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The replication crisis has prompted many to call for statistical reform within the psychological
sciences. Here we examine issues within Frequentist statistics that may have led to the replica-
tion crisis, and we examine the alternative—Bayesian statistics—that many have suggested as
a replacement. The Frequentist approach and the Bayesian approach offer radically different
perspectives on evidence and inference with the Frequentist approach prioritising error control
and the Bayesian approach offering a formal method for quantifying the relative strength of
evidence for hypotheses. We suggest that rather than mere statistical reform, what is needed is
a better understanding of the different modes of statistical inference and a better understanding
of how statistical inference relates to scientific inference.
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Introduction

A series of events in the early 2010s, including the publi-
cation of Bem’s (2011) infamous study on extrasensory per-
ception (or PSI), and data fabrication by Diederik Stapel and
others (Stroebe et al., 2012), led some prominent researchers
to claim that psychological science was suffering a “crisis of
confidence” (Pashler and Wagenmakers, 2012). At the same
time as these scandals broke, a collective of scientists was
formed to undertake a large-scale collaborative attempt to
replicate findings published in three prominent psychology
journals (Open Science Collaboration, 2012). The results
of these efforts would strike a further blow to confidence in
the field (Yong, 2012), and with the replication crisis in full
swing old ideas that science was self-correcting seemed to be
on shaky ground (Ioannidis, 2012).

One of the most commonly cited causes of the replica-
tion crisis has been the statistical methods used by scientists,
and this has resulted in calls for statistical reform (e.g., Wa-
genmakers et al., 2011; Haig, 2016; Dienes, 2011). Specif-
ically, the suite of procedures known as Null Hypothesis
Significance Testing (NHST), or simply significance test-
ing, and their associated p values, and claims of statistical
significance, have come in most to blame (Nuzzo, 2014).
The controversy surrounding significance testing and p val-
ues is not new (see Nickerson, 2000, for a detailed treat-
ment); however, the replication crisis has resulted in re-
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newed interest in the conceptual foundations of significance
testing and renewed criticism of the procedures themselves
(e.g., Wagenmakers, 2007; Dienes, 2011; Sziics and Ioan-
nidis, 2017b). Some journals have gone so far as to ban p
values from their pages (Trafimow and Marks, 2014) while
others have suggested that what gets to be called statisti-
cally significant should be redefined (Benjamin et al., 2017).
Some criticism of p values stems from the nature of p values
themselves—a position particularly common with those ad-
vocating some form of Bayesian statistics—while other crit-
icisms have focused on their use rather than attacking the
conceptual grounding of the procedures themselves (Nicker-
son, 2000; Garcia-Pérez, 2016). However, one thing that was
made clear by the replication crisis, and the ensuing debates
about the use of p values, is that few people understood the
nature of p values, the basis of the Frequentist statistics that
generate them, and what inferences could be warranted on
the basis of statistical significance. Such was the confusion
and misunderstanding among many in the scientific commu-
nity that the American Statistical Association (ASA) took
the unusual step of releasing a statement on statistical sig-
nificance and p values in the hope of providing some clarity
about their meaning and use (Wasserstein and Lazar, 2016).

In order to make sense of the criticisms of p values and
to make sense of their role in the replication crisis it is im-
portant to understand what a p value is (how it is derived)
and what conditions underwrite its inferential warrant. We
detail this in Section 2. There we also outline what infer-
ences can be made on the basis of p values and introduce
a recent framework, the error statistical approach, which
addresses some of the shortcomings of previous Frequen-
tist approaches. In Section 3 we introduce an alternative
to Frequentist statistics—Bayesian statistics. Specifically,
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in Section 3.1 we examine some of the claimed benefits of
the Bayesian approach while in Section 3.2 we introduce the
Bayesian notion of statistical evidence, and examine whether
the Bayesian approach and the Frequentist approach lead to
different conclusions. In Section 4 we compare the two ap-
proaches more directly and examine how each approach fits
into a system of scientific inference. Finally, we conclude
by suggesting that rather than mere statistical reform what
is needed is a change in how we make scientific inferences
from data. And we suggest that there might be benefits in
pragmatic pluralism in statistical inference.

Frequentist statistic and p values

Frequentist statistic and p values

The ASA statement on p values provides an informal def-
inition of a p value as “the probability under a specified sta-
tistical model that a statistical summary of the data (e.g.,
the sample mean difference between two compared groups)
would be equal to or more extreme than its observed value”
(Wasserstein and Lazar, 2016, our emphasis). Probability
is an ill-defined concept with no generally agreed definition
that meets all the requirements that one would want. In the
context of significance testing, however, p values are often
interpreted with reference to the long run behaviour of the
test procedure (e.g., see Neyman and Pearson, 1933). That
is, they can be given a frequency interpretation (see Morey
et al., 2016a, for more detail on a frequency interpretation
of confidence intervals). Although a frequency interpretation
may not be universally accepted (or acknowledged), this in-
terpretation more clearly highlights the link between p values
and the long run behaviour of significance tests. When given
a frequency interpretation, the p indicates how often under
a specified model, considering repeated experiments, a test
statistic as large or larger than the one observed would be
observed if it was the case that the null hypothesis (for ex-
ample, the hypothesis that the two groups are drawn from
the same population) was true. The p value is calculated
from the sampling distribution, which describes what is to
be expected over the long run when samples are tested.

What allows one to draw inferences from p values is the
fact that statistical tests should rarely produce small p values
if the null model is true, and provided certain conditions are
met'. It is also this fact that leads to confusion. Specifically,
it leads to the confusion that if a small p is obtained then
one can be 1 - p sure that the alternative hypothesis is true.
This common misunderstanding can result in an interpreta-
tion that, for example, p = 0.01 indicates a 99% probability
that the detected effect is real. However, to conclude this
would be to confuse the probability of obtaining the data (or
more extreme) given the null hypothesis with the probability
that the null hypothesis is true given the data (see Nickerson,
2000, for examples of this confusion).

The confusion that p values warrant inferences they do

not has similarly led to confusion about the conditions under
which p values do warrant inferences. We will explain what
inferences p values do warrant in Section 2.3, but before this
can be done it is important to understand what conditions
must be met before they can support any inferences at all.
For now, however, it is sufficient to know that inferences on
the basis of p values rely on the notion of error control. As
we will see, violations of the conditions that grant these error
control properties may be common.

Controlling false positives

The first condition under which p values are able to pro-
vide information on which to base inferences is that if the
null hypothesis is true then p values should be uniformly dis-
tributed®. For instance, if one was to repeatedly draw sam-
ples from a standard normal distribution centred on 0, and
after each sample test the null hypothesis that u = 0 (for
example, by using a one sample #-test) one would obtain a
distribution of p values approximately like the one shown in
Figure 1 (A). This fact appears to contradict at least one com-
mon misinterpretation of p values, specifically the expecta-
tion that routinely obtaining high p values should be com-
mon when the null hypothesis is true—for instance the belief
that obtaining p > .90 should be common when the null is
true and p < .10 should be rare, when in fact they will oc-
cur with equal frequency (see Nickerson, 2000, for common
misinterpretations of p values). Herein lies the concept of
the significance threshold. While, for instance, p ~ .87, and
p = .02 will occur with equal frequency if the null is true, p
values less than the threshold (defined as @) will only occur
with the frequency defined by that threshold. Provided this
condition is met, this sets an upper bound on how often one
will incorrectly infer the presence of an effect when in fact
the null is true.

The uniformity of the p value distribution under the null
hypothesis is, however, only an ideal. In reality, there are
many behaviours that researchers can engage in that can
change this distribution. These behaviours, which have been
labelled p hacking, QPRs (questionable research practices),

'These conditions are the assumptions of the statistical test.
These might include things such as equal variance between the two
groups in the case of ¢ tests or certain assumptions about the covari-
ance matrix in the case of factorial ANOVA. These are often vio-
lated and, therefore, tests can be inaccurate. Correction procedures,
tests that are robust to violations, or tests that generate their own
sampling distribution from the data (such as randomisation tests)
are available. However, we will not discuss these as our focus will
primarily be on the inferences that statistical tests support.

