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Abstract

In this work it is shown how absolute simultaneity of spatially distinct events can be established by
means of a general criterion based on isotropically propagating signals and how it can be consistently
preserved also when operating with Lorentz-like coordinate transformations between moving frames.
The specific invariance properties of these transformations of coordinates are discussed, leading to a
different interpretation of the physical meaning of the transformed variables with respect to their prevailing
interpretation when associated with the Lorentz transformation. On these basis, the emission hypothesis of
W. Ritz is then applied to justify the outcomes of the Fizeau experiment, thanks to the introduction of an
additional hypothesis regarding the influence of turbulence on the refractive index of the moving fluid.
Finally, a test case to investigate the validity of either the Galilean or the Relativistic velocity composition
rule is presented. Such test relies on the aberration of the light coming from celestial objects due to the
motion of the observer, and on the analysis of the results obtained by applying the two different formulas
to process the data of the observed positions, as measured in the moving frame, in order to determine the
actual un-aberrated location of the source.

Keywords: Simultaneity - Lorentz Transformation - Special Relativity - Ritz Emission Theory - Fizeau
Experiment - Stellar Aberration

1. INTRODUCTION

It is known that the two major theories of Physics, Relativity and Quantum Mechanics, are
fundamentally incompatible, in particular in the way they conceive and deal with time, which
is not absolute in the framework of Relativity. This idea emerged with the development of the
Theory of Special Relativity, where time is considered dependent from the motion of the observer.
This theory has been derived by Einstein[1] on the basis of two postulates: the invariance of the
laws of nature for any inertial reference frame and the invariance of the speed of light.

The first postulate is commonly considered as an extension of the Galilean Principle of
Relativity to electromagnetic phenomena and its formulation is frequently associated to the
invariance of Maxwell equations under the application of the Lorentz transformation. However,
as already demonstrated by Somigliana[2], it is possible to show that the D’ Alembert equation,
which represents the propagation of various kind of waves, not only of electromagnetic nature, is
invariant with respect to a more general class of coordinate transformations that include also, as a
particular case, the specific form of the Lorentz transformation. This led Somigliana, after having
discussed in his work the properties of these general functions from a mathematical point of view,
to raise the question of what is the physical meaning of such coordinate transformations in the
context of classical Newtonian mechanics, and to answer to this question with the interpretation
provided by Voigt[3] which is also discussed by A. Pagano and E.V. Pagano in a note on the
relationship between the Lorentz transformation and the notion of simultaneity[4].
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In the present work a different interpretation of the physical meaning of Lorentz-like trans-
formations is presented. This interpretation preserves the concept of absolute simultaneity and
absolute time despite making use of the same mathematics of the Lorentz transformation. The
starting point that leads to this alternative view is provided by the Galilean Principle of Relativ-
ity and by its implications for the propagation of isotropic phenomena with respect to a given
observer.

In his formulation of the Principle, as presented in the Dialogue[5], Galilei in fact noted that
for an observer located inside the cabin of a ship and stationary with respect to it, any physical
phenomenon which is characterized by an isotropic propagation speed for a given state of motion
of the ship, will maintain this property also when the entire system is moving with constant and
uniform velocity with respect to its original condition. This invariance property is applicable
both to wave-like phenomena, that need a propagation medium to occur, and to particle-like or
corpuscular phenomena, that can occur also in vacuum and that involve the motion of physical
objects, provided that these corpuscular physical entities are emitted by the source with the same
constant speed in all directions. However, the same physical phenomena will have different
propagation speed along different directions for an observer that is moving inside the ship’s cabin
with uniform and constant speed. Both observers, the stationary and the moving one, being in
a state of rectilinear and uniform motion, represent an inertial reference frame. The difference
between them lies in the property of conserving, or not conserving, the isotropy of propagation
of the phenomena. This characteristics therefore splits the class of the inertial frames into two
groups, and shows that the mathematical laws describing the evolution of the physical phenomena
should not be the same for all inertial reference frames, and for the associated observers. The
mathematical laws of the same physical phenomenon must take, in general, a different form in an
inertial frame for which the isotropy of propagation is conserved and into another inertial frame
that is in relative motion with respect to the first one and for which the isotropy of propagation is
not conserved.

On the basis of the above considerations, isotropically propagating signals are employed, in
Section 2, to derive a criterion to assess the simultaneity of events. This criterion is similar to the
one used by Einstein in his 1905 paper[1], but differs from Eistein’s one because it is based not
only and not just on the use of light signals to synchronize distant clocks, but on isotropically
propagating signals of generic nature and because it must be satisfied for any finite value of their
characteristic propagation speed. The application of this criterion allows to establish a common
time basis for all the points of space in a given (stationary) reference frame.

In Section 3, a class of Lorentz-like coordinate transformations is derived by imposing the
invariance of a scalar quantity, named "characteristic interval”, that represents a generalization of
the relativistic interval to the case of signals having characteristic propagation speed v, different
from c - the speed of light in vacuum. It is shown that the simultaneity criterion derived into the
previous section is mathematically equivalent to the condition of equality of the characteristic
intervals between the events of emission and detection of the synchronization signals. Thanks to
the invariance of the characteristic interval under Lorentz-like transformations, it is thus possible to
preserve, also mathematically, the simultaneity of events between two uniformly moving reference
frames. In the Appendix these results are applied to an example of a physical system for which
the simultaneity of events is imposed by the symmetry of the configuration. On the basis of what
above it is therefore possible to conclude that the transformed time variable 7/ does not represent
time.

A consequence of the above conclusion regarding the physical meaning of the Lorentz trans-
formed variables is that space-time distortion cannot be invoked to explain the results of physical
experiences and that an alternative interpretation of the experimental results should be sought. In
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Section 4 the well-known Fizeau experiment on light propagation is analyzed, with the intent to
show that this experiment can be explained without invoking any alteration of the properties of
space-time, but rather through the use of the emission theory proposed by W. Ritz[6]. In particular
it is shown that the law derived by Fizeau from his experiments with counter-propagating light
beams traveling into a stream of moving water can also be obtained in the context of the emission
theory by introducing the hypothesis that the presence of turbulence in the flow regime alters the
index of refraction of the fluid, hypothesis that appears compatible with the Galilean Principle of
Relativity since the presence of turbulence is associated with a not uniform state of motion of the
liquid particles. If this alternative explanation of the Fizeau Experiment proves valid, this could
remove one of the deficiencies highlighted by Fox [7] in the correlation between Ritz’s emission
theory and experimental results.

In Section 5 a new test case is presented with the purpose of determining, on experimental
basis, which is the right velocity composition formula between the classical Galilean vector sum
and the Relativistic rule. This test case is based on the analysis of the phenomenon of Stellar
Aberration and is characterized by two distinctive features: a) it is a mutually exclusive test that
should allow, at least in principle, to discard either one or the other velocity composition formula;
b) it is a purely kinematical test that does not require to measure neither the time, nor the distance
traveled by light, being based solely on the analysis of the measured positions of the celestial
objects over the course of one or more orbits around the Sun of a terrestrial, or space based,
observer.

2. SIMULTANEITY AND TIME INTERVALS

In order to describe the governing laws of physical phenomena by means of mathematical
expressions it is necessary to define a set of coordinates to associate each event being analyzed
to a position in space and to a time of occurrence. The spatial position where the event occurs
can be established by means of rigid rulers whilst the determination of time requires the use of
clocks that must be synchronized in order to provide a consistent time basis. The synchronization
of two clocks which are located in the same spatial position can be done by directly comparing
their time readouts. However, when we consider two non coincident clocks, the application of this
synchronization method is not straightforward, because of the delay associated with the transport
of the information from one location to the other one. It is therefore necessary to establish a
method to determine when two events, the readout of the two clocks, occurring at different space
locations are simultaneous. Such method can provide the basis to properly synchronize couple
of distant clocks and can thus allow to synchronize any clock with a reference, or master, clock
in such a way that a common time basis can be established and used to describe the time of
occurrence of the physical events being investigated.

Let us consider two generic events occurring at two space locations A and B. Suppose that
at the time of occurrence of each event some kind of synchronization signals are emitted from
the two points of space where the events occur and that such synchronization signals travel with
uniform and constant speed in all directions, i.e. that they propagate isotropically into a reference
frame K that is stationary with respect to the two geometric locations A and B. Let v, be the finite
characteristic speed of propagation of such signals, which is assumed to be equal in all directions
into the K frame. Since each signal propagates isotropically, the locus of the points that is reached
after a given interval of time from its emission is a sphere, having the center at the location of the
corresponding originating event.

If the two events being considered are simultaneous, i.e. if they both occur at the same time
t4 = tp = to, then the radii of the two spheres with centers in A and B are equal for every instant
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of time, since the two signals have the same propagation speed v.. Therefore, the signal coming
from A will encounter the other signal coming from B exactly at the midpoint M of segment AB.

Conversely, if two isotropically propagating signals having the same characteristic speed v,
meet each other at the midpoint M of segment AB, then, since the distance traveled by each one is
the same by construction, being equal to half the length of AB, and since they both have the same
propagation speed, the time elapsed from the emission to the encounter of each signal is the same
for both, thus the two originating events A and B are simultaneous.

