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abstract. In terms of validity in Kripke frames, a modal formula
expresses a universal monadic second-order condition. Those modal
formulae which are equivalent to first-order conditions are called ele-
mentary. Modal formulae which have a certain persistence property
which implies their validity in all canonical frames of modal logics
axiomatized with them, and therefore their completeness, are called
canonical. This is a survey of a recent and ongoing study of the class
of elementary and canonical modal formulae. We summarize main
ideas and results, and outline further research perspectives.

1 Introduction

1.1 Elementary canonical formulae

We study modal formulae φ which are:

(i) elementary (first-order definable):

• locally, if there is a first-order formula α(x) such that for every
frame F and w ∈ F :

F,w |= φ iff F |=FO α(w).

• or, globally, if there is a first-order sentence α such that for every
frame F :

F |= φ iff F |=FO α.

Clearly, every locally elementary formula is globally so, too. The
converse does not hold, as we will see later.
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(ii) canonical: informally, that means valid in the canonical frames of
all modal logics in which such formula is an axiom. This property is
important, because it implies frame completeness of logics axiomatized
with such formulae.

Formally, we define canonicity in a somewhat stronger, but more uni-
form and precise way, as persistence with respect to a suitable class of
general frames containing all canonical general frames of the language.
In the standard (polyadic) modal languages, these are the descriptive
frames (see e.g. [2]), and we identify canonicity with persistence with
respect to such frames (D-persistence). However, we note that if the
language contains special sorts, such as nominals, or the logics admit
special inference rules, the notion of canonicity accordingly changes.

While the class1 of globally elementary and canonical formulae properly
extends the class of locally elementary and canonical ones (see examples in
[3]), these two classes behave very similarly, and hereafter we will concen-
trate mainly on the latter one. By the Fine-van Benthem theorem (see [3]),
an elementary modal formula is canonical iff the modal logic axiomatized
by that formula is complete, so the elementary and canonical formulae are
precisely the elementary and complete ones.

The elementary and canonical formulae axiomatize many important modal
logics and are of particular practical interest, as they lend themselves to the
computational tools developed for first-order logic.

Examples of locally elementary canonical formulae include:

• every valid modal formula;

• the axioms for most well-known logics, incl. T , B , K4, S4, S5,...

• all Sahlqvist formulae [39], and many more...

Non-examples include:

• any formula axiomatizing an incomplete logic, e.g. van Benthem’s
formula �♦� → �(�(�p → p) → p), which is elementary, but not
complete, hence not canonical.

• Fine’s formula ♦�(p ∨ q) → ♦(�p ∨ �q), which is canonical, but not
elementary.

1Here and further we often use the term ‘class’ when referring to sets of specially
defined formulae, not in set-theoretic sense, but as a stylistic way of emphasizing their
importance and internal structure.
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• McKinsey’s formula �♦p→ ♦�p and the Gödel-Löb formula �(�p→
p) → �p, which, although complete, are neither first-order definable,
nor canonical.

Hereafter, ‘elementary’ modal formula will usually mean a globally ele-
mentary one, unless otherwise specified in the context.

The sets of locally and globally elementary canonical formulae are not
recursive (see [3]) hence the problem arises to establish useful characteriza-
tions and to identify rich natural subclasses of effectively recognizable such
formulae. Our study follows three main threads of obtaining such character-
izations: syntactic, algorithmic, and model-theoretic, which are discussed in
the subsequent sections. Below we summarize the main issues and results.

1.2 Syntactic classes of elementary canonical formulae
The best-known class of elementary canonical formulae, which was also the
starting point of this study, is the class of Sahlqvist formulae [39]. While
bearing a clear semantic motivation, these formulae are defined purely syn-
tactically, and that syntactic definition is only a lower approximation of
the underlying semantic idea (of minimal valuations, see [3]). The syn-
tactic definition is extremely fragile, as it does not withstand even sim-
ple boolean transformations, or even substitutions changing the polarity
of propositional variables. It has, therefore, become customary to tacitly
consider the Sahlqvist formulae closed under such simple transformations.
On the other hand (see [7]), axiomatic equivalence to a Sahlqvist formula
is not decidable, and hence it would be unreasonable to close the class of
Sahlqvist formulae under such equivalences. Thus, the notion of Sahlqvist
formulae has become fuzzy, and the question ‘What is a Sahlqvist formula?’
has gained increasing pertinence.

In [23] and [25] we have extended the Sahlqvist formulae to the class
of inductive formulae in arbitrary polyadic languages, also generalized for
hybrid modal languages in [24]. These are still syntactically defined elemen-
tary canonical formulae, and their first-order equivalents are still computed
by means of minimal, first-order definable valuations which enable elimina-
tion of the second-order predicate variables. These minimal valuations are
defined inductively, in an order determined by certain syntactic dependen-
cies between the propositional variables within the formula. Like Sahlqvist
formulae, the syntactic shape of inductive formulae is rather vulnerable to
otherwise inessential transformations, and thus the question ‘What is an
inductive formula?’ remains actual.

In our study we analyze the possibilities to extend the class of syntacti-
cally determined elementary canonical formulae:

• by extending further the syntactic definition of inductive formulae;
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• by adding and refining a pre-processing phase, in attempt to trans-
form the formula into an inductive formula, while preserving its frame
condition.

• by closing the class of inductive formulae under suitable equivalences
preserving the elementary canonical formulae, to larger, still effectively
recognizable classes.

Also, we develop purely syntactic procedures for computation of the first-
order equivalents of effectively defined classes of elementary canonical for-
mulae. For instance, in [24] we present such method for inductive formulae
in temporal (more generally, reversive) languages with nominals.

1.3 Algorithmic approach to elementary canonical formulae
A natural extension of the syntactic approach aims at development of al-
gorithms which identify elementary canonical formulae, and thus produce
effectively enumerable classes of such formulae. Such algorithmically defin-
able classes need not be decidable, but they are much less tied-up with the
syntactic shape of the formulae, and the algorithmic approach penetrates
deeper into the semantic nature of the elementary canonical formulae.

To establish first-order definability of a modal formula amounts to elim-
ination of the monadic second-order quantifiers occurring in its standard
translation. Therefore, prime candidates for algorithms producing elemen-
tary canonical formulae are the two currently developed and implemented
algorithms for second-order quantifier elimination, viz. SCAN and DLS (see
[34]). Both are provably correct and incomplete and, while seemingly based
on different ideas and with quite distinct computational behavior, none of
them is stronger than the other for that task. It has been proved in [27]
that SCAN succeeds for all Sahlqvist formulae. Moreover, this holds for all
inductive formulae, and the same applies to DLS (see [12]).

In [10] we have developed a new algorithm, SQEMA, for computing first-
order equivalents of modal formulae and have proved the canonicity of all
formulae on which it succeeds.

1.4 Model-theoretic aspects of elementary canonical formulae
This direction of research aims at characterizing the elementary canoni-
cal formulae of a given modal language in practically more useful model-
theoretic terms. A typical such characterization (as a sufficient condition) is
a suitable notion of persistence, e.g.: with respect to all descriptive frames,
in the case of standard polyadic modal languages; with respect to all discrete
frames, in the case of hybrid modal languages with nominals; with respect
to all refined frames, in the case of logics with additional non-orthodox rules
of inference.
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Various other persistence properties have emerged as useful tools for
model theoretic analysis and classification of elementary canonical, and re-
lated, formulae. For instance, as established by van Benthem in [3], the
modal formulae amenable to the method of substitutions turn out to be
precisely those persistent with respect to the general frames in which all
parametrically first-order definable sets are admissible. Also, in [25] we
have introduced a new notion of persistence which separates the Sahlqvist
formulae from the inductive ones, and have proved that, up to local equiva-
lence in all discrete general frames in reversive languages with nominals, the
inductive, pure (not containing propositional variables), and locally discrete-
persistent formulae, coincide, thus delineating a very large and natural class
of elementary and ‘discretely-canonical’ formulae in such languages.

The persistence properties of the elementary canonical formulae have a
distinct topological nature, first identified in [40] and used in [41] to give a
uniform proof of first-order definability and canonicity of Sahlqvist formu-
lae. We have continued and extended that analysis, and used topological
arguments to establish first-order definability and canonicity of inductive
formulae in [25], and of the formulae on which the algorithm SQEMA suc-
ceeds in [10].

