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THREE LOGICAL THEORIES* 

JOHN CORCORAN 

State University of New York at Buffalo 

This study concerns logical systems considered as theories. By searching for the 
problems which the traditionally given systems may reasonably be intended to solve, 
we clarify the rationales for the adequacy criteria commonly applied to logical systems. 
From this point o f  view there appear to be three basic types o f  logical systems: those 
concerned with logical truth; those concerned with logical truth and with logical con- 
sequence; and those concerned with deductionper se as well as with logical truth and 
logical consequence. Adequacy criteria for systems o f  the first two types include: 
effectiveness, soundness, completeness, Post completeness, "strong soundness" and 
strong completeness. Consideration o f  a logical system as a theory o f  deduction leads 
us to attempt to formulate two adequacy criteria for systems o f  proofs. The first deals 
with the concept o f  rigor or "gaplessness" in proofs. The second is a completeness con- 
dition for a system o f  proofs. An historical note at the end o f  the paper suggests a 
remarkable parallel between the above hierarchy o f  systems and the actual historical 
development o f  this area o f  logic. 

This paper is mainly a contribution to the philosophy of the science of logic. Our 
primary purpose is to apply a certain methodological principle to logical systems 
considered as theories. The principle may be stated as follows: The form of a com- 
pleted theory is partly determined by the nature of the subject matter of the theory 
and partly by the specific problems that the theory is intended to solve. On the basis 
of the problems they may reasonably be intended to solve we distinguish three types 
of logical systems. The first includes the early logistic systems. The second includes 
the logical systems of a later period where proofs from arbitrary sets of assumptions 
play a dominant role. The third type includes the natural deduction systems which 
have been appearing recently. (For examples of systems of the first type see [20] and 
[ l  11 ;for a clear example of the second see [6];the systems of [I91 and [I] are of the 
third type.) 

This classification of logical systems has two important properties. In the first 
place it is a trichotomy: every logical system is in exactly one of the three classes. In 
the second place it is hierarchical in the following sense. The problems dealt with 
by the first type of system are also dealt with by the second which treats of addi- 
tional problems as well. The same is true of the second with respect to the third. 
This hierarchy of systems is completely general in that there are three types of pro- 
positional logics, three types of first order logics, three types of second order logics, 
three types of modal logics and so on. Everything that will be said is intended to 
apply to any and all of these logics. However, in order to provide a simple example 
of each type of system we will restrict part of the discussion to a fragment of the 
logic of sentences (propositional logic). 

For the purposes of the examples we assume a language L which has in its logical 
vocabulary the symbol 3 having the truth-functional meaning of 'if. . . then . ..,' 
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the symbol - having the truth-functional meaning of 'not,' and parentheses for 
grouping. L may indeed contain symbols for 'and,' 'or,' 'iff,' quantifiers of any kind, 
modal operators, etc. All we are assuming for the purposes of the examples is the 
above and that under each interpretation of the language (in which the meanings 
of 2 and - remain fixed) each sentence is either true or false and not both. Thus L 
could be a formal language of set theory, geometry, biology, etc. or a formal 
language made up for purely logical purposes. 

I. Logical Truth: Lcsgistic Systems. 
"It is possible . .. to giue in ad~)nnce a description of all 'true' logical prepositions." 

WITTGENSTEIN 

Among the true sentences of a language one may distinguish a subclass of logic- 
ally true sentences. The logically true sentences are those which are true in virtueiof 
the meanings of the logical symbols only. More specifically, the logically true 
sentences are those which are true under all interpretations of the language. (By 
an interpretation we mean an interpretation in which the logical symbols have 
their normal meanings and in which all of the grammatical distinctions are pre- 
served :proper nouns are interpreted as individuals, one-placed predicates as sets of 
individuals, etc.) One reasonable aim of a logical theory is the codification of all 
logically true sentences. This aim is especially reasonable for a logician who 
believes that all laws of mathematics are logically true; once he has a codification of 
all logically true sentences he need "only" check to see if all mathematical laws are 
in his system. 