2We should note that this is only generally true when the null
model takes the form of a continuous probability distribution, which
is common for the statistical procedures used in psychology. This
assumption does not necessarily hold for discrete probability distri-
butions.
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Figure 1. Examples of p value distributions under different effect sizes. An effect size of 6 = 0 indicates that the null

hypothesis is true.

data dredging, and significance chasing, therefore threaten to
revoke the p value’s inferential licence? (e. g., Ware and Mu-
nafo, 2015; Szfics, 2016; Simmons et al., 2011). One of the
most common behaviours is optional stopping (also known
as data peaking). To illustrate this behaviour, we will intro-
duce an example, which we will return to later in the context
of Bayesian alternatives to significance testing. Consider Al-
ice who collects a sample of 10 observations. After collect-
ing her sample, she conducts a significance test to determine
whether the mean is significantly different from some null
value (this need not be zero, but often this is the case). Upon
finding p = .10, she decides to add more observations check-
ing after adding each additional observation whether p < .05.
Eventually, this occurs after she has collected a sample of 20.

On a misunderstanding of the p value this behaviour
seems innocuous, so much so that people often express sur-
prise when they are told it is forbidden (e.g., John et al., 2012;
Yu et al., 2013). However, it only seems innocuous on the
incorrect assumption that large p values should be common
if the null is true. After all, Alice checked her p values after
every few samples, and while they may have changed as each
new sample was added, they weren’t routinely large. How-
ever, optional stopping distorts the distribution of p+values
so that it is no longer uniform. Specifically, the probability
of obtaining p < @, when optional stopping is applied, is no
longer equal to @ and instead it can be dramatically higher
than o*. Thus, in the case of optional stopping, the connec-
tion between the value of p and the frequency of obtaining a
p value of that magnitude (or smaller) is broken.

A related issue that can revoke the inferential licence of
p values occurs when a researcher treats a collection of p
values (also known as a family of tests) in the same way
they might treat a single p value. Consider the case where
a researcher runs ten independent statistical tests. Given the
null, the frequency of finding a significant result (p < 0.05)
is 5% for each test. As a result, the chance of finding at
least one significant effect in a family of 10 tests is approxi-
mately 40%. While most researchers understand the problem
of confusing the chance of finding a significant test with the
chance of finding at least one significant test in a collection of

tests, in the context of simple tests like #-tests, this confusion
persists in more complex situations like factorial ANOVA.
Consider a two factor ANOVA, which produces three test
statistics: Researchers can make this error and confuse the
chance of finding at least one significant test (for example,
a main effect or interaction) with the chance of a particular
test being significant. In the case of the former, the chance
of finding at least one significant main effect or interaction
in a two factor ANOVA can be approximately 14%. That a
recent survey of the literature, which accompanied a paper
pointing out this hidden multiplicity, found that only around
1% of researchers (across 819 papers in six leading psychol-
ogy journals) took this into account when interpreting their
data demonstrates how widespread this confusion is (Cramer
et al., 2015). Furthermore, high profile researchers have ex-
pressed surprise upon finding this out (Bishop, 2014), fur-
ther suggesting that it was not commonly known. As noted
by Bishop (2014), this problem might be particularly acute
in fields like event-related potential (ERP) research where
researchers regularly analyse their data using large factorial
ANOVAs and then interpret whatever results fall out. As
many as four factors are not uncommon, and consequently,
the chance of finding at least one significant effect can be
roughly the same as correctly calling a coin flip. Further-
more, if a theory can be supported by a main effect of one
factor, or any interaction involving that factor—that is, if one
substantive hypothesis can be supported by multiple statisti-
cal hypotheses—then in the case of a four-way ANOVA that

3Concerns over these behaviours is not new. Referring to the
practice as “cooking”, Charles Babbage (1830) noted that one must
be very unlucky if one is unable to select only agreeable observa-
tions out of the multitude that one has collected.

4To illustrate this, we conducted a simple simulation. We drew
samples (n = 1000) from a standard normal distribution centred at
zero. The values were then tested, using a one sample #-test against
the null hypothesis that u = 0 by first testing the first 10 values,
then the first 11, the first 12 and so forth until either obtaining a p >
0.05 or exhausting the 1000 samples. After repeating this procedure
10000 times, we were able to obtain a significant p value approxi-
mately 46% of the time. The median sample size for a significant
result was 56.
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theory will find support as often as 25% of the time even if
the null hypothesis is true.

With this in mind, the advice offered by Bem (2009)
appears particularly unwise: In speaking about data that
might have been collected from an experiment, he suggests
“[e]xamine them from every angle. Analyze the sexes sep-
arately. Make up new composite indices.” (pp. 4-5). That
is, add additional factors to the ANOVA to see if anything
pops up. However, as we have seen, adding additional fac-
tors simply increases the chance of significance even when
the null is true. This hidden multiplicity is rarely acknowl-
edged in scientific papers. More generally, any data depen-
dent decisions—for example, choosing one composite index
over another based on the data—greatly increases the chance
of finding significance regardless of whether multiple com-
parisons were actually made.’ Indeed, Bem (2009, p 6) goes
on to state that:

“Scientific integrity does not require you to
lead your readers through all your wrong-
headed hunches only to show—voilal—they
were wrongheaded. A journal article should not
be a personal history of your stillborn thoughts.”

While such a journal article may make for tedious read-
ing, it is only by including all those thoughts, those wrong-
headed hunches, those data dependent decisions, that will al-
low the reader to determine whether the process by which the
results were obtained deserve to be awarded any credibility,
or whether they are as impressive as correctly calling a coin
flip.

Controlling false negatives

A second condition that must be met for inferences on the
basis of p values to be warranted is that low p values (i.e., p
< a) should occur more frequently when a true or real effect
is present. This occurs because when the discrepancy be-
tween the null model and the model from which the samples
are actually drawn increases (something that can be quan-
tified in terms of effect size), the distribution of p values,
obtained in the long run, departs from uniformity. This is
illustrated in Figure 1 (B—D) by showing the distribution of p
values obtained from repeated testing of samples drawn from
distributions representing different true effect sizes. When a
real effect is present, the frequency with which a p value oc-
curs is inversely proportional to its magnitude. This skewing
of the p value distribution in the presence of a real effect il-
lustrates the concept of statistical power (e.g., Cohen, 1992).
The greater the skew observed in the long run distribution
of p values the greater the statistical power. That is, power
is equal to 1 — 8, where 3 is the proportion of p values > «
that occur when a true effect is present. Power, therefore,
allows one to place an upper bound on how often one will
incorrectly conclude the absence of an effect (of at least a

particular magnitude) when in fact an effect (of that magni-
tude or greater) is present.

That p values skew towards zero in the presence of a true
effect implies that p values near the threshold @ should be
comparatively rare if a real effect is present. However, near
threshold p values are surprisingly common (Masicampo and
Lalande, 2012; de Winter and Dodou, 2015). This suggests
that the reported effects may actually accord more with a true
null hypothesis. However, they may also imply that statisti-
cal power is very low and that the distribution of p values
has not departed sufficiently from uniformity. Adequate sta-
tistical power—that is, the requirement that experiments are
so designed such that in the long run they will produce an
extremely skewed distribution of p values—is a fundamental
requirement if inferences are to be drawn on the basis of p
values. However, empirical studies of the scientific literature
suggest that this requirement is not routinely met. For exam-
ple, studies by Button et al. (2013) and Szfics and Ioannidis
(2017a) suggest that studies with low statistical power are
common in the literature. Recall, it is only when the two
conditions are met—uniformly distributed p values when the
null is true and a heavily skewed p value distribution when
a real effect is present—that good inferences on the basis of
p values are possible. Neither of these conditions are com-
monly met and, therefore, the epistemic value of p values is
routinely undermined.