In order to mathematically derive the above results, let us define a reference frame with the x-
axis directed from A to B. Let M be the midpoint of segment AB, and 2L be its length. Let x; (f) and
x2(t) be the x-axis position reached at time ¢ by the two isotropic signals: x1(f) = x4 + vc(t — f4)
and x;(t) = xg — vc(t — tp). Taking into account that t4 = tg = t, and that x4 = x); — L and
xg = xm + L, we can calculate the time of encounter of the signals by solving x;(t) = x»(t),
which gives t = t, + L/v.. Inserting this value of t into the expression of x; and x; gives:
x1 =xa4+L =xpand xp = xp — L = xp, i.e. the signal coming from A encounters the other
signal coming from B at the midpoint M of segment AB.

Conversely, let us assume that two isotropic signals having the same propagation speed v, meet
each other at the midpoint M of segment AB, at some time t = tyy, i.e. that x1(tp1) = x2(ty) = X
The time of occurrence of the two originating events A and B can be calculated by solving for ¢ the
two equations: x1(t) = xp; + vc(t — ty) = x4 and x2(t) = xp — vc(t — tp1) = xp, from which it
results: t4 = tp = tpr — L/ 0., thus showing that the time of occurrence of the two events is the
same, i.e. that the two events are simultaneous.

The same considerations are valid also for any other couple of isotropically propagating signals,
emitted from A and B at the same time of the first two ones, but which are characterized by a
different value v, of their finite propagation speed. Therefore, the criterion of simultaneity of
events can be formulated in the following way:

Two events are simultaneous if and only if two isotropically propagating synchronization signals,
emitted from the points A and B at the time of occurrence of the corresponding events, meet each other at the
mid-point M of segment AB, for any finite value of the characteristic speed v of the selected signals. E]

This shows that the simultaneity of events is a characteristics that must be invariant with
respect to the speed of propagation v, of the synchronization signals, thus resulting independent
from the specific kind of signal being selected.

According to the above criterion, if an event A is simultaneous with a second event B and also
with a third event C, then also the two events B and C are simultaneous. The synchronization
signals selected to assess the mutual simultaneity between the three events can be different for
each couple of events, the outcome of the process will be the same.

The physical nature of the specific signals being used for the synchronization is not relevant for
the method, they could be particle-like or wave-like phenomena, nor the value of their characteristic
propagation speed v, which is only assumed to be finite and equal in all directions. The only
assumption required for the validity of the method is that the selected synchronization signals
propagate isotropically with respect to the reference frame K. For example, in vacuum one could
imagine to employ small particles, emitted in every direction with the same relative speed with
respect to the source by a spring-loaded launching device, or one could consider to perturb an
ideal string tensioned between its endpoints A and B and use the propagation of the resultant
waveform as synchronization signal. In both cases we can ideally imagine of being able to tune

In general, the location of the control point M need only to be selected in such a way that it is equidistant from A and
B, i.e. it can be located at the center of a sphere having points A and B on its surface. The midpoint of the segment AB
represents the minimum distance choice.
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Figure 1: Simultaneity assessment by means of particle-like (top) or wave-like (bottom) isotropic synchronization
signals traveling with characteristic speed v. = vy and v, = vy, respectively. M represents the midpoint of
segment AB.

the value of the signal speed to whatever finite value v, by properly adjusting the governing
parameters of the selected physical phenomenon (string tension, spring and mass values). In
presence of a homogeneous and isotropic medium, other kind of signals could also be employed
like, for example, acoustic waves traveling in the air at the speed of sound.

In order to guarantee the isotropy of propagation of the synchronization signals, according to
what stated by the Galilean Principle of Relativity, it is necessary that the frame of reference K
identified to represent the coordinates of the two events A and B is stationary both with the source
of the signals and with the propagation medium (for those phenomena that require a medium to
propagate). In the above examples this means that the spring-loaded launcher of the particle-like
objects, in one case, and the entire ideal string, in the other case, must be stationary with respect
to the frame K.

The process can be applied to any pair of geometrical points in the space and to the corre-
sponding couple of events. In such a way, it can be used to check the synchronization of pairs of
clocks placed at distinct space locations. Without losing generality we can assume that the origin
of the reference frame K is coincident with one of the two points selected as the source of the
synchronization signals. By using this method, therefore, it is possible to verify the synchronization
of a "master” clock located in the origin of the reference frame K with a clock placed at any point
of the entire space domain. This synchronization of the clocks guarantees also that the two clocks
run at the same pace, spanning the same time intervals at the two different locations, i.e. it allows
to state that Atg = At4.

Repeating the same process for all points of the entire space domain it is possible to synchronize
all the clocks located at the different geometrical locations of K with the reference time basis of the
master clock located in the origin. All clocks will therefore beat in unison, spanning the same time
intervals of the master clock. In this manner it is thus possible to associate, in a unique way and
consistently with the Galilean Principle of Relativity, the space and time coordinates, expressed
into the reference frame K, to any event occurring into the system being observed, and the process
is not dependent neither on the type of physical signal used to perform the synchronization nor
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on its characteristics speed v, the only requirement for the validity of the synchronization method
being that such signals are isotropically propagating with respect to the K frame.

The synchronization check procedure described above, and the related considerations, are
valid also when light signals are used to establish the simultaneity of events, provided that the
light sources being considered and the transparent light propagation medium, if present, are
both stationary with respect to the reference frame of the observer and with the clocks that are
being synchronized. The emission hyphothesis formulated by W. Ritz[6], that assumes that light
is emitted in all directions with the same relative speed with respect to its source, being fully
consistent with the Galilean Principle of Relativity and therefore also compliant with the above
requirements of the synchronization procedure, justifies the usage of light signals to synchronize
the clocks also into the moving reference frame K'.

3. LORENTZ-LIKE TRANSFORMATIONS OF COORDINATES BETWEEN MOVING FRAMES

In this paragraph it will be shown how the absolute nature of simultaneity can be consistently
assessed by a moving observer through the use of a class of Lorentz-like transformations of
coordinates and by applying the simultaneity criterion defined in the previous Section.

Let us consider two events occurring at two distinct locations A and B of the space and be
K a reference frame stationary with respect to the points A and B. Let v, be the characteristic
propagation speed of the isotropic signals that have been selected to synchronize the clocks
into this reference frame. According to the previously described synchronization method, the
two events are simultaneous if the synchronization signals emitted from A and B at the time of
occurrence of the corresponding events meet each other at the midpoint of segment AB.

For any couple of events we can now introduce, into the reference frame K, a characteristic
interval s, that is a scalar quantity dependent from the space and time coordinates of the two
events A and B and that is defined by the following relation containing the value of the signal
propagation speed v, as a constant parameter:

$2 = 02AF? — Ax? — Ay? — AZ? 1)

where At = (tp —t4), and Ax = (xg —x4), Ay = (yp —ya), Az = (zp — z4).

Let us now consider a second reference frame K’, having its axes parallel to those of K, and let
K’ be translating with constant speed V along the positive direction of the x axes with respect to
frame K. We will call K the stationary frame and K’ the moving frame. Let us also introduce, into
the moving frame K’, a new set of four generalized space-time coordinates, that will be indicated
with (¢/,4',’,7’), and that are functions of the (x,y, z,t) coordinates of the stationary reference
frame K:

(1,0, 7) = flx,y,zt) )

In what follows it will be shown that it is possible to select the functions f that defines the
primed generalized space-time coordinates (¢/,7’,¢’,7’) in such a way that the characteristic
interval between two events results invariant in the passage from K to K’, and viceversa, i.e. to
select f in such a way that it results:

[st(¢ 7,8, T))° = [se(x, 2, 1)] 3)

Since the y and z axes of the two reference frames are parallel by construction and are not
mutually traslating along the respective directions, the corresponding coordinates of the two
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frames can be set equal to each other: 1’ = y and {’ = z, from which it follows: Ay’ = Ay and
A{" = Az. With this choice the problem reduces to that of finding the relations between the (¢’, T’)
and (x,t) coordinates. We are therefore looking for the specific form of the transformations of
coordinates that gives:

(0.AT')? — (A€')? = (veAt)? — (Ax)? (4)
This relation can be satisfied by putting:

Vv
e =7 (x—Vt); T = (t— —Xx) (5)
c
with 7. = 1/4/(1 —V?/02), as it can be verified by substituting these expressions into eq.
(@). Therefore, the coordinate transformations that satisfy the invariance property () of the
characteristic interval have the following form:

, x—Vt

x
e = ' =z =2 _ (6)

and the inverse transformations, from the generalized space-time coordinates of K’ to K, are:

/ V
g +Vvt , T+ gt

= y:]?,' Z:C//‘ tzi
2 2
1/1—%g 1—%%

When light signals propagating in vacuum are chosen as synchronization signals, the charac-
teristic speed is equal to the speed of light in vacuum, v, = ¢, and the above transformations of
coordinates coincide with the Lorentz transformation.

It can be noted that the transformations (6), and the corresponding inverse (7), are not defined
for V = v, whereas for V > v, the two generalized coordinates ¢ and v’ become complex, having
a non null imaginary part. Even in this case, these complex coordinates still preserve the invariance
of the characteristic interval s, as it can be verified by direct substitution of @ into equation @)
The invariance of the characteristic interval is therefore verified for all values of V # v, and it
holds true for any finite value of the characteristic speed v, of the selected isotropic signal used to
synchronize the clocks into the stationary frame K.

