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ABSTRACT 
An information recovery problem is the problem of constructing a proposition 
containing the information dropped in going from a given premise to a given 
conclusion that follows. The proposition(s) to be constructed can be required to 
satisfy other conditions as well, e.g. being independent of the conclusion, or 
being "informationally unconnected" with the conclusion, or some other 
condition dictated by the context. This paper discusses various types of such 
problems, it presents techniques and principles useful in solving them, and it 
develops algorithmic methods for certain classes of such problems. The results 
are then applied to classical number theory, in particular, to questions 
concerning possible refinements of the 1931 Gödel Axiom Set, e.g. whether any 
of its axioms can be analyzed into "informational atoms". Two propositions are 
"informationally unconnected" [with each other] if no informative 
(nontautological) consequence of one also follows from the other. A proposition 
is an "informational atom" if it is informative but no information can be dropped 
from it without rendering it uninformative (tautological). Presentation, 
employment, and investigation of these two new concepts are prominent 
features of this paper. 

 
1. Introduction. In the broadest sense an information recovery problem arises when we have a 
given premise and a given conclusion that follows. In this situation, as a rule but not in every case, 
"information" has been "lost" or "dropped" in going from the premise to the conclusion. The 
problem is to "recover" the information, if any, that may have been dropped. Strictly speaking, the 
problem is to find another consequence [of the premise] whose conjunction with the given 
conclusion implies the premise in return. 
 In order to discuss situations of this sort we use the following terminology: the premise P; the 
first (or given) conclusion C; the (or a) second conclusion S. Second conclusions are also called 
solutions and where it is of interest to present several solutions the letter S will be indexed: S1, 
S2, S3, and so on. 

1.1. For example, if the premise P is "Every number divides itself" and the given conclusion C is 
"Two divides two", then one solution S1 may be taken to be "Every number 
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other than two divides itself". A second solution S2 is the conditional proposition "If two divides two 
then every number divides itself". The solution S1 comes readily to mind; the solution S2 is less 
natural; but it contains less information; and, in fact, it "overlaps" less with the conclusion. Thus, 
for some purposes, S2 is preferable to S1. Once we have established the conditional proposition 
S2 as a solution we see that dropping information from its antecedent "Two divides two" produces 
further solutions. Take S3 to be "If two or three divides itself then every number divides itself". 
Take S4 to be "If two, three or four divides itself then every number divides itself". This produces 
an infinite sequence of ever more informative propositions whose limit, so to speak, is the 
proposition "If some number divides itself then every number divides itself", which we call S*. 
 The last solution S* is very close to the original premise "Every number divides itself", which, 
strictly speaking according to the definition of the problem, is also a solution. Notice that none of 
the propositions mentioned are logically equivalent and that they are all situated between two 
limiting cases; the premise itself and the conditional S2. The premise implies each and every 
solution; each and every solution implies the conditional S2. S2 is what we will call the standard 
conditional for this information recovery problem; the standard conditional for a given information 
recovery problem is the conditional of the given conclusion C with the given premise P, that is, the 
conditional whose antecedent is C and whose consequent is P. 
 The fact that the premise implies each and every solution is part of the definition of the 
problem. The fact that each and every solution implies the standard conditional can be inferred 
immediately from a form of "the conditional deduction theorem" [Corcoran 1985]: in order for a 
given proposition X to imply a given conditional (If Y then Z) it is sufficient for (X and Y), the 
conjunction of the given proposition with the antecedent, to imply the consequent Z. In the present 
context "the given proposition X" is an arbitrarily chosen solution, "the antecedent Y" is the first 
conclusion and "the consequent Z" is the premise. The condition involving the premise being 
implied by the conjunction of the arbitrarily chosen solution with the conclusion is simply the 
definition of being a solution. 
 As just mentioned, nothing has been said which rules out "trivial" solutions, i.e. solutions 
equivalent to the original premise. Thus we can take as another solution ST1 "Every number is 
divided by itself" and as yet another ST2 "Every number that does not divide itself divides itself". 
Ingenuity will produce many more propositions equivalent to the premise, that is, many more trivial 
solutions. 
 For several reasons including the need to rule out trivialities, it is convenient to consider 
qualifications or restrictions, and thus to define classes of qualified information recovery problems. 
But before we take up this task we need to describe the presuppositions that we are making in our 
examples. In this paper, we subscribe to standard classical predicate logic with identity and 
functions. It goes without saying that universes of discourse are presumed to be nonempty and 
that the universal quantifier is presumed to have existential import in the sense that, e.g. "Every 
number divides itself" implies "Some number divides itself". Of course, "Every number that 
exceeds itself is both odd and even" does not imply "Some number that exceeds itself is both odd 
and even"; the former is vacuously true and the latter is false. 
 In most cases, the universe of discourse can be taken to be the class of natural numbers. In 
these cases the individual variables range over that class as in Gödel 1931, which is also the 
source of the arithmetic axioms used below; and the word 'number' in the English sentences used 
corresponds to an individual variable. The expression 'Every number' is paraphrased 'For every 
number x'. When the universe of discourse is understood to be indicated by the word 'number', 
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that word becomes redundant and we have 'For every x', which is formalized using the universal 
quantifier. The examples are chosen so that they are easily formalizable. However, it is by no 
means necessary to formalize them in order to understand this paper. Cf. Corcoran 1993, xxxviii-
xlii. 
 All arithmetic concepts are assumed to be primitive unless a formal definition has been 
indicated; and when a concept has been introduced by means of a formal definition each of its 
occurrences is presumed to be in terms of primitives. For example, the concepts "odd" and "even" 
are treated as primitives; therefore, "Three is odd" is not logically equivalent to "Three is non-even" 
and the proposition "Every number is either even or odd" is logically independent of "No number is 
both even and odd". However, since the first few number words are used for defined concepts, it 
will turn out that "One precedes two" is logically equivalent to "The successor of zero precedes its 
own successor". 
 In order to facilitate smooth and faithful translation of English into symbolic language it is 
convenient to assume that a symbol for the converse-relation operator is available. Thus, for 
example, the two propositions, "Zero precedes one" and "One is preceded by zero", though 
logically equivalent, are expressed symbolically by different sentences, as they are in English. 
One of the symbolic sentences involves the relation symbol '<' for precedence (the less-than 
relation) without the converse-relation operator symbol while the other uses the precedence 
symbol with the converse-relation operator symbol affixed. The availability of the converse-relation 
operator symbol makes translation easier by lessening the need to rephrase before translating; as 
a result it also helps to keep translational processes separate from inferential processes since 
rephrasing often involves the inference of logical equivalents.  
 In order to distinguish the above class of recovery problems from other classes where the 
solution is required to meet special qualifications, those mentioned above are called unrestricted 
information recovery problems. It is worth noting that every unrestricted information recovery 
problem has at least one solution, the trivial solution. The standard conditional is of course also a 
solution to an unrestricted problem. 
 However, in the case where the given conclusion is tautological (or uninformative), all 
information in the premise has been dropped and thus every solution is automatically equivalent to 
the premise. In this case the standard conditional is also a trivial solution. In fact, in this case, 
there is "virtually" only one solution; there is only one solution "up to equivalence"; literally, every 
two solutions are equivalent to each other. 
 In the rest of this paper we follow the convention of counting solutions "up to equivalence", 
that is, counting equivalence classes of solutions. Since there are infinitely many propositions 
logically equivalent to any given proposition, literally, every unrestricted problem has infinitely 
many solutions. Thus, we say that a problem has only one solution, or only two solutions, or only 
finitely many solutions, as we will have occasion to do below, when we are only counting solutions 
separately if they are non-equivalent. 
 It is easy to see that the case of the tautological given conclusion is the only case where the 
standard conditional is equivalent to the premise. In fact, if the standard conditional implies the 
premise then the given conclusion is tautological. In every other case, the standard conditional is a 
second, non-trivial, solution to an unrestricted information recovery problem. Normally, one might 
say, an unrestricted information recovery problem has at least two solutions, the two limiting cases 
mentioned above: "the" trivial solution which superimplies every non-trivial solution and "the" 
standard conditional which follows from every solution. 
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 By 'superimplies' we mean of course "implies without being implied by", which amounts to 
"implies without being equivalent to". Thus a given premise [logically] implies a given conclusion if 
and only if the premise contains all of the information of the conclusion (regardless of whether the 
premise contains more or contains no more); it [logically] superimplies the conclusion if and only if 
it contains all of the information of the conclusion and more; it is [logically] equivalent to the 
conclusion if and only if it contains all of the information of the conclusion and no more. 

