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Abstract 
 
We start from previous studies of G.N. Ord and A.S. Deakin showing that both 
the classical diffusion equation and Schrödinger equation of quantum mechanics 
have a common stump. Such result is obtained in rigorous terms since it is 
demonstrated that both diffusion and Schrödinger equations are manifestation of 
the same mathematical axiomatic set of the Clifford algebra. By using both 
such )( iSA  and the 1,±iN algebra, it is evidenced, however, that possibly the two 
basic equations of the physics cannot be reconciled. 
 
 
1. INTRODUCTION 
 
It is well known that several tools enable us to derive the governing equations of 
classical dynamics from Lagrange equations and variational principles or directly 
from classical Newton’s laws of motion. In all the cases we arrive to consider 
differential equations that are admitted to describe the dynamical system under 
consideration. 
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Very often, however, it is tacitly admitted that they express the universal 
deterministic behavior of our reality. Instead we outline that determinism is not 
spontaneously exhibited from such equations. On the contrary, determinism is 
forced to be exhibited from such equations imposing from the outside that they 
must satisfy Lipschitz conditions. They are a mathematical restriction that we 
impose from outside to the set of considered differential equations, and such 
imposed restriction guarantees the uniqueness of solutions when fixed the initial 
conditions. 
However, there are some results that legitimate  doubts on the validity of such 
conditions as universally admitted as  it has been largely discussed by us 
elsewhere [1]. There are many cases in which Lipschitz conditions do not result 
compatible with the physical or the biological nature of the dynamics in 
consideration. The finding of Lipschitz violation in different systems regarding 
biological and physical dynamics, constitutes a promising acquisition in a current 
attempt to coherently and correctly describe the time dynamics of reality. The 
discovery of chaos contributed to better understanding the dynamics of evolution 
of systems as well as the interpretation and modeling of complex phenomena in 
physics and biology. The discovery of possible Lipschitz violation in a given set 
of differential equations cleared up on a new step in the framework of such 
chaotic studies. It follows from Lipschitz violation that a class of phenomena 
cannot be represented by deterministic chaos. In these cases the behavior of 
systems is governed by a new kind of dynamics that has been called discrete event 
dynamics. Here randomness appears as point events so that there is a sequence of 
random occurrences at fixed or random times but there are not additional 
components of uncertainty between these times [2-12]. In conclusion, the role of 
the mathematics is central in physics, and, in this particular case, it evidences in a 
substantial manner that are possible real conditions in which the determinism, 
generally assumed as an universal tenet regarding physical and biological 
dynamics, may be violated. 
In an excellent paper M. Zak [13-17] gave a non-Lipschitz approach to quantum 
mechanics. He made an effort to reconcile quantum mechanics with Newton’s 
laws corrected this time by the non Lipschitz formalism. In this paper we should 
pursue a step one. We would attempt to investigate if we may acknowledge an 
algebraic structure from which both classical diffusion equation and Schrödinger 
equation may be derived. It is well known that diffusion equation and Schrödinger 
equation evidence some profound conceptual differences in physics. We should 
be able to derive their common algebraic structure, if existing and the 
mathematical point in which such two basic and fundamental equations of physics 
bifurcate. 
 
2. INTRODUCTORY MATHEMATICS 
 
Let us fix the basic mathematical framework of our paper. 
The Clifford algebra Cl3 of ℜ3 is the real associative algebra generated by the set 
of abstract mathematical objects  (e1 , e2 ,e3)  satisfying the following two basic 
axioms   
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e1

2  =  e2
2 = e3

2 = 1       (2.1) 
and                                                                                                                 
e1 e2  =  - e2 e1 ;   e1 e3 = - e3 e1 ;  e2 e3 = - e3 e2       (2.2) 
The (2.1) and the (2.2) represent the two basic mathematical axioms of Clifford 
algebra. 
In this paper we will show that only such two mathematical axioms are required in 
order to derive both the diffusion and Schrödinger equations.   
The employed algebra is  8-dimensional with the following basis 

1    the scalar 
e1, e2, e3    vectors     (2.3) 
e1 e2, e1 e3, e2 e3            bivectors 
e123 = e1 e2 e3   a volume element 

An arbitrary element in Cl3 is the sum of a scalar, a vector, a bivector, and a 
volume element, and it must be written in the following manner   

q = γ + a + b e123 + μ  e123      (2.4) 
with q ∈ Cl3; γ, μ ∈ ℜ ,and  a, b ∈ ℜ3.  
As in particular we will discuss also in the following section, we are mainly 
concerned with the problem of a matrix representation of Cl3. Therefore, let us 
denote the set of  2 x 2 matrices with complex numbers as entries by Mat (2, C). 
This set may be regarded also as a real algebra with scalar multiplication taken 
over the real numbers in ℜ also if the matrix entries are in the complex field C. 
Let us remember that the Pauli spin matrices  