When the relative speed V of the moving reference frame is very small with respect to the
characteristic speed v, of the selected synchronization signals, the transformation of coordinates
of eqs.@ can be approximated, to first order in V /v, with:

; ()

d=x-Vt; 4=y, =z T =t—-—= (8)

This expression is not coincident with the form of the Galileian transformation, that is given
by eq. (9), because of the term dependent from V and x which is present into the transformed
time variable 7’ and that vanishes only for the trivial case V = 0 and for the non physical case of
infinite signal propagation speed v, = co.

X =x—-Vt v =y Z =z F=t 9)

Let us now consider, into frame K, two simultaneous events A and B occurring at two generic
points of the space and let (x4,y4,z4) and (xp,yp,z5) be the coordinates of the geometrical
locations of the two events and t4 = tp the corresponding time of occurrence. According to the
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definition of simultaneity given in the previous Section, the synchronization signals emitted by A
and B will both reach at the same time t); > t4 the midpoint M of segment AB, with M having
coordinates:

XAt Xp Ya+Ys 24 +ZB)
/ / 10
2 2 2 (10)
The two characteristic intervals, into frame K, between the two simultaneous events A and B
being considered and the event O of detection of the arrival of their synchronization signals at the
midpoint M are given by:

(xm,ym Zm) = (

soa = (veBtam)® = Lo sop = (veltgm)* — Ly (11)
where:
Atay = (fM—tA); Atgp = (tM—tB) (12)
Loy = (xa—xm)?+ (ya —ym)* + (za — zm)* (13)
Lay = (x8 — xm)* + (yB —ym)* + (28 — z2m)? (14)

Since in the stationary frame K the two points A and B are located symmetrically with respect
to the midpoint of the segment, it is Lpy; = Lapr = L/2, where L is the length of segment AB,
and since the time of emission of the signals is the same, t4 = tp, it follows that At sy = Atppm
and therefore it results:

SZOA = séB (15)

This shows that, in the stationary frame K, two distinct events A and B are simultaneous
when they are separated by the same characteristic interval from the event of the arrival of their
synchronization signals at the midpoint of segment AB. Expression can thus be considered
as the mathematical formulation of the simultaneity criterion described in the previous section
and based on isotropic signals propagating with characteristic speed v, into frame K. The same
considerations can be repeated for any other finite value of the parameter v., leading always to
the same result expressed by relation (I5), thus showing that simultaneity is invariant with respect
to the propagation speed v, of the selected synchronization signals. Moreover, being valid for any
finite value of v, this condition is applicable also to the case of light signals (v, = c¢) and to the
corresponding relativistic intervalflp

Since the characteristic interval s, is invariant under the generalized coordinate transformations

defined above, we have (s},,)? = (spa)? and (sp)? = (sop)®. If we now consider two
simultaneous events into the stationary frame K, for these two events it is szo A= séB, and therefore
it will also be:

(s04)* = (spp)* (16)

2This can be further generalized by considering a reference event Q, occurring at a given time tg at a point of space
belonging to the midplane of segment AB. Q is therefore equidistant from A and from B: L4g = Lpg. Since the two events
A and B are simultaneous, it is t4 = tp, and therefore we have also (Atxg)? = (ta —tg)? = (tg — tg)? = (Atpg)? for every
time of occurrence of the event Q. Therefore, also in this case it results: s2 , = (v:Atgg)? — LiQ = (vcAtpg)? — L%Q =53y
and this shows that the simultaneity of two distinct events can be established by evaluating and comparing the two
characteristic intervals that separate events A and B from a generic reference event Q occurring at a location that is
equidistant from the two events being considered. The two events A and B are simultaneous when the two intervals are
equal.
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Thus, according to the same criterion established before, based on the equality of the charac-
teristic intervals, two events that are simultaneous in the stationary frame K are simultaneous
also in the moving frame K’, and viceversa. This invariance of simultaneity holds true for any
value of the relative speed V between the two moving frames and for any kind of physical signals
selected to synchronize the clocks, so it holds true for any finite value of their characteristic speed
v and is thus consistent with the definition of simultaneity given in the previous section. It
appears therefore that simultaneity is an absolute characteristic of the events, that can be defined
and assessed univocally by different observers that are in a state of uniform relative motion one
with respect to the other, by applying the same general criterion of equality of the characteristic
intervals with respect to an equidistant reference event.

Let us now calculate, in the moving frame K’, the generalized time coordinate 7’ of the two
simultaneous events A and B. According to (6), it is:

14 14
, t - EXA , t - gXB

2/ 27
/1— Y2 /1— Y2
v v

Taking into account that tp = t4 it thus results:

=1 V (xp—x4), (18)

AT T2 ’
(% /1_L§
¢

This relation shows that the generalized coordinate " of two simultaneous events A and B,
evaluated in the moving frame K’, has not the same value for the two events, being, in general:

T #F T (19)

In other words, two simultaneous events A and B turn out as being characterized by a different
value of the corresponding generalized coordinate v’ which, therefore, cannot be used by the
moving observer to represent the time of occurrence of the events, i.e. T’ is not timeE]

We can now consider the governing laws that describe the isotropic propagation of the signals
selected to synchronize the clocks. In particular let us consider the case of the tensioned ideal
string. It is known that for small amplitudes, the transverse displacement u of the points of the
string is determined by the solution of the d’Alembert equation:

,0%u  %u
’Z} [ —
*ox2  ot?

where vs = /N/A gives the speed of propagation of the perturbations along the string as a
function of the applied axial tension N and linear mass density A of the string.

According to the Galilean Principle of Relativity, any experimental determination of the string
properties and of its response will give identical results when the same characterization tests are
repeated into two different laboratories that are uniformly translating one with respect to the other.
Therefore, the string behaviour will be represented by the same governing laws in both cases, i.e.
the same equation will be determined both by the observer of the stationary laboratory and
by the observer of the moving one, and the propagation of the perturbations along the string will
remain isotropic and will have the same characteristic speed v5 in both reference frames.

=0  with u=u(x,t) (20)

3The only particular case for which 15 = 7, occurs when xp = x4, i.e. when the two simultaneous events A and B are
located in a plane orthogonal to the direction of the velocity vector V of frame K’, and therefore in a plane orthogonal to
the x axis of the K frame, being it parallel to V by construction.
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The situation is different if we consider, into a given laboratory, a moving observer with its
associated moving reference frame. Let K be a reference frame stationary with the laboratory, and
stationary also with respect to the string, and let K’ be another reference frame translating with
velocity V parallel to the string axis. For this frame, which is in relative motion with respect to the
string, the perturbations on the string will be no more propagating isotropically, their speed being
greater than v, along one direction and lower than v in the opposite direction. Correspondingly,
also the governing laws of the string will change when expressed into the moving frame K’. In
this case therefore the governing law of the string, expressed by equation for the stationary
observer, should not be invariant in the transformation from the stationary frame K to the moving
frame K'.

Let us now see how the wave equation transforms in the moving frame K’ when the
generalized coordinates with characteristic speed v, as defined by (6), are used. The d’Alembert
equation can be reformulated as:

d 0 0 0
2.2 — — u= 21
(o + 50) (g = 57) =0 @D
and the two generalized coordinates (¢, ) can be written in a more compact form as:

g =v.(x—Vt); T = q.(t — Vx/0?) (22)

where 7. = 1/+/1 — V2/v2. This change of variables can be applied to the d’Alembert equation
by taking into account that:

9 o0 o 9t 9 0 V o
£—$@+$ﬁ—76(@*;gﬁ) @3
9 9 a9 o7 0 0 0
o= arag T araw = (50~ Vag) 24
In this way the wave equation takes the form:
0%u Ju du 0%u
2 _— _— =
7(Agm+ B 55y~ Cm) =0 @)
where the three terms A, B and C are given by:
— V2ol _ v . — (2 _ 2
A_(1— U% ) B_zv(@—l), C=(?—V? (26)

From these expressions it can be noted that when vs; =7, it results B=0,and A=1/ 75, C= ZJ% — V2
Substituting these terms into (25), gives:

,0%u  0%u

€ 9e2 ot'?
Therefore, when the parameter v. contained into the generalized coordinate transformation
(6) is equal to the speed of propagation vs of the specific phenomenon being described, the
corresponding equation governing the evolution of the perturbations along the string is invariant in
the passage from the stationary frame K to the moving frame K'. This invariance property, however,
is no longer verified when the characteristic speed v, used in the coordinate transformation is
different from v;. In this case, in fact, the term B is not null, and the equation resulting from the
change of coordinates has no longer the same form of the original wave equation.

=0 with u=u(d,v) (27)

10
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This peculiar invariance property of the generalized coordinates is valid not only for the
monodimensional case of the string equation that has been considered here, but also for the
tridimensional case of the wave equation that has the same form of (20). Also in this more general
case, the invariance of the governing equations is satisfied only when the parameter v, that appears
in the definition of the coordinate transformation has the same value of the characteristic speed of
the isotropically propagating phenomenon being represented. If some of the physical properties
characterizing the phenomenon change, thereby changing the corresponding physical speed of
propagation, then the wave equation will take a different form in the passage from the stationary
to the moving observer and its solutions will be different along different directions.

