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Abstract : 
The aim of the present contribution is to give an educational support on a new methodology 
that we may use when we are employed in the analyis of one of the most fundamental signals 
that we encounter in electrophysiology.the R-R intervals in analysis of the ECG.  
                           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction. 
The aim of the present contribution is to give an educational support on a new methodology 
that we may use when we are employed in the analyis of one of the most fundamental signals 
that we encounter in electrophysiology. As it is well known, we are concerned with the R-R 
intervals in analysis of the ECG.  
The autonomic nervous system (ANS) regulates internal organs and circulation dynamics. The term 
‘autonomic’ is related to the fact that we retain that such regulation  happens without any 
consciousness advent so that the body reaches an homeostatic (or better homeorhetic as proposed by 
Conrad Waddington to put the accent to the dynamic character of equilibrium) balance following 
‘its own rules’ and so contrasting the influences arising from a mainly stochastic environment. 
Heart Rate Variability (HRV) must be considered to represent  the most privileged observatory of 
ANS given the crucial role of having a blood flux consistent with the body needs, this regulation of 
blood flux entity is achieved by the variation in the periods of subsequent contraction/relaxation 
acts of heart muscle. 
The concept of sympathovagal balance in HRV refers to the autonomic state resulting from 
sympathetic and parasympathetic influences, i.e. ‘mainly activating’ and ‘mainly inactivating’ 
drives. During the last three decades, numerous studies have shown that abnormalities in the 
sympathovagal balance are related to different diseases (33) 
Experimental studies have shown significant relations between ANS and cardiovascular diseases 
(33, 2). It has been observed  that there is a relation between the risk of developing a lethal cardiac 
arrhythmia and signs of either increased sympathetic activity or decreased parasympathetic activity 
(33,32). Predominance of sympathetic activity and reduced parasympathetic cardiac control have 
been seen in patients with acute myocardial infarction (27). Moreover, congestive heart failure 
patients show alterations of the sympathovagal balance.  
The general approach points to  a sympathetic overdrive rather than a parasympathetic withdrawal 
in such patients. An altered sympathovagal balance is also identified in patients after cardiovascular 
surgery and it has been related to myocardial ischemic episodes in patients who have undergone 
coronary artery bypass grafting (33). As a complication of diabetes mellitus, autonomic neuropathy 
occurs and this often affects the cardiac autonomic function as well. Diabetic neuropathy is 
characterized by early and widespread neuronal degeneration of small sympathetic and 
parasympathetic nerve fibres (42, 27). Patients with cervical and high thoracic spinal cord lesions 
also have autonomic abnormalities that affect the heart. In these patients some autonomic pathways 
are severed, but baroreceptor afferents and parasympathetic efferents of the ANS are intact. This 
causes a reduced ability to regulate the cardiac activity (21). 
In the last few years, HRV analysis has shown increasing interest also in psychophysiology. 
Higher HRV is linked with better physical and emotional health overall and has been shown to 
reduce risk for stress-related illness, such as cardiac problems. Moreover a decrease in HRV was 
observed to be strictly related to aging even in normal subjects (7,15) 
Studies have shown that training HRV can improve physical, mental, and emotional stability. 
Positive outcomes include improved cognitive abilities and mental clarity, greater emotional 
balance, enhanced creativity. 
HRV values are in turn  influenced by the psychophysiological state of the individual (see as 
example J.F. Thayer et al.). In general, each subject shows a baseline (average) value of heart rate 
variability and sympathetic activation. These baseline values undergo relevant (around 30%) 
changes in response to routine psychological environmental solicitations along the day  It is also 
possible to modify the HRV  by means of suitable psychological techniques. This modifications can  
be stabilized with  learning.  
There are two main ways for such externally induced HRV changes: the first is based on somatic 
techniques (breathing, massage, relaxation, movement) and brings the patient towards  an (at least 
subjectively) increased wellbeing state. The second way is based on psychological techniques and 
consists in a work on the deep consciousness and on the personality of the patient.  



Growing evidence suggests that alterations in autonomic function contribute to the pathophysiology  
of panic disorder (PD). The risk of adverse clinical cardiac events is increased in patients with panic 
disorder (PD). Autonomic nervous system (ANS) dysfunction and reduced heart rate variability 
(HRV) have been reported in a wide variety of psychiatric disorders. Some authors recorded cardiac 
activity and assessed HRV in acutely hospitalized manic bipolar (BD) and schizophrenia (SCZ) 
patients. Autonomic dysregulation is associated with more severe psychiatric symptoms, suggesting 
HRV dysfunction, (17, 38). 
It is known that autonomic nervous activities change in correspondence with sleep stages. The 
characteristics of continuous fluctuations in nocturnal autonomic nerve tone have has been studied 
in some different experimental conditions (44). 
Autonomic dysfunction has been the target of numerous other  investigations and, as previously 
said, has been linked to generalized anxiety disorder, panic disorder, and depression. Symptoms of 
depression often are accompanied by ANS abnormalities, including reductions in HRV, vagus nerve 
activity, and baroreflex sensitivity. Animal studies exploring the specific ANS mechanisms of 
depression by using the chronic mild stress rodent model of depression found that exposure to 
chronic stress decreased HRV and elevated sympathetic tone to the heart. It is of great interest also 
the application in  HRV Biofeedback Training for Depression 

In conclusion: HRV is a very important marker of autonomic activity and thus a privileged 
observatory for a lot of disease conditions. Some of these conditions are very elusive and 
practically impossible to detect with reliable diagnosis methods. This justifies the interst in the 
development of analysis methods of HRV that could increase the sensitivity of  diagnosis methods in 
different pathology fields. 

The methodology for HRV 
 
During the last decades different methods have been applied to assess the autonomic activity; these 
include for example cardiovascular reflex tests and biochemical tests (28). In recent years, 
noninvasive techniques based on electrocardiographic recordings have been used as markers of 
cardiac autonomic tone; Among these, heart rate variability (HRV) is the most widely used and 
evaluated (33). 
The ANS regulates the heart rate; increased sympathetic activity causes acceleration whereas 
increased parasympathetic activity causes deceleration of the heart rate (16), which is the reason 
why HRV is used as a marker of autonomic activity. The increasing diffusion  of HRV as a method 
to  measure  autonomic activity since the 70’s and a lack of method standardization combined with 
a continuous introduction of new HRV measures lead to the formation of a task force of the 
European Society of Cardiology and The North American Society of Pacing and Electrophysiology 
in 1996. The task force established standards of measurement, physiological interpretation, and 
clinical use of HRV (33). 
In order to quantify HRV, the intervals between consecutive beats originating in the SA node, also 
called normal to normal intervals (NN intervals), must be found in the electrocardiogram (ECG). 
The analysis of HRV must satisfy four conditions: 
1) a satisfactory signal-to-noise ratio of the ECG is necessary to identify the each beat properly. 
2) the digital sampling must be regular and robust to identify a fiducial point for each beat,. 
3) morphology and rhythm characteristics for each beat must be classified to distinguish between 

beats originating in the sinus node and ectopic beats.  
4) only beats originating in the sinus node should be considered for the HRV analysis (42). 

 
Two main approaches have been used to measure the HRV; time domain analysis and frequency 
domain analysis. Besides these, nonlinear analysis is an emerging field within the analysis of HRV. 
 



Frequency Domain Analysis 
 
The frequency domain measures are based on a transform of the series of subsequent registered RR 
intervals into the frequency domain. The series can be represented in two ways; as the RR intervals 
versus the beat number, as a discrete event series where the Ri-Ri−1 interval is plotted versus the 
time of occurrence of Ri. While Frequency Domain Analyses have a time honoured tradition in the 
study of time series in any scientific fields, nevertheless they show some evident limitations as the 
particular case of HRV.  
RR series can be considered as irregularly  sampled signal: it  is the system itself, by giving rise to 
a ‘beat’, that decides the sampling interval, but Fourier Transform(the classical frequency domain 
analysis method) requires an equidistant sampled signal. Therefore, an interpolation and a re-
sampling of the signal is required prior to a Fourier transform (33). This is of course a forced 
procedure introducing some undesirable modifications affecting the outcome of the analysis.  
Basically Fourier analysis considers any time series (in this case the length of subsequent RR 
intervals) as coming from the superposition of n sinusoids, i.e. of n functions of the form  
Y(t) = a sin(bt) where b points to the different frequencies and a is the amplitude, that is to say…the  
“relative relevance” of the frequency b to explain the observed series. This gives rise to a power 
spectrum in which frequencies are on the X axis and on the Y axis we have the relative squared 
amplitude  in the analysed series.  
When a power spectral density analysis is made on the series, following this procedure, it provides 
information about the distribution of power  as a function of frequency (14). In short terms, 
recordings (5-6 minutes), three main frequency bands have been identified: a very low frequency (≤ 
0.04 Hz), a low frequency (0.04-0.15 Hz), and a high frequency (0.15-0.4 Hz) component. In 
addition, an ultra low frequency component (≤ 0.03 Hz) has been identified in long term recordings 
(24 hours) (33). 
The frequency domain parameters for short term and long term analysis of HRV are listed in table 
1. 
 

Efferent vagal activity has been shown to be a major contributor to the high frequency component 
in clinical and experimental observations of autonomic manoeuvres e.g. electrical vagal stimulation, 
muscarinic receptor blockade and vagotomy. Some researchers consider the low frequency 
component as a marker of sympathetic modulation whereas others consider it as a parameter that is 
under both sympathetic and parasympathetic influences (33). 
The physiological correlate of the very low and ultra low frequency component is still an area under 
investigation (2), but has been related to circadian, neuroendocrine rhythms and thermo regulation 
(32). As table 1 also indicates, a general consensus about the physiological correlates of the 
different frequency measures has not been fully established (2). 
The derivation of information about HRV requires a precise detection of R peaks in the recording, 
because imprecise location affects the outcome of the different measures. Furthermore, the fact that 
HRV is based on the NN intervals limits its use of HRV measures to individuals with a sinus 
rhythm and a limited number of ectopic beats (1, 24). Both the statistical time domain and 
frequency domain measures are highly sensitive to artifacts, ectopic beats and missing beats. Thus, 
an optimal HRV analysis demands recordings without ectopic beats. For the analysis to be reliable, 
different criteria have been proposed, e.g. the number of beats originating in the SA node must be at 
least 70 % (some even demand 99 % of the beats) to orignate in the SA node. The most strict 
criteria demands that the recording must not contain more than 10 ectopic beats per hour. These 
criteria excludes many patients from HRV analysis, e.g. 20-30 % of all high-risk patients in post 
acute myocardial infarct groups are excluded from HRV analysis due to frequent ectopic beats, 
artifacts, or arrythmia episodes (18).  
It is interesting to report here a statement coming from (33);  
“when evaluating results of the HRV measures, it should be noted that it is totally  inappropriate to 
compare measures calculated on ECG of different duration”.  



