table 33.1.7 We saw in Section 2 that we can-
not first infer downwards from a cause to an effect, and then upwards from that effect 
to another cause. This means we cannot add an upwards inference at the end of either a 
downwards inference or sideways inference to get a new kind of indirect inference, and our 
typology is thus complete.

Figure 33.1 Inductive Inference Through a Family Tree
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We arrived at this typology through consideration of a special case. To generalize it, we 
can adopt the following framework for thinking about inferences:8

1. Different facets of the world that we are interested in reasoning about can be organized 
into variables.

Variables correspond to questions we can ask about the world: “Does Jane smoke?” “How 
often does Jane exercise?” “What is Jane’s blood pressure?” Answers to these questions 
(“Yes,” “Twice a week,” “120 over 80”) correspond to values these variables can take on.

2. We can model variables as the fundamental relata of inference.

We can infer from the observation that Jane’s blood pressure is high to the conclusion that 
she does not exercise regularly. But we can also infer more generally from Jane’s blood 
pressure to her exercise habits. We can infer from one variable to another when the two 
are probabilistically dependent: learning the value of one changes the probabilities of dif-
ferent values of the latter. (This builds on the broad conception of inference adopted in Sec-
tion 1, on which inference includes changes in credences/beliefs about probabilities as well 
as changes in first-order beliefs.)

3. These variables can be organized into a directed acyclic graph (DAG) that represents the 
explanatory relations between the variables and obeys the Markov condition.

A DAG represents explanatory relations between our variables by use of directed arrows. 
We include an arrow from one variable X to another variable Y iff what value X takes on 
directly influences what value Y takes on. This influence could be causal, as in Figures 33.1 
and 33.2. But arrows can also represent non-causal influence, as when the value X takes 
on grounds or partially grounds the value Y takes on.9 Downwards, upwards, and side-
ways inferences can accordingly track non-causal explanatory relations as well as causal 
relations. In Figure 33.3, Socrates’s parents’ existence is causally prior to Socrates’s exist-
ence, and Socrates’s existence metaphysically prior to {Socrates, Plato}’s existence—that is, 
whether Socrates exists helps metaphysically determine whether the set {Socrates, Plato} 
exists. This lets us infer directly downwards both from the existence of Socrates’s parents to 
the existence of Socrates, and from the existence of Socrates to the existence of {Socrates, 
Plato}.

Table 33.1 A typology of inductive inference.

Inference Type Example

Direct Downwards Father→Jane
Upwards Father→Grandfather

Indirect Downwards Father→Jane→Daughter
(downwards + downwards)
Upwards Daughter→Jane→Father→Grandfather
(upwards + upwards)
Sideways Jane→Father→Grandfather→Uncle
(upwards + downwards)
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X is a parent of Y in a DAG iff there is an arrow from X to Y, and an ancestor of Y iff it 
is a parent, or parent of a parent, etc. If X is a parent/ancestor of Y, Y is a child/descendant 
of X. A DAG obeys the Markov condition just in case a variable’s parents screen it off from 
all non-descendants. Formally:

A DAG obeys the Markov condition iff for any variable X, X is probabilistically inde-
pendent, given its parents, from any other conjunction of non-descendants Z.

The Markov condition implies that if Y already tells us everything relevant to predicting X 
in advance, the only way to get further evidence about the value of X is by learning about 
its effects. For example, if we know that the only thing that directly causally influences 
whether Jane smokes is whether her parents smoke, then if we know that Father smokes 
and Mother doesn’t, learning that Grandfather smokes tells us nothing. The only evidence 
we can get relevant to her smoking habits are possible effects of those habits—like her chil-
dren smoking or her blood pressure.

If our DAG obeys the Markov condition, then the probability of Y given X is only dif-
ferent from the unconditional probability of Y if we can infer from X to Y in one of our 
three ways: upwards, downwards, or upwards + downwards.10 A metaphor: if we imagine 
the nodes of a DAG as individuals in a family tree (in a species without sex and with no 
restriction on the number of parents or the possibility of incestuous reproduction), our 
typology of inference says that evidence about one node gives us information about other 
nodes that are related to that node by blood, but not those only related by marriage. Just 
as I can draw inferences from the results of your genetic test about your blood relations, 
but not your in-laws, I can draw inferences from observing the value of some variable only 
about the “blood relations” of that variable.