σ1 =  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
01
10

 ,  σ2 =  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
0

0
i

i
 ,  σ3 =  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−10
01

    (2.5) 

satisfy the multiplication rules 
σ1

2 = σ2
2 =  σ3

2 = I  
and           (2.6) 

σ1σ2   =  -σ2 σ1  = i σ3 
σ3 σ1 =  - σ1σ3 = i σ2 
σ2 σ3 = - σ3 σ2 = i σ1  

 The (2.5) and the (2.6) generate the real algebra Mat(2,C). 
The correspondence 
 I  ↔ 1 

σ1,σ2,σ3 ↔ e1, e2, e3     (2.7) 
σ1σ2 ,σ2σ3 , σ1σ3 ↔  e1e2, e2e3, e1e3  

establish an isomorphism between real algebras. We have that  
Cl3  ≅ Mat (2, C)       (2.8) 

An essential difference between the Clifford algebra Cl3 and Mat (2, C) remains in 
the fact that in Cl3 we distinguish, by definition, a particular subspace, the vector 
space ℜ3, while no distinguished subspace is signed in the definition of Mat (2, 
C). 
The theory of Clifford algebra includes basically the statement that each Clifford 
algebra is isomorphic to a matrix representation. 
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Idempotents are members of the previous  algebra with the particular well known 
property that, when squared, give themselves. 
For Cl2, we have two basic members (basic elements) ei (i = 1,2) (e1e2 = - e2e1), 
and one such idempotent involves only one basic element, i.e., 

 ψ1 = 
2
1  ( 1 + e1)  ,      ψ1ψ1  = ψ1    (2.9) 

If the idempotent is multiplied by the other basic element, e2, other functions can 
be generated, as it follows:  

ψ2 = e2ψ1 = (
2
1 – 

2
1 e1) e2 ;  ψ3 = ψ1 e2 = (

2
1 +

2
1  e1) e2; 

ψ4 = e2ψ1e2 = 
2
1  -  

2
1  e1.                  (2.10) 

In addition, we have also that  
ψ1 e1ψ1 = 0 

The important thing that we must retain for the following arguments is that the  
four functions ψi (i=1, 2, 3, 4) provide means to represent any member of the 
space. A general member q is given in terms of the basis members of the algebra 
in the following manner 

q = a0 + a1 e1 + a2 e2 + a3 e1e2                           (2.11) 
and q may be represented by the series of terms of the idempotents 

q= a11 ψ1 + a21ψ2 + a12ψ3 + a22ψ4               (2.12) 
 with  

a11+a22 = 2 a0   a12 + a21 = 2 a2              (2.13) 
a11 – a22 = 2 a1  a12 – a21 = 2 a3    

On the other hand, calculating ψ1qψ1, ψ1qψ2, ψ3qψ1, ψ3qψ2, one finds that a 
matrix A may be defined   

A  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2221

1211

aa
aa

                    (2.14) 

with  
 a11 = a0 + a1,    a22 = a0-a1,    a12= a2+ a3 ,    a21= a2-a3 
and 

(1 e2) A ψ1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

1
e

 = q = a11ψ1 + a21ψ2+a12ψ3 + a22ψ4                       (2.15) 

Thus, we may conclude that the (2.15) generates the general Clifford number q. 
When equating q with 1, e1, e2, e1e2, respectively, we obtain the final matrix 
expressions multiplied by the idempotent: 

q = 1,  A ψ1 =  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
01

 ψ1 ;   q = e2 ,   Aψ1 = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
01
10

 ψ1  

q = e1,  Aψ1= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−10
01

ψ1 ;   q = e1e2 ,  Aψ1 = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 01

10
 ψ1        (2.16) 

These are the usual basis matrices for Cl2. 
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 A set of basis matrices for Cl3 may be obtained following the same previous 
procedure. In this case one obtains that 

e0

1 0
0 1≡

⎛
⎝
⎜

⎞
⎠
⎟ ; e1

0 1
1 0=

⎛
⎝
⎜

⎞
⎠
⎟ ; e

i
i2

0
0=

−⎛
⎝
⎜

⎞
⎠
⎟ ; e3

1 0
0 1=

−
⎛
⎝
⎜

⎞
⎠
⎟         (2.17) 

With a proper choice of the idempotent, we may also arrive to express new sets of 
basis matrices at n = 4 , 8 , .... . 
They are expressed in the following manner 
 E0i = I1 ⊗ e i ;  Ei0 = ei ⊗ I2               (2.18) 
The notation ⊗ denotes direct product of matrices, and Ii is the ith 2x2 unit matrix. 
Thus, in the case of n= 4 we have two distinct sets of  basis matrices, E0 i and Ei 0, 
with  
 E i0