What is the cause of low statistical power? In our def-
inition of power, we said that power was determined by the
skew of the p value distribution in the presence of a given true
effect. That is, if samples of a fixed size are repeatedly drawn
and tested with a statistical test, and a true effect is present,
how often p < .05 occurs depends on the magnitude of the
true effect. To draw valid inferences from p values, in the
long run, one needs to know the magnitude of the effect that
one is making inferences about. If the magnitude of the effect
is small, then one needs more information (larger samples) to
reliably detect its presence. When the magnitude of the effect
is large, then you can generate reliable decisions using less
information (smaller samples). However, it is important to
note that basing effect size estimates for a priori power anal-
yses on published results can be very problematic because in
the presence of publication bias (only publishing significant
results) the published literature will invariably overestimate
the real magnitude of the effect. That is, when power is low,
statistical significance acts to select only those studies that
report effect sizes larger than the true effect. Only through
averaging together significant and non-significant effects can
one get a good estimate of the actual effect size. Interest-
ingly, an examination of replication attempts by Simonsohn

3In addition to specific data dependent decisions, Steegen et al.
(2016) outline how a number of seemingly arbitrary decisions made
during the analysis process can give rise to a very wide range of
results.
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(2015) suggests that in many cases, effect size estimates ob-
tained from high-powered replications imply that the origi-
nal studies reporting those effects were underpowered and,
therefore, could not have reliably studied effects of those
magnitudes.

Frequentist inferences

Inferences on the basis of p values can be difficult and
unintuitive. The problems that we’ve outlined above are not
problems of significance testing per se, rather they are a re-
sult of the inferential heuristics that people apply when con-
ducting experiments—heuristics such as, “if it’s nearly sig-
nificant then collect more data” or “if I can obtain signifi-
cance with a small sample then it’s more likely that my hy-
pothesis is true”. Part of the reason why people may employ
inferential heuristics is that several distinct frameworks ex-
ist for drawing inferences on the basis of p values and often
these are not clearly distinguished in the statistics textbooks
or statistics training. In some cases, researchers may even
be unaware that different frameworks exist. The two most
prominent frameworks are those of Fisher (e.g., Fisher, 1925)
and Neyman and Pearson (e.g., Neyman and Pearson, 1933).
Fisher’s view of inference was simply that data must be given
an opportunity to disprove (that is, reject or falsify) the null
hypothesis (Hy). The innovation of Neyman and Pearson was
to introduce the alternative hypothesis (H;) and with it the
concept of false alarms (errors of the first type, or inferring
the presence of an effect when the null hypothesis is true)
and false negatives (errors of the second type, or inferring the
absence of an effect when the alternative hypothesis is true).
They also saw a different role for the p value. Fisher was
concerned with the actual magnitude of the p value. Neyman
and Pearson, on the other hand, were concerned with whether
the p value crossed a threshold (@). If the p value was smaller
than « then one could reject Hy and if the p value was greater
than a one could fail to reject Hy®. By fixing @ and S (that
is, by maximising statistical power) at particular levels they
could fix the long run error control properties of statistical
tests, resulting in rules that, if followed, would lead to in-
ferences that would rarely be wrong. The type of inferences
employed in practice, however, appear in many ways to be a
hybrid of the two views (Gigerenzer, 1993). A consequence
of this is that many of the inferences drawn from significance
tests have been muddled and inconsistent.

As aresult, some have argued that significance tests need a
clearer inferential grounding. One such suggestion has been
put forward by Mayo (Mayo, 1996; Mayo and Spanos, 2006,
2011) in the form of her error-statistical philosophy. As the
name suggests, it builds on the insight of Neyman and Pear-
son that Frequentist inference relies on the long run error
probabilities of statistical tests. In particular, it argues that for
inferences on the basis of p values to be valid (that is, have
good long run performance) a researcher cannot simply draw

inferences between a null (e.g., no difference) and an alter-
native which is simply its negation (e.g., a difference). Long
run performance of significance tests can only be controlled
when inferences are with reference to a specific alternative
hypothesis. And inferences about these specific alternatives
are only well justified if they have passed severe tests.

Mayo (2011) explains severity informally with reference
to a math test as a test of a student’s math ability. The math
test counts as a severe test of a student’s math ability if it is
the case that obtaining a high score would be unlikely unless
it was the case that the student actually had a high maths
ability. Severity is thus a function of a specific test (the math
test), a specific observation (the student’s score), and a spe-
cific inference (that the student is very good at maths).

More formally, Mayo and Spanos (2011) state the severity
principle as follows:

Data x( (produced by process G) do not provide
good evidence for the hypothesis H if x( results
from a test procedure with a very low probability
or capacity of having uncovered the falsity of H,
even if H is incorrect.

Or put positively:

Data x; (produced by process G) provide good
evidence for hypothesis H (just) to the extent
that test T has severely passed H with xy.

Severity is, therefore, a property of a specific test with re-
spect to a specific inference (or hypothesis) and some data.
It can be assessed qualitatively, as in the math test example
above, or quantitatively through the sampling distribution of
the test statistic. To illustrate how this works in practice, we
can consider the following example (adapted from Mayo and
Morey, 2017). A researcher is interested in knowing whether
the IQ scores of some group are above average. According
to the null model, IQ scores are normally distributed with a
mean of 100 and a known variance of 152. After collecting
100 scores (n = 100), she tests the sample against the null
hypothesis Hy : pu = 100 with the alternative hypothesis
H; : u > 100. If the observed mean (X) was 103, then a
z-test would be significant at @« = .025. From something
like a classic Neyman-Pearson approach, the inference that
would be warranted on the basis of this observation would
be something like reject Hy and conclude that the mean is
greater than 100.

A severity assessment, however, allows one to go further.
Instead of merely concluding that the group’s mean (y;) is

®Neyman and Pearson (1933) use the terminology accept H.
However, Neyman (1976) uses the terminology do not reject Hy.
Furthermore, he goes on to state that his preferred terminology is
no evidence against Hy. We follow Neyman (1976) in preferring
the no evidence against or do not reject phrasing.
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greater than the null value (i), one can instead use the ob-
served result (¥) to assess specific alternate inferences about
discrepancies (y) from g of the form Hy : u > uo +y. For
example, one might want to use the observation (¥ = 103)
to assess the hypothesis H; : u > py + 1 or the hypothesis
Hy : u > po + 3. The severity associated with the inference
u > 101 would be 0.917, while the severity associated with
the inference that u > 103 is 0.5. Thus, according to the
severity principle, the observation that x = 103 provides us
with better grounds to infer that y; is at least 101 relative to
an inference that it is at least 103.

Just as one can use severity to test different inferences
with respect to a fixed result, one can also use severity to
assess a fixed inference with respect to different results. Con-
sider again the inference that ¢ > 103. The severity as-
sociated with this inference and the result X = 103 is 0.5.
However, if one had observed a different result of, for exam-
ple, X = 105, then the severity associated with the inference
p > 103 would be 0.91. In order to visualise severity for
a range of inferences with reference to a particular test and
a particular observation, it is possible to plot severity as a
function of the inference. Examples of different inferences
about y for different observations (X) is shown in Figure 2
(A).

The severity assessment of significant tests has a number
of important properties. First, severity assessments license
different inferences on the basis of different observed results.
Consequently, rather than all statistically significant results
being treated as equal, specific inferences may be more or
less well justified on the basis of the specific p value ob-
tained. In our above example, the observation of ¥ = 103
(n =100, o = 15) results in p = .023, while the observation
of ¥ = 105 results in p < 0.001. Thus for a fixed n, lower p
values license inferences about larger discrepancies from the
null. The severity assessment also highlights the distinction
between statistical hypotheses and substantive scientific hy-
potheses. For example, a test of a scientific hypothesis might
require that the data support inferences about some deviation
from the null value that is at least of magnitude X. The data
might reach the threshold for statistical significance without
the inference that y; > py + X passing with high severity.
Thus, the statistical hypothesis might find support without
the theory being supported.

Severity assessments can also guard against unwarranted
inferences in cases where the sample size is very large. Con-
sider the case where one fixes the observed p value (for ex-
ample, to be just barely significant) and varies the sample
size. What inferences can be drawn from these just signifi-
cant findings at these various sample sizes? On a simplistic
account, all these significant tests warrant the inference reject
Hj and conclude some deviation (of unspecified magnitude)
from the null. A severity assessment, however, allows for
a more nuanced inference. As sample size increases, one

would only be permitted to infer smaller and smaller dis-
crepancies from the null with high severity. Again using our
example above, the observation associated with p =.025 and
n = 100, allows one to infer that u; > 101 with a severity
of 0.9. However, the same p value obtained with n = 500
reduces the severity of the same inference to 0.68. An illus-
tration of the influence of sample size on severity is shown in
Figure 2 (B). If one wanted to keep the severity assessment
high, one would need to change one’s inference to, example,
p > 100.5 (which would now be associated with a severity
of 0.89). Or if one wanted to keep the same inference (be-
cause that inference is required by the scientific theory or
some background knowledge) at the same severity then one
would need to observe a far lower p value before this could
occur®.