Figure 33.3 A DAG Representing Metaphysical Priority

Figure 33.2 A DAG Representing Causal Priority
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This result holds only in situations in which we have no background evidence (that is, 
our evidence does not include the values of any of the other variables in our DAG). Fully 
exploring the impact of background evidence on inferences is beyond the scope of this 
chapter, but an example will suffice to show the complications that can arise.

Consider Figure 33.2. Suppose we observe that Jane has high blood pressure and infer 
that she does not exercise regularly. We subsequently learn that Jane is a smoker. Relative 
to the background observation that Jane has high blood pressure, Jane’s smoking raises 
the probability that Jane exercises regularly—even though neither of these factors influ-
ences the other, and they have no common causes. Because our new evidence “explains 
away” the initial observation that Jane has high blood pressure, there is less explanatory 
work for lack of exercise to do; this evidence thus undermines the support that high blood 
pressure gives to lack of exercise. Philosophers have referred to this kind of undermining 
as “undercutting defeat” (Pollock 1986) and “explaining away” (Schupbach 2016). It 
is worth noting, though, that in other cases antecedent knowledge of factors that influ-
ence an observation can strengthen the inference from it to another explanation—and 
here talk of “undercutting” or “explaining away” is not apt. For example, if we had 
learned that Jane does not smoke, this would have strengthened the inference from high 
blood pressure to lack of exercise, by removing a possible alternative explanation of this 
observation.

3 Classifying Inductive Inference Forms Under This Typology

In this section I return to the assortment of inference kinds compiled in the introduction and 
bring them under the typology developed earlier.

3.1 Downwards Inference

The first kind of inference in our typology is downwards inference—from cause to effect, 
or explanation to prediction.

3.1.1 Direct Inference

The term “direct inference” has been used to describe inferences from statistical hypoth-
eses to specific events (Carnap 1950: 207; Henderson 2020)—that is, inferences from a 
population to a sample.11 An inference from a given proportion of white balls in an urn 
to the probability of drawing some number of white balls in some number of samples is 
a direct inference in this sense. The term has also been used to describe inferences from 
physical chances to outcomes (Levi 1977)—for example, an inference from the hypothesis 
that a coin is fair to a prediction about the number of heads that will be flipped in a series 
of trials.

Hypotheses about physical chances are prior to particular outcomes, and hypotheses 
about the characteristics of a population are prior to observations of individuals sampled 
from that population (which is not to say that they are prior to the features of the individu-
als observed—see Section 3.2.1.1). Direct inferences in both these senses are thus down-
wards inferences. These are typically “direct” in the sense I have been using the term as 
well, in that the inferences are about children of the chance/statistical hypothesis in the 
explanatory network, so that they are not mediated by any intermediary factors.
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3.1.2 Other Kinds of Downwards Inference

Not all direct (in our sense) downwards inferences proceed from a statistical description of 
a population or a chance hypothesis about a process to a statement about some member 
of that population or outcome of that process. When you infer from your friend’s having 
promised to meet you for lunch at noon that they will be at the restaurant at noon, you are 
inferring from a cause to an effect, but the cause is neither a statistical distribution nor a 
hypothesis ascribing precise chances to a physical process.

We could subdivide downwards inference into inference from quantitative hypotheses 
(e.g., about statistical distributions or chance physical processes) and inference from quali-
tative hypotheses (e.g., about the actions of rational agents). Inferences of the former kind 
are what others have called “direct inference.” They are of special interest because they 
apparently allow for the straightforward derivation of precise conditional probabilities. But 
inferences from qualitative hypotheses are also common, in both science and ordinary life.

3.2 Upwards Inference

The second kind of inference is upwards inference—from effect to cause, or observation to 
explanation.