Let us now analyze the relationship between the generalized velocity w’, evaluated into frame
K’ on the basis of the coordinate transformation defined by (6), and the expression of the velocity
into frame K. This can be done by evaluating, from eqs. (7), the differentials:

/ / dt’ + Yde
dx = éﬁifjﬁé;; dy=dy; dz=d; dt=—— (28)
Vvi-=z vi-=
Through the definition of the velocity in the stationary frame:
_(dx dy dz

v= (G a @) *)

and, by analogy, of the generalized velocity in the moving frame:

de’ dy' A4y

v = (G g dv) 50

it follows that:

we+V Cwy/1—(V2/0g)

/s 'Uy /
1+ Y5 1+
g e

v, = w,lz V 1-— (VZ/U%) (31)

z !
14 7
Uc

Oy

The expression of the generalized velocity w’ into frame K’ is found by inverting the above
relations, obtaining:

vy —V W — Uym W — vzm (32)

! . .
O = T 7o y 1_ Vo ’ z 1_ Vo
v2 v2 v2
c Cc [

From these expressions it turns out that when the magnitude of the velocity in the stationary
frame K is equal to the characteristic speed, i.e. when |v| = v, then also the magnitude of the
generalized velocity in the moving frame K’ has the same value: |w’| = v.. In fact, considering the
case v° = v2 + vf, + 92 = v? and evaluating the magnitude of w’ from equations , it results:

vV | v2V?
O Ll S AL (33)
(1 =0,V /02)? ¢
The transformations of coordinates defined by equations (6) represent therefore a change of
variables that leaves invariant the characteristic speed. Considering the case of particle-like signals
used to synchronize the clocks (for example the spring-loaded launcher device considered in the
previous section), and applying the characteristic coordinate transformation () to calculate the
generalized speed of the particles into the moving frame K’, it turns out that also these particle-like

W’
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signals, that propagate isotropically with speed v, in the stationary frame K, will have the same
value v. of the generalized speed w’ along every direction, also in the moving frame K’. This
invariance of the characteristic speed is valid for any finite value of the speed of the specific
synchronization signal being considered. When the value of characteristic speed is equal to the
speed of light in vacuum, v, = c, the above result corresponds to the invariance of the speed of
light under the Lorentz coordinate transformations.

Let us now consider the case of a signal, particle-like or wave-like, traveling along the x axis of
the stationary frame K with constant speed v, that is: vy = v and v, = v, = 0. Let K’ be a moving
reference frame which is also traveling along the direction of the x axis of K with uniform constant
speed equal to v. According to the Galilean rule of speed composition, the velocity of the signal
with respect to such moving frame K’ is null, since it is given by v/ = v — V = v — v = 0 for any
value of the common speed v of both the signal and the reference frame. We want now to evaluate
the generalized velocity of this signal into the moving frame K’ according to the formulas
previously established. By putting vy = V = v and v, = v; = 0 it results:

vy —V (] -
wy = w, = 0; Wy = ——— = = :vcll3 52 (34)
- - —-P
v2 v2

where f = v/v.. Therefore it results w, =0 Vo # v, whilst in the case v = v, for which g =1,
the previous expression gives an undetermined form of the type 0/0, expression that can however
be evaluated by applying the rule of de I'Hopital. Putting f(B) = B — fand g(B) = 1 — B2 it gives:

f f 0

lim w), = limv.= = lim o~ =v.— =0 (35)

p—1 =1 g Bl g -2
Thus, also for the case v = v, the generalized speed of a signal traveling with speed v, as evaluated
by an observer comoving with it at the same speed, V = v, is zero. When applied to the case
of a light signal, or a photon, traveling in vacuum with velocity v = ¢, this result shows that
the generalized speed of a light signal evaluated by a luminal observer, i.e. the speed of light
evaluated by a reference frame moving at the same speed of light in vacuum, is null. This result
appears in contrast with the postulate of invariance of the speed of light that is at the basis of
the Special Theory of Relativity[1], since it shows that there is at least one observer, the luminal
observer, for which the speed of light, calculated according to the rules determined by the theory
itself, is zero instead of being equal to c as required by the postulate.

In summary, the generalized coordinate transformations defined by (6) are characterized by
the following peculiar properties in the passage from a reference frame K to another frame K’ that
is translating with constant velocity V:

1. they make invariant the characteristic interval s. defined by equation (I);

2. they leave invariant the constitutive laws representing isotropic propagation of a phenomenon
having characteristic speed v, in the stationary frame K;

3. they maintain, for the generalized speed of propagation in the moving frame K’, the same
value of the characteristic speed v, that such phenomenon has in the stationary frame K.

The above properties are verified for any finite value of the characteristic speed v, and
correspond, for the case v, = ¢, to the same properties of the Lorentz transformation that are valid

12
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for the propagation of light in vacuum and for the corresponding governing laws as described by
the Maxwell equations of electromagnetism. EI

Being valid for any value of the selected characteristic propagation speed v, these invariance
properties of the generalized coordinate transformation (6) can be considered as a peculiar
mathematical characteristics of this type of coordinate transformations, rather than a dependency
of the properties of space and time from the motion of the observer.

It has been shown above by relation that for a moving reference frame K’, two simultaneous
events do not have, in general, the same value of the generalized coordinate v/ which therefore
cannot be used as a time identification of the events. This coordinate, instead, can be interpreted
in a different way as follows. Let us consider, in frame K, a generic event P occurring at a given
time f and at a given point (x,y,z) of the space, and let us consider a second reference frame K’,
moving with uniform velocity V along the x axis, and having its origin O’ coincident with the
origin O of frame K at time t = 0. The amount of time needed by the synchronization signal
emitted from P in order to reach the x = 0 plane of frame K is At = x/v.. In this same amount of
time, the origin of frame K’ will have traveled a distance, along the x axis of frame K, equal to
Ax =V At = Vx/v.. A synchronization signal, traveling with characteristic speed v, in frame K,
would take a time interval equal to At, = Ax/v. = Vx/ v% in order to cover such distance. It is
therefore possible to write the expression of the generalized coordinate 7/ in the following way:

T = 7. (t — At,) (36)

where At. = Vx/v? and 7. = 1/+/1 — V2/02. Equation @ shows that 7/ represents a retarded (or
advanced, depending on the sign of the characteristic time delay At;) and scaled generalized time
coordinate which is a function of the position x of the event along the direction of motion of the
moving frame K’, of its velocity V, and of the characteristic speed v, of the specific synchronization
signal that has been considered. Looking now to the definition of the generalized coordinate ¢’
associated to the moving frame K, it turns out that it can be interpreted as a scaled version of the
position x’ = (x — Vt) of the event P along the x axis of frame K’, that uses the same value of the
non-dimensional scaling factor -, that enters into the definition of the generalized coordinate 7/,
that is:

g =q.x (37)

Let us now consider an event occurring, for the stationary observer K, at a certain space location
with coordinates (x,; yo; zo) and at a given time f,. Let us indicate this event with the quadrivector
Xo = (X0, Yo; Zo; o). In the four-dimensional domain of the (x,y, z,t) variables, all events that are
simultaneous with the event x,, are characterized by having the same time of occurrence t = f,.
Therefore all simultaneous events belong to the hyperplane defined by the following equation:

(x—%,) n=0 (38)

where n = (0;0,0;1) and the dot product between two quadrivectors a and b is defined as:
a-b=x,x,+Yy.yp+2zazp+taty. Vector n represents the normal to the plane and is parallel to the axis
of time t. If we consider a series of events regularly spaced in time, i.e. separated by a constant
time interval At, the intercept of the corresponding simultaneity hyperplanes with the x-t plane
form a series of horizontal lines, all parallel between themselves and separated by At along the
direction of the t axis, as shown in the left part of Figure 2]

“The above described invariance properties of the Lorentz transformation are true only for the vacuum case, for which
the speed of light is equal to c. In any other transparent medium, for which the speed of light is lower than c, the Lorentz
transformation does not verify any more these invariance properties.
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Let us now evaluate the generalized coordinates of all the events simultaneous with x,, by
applying the Lorentz-like transformation defined by (6) to the coordinates of the above events:

%4
€ =v(x-Vt), =y =z T = (to — ?x) Vx,y,z € R (39)
c

Eliminating x from the above equations gives the following relation between ¢’ and 7’:

%4
U—%S' +1 = 4/1- B2t, where Be=V/vc (40)

Into the four-dimensional domain of the generalized variables (¢’;7’;{’; T') this expression rep-
resents the equation of an hyperplane orthogonal to the vector n'=(V/ v% ;0,0;1), vector which
in this case is not aligned with the 7/ axis having a non null component along the ¢ axis. The
equation of this hyperplane can be reformulated more compactly in the following way:

(X' =xp)-n' =0 (41)

where the primed quadrivectors are defined as follows: X' = (¢/;4/;{’;v') and x}, = (e);11}; C0; T5)-

This equation provides a convenient and more immediate way to assess event simultaneity
when operating with the Lorentz-like transformed coordinates. Given the generalized coordinates
of a reference event (e,;7};(; t}), all X' quadrivectors that satisfy relation are simultaneous
with the given reference event. In fact, applying the inverse transformation given by (7) to the
coordinates of the quadrivector x}, we can calculate the time of occurrence of the reference event:

14
to = ve(Ty + —5€0) (42)
vC
Inserting the components of n” into Equation gives:
Vv Vv
(7' + =€) = (1, + 5¢) (43)
vC vC
and applying also to this expression the inverse Lorentz-like transformation given by (7), we get:
14 Vv
b= (T + €)= re(t, + &) = to (44)
vC vC

that shows that all events belonging to the simultaneity hyperplane defined by Equation occur
at the same time t = t,, i.e. that they are all simultaneous.