Severity assessments also allow one to draw conclusions
about non-significant tests. For instance, when one fails to
reject Hy, it is possible to ask what specific inferences are
warranted on the basis of the observed result. Once again us-
ing the IQ testing example above, but with a non-significant
observation (x = 102, n = 100, o = 15), one can ask what in-
ferences about y are warranted. For example, one might ask
whether an inference that u; < 105 is warranted or whether
the inference that y; < 103 is warranted. The severity values
associated with each of these inferences (and the observed
result) are 0.98 and 0.75, respectively. Therefore, one would
have good grounds for inferring that the discrepancy from
the null is less than 5, but not good grounds for inferring that
it is less than 3. An illustration of severity curves for non-
significant observations is shown in Figure 2 (C).

The two examples outlined above are both cases which
involve inferences from a single test. But as Mayo (1996,
p- S203) notes, a “procedure of inquiry... may include sev-
eral tests taken together”. The use of multiple tests to probe
hypotheses with respect to data may be particularly useful
in the case where one has failed to reject the null hypothe-
sis. While it is usual to think of significance testing in terms
of a null of no effect and an alternative as departures from
this null, any value can be designated the null. For exam-
ple, one might want to test the null hypotheses Hy : u < B
and Hy : u > A (where usually B = —A) as a way to ex-
amine whether the data support inferences that u lies within

"In the R statistics package, severity for a z-test can be calcu-
lated using the command, pnorm (x.bar - (h0 + gamma) /
(sigma / sqgrt(n))), where x.bar is the observed mean,
hO is the null value, sigma is the population standard deviation, n
is the sample size, and gamma is the deviation from the null value
that one wishes to draw an inference about.

8This final suggestion can take the form of calibrating ones «
level with reference to the sample size and the effect of (scientific)
interest. Typically, however, researchers tend to use a fixed a re-
gardless of context, although recently some have begun to suggest
that a single a level may not be appropriate for all contexts (Lakens
et al., 2018).
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Figure 2. Examples of severity curves for different statistically significant observations (A), barely significant observations
with different sample sizes (B), and different non-significant observations (C).

specified bounds (what can be termed practical equivalence,
see Phillips, 1990; Lakens, 2017). This procedure can sup-
plement, or be used as an alternative, to severity interpreta-
tions so that one can determine precisely what inferences are
warranted on the basis of the data. A consequence of this
is that Frequentist inference need not come down to a sim-
ple binary (for example, reject Hy, fail to reject Hylaccept
H,). Instead, a set of data might lead a researcher to form
a far wider range of conclusions. These may include (but
are not limited to) inferring: some deviation is present but
it is not of sufficient magnitude to support the theory; there
are no grounds for inferring that a deviation is present, but
neither are there good grounds for inferring any effect lies
only within a narrowly circumscribed region around the null;
and, there are good grounds for inferring the presence of a
deviation from the null and that the deviation is of sufficient
magnitude to support a theory.

We will return to Frequentist inference later. For now, one
important point to note is that this kind of Frequentist infer-
ence is piecemeal. Claims that are more severely tested are
given more weight than those claims that are not severely
tested. Importantly, severe testing might require more than
one statistical test—for example, to test assumptions or to
break down a hypothesis into multiple piecemeal statistical
hypotheses. The severity principle also encourages replica-
tion because having to pass multiple tests is a more severe
requirement. Activities such as p-hacking, optional stop-
ping, or small samples sizes, all directly affect severity as-
sessments by directly changing the error probabilities of the
tests. Unfortunately, error statistical thinking has not been
common in the psychological literature. However, its value
is now starting to be recognised by some (e.g., Haig, 2016),
including some working within Bayesian statistics (e.g., Gel-
man and Shalizi, 2013). Although some of the finer details
of the error statistical approach are still to be worked out it
may provide a good guide for thinking about how to interpret
statistical tests.

An alternative to p values

An alternative to p values

In the preceding section, we showed that the grounds on
which p values are granted their epistemic licence are eas-
ily violated; however, it has also been argued that p val-
ues are simply not suitable for scientific inferences because
they don’t provide the information scientists really want to
know (e.g., see Nickerson, 2000; Lindley, 2000). On this
view, what scientists really want to know is the probabil-
ity that their hypothesis is true given their data—that is,
they want to assign some credence to their hypothesis on
the basis of some data they have obtained. Furthermore,
p-hacking, optional stopping, and similar practices demon-
strate the need for procedures that are somehow immune to
these behaviours. This alternative, it is claimed, is provided
by Bayesian statistics(Dienes, 2011; Morey et al., 2016b;
Wagenmakers, 2007)°. Bayesian statistics offers a radically
different approach to statistical inference, and while largely
a niche area in the psychological literature in past decades,
events like the replication crisis have sparked renewed inter-
est in these methods.

In offering a solution to what he terms the “pervasive
problem of p values”, Wagenmakers (2007) suggests that
Bayesian statistics has the desirable attributes for the ideal
statistical procedure. These include: 1) that they are depen-
dent only on the observed data, and not the data that might
have been collected, 2) that they are immune to the unknown

°In this section, we will use “Bayesian statistics” as a shorthand
for a suite of approaches that include, but are not limited to, tech-
niques for computing Bayes factors and approaches for estimating
the values of unknown parameters. Bayesian statistics should not
be taken to mean any procedure that makes use of Bayes Theo-
rem. Bayes Theorem is simply derived from the rules of condi-
tional probabilities. Bayesian statistics, however, is the approach
to statistics that aims to produce outputs in the form of degrees of
belief and/or degrees of support rather than supporting inferences
by controlling certain kinds of errors.
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intentions of the researcher, and 3) that they provide a mea-
sure of the strength of evidence that takes into account both
the null and the alternative. Much of the discourse surround-
ing the switch to Bayesian statistics has focused particularly
on the idea that Bayesian statistics may be the solution to
problems caused by optional stopping, which have arguably
contributed significantly to the replication crisis (e.g. Wagen-
makers, 2007; Rouder, 2014). Others, however, have also
focused on notions of evidence suggesting that the Bayesian
conception of strength of evidence is more amenable to sci-
entific reasoning or that it is closer to what researchers intu-
itively require (e.g., Morey et al., 2016b; Szfics and Ioanni-
dis, 2017b). It is worth unpacking the claimed advantages of
Bayesian statistics in more detail. We will examine the basis
of these claims in the sections below.

Evidence derived from data alone

In order to unpack the claim that Bayesian inferences are
dependent only on the observed data and not data that might
have been collected, but wasn’t, it is necessary to understand
how Frequentist statistics fall into this trap. This Bayesian
critique of Frequentist statistics is based on the fact that Fre-
quentist p values are calculated from the sampling distribu-
tion. As outlined earlier, the sampling distribution is a prob-
ability distribution of the values of the test statistic under a
specified model, such as the null model. It includes all the
values that the test statistic might take. And the p value is cal-
culated from the tail end probabilities of this distribution—
that is, the p value expresses: How often would I obtain a
value this large or larger under this statistical model.

Given this, it is trivial to construct two statistical mod-
els (sampling distributions) where the probability of observ-
ing a specific value of the test statistic is the same, but the
chance of observing other values (specifically, larger values)
is different. Once a specific value is observed, and a p value
is calculated, it will be different depending on the probabil-
ity of obtaining larger values even though the two statistical
models say the same thing about the observed data. As Jef-
freys (1961, p. 385) put it, the use of “p implies... that a
hypothesis that may be true may be rejected because it has
not predicted observable results that have not occurred.”