2. Independent Information Recovery Problems. Perhaps the most convenient qualification that 
rules out trivial solutions is to require that the solution be independent of the given conclusion. To 
be more explicit, we say that one proposition is independent of another if the first neither implies 
nor is implied by the second. In other words, two propositions are said to be independent [of each 
other] if and only if neither one implies the other. 
 It turns out that this qualification yields an interesting class of information recovery problems, 
perhaps the most interesting class from a pedagogical point of view. Let us call these the 
independent information recovery problems: given a premise P that implies a given conclusion C 
to find another conclusion S also implied by P but not implying nor implied by the conclusion C; of 
course, it is necessary for the conjunction of the two conclusions C and S to imply the premise P. 
 Paradigm cases of the independent information recovery problem arise when the premise is 
equivalent to a conjunction of independent propositions one of which is the first conclusion; in 
such a case the other can be taken to be a solution. 

2.1. For example, if the given premise P is "Two is even and prime" and the given conclusion C is 
"Two is even", then "Two is prime" is a solution S to the independent information recovery problem 
determined by the given premise and the given conclusion. The conditional proposition "If two is 
even then two is prime" is also a solution. Notice that this conditional is shorter than the standard 
conditional; nevertheless, the two are logically equivalent. 
 Even though the premise and its equivalents are not eligible to be solutions, to this 
independent information recovery problem we still have two non-equivalent solutions: the "natural" 
solution S1, "Two is prime"; the conditional solution S2, "If two is even then two is prime". It is 
obvious, of course, that the conclusion "Two is even" neither implies nor is implied by either S1 or 
S2. Moreover, it is easy to see that there are infinitely many more non-equivalent solutions: S3 "If 
two or three is even then two is prime", S4 "If two or three or four is even then two is prime"; and 
so on. In a sense, the limit of this sequence of solutions is the conditional S* "If some number is 
even then two is prime". 
 Thus restricting solutions to consequences independent of the given conclusion leaves 
interesting solutions, some of which may seem extraneous. This suggests that further restrictions 
may prove fruitful. Another, superficially different, class of independent information recovery 
problems worth consideration in its own right, turns out on further examination to fall under the 
above paradigm. I have in mind here the situation where the given conclusion is the [non-
exclusive] disjunction of the premise with a proposition independent of the premise. 

2.2. For example take as the premise P "Three is even" and as the conclusion C "Three is even or 
prime". Clearly the proposition that three is even also implies S1 "Three is even or non-prime", 
which is independent of the given conclusion. Moreover, the conjunction of "Three is even or non-
prime" with the given conclusion implies the premise. In fact, it is clear that the premise "Three is 
even" is equivalent to the conjunction of the two conclusions. Hence this class of problems 
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involving disjunctions turns out to be a subclass of the paradigm class mentioned above where the 
premise is equivalent to a conjunction of independent propositions one of which is the given 
conclusion. 
 The conjunctive connective "AND" is routinely used to add information, so that deletion of an 
"and-clause" often drops information. The information dropped in going from "Two is even and 
prime" to "Two is even" is contained in "Two is prime". 
 The [non-exclusive] disjunctive connective "OR" is routinely used to drop information. This 
application of disjunction has been seen already above. The information dropped in going from 
"Two is square" to "Two is even or square" is contained in "Two is non-even or square". In the 
process of revising conversation or non-fiction writing the need to drop information arises when 
one realizes that one had already asserted or was about to assert something that goes beyond the 
available evidence, something containing more information than desired. Here the facility of 
adjoining an "or-clause" at the end of a sentence is convenient. When the assertion that Abe is 
American is not warranted, the assertion that Abe is American or Canadian may be entirely in 
order. 
 Disjunction is often a sign of incomplete knowledge or incomplete memory. In the course of 
learning arithmetic a student may be confident in asserting that zero or one is not prime without 
being able to say which with confidence. The connection of disjunction to incomplete knowledge or 
to incomplete memory or, more generally, to an undecided state of mind is so strong that students 
often find disjunctive reasoning to be awkward when all relevant facts are known. This may be one 
of the reasons why it is more effective pedagogically in presenting an implication to also present 
the information dropped; instead of simply dropping information it is better also to identify the 
information dropped. Rather than presenting the student only with the fact that "Two is prime" 
implies "Two is even or prime" it is better at the same time to note that "Two is prime" also implies 
"Two is non-even or prime". For further discussion of the entangled interrelations among the 
logical, the pragmatic, the social and the ethical dimensions of communication, see Part I of Grice 
1989. 
 Although disjunction is perhaps the most common or most prominent device for dropping 
information it is by no means the only one. Another prominent information-dropping device is the 
adjunction of a condition as in going from "Ben speaks French" to "If Ben is Canadian then Ben 
speaks French". The information dropped here is contained in the conditional "If Ben is not 
Canadian then Ben speaks French". This leads us to another class of independent information 
recovery problems where the given conclusion is a conditional whose consequent is the given 
premise and whose antecedent is a proposition independent of the premise. Here one natural 
solution is the conditional obtained from the conclusion by replacing the antecedent by its denial, 
or by a contradictory opposite of the antecedent. 

2.3. For the premise P take "Zero is even". For the conclusion C take "If one is prime then zero is 
even". The most natural independent solution is the conditional S1 "If one is non-prime then zero 
is even". 
 In this case the standard conditional S2 is a double conditional, a conditional whose 
antecedent is itself a conditional: "If if one is prime then zero is even, then zero is even". Since S2 
is the standard conditional it contains the dropped information. Moreover, as is easily seen, S2 is 
independent of the conclusion C and thus S2 is also a solution. However, S2 is not a second 
solution "up to equivalence"; S2 is equivalent to S1 even though they are both conditionals having 
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identical consequents and non-equivalent antecedents. This is one of many examples where 
counting solutions "up to equivalence" tends to mask some important differences. 
 To see that C is independent of S1 two transformations are needed: substituting "two" for 
"one" and "one" for "zero" shows that S1 does not imply C; interchanging "prime" with "even" 
shows that C does not imply S1. See Corcoran 1989, 27, 28 and Corcoran 1993, xx, xxxi, xxxii. 
 It is worth reminding ourselves that independence as used here is simply mutual non-
implication, which of course entails self-consistency not only of each of the two propositions but 
also self-consistency of their two negations. If two propositions are independent, then the first 
does not imply the second and thus the first is consistent with the negation of the second. Since 
every two propositions that are consistent with each other are each self-consistent, it follows then 
that the first and the negation of the second are each self-consistent. Parallel reasoning shows 
that the second is consistent with the negation of the first and thus that the second and the 
negation of the first are each self-consistent. Putting these two argumentations together we have 
that independence entails self-consistency of the two propositions and of their two negations. 
 However, as Leibniz emphasized in the New Essays, the self-consistency of both of two 
propositions does not entail that they are mutually consistent, that is, that they are consistent with 
each other. Moreover, it will become important in understanding the structure of classification of 
information recovery problems to realize that the concept of independence used here does not 
entail mutual consistency nor does it entail mutual consistency of the negations. It is perhaps 
overly concise to illustrate both points with one example; but the example deserves being 
considered anyway. 
 Incidentally, the first of these two points was made explicitly by Lewis and Langford 1932, 
338; and it appears that they may have been trying to make the second point as well but what they 
actually accomplished was to make the first point twice. They say that if two propositions are 
independent "it may still happen" that the first implies the negation of the second or that the 
second implies the negation of the first. These two clauses are equivalent. What they probably 
meant to say was "the negation of the second implies the first", a very different condition 
equivalent to the inconsistency of the two negations. Since they miss the second possibility, they 
necessarily also miss the fact that both possibilities "may still happen" together, that is, they miss 
the possibility that two independent propositions may be self-consistent contradictory opposites. 