From this analysis it is possible to see that there is a biunivocal relation between the simultaneity
planes of the (x;y;z;t) domain and the corresponding simultaneity planes into the domain of the
generalized coordinates (¢/;77;; 7). As shown in Figure 2] the differences between the two cases
is that in the generalized four-dimensional domain the simultaneity planes are not orthogonal
to the axis of the generalized time 7/, and that the separation between two successive planes is
given by AT’ = /(1 — BZ)At. The amount of tilt of the orthogonal vector n’ with respect to the 7/
axis depends from the ratio of the relative speed V between the two moving reference frames and
from the square of characteristic speed v.. For V > 0 this tilt is therefore always not null for any
finite value of the characteristic speed o..

Since simultaneous events are those that belong to these hyperplanes, for any tilt, this demon-
strates the independence of events simultaneity from the choice of the characteristic speed v, of
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Figure 2: Intersection with the x-t and &'’ plane of uniformly separated simultaneity hyperplanes.The tilt and the
vertical separation of the hyperplanes vary with the velocity V of the observer and with the characteristic
speed v, of the synchronization signals. Each simultaneity hyperplane represents the separation between past
and future events.

the signals and from the speed V of the reference frame and also shows that event simultane-
ity is independent from their spatial location, holding true for any point belonging to a given
hyperplane.

Each simultaneity hyperplane splits the four dimensional domain into two non intersecting
regions. All events lying below a given hyperplane occur at an earlier time with respect the time
of the events that lie on the simultaneity plane, whilst all events above the same plane occur later
than that time, i.e. all events below a given plane belong to the past, whilst all events above the
plane belong to the future.

In what follows it will be shown that events simultaneity can be consistently established, also in
the domain of the transformed coordinates, by means of the direct application of the simultaneity
criterion presented into Section II. Let us consider two events A and B occurring, at time t = 0, at
two spatial positions along the x-axis of frame K and simmetrically located with respect to the
origin, so that the midpoint M of segment AB coincides with the origin. Let x, = (—L;0;0;0)
and x;, = (L;0;0;0) be the quadrivectors corresponding to these two events. As it has been
shown in Section II, in the stationary frame K two isotropic signals emitted from A and B at the
time of occurrence of the two events meet each other at the midpoint M, for any value of their
propagation speed. Graphically this corresponds to the situation illustrated in Figure ) for two
different couples of isotropic signals, one couple of signals having propagation speed equal to
the characteristic speed v, that enter into the transformation of coordinates defined by (6), the
other couple characterized by a different propagation speed w. In both cases the space-time lines
describing the propagation of the two couple of signals intersect themselves along the vertical
dotted line that represent the locus of all events occurring at midpoint M, and this holds true also
for any other value of the isotropic signal propagation speed.

Let us now calculate the transformed (¢’;7’) coordinates of the two events A and B. From @
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we have: v
e, = —v.L; T, = Ye—5L (45)
vC
1%
£, = vcLi T = 7oL (46)
C

In the reference frame K, let w be the propagation speed of the two isotropic signals emitted from
A and B, so that |w,| = |w},| = w. Applying the velocity composition rule defined by we can
calculate, into the moving frame K’, their generalized velocity along the ¢’ axis:

w—V —w—-V
Wor = 1wy Whe = T Rr 47)
2 2

With these two expression it is now possible to determine the space-time trajectories €, (7’)
and ¢, (7') of the two signals, by imposing the passage from the coordinates of corresponding
originating events A and B:

2 _ 2
! 2 W— v v — 14
— —~.L 48
p » w+V v2 —V?
- _ 49
b ‘vz 4wV e vz +wV 49
The encounter of the two signals occurs when &) (7') = €} (7’), from which it results:
L
T =q— 50
T =", (50)
Substituting this value of 7’ into the expression of the ¢ coordinate of the two signals gives:
- LV
=g ==¢= e (51)

Let us now calculate, in reference frame K’, the transformed coordinates of all the events that
occur at the midpoint M for any time of occurrence. Into the stationary frame K, these events are
given by x = 0 Vt, and they all lie on a vertical line parallel to the t axis, as shown in Figure [Bp).
Transforming these events by means of (6)

g = —7.Vt; T =t (52)
and eliminating t allows to find the relation between the ¢’ and 7’ coordinates of the midpoint:
g =-vt; (53)

Into the (¢/;7’) plane this is the equation of a straight line that is not parallel to the 7’ axis,
as shown in Figure [Bp), which accounts for the fact that in the K’ frame the position of the
midpoint M is no longer constant but is continuously changing because of the uniform velocity
V of frame K’ with respect to K. It is thus verified that the generalized coordinates (¢';7') of the
point of encounter of the two isotropic signals, given by equations and (51), belongs to the
space-time trajectory of the midpoint M, for any value of the propagation speed w, thus showing,
in agreement with the criterion of Section II that the two events A and B are simultaneous also for
the moving observer K'.
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Figure 3: Space-time representation of the simultaneity criterion: (a) for a stationary observer K, (b) for a moving
observer K’ using the Lorentz-like coordinates. The blue line represents the plane of all events simultaneous
with A and B. The dashed line represents the locus of all events occurring at midpoint M of segment AB. In
both reference frames the two lines representing the propagation of isotropic signals emitted from A and B
intersect themselves in correspondence of the midpoint M, for any finite value of the propagation speed. Only
when v = v, the generalized speed of the signal into the moving frame is equal to the characteristic speed,
vy = v, = U, Le. it is invariant and remains also isotropic in the passage from K to K.

When the coordinates of the events into the moving frame K’ are calculated by means of the
Galilean transformation @]), that assumes ' = ¢, the situation depicted in Figures [2] and is similar,
with the difference that the simultaneity planes are now horizontal and separated by the same
interval At. In this case therefore the simultaneity of events in the moving frame is determined by
the equality of the transformed time variable, i.e. in the frame K’ event A is simultaneous with
event B when t/; = tj,. It can be shown that the simultaneity criterion of Section II holds true
also in this case since every couple of isotropic signals meet along the space-time trajectory of
midpoint M for both reference frames K and K’ and for any value of the signal speed.

4. THE F1ZEAU EXPERIMENT

In the Fizeau experience[8], the propagation of light into a stream of water flowing within
pipes has been investigated by analyzing the fringe patterns generated at the recombination of
two light beams that are counter-propagating in the fluid stream. The analysis of the test results
obtained by Fizeau with its original apparatus led to the following expression for the relative
velocity Wr of the light with respect to the stationary system of the laboratory:

1
Wp:erv(l—ﬁ); (54)

where v is the velocity of the fluid flowing into the pipes having circular cross-section, and
w = c¢/n is the speed of light into the fluid being utilized for the test, characterized by an index of
refraction equal to n when such fluid is stationary.

We want now to investigate if the experimental result expressed by eq. that was derived
by Fizeau, can be obtained by applying the Ritz emission hypothesis and the associated Galilean
vector sum of the velocities of light into the propagation medium and the velocity of the fluid.
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This requires the determination of the actual value of the speed v of the fluid flow to be used in
the vector sum formula, since in this kind of experiment the propagation medium used, typically
water, is not characterized by a common and uniform state of motion of all its particles inside
the volume occupied. The motion of the fluid in fact cannot be represented as a pure rigid body
translation with constant speed, therefore there is not just a single value of the velocity for the
entire fluid, but a rather complex velocity field with a distribution that varies from point to point
inside the volume of the pipes.

In addition, the specific geometrical layout of the Fizeau test setup introduces several factors
that can affect the characteristics of the interference fringes formed at the recombination of the
two counter propagating beams, in particular:

1. the non null area of the optical path, because of which interference fringes can arise also
in absence of fluid motion (and actually also without any fluid) due to the Sagnac effect
associated to the Earth’s rotation;

2. the radial shape of the velocity profile of the fluid motion at the various sections of the pipes;

3. the axial speed of the fluid flow which varies along the pipe length and therefore along the
optical path;

4. the non-axial components of the fluid velocity associated to a turbulent regime of the flow.

The Sagnac effect can be considered as a constant bias, since both the angular velocity of the
laboratory where the experiment is performed and the area of the optical path, determined by the
geometrical layout of the test setup are not varied during the execution of the measures, therefore
the product (JA remains constant.