Many researchers continue to commit such basic error. 
As previously said,the HF component of the power spectrum is related to vagal activity, whereas 
the meaning of the LF component is more controversial; some consider it as a measure of 
sympathetic modulations when expressed in normalised units, others interpret it as a combination of 
sympathetic and parasympathetic activity. The prevalent consensus about the LF component is that 
both sympathetic and parasympathetic inputs contribute to it (25). The HF component can be 
significantly influenced by respiratory patterns (2).  
Let us also repeat a severe limitation recurring in frequency analysis. The translation of the NN 
interval series from the time domain to the frequency domain presupposes that there is an 
underlying periodicity in the signal. This is a technical limitation, since the heart rate signal is a 
nonstationary signal. This stationarity issue is a frequently questioned feature that, in addition to 
missing periodicity and linearity, will be considered  seriously by taking in consideration the CZF 
method. Here we give only preliminary evaluations outlining that a signal can be considered 
stationary if the modulations of a certain frequency remain unchanged during the recording. If the 
modulations change, the interpretation of the results are not well defined. The heart rate signal can 
be considered as a non  stationary signal, and this feature does not  justifies the indiscriminate use 
of transform into the frequency domain (33). 
Non linearity has been discussed in detail by a very large number of authors. Moreover it is 
important to stress the fact that the translation between observed spectral components and 
physiological control drivers is not without problems. There has been a lot of confusion regarding 
the meaning of the different measures, especially in the frequency domain. In the early studies the 
spectral components were regarded as a reflection of the autonomic tone (25), i.e the balance 
between the activity in the sympathetic and parasympathetic division (22).  Studies comparing the 
firing rates of vagal and sympthetic cardiac fibres with the sino-atrial response have started to 
evidence that the heart rate variations not necessarily correspond to variations in the mean firing 
rate, but also and  rather to the sino-atrial responsiveness to the changes in the autonomic tone (25).  
 
 Generation of the Electrocardiogram 
 
For brevity we reasume some basic notions taking directly from an excellent thesis that is available 
on line and reported in (6).  
ECG reflects the electrical activity of the heart. When the electrical impulse propagates through the 
myocardium a small portion of this electrical activity reaches the body surface, where it can be 
recorded by placing surface electrodes on specified places on the skin. It is the cardiac electrical 
system of the heart that is responsible for generating and conduction the electrical activity. 
The electrical system of the heart contains two types of cells; specialised cells of the conducting 
system and cardiac contractile cells. The former generate and conduct electrical current, while the 
latter respond to the electrical current and produce the contraction that propels blood into the 
circulatory systems (31, 16). 
The components of the conduction system of the heart can be seen on figure 1. 
The generation of the action potential leading to a contraction of the heart’s chambers is initiated by 
a spontaneous generation of an action potential in the sinoatrial node (SA node), which is located in 
the posterior wall of the right atrium. The action potential is conducted through both atria to the 
atrioventricular node (AV node) by the internodal pathways. The propagation of the action potential 
through both atria excites the contractile cells of the atria and ensures their full contraction of these. 
The AV node conducts the impulse from the atria into the ventricles through the bundle of His, 
bundle branches, and the Purkinje fibers, which finally spreads the stimulus to the ventricular 
myocardium and causes it to contract .  
The action potentials generated in the different structures are somewhat different. Figure 2. 
illustrates the action potentials from different structures of the heart. 



The convolution of these action potentials, each characterized by a somewhat different shape, gives 
rise to the peculiar ECG shape as depicted in Fig.2. 
Two main types of cells are found in the heart; pacemaker cells and contractile cells. Cardiac 
pacemaker cells depolarise spontaneously without any external stimulation, whereas the cardiac 
contractile cells only contract when stimulated (31). The SA node and AV node exhibit similar 
shapes of the action potential and the AV bundle, bundle branches, Purkinje fibres, and 
myocardium exhibit similar shapes of the action potential (8). The two action potentials’ shapes and 
the flux of ions responsible for the shapes are illustrated in figure 2a and 2b. 
 
 
Figure 2.a shows the action potential for a pacemaker cell. The action potential for a pacemaker cell 
can be divided into three phases; a prepotential phase (phase 4), a depolarisation phase (phase 0), 
and a repolarisation phase (phase 3). Pacemaker cells do not have a constant resting potential, 
instead they slowly depolarise again immediately after a repolarisation. At a maximum diastolic 
potential (MDP) of about -70 mV, Na +/K+ channels open and causes a large influx of Na+ ions 
and a small efflux of K+ ions. This initiates the prepotential phase (phase 4). When the membrane 
potential reaches about -55 mV the transient Ca2+ channels (also called T-type Ca2+ channels) 
open and cause an influx of Ca2+ ions. As Ca2+ ions enter the cell, the membrane potential is 
further increased and reaches the threshold potential (TP) at about -40 mV. At this stage another 
type of calcium channels opens; the longer lasting Ca 2+ channels (also called L-type Ca2+ 
channels). Opening of these channels increases influx of Ca2+ ions and depolarizes the cell (phase 
0). At approximately 0 mV, the L-type Ca2+ channels close and at the same time K+ channels 
open, which causes an efflux of K+ ions. This initiates the repolarisation phase of the action 
potential (phase 3), which makes the membrane potential return to -70 mV (31, 35). 
As seen on figure 2,a and b, the influx and efflux of different ions are responsible for the 
appearance of the action potentials. Changes in the slope of prepotential, the amplitude of the TP, 
and the amplitude of the MDP determine the rate of impulse generation in the SA node and thereby 
the heart rate. The duration of myocardial action potentials are dependent on the heart rate; the 
higher the frequency is, the shorter will the action potential be (8). 
The contractile cells in the heart are connected by gap junctions, which makes them function as a 
syncytium i.e. as a joint unit where processes in a single cell quickly spreads to the adjacent cells, 
almost at if it was a single large cell. Thus, the atrial myocardium functions as a syncytium and the 
ventricular myocardium function as a syncytium (16). Also the specialised cells of the conducting 
system are connected by gap junctions (10). Gap junctional coupling between the cells are 
responsible for the propagation of an action potential from its initial point in the SA node along the 
specialised conduction pathways to the contractile cells of the ventricles (29).  
 
Elements of the Electrocardiogram 
 
As mentioned,  it is the impulse propagation through the myocardium that is reflected in an ECG. 
As a basic notion, we remember here that a normal ECG exhibits three different waveforms; the P 
wave, the QRS complex, and the T wave. The QRS complex is made of three distinct waves; the Q 
wave, R wave, and the S wave (16). An illustration of a normal ECG is given in figure 3. 
 
Immediately after the SA node has generated an impulse, the depolarisation of both atria occurs. 
This is reflected as the P wave in the ECG. The isoelectric line between the P wave and the Q wave 
corresponds to the conduction of the impulse through the AV node. 
The Q wave represents the depolarisation of the septum. The left part of the septum is depolarised 
before the right side, this causes the negativity of the Q wave. The R wave is caused by the 
propagation of the depolarisation wave in the septum towards the apex and afterwards 
depolarisation of the apex to the base of the heart. The S wave reflects the depolarisation of the 
posterior portion of the base of the left ventricle. Altogether, the Q, R, and S waves constitute the 



QRS complex, which represents the depolarisation of the ventricles (22, 16). The QRS complex is a 
relative strong electrical signal because the ventricular muscle is much more massive than the atrial 
muscle (16, 22). 
The atrial repolarisation wave also called Ta is directly opposite in polarity to the P wave (14). The 
isoelectric line between the QRS complex and the T wave is the period where the entire ventricular 
myocardium is depolarised and repolarisation of the ventricles has not yet begun (16, 22). 
The T wave is the last wave appearing in a normal ECG and represents the repolarisation of the 
ventricular muscle. 
The positivity of the T wave is due to the propagation of the repolarisation wave, which spreads in 
reversed direction of the depolarisation wave (22, 16). 
 
The appearance of the ECG is determined by the transmission of impulses through the heart, 
because, any changes in the trasmission pattern and velocity will affect the current flow around the 
heart and consequently affect the shape of the waves in the ECG. This can be understood by 
considering a vectorcardiographic representation of a depolarising muscle. During the propagation 
of the depolarisation wave a part of the muscle will be depolarised while the remaining part is still 
polarised. This causes a voltage difference between the two parts. The voltage difference is 
determined by the amount of depolarised and polarised muscle respectively; the largest difference is 
seen when half of the muscle mass is depolarised and the other half is not. The direction and 
magnitude of the current generated in the heart at a given instant can be depicted as a vector that 
points in the direction of the current flow and with length proportional to the voltage difference 
between depolarised and polarised muscle (16).  
A representation of the magnitude and direction of the instantaneous mean electrical vector of the 
ventricles during the depolarisation is shown in figure 4. 

 
By projecting the mean electrical vector onto the three bipolar leads (i.e. I, II, and III) a picture of 
the electrical activity measured by each lead is obtained (30, 16). The first step in figure 4 shows a 
short mean electrical vector because only small portion of septum is depolarised, thus all 
electrocardiographic voltages are low in the three bipolar leads. Next, the mean electrical vector is 
long because much of the ventricular muscle is depolarised, this is also shown as the shaded areas in 
figure 4. The voltage at lead II is greater comparing to the rest of the leads because the mean 
electrical vector extends almost in the same direction as the axis of lead II. Next, the depolarisation 
wave reaches the epicardium and the apex of the heart, the mean electrical vector becomes shorter 
and the electrocardiographic voltages becomes lower. The direction of the mean electrical vector is 
changing slowly toward the left side, due to the greater amount of ventricular muscle mass in the 
left side, thus slower depolarisation. 
Afterwards, the mean vector becomes shorter because only small portion of the ventricular muscle 
is still polarised. 
Furthermore the direction of the vector is toward the base of the left ventricle. In this case only lead 
I has positive electrical voltage. 
Finally, the entire ventricular muscle is depolarised and no current flows around the heart. 
Therefore, the mean electrical vector becomes zero and consequently the voltages measured in all 
leads become zero, as shown in figure 4. 
From the above, it can be seen that the ECG is determined by the pattern, amplitude, and velocity of 
the impulse propagation during cardiac activity. The ANS effects on these variables is therefore 
crucial to clarify whether the ANS has an effect on the morphology of the ECG or not. 
 