3.2.1 Inverse Inference/Bayesian Inference/Statistical Inference

“Direct inference” in the sense of Section 3.1.1 was traditionally contrasted with “inverse 
inference”—inference from a sample to a population, or from effects to causes. Bayes’s 
Theorem was originally formulated to deal with problems of inverse inference, and today 
the term “inverse inference” has largely been replaced by “Bayesian inference” (see Fien-
berg 2006 for discussion).

Historically, some authors reserved the term “inverse inference” for narrower kinds of 
inference, such as “inference from a sample to a population” (Carnap 1950: 207). Such 
inferences are also called “statistical inferences”—i.e., inferences to a statistical hypothesis 
about a population (Howson and Urbach 2006).

One natural way to subdivide upwards inference, corresponding to the earlier distinc-
tion between different kinds of downwards inference, is with respect to whether their con-
clusions are qualitative or quantitative. Inferences to statistical or chance hypotheses are the 
inverse of “direct inferences” in the sense of Section 3.1.1, while inferences to qualitative 
hypotheses are the inverse of other kinds of downwards inferences.

3.2.1.1 ENUMERATIVE INDUCTION/UNIVERSAL INFERENCE

A special case of statistical inference that has received disproportionate philosophical 
attention is what Carnap (1950: 208) calls “universal inference.” In universal inference, 
one infers from the fact that some sample of a population has a feature to the conclusion 
that the whole population has that feature. For example, one infers from the fact that all 
observed ravens have been black to the conclusion that all ravens are black.

Discussion of universal inference goes all the way back to Aristotle, and it was his-
torically taken as the paradigm of induction more generally (see, e.g., Flew 1979: 171). It 
was classically called “induction by simple enumeration,” or “enumerative induction” (see 
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Norton 2010 for historical references). Over time the meaning of these terms has shifted, 
though, and today they are often used in a broader sense that covers predictive inference 
(see Section 3.3.1) as well (e.g., Russell 1948; Henderson 2020).

On the present typology, universal inference is a special kind of upwards inference to a 
quantitative hypothesis: one where the quantitative hypothesis is that 100% of the popu-
lation has the feature in question. In classifying universal inference as a form of upwards 
inference, I side with Harman (1965), who held that enumerative induction is a special case 
of inference to the best explanation (see Section 3.2.2). This thesis has proven controver-
sial, with the controversy largely turning on the question of whether universal statements 
(like “all ravens are black”) really explain their instances (like “this raven is black”) (Ennis 
1968). On the plausible view that generalizations are grounded in their instances, the direc-
tion of explanation goes the other way: all ravens are black because this raven is black, that 
raven is black, and so on.12 However, as Weintraub (2013: 211–212) observes, even if gen-
eralizations do not explain their instances, they may explain our observations. In canonical 
enumerative inductions, the evidence is about an individual or group sampled from the 
population. Here the evidence is not that this raven is black, that that raven is black, etc., 
but that we have observed this black raven, that we have observed that black raven, etc. 
And while the fact that all ravens are black may not explain why particular ravens are 
black, it does explain why we have observed only black ravens.

The situation is different if we start with a population whose members we are already 
acquainted with, and then infer from one of them having a feature to others sharing that 
feature. For example, call Jane, Mother, and Father “Jane’s immediate family.” We already 
know everyone in Jane’s family, and then we learn that Jane is a smoker. From this we con-
clude that everyone in Jane’s immediate family smokes. While this inference fits the logical 
form presented in textbooks, it is not the kind of inference philosophers usually have in 
mind when discussing enumerative induction. It does not proceed directly upwards from a 
sample to a population, but upwards from Jane to Mother and Father, and then downwards 
from these instances to the generalization that all these people smoke. It is accordingly a 
kind of sideways inference.