2.4. For the given premise P take "Two is even and non-even". For the given conclusion C take 
"Two is even". The proposition "Two is non-even" may be taken as an independent solution S, 
since it neither implies nor is implied by "Two is even". Nevertheless, the conclusion is 
inconsistent with the solution; and the negation of the conclusion is inconsistent with the negation 
of the solution. 
 The following two examples illustrate separately the point that independence of two 
propositions does not entail their mutual consistency and the point that independence does not 
entail the mutual consistency of their negations. 

2.5. Take "Every number is both even and non-even" as the given premise P and take "Every 
number is even" as the given conclusion C. Since the given conclusion neither implies nor is 
implied by "No number is even" and since the conjunction of the given conclusion with "No number 
is even" implies the given premise, the proposition S that no number is even may be taken as an 
independent solution even though it is inconsistent with the conclusion. However, the negations of 
the solution and of the conclusion are both true and hence consistent with each other. 
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2.6. Now take "Some but not every number is even" as the given premise P and take "Some 
number is not even" as the given conclusion C. The proposition S "Some number is even" may be 
taken as an independent solution even though its negation is inconsistent with the negation of the 
given conclusion. 
 The above discussion of independence may have suggested to some readers that in order 
for two propositions to be independent of each other it is necessary and sufficient for their two 
respective negations to be independent of each other. This proposition, which is easily seen to be 
true, provides a criterion for independence which is handy in cases where it is obvious that the two 
negations are independent but not obvious, or not as obvious, that the propositions themselves 
are independent. 
 The class of all propositions divides into three mutually exclusive and jointly exhaustive 
subclasses: those that are tautological (non-informative), those that are [self-]contradictory ([self-
]inconsistent) and those that are neither. The propositions in the last class are both consistent and 
informative (consistent-informative) and it is exclusively within this class that the independence 
relation holds. Thus the conclusion and the solutions of an independent information recovery 
problem are necessarily consistent-informative, even though the premise is sometimes 
contradictory. 
 Every unrestricted information recovery problem has at least one solution. In some cases 
they have only one solution, the trivial solution equivalent to the premise. In every other case there 
are at least two non-equivalent solutions. Below we will consider the question of whether there is 
an unrestricted problem with only two solutions, or only finitely many solutions, or whether every 
such problem has infinitely many non-equivalent solutions as was the case in the example 
considered above. 
 Not every independent information recovery problem has a solution; and even in cases that 
have solutions none of their solutions are trivial in the sense of being equivalent to the premise. If 
the conclusion is tautological, contradictory, or logically equivalent to the premise there are no 
solutions. In every other case the standard conditional is a solution. This follows from the fact that 
in every information recovery problem if the conclusion is consistent-informative and not 
equivalent to the premise then the standard conditional is independent of the conclusion. The 
question remains whether there is an independent problem with only one solution, or only a finite 
number of solutions, or whether every such problem has infinitely many non-equivalent solutions 
as was the case in every example considered above. 
 This paper is dedicated to information recovery problems and as such it approaches every 
valid one-premise argument with the aim of finding a proposition to add to the conclusion in order 
to restore the information that had been dropped. This can be succinctly characterized as the 
adding-of-dropped-information perspective. However, it is possible to do a kind of figure-ground 
shift and to approach a valid one-premise argument with the aim of transforming the premise into 
a proposition that no longer implies the conclusion, that is, into a proposition that drops the 
information retained in the conclusion. This can be characterized as the dropping-of-retained-
information perspective. Just as the former perspective leads to variously qualified information 
recovery problems the latter perspective leads to variously qualified information removal problems. 
 It is not within the scope of this paper to deal with these problems. However, there is a widely 
known, and even more widely felt, point to be made in this connection, a point that complements 
and rounds out several points made above and that, at the same time, will prove useful below: 
adjoining an informative conclusion as a condition removes at least some of the information of the 
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conclusion from the premise. More formally, if the conclusion C is informative then the standard 
conditional (If C then P) no longer implies the conclusion C. To see this notice that the negation of 
any conditional implies the antecedent and that any proposition implied by a given proposition and 
by the negation of the given proposition is uninformative. Thus any conditional that implies its own 
antecedent has an uninformative antecedent. The application to information removal problems is 
evident: in order to transform the premise into a proposition that no longer implies the conclusion 
simply adjoin the conclusion as a condition forming the conditional of the conclusion with the 
premise, that is, forming the standard conditional. Before leaving this point it should be noticed 
that we have not identified the information dropped; all we have said is that the standard 
conditional does not imply the conclusion, that is, the standard conditional does not contain all of 
the information of the conclusion. It turns out that the standard conditional contains none of the 
information of the conclusion, or as we will say, the standard conditional is unconnected with the 
conclusion. 

3. Unconnected Information Recovery Problems. An unrestricted problem can be described as 
follows: given a conclusion that follows from a given premise find a consequence of the premise 
that contains the information dropped in going from the premise to the conclusion. An independent 
problem requires in addition that the consequence to be found be logically independent of the 
conclusion. As we have seen above in example after example, in neither case is it required to find 
a consequence that contains only information dropped without containing any of the information 
not dropped, that is, without containing any of the information in the conclusion. 

3.1. To be sure, the condition requiring a solution with no information in common with the 
conclusion is not precluded by the condition requiring a solution independent of the conclusion. 
For example, if the premise P is "Two is even and non-even" and the conclusion C is "Two is 
even" then the solution S "Two is non-even" is independent of the conclusion and it has no 
information in common with the conclusion. It is easy to see that every proposition implied both by 
the conclusion "Two is even" and by the solution "Two is non-even", for example "Two is even or 
non-even", is uninformative (or tautological). This example illustrates what we are seeking in this 
section. 
 It may seem to some readers that the condition of having a solution with no information 
common with the conclusion is automatically satisfied by a solution independent of the conclusion. 
But this is far from true. To see that independence does not entail this added requirement consider 
the following example. 