Autonomic Innervation and Regulation of the Heart 
 
The autonomic innervation of the heart is rich. Parasympathetic innervation is particularly rich to 
the SA node, sinoatrial conducting pathways, and the AV node, whereas the parasympathetic 



innervations to the ventricles are sparse (37, 21, 5, 16). The sympathetic nervous system innervates 
all parts of the heart but is dominating in the ventricles (37, 16). 
Figure 5 illustrates the sympathetic and parasympathetic innervations of the heart. 
 
The parasympathetic innervation is dominating in the SA node, atrial myocardium, and the AV 
node compared to the ventricles. In contrast, sympathetic innervation dominates in the ventricles. 
(16) 
The two divisions have opposite effects on the heart; the sympathetic division causes excitation, 
whereas the parasympathetic causes inhibition. The parasympathetic division predominates in 
resting conditions whereas the sympathetic division dominates in more demanding situations (22).  
 
 
 
Parasympathetic Effects on Cardiac Cells 
 
The parasympathetic nervous system releases acetylcholin at the postganglionic nerve endings. 
Acetylcholin binds to one or more subtypes of muscarinic (M) receptors in the human heart. Five 
different muscarinic receptor subtypes (M1-M5) have been identified. M2 is the predominating 
muscarinic receptor type in the heart (5). An inhibitory G protein (Gi) is attached to the M2 receptor 
on the membrane of the cell. When acetylcholine binds to the M2 receptor, the Gi protein is 
activated, which causes an inhibition of adenylate cyclase. The inhibition of adenylate cyclase 
inhibits the formation of cyclic adenosine monophosphate (cAMP) from adenosine triphosphate 
(ATP) (16, 8). cAMP would have activated type A protein kinase (PKA) which is capable of 
phosphorylating proteins. The absence of PKA causes a reduction of Ca 2+ influx, due to 
inactivation of L-type Ca2+ channels. Furthermore, the activation of the Gi protein opens potassium 
channels which causes an efflux of K+ from the cell leading to hyperpolarisation (5).  
 
Sympathetic Effects on Cardiac Cells 
 
The sympathetic nervous system uses epinephrine and norepinephrine as primary transmitter 
substances. There are two adrenergic receptor types.. When epinephrine or norepinephrine binds to 
the  adrenoceptor it activates a G protein in a manner similar to that of acetylcholine binding to M2 
receptors. 
Instead of activating an inhibitory G protein, adrenoceptors activates a stimulatory G (Gs) protein. 
The activation of the Gs protein activates cAMP which in turn activates PKA (31). PKA 
phosphorylates Ltype Ca2+ channels which activates them, and consequently increases the 
intracellular Ca2+ concentration (18). This causes a positive chronotropic effect on the SA node and 
positive dromotropic effect on the AV node. 
 
Autonomic Innervation and Regulation of the Heart  
 
The increased concentration of cytosolic Ca2+ activates ryanodine receptors (RyR) in the 
sarcoplasmatic reticulum (SR). This causes a release of a large amount of Ca2+ from the SR to the 
cytosol. In the membrane of the SR, there is a Ca2+ pump called sarcoplasmatic reticulum Ca2+-
ATPase (SERCA2), which pumps the cytosolic Ca2+ back into the SR. In humans, the activity of 
SERCA determines the rate of removal of more than 80% of cytosolic Ca 2+ (13). SERCA2 pumps 
are regulated by a protein called phospholamban (PLB). Normally, PLB inhibits SERCA2, but 
under adrenergic stimulation PKA phosphorylates PLB and thereby reduces the inhibitory effect of 
PLB on SERCA2. This causes an increase of the rate of intracellular Ca2+ removal from the cytosol 
into the SR. 



The result of the described process is a rapid increase in intracellular Ca2+ concentration due to the 
RyR receptor but of short duration due to the Ca2+ removal mediated by SERCA2 (14, 3). This 
produces positive inotropic effects on the myocardium. The high concentration of the intracellular 
Ca 2+ increase the amplitude and decrease the duration of the action potential of the cardiac 
contractile cells (26).  
 
From the above discussion, it becames obvious that the ANS has great influence on the cardiac 
activity. In general, the parasympathetic division causes negative chronotropic, dromotropic, and 
inotropic effects to occur. In contrast, the sympathetic division causes positive chronotropic, 
dromotropic, and inotropic effects to occur. The intermingled picture presented, where systemic 
effects go hand-in-hand with cellular level features need to be supplemented by another very 
important element: the ANS also regulates the conductance of the gap junctions which connect 
adjacent cells in the heart. This implies a direct involvement of ANS in the structure of the 
conduction tissue that has very important consequences on its conductive properties and thus on the 
general ECG shape. 
 
As mentioned before, gap junctions are responsible for the impulse propagation in the heart (29). 
Gap junctions are regulated by different substances, among these are cAMP, PKA, and Ca 2+ (10). 
The concentration of these substances changes in the intracellular environment due to autonomic 
innervation.  
An increase in intracellular cAMP leads to increased coupling between adjacent cells (10). PKA 
enhances  the conductance of the most abundant type of gap junction found in the heart. The change 
is very rapid and may last for several minutes. A large increase in intracellular Ca2+ causes 
reduction in conductance of the gap junctions. 
Under normal conditions the Ca2+ concentration does not reach sufficient levels to cause a 
reduction in gap junctional conductivity (9). 
If the changes, in the mentioned substances mediated by the autonomic nervous system are high 
enough to cause a regulation of the cardiac gap junctions then,  sympathetic innervation would 
cause an increase in gap junctional conductance, whereas the parasympathetic innervation would 
cause a decrease in gap junctional conductance. 
Going back to the initial problem of the effect of ANS on ECG shape and consequently on the HRV 
in terms of systemic variations of RR intervals) we can state  that changes in the ECG are mediated 
by changes in the pattern of impulse propagation, the velocity of impulse propagation through the 
heart, and the amplitude of the voltage differences generated by the impulse. 
This allows us to make the subsequent general statements: 
 

1) There has been a lot of confusion regarding the meaning of the different measures, 
especially in the frequency domain. In the early studies the spectral components were 
regarded as a reflection of the autonomic tone (25), i.e the balance between the activity in 
the sympathetic and parasympathetic division (22), but studies comparing the firing rates 
of vagal and sympthetic cardiac fibres with the sino-atrial response shows that the heart 
rate variations not necessarily correspond to variations in the mean firing rate, but also 
rather to the sino-atrial responsiveness to the changes in the autonomic tone (25). 

2) ANS has great influence on the cardiac activity. In general, the parasympathetic division 
causes negative chronotropic, dromotropic, and inotropic effects to occur. In contrast, the 
sympathetic division causes positive effects to occur. 

 
Interestingly, the analysis showed that sympathetic stimulation of the heart causes an increase in 
heart rate, an increase in conduction velocity through the AV node and myocardium, and an 
increased amplitude of the action potentials of cardiac contractile cells. The parasympathetic 
division inhibits the processes which causes these changes, thus, the parasympathetic division has 



the opposite effect. This encourages to believe that the morphology of the QRS complex changes 
with variation in ANS balance. 
Following such long and detailed discussion we have to pose a specific question. 
Have we to day a marker of the ANS activity that may be considered really suitable to take in 
accurate consideration the complex mechanisms that we have so far taken into consideration? 
 
The Methodology of Analysis 
 
We may now pass to introduce our methodology. 
The emerging indication from the previous studies is that we are in presence of a very complex 
system regulated from linear and non linear interrelationships and couplings. The most important 
feature is that such system exhibits an ANS balance that we must attempt to correctly evaluate. 
The answer to our previous posed question is that we need to introduce a new methodological 
treatment that is able to account for chronotropic, dromotropic, and inotropic effects to occur. 
 
The use of spectral analysis implies that the event series can be represented by a sum of sinusoidal 
components, of different amplitude, frequency and phase values. Well defined fluctuations can be 
identified in distinct frequency bands, which have been attributed to the influence of vagal and/or 
sympathetic outflows. Various spectral methods for the calculation of power spectra density have 
been applied since the 1960's; they may be generally classified as non-parametric and parametric. 
The non-parametric approach mainly used is the Fast Fourier Transform (FFT) just  to avoid 
statistical uncertainty related to the choice of the model order, which is inherent to the parametric 
PSD estimates. 
Traditional spectral analysis of heart rate variability (HRV) and blood pressure variability (BPV) 
results in a spectrum with three major components, defined as very low-frequency (VLF: 0.003 – 
0.04 Hz), low-frequency (LF: 0.04 – 0.15 Hz) and highfrequency (HF: 0.15 – 0.4 Hz) .  
 
Note the essential feature of the method. We speak here only of power.  
 
The distribution of the power and the central frequency of these components are not fixed but vary 
in relation to changes in autonomic modulation of heart rate and blood pressure.  
Note some further limitations of the method.  It is important to observe that a large proportion of the 
VLF component is due to nonharmonic noise (direct current - DC), rendering VLF assessment from 
short-term recordings a very dubious measure that should be avoided. Nevertheless this is the by-far 
most important power spectrum component, so reaching the conundrum that the most relevant 
component in terms of explained variability of the HRV is in the same time the less rliable as for 
their quantitative estimation for the simple fact, at least in the short-term recordings setting it 
cannot be considered as being an oscillatory component at all.  
The LF and HF components are evaluated in terms of frequency (Hz) and power. This power is 
assessed by the area of each component and, therefore, squared units are used for its absolute value. 
In addition, an appraisal of the fractional distribution of power, independent of the absolute values 
of variance, can be obtained with computation of normalized units (nu). They are obtained by 
dividing the power of a given component by the total power from which the VLF has been 
subtracted. This procedure focuses on the possible reciprocal link between LF and HF components 
but remains somewhat controversial.  
In the framework of a correct methodological approach it remains thus to introduce a correct marker 
of ANS. In our opinion we may reach this objective starting from the conclusion that was reached 
from Zbiliut, Giuliani, i.e. that the main dynamical feature of hearbeat dynamics can be explained 
by a quantum-like model in which the system undergoes a jumping between adjacent states 
(adjacent in terms of RR length classes) in response to changes in the internal state (15). This 
‘jumps’ point to an intrinsically discrete kind of dynamics that happens at all the time scales (the 