The second desirable property of Bayesian statistics is
that, unlike p values, Bayesian statistics are not dependent on
the unknown intentions'® of the researcher. Consider again
the case of Alice in the description of the uniformity assump-
tion of the p value distribution. Alice collected data from
10 participants, did a significance test and found p > .05,
added another 10 participants, re-running the test after every
participant and then eventually found p < .05. Contrast this
with Ashanti, who obtained a sample of 20 participants, ran
a significance test and found p < .05. The Frequentist would
say that Alice and Ashanti cannot draw the same inferences
on the basis of their data, because the severity assessment

of Alice and Ashanti’s inferences would differ. As Wagen-
makers (2007) states, examples like this “forcefully [demon-
strate] that within the context of NHST [null hypothesis sig-
nificance testing] it is crucial to take the sampling plan of the
researcher into account” (p. 786). Furthermore, he goes on to
state that within the context of Bayesian statistics the feeling
people have that “optional stopping” amounts to “cheating”
and that no statistical procedure is immune to this is “con-
tradicted by a mathematical analysis”. The claim here is that
Bayesian statistics are immune to optional stopping and that
collecting more data until the patterns are clear is warranted
if researchers are using Bayesian statistics.

Bayesian statistics and a measure of strength of evidence

These first two properties of Bayesian statistics, of the im-
munity to intentions, and of being dependent only on the col-
lected data and not any other data, are derived from what is
called the Likelihood Principle. The concept of the likeli-
hood allows us to understand the third property of Bayesian
statistics, namely that they give us a measure of the strength
of evidence. To see this, it is important to know what is
meant by evidence. As stated in a recent primer for psy-
chological scientists, “The Likelihood Principle states that
the likelihood function contains all of the information rele-
vant to the evaluation of statistical evidence. Other facets of
the data that do not factor into the likelihood function (e.g.,
the cost of collecting each observation or the stopping rule
used when collecting the data) are irrelevant to the evaluation
of the strength of the statistical evidence” (Etz, 2017, p. 2,
our emphasis). The intuition here is obvious, if you want to
know whether some data supports model A or model B, all
you need to know is whether the data are more likely under
model A or model B. On this view, the strength of evidence
is just in the ratio of the likelihoods. If the observed data are
three times more likely under model A than model B, then
this can be read as a measure of the strength of evidence.
Furthermore, if model A is the null model, then we can say
something about the evidential support for this null.

A measure of the strength of evidence is meant to have
an additional benefit for the Bayesian. We can weigh our
evidence according to some background pre-data beliefs we
have (e.g., that Model A is very unlikely to be true) and then
use the data to update our beliefs. In Bayesian hypothesis
testing, this updating factor is called a Bayes factor. Numeri-
cally, the Bayes factor can be interpreted as an odds ratio, and
it is calculated as the ratio of two marginal likelihoods where
the marginal likelihood is comprised of a model of the data
and some predictions about likely parameter values (some-
times referred to as a prior (e.g., Rouder et al., 2009) or a

0The word intentions is often used in the literature. However,
it is not the researcher’s intentions that have an influence on the
interpretations of p values. Rather, it is researchers’ behaviour that
influences the interpretation of p values.
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model of the hypothesis (e.g., Dienes and Mclatchie, 2017)).
Rouder et al. (2009) give the marginal likelihood for hypoth-
esis H as:

My = Ju(6;y)pu(6)do,

0Oy

where @p represents the parameter space under the hy-
pothesis H, fy represents the probability density function
of the data under the hypothesis H, and py represents the
prior distribution of the parameter values expected by that
hypothesis. The important point to note here is that calcu-
lating a Bayes factor requires the analyst to stipulate some
prior probability function for the parameter that they wish
to draw inferences about under each of the models they are
comparing.

It is worth stepping through this in more detail to under-
stand how this calculation works. To do so, we will con-
sider the task of trying to determine whether a coin is fair
(this example, makes use of discrete rather than continuous
probability distributions and therefore the integral can be re-
placed by a sum). For this example, one might define the null
hypothesis as Hy : 6 = 0.5, or that the probability of obtain-
ing heads is 50%. In order to calculate a Bayes factor, one
needs another hypothesis. We might define this hypothesis
as the probability of obtaining heads being some other fixed
value—for example, H; : 6 = 0.7, or that the probability
of obtaining heads is 70%. If we were to further consider
Hj, and H, equally plausible, our Bayes factor value would
simply be the likelihood ratio of these two hypotheses. For
example, given a set of data such as the observation of 2
heads out of 10 flips we could conclude that this observa-
tion is 30.38 times more probable under the hypothesis that
6 = 0.5 than the hypothesis that 6 = 0.7.

However, we are ordinarily not interested in a single
parameter value but are instead concerned with models in
which the parameter may take one of several different val-
ues. In our coin flipping example, this might mean compar-
ing Hy : 8 = 0.5 and an alternative hypothesis H; composed
of 11 point hypotheses (H : 6 =0, H: 6 =0.1, H: 6 =0.2,

. H : 8 = 1) spanning the entire range of values that 6
might take. To calculate the Bayes factor, we first calculate
the likelihood ratio of the data under H to each of the 11
point hypotheses of H,. The Bayes factor is then computed
as the weighted sum of these 11 values, where the weights
are determined by a prior assigned to each of the 11 point
hypotheses that make up H;. The prior makes predictions
about what parameter values (bias values in our example)
are expected under H 1 If for example, we were to con-
sider each possible value of 8 to be equally likely under our
biased coin model, then we would weigh each likelihood ra-
tio equally. Because the prior is a probability distribution,
the weights should sum to one, which means that each like-
lihood ratio would have a weight of 1/11. For our example

of observing 2 heads in 10 flips this would correspond to a
Bayes factor of 2.07 in favour of H;.

This uniform prior is just one example of a prior one might
choose. One might decide that the uniform prior is not very
realistic and instead decide to employ a non-uniform prior. In
our coin flipping example, we might use a prior that places
more weight on values further from 0.5 than values closer to
0.5 if we believe trick coins are likely to be heavily biased
(for example, a beta prior such as § ~ Beta(0.9,0.9)). We
might use a prior that represents our belief that trick coins
will be heavily biased towards coming up heads (for exam-
ple, a beta prior such as 6 ~ Beta(5, 1)). Or we might believe
that trick coins are unlikely to be heavily biased and instead
use a prior that places most of its weight at values near 0.5
(for example, a beta prior such as 6 ~ Beta(10, 10)). In each
of these cases the Bayes factor will be different: We would
obtain values of 0.5, 8.78, and 0.66 in favour of H, for each
one of these three models or priors. In these examples, we
have chosen to use the prior to quantify our beliefs about out-
comes that are likely to occur when coins are unfair (that is,
they are our models of what unfair coins are like). As Dienes
and Mclatchie (2017) points out, this requires the analyst to
specify the predictions of the models being compared and
thus the Bayes factor can be interpreted as the relative pre-
dictive accuracy of the two models. That the models have
to make predictions about what data is likely to be observed
has the added benefit that models that are overly vague are
penalised. This can simply be illustrated by modifying the
width of a prior so that a model predicts an increasingly wide
range of implausible values. An example of this (using the
default Bayesian #-test discussed below) is shown in Figure
3.

There are two broad schools of thought about how one
should go about specifying these model predictions. Subjec-
tive Bayes approaches seek to employ priors that reflect the
analyst’s prior beliefs about likely parameter values (Rouder
et al., 2009; Dienes and Mclatchie, 2017; Berger, 2006; Di-
enes, 2014; Gronau et al., 2018), as we have done with our
coin flipping example. The objective Bayesian approach, on
the other hand, seeks priors that are minimally informative'?.

Tn this context, prior refers to the weights we assign to each
of the likelihood ratios for each of the possible parameter values.
The term prior (sometimes prior odds) is also used to refer to our
predata beliefs about how likely we think it is that Hy or H, is true.
This second type of prior doesn’t factor into the calculation of the
Bayes factor but, as noted above, can be used in conjunction with a
Bayes factor to determine our post data beliefs. Consequently, if we
think that biased coins are infinitesimally rare then even obtaining
a large Bayes factor in favour of H; would not lead us to conclude
that we have encountered a biased coin.

12Minimally informative (or non-informative) is used here in the
technical sense to refer to, for example, Jeffreys’ prior, not in the
colloquial sense of being vague. A subjective prior might be non-
informative in the colloquial sense without being non-informative
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evidence for the alternative
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0 2 4 6 8 10
Prior width

Figure 3. Bayes factor values as a function of prior width.

Often priors are sought that are appropriate in as wide a range
of scenarios as possible or priors that have good frequentist
properties (Berger, 2006). One such example is the JZS prior
on the effect size parameter, which is found in the default
Bayesian #-test (Rouder et al., 2009).