3.2.1. For the premise P take "Four is even, composite, and square". For the conclusion C take 
"Four is even and composite" and for the solution S1 take "Four is composite and square". It is 
clear that the solution neither implies nor is implied by the conclusion; the solution implies "Four is 
square", which is not implied by the conclusion, and the conclusion implies "Four is even", which is 
not implied by the solution. Thus the conclusion and the solution are independent even though 
they have "Four is composite" as a common consequence. 
 There are several expressions used to indicate that one given proposition has information in 
common with a second given proposition, i.e. that there is at least one informative proposition 
implied at the same time by both of them. For example, we can say that they are connected or 
redundant or repetitive or that they overlap in information content. Moreover, there are several 
coextensive conditions each of which can be used as a formal definition of this relation, which is 
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called connectedness in this paper. One definition that seems to bring out the intuitive import 
especially vividly is based on exhibiting common information content: in order for two propositions 
A and B to be connected [to each other] it is necessary and sufficient for there to be three 
propositions A*, B*, and C* such that C* is informative, A is equivalent to the conjunction (A* and 
C*) of the first with the third and B is equivalent to the conjunction (C* and B*) of the third with the 
second. For example, to use this definition to show that "One is neither composite nor prime" is 
connected with "One is neither prime nor even" it would not be sufficient simply to notice that they 
both imply "One is not prime"; we would have to notice that they are respectively equivalent to 
conjunctions having a common conjunct: roughly, "One is both non-composite and non-prime" and 
"One is both non-prime and non-even"; and we would have to note that the common conjunct 
"One is non-prime" is informative. 
 In keeping with the connotation of the word 'connected' we can say that two connected 
propositions A and B are connected by a proposition C that is informative and that they both imply. 
Thus, "Four is composite" connects "Four is even and composite" with "Four is composite and 
square". This shows that instead of defining the two-placed connectedness relation first, as we 
have done, we could have defined the three-place connectedness relation (as in "C connects A 
and B" or "C connects B to A") and then used that to define the two-placed relation: in order for 
one given proposition to be connected to a second given proposition it is necessary and sufficient 
for there to exist a third proposition that connects the first to the second. 
 By the way, since every two connected propositions have an informative common implication, 
no two tautologies are connected. In fact no tautology is connected to another proposition; not 
even itself. It is easy to forget that the word 'connected' has many senses other than the precise 
sense that we have stipulated for it here. Here connected means "connected by an informative 
proposition". When there is a danger of confusion or where a sentence may sound uncomfortably 
paradoxical, the adverb 'informationally' can be adjoined as redundant rhetoric. Thus we can say 
that no tautology is informationally connected to itself, that a given proposition is informationally 
connected to itself if and only if it is informative, and that every contradictory proposition is 
informationally connected to every informative proposition but to no uninformative one. 
 Thus, in the sense used here, since "Every odd number is odd" is tautological, it is not 
connected with "If three is an odd prime then three is odd", with "Three is an odd prime", with 
"Three is odd", or with any other proposition. Sharing concepts does not by itself mean being 
connected. Moreover, not sharing concepts does not by itself mean unconnected; "One is square 
but two isn't" and "Three divides six but not conversely" both imply "There are at least two 
numbers". 
 In order for two propositions to be unconnected (that is, informationally unconnected), it is 
necessary and sufficient for them to have no common informative consequence. This means that 
if two propositions are unconnected then every one of their common consequences, that is, every 
proposition implied by both separately, is tautological. It also means that if every proposition 
implied by each of two propositions is tautological then they are unconnected, that is, 
informationally unconnected. Thus we may take as our initial paradigm case of an unconnected 
pair a proposition and its denial, say "Two is even" and "Two is not even". More generally, we can 
take a pair of propositions one of which is equivalent to the negation of the other, in other words, a 
proposition and one of its contradictory opposites: "No number divides itself" paired with "Some 
number divides itself", "Every oblong number is even" paired with "Some oblong number is not 
even", "Two is either odd or square" with "Two is both non-odd and non-square". 
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 Now, if two propositions are connected then adding information to either, or to both, 
transforms them into another pair of connected propositions. It of course does not matter whether 
the information added to both is the same; once we have a connection, adding information can 
only strengthen it. Likewise if two propositions are unconnected then dropping information from 
either or both results in another pair of unconnected propositions. This gives us the capacity to 
generate from a paradigmatic unconnected pair an infinite sequence of ever more intricate 
unconnected pairs. 
 Suppose for our original unconnected pair we have A1 "One is even" paired with B1 "One is 
not even". Starting with A1 and dropping information from each subsequent proposition we have 
A2 "One or two is even", A3 "One or two or three is even", and so on. Now starting with B1 and 
dropping information from each subsequent proposition using a different rule we have B2 "One is 
not both even and square", B3 "One is not even, square, and prime" which is equivalent to "It is 
not the case that one is even, square, and prime". For B4 we use four numerical properties: "It is 
not the case that one is even, square, prime, and perfect". For B5 we use five properties, and so 
on. As a result of the way these sequences are constructed, pairing any one of the As with any 
one of the Bs gives an unconnected pair. For example, pairing A2 with B3 we have that "One or 
two is even" is unconnected with "It is not the case that one is even, square, and prime". In a 
sense of course, there is a "connection" between the two; in fact, the proposition "One is even" 
could be said to be (in a sense) "contained" in both. But, the sense of 'connection' needed and the 
sense of 'contain' needed are not the senses being used in this paper. It is clear that the false 
proposition "One is even" is not implied by any true propositions and, in particular, that it is not 
implied by A2 "One or two is even" nor by B3 "It is not the case that one is even, square, and 
prime". The information of "One is even" is not contained in that of A2 or of B3 in the sense of 
'contain' used in this paper. 
 Readers may have been led by these examples to notice that if two propositions are 
unconnected then their disjunction is tautological. The reason for this is that every proposition 
implies the disjunction of itself with an arbitrary proposition and, therefore, given two propositions, 
each implies their (common) disjunction. If two propositions are unconnected then none of their 
common implications are informative; and hence their disjunction is not informative. 
 The converse is also true, that is, if the disjunction of two given propositions is tautological 
then the two propositions are unconnected. The reason for this is that the disjunction of two 
propositions implies each and every proposition that is a common consequence of the two, or in 
other words, that is at one and the same time a consequence of each of them. Putting the result of 
this paragraph together with the result of the previous paragraph gives us an alternative definition 
of unconnectedness: in order for two propositions to be unconnected it is necessary and sufficient 
for their disjunction to be tautological. 
 The logical principle used in the previous two paragraphs has been called a disjunctive 
deduction theorem: in order for a given disjunction to imply a given proposition it is necessary and 
sufficient for each of the disjuncts to imply the given proposition. See Corcoran 1985. This means 
that the information contained in the disjunction is exactly the information common to the two 
disjuncts. Thus, to repeat a point made above, two propositions have information in common, that 
is, are connected if and only if their disjunction contains some information. 
 Now if two propositions are both false then their disjunction is false and hence 
nontautological. Thus, no two false propositions are unconnected. In other words, every two false 
propositions are connected and, in fact, are connected by their disjunction. We just saw that any 
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two propositions that are connected are connected by their disjunction. Thus having a false 
disjunction is a sufficient condition for being connected. To see that it is not necessary, consider 
the two propositions "Four is even and composite" and "Four is composite and square". However, 
once the sufficient condition has been established as such, it is easy to arrive at a necessary and 
sufficient condition; in order for two propositions to be connected it is necessary and sufficient that 
their disjunction be in the same logical form as some false proposition. Of course, this result could 
have been gotten more directly in view of the fact that the property of being nontautological is 
coextensive with the property of having the same logical form as some false proposition. This 
coextensiveness has even been used to define the property of being nontautological, cf. Quine 
1978, 47f and Corcoran 1979. 
 Notwithstanding the connotation of the words 'independent' and 'unconnected', neither 
relation entails the other. In fact the two relations are "orthogonal", that is, in any given case the 
fact that one holds or does not hold does not determine whether the other holds or not. This is 
proved by the following four pairs: "One is even" and "One is not even"; "Two is even" and "Two is 
prime"; "Three is three" and "Three is not three"; "Four precedes five" and "Five is preceded by 
four". 
 Other more interesting examples of independent pairs of connected propositions are easy to 
find. Consider the three propositions that Gödel 1931 took as axioms for arithmetic [Cohen-Nagel 
1993, xli]: the Zero Axiom ZA "Zero is not the successor of any number"; the Successor Axiom SA 
"Every two distinct numbers have distinct successors"; the Mathematical Induction Axiom IA 
"Every property that belongs to zero and to the successor of every number to which it belongs 
[also] belongs to every number". It is easy to see that each pair of these is independent. The basic 
idea can be found in many places, e.g. Russell 1903, 125. To see that ZA has information in 
common with SA substitute "integer" for "number" and "square" for "successor". In fact, the same 
transformation shows that ZA is connected to IA and that SA is connected to IA. Zero is the 
square of itself. One is the square of itself and it is the square of minus one. And the property of 
being a square belongs to zero and to the square of every integer to which it belongs but it does 
not belong to every integer; it does not belong to the integer two. Given a disjunction of any two 
Gödel axioms, the above substitution transforms it into a false proposition of the same logical 
form. Thus, by the observation enunciated two paragraphs above, the two given axioms are 
shown to be connected. Cf. Cohen-Nagel 1993, xxxii and Corcoran 1989, 27, 31. This observation 
can be called the principle of possibly false disjunction: two propositions are connected if their 
disjunction is in the same logical form as a false proposition. 