Logical systems intended primarily to codify logically true sentences are here 
called logistic systerns. The system of Principia Mathematics [20] is of this type al- 
though at the time of its inception Russell was not aware of the above idea of 
logical truth (cf. his remarks in [4], pp. 221-222). All of Lewis' systems [ l l ]  are 
logistic systems. 

Usually a logistic system consists in a set of sentences called axioms together with 
some production rules which generate further sentences from the axioms. The 
sentences actually codified by the system are the axioms together with the sentences 
generated from the axioms by means of the rules-all of these are called theorems. 

In our example we will codify only those logically true sentences of L whose 
logical truth turns on the meanings of '2' and '- .' This will be done indirectly. We 
will codify schemas or sentence forms all of whose instances are logically true 
sentences. In general, the schemas are not sentences of L but their instances are. For 
example ( P  3 P) is definitely not a sentence of L if L happens to be the language of 
geometry. However, if a is a sentence of geometry then (a 3 a) is again a sentence 
of geometry and, moreover (a 2 a) is an instance of (P  2 P). All instances of 
( P  3 P)  are logically true so (P  2 P)  is the sort of schema that we will codify. On 
the other hand, since some instances of (P  3 Q) are logically true and some are not 
we will want to avoid codifying (P 2 Q). 

For definiteness we define the schemas as any of the schematic letters 9 ,  Q, R,PI,  
Q1, R,, P,, . . . and any formula built up from these using 3 and - with paren- 
theses being used for grouping. A schema which has only logically true sentences 
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as instances is called a law of logic. Some laws of logic, like (P  2 ( Q  2 P)),  are of 
the 'if. . . then . . .' form and some, like -- ( P  3 P), are not. Those of the 'if. . . 
then . . .' form are especially important because of their roles in making valid in- 
ferences: given sentences a and b, from a using the above law we may validly infer 
(b 2 a). Some logicians regard this proper subclass of the class of logical laws as the 
principal subject of logic ( [2] ,pp. 2 and 3). 

The logistic system will codify a class of schemas called tlzeorems. These theorems 
are intended to include all and only the logical laws in question. The class of 
theorems is defined by taking some logical laws as axioms and by giving operations 
by which the others may be obtained from the axioms. 

The logistic system LS is defined by the following five definitions. 

Definition: The following three schemas are axioms of LS 

Definition: A schema $ is defined to be obtainedfionz a schema 6 by substitution 
iff 4 is the result of replacing all occurrences of a single schematic letter in 6 by a 
schema 7 or by performing the above operation simultaneously on a number of 
schematic letters. 

For example: every schema 4is obtained from the schema P by substitution be- 
cause we may replace all occurrences of P (only one in this case) by $. In particular, 
-P is obtained by substitution from P. Needless to say, substitution is not a sound 
rule of inference but it is a way of generating logical laws from logical laws :e.g. sub- 
stituting ( P  = -P)  for Q in A1 produces ( P  = ((P = -P)  = P))  which is another 
logical law. 

Definition: A schema 6 is said to be obtained from schemas $ and 7 by detachment 
iff = ($ = 6). (In other words, 6 is obtained from 4and ($ 3 6) by detachment.) 

For example, ( Q  2 P )  is obtained from P and ( P  2 ( Q  3 P))by detachment. This 
operation is immediately recognized as a sound rule of inference but the fact that it 
is a sound rule of inference is irrelevant to the problem at hand4 .e .  to the problem 
of codifying all schemas all of whose instances are logically true sentences of the 
appropriate sort. 

Now we may define the derivations in LS. Derivations are lists of schemas which 
may be offered as evidence that certain schemas are codified by the system. Deriva- 
tions correspond to proofs which involve only logical reasoning except that the 
principles used (1)are not sound and (2) do not correspond to normal reasoning. 

Definition: A derivation in LS is a finite sequence of schemas beginning with an 
axiom and such that each subsequent schema in the list either is an axiom or is 
obtained from a previous schema by means of substitution or is obtained from 
two previous schemas by detachment. 

Below is an example of a derivation. This derivation establishes that ( P  3 P )  is a 
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"theorem" of LS. Next to each line we indicate the rule according to which that line 
was entered. 