2 1=  ;  Ei0
2 1=  ; i = 1, 2, 3;         (2.19) 

 E0i E0j = i E0k ;  Ei0 Ej0 = i Ek0 ;  j = 1, 2, 3;  i ≠ j 
and 
 Ei0 E0j =E0j Ei0                                         (2.20) 
with (i, j, k) cyclic permutation of (1, 2, 3).  
Let us examine now the following result  
 (I1 ⊗ ei) (ej ⊗ I2) = E0i Ej0 =Eji                      (2.21) 
We have that E0i Ej0 = Eji with i = 1, 2, 3 and j =1, 2, 3, with E j i

2 = 1,  
Eij Ekm ≠ Ekm Eij, and Eij Ekm= Epq where p results from the cyclic permutation (i, k, 
p) of (1, 2, 3) and q results from the cyclic permutation (j, m, q) of (1, 2, 3).  
In the case n = 4 we have two distinct basic matrices E0i , Ei0 and, in addition, 
basic sets of unities (Eij, Eip, E0m) with (j, p, m) basic permutation of (1, 2, 3). 
Similarly, we may realize other basic sets of basis matrices using (Eji, Epi, Em0). 
Note the basic role explained from cyclic permutations of (1, 2, 3) and their strong 
connection with non commutativity of the chosen basic elements. 
In the case of matrix representation at order n= 8, we have the possibility to 
introduce three sets of biquaternion basic unities. We will have E00i, E0i0, and Ei00, 
i = 1, 2, 3 and 
E00i  = I1

 ⊗ I1 ⊗ ei ;       E0 i0 = I2 ⊗  ei ⊗ I2
 ;     Ei 0 0 = ei ⊗ I3

 ⊗ I3
 

and 
(I1⊗I1⊗ei)(I2⊗ei ⊗I2)(ei ⊗I3⊗I3) = ei⊗ei⊗ei = E00iE0i0Ei00 = Eiii        (2.22) 
Still we will have that  
E00i E0i0 = E0i0 Ei00;   E00i Ei00 = Ei00 E00i ;  E0i0 Ei00  = Ei00 E0i0        (2.23) 
In the case n = 8 we have three distinct basic unities, and, in addition, we have 
other sets of basis matrices, as example (Eijk, Eiji, Eijj). Other cases are obviously 
possible. 
Generally speaking, fixed the order n of the matrix representation of the set of  
basis matrices, we will have that 
 Γ1 =  Λ n 

 Γ2m =  Λ n-m ⊗ ⊗ ⊗ ⊗− + − +e I In m n m n
2

1 2( ) ( ) .........         (2.24) 
 Γ2m+1 =  Λ n-m ⊗ ⊗ ⊗ ⊗− + − +e I In m n m n

3
1 2( ) ( ) .........  

 Γ2n = e I I n
2

2⊗ ⊗ ⊗( ) .........  
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with 
Λn= e e e n

1
1

1
2

1
( ) ( ) ( ).....⊗ ⊗ ⊗ = ( e I I n

1
1⊗ ⊗ ⊗( ) ..... ).(........).( I I I en( ) ( ) ( )...1 2

1⊗ ⊗ ⊗ ); 
m = 1, ....., n - 1 
according to the n-possible dispositions of e1 and I1, I2, ..., In in the distinct direct 
products. 
Basis matrices are determined by the number of dispositions possible for ei and 
I(n). 
In this manner we have established that matrix representations of Cl3 exist at 
different orders n = 2, 4, 8, ..... . 
We may now give the explicit expressions of E0i, Ei0, and Eij. 

E01

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

;  E

i
i

i
i

02

0 0 0
0 0 0

0 0 0
0 0 0

=

−

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

;    E03

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

=
−

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

    

E10

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

; E

i
i

i
i

20

0 0 0
0 0 0

0 0 0
0 0 0

=

−
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

E30

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

=
−

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

; 

E11

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

; E22

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

=

−

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

;  E33

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

=
−

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

;   (2.25) 

E

i
i

i
i

12

0 0 0
0 0 0
0 0 0

0 0 0

=

−

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ;   E13

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

=
−

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  ;     E

i
i

i
i

21

0 0 0
0 0 0
0 0 0

0 0 0

=

−
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ; 

E31

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

=
−

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

;       E

i
i

i
i

23

0 0 0
0 0 0

0 0 0
0 0 0

=

−

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

;         E

i
i

i
i

32

0 0 0
0 0 0

0 0 0
0 0 0

=

−

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

. 