fractal, scale invariant, nature of these state changes is described in (15) so asking for a less 
demanding (in terms of continuity and stationarity constraints) technique as Fourier Transform for 
adopting a frankly discrete and model independent analysis method. 
Linked to such conclusion is the  notion of Recurrence that Zbilut and Webber were able to quantify 
by the well known methodology called RQA, Recurrence Quantification Analysis. Recurrence and 
Variability are two tightly related concepts. It is important to stress the functional meaning of the 
concept of variability in the realm of ANS regulation of HRV. At odds with the great majority of 
man-made tools in which the increase in variability is the signature of malfunctioning, in the case 
of heartbeat regulation the situation (at least when variability is confined ina given physiological 
range) is just the opposite: given HRV is the image in light of the fine-tuning of blood flux to the 
ever changing needs of the internal ‘milieu’ (as Claude Barnard defined the whole organism state) 
with the resulting heartbeat length as a sort of ‘majority vote’ or ‘integration’ of the various signals 
impinging on the heart from ANS, an high variability in time corresponds to an efficient sensing of 
the environment by the autonomic nervous system, while a low variability goes hand-in-hand with a 
less efficient control (as in the extreme case of heat transplanted patients where ANS control is 
practically abolished and the HRV is severely decreased).  This is the main biological reason for 
focusing on the concept of Variability for the  phenomenological estimation of  chronotropic, 
dromotropic, and inotropic effects. 
Let us explain the matter in more detail. Let us observe that we are in presence of non linear 
processes. They are the anteroom of arising very complex dynamicis crossing of the frontier of the 
chaotic processes. From the conceptual point of view thare is only one variable that is able to 
account for such complex biological behaviours and it is that one of Recurrence. It was introduced 
by Eckmann and subsequently developed by Zbilut and Webber in the well established 
methodology of analysis that is actually provided with reference as RQA (Recurrence 
Quantification Analysis) (36). 
 
While the basic idea of Recurrence is immediately intuitive ‘The periodic character of a series can 
be quantified by the number of times the same pattern (letter, number, symbol..) recurs in the 
series’ and this immediacy and freedom from mathematical assumptions makes RQA apt to model 
complex nonlinear systems, it is worth noting to go more in depth into the subtleties of the concept 
of Recurrence. In doing so we will rely upon explanation that was furnished rather recently by 
Norbert   Marwan, in his excellent paper (23). 
We adopt here his introduction to this basic concept: 
 
If we observe the sky on a hot and humid day in summer, we often “feel” that a thunderstorm is 
brewing. When children play, mothers often know instinctively when a situation is going to turn 
out dangerous. Each time we throw a stone, we can approximately predict where it is going to hit 
the ground. Elephants are able to find food and water during times of drought. These predictions 
are not based on the evaluation of long and complicated sets of mathematical equations, but 
rather on two facts which are crucial for our daily life: 
(1) similar situations often evolve in a similar way; 
(2) some situations occur over and over again. 
The first fact is linked to a certain determinism in many real world systems. Systems of very 
different kinds, from very large to very small time–space scales can be modelled by 
(deterministic) differential equations. On very large scales we might think of the motions of 
planets or even galaxies, on intermediate scales of a falling stone and on small scales of the 
firing of neurons. All of these systems can be described by the same mathematical tool of 
differential equations. 
They behave deterministically in the sense that in principle we can predict the state of such a 
system to any precision and forever once the initial conditions are exactly known. Chaos theory 
has taught us that some systems—even though deterministic—are very sensitive to fluctuations 



and even the smallest perturbations of the initial conditions can make a precise prediction on 
long time scales impossible. Nevertheless, even for these chaotic systems short-term prediction is 
practicable. 
The second fact is fundamental to many systems and is probably one of the reasons why life has 
developed memory. 
Experience allows remembering similar situations, making predictions and, hence, helps to 
survive. But remembering similar situations, e.g., the hot and humid air in summer which might 
eventually lead to a thunderstorm, is only helpful if a system (such as the atmospheric system) 
returns or recurs to former states. Such a recurrence is a fundamental characteristic of many 
dynamical systems. 
They can indeed be used to study the properties of many systems, from astrophysics (where 
recurrences have actually been introduced) over engineering, electronics, financial markets, 
population dynamics, epidemics and medicine to brain dynamics. The methods described in this 
review are therefore of interest to scientists working in very different areas of research. The 
formal concept of recurrences was introduced by Henri Poincaré in his seminal work from 1890  
for which he won a prize sponsored by King Oscar II of Sweden and Norway on the occasion of 
his majesty’s 60th birthday. Therein, Poincaré did not only discover the “homoclinic tangle” 
which lies at the root of the chaotic behaviour of orbits, but he also introduced (as a by-product) 
the concept of recurrences in conservative systems. When speaking about the restricted three 
body problem he mentioned: “In this case, neglecting some exceptional trajectories, the 
occurrence of which is infinitely improbable, it can be shown, that the system recurs infinitely 
many times as close as one wishes to its initial state.” Even though much mathematical work was 
carried out in the following years, Poincaré’s pioneering work and his discovery of recurrence 
had to wait for more than 70 years for the development of fast and efficient computers to be 
exploited numerically. The use of powerful computers boosted chaos theory and allowed to study 
new and exciting systems. Some of the tedious computations needed to use the concept of 
recurrence for more practical purposes could only be made with this digital tool. 
In 1987, Eckmann et al. introduced the method of recurrence plots (RP) to visualise the 
recurrences of dynamical systems. Suppose we have a trajectory [ ]N

iix 1=
r  i=1 of a system in its 

phase space (23). The components of these vectors could be, e.g., the position and velocity of a 
pendulum or quantities such as temperature, air pressure, humidity and many others for the 
atmosphere. The development of the systems is then described by a series of these vectors, 
representing a trajectory in an abstract mathematical space. Then, the corresponding RP is based 
on the following recurrence matrix: 
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where N is the number of considered states and  ji xx ≈  means equality up to an error (or 
distance) ε. Note that this ε is essential as systems often do not recur exactly to a formerly visited 
state but just approximately. Roughly speaking, the matrix compares the states of a system at 
times i and j. If the states are similar, this is indicated by a one in the matrix, i.e. Ri,j =1. If on the 
other hand the states are rather different, the corresponding entry in the matrix is Ri,j =0. So the 
matrix tells us when similar states of the underlying system occur.  
In conclusion, if we consider a given time series, as example, a time series made by R-R intervals. 
Recurrence, as example for the point iRR −  and 5+− iRR , means that we have   iRR − -value ≈   

5+− iRR - value in the limit of a prefixed convergence value  ε. 
The concept of Varibility is in itself the exact conceptual counterpart of the concept of Recurrence. 
Given a time series of N  intervals RR − , points realizing the greatest recurrence will give 
correspondgly the minimum variability. On the other hand, points giving the minimum recurrence 
will correspondgly exhibit  maximum variability. When we speak of counterpart we do not intend 



Recurrence is NOT the simple ‘opposite’ of Variability, if this would be the case we obviously had 
no need of another parameter given we should simply use variability and look at it in the two 
directions of increase/decrease. The point is that Recurrence catches the ‘order dependent’ portion 
of variability while variability as such (i.e. standard deviation of RR intervals) is totally 
independent from order, i.r. from the actual dynamics of the studied series. Let’s imagine a series 
like this 1, 2, 3, 1, 2, 3, 1, 2, 3 (series A) and a series A’ : 3, 2, 1, 2, 2, 1, 3, 3, 1 they have the same 
standard deviation (SD=1), buth while the first is shows an highly recurrent behavior in time the 
second is totally random. If we measure the recurrence of A by taking an embedding dimension of 
three (i.e. considering atomic  elements made up of three consecutive values we obtain a 
Recurrence = 100%, while the second does not show any Recurrence). This different consideration 
of what Variability (and thus the nature of ANS control exerted on heart) is, allows us to discover 
periodic endogenous  ‘cycles’ in which the system get entrapped (and thus implying a decoupling 
from the continuous adaptation to a stochastic environment) nor simple variability, nor FFT can 
put into light. 
 
This is the essence of the CZF method that is based on Recurrence Quantification. 
The details of the method have been exposed by us elsewhere (see as example the section devoted 
to selected publications in this site) but we may mention here again some essential feature. 
Let us take as reference a given time series of N , RR − intervals. 
In the current analysis of HRV we just use a concept of ‘order dependent’  variability that, in the 
case of  Poincaré plot is only limited to adjacent beats . 
In fact, by using such technique we plot ( )1 ii RRRR −−− +  and thus just we estimate the 
correlation between two adjacent points. In our case we need a more far reaching method 
encompassing different periods variability . In particular, we need to estimate, as ANS marker,  the 
variability for each pair of RR − points, the first time considering adjacent points, the next time 
considering variability between iRR − and 2+− iRR , the third time between iRR − and 3+− iRR , 
and, in general, between iRR − and τ+− iRR . Calling τ  the lag , and varying at each step the Lag τ  
from 1 to ( )3−N , we will estimate the variability for each pair of points in the given RR − time 
series, and covering this time the exploration of the whole series for any possible time interval. 
Take the Lag 1=τ , we will estimate the total variability induced from the  ANS for all the adjacent 
points of the given series of intervals. Take the Lag 2=τ , we will estimate this time the total  
variability, induced from the ANS, for all the point shifted by one. Take the Lag 3=τ , we will 
estimate the total  variability induced from the ANS between points shifted by 3 and so on. In this 
manner we reconstruct the variability that is induced from ANS starting from adjacent RR − values 
and advancing, step by step, each time of a shift given by one Lag. We characterize in this manner 
the variability as new marker of the ANS on the given recorded RR − time series.  
 
We may now mention the particular algorithm that we use for the calculation of the order-
dependent variability. It is called the Variogram. We do not repeat here the formulas just to 
unburden the tratment from mathematical formulas but the details of the mathematical treatment 
have been given by us elsewhere.  
Finally, we arrive to estimate the final variogram and a plot in which in abscissa we have the values 
of the Lags that we have considered, and in ordinate we have the value of the new ANS marker, that 
is to say, the values of the calculated total variability in correspondence of each Lag. 
The next and final step is now easy to  reach. We may pass from the domain of the time  (the Lags) 
to the domain of the Frequency by a proper transformation so that we have finally the values of the 
total variability this time corresponding to the given frequency. This is quite similat to what is 
realized by FFT. In abscissa we have the values of the frequencies. In ordiante, this time we have 
the true values of the variability and not the PSD. Also in the case of the CZF method we will 
consider, as in FFT, three basic frequency bands, the VLF, the LF, and the HF and for each band we 



will have the value of the total variability. In this manner we will proceed to calculate standard 
indeces as LF/HF (balance) (it will indicate in this case the ratio between the total variability in the 
LF and HF bands), we still will calculate the VLF%, the LF%, the HF%, the VLF, LF, and HF in 
n.u. and still the value of the ratios VLF/LF+HF or LF/(LF+HF) or HF/(LF+HF)). In conclusion, 
the visual  inspection will give results as in the FFT case with the basic differnce that in the case of 
the FFT we are expressing the power of the modulation . In the case of the CZF method we are 
estimating instead the variability. We will have also  new quantitative markers that obviously will 
account this time for chronotropic, dromotropic, and inotropic effects to occur. 
 