3.2.2 Abduction/Inference to the Best Explanation

Another commonly discussed form of inductive inference is abduction.13 This term is vari-
ously used (see Douven 2017). Some authors use abduction to describe the invention of a 
hypothesis, contrasting this with the selection of a hypothesis. I focus here solely on abduc-
tion in the inferential sense. Harman (1965) equates abduction in this sense with “inference 
to the best explanation” (IBE). Much discussion of IBE has focused on difficulties relating 
to inferring to the best explanation (Thagard 1978; van Fraassen 1989; Lipton 1993; Cli-
menhaga 2017b). If we set these complications aside, and use “abduction” and “IBE” to 
describe any inference from a proposition to a possible explanation of that proposition, 
then it is identical to upwards inference in our sense.

With that said, the examples used to illustrate IBE in the literature almost invariably 
involve qualitative hypotheses. Consider this stock of examples from Lipton’s (2004: 56) 
celebrated book:

The sleuth infers that the butler did it, since this is the best explanation of the evi-
dence before him. The doctor infers that his patient has measles, since this is the 
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best explanation of the symptoms. The astronomer infers the existence and motion 
of Neptune, since that is the best explanation of the observed perturbations of Ura-
nus. Chomsky infers that our language faculty has a particular structure because this 
provides the best explanation of the way we learn to speak. Kuhn infers that normal 
science is governed by exemplars, since they provide the best explanation for the 
observed dynamics of research.

None of these five inferences are to statistical or chance hypotheses, although one of them 
(the existence of Neptune) explains the observed data (the perturbations of Uranus) by 
means of a mathematical derivation from this hypothesis (together with Newton’s laws and 
background evidence about the location of the other planets).

That standard examples used to illustrate abduction are upwards inferences to qualita-
tive hypotheses suggests that the long-running debate about the compatibility of IBE and 
Bayesianism (Henderson 2014) is closely related to more general questions about the rela-
tion of quantitative and qualitative reasoning. In particular, Bayesian inferences will be 
abductive inferences only if qualitative explanatory considerations are relevant to probabil-
ities (contra van Fraassen 1989), and abductive inferences will be Bayesian inferences only 
if probabilities can legitimately be assigned to qualitative hypotheses (contra Haack 2018).

3.2.3 Causal Inference

“Causal inference” is frequently described as a special form of inference relevant to such 
areas as the social and medical sciences, where we are given several variables but do not 
know—and thus must infer—the causal relationships among them (Spirtes et  al. 2000; 
Climenhaga et al. 2021). Introductory logic textbooks that discuss inductive reasoning fre-
quently devote a section to “causal reasoning,” usually focusing on Mill’s (1843) methods 
for identifying, in a set of data, causal relationships between different factors (see, e.g., Copi 
et al. 2014: ch. 12.4; Gensler 2002: ch. 13.7; Vaughn 2009: ch. 8; Hurley 2006: ch. 9.2).

So far this chapter has discussed cases where we are given a causal network, and make 
inferences relative to that network. Causal inference is needed in cases where we are uncer-
tain what the explanatory relationships between different variables are. These two situ-
ations are opposite sides of the same coin. Suppose you are uncertain whether smoking 
would make Jane more likely to develop cancer. Call the causal network on which it would 
the dependent network and the one on which it would not the independent network. Now 
suppose you observe that Jane smokes and has cancer. This observation is more likely given 
the dependent network than given the independent network. Hence, this observation is 
evidence for the dependent network; hence, you can infer (with some probability) from this 
observation to the dependent network (cf. Climenhaga 2017a).

Since causal inferences are inferences from predictions to explanations, causal inferences 
are a kind of upwards inference. The causal relationship between smoking and cancer is 
prior to both variables, in that what difference smoking makes to cancer itself makes a dif-
ference to how likely it is that someone both smokes and develops cancer. In observing both 
variables and drawing an inference about the causal network, one is inferring upwards to 
an explanation of one’s evidence.

Hypotheses about explanatory relationships may be quantitative (assigning precise con-
ditional probabilities, as in stock balls-and-urns models used to illustrate Bayesian infer-
ence), or qualitative (specifying relations of explanatory priority but not precise conditional 
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probabilities); so causal inferences may be inferences to either quantitative or qualitative 
hypotheses.

3.3 Sideways Inference

The third kind of inference is sideways inference: inference upwards from effect to cause or 
explanation, and then downwards from that cause or explanation to another effect.