Let us return to our Cl3 mathematical formulation and let us explore still some 
other important features of the idempotents. 
In order to semplify our elaboration we remain to consider matrix representation 
of Cl3 at order n=2. 
Consider that, with regard, as example, to the basic element e3 of Cl3, we may 
identify an idempotent ψ, and we write that 

e3 ψ =  ψ and ψ e3 = ψ                (2.26) 
Still, we may identify an idempotent ϕ so that 

e3 ϕ = - ϕ and ϕ e3 =  - ϕ                 (2.27) 
We may also generalize such definitions. 
In fact, we may have that  
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e3 ψ1 = ψ1 and  ψ2 e3 = ψ2               (2.28) 
and 

e3 ϕ1 =  - ϕ1 and  ϕ2 e3 = - ϕ2                           (2.29) 
Calculations show that in the case of the (2.25), we have that 

ψ =  
2

1 3e+
                     (2.30) 

In the case of the (2.26), we have  

ϕ = 
2

1 3e−
                    (2.31) 

In the case of the (2.27), we have  

ψ1 = 
2

1 3e+
+ 

2
21 iee +   and   ψ2 = 

2
1 3e+

+ 
2

21 iee −                 (2.32) 

In the case of the (2.28), we have  

 ϕ1 = 
2

1 3e−
+ 

2
21 iee −      and     ϕ2 = 

2
1 3e−

+ 
2

21 iee +               (2.33) 

Consider again the (2.26) that now we rewrite as it follows 
  (e3 - 1) ψ = 0    and    ψ( e3 - 1) =0                   (2.34) 
As rigorously admitted from our elaboration of the previous pages, let us calculate 
now the (2.34) with regard to ei, i = 1,2 . We obtain that 

ei ( e3 - 1) ψ = 0     and    ψ ( e3 - 1) ei = 0                 (2.35) 
Thus, we may conclude, with regard to ψ that, as example, we have that  
 (i e1 - e2 ) ψ = 0    and     ψ ( i e1 + e2 ) = 0                 (2.36) 
Considering  the (26), we may rewrite that  
 (e3 + 1) ϕ = 0     and       ϕ (e3 + 1 ) = 0                      (2.37) 
We may  calculate the (2.36) with regard to ei,  i = 1,2, obtaining 
 ei ( e3 + 1) ϕ = 0   and    ϕ ( e3 + 1) ei = 0                  (2.38) 
Thus we may conclude that with regard to ϕ  we have that 

(i e1 + e2 ) ϕ = 0    and      ϕ ( i e1 - e2 ) = 0                (2.39) 
In previous papers we have largely used Clifford algebra to realize a bare bone 
skeleton of quantum mechanics and therefore we will not discuss such basic 
features furterly here.[18-19] 
 
 
3. THE DERIVATION OF DIFFUSION AND  
SCHRÖDINGER EQUATIONS 
 
Let us attempt to show that we may derive Diffusion and Schrödinger equations 
using only the two basic algebraic axioms (2.1) and (2.2) that we introduced in the 
previous section without assuming quantum mechanics physical foundations. 
In this elaboration we will utilize some results that were previously obtained by 
G.N. Ord and A.S. Deakin [20-22]. 
 
Consider the diffusion equation in 1+1 dimensions 
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2

2

x
uD

t
u

δ
δ

=
δ
δ

         (3.1) 

According to A. Einstein in 1905 it goes with a microscopic model of Brownian 
motion with u(x,t) describing the ensemble average concentration of small 
particles undergoing such Brownian motion on a scale much less than the scale of 
observation. 
Schrödinger equation is written as  

2

2

x
iD

t δ
ψδ

=
δ
δψ

        (3.2) 