The Limitations of the FFT. 
We had various posibilities  to outline some insufficiences in application of FFT in ananlysis of 
R-R intervals. We would add here still some further comments. 
 

We first remind ourselves of three basic properties of the FFT (Fast Fourier Transform) process. 

Generally speaking: 

• First,  information in signal must be preserved during transformation. That is, the variable 
measured on time signal must equal the variable measured on the frequency representation 
of that signal.  

• Second, an FFT converts the signal representation between time and frequency domains. 
The time domain representation shows when something happens and the frequency domain 
representation shows how often something happens.  

• Finally, an FFT assumes that the signal is repetitive and continuous. Other strong 
requirements are discuseed by us elsewhere [ see the section selected publications of this 
site] 

Let us take a standard  example as well discussed and available on line (New Version of DATS 
software, http://blog.prosig.com/2009/07/20/data-windows-what-why-and-when/). 

Let us take  the case of a 10 Hz sinusoid (Figure 6). This signal is periodic within the time record 
used to calculate the spectrum. 

If we perform an FFT (Figure 6a), the result, shown below,  will consist of a single line in the 
spectrum with an amplitude that represents, as example,  the rms in relation to  the time series 
amplitude. 

Now, let us consider a second example. In this case (Figure 7) we have a 9.5 Hz sinusoid.  

If we perform an FFT operation on this signal,  it yields the multi-line spectrum shown in Figure 8. 

The important thing to consider is that we no more obtain a single line spectrum. It is still a sinusoid 
but its spectrum is a multi-line spectrum as erroneously seen by the FFT process.  It assumes the 
signal to be periodic (not only within a single record) and on-going or continuous.  The 9.5 Hz 
signal (Figure 7), seen in analog form,  is on-going and continuous, but when viewing it from a 
digital perspective (discrete number of samples in a specified time block), this signal is not a 
sinusoid (see Figure 9). 

This is the reason because the FFT produces the multi-line spectrum in figure 4 with no less than  
20 visible lines. A totally deformed result.  



At this point, in R-R  FFT analysis a problem becomes of crucial importance.   

How may we minimize the effects of such discontinuities? Note that we speak about the 
methodological manner to minimize, not to cancel such undesidered effects. The possibility is that 
we use something called a “window”. Typically, the window used for most general purpose data is 
the “Hanning” or “Von Hann”. 

The “Von Hann” or “Hanning” window is named after Julius Von Hann (1839-1921). Von 
Hann was an Austrian meteorologist and is seen as the father of modern meteorology.  He was the 
director of the Central Institute for Meteorology in Vienna (1887-1897), professor of meteorology 
at the University of Graz (1897-1890) and professor of cosmic physics at the University 
of Vienna (1890-1910). In signal processing the Hann function was named after him (4). 
Multiplying the window function (Figure 10) by the original time signal forces the signal to zero at 
the beginning and end of each time record (Figure 11). Placing multiple time records shown end to 
end shows the signal is now forced to be periodic when the time records are placed end to end. One 
problem solved, but the signal now in each of the time records is not a sinusoid any longer. This 
modification to the sinusoid is represented in the frequency domain by 4 dominant  lines in the 
frequency representation of the signal plus also other. 

The spectrum which was 20 lines before applying the Hanning Window function has now been 
reduced to a spectrum of only 4 lines plus other lines of reduced values but however present. The 
result is thus not extremely accurate, but reaches a much closer representation respect to the single 
line spectrum one would expect for the single frequency time signal. Obviously, one must 
remember here that, calculating HRV in VLF, LF, and HF bands, we integrate into some previously 
prefixed bands of frequency and thus the presence in such bands of such, also if reduced, 
undesidered peaks, may alter totally the goodness of the estimated so called variabilities in PSD. In 
addition, let us see what  happens to the single line spectrum from the 10 Hz single frequency time 
signal. Instead of a single line spectrum, the modified single frequency signal now is represented by 
a 3 line spectrum (Figure 13). There is no loss in amplitude read out accuracy, but a loss in 
frequency resolution is evident and particularly affecting negatively the estimations that we 
perform.  

We should have to discuss here what it happens about the data that are being missed at the 
beginning and end of each record. Data are being reduced and/or set to zero over one half the time 
record. To assume events happening in the region of reduced amplitude areas, a processing 
technique exists called “overlap” processing. By applying this technique, the events occurring at or 
near the beginning and ending of the time records are enhanced by using overlap processing. Figure 
14 represents records being processed “end-to-end” or 0% overlap. Figure 15 shows overlap of 
50%. 

Typically 67% overlap (Figure 16) is considered sufficient to weight the events near the 
beginning/end of the time record, however 75% overlap (Figure 17) is somewhat better. Today, 
with the high processing capabilities of  computers,  there is little reason not to utilize overlap 
processing.  

Different shapes of the windowing function dictate what the spectrum shaping looks like. The table 
below lists a few window function types. All Window functions that operate on the time domain 
signals typically zero out the beginning and end of time record. The obvious exceptions to this are 
the “force” and “exponential decay” windows used in hammer/modal applications. Let us use the 
following suggestions: 



Type  When to use 

Rectangular Only when signal is known to be periodic within time record 

Hanning Most often used for general purpose 

Flat top When absolute amplitude accuracy is required – calibration/sensitivity check 

Kaiser-Bessel When relatively high amplitude accuracy and frequency resolution are  important 

 
Results. 
In order to evaluate the possibilities of the FFT as marker of ANS, we studied a number of 
normal subjects using a sampling frequency of 250 Hz in ECG recording  and thus selecteing 
each time a piece of R-R intervals and comparing obviously each time HRV calculated on the 
same epoc lengths. 
The aim was to compare the results that may be obtained using some different windows. 
Let us inspect the results for the different normal subjects that we  examined (Figures 18). 
We advise the reader that the abbreviations FE, GM, SM….. in the figures indicate the reference to 
the examined subjects. 
By inspection of the results,  we deduce that they are strongly dependent from the choice of the 
selected window and we have not so robust indications about the most appropriate window to be 
selected. Consequently, it is rather adventurous to consider the FFT as a definite and accurate 
marker for ANS in analysis of R-R intervals. The second  indication arising from the  results is that 
we never must compare set of data relating different number of epochs or different time intervals 
recording. 
We have selected three basic time intervals for short term analysis of HRV: one corresponding to 
about 8.30-11 minutes, the second corresponding to about 7 minutes and finally the third about 5-6 
minutes.  
The reasons for such recommendations, relating the first and the second inspection of data, is rather 
evident.  
 
 R-R  is a non linear and  non stationary, highly complex  signal. We have spent all the previous 
section of the present paper to delineate in some detail how  it is realized physiologically the ANS 
control of beat to beat heart dynamics.  
The conclusion of the previously reported set of data is that FFT evidences so profound limits if we 
aim to consider it as an actual Marker of the ANS. It may give only phenomenological indications. 
Now, it is very clear to us that it is well difficult to eradicate a consolidated prejudice, and, still 
harder, to accept to submit to a pressing criticism a methodological approach that has been 
consolidated by years of its application, but the clinicians must strongly take in their mind some 
important features. We repeat here: 
 
R-R  is a non linear and  non stationary, an highly complex  signal.  
 
We must understand that the calculated spectrum obtained by FFT arises by fitting a continuous 
function  to discrete data. Systematically it introduces alterations as cutting off, arbitrary 
interpolations, average operations on the whole explored system so that the final results by FFT 
cannot be considered as definite and accurate marker of ANS in analysis of R-R intervals.   
 
This is the reason because why we introduced the CZF method whose conceptual foundations 
were previously exposed. They  were outlined with accuracy in the Added Note of explication 



of the Nevrokard software, and still discussed in detail in the paper that we published on 
Chaos, Solitons, and Fractals (see selected publications).   
 
We reassume in brief here the reasons to place side by side the CZF with the FFT. 
 
The CZF, due to the simplicity of its mathematical foundations (it is a count of similarities and 
does not impose any predefined functional form to the data) does not suffer of the basic 
methodological limits of FFT. The central feature is that by the CZF the statistics is originally 
performed on the primary observable that is the wait between a heart beat and the other so not 
imposing  any model to the data. 
 
How to perform analysis by the CZF method. 
 
The nevrokard software is arranged to perform CZF analysis automatically.  
 
First of all one has to select the time interval in which the clinician decided to perform his 
experimentation. We outlined previously that we selected three possible time intervals (8.30-11 
minutes), 7 or (5-6) minutes. This is for short time HRV analysis. 
 
The nevrokard software downloads the recorded  ECG, usually sampled at 250 Hz,  as second step 
by means of a HRV file preparation-software  it performs the calculation of the R-R intervals that in 
turn saves automatically in .rri extension in the HRV analysis software. Running this software it is 
possible to automatically perform the elaboration of the CZF and to obtain  the results in an 
appropriate window. Therefore, the operations to perform CZF analysis are very simple so that the 
clinician cannot expect difficulties of any kind in performing such methodological approach. 
The analysis gives the following results. The total variability in the VLF range. This is to say that 
the CZF has calculated the total variability of the input R-R signal in the range 0.01- 0.04 Hz. It 
calculates also the total variability in the LF band, that is to say .. such variability in the ranging 
frequencies between 0.04-.0.15 Hz, and finally CZF calculates the total variability in the HF range, 
that is to say from 0.15 to 0.4 Hz  Soon after the CZF calculates the Total Variability that is to say 
the variability of VLF+LF+HF. It is worth noting to remind that CZF works directly on periods (the 
inverse of frequencies) and that we report the results in terms of frequency only with the goal to 
make them comparable with traditional FFT. 
 