(1) ( P  =, (Q =, PI) 	 A l 
(2) ( p  I((p p )  p)) 	 substituting (P 2 P )  for Q in (1) 
(3) ((P I(Q IR)) I((P =, Q) =, (P  IR))) 	 A2 
(4) 	 ((P = ( (B  P )  = P)) ( ( P  ( P  PI) ( P  = P))) 

substituting ( P  2 P )  for Q and P for R in (3) 
(5) ((p ( p  p)) ( p  p)) detachment (2) (4) 
(6) ( p  I( p  IPI) substituting P for Q in (1) 
(7) ( p  =, p )  detachment (5) (6) 

Now we define the theorems as the schemas actually codified by the system. 

Definition: A theorem of LS is the last schema of some derivation in LS. 

Thus the axioms of LS are theorems as they each form the last line of a one-line 
derivation in LS. In addition we have as theorems the schemas of lines (2), (41, (5),  
(61, and (7). 

There are two obvious adequacy conditions to be placed on any logistic system. 
First, it must be sound, i.e. all sentences codified must be logically true. In LS 
all theorems must be laws of logic. To demonstrate soundness of LS it is sufficient 
to show that the axioms are all laws of logic and that the rules of substitution and 
detachment serve to generate from laws of logic only laws of logic. In the second 
place it is desirable that the logistic system be complete, i.e. that it codify all logically 
true sentences. In LS it is desirable that every law of logic be a theorem. By using 
methods developed by Post [I61 LS can be shown to be sound and complete. (An 
easier approach to completeness of LS: show that all theorems of the system L 
([14], p. 31) are theorems of LS and then use Kalmar's idea ([14], p. 36).) 

If a logistic system is not sound then among its theorems are sentences which are 
not logically true. Thus an unsound logistic system would be abandoned (or modi- 
fied). However, an incomplete logistic system is still of value. Indeed many logistic 
systems are inherently incomplete but they still serve the purpose of codifying 
logically true sentences-they just do not codify all of them. 

How could a logistic system be inherently incomplete? It  would seem that we 
could continue to add as new axioms any laws of logic found not derivable. This is 
certainly true. But there is no guarantee that after adding a finite number of new 
axioms we would achieve completeness. Indeed the logical truths of a language may 
be so complex that there is no effective method even for specifying an infinite set of 
axioms which would make the system complete. 

As a limiting case, what is to prevent taking all logical laws as axioms to begin 
with? This suggestion is, in general, its own reductio ad absurdum. Would we be 
able to regard ourselves as having codzjied the logical truths of a language by merely 
uttering an incantation such as "let the logical truths be hereby codified" ? 

In order to regard a system as a codification the axioms must be given in such a 
way as to enable us to decide wlzetlzev or not any given sentence (or schema) in 
question is an axiom. Moreover, given any finite list of such sentences (or schemas) 
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we must be able to decide whether or not the last was obtained from the others by 
one of the operations. In short, we must be able to decide of any finite list of 
sentences (or schemas) whether or not it is a derivation. 

We may formulate a third condition as follows: The derivations of a logistic 
system must be decideable, i.e. the axioms must be decideable and the operations 
must be decideable. Unless this condition held we would have no reason for regard- 
ing a system as a codification at all. A system whose derivations are decideable we 
shall call effective. 

(We remark parenthetically that there are logistic systems-codifications of 
logical truths-which do not have the axioms-plus-rules form. The concept of 
effective formulated above would therefore have to be modified-but some such 
condition must be satisfied by any system which is claimed to be a codification.) 