3.2.2. We have still not solved the unconnected problem whose premise P is "Four is even, 
composite, and square" and whose conclusion C is "Four is even and composite". We noted 
above that the independent solution S1 "Four is composite and square" is connected to the 
conclusion by means of "Four is composite". The natural next candidate to consider is the result of 
dropping this connecting proposition from S1 arriving at S2 "Four is square". However, although 
S2 is also independent, it is likewise also connected to the conclusion, by means of the 
nontautological disjunctive proposition "Four is either both even and composite or square", which 
can be seen to be informative by substituting "three" for "four", thus transforming it into a false 
proposition having the same logical form. Thus S2 still contains too much information, namely, the 
information of the disjunction "Four is either both even and composite or square". As we saw 
above, the information contained in an informative consequence of a given proposition can be 
dropped by adjoining the consequence as a condition, that is, by taking the conditional whose 
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antecedent is the consequence and whose consequent is the given proposition: "If one is even 
then one is both odd and even" does not imply "One is even" although its consequent does. Using 
this idea we arrive at S3 "If four is either both even and composite or square then four is square", 
a strange proposition indeed, which turns out to be logically equivalent to S4 "If four is both even 
and composite then four is square". Now, it is easy to see that S4 is unconnected with C "Four is 
both even and composite"; S4 is a result of dropping information from the negation of C, since C 
itself is the antecedent of S4. 

3.3. For this example we have some choices of context among which the following two are natural 
options. First, we can take the universe to be the class of persons and then take each of the 
names used to denote a person. Second, we can retain the class of natural numbers and then 
take each of the names used to denote an "unidentified" or "unknown" number as in elementary 
algebra. 
 The given premise P is the conjunction "Abe is Ben and Ben is Carl". The given conclusion C 
is the identity "Carl is Abe". The conditional proposition S1 "If Carl is Abe, then Ben is Abe and 
Carl" is [logically] equivalent to the standard conditional. S2 "If Carl is Abe then Abe is Ben" and 
S3 "If Carl is Abe then Ben is Carl" are also solutions to the unconnected information recovery 
problem; but it is easy to see that these are also equivalent to S the standard conditional. Further 
attempts to find non-equivalent solutions prove futile. 
 There are several ways of seeing that C and S have no information in common. As was 
suggested above, one easy method is to notice that the disjunction (C or S) is implied by a 
proposition whose negation also implies it: C implies the disjunction and the negation of C implies 
every conditional which, like S, has C as antecedent. This means, as explained above, that every 
proposition implied by each of C and S is tautological. 
 Even though the two propositions C and S have no information in common and their 
conjunction exhausts the information in P, it is by no means the case that every piece of 
information contained in P is contained in one or in the other. For example "Ben is Carl" is 
contained in P but it is not contained in C "Carl is Abe" and it is not contained in S "If Carl is Abe 
then, Abe is Ben and Ben is Carl". To see the latter substitute "Zero", "One", and "Two" 
respectively for "Abe", "Ben" and "Carl". This exemplifies the synergistic effect of conjunction: 
every conjunction of independent propositions implies consequences which do not follow from 
either conjunct. This obvious point is crucial in understanding certain otherwise puzzling aspects 
of information containment. Its importance, to the best of my knowledge, was first emphasized by 
Lewis and Langford 1932, 357. 
 Let us conclude the discussion of unconnected information recovery problems by formally 
stating what has by now become obvious to many readers: each such problem has a solution, 
indeed, a solution unique up to equivalence; and there is a uniform method for constructing "the" 
solution given the premise and the conclusion: the solution, a function of the premise P and the 
conclusion C, is the standard conditional (If C then P). This result is based on a theorem, the 
unique [up to equivalence] complement theorem, that may be of interest beyond the context of 
information recovery problems and, for this reason, we describe it in more widely usable 
terminology. 
 Following established practice in set theory and in geometry we define one proposition A to 
be a complement of another proposition B with respect to a third proposition C if and only if the 
first two propositions A and B are unconnected and their conjunction (A and B) is logically 
equivalent to the third proposition C. The cognates and variants familiar from set theory and 
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geometry are automatically presupposed. For example, we will say that A "One is even" and B 
"One is not even" are complements with respect to C "One is both even and non-even", that the 
two are complementary with respect to C, etc. The unique complement theorem is that every 
consequence of a given proposition has a unique complement with respect to the given 
proposition. 
 The unique complement theorem, as we have seen, gives us a necessary and sufficient 
condition for a given proposition to be a solution for a given unconnected information recovery 
problem. It is possible to extend this result to a useful necessary and sufficient condition for 
solutions to unrestricted information recovery problems. There are two ideas that bring about the 
extending. First, every solution to a given unrestricted problem implies the standard conditional 
and, therefore, is equivalent to a conjunction one of whose conjuncts is the standard conditional. 
Second, every such solution, other than the standard conditional, is connected to the conclusion 
and, therefore, is equivalent to a conjunction one of whose conjuncts is a consequence of the 
conclusion. Thus we are led to the hypothesis that in order for a given proposition to be a solution 
to a given unrestricted information recovery problem it is necessary and sufficient for the given 
proposition to be logically equivalent to the conjunction of a consequence of the conclusion with 
the standard conditional. This hypothesis is easily proved given the results already developed. 
Thus we have that every solution S to a given unrestricted problem with premise P and conclusion 
C is equivalent to a conjunction (C1 and (If C then P)), where C1 is a consequence of C. 

4. Conclusion. I would like to conclude with brief treatments of some topics that complement what 
has been done above and that will indicate the vistas opened by the kind of deliberations inspired 
by information recovery problems. 

4.1. Gödel's Axiom Set. Using ideas originating with Peano, Gödel 1931 axiomatized arithmetic 
taking as primitive concepts "number", "zero", and "successor". By number is meant a natural 
number, either zero or the result of repeated addition of one to zero, a so-called inductive number. 
By successor is meant the function which produces when applied to an arbitrary number, the 
immediately succeeding number. Thus "The successor of a given number is the sum of the given 
number with one" is a true proposition of arithmetic which, however, involves the concept of 
addition (not among the Gödel primitives). In formalizations, zero is denoted by the usual symbol 
'0' and the successor function is denoted by the small letter 's'. In this paper we treat the first few 
number-concepts as defined: "one" is "the successor of zero", "two" is "the successor of one", 
"three" is "the successor of two", and so on as far as necessary. Thus the sequence of natural 
numbers is: 0, s0, ss0, sss0,... 
 Since, as mentioned above, the class of natural numbers is the universe of discourse, the 
variable 'n' expresses the concept of number. No "constant" symbol is needed; no constant 
symbol is useful; it would just clutter the formalization thereby defeating some of its purposes. Of 
course, a single variable is not sufficient and thus other letters are also used. These are so-called 
"dummy variables" that are simply alternative notational devices expressing the same concept that 
'n' expresses, viz. "number". As long as the arrangement of the variables is the same, one and the 
same proposition is expressed by any number of sentences using different variables. The 
arithmetic law that every number is exceeded by a prime number (so that there is no end to the 
sequence of primes) is expressed by each of the following sentences. 