2 Preliminaries

In this paper we assume that the reader has basic familiarity with syntax
and semantics of modal logic, some useful references on which include [3],
[2], and [6]. For the reader’s convenience, we briefly recall some important
facts related to general frames and persistence.

2.1 General frames

For technical simplicity, we will only consider a basic monadic modal lan-
guage. For treatment of general polyadic languages see [23], [25], as well as
[24] for hybrid polyadic languages. For general background on model theory
of modal logic see [2], [6], [8], and [28].

Given a Kripke frame F = 〈W,R〉, a general frame over F is a structure
F = 〈W,R,W〉 expanding F with a modal algebra W of admissible sub-
sets of W , closed under all Boolean and modal operators, i.e., W is a modal
subalgebra of 〈P(W );∩,−,�,∅〉, where �X = {x ∈ W | ∀y(Rxy → y ∈
X)}. The operator ♦ is defined dually: ♦X = {x ∈W | ∃y(Rxy ∧ y ∈ X)}.

A valuation V in the frame F is admissible in F if V (p) ∈ W for every
variable p. A Kripke model over F is any Kripke model M = 〈F, V 〉 with
a valuation V admissible in F.

Local (at a state) and global validity of a modal formula in a
general frame is defined as truth at the state (resp. validity) in every
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admissible model over that general frame.
Every general frame F = 〈W,R,W〉 defines a topology T (F) on W with

W as a base of clopen sets, i.e. the closed sets of the topology are precisely
all intersections of admissible sets.

2.2 Some important classes of general frames
A general frame F = 〈W,R,W〉 is:

• differentiated if for every x, y ∈W , if x �= y then x ∈ X and y /∈ X
for some X ∈ W or, equivalently, if T (F) is Hausdorff.

• tight if for any x, y ∈ W , Rxy iff ∀Y ∈ W(y ∈ Y ⇒ x ∈ ♦(Y )),
or, equivalently, if R is point-closed, i.e. R({x}) is closed for every
x ∈W , where R(X) denotes the set of all successors of points in X.

• refined if it is differentiated and tight.

• compact if every family of admissible sets in F with FIP has a non-
empty intersection, or, equivalently, if T (F) is compact.

• discrete, if {u} ∈ W for every u ∈W .

• elementary, if every subset of W , which is parametrically first-order
definable in the first-order language for Kripke frames, is admissible.

• descriptive if it is refined and compact.

The class of all differentiated (resp. tight, refined, discrete, elementary,
descriptive) general frames will be denoted by DF (resp. T ,R,DI, E ,D).

Some relationships between these classes (see [28]):

E � DI � R = DF ∩ T ; D � R; D � DI � D.

2.3 Persistence and canonicity
Let C be any class of general frames. A modal formula is locally C-
persistent, if for every general frame F = 〈F,W〉 ∈ C, and w ∈ F : F, w |= φ
implies F,w |= φ; φ is C-persistent, if for every such general frame, F |= φ
implies F |= φ.

Clearly, local persistence implies persistence, but the converse does not
always hold. If we denote by Cp the set of all C-persistent formulae, we have
the following (see [28]):

DFp ∩ T p = Rp � DIp � Ep; Rp � Dp; DIp � Dp � Ep.

The same relationships hold for the local persistences.
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How are persistence and canonicity related? Descriptive frames typically
appear as the canonical general frames of every normal modal logic without
any special inference rules. Thus, all D-persistent formulae are valid in
the underlying canonical Kripke frames, and hence they axiomatize Kripke
complete logics. For that reason the D -persistent formulae are often (incl.
in this study) identified with canonical formulae.

However, in hybrid logics with nominals, or in logics with special addi-
tional (‘context’, or ‘non-orthodox’) rules of inference, D -persistent formu-
lae need not be canonical, because the canonical general frames for such
logics are only discrete (for hybrid logics, see [2]) or refined (in logics with
additional rules).

Furthermore, DI-persistent formulae have the important property of re-
maining canonical when added as axioms to hybrid logics with nominals,
while R-persistent formulae remain canonical not only in the presence of
other axioms, but even if additional rules of inference of the type men-
tioned above are added to the axiomatic system. Thus, the right notion of
canonicity in such languages is DI-persistence, resp. R-persistence.

3 Syntactic classes of elementary canonical formulae

3.1 The starter: Sahlqvist formulae
After the introduction of Kripke semantics for modal logics, a quest for
general completeness results ensued, which culminated in Sahlqvist’s the-
orem [39]. Sahlqvist proved two notable facts about a large, syntactically
defined class of modal formulae, now called Sahlqvist formulae: the first-
order correspondence: that they all define first-order conditions on Kripke
frames and these conditions can be effectively “computed” from the modal
formulae; and the canonicity: that all these formulae are valid in their re-
spective canonical frames, and hence axiomatize completely the classes of
frames satisfying their corresponding first-order conditions.

DEFINITION 1. In a fixed standard modal language ML we define the
following syntactic classes of formulae.

• Positive and negative formulae are defined as usual.

• A boxed atom is a formula �1 . . .�np where �1, . . . ,�n is a (possibly
empty) string of unary boxes and p is a propositional variable.

• A Sahlqvist antecedent is a formula constructed from boxed atoms
and negative formulae by applying conjunctions, disjunctions, and
diamonds.

• A definite Sahlqvist antecedent is a Sahlqvist antecedent obtained
without applying disjunctions.
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• A (definite) Sahlqvist implication is a formula A→ P where A is
a (definite) Sahlqvist antecedent and P is a positive formula.

• A Sahlqvist formula is a formula obtained from Sahlqvist implica-
tions by freely applying conjunctions, disjunctions, and boxes.

We note that every Sahlqvist implication is tautologically equivalent to
a formula of the type ¬A where A is a Sahlqvist antecedent, and there-
fore every Sahlqvist formula is semantically equivalent to a negated
Sahlqvist antecedent, too.

The set of Sahlqvist formulae of ML will be denoted by SF(ML), or
just SF if the language is clear from the context.

Some examples: ♦�p→ �p and �((�(♦¬p∨♦�¬q)∧♦�p) → �♦�(p∨
♦�q)) are Sahlqvist formulae, but not �♦p→ p or �(p∨q) → (p∨q). Even
theK-axiom �(p→ q) → (�p→ �q), or its equivalent �p∧�(¬p∨q) → �q
are (syntactically) not Sahlqvist formulae.

THEOREM 2 (Sahlqvist, 1973). All Sahlqvist formulae are elementary and
canonical.

For more on Sahlqvist’s theorem, including a proof and related results,
see [3], [41], [2], [6], [33], [30], [16]. A generalization of Sahlqvist’s theorem
for polyadic languages has been proposed in [38].

What makes Sahlqvist formulae tick? The characteristic semantic feature
of the Sahlqvist formulae, which is in the heart of Sahlqvist-van Benthem
substitution method (see [3], [2]), is the existence of a minimal valuation
for the occurring propositional variables, which makes the antecedent true.
The minimal valuations have the following property:

If a Sahlqvist formula is valid for the minimal valuation in any given
frame, then it is valid for every valuation on that frame.

Thus, the idea of the method of substitutions, applied to Sahlqvist for-
mulae, is to compute the minimal valuations from the antecedent of the
standard translation, and then to substitute them in the consequent. The
result of that substitution is an equivalent formula where the second-order
predicates in the standard translation are eliminated.

Example: Take θ = �p→ ��p.
Then ST (θ)(x) = ∀y(Rxy → Py) → ∀y(Rxy → ∀z(Ryz → Pz)). The

minimal valuation of P satisfying the antecedent is P = {y | Rxy}. Substi-
tuting in the consequent yields ∀y(Rxy → ∀z(Ryz → Rxz)), i.e. transitiv-
ity.

Furthermore, the minimal valuations for Sahlqvist formulae are:
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• first-order definable, whence the first-order definability of Sahlqvist
formulae;

• closed sets in the topological spaces generated by the admissible sets
in descriptive frames, whence the canonicity of Sahlqvist formulae can
be derived.