The fact that inference from Bayes factors depends on
model specifications is not inherently problematic. As our
coin flipping example shows, deciding whether a coin is fair
or not is dependent on what we think it means for a coin to
be unfair. That is, our inferences are specific to the models
being compared. However, some difficulties can arise when
it comes to specifying the models that are to be compared by
the analysis. It is worth examining how disagreements about
model specifications can give rise to different inferences by
examining a few examples taken from Dienes and Mclatchie
(2017). These examples will also be instructive because they
were selected to highlight some of the putative benefits of the
Bayesian approach over the Frequentist approach.

The first example reported by Dienes and Mclatchie
(2017) is of an experiment where participants in two condi-
tions were required to make judgements about the brightness
of a light. Dienes and Mclatchie (2017) report the results
from both the original finding and a subsequent replication
attempt. In the original paper, the authors report a differ-
ence between the two conditions in brightness judgement of
13.3 Watts, and a corresponding statistically significant z-test
#(72) =2.7, p = .009, cohen’s d = 0.64). For the replication
attempt the sample size was increased such that if the true
effect was of the same magnitude as the original finding the
replication attempt would produce a statistically significant
result approximately 9 times out of 10—that is, the statistical
power would be 0.9. The replication attempt, however, failed
to produce a statistically significant result(#(104) = 0.162, p
=0.872, cohen’s d = 0.03), and a raw effect of approximately
5.47 Watts was observed. What is one to make of this failed
replication attempt?

Dienes and Mclatchie (2017) state in the case of the sec-

ond experiment that “[b]y the canons of classic hypothesis
testing [that is, frequentist methods] one should accept the
null hypothesis.” As noted earlier in our discussion of Fre-
quentist inference, a non-significant result does not warrant
the inference accept Hy, at least not from a principled per-
spective. However, setting this aside, for now, we can ask
what the Bayesian should conclude. According to the anal-
ysis presented by Dienes and Mclatchie (2017), the original
finding, which reported a raw effect of 13.3 Watts, should
inform the analyst’s model of H;. The resulting Bayes fac-
tor computed on the basis of this model after observing the
new data (the raw difference of 5.47 Watts) is approximately
0.97. That is, the Bayes factor value indicates that the new
data provide roughly equal support for the null and the alter-
native and the conclusion should be that the results are in-
conclusive. Dienes and Mclatchie (2017) may be justified in
this specification of an informed prior; however, one might,
either through a desire for “objectivity” or through a desire
to compare one’s inference to some reference, instead choose
to use a non-informative prior. The JZS prior, employed in
the default Bayesian #-test (Rouder et al., 2009), is one such
example. Re-running the analysis employing this new model
specification for the alternative hypothesis now instead re-
sults in a Bayes factor of 0.21—that is, the null is now pre-
ferred by a factor of nearly 5 to 1. Interestingly, this is just the
same inference as the heuristic interpretation of the p value.

It is important to note, however, that the fact that the two
Bayesian analyses give different results is not a problem,
at least not from a Bayesian perspective. The analysis is
simply providing a measure of the strength of evidence for
one model relative to another model. A problem only arises
when one seeks to interpret the Bayes factor as an indica-
tion of “an effect” being present versus “an effect” being
absent. However, it is also worth noting that with default
priors (that is, the JZS prior), the model being compared is
not really a model of the theory in the same sense as Dienes
and Mclatchie’s (2017) model is, which somewhat breaks
the connection between the statistical hypothesis and the sci-
entific hypothesis. However, since any change in statistical
practice is likely to depend on ease-of-use (both in terms of
conceptual understanding and the availability of, for exam-
ple, software tools) it seems likely that default priors may be
the dominant type of model specification in use, at least in the
short term. And therefore, it is necessary that the appropriate
caveats are observed when drawing inferences on the basis
of these procedures.

Just as Bayesian inference is relative to specific mod-
els, it is also important to reiterate that Frequentist infer-
ences should be relative to specific alternative hypotheses
that are assessed against actual observed results. This more
sophisticated frequentist analysis would actually draw con-
clusions more similar to the inferences drawn by Dienes and

in the technical sense.
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Mclatchie (2017). For example, the Frequentist might want
to use severity assessments to assess various hypotheses with
respect to the observed result. If this was done, the infer-
ence, like the Bayesian inference would be similarly incon-
clusive. Inferences about only very small discrepancies be-
ing present are not tested with severity (that is, inferences
that accord more with the null hypothesis would not be sup-
ported). The only inferences that would pass with severity
are those that entertain the possibility of a wide range of
discrepancies—from negligible to very large—being present
(that is, an inconclusive result). Furthermore, a more sophis-
ticated Frequentist might also choose to perform multiple
statistical tests to test this one scientific hypothesis, and to
build up evidence in a piecemeal manner. One way to do
this would be to perform two one-sided tests against the twin
null hypotheses of, for example, Hy : ¢ > —10 Watts and
Hy : u < 10 Watts. This would allow the analysts to draw
inferences about practical equivalence within the range of,
for example, -10 to +10 Watts. The results of such an equiv-
alence test would be non-significant suggesting that the null
hypotheses cannot be rejected and again suggesting that the
result is inconclusive (#(104) = -0.13, p = 0.45).

It is an interesting exercise to apply severity reasoning
to the other examples presented by Dienes and Mclatchie
(2017). For instance, Dienes and Mclatchie (2017) shows
that a Bayesian analysis can be used to show that a non-
significant effect from an experiment with low a priori power
need not be viewed as evidentially weak. However, severity
assessments for non-significant results do not rely on pre-
experiment power (that is, a power calculation performed
before the data is known), as a naive Frequentist might, but
rather assess hypotheses with respect to the data actually ob-
tained. For this example, it is possible to probe various hy-
potheses to see which pass with severity. Applying this rea-
soning to the same example as Dienes and Mclatchie (2017)
would result in concluding that the data are consistent with
the presence of a negligible to very small effect, but not
consistent with a large effect. Or one might use multiple
tests, taken together, such as in an equivalence test proce-
dure, and find that one has good grounds to infer that any
deviations from the null fall within the bounds of practical
equivalence'3. Furthermore, severity assessments of a just
significant effects in a large study would lead one to conclude
that there are not good grounds for inferring that anything but
a negligible effect is present just as a significant (Frequen-
tist) effect in a large study would lead to a Bayes factor that
strongly favours the null model over the alternative model.

Two approaches to inference, evidence, and error

We have outlined a view of inference offered from the
Frequentist, error-statistical, perspective in the form of the
severity principle: One can only make claims about hypothe-
ses to the extent that they have passed severe tests. And we

have outlined a view of inference offered from the Bayesian
perspective: One can make claims about hypotheses to the
extent that the data support that hypothesis relative to alter-
natives. These two approaches are often pitched as rivals be-
cause it is argued that they can warrant different inferences
when presented with the same data, as the examples pre-
sented by Dienes and Mclatchie (2017) are meant to show.
However, as our discussion of Dienes and Mclatchie (2017)
shows, this is not clearly the case. What these examples
more clearly demonstrate is that the exact nature of the ques-
tion being asked by Dienes and Mclatchie’s (2017) Bayesian
analysis and the naive frequentist analyses they present are
different. With different questions one need not be surprised
by different answers. The same applies to asking two dif-
ferent Bayesian questions (one using a default prior and one
using an informed prior)—a different question results in a
different answer. Consequently, when Dienes and Mclatchie
(2017) point out pitfalls of significance testing they are in
fact pointing out pitfalls associated with a naive approach.
A more sophisticated use of Frequentist inference allows one
to avoid many of the common pitfalls usually associated with
significance testing and it is not necessary to adopt Bayesian
methods if all one wants to do is avoid these misinterpreta-
tions.

There are, however, situations where Bayesian and Fre-
quentist methods are said to warrant different inferences that
are a consequence of the process that allows each type of
inference to be justified. Consider, for example, the claim of
Wagenmakers (2007) that the feeling that optional stopping
is cheating is contradicted by a mathematical analysis. From
an error statistical perspective any claims made as a result of
optional stopping are not warranted (making those claims is
cheating) because the claims have not been severely tested
(the probability of detecting an error would be very low so
not detecting an error is unimpressive). The same applies
for data-dredging and a range of other behaviours. For the
Bayesian, however, all that matters in assessing the strength
of evidence is the ratio of the likelihoods. The Bayesian can
be seen as regarding data as primary while the Frequentist
can be seen as regarding the process as primary. As noted
by Haig (2016), this is a difference between Frequentists
(specifically, of the error-statistical variety) favouring local
or context-dependent accounts of statistical inferences with
Bayesians’ favouring broad general or global accounts of sta-
tistical inference.