It is seen that apparently one may obtain the (3.2) from the (3.1) in a mathematical 
way considering the time coordinate to be imaginary in the previous diffusion 
equation (3.1). This was correctly indicated to be a mathematical extension, a 
formal analytic continuation (FAC) and this indicated that we may compare the 
solutions of the two equations also if the solutions of diffusion equations result 
qualitatively very different from those of free particle Schrödinger’s equation. 
G.N. Ord and A.S. Deakin [20-22] discussed in detail this problem. According to 
such authors, both diffusion and Schrödinger equation happen in the domain of 
classical statistical mechanics. The model they used is the standard lattice random 
walk model of Brownian motion: solutions of the diffusion equation appeared 
directly in a first order projection out of the considered space while solutions of 
Schrödinger’s equation appeared directly in a second order projection. The 
conclusion was that two qualitatively different behaviors coexist in the same 
physical system since the two considered projections resulted to be orthogonal. 
Ord and Deakin’s conclusion was that no FAC is required to be conceived in 
order to introduce Schrödinger equation from this classical model: both the 
equations delineate different views of the same system represented by an 
ensemble of Brownian particles. FAC indicated a link of the two equations, while, 
according to [20-22], in this model we have a “wave function” that is an 
observable property of the examined ensemble of real point particles. 
As basic framework the authors [20-22] considered a space-time lattice with 
spacings δ and ε. Particles were considered to hop on lattice a distance ± δ at each 
time step ε. The walks are symmetric and at each lattice site walks are equally 
likely to take either direction. Also we shall be interested in the statistics of the 
number of direction changes in trajectories on the lattice. G.N. Ord and Deakin 
considered that between lattice sites, each particle will be in one of two direction 
states, the right or the left movement, respectively with one of the two spin states. 
Ising spin variable was used with σ = ±1 in order to describe such two states. The 
direction state was considered to change with every collision, the direction 
change, while instead the spin was considered to change with every two 
collisions. In this manner, a particle starting off in state 1 (right moving and σ = 
+1) changes to state 2 having left moving and σ = +1 at the first collision, it will 
have state 3, right moving and σ = -1, at the second collision, while instead it will 
arrive at state 4 it with left moving and σ = -1 at the third collision, and back to 
state 1 at the fourth collision. States one and three will correspond both to right  
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moving particles and states two and four will correspond to left moving. A 
particle starting in state 1 (2) and ending in the same direction state 3 (4) will 
result to have changed its spin from +1 to –1.Ising spin was not considered a new 
property added to the particle but a simple label helping to classify particle 
trajectories. Finally, Ord and Deakin considered a so called parity in order to 
account for differences between two states with identical directions.  
The authors [20-22] indicated by pμ (mδ, sε)δ (μ = 1,2,3,4) the probability that the 
particle, leaving the space-time point (mδ, sε), is in state μ (m=0, ± 1,……..; 
s=0, ± 1,………..). 
The master equation expressed by the following set of difference equations was 
written 

p1(mδ,(s+1)ε) = 
2
1 p1((m-1)δ,sε)  + 

2
1 p4((m+1)δ,sε) 

p2(mδ,(s+1)ε) = 
2
1 p2((m+1)δ,sε) + 

2
1 p1((m-1)δ,sε)                       (3.3) 

p3(mδ,(s+1)ε)  = 
2
1 p3((m-1)δ,sε) + 

2
1 p2((m+1)δ,sε) 

p4(mδ,(s+1)ε) = 
2
1 p4((m+1)δ,sε) + 

2
1 p3((m-1)δ,sε) 

If we multiply the first equation by δ, we have that the probability for a particle 
leaving the node (mδ, (s+1)ε) in state 1, is equal to the sum of two probabilities, 
the first representing the probability that a particle leaves node ((m-1)δ, sε) in 
state 1 and remains in this state when it leaves node (mδ, (s+1)ε) and the second 
representing probability that particle leaves the node ((m+1)δ, sε) in state 4 and 
changes to state 1 when it leaves the node (mδ, (s+1)ε). The remaining equations 
may be interpreted in a similar way. The probability pμ is uniquely determined 
since the initial conditions are fixed. Fixed s 0≥ , we have also that  

∑ ∑
=μ

+∞

−∞=
μ =δεδ

4

1 m

1)s,m(p  

so that the probability for particle to be somewhere on the lattice at a given time is 
equal to one. 
Assuming qi(s) (i=1,2,3,4) is the probability for a particle to be in the i-th state 
(i=1,2,3,4) at the s-th step on the lattice, one has that 
(q1(s+1),q2(s+1),q3(s+1),  q4(s+1))T=T(1)(q1(s),q2(s),q3(s),q4(s))T      (3.4) 
where the transition matrix T(1) defines a Markov chain.  
In this manner we have reached the central point of our paper. 
Generally speaking, the most general Markov chain with four states may be 
defined by the following matrix 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

α
=α

1100
0110
0011
1001

2
)(T       (3.5) 
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where, with α = 1, Tij is the probability of a transition from state j to state i in one 
step. Ord and Deakin just started with (3.5) in their elaboration. The problem that 
at this point we pose is the following:  
have we a set of a purely mathematical axioms by which we may derive all the 
results that were previously obtained by these authors? 
Let us start observing that T(α), as indicated in the (3.5), is a general member of 
the Clifford algebra that we introduced in the previous section. In detail we may 
write that 

 T(α) = [ ]211 ZeZ1
2

⊗+⊗
α

       (3.6) 

where 

 Ζ1 = 1 + 2
1

e1 - 2
i

e2; Ζ2 = 2
1

e1 + 2
i

e2                 (3.7) 