How far does the class of Sahlqvist formulae stretch? On one hand, it is
quite large but on the other, being syntactically defined, it is unstable even
under Boolean transformations, so usually some pre-processing is needed to
transform (if possible) a formula into that shape. For instance:

• ¬p → ¬�p is not a Sahlqvist formula but becomes one after a triv-
ial Boolean transformation. Likewise for the contradictory formula
(�(�p→ p) → �p) ∧ ¬(�(�p→ p) → �p).

• �(p→ q) → (�p→ �q) becomes a Sahlqvist formula after a Boolean
transformation and substitution of ¬q for q. Likewise for �♦p → p
and �(p ∨ q) → (p ∨ q).

• p∧�(♦p→ �q) → ♦�q is not a Sahlqvist formula, nor is it reducible
to one with such ‘simple’ syntactic transformations. Yet, it is an ele-
mentary canonical formula and determines the same frame condition
as the Sahlqvist formula p→ ♦(♦p ∨ �⊥).

Sahlqvist formulae do not cover, in any reasonable sense, all elementary
canonical formulae. For instance:

• p ∧ �(♦p → �q) → ♦��q is an elementary canonical formula but
not a Sahlqvist formula, nor is it reducible to one. In fact, it does
not determine the same frame condition as any Sahlqvist formula in
the basic modal language, as proved in [25]. Still, in the basic tense
language it is equivalent to the Sahlqvist formula p → FGGP (Fp ∧
Pp).

• Likewise, (�♦p → ♦�p) ∧ (�p → ��p) is an elementary canonical
formula [3], but not frame equivalent to any Sahlqvist formula.

• ♦�(p∨q) → ♦(�p∨�q), �♦p→ ♦�p, and �(�p→ p) → �p are not
Sahlqvist formulae, because they are neither elementary nor canonical
[3].

A formula which is not in SF can possibly still be reduced to an equiv-
alent Sahlqvist formula, in one or another sense. So, what should we call a
Sahlqvist formula? To address this question, we first need to digress from it
and discuss in more detail the various natural notions of equivalence arising
in modal logic.
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3.2 A hierarchy of equivalences

DEFINITION 3. Modal formulae A and B are:

• tautologically equivalent (TAU) if A↔ B is a propositional tau-
tology.

• semantically equivalent (SEM) if A↔ B is a valid modal formula,
i.e. A and B are valid at the same states of every Kripke model.

• model-equivalent (MOD) if valid in the same Kripke models.

• locally equivalent (LOC) if valid at the same states of every general
frame.

• algebraically equivalent (ALG) if valid in the same modal alge-
bras, equivalently, in the same general frames.

• locally frame-equivalent (LFR) if valid at the same states in every
frame.

• frame-equivalent (FR) if valid in the same Kripke frames.

• axiomatically equivalent (AX) if the logics K+A and K+B have
the same theorems. Equivalently, if K +A � B and K +B � A.

We want to close the class of Sahlqvist formulae under as strong as pos-
sible equivalences, so as to preserve its effectiveness. Note, that AX, LFR
and FR are not decidable [3]. Moreover, AX is not decidable even on the
class SF [7]. Thus, we cannot safely close the class of Sahlqvist formulae
under AX, if we want to preserve its effectiveness. Decidable equivalence
closures of SF are currently under investigation.

3.3 Beyond Sahlqvist formulae: monadic inductive formulae
Here we present an extension of the class of Sahlqvist formulae, introduced
for arbitrary polyadic languages in [23], [25].

DEFINITION 4. Let ML be a fixed monadic (multi-)modal language and
# be a symbol not in ML. We define box-forms of # as follows:

• # is a box-form of #.

• If B(#) is a box-form of #, then �B(#) is a box-form of #, for any
box � in ML.

• If B(#) is a box-form of #, and A is a positive formula, then A →
B(#) is a box-form of #;
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Thus, box-forms are, up to semantic equivalence, of the type

�1(A1 → �2(A2 → . . .�n(An → #) . . .))

where �1, . . . ,�n are compositions of boxes in ML(τ) and A1, . . . , An are
positive formulae.

A box-formula of p is the result B(p), of substitution of p for # in any
box-form B(#). The last occurrence of the variable p is the head of B(p)
and every other occurrence of a variable in B(p) is inessential there.

DEFINITION 5. A (monadic) regular formula is any modal formula
built from positive formulae and negated box-formulae by applying con-
junctions, disjunctions, and boxes.2

The dependency digraph of a set of box-formulae
B = {B1(p1), . . . ,Bn(pn)} is a digraph G = 〈V,E〉, where V = {p1, . . . , pn}
is the set of heads in B, and piEpj iff pi occurs as an inessential variable in
a box from B with a head pj ; in such case we say that pj depends on pi.
A digraph is called acyclic if it does not contain oriented cycles (including
loops).

A monadic inductive formula is a monadic regular formula for which
the dependency digraph of the set of all box-formulae occurring in it as
subformulae, is acyclic.

EXAMPLE 6. The formula

D = p ∧ �(♦p→ �q) → ♦��q ≡ ¬p ∨ ¬�(♦p→ �q) ∨ ♦��q

is an inductive formula, obtained as a disjunction of the negated box-
formulae ¬p and ¬�(♦p → �q), and the positive formula ♦��q. The
dependency digraph of D over the set of heads {p, q} has only one edge,
from p to q.

Sahlqvist formulae are a simple particular case of inductive formulae,
where all box-formulae are just boxed atoms �1 . . .�np, and hence the
dependency digraph has no arcs at all. In fact, the class SF can be substan-
tially generalized simply by replacing in the definition of classical monadic
(multi-)modal Sahlqvist formulae ‘boxed atoms’ by ‘box-formulae’, and fur-
ther requiring that the set of all box-formulae occurring as subformulae in
the antecedent is independent, i.e. they all have different heads, and no
head occurs inessentially in any of them. For instance,

♦(�(�♦q → ��p1) ∧ ��(♦�q → �(♦q → p2))) → ♦(p1 ∧ �(♦p2 ∨ q))

is not a Sahlqvist formula, but a simply generalized one.
2Just like a Sahlqvist formula, where the boxed atoms are now any box-formulae.
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THEOREM 7 ([23, 25]). All monadic inductive formulae are locally ele-
mentary and canonical.

Proof. (Sketch) The first-order equivalents of inductive formulae can be
computed by the method of substitutions, just like for Sahlqvist formulae,
but inductively, following a partial ordering ≺ induced by the dependency
digraph. More specifically, we first compute the minimal valuations of the
variables which are not heads of box-subformulae. They only occur posi-
tively in the formula, so their minimal valuations are ∅. Then we proceed
with the head variables in the box-subformulae, beginning with those which
do not depend on any variables (i.e. the sources in the dependency graph).
Thus, step by step we compute the minimal valuations of all head variables
which only depend on variables whose valuations have already been com-
puted. The acyclicity of the dependency graph of the inductive formula
guarantees the successful completion of that procedure.

The canonicity follows similar lines, but needs some topological argu-
ments. Let A = A(q1, . . . , qn) be a monadic inductive formula, F = 〈F,W〉
be a descriptive general frame such that F |= A, and Vm be the minimal
valuation for q1, . . . , qn. It suffices to prove that F,Vm |= A.

Problem: the minimal valuation need not be admissible in F, so we cannot
claim that F, Vm |= A. However, it suffices to show the following:

(C1) Vm is closed i.e. an intersection of admissible valuations.

(C2) For every closed valuation U in F and a positive formula P , U(P ) =⋂
U�V V (P ) where the intersection ranges over all admissible valua-

tions V which extend U .

(C1) is proved by ≺ -induction for every Vm(qj). (C2) is proved by
structural induction on positive formulae, where the crucial step is Esakia’s
lemma (see e.g. [6], [2]) which essentially claims that infinite intersections
of admissible sets in descriptive frames distribute over ♦, thus implying that
♦ is a closed operator in every topology over a descriptive frame. �

REMARK 8. The conditions (C1) and (C2) in the proof above hold trivially
for Kripke frames (i.e. full general frames), which allows for simultaneous
treatment of first-order definability and canonicity of inductive formulae, in
the spirit of Sambin and Vaccaro’s proof [41].