3.3.1 Predictive Inference

Carnap (1950: 207) defines a predictive inference as “an inference from one sample to 
another sample not overlapping with the first.” The evidence is about observed members 
of some population, and the conclusion about unobserved members of that population—
e.g., the next member one observes. Hume (1748/1999) presents canonical examples of this 
inference form:

• The bread I have formerly eaten nourished me; therefore, the next bread I eat will nour-
ish me.

• All the snow I have felt has been cold; therefore, that snow I see falling from the sky will 
be cold.

Hume saw predictive inference as the central case of induction, and subsequent philo-
sophical theorizing has placed it alongside universal inference as one of the paradigmatic 
forms of induction.14 Carnap calls predictive inference “the most important and funda-
mental kind of inductive inference” (1950: 207), and others who have sought a universal 
“inductive rule” have tended to follow him on this (see Climenhaga ms).

On the typology advanced here, predictive inference is just one kind of indirect sideways 
inference—an inference that proceeds upwards through an explanatory hypothesis and 
then downwards from that to a prediction of that hypothesis. Like universal or statistical 
inference, we can understand predictive inference as proceeding from information about 
members of a group we have sampled or observed. We move from the bread we have sam-
pled or the snow we have felt upwards to a generalization about most bread nourishing, or 
all snow being cold, and then downwards to the prediction that the next bread eaten will 
be nourishing, or the next snow felt cold. Standard discussions of predictive inference, and 
especially attempts to give rules for quantifying the strength of predictive inference based 
solely on factors like number of samples, are best explicable under this sampling paradigm.

But we can also infer from observed instances to unobserved instances in other ways. 
We could infer from the bread we have eaten nourishing to an explanation in terms of what 
Hume called bread’s “secret powers,” and then downwards from this to the prediction that 
other bread nourishes as well. This is better understood as an argument from analogy: we 
reason that unobserved bread that resembles observed bread in “colour, weight and consist-
ency” (Hume 1748/1999: sec. 4.2) will also resemble it in being nourishing.

3.3.2 Analogical Inference

In an analogical inference, one infers from the fact that a is both F and G, and that b 
is F, that b is also G (where F and G may be atomic or conjunctive predicates). Here 
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are two examples from the Stanford Encyclopedia of Philosophy entry on analogical 
reasoning:

Reid notes a number of similarities between Earth and the other planets in our solar 
system: all orbit and are illuminated by the sun; several have moons; all revolve on 
an axis. In consequence, he concludes, it is “not unreasonable to think, that those 
planets may, like our earth, be the habitation of various orders of living creatures” 
(1785: 24).

(Bartha 2019: sec. 1)

In 1934, the pharmacologist Schaumann was testing synthetic compounds for their 
anti-spasmodic effect. These drugs had a chemical structure similar to morphine. He 
observed that one of the compounds—meperidine, also known as Demerol—had a 
physical effect on mice that was previously observed only with morphine: it induced 
an S-shaped tail curvature. By analogy, he conjectured that the drug might also share 
morphine’s narcotic effects.

(Bartha 2019: sec. 2.1)

In these examples, we first infer upwards from Fa and Ga to some causal relationship 
between Fa and Ga. This is a causal inference in the sense of Section 3.2.3: inference to 
a causal network. In Reid’s argument for life on other planets, we infer from Earth’s (a) 
orbiting the sun, (b) having a satellite, (c) revolving on an axis, and (d) having life that 
(a)–(c) causally contribute to (d) on Earth. In Schaumann’s conjecture that meperidine is a 
painkiller, we infer upwards from the presence of tail curvature and pain-killing among the 
effects of morphine that these two phenomena have a common cause in morphine’s chemi-
cal structure. Second, we infer from this causal network for a to an analogous network 
for b: to factors (a)–(c) similarly influencing whether (say) Mars has life; and to meperi-
dine’s chemical structure similarly influencing whether it has tail-curving and pain-reducing 
effects. This inference is itself a sideways one, proceeding through some (perhaps implicit) 
higher-order hypothesis about a common explanation of these two networks—for example, 
underlying laws of nature. Finally, relative to the background evidence that Fb, we infer 
downwards from this second network to Gb: observing (a)–(c) in Mars, we conclude that it 
will also have life; observing the tail curvature effect of meperidine, we conclude that it has 
a similar chemical structure and therefore will also be an effective painkiller.