 Every number n is exceeded by a prime number p. 
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 Every number x is exceeded by a prime number y. 

 For every u, u is exceeded by some v where v is prime. 

 For every [number] m there exists [a number] n such that m is exceeded by n and n is prime. 

The bracketed material in the last sentence is routinely dropped. 
 As mentioned above, the following three propositions form the Gödel Axiom Set GAX: the 
Zero Axiom ZA "Zero is not the successor of any number", the Successor Axiom SA "Every two 
distinct numbers have distinct successors", the Mathematical Induction Axiom IA "Every property 
that belongs to zero and that belongs to the successor of every number to which it belongs [also] 
belongs to every number". 

4.1.1. The Zero Axiom ZA "Zero is not the successor of any number" is logically equivalent to 
"Every number is such that its successor is not zero", which in turn may be paraphrased for 
formalization as "Every number n is such that its successor sn is not zero". As usual we define a 
given number to be a successor if and only if it is the successor of some number. Using this 
defined concept, ZA is logically equivalent to "No [number which is a] successor is zero" which we 
take to be our given premise P. 
 Now we define, again as usual, one given number is a successor of a second given number if 
and only if the first is in the sequence of numbers obtained by repeatedly applying the successor 
function to the second. Below we will see a way of formalizing this that was discovered, apparently 
independently, by Frege and by Dedekind. It is clear that P implies "No successor of zero is zero", 
which we take as our conclusion C. 
 The proposition "No successor of a non-zero number is zero" or "No successor of a number 
other than zero is zero" can be taken as a solution S1 to the independent information recovery 
problem determined by P and C. However, S1 is connected to C by "If zero isn't its own successor 
then it isn't the successor of its own successor". 
 It may occur to readers that the Zero Axiom is curiously "redundant" or "wasteful of 
information" in view of the fact that every successor is a successor of zero: why say that no 
successor is zero when "the same point" is made by saying less, viz. that no successor of zero is 
zero? Such considerations may lead to recognition of another solution S2 "If some successor is 
zero then some successor of zero is zero", which turns out to be equivalent to the standard 
conditional. 
 Incidentally, the converse of the "Every successor is a successor of zero" is tautological and 
therefore the proposition itself is equivalent to the equivalence "In order for a number to be a 
successor it is necessary and sufficient for it to be a successor of zero", which is called the 
successor [equivalence] theorem. 
 The idea of Frege and Dedekind is this: in order for one given number to be a successor of a 
second given number it is necessary and sufficient for every property belonging to the successor 
of the second and also belonging to the successor of any number to which it belongs to belong to 
the first given number. Frege 1879 and Dedekind 1888. 

4.1.2. The Successor Axiom SA "Every two distinct numbers have distinct successors" is 
equivalent to "Given any two numbers, if they are unequal, their respective successors are 
unequal" or "Given any two unequal numbers the successor of the first is unequal to the 
successor of the second". In arithmetic, but in almost no other context, the words 'equal' and 
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'unequal' mean "is" and "isn't" in the sense of identity and inidentity respectively. Tarski 1994, 56f 
has a fine discussion contrasting the use of 'equals' in arithmetic with its use in geometry. 
 The functional property "one-one" as in "The identity function is one-one" can be defined in 
familiar ways so that SA is (or is equivalent to) "The successor function is one-one". We can also 
define a predicate 'the successor function is one-one on' as in "the successor is one-one on zero": 
in order for the successor function to be one-one on a given number it is necessary and sufficient 
for the successor of the given number to be unequal to the successor of any other number. Thus 
the Successor Axiom is equivalent to the proposition that the successor function is one-one on 
every number, which would be formalized as an ordinary universal ('For every n') from which we 
immediately deduce the instances: "The successor [function] is one-one on zero", "The successor 
is one-one on one", "The successor is one-one on two", and so on. 
 Take SA as the premise P and for the conclusion C take "The successor [function] is one-one 
on every number whose successor is zero", which is implied both by SA and by ZA. There are 
many interesting points to be made about this proposition C, but let us first consider "the" natural 
solution S1 "The successor [function] is one-one on every number whose successor isn't zero", 
which, though immediately deducible from SA, doesn't follow from ZA at all. To see the latter point, 
substitute "two" for "zero", "square" for "successor" and "integer" for "number". 
 Notice that C is informative: substitute "square" for "successor", "integer" for "number" and 
"one" for "zero". Now since the information in C is common to ZA and SA, there is a redundancy in 
the Gödel Axiom Set. Since S1 contains the information dropped going from SA to C, we can 
replace SA by its consequence S1 forming a new axiom set which is equivalent to GAX but which 
does not have this redundancy. Let us call this new axiom ZSA the Zero-Successor Axiom "The 
successor is one-one on every number whose successor isn't zero". The new axiom set, say 
GAX1, contains ZA, ZSA and IA. This may be thought of as one typical kind of application for 
information recovery problems; eliminating redundancy in implicationally independent axiom sets. 