The important question, however, is how does each ap-
proach fair as a system of scientific inference? The primary
difference between the two can be seen as coming down to

In fact, running such an equivalence test on the data presented
in their example does result in one rejecting the null hypothesis
of an effect larger than practical equivalence (+1% difference be-
tween groups in the number of questions answered correctly) being
present (#(99) = 1.72, p = 0.04).
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error control. Frequentists, like Mayo (Mayo, 1996; Mayo
and Spanos, 2011, 2006) insist that any system of inference
must be so designed so that we are not lead astray by the
data. Consider the case of collecting observations and then
drawing inferences on the basis of these. It might be rea-
sonable to ask whether those observations reflect some truth
or whether they are possibly misleading. Bayesian statistics,
however, does not care about error probabilities in assessing
the strength of evidence. The strength of evidence (derived
from the Likelihood Principle) is simply construed as the de-
gree to which the data support one hypothesis over the other
with no reference to how often the evidence might be mis-
leading. This is in distinction to Frequentist approaches that
fix at an upper-bound how often inferences will be in error.
This highlights what Birnbaum (1964) called the “anoma-
lous” nature of statistical evidence. Gandenberger (2015),
similarly, cautions against using the Likelihood Principle to
argue against Frequentist statistics, particularly the error sta-
tistical view. Whether the Likelihood Principle is true or
not, is simply not relevant for this system of inference and,
therefore, Frequentist violations of the likelihood principle
are of no consequence (Gandenberger, 2015). Similarly, ig-
noring error probabilities is of no consequence within the
Bayesian system of inference (Haig, 2016). Gandenberger
(2015) states that the likelihood principle only applies if one
wants to use methods that track “evidential meaning”, but he
goes on to state that while “tracking evidential meaning is in-
tuitively desirable. .. [it may be] less important than securing
one or more of [the] putative virtues” of Frequentist methods.
These virtues, such as the ability to control error probabilities
and the ability to objectively track truth (in, for example, the
absence of priors), may be virtues that one wishes to retain.

The Bayesian view that the evidential import of the data is
only reflected through the likelihoods is also more nuanced
than is often recognised. Specifically, the adherence to the
Likelihood Principle implies an immunity to stopping rules;
however, this immunity must be qualified. There are many
instances when the stopping rule may influence the infer-
ences that the Bayesian wants to draw from the data obtained
in an experiment. In these situations, the stopping rule is
described as informative. Stopping rules are said to be infor-
mative if, for example, they provide information about a rele-
vant unknown parameter that is not contained within the data
itself. For example, when trying to estimate some parameter,
6, if the stopping rule is dependent on 6 in some way other
than through the data, such as by making some stopping rule
more likely if # = X and another stopping rule more likely
if 8 = Y, then the stopping rule carries information about
6 that is not in the data itself. To adapt an example from
Edwards et al. (1963): If you are trying to count the num-
ber of lions at a watering hole, then the fact that you had to
stop counting because you were chased away by all the lions
should factor into any of your inferences about the number

of lions. Roberts (1967) presents some more formal exam-
ples and suggests that in these cases it is right and proper to
take this parameter dependence into account in the likelihood
function.

Information about the stopping rule can also enter into
a Bayesian inference through the prior more directly when
objective priors are used. Consider the example of flipping
a coin multiple times and after each flip recording whether
it landed on heads or tails. Once the data is obtained, one
might want to make an inference about the probability of
obtaining heads. As pointed out by Wagenmakers (2007),
for a Frequentist to draw inferences about the observed data
they would need to have information about how the data was
collected—that is, the stopping rule. Specifically, it would be
necessary to know whether, for example, the data were col-
lected until a fixed number of trials were completed or until
a fixed number of heads were recorded. The two sampling
rules can lead to identical observed data, but since the two
sampling rules have something different to say about possi-
ble data that could occur under the null hypothesis, this infor-
mation must enter into the Frequentist analysis. Etz (2017)
also makes use of this example, not to show the flaw in Fre-
quentist inference (which is what Wagenmakers (2007) de-
ploys the example for), but to show how a Bayesian can make
use of prior information when computing the posterior prob-
ability of obtaining heads. In his example, Etz (2017) shows
how one can combine some prior beliefs (for example, the
belief that the probability of obtaining heads is likely to be
between 0.30 and 0.70) to obtain a posterior distribution of
values for obtaining heads. In Etz’s (2017) example, his prior
quantifies his pre-data beliefs, and his posterior quantifies his
post-data beliefs that have been updated in light of the data.
However, how is one to perform the Bayesian analysis if one
has no pre-data beliefs or no strong grounds for holding a
particular set of pre-data beliefs?

As mentioned earlier, the use of objective priors is meant
to circumvent the problems of specifying these subjective
priors. The solution, therefore, is just to make use of one
of the minimally informative objective priors. Box and Tia
(1973) provide just such a set of non-informative priors de-
rived from Jeffreys’ rule; however, the exact prior that is
appropriate turns out to be dependent on the sampling rule.
That this, the “objective” Bayesian inference about the pa-
rameter from a set of data turns out to be different depending
on how the data were collected. As noted by Hill (1974) and
Berger (2006), this amounts to a violation of the Likelihood
Principle. In Wagenmakers’s (2007) terms, it would result
in a Bayesian analysis that is dependent on the unknown in-
tentions of the researcher. Box and Tia (1973, p 46) note
that they find the observation that a difference in sampling
rules leads to different inferences “much less surprising than
the claim that they ought to agree.” Indeed the requirement
that one adheres to the Likelihood Principle in drawing in-
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ferences is not universally accepted even among Bayesian’s.
For example, Gelman and Shalizi (2013) encourage a kind of
data-dependent model validation that might similarly violate
the Likelihood Principle when the entire inference process
is viewed as a whole. Furthermore, Gelman et al. (2014, p
198) state, ““ ‘the observed data’ should include information
on how the observed values arose”. That is, good Bayesian
inference should be based on all the available information
that may be relevant to that inference. However, the assess-
ment of evidence, once data and models are in hand can still
be done in a manner that respects the Likelihood Principle.

In addition to cases where informative stopping rules are
used, cases may also arise where stopping rules that are os-
tensibly uninformative from one perspective might be infor-
mative from another perspective. These kinds of situations
are likely to arise more often than is often recognised. Gan-
denberger (2017) outlines such a situation. Consider two re-
searchers, Beth employs the stopping rule: collect data un-
til the likelihood ratio favours H; over Hy by some amount.
Brooke employs the stopping rule: collect data until reaching
some fixed n. The stopping rule employed by Beth is tech-
nically uninformative because the stopping rule is only de-
pendent on the data observed and is not dependent on other
information about the parameter of interest not contained in
the data. If it happens to be the case that Beth and Brooke
obtain identical data then the Bayesian analysis states that
Beth and Brooke are entitled to identical inferences.

However, consider a third party, Karen, who is going to
make decisions on the basis of the data. For Karen, it might
not be that easy to discount the stopping rule. For example, if
she suspects that Beth might choose her stopping rule on the
basis of a pilot experiment that showed evidence in favour
of Hj then the stopping rule contains information that is of
some epistemic value to Karen. This situation, where there is
a separation between inference-maker and data collector, is
not uncommon in science. Other researchers who will make
inferences on the basis of published research, journal editors,
reviewers, or other end users of research may consider a stop-
ping rule informative even when the researcher themselves
does not.