The radial distribution of the axial velocity profile of the fluid flow can cause a distortion of the
shape of the incident wavefront of the light beam. For the beam propagating in the same direction
of the fluid stream an incident planar wavefront could be deformed in a way similar to that of
a plane-concave lens, since the equivalent optical length of the light rays closer to the centerline
of the pipes will be shortened by the dragging effect due to the fluid flow more than that of the
rays travelling farther from the pipe centerline. Conversely, the wavefront deformation associated
to the light beam traveling against the fluid stream should be similar to the one generated by
a plane-convex lens. On the recombining plane, the interference pattern generated by the two
counter-propagating beams would be affected by the actual shape of the two distorted wavefront
and in particular this effect could generate a variation of the fringe spacing if the shape of the
radial velocity profile changes as a result of changes of the average flow rate. This effect should be
more pronounced comparing the distortion associated with a laminar flow regime, characterized
by a parabolic velocity profile, with respect to that of a turbulent flow regime, where the velocity
profile in the central portion of the pipes is more flat. The two different shapes of the velocity
profiles for laminar and turbulent regimes are shown qualitatively in Figure

The axial velocity of the flow is also not constant along the length of the pipes, and therefore
along the optical path traveled by the light beams into the moving fluid. The total amount of
dragging effect to be added, or subtrated, to the speed of propagation of the light would be
dependent from the integral, across the entire length of the optical path, of all the local values of
the axial fluid velocity on every section of the pipes. This calculation is not straightforward, being
the actual velocity field quite complex, especially in the transition regions close to the end of the
tubes. Using longer tubes could help in reducing the sensitivity of the results to the local effects
concentrated at the ends of the tubes, but even along the central straight portion of the pipes the
flow regime would reach a stable, fully developed state with a constant radial velocity profile
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Figure 4: Laminar vs turbulent velocity profiles inside circular pipes

distribution, only after some distance along the pipe. Overall, this variation of the speed profile
along the length of the pipes will have the effect of reducing the average axial speed seen by the
light beam at the center of the pipes, with respect to the value determined at a specific section,
typically located towards the exit end of the pipes, where the actual velocity profile measurement
is performed and the value of the velocity at the center of the flow is determined.

In the case of turbulent flow regime, which is the actual flow regime used for the measures in
the original Fizeau experiment, the velocity field of the fluid flow is characterized by having also
radial components of the fluid velocities in addition to the axial ones. These radial components are
associated to the presence of fluid vortices, typical of the turbulent flow regime, having different
scales, and which can be randomic and non-stationary. In this regime, the motion of the fluid
particles with respect to the stationary frame of the laboratory does not corresponds to a pure
axial motion along the axis of the pipes, but contains also circular components, due to the vorticity
of the flow, with the associated accelerations. Under these conditions the invariance of the physical
phenomena asserted by the Galilean Principle of Relativity is no longer applicable, therefore it may
be possible that the physical properties of the entities involved in the test are somehow affected
by the accelerated state of motion of the particles that constitute the system being observed,
thereby changing to some extent the values of their physical characteristics with respect to the
corresponding values determined under stationary conditions. In particular, in the case of the
Fizeau's experiment, the specific state of motion associated to turbulence could have an impact on
the light propagation inside the transparent medium flowing into the pipes. On average it could
introduce an additional “dragging” term, generated by the circular motion of the fluid into the
turbulent vortices, that creates an additional delay of the axial propagation of the light beam. In
other terms, the turbulent motion of the fluid, with the associated vortices, can have the effect
of reducing the average equivalent propagation speed of the light beam inside the fluid which
therefore would have a greater index of refraction in turbulent conditions with respect to the
stationary case.

In order to separate this term from the ones associated to the variation of the axial components
of the fluid velocity, it can be taken into account by including into the equation an “equivalent”
index of refraction n*, which would be dependent on the level of turbulence of the fluid, and
would take values greater than the one corresponding to the stationary fluid, i.e. n* > n. Being
associated to the presence of a turbulent flow regime, such equivalent index of refraction can
be expressed as a function of the Reynolds number Re that is used to characterize the level of
turbulence of the flow: n* = n*(Re). For low values of the Reynolds number, within the laminar
range, n* would be equal to the index of refraction of the stationary fluid, whereas for Reynolds
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number values greater than the threshold corresponding to the onset of turbulent flow, an increase
of n* with the Reynolds number could be expected.

Taking into account of these effects, the expression of the relative speed of light W with respect
to the stationary observer, calculated on the basis of the classical Galilean rule of vector sum, can
be written in the following form:

w—w*+z7—i+1/Lv(x)dx~ (55)
- "o L Jo !

where the first term accounts for the effect of variation of the refraction index, and the integral
of the second term is extended to the entire length L of the optical path of each light beam. It
appears therefore, in particular on the basis of items 3) and 4) above, that the actual value of the
speed of light measured with respect to a stationary observer should be lower than the value
predicted by the Galilean formula of speed composition, when that formula is evaluated using the
peak value of the fluid speed inside the pipes and the nominal value of the refraction index of
the stationary fluid, and this result is consistent with the outcome of the experiment. The actual
amount of deviation would depend on the specific characteristics of the experimental setup being
considered, in particular for what concerns its hydraulic characteristics and parameters.

Recent repetitions of the Fizeau experiment have highlighted that the effects due to turbulence
could be the major contributor to the fringe shift observed as a result of the variation of the
fluid flow rate and average velocity. In particular Lahaye et al. [9] explicitly mention that for
low value of the fluid speed, @ <1 m/s, it has not been possible to acquire any valid test point
because of the difficulties in getting stable pictures on the digital sensor used to detect the fringes
and their variation. Also in a similar work from Maers et al.[10] the experimental data of fringe
shift versus flow velocity-difference have been measured only for water velocities in the range
0.5 <9 <3.6 m/s for which the flow is fully in the turbulent regime, having Reynolds number in
the range 12.700 < Re < 91.400.

The expression of the Reynolds number for the flow into circular pipes is:

Re="p="123 (56)

where p is the density of the fluid, » and v represent its dynamic and kinematic viscosity, D is
the pipe diameter and o the macroscopic velocity of the fluid flow. According to the previously
described assumption we could write the dependency of the equivalent refraction index from the
Reynolds number as follows:

«_|n if Re<Rep (57)
~ | n+a(Re—Rer) if Re>Rer

where « is a constant to be determined, and Re;, and Rer represent, respectively, the Reynolds
numbers corresponding to the end of the laminar flow regime and to the onset of the turbulent
one. Considering velocities of the fluid flow in the turbulent range, o > vr, it is therefore possible
to put the expression of the equivalent index of refraction of the turbulent fluid in the form:

_ a(Re — Rer)

n* =n(l1+9) where 0 =0(Re) = 0 < 1 (58)

The evaluation of the resultant speed of light into the moving turbulent flow using expression
would require calculating the integral of all the local axial velocities of the fluid along the
optical path, but this in turn would require the precise knowledge of the flow field in each point
into the pipes, which is not available. Due to the lack of detailed knowledge of the flow velocity
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field at every position inside the pipes, it will be assumed, as stated also in [10], that the velocities
of the fluid are constant in the straight sections of the tubes through which the light beams travels,
and have a radial profile typical of a turbulent regime. In this way the expression of the resultant
speed of light becomes:

W=—C"_ 13 (59)

Cn(l+496)

Taking into account that § < 1, it is possible to expand the first term of (59) into powers of 4.
Making then use of the definition of § and truncating the expansion to first order it results:

W:3(1_5+52...)+z7:£—a%ARe+z7 (60)
n n n

where ARe = (Re — Rer) = [5(0 — vr). Substituting this into the previous equation gives:

c c v,
W:E—i-v—ocﬁﬁ(v—vﬂ (61)
Putting now
D
= — 62
“=-— (62)

the expression of the light speed with respect to the stationary observer finally becomes:

c 1 1

that corresponds to the expression obtained by Fizeau by taking into account that the term vr/n?
can be neglected, being much smaller, by several orders of magnitude, than the other constant
term c/n.

The above derivation shows that it is possible to provide an interpretation based on the Galilean
vector sum of velocities of the experimental results obtained by Fizeau, without the need to invoke
any space-time distortion. The proposed approach is based on the hypothesis that the index of
refraction of the fluid is altered by the turbulent flow regime. This hypothesis could be verified
by further experimental investigations of the optical properties of fluids under turbulent flow
regimes, or by a theoretical analysis that would however require to have a very detailed model
representing the complex velocity field of the fluid under such flow regime.

5. A TEST CASE FOR THE VELOCITY COMPOSITION RULE

In this section a test case is proposed to investigate the validity of the Galilean velocity vector
addition rule versus the relativistic one that derives from the Lorentz transformation. The test is
based on the analysis of the phenomenon of stellar aberration, i.e. on the observed variation of
the position of the celestial objects as a function of the motion of the observer and of its velocity,
motion that coincide with that of the Earth along its orbit in the case of a terrestrial telescope.
Since the two formulas for the composition of the velocity of the light with the velocity of the
observer are different, the expected variation of the position of the star evaluated by means of the
relativistic rule is different from that obtained with the classical vector sum rule, and the amount
of the difference depends on the value of the ratio of the speed of the observer with respect to
the speed of light. Being the orbital velocity of the Earth about 10* times smaller than c, such
differences are very small and their analysis therefore requires very accurate measurements of the
observed position of the celestial objects in order to resolve the differences between the two cases.
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Let us consider the light coming from a very far celestial source, such that the corresponding
wavefront can be considered planar over the entire area of the Earth’s orbit. For an observer at
rest into the center of mass of the Solar system the position of this source is fully characterized by
two angles which can be expressed as the in-plane azimuth angle and the out-of-plane elevation
angle with respect to the plane of the Earth’s orbit.