As Bartha’s (2019) other examples illustrate, a wide variety of arguments are classified as 
analogical in the literature. I lack the space to consider further examples here, but I suspect 
that we can understand most analogical inferences as sideways inferences of the previous 
form, comprising two upwards steps followed by two downwards steps. We do need to 
generalize this form in one way, however. In the previous examples, the first upwards infer-
ence is to a causal network relating Fa and Ga (more precisely: a causal network relating 
variables taking Fa and Ga as values), and the first downwards inference is to a similar 
network for b. Bartha (2019: sec. 3.3.2) notes (against Hesse 1966) that not all good ana-
logical arguments posit a causal relationship between F and G—for example, analogical 
arguments in mathematics do not. We can account for this by also allowing for inferences 
to non-causal explanatory networks—e.g., a network on which whether a is F grounds 
whether a is G. This allows for justified analogical inferences not only in empirical reason-
ing but also in such domains as mathematics and ethics.
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3.3.3 Other Kinds of Sideways Inference

While predictive and analogical inference are the varieties of sideways inference most 
widely discussed, the category is wider than just these two. Consider an inference from 
South America and Africa having complementary shapes to the theory of continental drift, 
and from there to the probable existence of undersea rifts in places where plates meet. This 
inference relies neither on an analogy between continental shapes and undersea rifts nor 
on these two things being part of some population we are sampling from. But it is, like 
analogical and predictive inferences, a sideways inference—proceeding upwards from our 
evidence to an explanatory hypothesis, and downwards from there to a prediction of that 
hypothesis.

4 Conclusion

In Section 2, I defended a typology of inductive inference based on the explanatory relation-
ship between premises and conclusion. There I argued that inferences can proceed either 
downwards, from cause to (direct or indirect) effect; upwards, from effect to (direct or 
indirect) cause; or sideways, from effect to cause to additional effect. In Section 3, I clas-
sified canonical forms of inductive inference under this typology. Table 33.2 summarizes 
these results.

The typology defended in this chapter is not philosophically neutral. I have mentioned 
connections earlier with probability theory, confirmation theory, epistemic defeat, the 
relation between abduction and enumerative induction, and the compatibility of IBE and 
Bayesianism. In closing I note one final implication.

The model of inference presented here fits most naturally with a form of foundational-
ism about epistemic justification, on which your evidence is fixed prior to your inferences 
and determines what inferences you can rationally draw. Recall that our typology precludes 
inferring downwards from evidence A to B and then upwards from B to C. You cannot 
infer from Father’s smoking to Jane’s smoking, and then from Jane’s smoking to Mother’s 
smoking. But if your evidence was B rather than A, you could infer both A and C if these 
both predict B; you could infer to both Mother and Father smoking from Jane’s smoking.

This characteristic of rational inference is difficult to reconcile with some rival theories 
of epistemic justification. For example, on coherentism, what matters for justification is 
how well your beliefs cohere with each other. But coherence is not a directional notion: the 
beliefs that Father smokes, that Jane smokes, and that Mother smokes are equally coherent 

Table 33.2 Classifying canonical inductive inference forms under our typology.

Inference Type Canonical Inductive Inference Forms

Downwards • Direct inference
Upwards • Inverse inference/Bayesian inference/statistical inference

 Special case: universal inference/enumerative induction
• Abduction/inference to the best explanation
• Causal inference

Sideways • Predictive inference
• Analogical inference

⃝



Evidence and Inductive Inference

447

whether one infers to the first and third from the second or from the first to the second and 
from there to the third. It is thus unclear how coherentists can account for the difference 
between these two cases.