EXAMPLE 9. The local first-order correspondent of the formula D =
¬p ∨ ¬�(♦p → �q) ∨ ♦��q is computed as follows. Since p ≺ q, we
first compute Vm(p) = {w} where w denotes the current state in a frame
with domain W . Then Vm(q) is the minimal subset Q(w) of W such that
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w ∈ �(♦{w} → �Q(w)). This is equivalent to ♦−1{w} ∈ ♦{w} → �Qw,
i.e. ♦−1{w} ∩ ♦{w} ⊆ �Q(w), i.e. ♦−1(♦−1{w} ∩ ♦{w}) ⊆ Q(w). Thus,
Vm(q) = ♦−1(♦−1{w} ∩ ♦{w}) and the (set-theoretic record of the) local
first-order equivalent of D at w is

w ∈ ♦��♦−1(♦−1{w} ∩ ♦{w}).

This condition corresponds to the local first-order formula

FO(D)(w) = ∃y(Rwy ∧ ∀z(R2yz → ∃u(Rwu ∧Ruw ∧Ruz))).

As mentioned earlier, the formula D is not frame equivalent to any
Sahlqvist formula in the basic modal language (see section 5.1). In par-
ticular, we note that FO(D) is not a Kracht formula (see [32]). For more
details on computing first-order equivalents of inductive formulae, see [23],
[25].

3.4 Inductive formulae in polyadic modal languages
We now outline the generalization of monadic inductive formulae to arbi-
trary polyadic languages, introduced in [23], [25].

First, note that the inductive formulae are not implications (like Sahlqvist
implications), but composite polyadic boxes of special shape. In order to
extend the inductive formulae to polyadic modal languages we will adopt a
somewhat non-orthodox view on these languages, by treating conjunctions
and disjunctions as modal operators, and allowing compositions of modal
operators, in PDL style. This treatment flattens the structure of polyadic
modal formulae and makes their syntactic classification simpler.

Purely modal polyadic languages.

DEFINITION 10. A purely modal polyadic language Lτ contains a count-
ably infinite set propositional variables V AR, negation ¬, and a modal
similarity type τ consisting of a set of basic modal terms (modalities)
with pre-assigned finite arities, including a 0-ary modality ι0, a unary one
ι1, and a binary one ι2.

The intuition behind the 3 distinguished modalities above: ι0 will be
interpreted as the constant � and its dual as ⊥; ι1 will be the self-dual
identity; ι2 will be ∨ and its dual — ∧.

DEFINITION 11. By simultaneous mutual induction we define the set of
modal terms MT (τ) and their arity function ρ, and the set of (purely)
modal formulae MF (τ) as follows:

(MT i) Every basic modal term is a modal term of the predefined arity.
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(MT ii) Every constant formula (having no variables) is a 0-ary modal
term.

(MT iii) If n > 0, α, β1, . . . , βn ∈MT (τ) and ρ(α) = n, then α(β1, . . . , βn) ∈
MT (τ) and ρ(α(β1, . . . , βn)) = ρ(β1) + . . .+ ρ(βn).

Modal terms of arity 0 will be called modal constants.

(MF i) Every propositional variable is a modal formula.

(MF ii) Every modal constant is a modal formula.

(MF iii) If A is a formula then ¬A is a formula;

(MF iv) If A1, . . . , An are formulae, α is a modal term and ρ(α) = n > 0,
then [α](A1, . . . , An) is a modal formula.

Note that all formulae in a purely modal language are literals, boxes, or
diamonds (negations of boxes). For technical purposes we extend the series
of ι’s with n-ary modalities ιn: inductively as follows: ιn+1 = ι2(ι1, ιn) for
n > 1.

Some notation on formulae:
〈α〉(A1, . . . , An) := ¬[α](¬A1, . . . ,¬An); � := ι0,⊥ := ¬ι0;
A ∨B := [ι2](A,B), A ∧B := 〈ι2〉(A,B), and respectively
A1 ∨ . . . ∨An := [ιn](A1, . . . , An), A1 ∧ . . . ∧An := 〈ιn〉(A1, . . . , An);
A→ B := ¬A ∨B; A↔ B := (A→ B) ∧ (B → A).
For instance, the formula D = p ∧ �(♦p → �q) → ♦��q, after elimina-

tion of → and ∧ becomes ¬p∨¬�(�¬p∨�q)∨♦��q, which is represented
in the polyadic language as:

D = [ι3](¬p,¬[α(ι2(α, α))](¬p, q), 〈α〉[α][α]q),

where [α] corresponds to �.
Positive and negative occurrences of variables and positive and negative

formulae are defined as usual.
Let us fix an arbitrary purely modal language Lτ . The semantics of Lτ is

a straightforward combination of the standard Kripke semantics for polyadic
modal languages and PDL-type polymodal languages, taking into account
the fact that conjunctions and disjunctions are now treated as modalities.
This is accomplished by using the (n+1)-ary identity relation as the accessi-
bility relation corresponding to [ιn]. Also, the notions of general frames and
truth and validity in them generalize in a predictable way. (For details, see
[23], [25].) The standard translation ST extends to polyadic languages
with the clauses:
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• ST (σ) = Rσ(x) for every modal constant σ;

• ST ([α](A1, . . . , An) = ∀y(Rαxy1 . . . yn →
∨n

i=1 ST (Ai)(yi/x))

Note that the propositional logical connectives ∧,∨,→, as defined above,
have their standard semantic interpretation. Therefore, the purely modal
polyadic languages and the traditional ones are equally expressive.

Polyadic inductive formulae.
Given a purely modal polyadic language Lτ , an essentially box-formula
in it is a modal formula of one of the following two types:

• Headless boxes, of the form B = [β](N1, . . . , Nm), where β is anym-
ary (composite) modal term, for m ≥ 1, and N1, . . . , Nm are negative
formulae.

• Headed boxes, of the form B = [β](p,N1, . . . , Nm), where β is any
(m+ 1)-ary (composite) modal term, for m ≥ 0, and N1, . . . , Nm are
negative formulae. The variable p is called the head of the box (here
the head is put on the first place only for convenience of notations). In
particular, p and [β]p for any unary modal term β, are headed boxes.

All variables in an essentially box-formula except for the head of the
formula (if any) are called inessential variables in that formula.

A regular (polyadic) formula is any modal constant (a 0-ary modal
term) or a formula A = [α](¬B1, . . . ,¬Bn) where α is an n -ary modal term
and B1, . . . , Bn are essentially box-formulae. The dependency digraph of
A is a digraph G = 〈VA,EA〉 where VA = {p1, . . . , pn} is the set of heads
in A, and piEApj iff pi occurs as an inessential variable in a formula from
B1, . . . , Bn with a head pj .

A (polyadic) inductive formula is any regular formula A with an
acyclic dependency digraph.3 Note that the class of polyadic inductive for-
mulae contains all monadic ones. In particular,
D = [ι3](¬p,¬[α(ι2(α, α))](¬p, q), 〈α〉[α][α]q) is a polyadic inductive for-
mula. The class of polyadic inductive formulae can be further closed under
conjunctions.

THEOREM 12 ([23],[25]). All polyadic inductive formulae are locally ele-
mentary and canonical.

The proof extends the one for monadic inductive formulae with the due
technical overhead, but without essential conceptual complications.

3In [23] these were called ‘polyadic Sahlqvist formulae’.
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EXAMPLE 13. Computing the first-order equivalent to the polyadic in-
ductive formula B = [3](¬[1]p,¬[2](¬p, q), 〈1〉[1]q): the dependancy graph
has one arc, p ≺ q, so we first compute Vm(p) = R1(y1). Then Vm(q) =
{z|∃s(R2y2sz ∧R1y1s)}. Finally, FO(B) =
∀xy1y2y3(R3xy1y2y3 → ∃v(R1y3v ∧ ∀w(R1vw → ∃s(R2y2sw ∧R1y1s)))).

Note that, once Vm(p) is determined, [2](¬p, q) can be regarded as a
unary box : [α](q) = [2](¬Vm(p), q) where α = 2(¬Vm(p), ι1) is a unary
parametrized modal term, the relation of which can be accordingly com-
puted: Rαxy iff ∃s(R2xsy ∧ Vm(p)(s)). This trick is essential in the proof
of canonicity.