The Nevrokard software performs soon after the calculation of the %VLF , of %LF, of %HF and 
thus the LF, and the HF  in n.u. (normalized unities),  and the ratios  LF/HF, LF/LF+HF), and 
finally of HF/(LF+HF). We may say that it follows in some manner that same scheme that it is 
obtained usually by employing the FFT analysis with the basic conceptual difference that we 
explained previously. In the case of the FFT we measure a “power” in PSD (Power Spectral 
Density). In CZF we are instead evaluating Variability in both its aspects of order-independent (the 
equivalent of the Total Power of Fourier) and order-dependent (the equivalent of different bands) 
variability. 
 
Our primary attention must be reserved to the values of total variability in VLF, LF, and HF bands 
and to the Total Variability. These represent for us the markers to look at with great consideration  
in our CZF analysis. 
Let us give an example on the manner in which we must read such CZF results 
 
Let us consider  that we have examined by the Nevrokard software an R-R input signal, and let us 
admit that we have obtained the following values of total Variability by using CZF: 
 



VLF=55.000 msec2 , LF=160000 msec2 , HF=260000 msec2 , and  
 
Total Variability =475000 msec2  
 
We read the results in the following manner: 
 
VLF gives a total variability of 234.5 msec  in the range of frequency from 0.01 to  0.04 Hz and this 
is to say … VLF gives a total variability of 234.5 msec with a periodicity ranging from   25 to 100 
sec.  
 
LF gives a total variability of 400 msec in the frequency range from 0.04 to 0.15 Hz and this is to 
say that we have a total variability of 400 msec  with a periodicity ranging from 6.66 to 25 sec.  
 
Finally HF gives a total variability of 509.9 msec in the frequency ranging from 0.15 to 0.4 Hz and 
this is to say that we have a total variability of 509.9 msec with periodicities ranging from 6.66 sec 
to 2.5 sec.  
 
Finally, the Total Variability must be estimated to be about  of 689. msec. 
 
We must carefully consider as markers such  arising values of variability for LF and HF. These are 
the fundamental values that one must compare in the different experimental situations, i.e among 
normal subjects  or in control subjects respects to other subjects with pathologies. 
 
Obviously we may also take in consideration, as previously said, other indexes as the %VLF, of 
%LF, of %HF and thus the LF, and the HF  in n.u. (normalized unities),  and the ratios  LF/HF, 
LF/LF+HF), and finally of HF/(LF+HF). However, the first indexes that we must take in 
consideration as markers are those previously explained. It is the Variability among normal subjects 
and that one in normal respect to pathological conditions that give detailed signature of the action of 
the ANS on heart rate variability.  
Let us add a further example in order to explain in detail. The results that we have just given for 
variability relate a normal subject. It is seen that the total variability in LF gives 400 msec while 
that one in HF is 509.9 msec. These two are values that differ about 22% with prevalence for a 
greater variability for HF respect to LF. From a physiological view point  a difference of about 22% 
it is not so large. Of course we must expect that, in contradiction with the so different predictions of 
FFT, a large situation of compensation and of balancing, directly due also to the constant coupling 
existing between sympathetic and parasympathetic components, must always exist in ANS activity 
on heart rate variability. Such compensation reveals that we must expect not so large difference in 
normal subjects in balance between sympathetic and parasympathetic components. This is to say 
that we must  attribute a so extended meaning to the parameter LF/HF . It is very indicative but of 
course we cannot expect to perform so accurate estimations using directly only such ratio. 
 
Let us express now 
 
In order to quantify HRV, the intervals between consecutive beats originating in the SA node, 
also called normal to normal intervals (NN intervals), must be found in the electrocardiogram 
(ECG). 
The digital sampling must be regular and robust to identify a fiducial point for each beat 
 
5) morphology and rhythm characteristics for each beat must be classified to distinguish between 

beats originating in the sinus node and ectopic beats.  
6) only beats originating in the sinus node should be considered for the HRV analysis (42). 



 
Furthermore, the fact that HRV is based on the NN intervals limits its use of HRV measures 
to individuals with a sinus rhythm and a limited number of ectopic beats 
 
For the analysis to be reliable, different criteria have been proposed, e.g. the number of beats 
originating in the SA node must be at least 70 % (some even demand 99 % of the beats to 
orignate in the SA node). The most strict criteria demands that the recording must not 
contain more than 10 ectopic beats per hour. These criteria excludes many patients from 
HRV analysis, e.g. 20-30 % of all highrisk patients in post acute myocardial infarct groups 
are excluded from HRV analysis due to frequent ectopic beats, artifacts, or arrythmia 
episodes 
 
Let us add now a final explanation. 
 
In Nevrokard software we have from one hand the possibility to estimate  the variability by the CZF 
method. On the other hand we have also the possibility to perform the FFT using a very articulated 
set of windows. Selected a given window, we may calculate the spectrum and thus the Power 
Spectral Density in the previous mentioned regions of interest that are the VLF, the LF, the HF. 
 
We repeat: CZF estimates Variability. FFT estimates Powers. Also with the basic insufficiencies  
that we previously acknowledged to the FFT, we may in any case compare the ratios that arise, for a 
given R-R interval, between the Power and the Variability in any selected  band, VLF, LF and, HF, 
using the FFT  from one hand and the CZF from the other. We obtain an important index informing 
us about the balance between the power of the sympathetic and parasympathetic modulations, and 
the corresponding  influences that are induced on  the Variability of the given R-R signals  in the 
three bands of interest. 
 
Nevrokard software calculates also such ratios. As example, in the previous mentioned example 
using the Hanning window, we obtained the ratios  

CZF

FFT

VLF
VLF  resulted to be 345.45 

 
The ratio 

CZF

FFT

LF
LF  resulted to be 606.25 

 
and, finally, the ratio  

CZF

FFT

HF
HF  resulted to be 46.15 

 
We have here other three important estimation indexes of balancing of ANS on HRV. 
 
We  must add still another comment. 
 
The Nevrokard software in the CZF window  also gives a final graph in which in abscissa we have 
the frequency with its three basic ranges VLF, LF, HF and in ordinate we have the values of 
variability in msec2. We may say that we have a global graph that moves in analogy with the 
standard and traditional PSD in FFT. However, we must account for some profound conceptual 
differences. Peaks in the CZF graph corresponds now to greatest variability, instead the down 
sinking correspond to periodicities or more  recurrent points in the R-R input series. The situation is 



inverted respect to a traditional FFT where peaks corresponds to frequencies giving highest power 
in periodic components. The CZF, on the contrary and respect to FFT, is able to identify the 
frequencies in which variability reaches its maximum values and frequencies in which  variability 
reaches its minimum … that is to say .. by CZF we acquire detailed knowledge of the frequencies at 
which  the R-R signal gives its greatest periodicities or very near periodicities, and those in which it 
gives the greatest variability.. The figures 21, 22, 23 are explaining to this regard. 
 
In Figures 21, 22, 23 we discuss the case of two normal subjects, subjected to controlled respiration. 
In Fig.21 we appreciate the frequencies at  which a great variability is induced. Of course, we also 
appreciate the cases in which it induces a lower variability .. that is to say a periodicity or a 
recurrent behaviour in points of the R-R intervals. In conclusion, by this graph we reconstruct, step 
by step, the dynamic modalities in which the ANS control is realized. Obviously, the corresponding  
values give a quantitative estimation as markers of the ANS activity. Of course, the corresponding 
FFT graph in Fig. 22 only enables to estimate that the subject is forced to a controlled respiration 
happening at about 0.2 Hz and the relative power in the PSD. 
 
Of course, it is also of interest the Fig. 23, still corresponding to  a normal subject forced to 
controlled respiration. The graph is obviously very similar to that one given in Fig.21 with the 
exception that in this case we may also appreciate the very oscillating behaviour (sinusoid-like) that 
the forced respiration is inducing. Finally note that, in the cases of the CZF we are still in the 
condition to appreciate the dynamics of variability that the forced respiration induces in the LF and 
VLF bands, (in addition to the HF band) while instead, by the FFT, the corresponding spectrum 
coarsely reproduces what is also happening in the corresponding VLF and LF regions. 
Let us express now  a final comment that relates one of the most important novel features of using 
the CZF method. 
 
In order to be clear let us reconsider here some of the phrases that we introduced in our previous 
exposition: 
1) In order to quantify HRV, the intervals between consecutive beats originating in the SA 

node, also called normal to normal intervals (NN intervals), must be found in the 
electrocardiogram (ECG). 

2) The digital sampling must be regular and robust to identify a fiducial point for each beat 
3) Morphology and rhythm characteristics for each beat must be classified to distinguish 

between beats originating in the sinus node and ectopic beats.  
4) Only beats originating in the sinus node should be considered for the HRV analysis 

Furthermore, the fact that HRV is based on the NN intervals limits its use of HRV 
measures to individuals with a sinus rhythm and a limited number of ectopic beats 

5) For the analysis to be reliable, different criteria have been proposed, e.g. the number of 
beats originating in the SA node must be at least 70 % (some even demand 99 % of the 
beats to orignate in the SA node). The most strict criteria demands that the recording 
must not contain more than 10 ectopic beats per hour. These criteria excludes many 
patients from HRV analysis, e.g. 20-30 % of all high risk patients in post acute myocardial 
infarct groups are excluded from HRV analysis due to frequent ectopic beats, artifacts, or 
arrythmia episodes 

 
The CZF methods does not suffer of the previously mentioned limitations. It may applied in 
all the different cases of clinical interest so that we have for the first time a marker of the ANS 
that enables us to explore the whole set of hearth and cardiovascular pathologies. 
 
 
 



An analysis of young normal subjects by the CZF. 
 
We may now go to expose some other results obtained by the CZF method. 
We examined 14 young subjects, between 20 and 25 years old. According to our protocol,  ECG  recordings 
in all subjects took place at 8:30 AM at rest, in a quiet and comfortable environment. The  
electrocardiographic signals were digitized (sampled at a rate of 250 Hz), and stored on  hard disk. We 
selected three time intervals of time recording, (8.30-11 minutes), (7 minutes ), and (5-6.30 minutes). 
The ECG traces were analysed by the Nevrokard software and  the obtained R-R intervals were subsequently 
analysed by the CZF method. 
We report here the obtained results. 
 
As first we tried and reproduce   the results  obtained by Giuliani et al (15). These authors demonstrated the 
possibility of a straightforward representation of cardiac dynamics in terms of a first-order Markov model. 
According to this model, heartbeat dynamics may be considered a random walk, where the system at each 
beat is presented with three alternatives:  

a)  To remain in the same state (i.e., having a beat of a length very similar to the previous one)  
b)  To shift to the higher class of beat duration,  
c)  To shift to the lower class of beat duration 

 
So displaying a sort  of quantum-like behaviour. This paradigm is particularly suited for  CZF.  By the above 
sketched model gives birth to a fractal structure of the R-R signal, given the above sketched Markov model 
holds at every scale (e.g. focusing on class a) intervals we will see a microscopic version of the same 
dynamics).  
 