4.1.3. The word 'inductive' has two important uses in the foundations of arithmetic. It expresses 
the numerical (first-order) property of being zero or being "generated" from zero by repeated 
application of the successor function. In this sense, every [natural] number is inductive. It also 
expresses the qualitative (or second-order) property that belongs to a given property if and only if 
the given property belongs to zero and to the successor of every number to which it belongs. The 
last sentence can be taken as a definition of the qualitative property of being inductive. In this 
sense, the Mathematical Induction Axiom is or is equivalent to the proposition "Every inductive 
property belongs to every number". Cf Russell 1919, 21, 27, and Russell 1903/37, 123ff. 
 Using the Frege-Dedekind idea mentioned above we can define the first-order sense of 
'inductive' as follows: in order for a given number to be inductive it is necessary and sufficient for 
that number to have every property that belongs to zero and to the successor of every number to 
which it belongs. Using this definition we can say that IA is equivalent to the proposition that every 
number is inductive. This is not quite obvious. 
 By the way, the proposition that zero is inductive is uninformative as is the proposition that 
the successor of every inductive number is inductive. But the proposition that every number is 
inductive, which is deducible from the two mentioned uninformative propositions using IA, is 
informative. This is actually not an uncommon situation: it is tautological that a certain property is 
inductive but it is informative that the very same property is [numerically] universal, that is, that it 
belongs to every number. It is perhaps amusing that the two definitions of 'inductive' have created 
a situation wherein the following proposition is tautological: the property of being inductive is 
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inductive, in other words, the second-order property "inductive" belongs to the first-order property 
"inductive". 
 Let us take the Mathematical Induction Axiom IA for our premise P. For our conclusion C take 
the proposition "If the successor of zero isn't zero and the successor of the successor of a number 
whose successor isn't zero isn't zero [either] then zero is not the successor of any number". Thus, 
C is logically equivalent to the proposition that if the property of having a non-zero [immediate] 
successor is inductive then it is universal. Thus C follows not only from IA but also from ZA. 
 Now let the letter 'Z' indicate the property whose numerical universality is "asserted" in ZA, 
the property of having a non-zero [immediate] successor. Then, C is equivalent to the proposition 
that if Z is inductive then Z is numerically universal. This suggests the natural solution S1 "Every 
property other than Z is such that if it is inductive then it is universal". 
 Once we have seen this, it becomes obvious that the Gödel Axiom Set is "infinitely 
redundant". There are infinitely many univeral propositions that follow either from ZA alone, or 
from SA alone, and from the two together. Each such proposition, say T, "asserts" the universality 
of a property Q; in other words T is logically equivalent to the proposition that Q belongs to every 
number. Now T and IA both and, thus, also the disjunction (T or IA) implies the proposition that if 
Q is inductive then Q is universal. By pursuing this line of reasoning we may arrive at the result 
that it would be futile to try to rid GAX of redundancy by the method employed above, the method 
of finding a common consequence and then doing an information recovery problem to find a 
suitably weakened replacement axiom. 
 One of the main purposes of this subsection has been to show that even though the Gödel 
Axiom Set is pairwise independent it is nevertheless redundant in the sense that every pair of its 
axioms is connected. This point will have less force if there is another widely used concept of 
independence which entails unconnectedness; so far the reader has not been dissuaded from 
thinking "if the right notion of independence were used then independence would entail 
unconnectedness". This doubt deserves a response. 
 Indeed, another common notion of independence is the following: a set of propositions is 
systematically independent if and only if no member of the set is implied by the rest. See Church 
1956, 328; Lewis and Langford 1932, 337; Russell 1903, 124; Wilder 1952, 29f. With this notion of 
independence the situation is the same: it does not preclude connectedness. This conclusion is 
proved by the same example; GAX is systematically independent and pairwise connected. 
 Systematic independence amounts to the condition that every set obtained from the given set 
by negating one axiom is consistent. A much stronger concept called complete independence 
results if it is required to be able to negate any number of members of the given set without getting 
an inconsistency. A set of propositions is said to be completely independent if and only if every set 
obtained from the given set by negating any number or none of the members is consistent. 
Complete independence does indeed preclude some of the disadvantages noted above in section 
2.3. Moreover, GAX is not completely independent; it turns out that IA is inconsistent with the 
negations of the other two axioms taken together. However, the joint failure of complete 
independence and unconnectedness in this case hardly undercuts the above point. In fact, 
complete independence not only does not entail unconnectedness it entails connectedness. It is 
easy to see that every completely independent set is pairwise connected. Being completely 
independent requires that the negation of any one member be consistent with the negation of any 
other member, a condition entailing pairwise connectedness. For more on complete 
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independence, see Wilder 1952, 31 who credits this concept to the American Postulate Theorist 
E.H. Moore. 
 No relevant concept of independence known to me entails unconnectedness; one of the most 
important concepts of independence actually precludes it. The only logician known to me who 
notices that the usual notions of independence are not sufficient to preclude overlapping axioms is 
Eaton 1931, 365 who says of axiom sets, "(...) in the ideal case no part of one [axiom] should 
follow from the others". Before leaving this point, notice that in a connected axiom set one could 
find oneself with a false consequence that could not be eliminated by dropping one axiom (or even 
by dropping all but one). 

4.2. Unconnected Axiom Sets. The purpose of this subsection is to produce from the Gödel Axiom 
Set an equivalent but unconnected set and then to present a method for producing from an 
arbitrary independent set an equivalent unconnected set. But first there are some definitional 
matters. 
 In this subsection the word 'set' refers to a set of propositions having at least two members; 
the null set and the singleton sets are degenerate cases in regard to axiom sets; in order to avoid 
tedious checking of trivialities we exclude them from consideration. Above we used 
'unconnectedness' for a first-order binary (or two-placed) relation defined on a class of 
propositions. Here we extend the usage so that 'unconnected' indicates a property of sets of 
propositions, a second-order property. As above, a set is said to be pairwise independent if any 
two [distinct] members are independent of each other; and a set is said to be [systematically] 
independent if no member of the set is implied by the rest of the set. It is obvious that every 
systematically independent set is pairwise independent, but not conversely. An analogous 
situation is found in regard to unconnectedness. A set of propositions is defined to be pairwise 
unconnected if no two of its members are connected and it is [systematically] unconnected if no 
member has an informative consequence which also follows from the rest. [Notice that this 
suggests that we say that one set of propositions is unconnected with another set if no 
consequence of one follows from the other; it makes no difference whether the sets are finite or 
infinite and here we include the null set and the singletons.] Let us consider an independent set of 
two propositions: A1, A2. Previous results make it obvious that the following equivalent set is 
unconnected: A1, (If A1 then A2). In the case of a set of three propositions A1, A2, A3 there are 
basically two choices for constructing an equivalent and pairwise unconnected set: the straight 
conditional method: A1, (If A1 then A2), (If A2 then A3); and the conjunctive conditional method 
A1, (If A1 then A2), (If (A1 and A2) then A3). Only the latter can be proved to be systematically 
unconnected by ascertaining that each member is unconnected with the rest. 
 The same idea holds for a set of four propositions: A1, A2, A3, A4. Take the first proposition 
itself, then take the conditional of the first with the second, then take the conditional of the 
conjunction of the first two (as antecedent) with the third (as consequent), and finally the fourth of 
the new propositions is the conditional whose antecedent is the conjunction of the first three from 
the old set and whose consequent is the fourth member of the old set. 

 A1 (If A1 then A2) (If (A1 and A2) then A3) (If (A1 and A2) and A3) then  A4) 

 In general an independent set of n propositions A1, A2,..., An is transformed into an 
unconnected set B1, B2,..., Bn by taking B1 to be A1, B2 to be (If A1 then A2), and with j 
exceeding 1, taking Bj to be the conditional whose antecedent is the conjunction of the first j-1 of 
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the A's and whose consequent is Aj. This algorithmic procedure can be proved to generalize to 
countably infinite independent sets of propositions. 
 The following are unconnected sets equivalent to GAX. 

 GAX1: ZA (If ZA then SA) (If (ZA and SA) then ZA) 

 GAX2: SA (If SA then IA) (If (SA and IA) then IA) 

 GAX3: IA (If IA then ZA) (If (IA and ZA) then SA) 

 There are of course three more sets generated by ordering the propositions "backward": IA, 
SA, ZA. 
 In the strict sense, the problem of removing the redundancy from a finite axiom set has been 
solved. It is ironic that the methods used in the solution undermine any satisfaction that we might 
have taken because they reveal that the problem of subdividing the information of an axiom set 
into ultimate unconnected "atoms" is far from solved; any informative superimplication of an axiom 
gives rise to the dividing of that axiom into two unconnected parts. In fact, as a corollary to the 
unique complement theorem we have the reduction theorem: every proposition having a 
superimplication reduces to an unconnected pair of informative propositions. By 'reduces to' we 
mean "is equivalent to the conjunction of". 