3.5 Inductive formulae in hybrid and reversive modal languages

Given a modal similarity type τ we extend the modal language Lτ by adding
nominals and the universal modality (see e.g. [18] or [2]), as well as inverse
(residual) modalities, to obtain Lu,n

τ,r . We now briefly consider inductive
formulae in such languages, as developed in [24].

A pure formula in (a sublanguage of) Lu,n
τ,r is a formula that contains

no propositional variables. Note that that every pure formula is locally
first-order definable.

The definition of modal terms in Lu,n
τ,r extends the original one with the

clause: Every pure formula is a 0-ary modal term, i.e. modal terms can be
parameterized with pure formulae.

Inductive polyadic formulae in Lu,n
τ,r are defined as in purely modal

polyadic languages, but on the extended set of modal terms.
A modal polyadic language is reversive4 if, together with every n-ary

modal term α it contains its ‘inverses’ α1, . . . , αn where for each k =
1, . . . , n :

xRαky1 . . . yk . . . yn iff ykRαy1 . . . x...yn.

In fact, it suffices to require this condition for the basic modal terms from the
signature. An example of a reversive language is the basic tense language.

THEOREM 14 ([24]). Every inductive formula in a reversive language with
nominals, A = [α](¬H1, . . . ,¬Hn, P1, . . . , Pk), is axiomatically equivalent5

to a pure formula

A◦ = [α](¬c1, . . . ,¬cn, Q1, . . . , Qk)

where c1, . . . , cn are nominals and Q1, . . . , Qk are obtained by means of ef-
fectively computable pure substitutions.

4These are similar to Venema’s versatile languages [45], but not quite the same.
5In an axiomatic system with additional rules for the nominals (see [18, 2]).
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Note that the corresponding pure formula of a given Sahlqvist formula A
codes the intended first-order equivalent of A.

Recall, that the right notion of canonicity in languages with nominals is
DI-persistence, so we will hereafter refer to this notion as discrete canon-
icity.

COROLLARY 15. Every inductive formula in a reversive language with
nominals is elementary and discretely canonical.

Thus, proving the analogue of Sahlqvist’s theorem for inductive formu-
lae in reversive hybrid language with universal modality becomes merely a
syntactic exercise.

3.6 Pushing the limits of the syntactic approach
Sahlqvist and inductive formulae do not exhaust the shapes of elementary
canonical formulae. Other syntactic classes of such formulae include:

• All formulae of modal depth 1: van Benthem has classified them and
proved their FO definability in [3]. Their canonicity can be verified
by considering all cases.

• Consider modal reduction principles M1p → M2p, where M1 and M2

are strings of boxes and diamonds. Again, van Benthem [3] has iden-
tified the first-order definable ones, and they are all easily seen to be
canonical.

• All modal reduction principles on transitive frames.

• Complex formulae, see [44]. Example:

♦�(p ∨ q) ∧ ♦�(p ∨ ¬q) ∧ ♦�(¬p ∨ q) → POS(p→ q, p↔ q, p ∧ q)

for any positive formula POS(p1, p2, p3).

These are not inductive, but can be converted into inductive formulae
by means of rather intricate substitutions.

All these syntactic classes are unstable under inessential transformations.
For instance, the inductiveness can foolishly fail, e.g. in �(p ↔ q) → q.
What more can be done to extend the scope of the syntactic approach?
Here are some further ideas:

• Pre-processing (see [24],[25]), using Boolean and modal equivalences,
suitable substitutions, e.g. changing polarities or the special substi-
tutions for complex formulae, normal forms, etc.



34 Willem Conradie, Valentin Goranko and Dimiter Vakarelov

• In the definitions of Sahlqvist and inductive formulae, ‘ positive’ and
‘negative’ formulae can be replaced respectively by upwards and down-
wards monotone. By Lyndon’s monotonicity theorem for modal logic
(see e.g. [37]), such replacements preserve the formulae up to se-
mantical equivalence, and hence preserve first-order definability and
canonicity. Note that testing monotonicity of a modal formula is de-
cidable: B(p) is upwards monotone iff � B(p ∧ q) → B(p) for q not
occurring in B(p). So, the definitions can be amended without loss of
effectivity (though, at the expense of increased complexity).

• The definitions of both Sahlqvist and inductive formulae can be fur-
ther extended by closing under effective equivalences, e.g. under se-
mantic equivalence.

All these techniques push the limits of the syntactic approach farther.
Still, it has firm boundaries, as it only produces decidable (usually, of fairly
low complexity) classes of elementary canonical formulae. So, let us try
something stronger...

4 Algorithmic approach to elementary canonical
formulae

A natural strengthening of the syntactic approach is to develop algorithms
that generate or identify elementary canonical formulae. Such algorithms
need not be complete, i.e. successful for all elementary canonical formulae,
but should always produce a correct result, if any, and thus define (re-
cursively enumerable) classes of elementary canonical formulae. The roots
of such an algorithm can be found in the method of substitutions, which
originated from Sahlqvist’s paper and was independently developed by van
Benthem [4], see also [3]. That method was further sophisticated and ex-
tended by Simmons [43]. In particular, Simmons presented it in an explicitly
algorithmic form which can be regarded as the first algorithm for producing
elementary canonical formulae6. Simmons’ algorithm works on a larger set
of formulae, including non-elementary ones which have equivalents in FOL
+ Henkin quantifiers, such as all modal reduction principles. Note that the
Sahlqvist-van Benthem substitution method works successfully only on for-
mulae with fixed syntactical shape, such as Sahlqvist’s formulae. In [23, 25]
the method has been extended to work on inductive modal formulae, defin-
ing the appropriate substitutions by induction on the order determined by

6Though, Simmons’ algorithm uses Skolemization, but does not involve a mechanism
for unskolemization.
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the dependency graph, but it still works only on formulae of the precise
syntactic shape. The same applies for Simmons’ method.

REMARK 16. The substitution method and Simmons’ algorithm only es-
tablish first-order definability of modal formulae, but not their canonicity.
However, if properly restricted and precisely specified, they can be shown to
produce canonical formulae, by suitably modifying the proof of Sahlqvist’s
theorem.

Later in this section we show how the Sahlqvist-van Benthem substitu-
tion method can be considerably extended, by introducing the algorithm
SQEMA [10] which works on arbitrary modal formulae and when it renders
a successful result, it can be obtained by a sequence of suitable substitu-
tions, computed in the course of the work of the algorithm. Before that,
we present two other existing algorithms that can be used for computing
first-order equivalents of modal formulae.

4.1 First-order definability as second-order quantifier
elimination

Recall that the local validity of a modal formula φ = φ(p0, . . . , pn) in a
pointed Kripke frame (F, w) is expressed as

F, w |= φ iff F, w |= ∀P0 . . . ∀PnST(φ)(w/x),

where ST(φ)(x) is the standard translation of φ over the free variable x.
Respectively, the global validity is expressed as

F |= φ iff F |= ∀P0 . . . ∀Pn∀xST(φ)(x).

Thus, the search for a local or global first-order equivalent of φ can be
thought of as an attempt to eliminate the universally quantified second-
order variables P0, . . . , Pn and obtain a first-order formula equivalent to
∀P0 . . . ∀Pn∀xST(φ). Sometimes it is more convenient to eliminate existen-
tially quantified second-order variables. Then, the negation
¬∀P0 . . . ∀Pn∀xST(φ) is taken, and the resulting first-order formula is negated
again.

Currently, there are two developed algorithms for second-order quantifier
elimination: SCAN and DLS. They are both implemented and available on-
line, and can be used to compute first-order equivalents of modal formulae.

SCAN
SCAN was developed in 1992 by Gabbay and Ohlbach [17]. Its current imple-
mentation, available online at http://www.mpi-sb.mpg.de/units/ag2/projects
/SCAN/index.html, is based on the theorem prover OTTER. SCAN works
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on skolemized and clausified existentially quantified second-order formulae,
and attempts to reduce them to equivalent first-order ones by generating
sufficiently many logical consequences, and eventually keeping from the re-
sulting set of formulae only those in which no second-order variables occur.
As an input SCAN takes second-order formulae of the form ∃Q1 . . . ∃Qk ψ,
where Qi are predicate variables and ψ is a first-order formula. The algo-
rithm involves three stages:

(i) transformation to clausal form and Skolemization;

(ii) a special kind of constraint resolution (C-resolution), involving a pu-
rity deletion rule allowing one to delete ‘used up’ clauses.