Two observables must be taken always in consideration in order to give an interpretation of the CZF graph. 
They are: 

a) The values exhibited from the variability ( in the three bands VLF, LF, HF); 
b)  the behaviour of the variogram against the frequency. 

 
 
For R-R time series relating an ECG recording of about 7 minutes there are acceptable values of Variability 
in HF ranging from 1200 to 3500 msec2  as maximum value and in the range 400-700 msec2 as minimum 
values. For R-R time series relating 5-6 minutes also lower values may be accepted for the minimum values 
until 200 msec2 . Note that Variability of 1200-3500 msec2 means calculated Variability about 35-60 msec., 
while calculated values about 400-700 msec2 means Calculated Variability about 20-27 msec that result still 
acceptable as marker of variability.  
We previously mentioned that we examined subjects at rest, in a quiet and comfortable environment 
according to the standard well known protocol. It must be clear that we are speaking here of a pure abstract 
theorization. The so called subject at rest  is a pure abstraction. When recording an ECG, as minimum, the 
subjects  are thinking to some thing. Also with all its rough approximations we may verify by the FFT that 
the shown peaks indicate a different height in such cases. Generally speaking, we must always be aware that 
the condition of each subject vary rather continuously in time respect to himself and respect to the other 
subjects also when they are normal subjects in resting conditions. It is certainly true that we have indicated 
previously some values of Variability obtained by the CZF method. However, we must always expect 
possible fluctuations about such values about 20% in order to be sure to enlarge the possible ranges with 
more realistic features. On the other hand, we have to outline here a particular characteristic of the CZF. As 
repeatedly outlined, this method calculates variability extended along the whole given R-R time series and 
for the valuable Lags. Variabilities are calculated as squared difference between R-R values shifted each 
time by a prefixed Lag, and thus we estimate that fluctuations valued in excess about the 20% should be 
rather sufficient to account for the possible deviations respect to the values that we previously introduced in 
the case of young normal subjects.  
The other important feature that we take in consideration is the behaviour of the variogram vs the frequency. 
It is evident that it must be rather uniform showing values of increased variability followed from values of 
decreased variability. Sudden changes in such uniform behaviour or, in  any case, a non uniform distribution 
about such estimated values of variability induces to suspect some sudden modification of the heart rhythm 
and thus the presence of some abnormal rhythmic. Also a rather constant behaviour of the variogram not 



evidencing  its characteristic decreasing behaviour at the increasing values of the frequency, should  induce 
the suspect of some acting anomaly in rhythmic, failing in this case the evidence of the due variability in the 
analyzed R-R time series 
Let us look now to the results obtained from the examination of the previously mentioned young subjects.  
Note that we report here only the results obtained for 7 minute and for 5-6.30 minutes, indicating the first by 
7 and the second by 6. We exclude the results corresponding to (8.30-11) minutes for brevity but soon after 
we give such results by histograms. 
 
An  optimum subject under the profile of the exhibited values of variability and behaviour vs frequency is  
TA, VDA gives an optimum profile in the investigation of 7 minutes but it manifests a sudden change in the 
behaviour in the exploration on 6 minutes. 
We suggest that in such cases a more accurate investigation is required on subjects of such kind.  MA may be 
considered very satisfactory in 7 minutes but a quite satisfactory behaviour in 6 minutes. VDB is very 
satisfactory. AM is satisfactory also if it manifests a too reduced variability about 0.4 HZ in the investigation 
about 6 minutes. SC is satisfactory. DCP is satisfactory also if with some insufficiency in the variability 
behaviour in CZF-6 minutes graph. RR, AT, CP, SCI are satisfactory  as well as still also  PF while GE and 
RS evidence a rather low Variability in the range 0.3-0.4 Hz. 
For the LF evaluation the criterium must be that Variability must remain rather constant in the explored 
frequency band 1500-3000 

2secm (39-55 secm ) suspecting in particular for those behaviours that present a too accentuated decay 
respect to the frequency value s in the LF band. 
Let us give also a look at the consequent histograms. Fig.25 
 
Comments: 

1) The examined subjects are the same that we analysed previously by the FFT. 
2) First of all, let us appreciate the uniformity of the results that we obtained with relation to the 

calculated variabilities. We have now a graph and quantitative estimations of the marker of ANS 
activity. We have furnished also some general criteria to  read and to interpret the CZF graphs 
Variability against frequency. Actually we have to conclude that by the CZF we have now a   
reliable  marker for ANS 

3) It is of particular interest also the inspection of the ratio LF/HF. It remained rather constant among 
all the examined subjects with the rather obvious difference  about the mean  value of 0.73 ± 0.16 for 
7 minutes recording and 0.86 ± 0.17 for recording of  5-6.30 minutes. 0.57 ±  0.04 was obtained  in 
the case of examined recording of 8.30-11 minutes, that in fact represents a rather long interval of 
measurement for short time HRV analysis. In any case the CZF show an evident novel feature. There 
is a rather constant balance between Variability In LF and HF respectively, and we retain that this is 
of course the correct physiological interpretation since we must account that there is continuous 
balance, interference and thus coupling between the two modulating components of the ANS system. 
We observe of course that this is a feature that improbably arise  by using the FFT analysis.  

4) In conclusion: the results that we obtained by using the CZF result to be excellent when considered 
as markers of the ANS. 

There is still a novel feature that we may estimate by using the CZF method. We may appreciate, as 
previously explained, the ratio between the Power of the modulating components of the ANS and the 
correspondent Variability that is induced. This a very important new parameter that we may appreciate for 
the first time. Obviously we must always take in consideration the limits that enter in the R-R time series 
analysis   by using the FFT.  
Just so, let us examine now the ratio of VLFFFT/VLFCZF ,LFFFT/LFCZF and HFFFT/HFCZF. We have the 
histograms of Figures 26. 
 
Also with all the limitations arising from using FFT, we consider decidedly important to estimate how it is 
the ratio between the Power (estimated by PSD of FFT) of the ANS modulating components and the 
corresponding Variability that they induce, and that we estimate by the CZF method. By inspection of the 
previous histograms, such ratio remains rather constant among the different normal young  subjects that we 
examined. 
For VLF we had  a mean  value of such ratio of 18.62 ± 4.12 for 8.30-11 minutes, 12.40 ± 3.29 for 7 minutes 
and 12.31 ± 3.00. for 5-6 minutes. 



For LF  we had  a value of such ratio of  22.67 v 6.07  for 8.30-11 minutes, 16.30 ± 4.83 for 7 minutes and 
16.02 ± 4.76 for 5-6 minutes 
For HF we had instead very fluctuating values with a mean value of  33.06 ± 12.93 for 8.30-11 minutes, of 
22.12 ± 11.42 for 7 minutes and of  19.96 ± 10.60 for 5-6 minutes. 
In brief, the estimation of such parameter seems to realize a satisfactory agreement for VLF and LF but not 
for HF. 
In order to confirm such result, we proceeded to estimate the correlation coefficient between the Power 
estimated by the FFT and the Variability estimated by the CZF. We obtained a very satisfactory value of the 
correlation coefficient for the VLF and for the LF, but such statistical parameter indicated that we have not 
correlation between the calculated value of Power in FFT and Variability in CZF for the HF. Assuming that 
the CZF is the correct marker of ANS, we must conclude that the FFT gives its greater worse estimation just 
in the frequency band ranging from 0.15 –0.4 Hz, that is to say …in the periodicities  included in the interval 
going from 2.5 to 6.6 seconds. 
This concludes our approach on application of the CZF method on normal young subjects. 
 
Let us take now a step on. We examined four subjects in condition of spontaneous and controlled respiration. 
Time interval of 5-6  minutes. 
We report here the obtained graphs and  histograms in Figg. 27 and 28. 
 
Let us discuss the results obtained by the FFT. 
We used the Hanning window being the most frequent used in standard studies of HRV.  
As  expected, the FFT did  not give  homogeneous results, implying  the practical impossibility to use this 
technique as  marker of the ANS status. 
Let us give a look at the results on a subject by subject basis. 
BS gave peaked results on both the frequency bands of interest, LF and HF in condition at rest and 
spontaneous respiration. The spectrum in condition of controlled respiration gave a peak band only in the HF 
region at about 0.2 Hz. 
FE strangely evidenced well only the HF band in condition of spontaneous respiration and it became 
dominant in condition of controlled respiration always centred about 0.2 Hz. 
Another unexpected behaviour was highlighted by GC who gave a peaked band only in the LF region with 
some minor evidence in the HF band . The previous results refer to spontaneous respiration conditions, while 
the same subject shows two well defined peaks at LF and HF when in controlled respiration conditions. 
Again, SM evidenced a dominant HF  and a rather evident activity in the LF band when in condition of 
spontaneous respiration (0.2 Hz) .  
These qualitative results  (quantified by the resulting histograms) make evident the presence of  some 
inconsistencies in the analysis by FFT. 
 
Let us examine  now the results that we  obtained by the CZF method. 
First consider BS. It has a proper graph on the basis of the interpretative criteria that we exposed previously 
and is reflected by the entire set of  the relevant spectral  bands. This was true for both spontaneous and 
controlled  respiration conditions. For the Variability we obtained in brief rather equivalent results.  In the 
controlled respiration we had the expected sinusoidal-like behaviour differentiating such variability in 
controlled respiration respect to spontaneous respiration. 
Let us now examine FE. Remember that by FFT we were only able to evidence the peaked region in HF. By 
the CZF we had an optimum behaviour both for LF and HF  with the characteristic sinusoidal-like behaviour. 
Nothing to add. In condition of controlled respiration we had evidence of the most important effect expected 
by such procedure of respiration control. The graph always exhibited a very regular behaviour but (the most 
expected result) the values of the variability enhanced largely. The results are very clear also by inspection of 
the corresponding histograms. We had here a clear indication of the effect that is induced by the controlled 
respiration : generally speaking it is to induce a strong increasing in the Variability. 
The histogram gives us the manner to quantify  accurately the induced effect. Again, the CZF method reveals 
its intrinsic ability to be used as marker of ANS. Note the other important feature: the increase variability is 
induced simultaneously on both the HF and the LF bands. This is important to conclude, on the physiological 
basic, that the two basic modulating components of the ANS, the sympathetic and parasympathetic efferent 
actions, operate so that a systematic and balanced coupling is established between such two components. 