In order to discuss other features of the Markov process, one considers a change 
of variables from qi(s) (i = 1, 2, 3, 4) to μi(s) (i = 1, 2) and ξi(s) (i = 1, 2): 
 μ1 = q1 + q2 + q3 + q4 ;  μ2 = (q1 + q3) – (q2 + q4) 
 ξ1 = q1 - q3   ξ2 = q2 - q4     (3.8) 
where μ1 ≡ μ1(s) is the sum of all the occupation probabilities, μ2 ≡ μ2(s) is the 
difference of occupation probabilities by direction, ξ1 ≡ ξ1(s) and       ξ2 ≡ ξ2(s) 
represent instead the differences of occupation of the 2 spin states for right and 
left moving particles, respectively. In matrix form it is obtained that 

 
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ξ
ξ
μ
μ

2

1

2

1

 = R 
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

4

3

2

1

q
q
q
q

 with R = 
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

−−

1010
0101
1111

1111

    (3.9) 

In our mathematical framework the (3.9) becomes the following equation 
involving general members of Clifford algebra 
 U = R P                    (3.10) 
where R is the Clifford general member 
 R = Z3 ⊗ Z4 + Z5 ⊗ 1                   (3.11) 
and  

 Ζ3 =  2
1

 + 2
1

 e1 + 2
i

 e2 + 2
1

e3 ;  Z4 = e1 + e3 ;   

 Ζ5 = − 2
1

 + 2
1

 e1 − 2
i

 e2 + 2
1

e3 

P is the following Clifford member 
 
 P= Z6⊗Z7 + Z8⊗Z9                  (3.12) 
with 

Z6 = 
2
1 +

2
1 e3 ;    Z7 = 3

11 e
2
q

2
q

+ 321
2 eq

2
ie

2
q

−+ ;       Z8= 21 e
2
ie

2
1

− ; 

And 
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Z9 = 2
4

1
4

3
33 e

2
iqe

2
qe

2
q

2
q

−++  

Finally, U is given in the following manner 
 U = Z6⊗Z’

7 + Z8⊗Z’
9                  (3.13) 

where 

Z’
7= 2

2
1

2
3

11 e
2

i
e

2
e

22
μ

−
μ

+
μ

+
μ

  and    Z’
9= 2

2
1

2
3

11 e
2

ie
2

e
22

ξ
−

ξ
+

ξ
+

ξ
 

At this stage a basic result may be evidenced from a theoretical as well as 
mathematical physics view points: the equations contained in Ord and Deakin’s 
paper may be obtained in terms of Clifford algebra.  
The interesting conclusion is only one. The results obtained in [20-22] are 
expression of the basic set of axioms of Clifford algebra. 
In the calculations, Ord and Deakin normalized ξi(s) defining 
 ξ’

i(s)  = ( 2 )s ξi(s) 
and introducing the (3.9) in the (3.5), they splitted the problem in two final 
equations that again are given in terms of Clifford members 
 
 Ξ(s+1) = V Ξ(s)                    (3.14) 
with 

 V= )ie1(
2

1
2−     

and 

 Ξ(s)= 2
2

1
2

3
11 e

2
)s(ie

2
)s(e

2
)s(

2
)s( ξ

−
ξ

+
ξ

+
ξ

 

and similar Clifford member for Ξ(s+1). 
The equations (3.3) characterize the full random walk of the system. It remains to 
show that the solutions of these equations can be approximated in terms of 
solutions of diffusion and of Schroödinger equations. To this purpose in [20-22] it 
was used the usual diffusive scaling of random walks for small δ  

 )(OD
2

2
δ+=

ε
δ   or   )(O

D2
3

2
δ+

δ
=ε                  (3.15) 

where D is the constant of diffusion. Let us consider the following shift operators, 
Ex

±1 and Et, acting in the following manner 
 Ex

±1 pi(mδ,sε) = pi( (m ± 1)δ,sε) ; 
 Et pi(mδ,sε) = pi(mδ,(s+1)ε)                 (3.16) 
The (3.3), the basic master equation of the paper, results to be still a basic 
equation expressed by Clifford members. In fact, we have that 
 P(mδ,(s+1)ε) = L P(mδ,sε)                   (3.17) 
 
with 

 L= )TeT1(
2
1

211 ⊗+⊗          
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and                      (3.18) 
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Instead P is given by the following Clifford member 
 P = Z6⊗Q7+Z8⊗Q9 
where 

Q7 = 3
1

2
2

1
21 e

2
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2
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2
p

2
p

+−+   and     Q9 = 3
3

2
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1
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2
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2
p