(iii) reverse Skolemization (unskolemization), if possible.

SCAN can fail to produce a first-order equivalent of an input formula for
one of two reasons: either (i) the C-resolution stage fails to terminate due
to looping, or (ii) the C-resolution terminates, yielding a set of clauses in
which the specified second-order variables are eliminated, but for which the
Skolemization cannot be reversed.

SCAN can be used to compute the first-order equivalent of a modal for-
mula by running it on the negation of its standard translation.

THEOREM 17 ([27]). SCAN is successful on all Sahlqvist formulae.7

That result can be supplemented with the following.

THEOREM 18 ([12]). SCAN is successful on all polyadic inductive formu-
lae.

The latter does not formally subsume the former, as the proof that SCAN
succeeds on a conjunction of Sahlqvist formulae is technically involved, while
this step is avoided in the case of inductive formulae.

We conjecture that all modal formulae on which SCAN succeeds are
canonical. This conjecture can be proved under some idealizing assump-
tions about SCAN, consistent with its specification in [14]. The difficulty in
proving it for the actual implementation of the algorithm is that it does not
match precisely the specification. We venture an even stronger conjecture,
viz. that all modal formulae on which SCAN succeeds are locally equivalent
to inductive formulae. A currently open question is if the class of modal
formulae on which SCAN succeeds is decidable. Our conjecture is ‘no’.

7This result holds under the assumption that SCAN uses inner Skolemization. In fact,
the current implementation of SCAN does not always unskolemize successfully when run
on Sahlqvist formulae, because it does not always employ inner Skolemization.
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DLS
DLS was originally introduced by A. Szalas in 1993 and further developed by
Doherty, Lukaszewics, and Szalas [13]. Its original implementation is avail-
able online at http://www.ida.liu.se/labs/kplab/projects/dls/, and a new one
is currently being tested. DLS works on existentially quantified second-order
formulae and always terminates, by either producing a first-order equivalent,
or reporting failure. It is based on applying, after suitable preprocessing in-
cluding Skolemization, the following lemma due to W. Ackermann:

LEMMA 19 ([1]). For any first-order formula A not containing the predicate
P and a first-order formula B, the following hold:

∃P (∀x(A(x) → P (x)) ∧B(P )) ≡ B(A/P ) (Downwards-Ackermann),

if B is negative in P , and respectively,

∃P (∀x(P (x) → A(x)) ∧B(P )) ≡ B(A/P ) (Upwards-Ackermann),

if B is positive in P , where B(A/P ) is the result of uniform substitution of
all occurrences of P in B by A(x), with the arguments of each particular
occurrence of P each time substituted for x in A(x).

We note that the lemma can be strengthened by replacing ‘positive’ and
‘negative’, by ‘upward monotone’ and ‘downward monotone’ respectively,
as these semantic properties are, in fact, used in the proof.

THEOREM 20 ([12]). DLS is successful on all conjunctions of polyadic in-
ductive formulae. In particular, DLS is successful on all Sahlqvist formulae.

In fact, it turns out that DLS does not have to Skolemize on the transla-
tions of inductive formulae. We furthermore conjecture that for every modal
formula on which DLS succeeds, it can succeed without skolemization.

We also claim that all modal formulae on which DLS succeeds are canon-
ical, but, as with SCAN, the difficulty in proving such claim lies in the fact
that the available specification of DLS in [29] is only partial, and the actual
implementation does not match it precisely8.

Finally, we conjecture, as for SCAN, that all modal formulae on which
DLS succeeds are locally equivalent to inductive formulae.

Comparing SCAN and DLS
The constraint resolution rule of SCAN is based on a particular case of
Ackermann’s lemma. However, DLS does not subsume SCAN because it

8In fact, we have discovered a bug in the original implementation of DLS, which con-
sists in reports of success (‘true’) in some cases where the algorithm should not succeed,
and the formula to which it is applied is not equivalent to ‘true’.
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does not apply Ackermann’s lemma repeatedly on the same variable, and
does not use a purity deletion rule. Moreover, the C-resolution rule is not
equivalence preserving.

From our practical experience with both algorithms, we find that SCAN is
generally more flexible and syntax-tolerant (but easier to fool into looping)
as it works on a low level, with formulae decomposed into a simple (clausal)
form, and with simple rules (constraint resolution and factorization) applied
repeatedly. On the other hand, DLS is more rigid and syntax-dependent, as
it works on a high level, with only one, ‘macro’ rule (Ackermann’s lemma).

In particular, neither of the implemented algorithms subsumes the other,
but it seems that SCAN is generally more successful on modal formulae. For
instance, it succeeds on the formula

�(p↔ q) → q,

on which DLS fails.
On the other hand, SCAN loops on the formula

�(p ∨ �¬p) → ♦(p ∧ ♦¬p),

(an example due to Szalas) on which, theoretically, DLS succeeds.9

We currently have no examples of modal formulae in the basic modal
language, on which SCAN loops while DLS succeeds, but such examples
can be constructed if the universal modality with its standard semantics is
added to the language.

Ackermann’s lemma and the method of substitutions.
We have obtained (see [10]) the following modal version of Ackermann’s
lemma:

LEMMA 21 (Ackermann, modal version). For any modal formula A not
containing p and a modal formula B, the following hold:10

∃p([u](A→ p) ∧B(p)) ≡ B(A/p) (Modal Downward-Ackermann),

if B is negative (or stronger, downward monotone) in p, and respectively

∃p([u](p→ A) ∧B(p)) ≡ B(A/p), (Modal Upward-Ackermann),

if B is positive (or stronger, upward monotone) in p, where B(A/p) is the
result of uniform substitution of all occurrences of p in B by A, and ≡
denotes local equivalence.

9But, the current implementation does not.
10These equivalences can be interpreted as follows: the right-hand side gives a condition

for existence of a solution in p of the ‘modal equation’ on the left-hand side.
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Indeed, under the conditions above, e.g. for the modal upwards-Ackermann
lemma, the following holds: for every Kripke model M and w ∈M , M,w �
B(A/p) iff there is a model M ′ possibly differing from M only at the valu-
ation of p, such that M ′, w � [u](p→ A) ∧B(p).

Note the contrapositive form of the downward Ackermann lemma, after
replacing ¬B with B:

∀p([u](A→ p) → B(p)) ≡ B(A/p),

for any modal formula A not containing p, and a modal formula B which
is upward monotone in p. This equivalence can be interpreted as follows:
[u](A→ p) → B(p) is valid in a given frame iffB(P ) is true for the ‘minimal ’
valuation satisfying the antecedent, viz. A. This is precisely the technical
idea at the heart of the substitution method of Sahlqvist and van Benthem!

4.2 SQEMA: a new algorithm for computing elementary
canonical formulae

In [10] we have introduced SQEMA: an algorithm for Second-order Quantifier
Elimination in Modal formulae, using Ackermann’s lemma. It has the fol-
lowing basic features:

• Combines ideas from both DLS and SCAN and uses the modal ver-
sion of Ackermann’s lemma to eliminate the existentially quantified
propositional variables.

• Works directly on (negated) modal formulae and decomposes them
into sets of modal implications, called ‘equations’.

• Does not introduce Skolem functions, but only Skolem constants, as
nominals.

• Preserves formulae up to local frame equivalence.

• When successful, eventually produces a pure modal formula in a lan-
guage, possibly extending the original one with nominals and inverse
(reversive) modalities. The standard translation of this formula pro-
duces the corresponding first-order condition of the original formula.

The core algorithm.
Here we will present the algorithm on languages with unary modalities only.
For the general case, see [12] and [11].

The input of SQEMA is a modal formula φ.
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Step 1 Negate φ, eliminate → and ↔, and rewrite in negation normal
form. Then distribute diamonds and conjunctions over disjunctions
as much as possible. The algorithm now proceeds on each disjunct ψ,
separately, as follows:

Step 2 Rewrite as i→ ψ, where i is a fixed nominal, reserved to name the
initial state. This is the only initial equation.