Let us now examine GC. As we remember the FFT gave only evidence of one band in the LF in spontaneous 
respiration. We should examine such subject with greater consideration. The basic feature is that He has the 
tendency to exhibit a rather low variability both in the LF and HF bands and also with free failures in some 
regions in condition of spontaneous respiration. He recovers in condition of controlled respiration but only 
for the behaviour, not under the profile of the values relating the Variability. Let us look at the histograms 
relating GC. The results obtained by inspection of the graphs is immediately confirmed, and this time with a 
precise quantitative estimation. 
Let us inspect now GM. By FFT he gave two well evidenced bands in LF and HF. 
The examination by CZF evidences an excellent profile in condition of spontaneous respiration.  In condition 
of controlled respiration such very good profile is highly confirmed and we inspect again the very excellent 
profile , and in addition we have also the expected effect of the controlled respiration. This is to say:  strong 
increased values of the Variability. Still, also note the balance that is realize between LF and HF regimes. 
Look at the corresponding histograms to have a quantitative accurate estimation.  
Finally, let us inspect SM. With the greatest contradiction respect to the real dynamics, the FFT spectrum 
showed only an evidenced band in the LF region. This is a very serious error in such analysis.  Instead   it is 
still a very interesting case. Really, by inspection with the CZF method one discovers that he has an excellent 
profile under spontaneous respiration but, however, it fails under the condition of controlled respiration. A 
look at the histograms also confirms that we had a net reduction of variability in passing from spontaneous to 
controlled respiration. The situation results inverted respect to the expected behaviour in such kind of 
experimentation. An inspection of the story of such subject finally cleared the Arcanum. SM is actually an 
athlete. Therefore, the condition of controlled respiration revealed itself as a condition of stress for such 
subject as promptly the CZF method revealed.  The results may be inspected in figures 29 and 30 for the 
different subjects. 
 
As final step we discuss now the case of some subjects affected by hypertension. We performed the analysis 
for seven minutes. In the following both the classical Hanning-window Fourier Analysis and CZF method 
will be presented for the same subjects. The results are given in Figures 31, 32, 33, 34 
 
 
Final Comments. 
The inspection by the FFT suggests that the subject BMG has a low LF  and an high HF. 
The subject CA instead has an high LF and a low HF. 
The subject CO-A results rather equilibrated in both the components LF and HF. The same happens for 
subject GV. 
The subject DM-S has an high HF/ moderate LF pattern analogously to CA. 
The subject GV gives again an equilibrated spectrum. 
IS  shows an high LF , and  the subject MA-AD eventually,  is characterized  by a very high LF.  
In conclusion, even in this case, we observe a marked heterogeneity as for patients we know in advance to 
share the same general condition (in this case hypertension).  
Let us comment now the results obtained by the CZF method. Looking at the  graphs,   BMG, CA, CO-A,  
DM-S, and GV subjects display a marked homogeneity and a general similarity to the ‘normal’ condition. 
The effects  induced from the hypertension are instead clearly observable in  IS and MA-AD subjects. 
Looking at such graphs we highlight two different physiological kind of effects. Hypertension induces a net 
lowering of the variability in the IS subject, and a very interesting  novel feature is observed for the subject 
MA-AD. He evidences so a large increase in the variability reaching for the first time of 12000-13000 

2secm that is about ten times greater the value of a normal subject. This is a very interesting case under the 
physiological and clinical profile that deserves carefully investigation (see Table 2). 
 
As last point,  let us give a look to the ratios FFT/CZF. Comparing such values with those that we estimated 
previously for normal subjects, it is clearly seen that only BMG seems indicate some non normal value for 
the LF(FFT)/LF(CZF), but all the other values remain in the range of normality that we calculated for normal 
subjects. Obviously we obtain instead rather large deviations for the two subjects IS and MA-AD as we 
confirmed also previously by the results obtained directly by using only the CZF 
Under the physiopathological profile, it seems that we may conclude that there are stages of hypertension 
that still has not produced a profound alteration of heart R-R Variability (an this is case of all the subjects 



with the exception of IS and MA-AD), while instead there are stages in which  such alteration has become  
evident and undoubtedly very severe. 
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Figure legend page 
 
Table 1: The frequency domain parameters for short term and long term analysis of HRV  
 
Figure 1: The conducting system of the heart. Edited from Guyton and Hall [2006]. 
 
Figure 2: The different action potentials for each of the specialized cells in the heart. Edited from 
Malmivuo and Plonsey [1995]. 
 
Figures 2a: Action potential in pacemaker cells (see ref. 6). 
 
Figures 2b: Action potential in cardiac contractile cells (see ref. 6).. 
 
Figure 3: Scheme of R-R interval. 
 
Figure 4: Vectorcardiographic representation during the depolarisation of the ventricular muscle 
mass. I, II, and III corresponds to Einthoven’s bipolar leads. Edited from Guyton and Hall [2006]. 
 
Figure 5: The sympathetic and parasympathetic innervation of the heart (see ref. 6). 

Figure 6: A 10 Hz sinusoidal time series. 

Figure 6a: FFT of the previous 10 Hz sinusoid 

Figure 7: A 9.5 Hz sinusoidal time series. 

Figure 8: Multi-line spectrum (FFT of 9.5 Hz sinusoid) 

Figure 9: 9.5 Hz sinusoid (End-to-end) 

Figure 10: The "Hanning" window 

Figure 11: Sinusoid multiplied by window 

Figure 12: Spectrum of 9.5Hz sinusoid (after windowing) 

Figure 13: Spectrum of 10Hz sinusoid (after windowing) 

Figure 14: End-to-end (0% overlap) 

Figure 15: 50% overlap 

Figure 16: 67% overlap 

Figure 17: 75% overlap 



Figures 18: FFT HRV analysis in normal subjects. 

Figures 19: Fourier analysis of normal subjects 

Figures 20: Fourier analysis of normal subjects 

Figure 21: Explanation of CZF behaviour in subjects during controlled respiration 

Figure 22: Explanation of CZF behaviour in subjects during controlled respiration 

Figure 23: Explanation of CZF behaviour in subjects during controlled respiration 

Figures 24:  CZF behaviour in normal subjects for different minutes of recording. 
 
Figures 25: Analysis of variability in normal subjects 
 
Figures 26 : Analysis of ratio Fourier/ CZF 
 
Figures 27 : A:Fourier analysis - Hanning - spontaneous respiration        

          B: Fourier analysis - Hanning - controlled respiration  
 
Figures 28 : Fourier analysis - Hanning spontaneous respiration    Hanning controlled respiration  
 
Figures 29 : A: CZF analysis of  spontaneous respiration,  

         B: CZF analysis controlled respiration 
 
Figures 30 : Histograms of ratios Fourier/CZF Comparison of spontaneous vs controlled 
respiration                                      

Figures 31 : Fourier analysis of subjects with hypertension 

Figures 32 : Fourier analysis  – Hanning – histograms  of subjects with hypertension  

Figures 33 : CZF analysis of subjects with hypertension 
 
Figures 34: CZF analysis – histograms of subjects with hypertension  
 
Table 2: ratio values Fourier/CZF 
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Figure 21 
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Figures 26 
 

Fourier- Hanning/ CZF 8.30-11 minutes
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Fourier- Hanning/ CZF 7 minutes
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Fourier- Hanning/ CZF 6 minutes
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Figures 27 
 
Fourier - Hanning spontaneous respiration   BS    Fourier - Hanning controlled respiration 
 

 
 
 
 
 
 
 
 
 
 
 



 
 
 
Fourier - Hanning spontaneous respiration    FE    Fourier - Hanning controlled respiration 
 

 

 
 
 
Fourier - Hanning spontaneous respiration    GC   Fourier - Hanning controlled respiration 

 
 
 
 
 
 
 
 
 
 
 



 
 
Fourier - Hanning spontaneous respiration    GM   Fourier - Hanning controlled respiration 

 
 
Fourier - Hanning spontaneous respiration    SM   Fourier - Hanning controlled respiration 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Figures 28 

 
 



 

 



 





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figures 29 
 

BS : CZF - spontaneous respiration     

 
BS : CZF - controlled respiration 



 
FE : CZF - spontaneous respiration     

 
FE : CZF - controlled respiration 



 
 
 
 
 

GC : CZF - spontaneous respiration     

 



GC : CZF - controlled respiration 

 
 
 
 
GM : CZF - spontaneous respiration     



 
GM : CZF - controlled respiration 

 
 
 
 



SM : CZF - spontaneous respiration     

 
SM : CZF - controlled respiration 

 

 
 
 



 
 
 
Figures 30 

 

 

 



 
 

 

 



 

 

 



 

 
 
 
 
 
 
 
 



 
 

 
 
 
 



 
 

 
 



 
 
 
 
 
Figures 31 
 
BMG Fourier - Hanning  
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Figures 32  
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The previous one without the subject-MA-AD 
 

Fourier Hanning 

0

50000000

100000000

150000000

200000000

250000000

300000000

BMG C-A CO-A DM-S GV IS

VLF
LF
HF
Tot. Var

 
 



Fourier Hanning 

0

1

2

3

4

5

6

7

BMG C-A CO-A DM-S GV IS MA-AD

LF/HF
LF/(LF/HF)
HF/(LF/HF)

 
 
 
Figures 33  
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Figures 34 
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Fourier Hanning 
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Table 2 
 
  Fourier Hamming /CZF 
  VLF(FFT)/VLF(CZF) LF(FFT)/LF(CZF) HF(FFT)/HF(CZF)
BMG 125.84 660.26 572.52 
C-A 118.43 163.48 490.88 
CO-A 49.92 312.40 792.87 
DM-S 162.75 276.63 236.18 
GV 373.02 246.61 327.57 
IS 62.58 167.84 2333.27 
MA-AD 2064.23 95.12 353.85 



 
  Fourier Hamming /CZF 
  VLF(FFT)/VLF(CZF) LF(FFT)/LF(CZF) HF(FFT)/HF(CZF)
BMG 11.22 25.70 23.93 
C-A 10.88 12.79 22.16 
CO-A 7.07 17.67 28.16 
DM-S 12.76 16.63 15.37 
GV 19.31 15.70 18.10 
IS 7.91 12.96 48.30 
MA-AD 45.43 9.75 18.81 
    

 
 
 
 