4.3. Atoms and Saturations. Normally when propositions are discussed by logicians the class of all 
propositions is not being discussed. As a rule, a logician limits the discussion to the class of all 
propositions concerning a fixed universe of discourse and involving only certain "primitive" 
concepts specified in advance. Thus when it is said, for example that every proposition is either 
implied by GAX or contradicted by GAX what is meant is not, for example, that the Gödel 
arithmetic axiom set either implies "Cancer is curable" or implies "Cancer is not curable", but 
rather that every arithmetic proposition [concerning the universe of natural numbers and involving 
no concepts besides "number", "zero" and "successor"] is either implied by GAX or contradicted 
by GAX. The latter assertion is true, of course, being a consequence of the so-called categoricity 
of GAX. See Corcoran 1980. 
 Likewise, when we say here that every contradiction, for example "One is not one", "Two is 
even and not even", etc., implies every proposition and therefore contains all information, what is 
meant by 'proposition' is "arithmetic proposition [etc.]" and what is meant by 'information' is 
"information contained in arithmetic propositions and sets of arithmetic propositions [etc.]". In this 
section unless explicitly indicated otherwise we are talking exclusively about arithmetic 
propositions based on the concepts "number", "zero", and "successor" as in GAX. 
 As mentioned above, the satisfaction that might have been taken in the construction of a 
[systematically] unconnected axiom set for arithmetic was undermined by the thought that, since 
each axiom can be reduced to two unconnected parts, perhaps, it may be impossible to arrive at 
an equivalent axiom set containing only irreducible unconnected propositions. For convenience let 
G be a single proposition equivalent to GAX. In accord with the above comment on the 
categoricity of GAX, the proposition G is saturated in the sense that it contains as much 
information as possible without being inconsistent. More literally, since G implies or contradicts 
every proposition, every conjunction of G with another proposition is either equivalent to G or [self-
]contradictory (and thus contains all information). G is maximally informative without being 
contradictory. A consistent proposition such as G which is implied by no proposition other than a 
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contradiction or one of its own equivalents is called a saturation. Every two saturations are either 
equivalent or mutually inconsistent. 
 We want to consider whether it is possible to divide G up into unconnected parts which can 
not be further subdivided. More generally, we want to consider whether propositions, all or some, 
can be "atomized". Let us say that a proposition is atomic if it is informative but no information can 
be dropped from it without thereby transforming it into a tautology. More formally, a proposition is 
said to be [informationally] atomic if and only if it is informative but all of its superimplications (non-
equivalent implications) are uninformative. The noun atom means "informationally atomic 
proposition". 
 By the way, the expression 'atomic proposition' usually means "structurally atomic 
proposition", loosely, a proposition that is not "composed" of other propositions. In the class of 
arithmetic propositions discussed here the only structurally atomic propositions are the identities: 
"Zero is zero", "Zero is one", "Zero is two", etc. Among the arithmetic structural atoms every one is 
either tautologous or false and each of those that are false implies the disjunction of itself with 
another false structural atom. Thus no structural atom is informationally atomic. It is a lucky 
accident, so to speak, that we do not have to use the principle of possibly false disjunction here. 
Of course, this result presupposes that we are speaking about arithmetic propositions. If we 
consider a different "propositional domain" the issue would have to be reconsidered. For example 
consider the situation in which 'proposition' refers exclusively to propositions expressible using 
only 'Abe', 'Ben', 'is', and 'isn't' where the first two words refer to, say, Abraham Lincoln and 
Benjamin Franklin and where the last two words are taken in the senses of identity and 
distinctness, as above. In this propositional domain, we have four propositions up to equivalence: 
"Abe is Abe", "Abe is Ben", "Abe isn't Ben" and "Abe isn't Abe". Here the consistent informative 
proposition "Abe is Ben" is both structurally and informationally atomic. Confusing the concept of 
structural atom with that of informational atom may be involved in the fallacy of thinking that, e.g. 
"Abe is wise" is unconnected with "Ben is kind" in the domain of propositions expressible in normal 
English [etc.]. Of course, in the domain of propositions limited to those expressible using only 
'Abe', 'Ben', 'wise', 'kind', and 'is' suitably interpreted with 'is' expressing predication, "Abe is wise" 
is unconnected with "Ben is kind" and there are no tautologies and no contradictions. This shows 
that the concept of connectedness presupposes a background domain as do many other logical 
concepts. The concept of a limited universe of discourse, found by logicians beginning with 
Aristotle to be essential in the analysis of axiomatic sciences, plays an important role in logic itself. 
Weyl 1927/49, 7, 18, 24; Lewis and Langford 1932, 330; Mates 1965, 173. 
 Limitations of space do not permit full discussion of the relevant results, but a summary of 
them will help to put the above deliberations in perspective. An atom is an informative proposition 
from which no information can be dropped without rendering it uninformative. As yet we have seen 
no example of an arithmetic atom. A given atom is implied by every proposition that it is connected 
to; every two non-equivalent atoms are unconnected; and an atom is implied by every proposition 
whose negation does not imply it [and, equivalently, it is implied by the negation of every 
proposition that does not imply it]. 
 A saturation is a consistent proposition to which no information can be added without 
rendering it inconsistent. The proposition G equivalent to the Gödel Axiom Set is an example. In 
fact it is easy to see that there are infinitely many saturations in the domain of arithmetic 
propositions expressible in the language of Gödel 1931. See Weaver 1970 and Corcoran 1980. A 
given saturation implies every proposition that it is consistent with; every two non-equivalent 
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saturations are inconsistent; and a saturation implies every proposition whose negation it does not 
imply [and, equivalently, a saturation implies the negation of every proposition that it does not 
imply]. 
 In every propositional domain containing the negation of each proposition it contains, the 
negation of a given saturation is an atom and the negation of a given atom is a saturation. 
Saturations are to atoms much as contradictions are to tautologies. At any rate, in order for a 
proposition to be atomic it is necessary and sufficient for it to be equivalent to the negation of a 
saturation. This result enables us to identify the negation of G as an atom and it enables us to 
identify infinitely many atoms. This in turn gives rise to the following results about the Gödel Axiom 
Set. 
 The Gödel Axiom Set GAX implies infinitely many atoms. It is, therefore, not equivalent to any 
finite set of propositions whose members can not be further analyzed into two or more 
unconnected "parts". Moreover, the Gödel Axiom Set is not implied by any set of atomic 
propositions [expressible in the language of Gödel 1931]. Therefore, it is not equivalent to any set 
of propositions not further analyzable into unconnected parts, whether that set be finite or infinite. 
Nevertheless we should not lose sight of the fact that Eaton's ideal of a set of axioms wherein "no 
part of one should follow from the others" is realizable, however uninteresting and inconsequential 
this may be in individual cases. 
 Other conclusions concern the interrelations among the Gödel axioms. The Gödel Axiom Set 
is infinitely redundant. In fact, there are infinitely many atoms each of which is implied by each of 
the three axioms, thus, each of which connects each axiom to each of the other two. It is, 
hopeless, therefore to attempt to remove the redundancy on an atom-by-atom basis. 
 Moreover, each of the three Gödel axioms implies infinitely many atoms not implied by the 
other two and, therefore, there is no way to replace even one of them by a finite set of propositions 
that can not be further analyzed into unconnected parts. Some of the results of this section are 
due in part to George Weaver. 
 In the domain of arithmetic propositions just considered, every two non-equivalent atoms are 
consistent with each other, every two non-equivalent saturations are connected, and no atom is a 
saturation. Indeed, in any domain an atom is as weak as it can be without being uninformative and 
saturation is a strong as it can be without being inconsistent. It may occur to the imaginative 
reader to wonder whether there could be a "degenerate" domain containing both tautologies and 
contradictions and containing both atoms and saturations, but in which the class of atoms is 
coextensive with the class of saturations. This is indeed the case with one of the propositional 
domains mentioned above which contained only four propositions up to equivalence; its only 
propositions weaker than "Abe is Ben" are tautologies and its only propositions stronger than "Abe 
is Ben" are contradictions. Thus "Abe is Ben" is both an atom and a saturation. The same holds 
for "Abe isn't Ben". There are other strange features of this degenerate case: two atoms are 
inconsistent with each other and two saturations are unconnected. In typical non-degenerate 
domains, such as the arithmetic domain discussed above, every two atoms are consistent and 
every two saturations are connected. 
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