Let V be the velocity vector describing the motion of an observer that is moving into the
ecliptical plane. Let ¢ be the vector defining the velocity of propagation of the incoming light with
respect to the stationary frame, and let us consider a moving reference frame having its x axis
aligned with the direction of the velocity vector V of the observer and the y axis lying into the
plane formed by the direction of the incoming light and V. The resultant vector ¢’ that defines
the apparent position of the light source for the moving observer, will also lie into the xy plane
according both to the Galilean vector-sum rule and to the relativistic velocity-composition rule.
However, the observed variation of the angle of incidence, i.e. the amount of aberration, is different
in the two cases. It can be calculated by applying the two velocity composition rules and focusing
the analysis on the x and y components of the vectors.

Let us define, in the reference frame of the Sun, the direction of the light source by the angle 0
that the incoming light vector makes with the direction of the velocity of the observer. Let v be
the speed of the observer, which is assumed to be directed along the positive direction of the x
axis of the observer’s reference frame, and = v/c the ratio of the observer speed with respect
to the speed of light. Let us indicate with 6’ the aberrated direction of the source as seen by the
moving observer. The relationship between the true angle 6 and the observed, aberrated, angle 6’
is given by the following two trigonometric expressions (where the pedices G and R, respectively,
stands for Galilean and Relativistic), which are derived from the classical vector sum and from the
relativistic velocity composition rule :

sin(0g — 0') = Bsin(8) (64)
and
sin(6g — 0') = Bsin(6") V1—p%—1 sin(20") (65)

11— Bcos(#) + 1—Bcos(9’) 2

For very small values of the observer speed, compared to the speed of light, the difference
between the two angles 6 and ¢’ is also very small, therefore it is possible to determine the
solution of the above two expressions by approximating the sine function with its argument,
sin(0—0") ~ (—0'). Expanding then, for f < 1, the second expression as a power series of
truncated to the terms of second order, gives:

6 =6 + Bsin(6') (66)

and

Or = 0 + Bsin(0') + % B2 sin(26") (67)

The comparison of equations and (67) shows that the reconstructed position of the light
source calculated using the relativistic formula differs from the one obtained from the Galilean
vector sum by a term which is quadratic into 8. For a given value of the speed v of the observer,
the amplitude of this term depends on the angle between the incident light and the direction of the
velocity vector of the observer, being maximum when |[sin(26')| =1, therefore when 6’ =7t /4+kr,
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and being null when the observer velocity is either parallel or forms a right angle with respect to
the direction of the incident light.

Let us now consider the case of an observer moving around the Sun with constant angular
velocity () on a circular orbit having radius R, and of a distant light source located into the same
plane of this orbit and stationary with respect to the Sun, as shown in Figure 5| The vector of the
observer velocity always lies into the plane of the orbit, therefore in this case the aberration of the
incoming light produces, for such moving observer, an apparent motion of the source which is
also always lying into the same plane of the orbit. For this moving observer the stationary light
source thus shows an apparent oscillation of its position along an horizontal line parallel to the
plane of the orbit and characterized bv the same time period of the orbit.

Incident light

Figure 5: Orbiting observer with a distant complanar light source

It is possible to identify four notable locations along the orbit which are significant because of
their peculiar properties with respect to the aberration of the source. In the two positions indicated
with A and B in Figure [5} the velocity of the observer is parallel to the direction of the incident
light, therefore when the moving observer is in these two points of the orbit there is no aberration
of the incoming light and the observed position of the star coincides with the one observed into
the stationary frame of the Sun. The position of the celestial object observed in these two points
can therefore be taken as a reference position, since it requires no calculation in order to remove
the aberration term.

Conversely, when the moving observer is in the two locations labeled C and D, its velocity
vector is orthogonal to the direction of the incident light. In these two locations there is the
maximum aberration of the apparent position of the star. However, the value of the aberration
term is the same for both the classical and the relativistic rule. Therefore, the calculation of the
un-aberrated position of the light source, by means of equations or (67) leads to the same
result for both the classical and the relativistic rule. In the particular case of a stationary source
considered here, the position of the source calculated by the moving observer located in these two
points results coincident with the position observed at locations A, B.

For any other point of the orbit, the un-aberrated position of the source calculated by means
of the classical rule will be different from the one obtained from the relativistic formula, and
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the maximum difference between the two results will occur when the moving observer is at the
midpoints between A,B and C,D, i.e. at an azimuth angle along the orbit of ¢ = 7w /4+km /2.
Assuming a stationary source, since the angle between the light direction and the velocity of the
observer is § =(t, one of the two computed results, either the Galilean or the Relativistic one, will
contain an harmonic oscillation of the horizontal position of the celestial object, having amplitude
equal to f?/4, and with period equal to one half the period of the observer’s orbit. Such peculiar
behaviour of the reconstructed position of the distant light source, characterized by a twice per
revolution oscillation, that constitutes its specific signature, represents an artifact of the calculated
solution, artifact which is due to the inconsistency of the analytical formula used with respect to
the actual rule followed by the physical phenomenon.

Let us now consider the case of a terrestrial observer and let’s approximate the Earth’s orbit
with a circle of radius R = 150x10° km, and period T equal to one year. In this case the orbital
speed is constant and its value is v~30km /s, which gives f~10"%.
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Figure 6: Comparison of the un-aberrated position of the light source calculated by means of the two different velocity
composition rules for an Earth based observer

With these values of the orbital parameters the two resulting curves of the calculated horizontal
position of the source, obtained from equations or (67), are shown in Figure[6] In this figure,
also the resulting artifacted solution calculated taking into account the elliptical shape of the
Earth’s orbit is presented. Due to the small eccentricity of the actual orbit, the deviations of these
results from the reference case of a circular trajectory are very small, as shown in the graph that
has been calculated considering a celestial object aligned to the major axis of the ecliptic.

The values of the un-aberrated position of the source corresponding to the four notable orbital
locations A,B and C,D are indicated in Figure E] with the same markers used in the previous
Figure[5| Both the correct and the artifacted curves pass through points A and B, since for these
locations there is no aberration at all and the value of the horizontal position of the celestial object
is given directly by the observed position. Both curves also give the same results for locations C
and D where the velocity of the observer is orthogonal to the incoming light direction. E]

5In the general case of a non stationary source, the corresponding computed value of the horizontal position of the
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The above described artifact, characterized by its twice per revolution frequency content, must
be present in either the classical or the relativistic computed results, and has the same specific
signature characteristics for any observed stationary source lying into the orbital plane, with
almost the same amplitude of oscillation and with the same frequency content, independently
from the specific celestial object or the specific region of the electromagnetic spectrum being
observed.

When the celestial object being analyzed does not lie into the orbital plane there will be a
contribution due to aberration also in the out-of-plane position of the source. Considerations
similar to those discussed for an in-plane source apply also to this more general case: the vertical
component of the calculated position of the source will contain a twice per revolution spurious
term in either the classical or the relativistic results. The amplitude of the artifacted vertical
component is null when the celestial object is located in the orbital plane, it then increases with
the out-of-plane elevation of the source, reaching a maximum for an elevation angle of 7r/4, for
which the term f?sin(26) is maximum. For elevations greater than 71/4 the amplitude of the
vertical spurious term will then decrease again and will become zero for circumpolar objects, for
which also the in-plane component vanishes.

The presence of a twice per revolution frequency term into the computed results of the un-
aberrated position of stationary celestial objects is therefore a general characteristics, a specific
signature, that allows to identify the incorrect velocity composition rule between the two that have
been analyzed.

6. CONCLUSIONS

In the previous sections it has been shown that simultaneity of events can be assessed in a
unique and consistent way by means of a general criterion that does not necessarily require the
use of light signals. Thanks to this criterion two events that are simultaneous for one observer
result simultaneous also for another observer that is moving with respect to the first one. This
shows that the concept of simultaneity is independent from the state of motion of the observer
and from the specific clock synchronization signal that has been selected. Such absolute nature of
simultaneity allows to introduce a definition of time which is common for all observers.

The above considerations have led to an alternative physical interpretation of the Lorentz
transformation of coordinates and suggest that some interferometric experiments on light prop-
agation can be explained without invoking the space-time deformation assumed by the Theory
of Relativity, and by applying, instead, the Ritz emission theory[6] which assumes that light is
always emitted with the same relative speed, equal to c in vacuum, with respect to its source.

Finally, a test case to discriminate between the Relativistic and the Galilean velocity composition
rules has been proposed. The test is based on the analysis of the aberration of the light coming
from celestial objects as perceived by an orbiting observer, and on the different results obtained
by using the two alternative velocity composition formulas to remove the aberration term from
the observed position of the various light sources of the sky. In order to be applied to measured
data, this comparison requires that the observed position of the sources is determined with high
accuracy, since the differences that have to be investigated are of the order of milli-arcseconds, a
level of accuracy that should be achievable by the most advanced ground telescopes or space-based
astrometric instruments.