2
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Thus, in conclusion, the master equation, given in the (3.3), is expression of the 
basic axiom set of the Clifford algebra. 
Ord and Deakin operated the following change of variables 
 z1 = p1+p2+p3+p4 ;  z2 = (p1+p3)-(p2+p4) ;    (3.19) 
 φ1 =p1-p3 ;   φ2=p2-p4 
and we may arrive to write the following and final Clifford equation 
 χ1  =  Nχ                    (3.20) 
with 

N = 
2
1 [ ]21016 NZNZ ⊗+⊗  

N1 = ( )
2

EE 1
xx
−+  + ( )

2
EE 1

xx
−+  e3 + ( )

2
EE x

1
x −−

 e1 + i ( )
2

EE x
1

x −−

 e2 ; 

Z10 = 
2
1  - 

2
1 e3 ; 

N2 = ( )
2

EE x
1

x +−

 + ( )
2

EE x
1

x −−

 e3 + ( )
2

EE x
1

x −−

 e1 –i ( )
2

EE 1
xx
−+  e2 

and  
χ = 2816 BZBZ ⊗+⊗  

where 

12223
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1 ez
2
iez
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2
z

B +−+= ;   221
2
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2 e
2
ie

2
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22
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φ
+

φ
+

φ
=  

By using such mathematical procedure, we have arrived now to explain in 
mathematical terms the reason by which both the diffusion and the Schrödinger 
equations appear within the domain of classical statistical mechanics and the 
reason by which diffusion equations appears directly in a first order projection of 
the considered space while Schrödinger equation appears in a second order 
projection. We have two equations that express two qualitatively different 
behaviors to coexist in the same physical system. 
The reason of such two different projections resides in the intrinsic mathematical 
features of Clifford algebra. As said in the previous section, a significant feature 
of such algebra is that it admits primitive idempotents that here we may consider 
to be given in the following manner 
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2
e1 i

i
+

=ψ    ,  i = 1, 2, 3 

and whose important properties were outlined in the (2.26) – (2.39) of the 
previous section. We also outlined in other papers their importance in order to 
explain the actual origin of quantum mechanics [23-26]. Here we obtain that they 
have a decisive role in determining the two projections that give origin to 
diffusion and Schrödinger equations respectively. We have a basic mathematical 
set that from one hand determines both the two equations and at the same time is 
able to differentiate between diffusion and Schrödinger equations on the basis of 
its intrinsic mathematical features. Consider as example the idempotent 

2
e1 3

3
+

=ψ    

One has that  
e3 3ψ  = 3ψ  ; 3ψ  e3  = 3ψ  ; (e3 –1 ) 3ψ  = 0   and   3ψ  (e3-1) = 0  

In the same manner one has that 
ej(e3-1) 3ψ  = 0   and    3ψ  (e3-1)ej = 0 ;  j = 1, 2. 

Such idempotents have a decisive role in characterizing Clifford algebra since 
some their products, as seen in the previous trivial example, give zero. At this 
stage one may note that all the Clifford members that we calculated for N and χ of 
the (3.20) are just expressed always in terms of the idempotents that we have here 
indicated. Owing to the intrinsic mathematical features of such idempotents in the 
(2.20) one obtains that the general Clifford member N1 will act only on the basic 
Clifford element B1 of χ , depending only from z1 and z2, while the other Clifford 
member N2 will act only on the Clifford member B2 of χ , depending this time 
only from the completely different variables. As a result of such basic 
mathematical features, using N1 we will arrive to establish only the usual 
diffusion equation, while, using N2, we will arrive only to Schrödinger’s equation, 
both formulated in the framework of the same model, and, mathematically 
speaking, on the basis of the same basic axiom set defining the employed algebra. 
In a previous paper we demonstrated two theorems in Clifford algebra showing 
the manner in which they arise giving algebraic solution to the well known 
quantum measurement problem in quantum mechanics. They arose showing that 
during a measurement we have a transition from the the standard Clifford A( iS ) 
algebra to the Dihedral algebra 1,±iN  where new commutation rules appear and 
linking in some manner the present formulation [27]. In addition, using 
idempotents, interpreted, according to von Neumann, as logical statements, we 
also arrived to support the logical origin of quantum mechanics [23-26]. An 
intrinsic cognition principle appears in our formulation as this problem is 
investigated in detail in [28-37]. 
Here, we have given a clear Clifford algebraic explanation on the common 
mathematical structure that determines such two equations but at the same time 
we have given large evidence about the mathematical origin of their formal and 
conceptual differentiation in physics. 