Step 3 Eliminate every variable p in which the system is monotone (up-
wards or downwards), by replacing it with � or ⊥.

Step 4 If there are propositional variables remaining in equations of the
system, choose to eliminate one, say p, the elimination of which has
not been attempted yet.

If all remaining variables have been attempted and Step 5 has failed,
backtrack and attempt another order of elimination.

If all orders of elimination and all remaining variables have been at-
tempted and step 5 has failed, report failure.

If all propositional variables have been eliminated from the system,
proceed to Step 6.

Step 5 The goal now is, by applying the transformation rules listed below,
to rewrite the system of equations so that the Ackermann-rule becomes
applicable with respect to the chosen variable p in order to eliminate
it. Thus, the current goal is to transform the system into one in which
every equation is either negative in p, or of the form α → p, with p
not occurring in α, i.e. to ‘extract’ p and ‘solve’ for it.

If this fails, backtrack, change the polarity of p by substituting ¬p for
it everywhere, and attempt again to prepare for the Ackermann-rule.

If this fails again, or after the completion of this step, return to Step
4.

Step 6 If this step is reached it means that all propositional variables have
been successfully eliminated from all systems resulting from the input
formula. What remains now is to return the desired first-order equiv-
alent. In each system, take the conjunction of all equations to obtain
a formula pure, and form the formula ∀y∃x0ST(¬pure), where y is the
tuple of all occurring variables corresponding to nominals, but with yi

(corresponding to the designated current state nominal i) left free if
the local correspondent is to be computed. Then take the conjunction
of these translations over the systems on all disjunctive branches. For
motivation of the correctness of this translation the reader is referred
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to the examples in the following subsection as well as the correctness
proof in [10].

Return the result, which is the (local) first-order condition correspond-
ing to the input formula.

The transformation rules
I. Rules for the logical connectives:

∧-rule:
β → γ ∧ δ

⇓
β → γ, β → δ

♦-rule:

j → ♦γ
⇓

j → ♦k, k → γ
where k is a new nominal.

Left-shift ∨-rule:
β → γ ∨ δ

⇓
(β ∧ ¬γ) → δ

Right-shift ∨-rule:
(β ∧ ¬γ) → δ

⇓
β → γ ∨ δ

Left-shift �-rule:
γ → �δ

⇓
♦−1γ → δ

Right-shift �-rule:
♦−1γ → δ

⇓
γ → �δ

We will write Rjk as an abbreviation of j → ♦k.

II. Auxiliary propositional rules:

1. Commutativity and associativity of ∧ and ∨ (tacitly used).

2. Replace γ ∨ ¬γ with �, and γ ∧ ¬γ with ⊥.

3. Replace γ ∨ � with �, and γ ∨ ⊥ with γ.

4. Replace γ ∧ � with γ, and γ ∧ ⊥ with ⊥.

5. Replace γ → ⊥ with ¬γ and γ → � with �.

6. Replace ⊥ → γ with � and � → γ with γ.

III. Polarity switching rule: Switch the polarity of every occurrence of a
chosen variable p within the current system.

IV. Ackermann rule:
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

α1 → p,
. . .
αn → p,
β1(p),
. . .
βm(p),

⇒

∥
∥
∥
∥
∥
∥

β1[(α1 ∨ . . . ∨ αn)/p],
. . .
βm[(α1 ∨ . . . ∨ αn)/p].
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where p does not occur in α1, . . . , αn and each βi is negative in p.11

4.3 Examples
The best way to get a feel of the workings of the algorithm is perhaps to
consider an example or two. (For more, see [10].)

EXAMPLE 22. We take as input the formula ♦�p→ �♦p.
The initial system of equations is

‖i→ (♦�p ∧ ♦�¬p)

Applying the ∧-rule gives
∥
∥
∥
∥
i→ ♦�p
i→ ♦�¬p

Applying the ♦-rule to the first equation yields:
∥
∥
∥
∥
∥
∥

Rij
j → �p
i→ ♦�¬p

and then applying the Left-shift �-rule:
∥
∥
∥
∥
∥
∥

Rij
♦−1j → p
i→ ♦�¬p

The Ackermann rule is now applicable, yielding the system
∥
∥
∥
∥
Rij
i→ ♦�¬(♦−1j)

Taking the conjunction of the equations gives

Rij ∧ (i→ ♦�¬(♦−1j)).

Negating we obtain
Rij → (i ∧ �♦♦−1j),

which, translated, becomes

∀yj∃x0[Ryiyj → (x0 = yi) ∧ ∀y(Rx0y → ∃u(Ryu ∧ ∃v(Rvu ∧ v = yj)))],

11As already discussed, this rule can be strengthened by replacing ‘negative’ with
‘downwards monotone’, but this brings a higher complexity price.
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and simplifies to

∀yj [Ryiyj → ∀y(Ryiy → ∃u(Ryu ∧Ryju))]

defining the Church-Rosser property, as expected.

EXAMPLE 23. We take as input the (non-inductive) formula

�(�p↔ q) → p

on which both SCAN and DLS fail.
This yields the initial equation

∥
∥ i→ �((♦¬p ∨ q) ∧ (¬q ∨ �p)) ∧ ¬p

Choose q to eliminate first. Applying the ∧-rule and the Left-shift �-rule:
∥
∥
∥
∥
∥
∥

♦−1i→ (♦¬p ∨ q)
♦−1i→ (¬q ∨ �p)
i→ ¬p

Applying the Left Shift ∨-rule to the first equation yields
∥
∥
∥
∥
∥
∥

(♦−1i ∧ �p) → q
♦−1i→ (¬q ∨ �p)
i→ ¬p

to which the Ackermann-rule is applicable with respect to q. This gives

∥
∥
∥
∥

♦−1i→ (¬♦−1i ∨ ¬�p ∨ �p)
i→ ¬p .

The first equation is now a tautology and may be removed, yielding the
system

∥
∥ i→ ¬p

in which p may be replaced by ⊥ since it occurs only negatively, resulting
in the system

∥
∥ � .

Negating we obtain ⊥.
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Some results and comments on SQEMA.

THEOREM 24 ([10]).

1. SQEMA is sound: if successful, it produces a first-order formula locally
frame equivalent to the input modal formula.

2. SQEMA is successful on all conjunctions of inductive formulae. In
particular, SQEMA is successful on all Sahlqvist formulae.

3. All modal formulae on which SQEMA succeeds are canonical.

Note that the original Sahlqvist’s theorem and its extension to inductive
formulae now follow from the results above.

Again, we conjecture that all modal formulae on which SQEMA succeeds
are locally equivalent to inductive formulae.

How does SQEMA compare to SCAN and DLS on modal formulae? We
believe that it is stronger than both, but this claim, if correct, can only be
proved if precise descriptions of the specifications and implementations of
SCAN and DLS are available.

Finally, we note that SQEMA is amenable to various extensions, e.g.
with a recursive version of the Ackermann rule, which enables computation
of correspondents of modal formulae in FO+LFP, see [11],[26].

4.4 The power and limits of the algorithmic approach
The algorithmic approach is certainly more powerful as a generator of ele-
mentary canonical formulae than the syntactic approach. It produces effec-
tively enumerable classes of elementary canonical formulae, which in general
need not be decidable.

The different algorithms discussed here: method of substitutions, Sim-
mons’ algorithm, SCAN, DLS, and SQEMA, have different computing powers
and scope of applicability on modal formulae. Yet, we believe that the algo-
rithmic approach, if developed to its full potential, will generate a natural
class of algorithmically elementary canonical formulae. The major challenge
of this research area is to develop such an optimal algorithm.

5 Model-theoretic aspects of elementary canonical
formulae

In this section we briefly discuss semantic characterizations of elementary
canonical formulae. The main model-theoretic tool we use for such charac-
terizations is persistence. While canonicity is defined in terms of persistence,
first-order definability can only be approximated in such a way. The ap-
proximation which we discuss here, due to van Benthem [3], defines a large
and natural class of elementary modal formulae.
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5.1 Sahlqvist formulae and ample-persistence

How can one prove that a given elementary canonical formula is not equiv-
alent to a Sahlqvist formula in any reasonable sense? Here is a method,
introduced in [25], based on a special kind of persistence.