Or consider Williamson’s “knowledge-first” epistemology, on which everything we 
know is part of our evidence, and it is possible to extend our knowledge through inductive 
inference (Williamson 2000; Bird 2018). If A and C are both prior to and predict B, and 
any other conditions for extending our knowledge through inference are met (for example, 
the conditional probabilities of B given A, and C given A&B, are sufficiently high), then this 
implies that we can start with evidence A, infer and come to know B, and on the basis of our 
new evidence infer and come to know C. We can, for instance, learn that Father smokes, 
infer and come to know that Jane smokes, and on that basis infer and come to know that 
Mother smokes. So Williamson’s epistemology seems to imply that we can extend our 
knowledge through inferences the model of inference defended here deems irrational.

These implications show that questions of evidence and questions of inference are closely 
related. We cannot draw conclusions about what kinds of inferences are warranted without 
answering questions about what evidence we have, and we cannot draw conclusions about 
how the evidence we have supports other propositions without answering questions about 
inference.

Notes

 1 At least, this is plausibly true in ideal cases of competent deductive inference. Schechter (2013) 
discusses difficulties with formulating a general principle here.

 2 For example, according to Sanford (2015: 509), “Inference occurs only if someone, owing to 
believing the premises, begins to believe the conclusion or continues to believe the conclusion with 
greater confidence than before.”

 3 Bayesians frequently use the term “inference” in this way. For example, Levi (1977: 6–7) charac-
terizes the outcome of a “direct inference” (see Section 3.1.1) as “assign[ing] a degree of personal 
or credal probability to the hypothesis that [the event] e results in an event of kind R.”

 4 Logic textbooks differ on whether to measure inductive argument strength by the probability of 
the conclusion conditional on the premises, or the degree to which the premises confirm the con-
clusion. Some empirical research suggests that folk evaluations of the strength of inductive argu-
ments better tracks the latter (see Crupi et al. 2008 for discussion and references).

 5 For introductory textbooks, I consulted Gensler (2002), Hurley (2006), Vaughn (2009), and Copi 
et al. (2014). For encyclopedias, I consulted Flew (1979), Audi (2015), and the Stanford Encyclo-
pedia of Philosophy. As for philosophical discussions, I rely especially on Carnap (1950) in the 
following sections, and cite others when relevant.

 6 For exposition, I use the language of “cause” and “effect,” but I mean this to generalize to explan-
atorily priority relations more generally, as I explain later.

 7 Swinburne (2001: ch. 4) uses the terms “downward inference” and “upward inference” in a paral-
lel sense. The term “sideways inference” is my own, but Swinburne describes (without naming) 
this kind of inference in a similar way.

 8 See Climenhaga (2020) for a fuller elaboration of this framework.
 9 In the past, DAGs have primarily been used to model causal priority (e.g., Pearl 2000; Spirtes et al. 

2000). Schaffer (2016) defends the use of DAGs to represent metaphysical priority. See Climen-
haga (2020: sec. 2.3) for further discussion and references.

 10 This follows from Theorem 1.2.4 and the definition of directional separation in Pearl (2000: 
16–18). There are several further connections between probability and our typology. In Climen-
haga (2020, forthcoming) I argue that which theorem of probability we should use to calculate the 
probability of A given B depends on the explanatory relation between A and B. Another question 
worth further exploration is whether, on standard probabilistic measures of confirmation, confir-
mation lessens as inferences become more indirect. For example, it is plausible that in Figure 33.1, 



Nevin Climenhaga

448

the proposition that Jane smokes must confirm that Father smokes more strongly than it confirms 
that Grandfather smokes.

 11 The term “statistical syllogism” is sometimes used here as well (e.g., Gensler 2002: ch. 13).
 12 One response to this is that lawlike generalizations explain their instances (Harman 1968: 531; 

Lipton 2004: 97; Bhogal 2017). As Weintraub (2013: 211–212) argues, though, not all universal 
inferences are to laws.

 13 This term was coined by C.S. Peirce, who also used the term “retroduction” for this form of 
inference.

 14 See, for example, the vast literature on Goodman’s (1954) “grue” problem.
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