1302                                                                                                             E. Conte 
 
 
We may now conclude moving the calculations in the direction of the continuum 
limit as previously was performed in ref. [20-22]. One considers  

Ex )s,M(i εδγ  = )s,M(i εδ+δγ  
expanding )s,M(i εδ+δγ  in a power series of δ  with 

Ex = 1 + L + 
2
1 L2 + O ( )3δ                  (3.23) 

where L = 
xδ
δ

δ  , one arrives to 

L )s,M(i εδγ = L iγ  (x,t)                   (3.24) 
with the domain definition of iγ  extended to all the (x, t) and iγ  (x, t) considered 
to be continuously differentiable. 
Since the (3.23), one has that 

1
xE −  =1 – L + 

2
L2

 + O ( )3δ                  (3.25) 

and for N2 one has that 
( ) )(OLee

2
L2iLe

2
L2

2
1N 3

32

2

1

2

2 δ+⎥
⎦

⎤
⎢
⎣

⎡
−

+
−−

+
=               (3.26) 

that may be written in the following manner 

)(O)ee(L
2

1)ie1(
2

1)L
2
11(N 3

312
2

2 δ++−−+=               (3.27) 

One may call  

V= )ie1(
2

1
2−  as in the (3.14) 

and 

B=- )ee(
2

1
31 +                   (3.28) 

and thus  obtains that 

N2 = V + BL + )(OVL
2
1 32 δ+                    (3.29) 

Owing to the intrinsic features of Clifford algebra, one has that 

2
2 ie1V2V −=−= ; BV=-e3; VB=- e1; VB+BV = 2 B;  B2 =1   (3.30) 

Therefore, it is obtained that 
N 2

2  = (1+L2) V2 + L (VB+BV) +L2 B2 + O ( )3δ  =  
2 L2 B + 2 L B –ie2                (3.31) 

In the same manner one has that 
N2

4 = -1 –2ie2 L2 + O ( )3δ                   (3.32) 
since it is that 

V(-ie2)=(-ie2)V=V- 2 ;   B (-ie2) =-(-ie2)B =
2
2 (e1-e3)            (3.33) 

Finally, one obtains that 
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N2
8 = 1 + 4ie2 L2 + O ( )3δ                  (3.34) 

In conclusion, remembering that in the (3.20) we have 1χ = Et χ  with Et giving 

Et
8 = 1 + 8 ε  )(O

t
2ε+

δ
δ                    (3.35) 

and χ  given in the following manner 

χ  = 3
1

2
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1
21 e

2
e
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22
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φ                    (3.36) 

we have that  
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and calculating  

Et
8 χ  = (1+8

tδ
δ

ε )( )e
2

e
2

ie
22 3

1
2

2
1

21 φ
+

φ
−

φ
+

φ                 (3.38) 

and equaling the (3.37) with the (3.38) as it is on the basis of the (3.20) and of the 
(3.3), one obtains that such two Clifford members coincide if and only if it 
happens that 

t
2

x
2

22
1

2

δ
δφ

δ
ε

−=
δ

φδ    and   
t

2
x

1
22

2
2

δ
δφ

δ
ε
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δ

φδ              (3.39) 

Since 

)(OD
2

2

δ+=
ε

δ  

we have that 

2
2

2
1

x
D

t δ
φδ

=
δ
δφ   and  2

1
2

2

x
D

t δ
φδ

−=
δ

δφ              (3.40) 

as they were also derived in ref.[20-22]. 
Again we may outline here that all the present matter seems to run about the 
important presence of new basic commutation rules that are involved in algebraic 
transition from the A( )iS  to 1,±iN  .  
One may also introduce the following functions 

)t,x(i)t,x()t,x( 12 φ+φ=ψ+    and  )t,x(i)t,x()t,x( 12 φ−φ=ψ−  
and thus obtaining the final forms of Schrödinger’s equations 

2

2

x
)t,x(D

t
)t,x(i

δ
ψδ

−=
δ

δψ ++  and 2

2

x
)t,x(D

t
)t,x(i

δ
ψδ

=
δ

δψ −−       (3.41) 

simultaneously admitted from Clifford algebra in complex and complex conjugate 
forms. 
At the same time, using this time the general Clifford member N1, given in the 
(3.20), following the same Clifford algebraic procedure one arrives to write the 
well-known diffusion equation 
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2

2

x
)t,x(zD

t
)t,x(z

δ
δ

=
δ

δ                   (3.42) 

The important conclusion of such long derivation is thus clear: both diffusion and 
free Schrödinger equations are Clifford members. In detail, they are emanations of 
the same basic axiomatic set of the Clifford algebra, the A( )iS , in particular the 
(2.1) and the (2.2) that we enounced in the previous section, and, in case, the 
associated 1,±iN  Dihedral algebra. By using both such algebras, it seems, 
however, that both such equations, also arising from the same axiomatic set, 
possibly they cannot be reconciled. 
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