Other instances might also exist where a Bayesian might
want to consider stopping rules. One such example is sug-
gested by Berger and Wolpert (1988). They suggest that if
somebody is employing a stopping rule with the aim of mak-
ing some parameter estimate exclude a certain value then
an analyst might want to take account of this. For exam-
ple, Berger and Wolpert (1988) suggest that if a Bayesian
analyst thinks that a stopping rule is being used because the
experimenter has some belief about the parameter (for exam-
ple, that the estimate should exclude zero), then adjustments
should be made so that the posterior reflects this. These ad-
justments, however, should not be made to the likelihood—
that is, they should not affect the strength of evidence—but

should instead be made to the prior so that some non-zero
probability is placed on the value that the experimenter might
be trying to exclude. This approach, however, has not been
without criticism. Specifically, the practice of making ad-
justments to priors because an analyst might think that an ex-
perimenter thinks something about a parameter runs a severe
risk of appearing ad hoc. This is especially the case given
that much of the Bayesian criticism of Frequentist statistics is
based on the claim that unknown intentions should not influ-
ence inferences. The Frequentist response is much more sat-
isfactory. After all, the Frequentist can point to specific prob-
lematic behaviour that justifies their rule; however, Berger
and Wolpert (1988) appear to suggest that the Bayesian re-
ally must care about the mental states of the data collector.

The upshot of examples like this is that far from immu-
nity to stopping rules, the conditions under which stopping
rules are informative can be poorly defined. Furthermore,
the responses to these situations can be tricky to implement.
The fact remains that many of the cases where Frequentists
are worried about stopping rules may be the very same cases
where stopping rules should worry a Bayesian too.

What do we really want to know?

What should we make of examples where stopping rules
appear to influence the epistemic value of the data? One so-
lution is to ask ourselves what we really need for scientific in-
ference. For example, Gandenberger (2015) recognises that
it is reasonable to care about error probabilities despite them
having no influence on evidence. And Dienes (2011, p 286)
suggests that “[u]ltimately, the issue is about what is more
important to us: using a procedure with known long term
error rates or knowing the degree of support for our theory.”
There are several legitimate reasons for deciding that both
are important.

The reasons for wanting to know both is that the two kinds
of inferences figure differently in scientific reasoning. Car-
ing about error rates is important because one can learn from
the absence of error, but only if there is a good chance of
detecting an error if an error exists (e.g., Mayo, 1996). When
one collects observations it may be less important to know
whether or not a particular observation is better predicted
by theory A or theory B. Instead, it may be better to know
whether inferences about the presence or absence of error are
well justified, which is what can be gained from the severity
principle. For instance, if we wish to conclude that an obser-
vation justifies a conclusion of some deviation from a partic-
ular model then whether we have good grounds for this infer-
ence can be determined with reference to the severity princi-
ple. Similarly, if we wish to conclude that we have good
grounds for inferring that there is no deviation (within a par-
ticular range), then the severity principle can help here too.
And all this can be done without needing to know whether
and to what extent that deviation is predicted by two theories.



14 COLLING, AND SZUCS

However, if one has good grounds for making one’s mod-
els and good grounds for making predictions, then it seems
reasonable to care about whether the evidence supports one
model over its rival. With some observations in hand, along
with some explanations or models, a Bayesian analysis al-
lows us to judge which is the best explanation. Haig (2016)
similarly echoes this view that both forms of inference are
necessary by calling for pragmatic pluralism. However, for
this to work it is important to understand the strengths and
weaknesses of each approach, the inferences each approach
warrants, and when each approach should be deployed. This,
however, is a different kind of argument than that which is
ordinarily made by those advocating statistical reform (Wa-
genmakers, 2007; Dienes and Mclatchie, 2017). The usual
strategy here is to argue that Bayesian statistics should be
adopted because they lead to more reasonable, more correct,
or more intuitive inferences from data relative to Frequen-
tist inference. As we have pointed out in Section 3.2, in our
discussion of Dienes and Mclatchie (2017), the Frequentist
inference and the Bayesian inference can often be similar on
a gross level (the data are inconclusive, the data support an
alternative hypothesis, the data do not support an alternative
hypothesis) and, therefore, arguing that statistical reform is
necessary because macro level inferences are different may
not work as a strategy. A better strategy, we believe, is to ar-
gue that statistical reform is necessary because it is necessary
to have the right tool for the right job in a complete system
of scientific inference.

Tests of statistical significance find their strength where
reasonable priors are difficult to obtain and when theories
may not make any strong quantitative predictions. For ex-
ample, when researchers simply want to know whether they
can reliably measure some phenomenon (of a specific mag-
nitude or range) then significance testing might play a role.
(Significance tests play an analogous role in physics, see van
Dyk, 2014). In these contexts, however, it is important that
researchers at least have some sense of the magnitude of the
effects that they wish to observe so that analyses can be ad-
equately powered. Furthermore, they might be useful in ex-
ploratory contexts. This kind of exploratory research is im-
portantly different to data dredging—that is, rather than test-
ing numerous statistical hypotheses, finding significance, and
then claiming support for a substantive hypothesis, this kind
of exploratory research involves the systematic collection of
observations. Importantly, the systematic collection of ob-
servations will involve piecemeal accumulation of evidence,
coupled with repeated tests and follow-ups to ensure sever-
ity. In the psychological sciences, one such context might be
neuro-imaging'* where a researcher simply wants to know
whether some response can be reliably measured with the
aim of later building a theory from these observations (see
Colling and Roberts, 2010). This is essentially a signal de-
tection task and it does not require that one specify a model

of what one expects to find. Instead, the minimal require-
ment is a model of the noise, and the presence of signals can
be inferred from departures from noise. Importantly, theo-
ries developed in this way could then be tested by different
means. If the theory takes the form of a quantitative model
or, better yet, multiple competing plausible models then a
switch to Bayesian statistics would be justified.

Bayesian statistics thrives in situations involving model
comparison, parameter estimation, or when one actually
wishes to assign credences, beliefs, or measure the degree
of support for hypotheses. Significance testing has no formal
framework for belief accumulation. However, to fully exploit
these strengths psychological scientists would not only need
to change the way they do statistics but also change the way
they do theory. This would involve an increased emphasis on
explanation by developing quantitative mechanisms (see Ka-
plan and Bechtel, 2011; Colling and Williamson, 2014). Un-
fortunately, the naive application of significance tests does
not encourage the development of mechanistic theories that
make quantitative predictions. Rather, the focus on simple
dichotomous reject/do not reject thinking can, and has, lead
researchers to often be satisfied with detecting any effect
rather than specific effects.

Importantly, the debates around statistical reform and the
replication crisis highlight a deeper concern. Rather than
merely a statistical issue, the replication crisis highlights
the stark disconnect between those inferences that are war-
ranted and justified and those inferences that scientists ac-
tually make, both with respect to their own work and with
respect to the work of others. Haig (2016) and Sziics and
Toannidis (2017b) raise similar concerns. Rather than of-
floading inferences onto sets of numbers produced by statis-
tical procedures, researchers, and particularly students, need
to have a greater understanding of how to construct appropri-
ate explanatory theories and how to differentiate substantive
and statistical hypotheses. Additionally, it is also important
that researchers are able to identify contexts in which hy-
pothesis tests (whether Bayesian or Frequentist) are appro-
priate and contexts in which parameter estimates are more
appropriate—that is, when to fest hypotheses and when to
measure phenomena.

Conclusions

We do not think that the solution to the replication crisis
lies in statistical reform per se. While there are undoubt-
edly problems with how people justify scientific inferences
on the basis of statistical significance tests, these problems
may lie less with the tests themselves than with the infer-
ential systems people employ. And we have attempted to

14This is just used as a hypothetical example. Whether this works
in practice depends crucially on the ability to control error rates.
While controlling error rates is in theory possible, in practise, this
has proved more difficult (e.g., Eklund et al., 2016).
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demonstrate how good inferences on the basis of statistical
significance tests may be justified. We have also examined
the Bayesian alternative to statistical significance tests and
explored some of the benefits of the Bayesian approach. The
argument for Bayesian statistics is often framed in terms of
the macro level inferences that they permit and in terms of the
perceived shortcomings of Frequentist statistics. However,
we have argued that well-justified Frequentist inferences can
often lead to the same gross conclusions. Rather, the key dif-
ferences lie in their view of evidence and the role error plays
in learning about the world. That is, rather than furnishing
different inferences, per se, each approach provides a differ-
ent kind of information that is useful for different aspects of
scientific practice. Rather than mere statistical reform, what
is needed is for scientists to become better at inference (both
Frequentist and Bayesian) and for a better understanding of
how to use inferential strategies to justify knowledge.
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