Should the outcome of the test be in favour of the classical Galilean velocity vector sum, this
could constitute a further supporting element to reconsider the validity of Ritz emission theory in

object evaluated at C and D could differ from the one corresponding to the reference locations A and B.
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place of the Special Theory of Relativity. Despite having radical differences in their fundamental
assumptions, the two theories share some important aspects that marked a sharp distinction from
the approach previously adopted for the analysis of electromagnetic phenomena and for classical
mechanics. Regarding the propagation of light both theories negate the existence of the aether,
whilst for what concerns mechanics and the dynamics of motion of bodies, in both theories the
interactions between non-coincident physical entities are not instantaneous as it was assumed
in the Newtonian approach. Because of the assumption of instantaneous action at distance, the
equations of motion of classical Newtonian mechanics contain, as stated by L. Landau[11]], “a
certain degree of imprecision”. The removal of the hypothesis of instantaneous action at distance,
which is inherent into the action-reaction principle when applied to physical entities having a non-
null geometrical separation between them, allows both theories to provide the correct predictions
of the precession of the motion of the perihelion of Mercury. It may be possible, therefore, that
also other experimental observations that have been considered as being in agreement with the
Theory of Relativity could find an alternative interpretation not based on the concept of space-time
deformation.
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APPENDIX: Application to a symmetrical physical system

Let us consider a circular water basin of radius R, with a flat bottom surface such that the
water has constant depth across the entire area of the basin. Let us suppose to have, at the center
of the basin, a vertical thin rod in contact with the water surface. By oscillating vertically this rod
it is possible to generate waves that propagate from the center to the edge of the basin, traveling
with the same speed in all directions by virtue of the intrinsic symmetry of the physical system,
as shown in Figure[/] At every instant of time the wavefronts of these waves describe concentric
circles and, thanks to the symmetry properties of the system, every wavefront reach simultaneously
all the points of the external perimeter of the basin, as it is also known by experience. Indicating
with w the value of the radial speed of propagation of the waves, the time elapsed from the start
of a given wavefront from the center of the basin to its arrival at the border is given by At = R/w.
Because of the symmetry of the system this value is the same for every direction and for every
point of arrival on the external circumference.

Figure 7: Circular basin with constant depth water. The dashed and dotted blue circles indicate the position of the wave
crests and troughs at a given instant of time.

Let us now consider an observer K that is stationary with the basin, and let us put the
origin of the corresponding reference frame at the center of the basin. For this reference frame
the mathematical law that characterize the physical phenomenon being considered, i.e. the
propagation of the wavefronts from the center of the basin, is given by:

vy = wcos(0); vy = wsin(6) (68)
where 0 = atg(y/x) and (x;y) are the coordinates of the point. The magnitude of the speed is:

vl = \Jod 05 = /w2 (cos2(0) + sin2(0)) = w (©9)
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for every value of 8, which reflects the isotropy of propagation of the waves for the observer K.

Let us now consider a second observer K’, with its corresponding reference frame, that is
moving horizontally with uniform speed V with respect to the observer K. Let us orient the two
reference frames such that the x axis of both is directed parallel to V. We want now to transform
the physical law of the system, given by eq. for the observer K, into the moving frame K'.
We will do this by applying both the Galilean transformations and the Lorentz ones, using the
pedices G (Galilean) for the first and R (Relativistic) for the second, obtaining:

Vg, = weos(0) — V; véy = wsin(0) (70)
. 2
,_ weos(0) =V . wsm(@)@ .
R = T Vo)’ Oy = Ve 71)
c2 2

where c is the speed of light in vacuum. Thus, when expressed into the moving frame K’, the law
of the phenomenon being observed has taken a new mathematical form, expressed respectively
by egs. and (71), and the new form of this law now contains also the value of the relative
speed V between the two reference frames. As it can be noted by calculating the magnitude of the
transformed vector v/, the new mathematical law does not correspond anymore to an isotropic
speed of propagation of the wavefronts with respect to K, since the magnitude of both v and vy
is no longer the same for every direction considered, but becomes a function of 8. In fact, it results:

Ivg|? = w? + V2 — 2wV cos(6) (72)

w? 4+ V? — 2wV cos(0) — w?V?sin®(0) / c>
1—wVcos(6)/c?

This shows, consistently with what discussed in the introductory section, that a phenomenon
which is characterized by an isotropic propagation speed for a stationary observer, does not appear
isotropic to an observer which is translating with velocity V with respect to the first one, and this
has been verified by applying both the Galilean transformations of coordinates and the relativistic
ones expressed by the Lorentz transformation ﬂ

Let us now consider the two events that correspond to the start of a given wavefront from the
center of the basin and to its arrival at a generic point P on the perimeter. Let us indicate with
Eo the first event and Ep the second one. Setting the origin of time in correspondence of the first
event, the in-plane and time coordinates of these two events into the reference frame K are:

Vg|* = (73)

Eo = (xo;yoito) = (0;0;0)
Ep = (xp;yp;tp) = (Rcos(@);Rsin(G); %)

Using the Lorentz transformation it is possible to calculate, in the moving frame K’, the primed
time variable associated to the second event Ep:

(74)

tp = 7R ( % - szcosw)) (75)

where v = 1/v/1 — V2/c?. Interpreting the variable ¢, as the time of the event for the moving
observer would thus lead to conclude that the arrival of the wavefront at the perimeter of the basin

6As shown in section III, the only way to maintain the isotropy of propagation of the waves also for the moving observer
would be that of using the transformations of coordinates defined by (6), with characteristic speed equal to the speed of
propagation of the wave: v, = w
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is no longer simultaneous for all points along the edge, since it would depend on the angular
position of point P thru the cos(6) function. But this conclusion is not in agreement with the
experience, and it would constitute a violation of the symmetry of the physical system being
considered, since it would mean that there are some points on the external circumference, some
directions, for which the wavefront arrives earlier than other positions or directions, conclusion
which is not in agreement with the symmetry characteristics of the water basin analyzed.

It is however still possible to properly assess the simultaneity of the wavefront arrival events
into the moving reference frame K’ by using the method that has been presented into Section III,
based on the use of the space-time intervals. Let us in fact consider two events corresponding to
the arrival of the wavefront at two different points A and B located on the edge of the circular
basin. In the stationary frame K, these two events have coordinates:

Es= (xa;ya5ta) = (Rcos(zx); Rsin(a); %)
Ep = (xp; yp; tp) = (Rcos(()); Rsin(0); %)

with « and 6 representing the angular position of the two selected locations. We can calculate, in
the stationary frame K, the relativistic intervals separating these two events from the event Eg
that corresponds to the start of the wave from the center, obtaining:

(76)

so4=C*(ta —10)* = (x4 —x0)* = (ya —yo)*= (77)
R? . c?
czﬁ — R%cos?() — R?sin®(a) = R? (ﬁ - 1) (78)
and, similarly:
R? c?
2 _ oRT 0 2oy p2 a2y p2 (€0
SoB =5 R7cos”(0) — R%sin“(6) = R (wZ 1) (79)

Thus, the relativistic interval that separates the start of the wavefront from the center of the basin
from its arrival on the perimeter is the same for all the locations on the external circumference, it
being independent from the angular location of the point of arrival, it results therefore s2 , = s2
for every couple of points on the external perimeter.

Let us now calculate the relativistic space-time coordinates of the two arrival events with
respect to the moving frame K’ by applying the Lorentz transformation, that gives:

\% ) 1 1%

E, = ('yR (cosa — 5); Rsina; YR (; - C—ZCOSOC)> (80)
14 . 1 1%

Ep = <7R (cos® — %); Rsinf; R (5 - C—26059)) (81)

It is now possible to calculate the relativistic interval between E’; and E,:

(soa)? = Pty — 1) = (p = x5 = (g — o2 = PPR[2 (= spcose) = (cosu— ¥ )" = s

(82)
Inserting the expression of 7, expanding the various terms and taking into account that 1/7% =
(1—V?2/c?) finally gives:

2 2 2 2
N2 2p2(C 14 VeN o c
(oa)* =Rz + —1- 32) =R (1) (83)
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and similarly:
2 2 2 2
r\2 o 2p2( € v VN _op2( €
oo =R (G + 7 ~1-32) =R (32 ~1) ®4)

which shows that also in this case it results (s, ,)* = (s,5)*. We have therefore found that also
for the moving observer K, the relativistic interval that separates the start of the wavefront from
the center of the basin from its arrival on the perimeter, is the same for all the locations on the
external circumference, it being independent from the angular location of the point of arrival.
Therefore, on the basis of criterion presented into Section III, the simultaneity of the arrival of
the wavefronts on the edge of the basin is consistently maintained also for the moving observer
and its reference frame, provided that the assessment is based on the criterion of equality of the
relativistic intervals.

The same considerations and results would be found also if we consider a different kind of
physical phenomenon, like for example an acoustic sonar pulse or a light flash emitted into the
water at the center of the basin. Thanks to the symmetry properties of the system being considered,
also in these cases the sound, or light, wavefronts will reach simultaneously all the points on the
external circumference. Repeating the same previous analysis for this other physical phenomena
requires just to replace the value of the characteristic radial speed of the surface water waves w
with the speed of sound or with the speed of light into the medium, water in this case. In this way
we will therefore find again that the propagation of the sound or light waves will not be isotropical
for a moving observer K’, and it will be possible to assess the simultaneity of the arrivals of the
wavefront at the basin edge by using the criterion based on the equality of the intervals.
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