DEFINITION 25. A general frame 〈W,R,W〉 is ample if for every w ∈W
and n ∈ N, Rn(w) = {u | wRnu} ∈ W.

Note that every ample general frame is discrete, for R0(w) = {w}.
DEFINITION 26. A modal formula A is locally a-persistent if it is locally
persistent with respect to every ample general frame, i.e. for every such
frame F =〈F,W〉 , where F = 〈W,R〉 , and w ∈W,

F, w |= A iff F ,w |= A.

The following can be proved by inspection of the minimal valuations
corresponding to Sahlqvist formulae.

LEMMA 27. Every Sahlqvist formula in the basic modal language is locally
a-persistent.

PROPOSITION 28 ([25]). The inductive formula

D = p ∧ �(♦p→ �q) → ♦��q

is not (even globally) a-persistent.

COROLLARY 29. The formula D is not frame equivalent to any Sahlqvist
formula in the basic modal language.

5.2 van Benthem formulae and the limits of the substitutions
method

Let FO be the first-order language for Kripke frames, and β(x) be a FO-
formula with unary predicates P1, . . . , Pn, such that the variables x do not
occur bound in β and the variables z1, . . . , zk, y do not occur in β at all.

A universally parameterized FO-substitution instance of β is any
FO-formula

∀z1 . . . ∀zkβ[σ1/P1, . . . , σn/Pn]

obtained from β by selecting FO-formulae σi = σi(x, z1, . . . , zk, y) for i =
1, . . . , n, substituting σi[x/y] for every occurrence of Pix, and then univer-
sally quantifying over z1, . . . , zk.

Let Θ(β) be the set of all universally parametrised FO-substitution in-
stances of β.
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DEFINITION 30. A modal formula φ = φ(p1, . . . , pn) is a van Benthem
formula if

Θ(ST(φ;x0)) |= ∀P1 . . . ∀PnST(φ;x0).

We let VB denote the class of van Benthem formulae (defined slightly
differently by van Benthem himself in [3], as the class Msub

1 ).

THEOREM 31 ([28]. Essentially first proved in [3]). A modal formula is
locally E-persistent iff it is a van Benthem formula.

Since, by compactness, all van Benthem formulae are locally first-order
definable, we obtain the following.

COROLLARY 32. Every locally E-persistent modal formula is locally ele-
mentary.

Some burning questions arise now:

• Is every van Benthem formula canonical (D-persistent)?

Sadly, no: van Benthem’s incomplete formula vB = �♦� → �(�(�p→
p) → p) (see [3] or [2]) is a counter-example.

• Is every elementary canonical formula a van Benthem formula?

Even more sadly, no: (�p→ ��p) ∧ �(�p→ ��p) ∧ (�♦p→ ♦�p)
is a locally elementary canonical formula, but not locally E-persistent
[3].

Still, van Benthem formulae (in his own words) ‘neatly delimit the range
of the method of substitutions’, and provide a natural and important upper
bound for the class of elementary canonical formulae.

THEOREM 33 ([4]). The set VB is recursively enumerable.

Thus, there is an algorithm generating all van Benthem formulae, and
essentially based on the method of substitutions. It is a natural challenge
to develop a practical one.

An even more challenging question is whether the set of canonical van
Benthem formulae is recursively enumerable, and if so, to construct a gen-
erating algorithm for it.

5.3 Elementary canonical formulae and persistence in reversive
languages with nominals

The leading problem of our model-theoretic approach to elementary canon-
ical formulae is to characterize them in terms of a natural persistence prop-
erty. We do not have (yet) a solution to this problem for the basic modal
language, but we do for ‘rich enough’ languages, viz. reversive languages
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with nominals. Recall again, that the natural notion of canonicity in lan-
guages with nominals is ‘discrete canonicity’, i.e. DI-persistence.

THEOREM 34 ([25]). For every modal formula A in a reversive language
with nominals, the following are equivalent:

1. A is locally DI-persistent.

2. A is locally equivalent to an inductive formula.

3. A is locally equivalent in the class of discrete frames to a pure formula.

5.4 Topological perspective on elementary canonical formulae

Following topological ideas going back to Sambin and Vaccaro [41], we show
in [25] how first-order definability and canonicity of inductive formulae can
be established in a uniform way. In a similar way we give a simultane-
ous proof of the correctness and the canonicity of the algorithm SQEMA in
[10]. Here are the key points of these arguments. The formulae for which
first-order definability and canonicity (persistence) is to be established, are
transformed into ‘simple’ ones, for which these properties are immediate.
Typically, these are pure formulae in a reversive hybrid extension of the
original language. Such transformation can be semantic (as is the case of
inductive formulae in [25]), deductive (inductive formulae in hybrid lan-
guages, in [24]), or algorithmic (the formulae on which SQEMA succeeds, in
[10]), but in any case they preserve the desired properties. For first-order
definability, such preservation is proved by a direct semantic argument on
Kripke frames, but for the general frames over which the persistence is to
be proved (e.g. descriptive frames), the argument involves suitable topo-
logical closure properties of the modal operators in the extended language,
considered as operators in the topologies on the general frames of the orig-
inal language. These closure properties guarantee that the formulae under
consideration (Sahlqvist, inductive, SQEMA) allow the semantic argument
proving preservation on Kripke frames to be simulated for them on e.g. de-
scriptive frames, thus implying D-persistence. Proving the desired topolog-
ical behavior in all cases we have studied crucially depends on the effective
(syntactic, or algorithmic) nature of these formulae.

This topological approach is still open to further development, and the
main aim of that approach is to find a sufficiently general argument which
applies to all elementary canonical formulae, regardless of their syntactic
features.
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6 Concluding remarks: closing about elementary
canonical formulae

Each of the syntactic, algorithmic, and model-theoretic approaches provides
a hierarchy of approximations of the class of elementary canonical formulae,
but none of them seems to yield both a practical and precise characteriza-
tion yet. It is currently unknown if such characterization, better than the
definition itself, exists at all. In particular, we do not know the complex-
ity of the class of elementary canonical formulae, nor that of the class of
first-order formulae definable by elementary canonical modal formulae.

We note that there are interesting and important cases of canonical modal
formulae that are not elementary, see e.g. [19], [46]. Moreover, it has re-
cently been established in [21] that a canonical modal logic need not be
complete with respect to any elementary class of frames. Thus, first-order
definability and canonicity are not as closely related as it was been conjec-
tured by Fine in the 1970’s. It is therefore natural to extend this study
along each of these properties separately. In that respect, we should also
mention the algebraic approach to canonicity, developed by Jónsson who
gave an algebraic proof of Sahlqvist’s theorem in [30].

Finally, we should mention an important family of modal formulae and
logics axiomatized with such formulae, for which elementariness and canon-
icity coincide. These are the subframe formulae and logics introduced by
Fine [15] and further extended to cofinal subframe formulae and logics by
Zakharyaschev [48, 6]12.

With each finite transitive general frame F one can associate (see [48, 6])
a subframe formula α(F, ∅), and a cofinal subframe formula α(F, ∅,⊥), such
that any transitive general frame G refutes α(F, ∅) (resp. α(F, ∅,⊥)) if and
only if G is subreducible (resp. cofinally subreducible) to F by way of a
bounded morphism. A normal extension of K4 is a subframe logic if it can
be axiomatized over K4 by a set of subframe formulae {α(Fi) : i ∈ I},
for some family of transitive general frames {Fi : i ∈ I}. Cofinal subframe
logics are defined similarly.

It turns out that, on transitive frames, a cofinal subframe formula is
elementary iff it is D-persistent; for subframe formulas these are equivalent
to R-persistence, as well. The same equivalences apply to (cofinal) subframe
logics.

Similar results were established by Wolter [47] for modal formulae pre-
served in subframes, and normal modal logics L characterized by classes of
(general) frames closed under taking subframes. For these, elementariness,
D-persistence, and R-persistence coincide.

12Note that the term ‘canonical formulae’ in [48] has different meaning from the com-
monly used one in the present paper.
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