There is a fourth adequacy condition for logistic systems which was formulated 
by Post ([16], p. 173). Consider a complete and sound logistic system, say S. If a 
new axiom C$ were added to S making a new system S' then one of two things 
would necessarily happen. First if $J is logically true it would already have been a 
theorem of Sso S'is sound and complete but it has a redundant axiom. Second if C$ 
is not logically true then Sfis unsound-one of its theorems (viz. 4) is not logically 
true. If the generating power of Swere "rich enough" then the one unsound theorem 
would "destroy" the system by allowing all sentences to be generated, in particular 
(e.g. in LS), both P and -P. If this happened we might say that the system Sis so 
complete that (properly) new axioms can not be added. This is the idea of Post com-
pleteness. Post also developed methods by which L S  can be shown to be Post com- 
plete. To get an idea of why L S  is Post complete, consider adding P as new axiom- 
immediately every schema (including NP) becomes a theorem. The same thing re- 
sults from adding (Q 2 p): by substituting any axiom, say Al, for Q in (Q 2 P) 
we get (A1 2 P) and then by detachment from A1 and (A1 2 P) we get P. From P 
all schemas are obtained by substitution. For LS this happens whenever any pro-
perly new axiom is added, i.e. whenever we add as an axiom a schema not already a 
theorem. This is what it means for LS to be Post complete. 

The adequacy conditions for logistic systems may be summarized as follows. 
Every logistic system must be effective and sound, i.e. must be a codification and 
must codify only logically true sentences. An "ideal" logistic system is also com- 
plete (codifies all logically true sentences) and Post complete (so complete that pro- 
perly new axioms can not be added). Notice that completeness is obviously a desir- 
able property of logistic system whereas, although it is not unreasonable to want 
Post completeness, the lack of Post completeness is not a deficiency in a logistic 
system. 

2. Valid Arguments: Consequence Systems. 

"The central problem of logic that has motivated much of its development from Aristotle's 
syllogisms down to the mathematical logic of the present day is: Given any sentences 
Q ,  PI,P,,. . ., state precisely under what circumstances he sentence Q is a logical conse- 
quence of the sentences PI, Pa,. . ." 

PAUL GILMORE 

3-P.S. 
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A second and more comprehensive aim of a logical theory is the codification of 
all valid arguments. This aim is reasonable not only for the logicist who must re- 
cognize the value of valid arguments in law, philosophy, science, etc. but also for 
all other logicians. An argument is a system of sentences one of which is called the 
conclusion and the rest called premises We may represent any argument as S :. p 
where S is a set of sentences and p is a sentence. An argument S :. p is valid if the 
truth of the premises guarantees the truth of the conclusion or, put another way, if 
it is impossible for the conclusion to be false while all of the premises are true. In 
terms of interpretations we may define an argument S :. p as valid (following 
Tarski [19], pp. 309-420) iff every interpretation making all sentences in S true also 
makes p true. It  follows that S .'. p is valid iff there is no interpretation making all 
sentences in S true and also making p false. 

The conclusion of a valid argument is commonly said to be a logical consequence 
of the premises. For this reason we use the term consequence system to refer to a 
logical system which is intended to codify not only logically true sentences but also 
valid arguments. Some logicians ([13], p. 2; [12], p. v) regard the investigation of 
logical consequences as the principal concern of logic. Systems given in these re- 
ferences are examples of consequence systems. 

A consequence system codifies the logically true sentences of a language in much 
the same manner as a logistic system. The valid arguments are codified by giving 
rules of inference by which the logical consequences of a given set of sentences are 
produced from the given set. Needless to say the rules of inference must always pro- 
duce from a given set of sentences only logical consequences of it. Thus substitution 
can not be used. Detachment does produce from two sentences a third which is a 
logical consequence. 

As an example we will give a consequence system CS which will codify (1) the 
same logically true sentences of L as codified by LS and (2) the valid arguments of L 
whose validity involves only the meanings of 2 and -. The latter will be done by 
codifying valid argument forms. An argument form is a system of schemas one of 
which is called the conclusion and the rest called premises. We may represent an 
argument form as C :. + where C is a set of schemas and 4 is a schema. An argument 
form is valid if all of its instances are valid arguments. 

The following five definitions define the consequence system CS. 

Definition : The axioms of CS are all schemas of the following forms 

(B1) ( + = ( a = + ) )  

(B2) ((4 = (8 = 77)) = ((4 = 8) = (+ = 77))) 

(B3) ( ( - 4 = - 8 ) = ( ( - 4 = 8 ) = 4 ) )  


Thus CS has an infinite number of axioms whereas LS had only three. This de- 
finition enables the incorporation of the sound "part" of substitution and the 
avoidance of the unsound "part." Our only generating operation is detachment de- 
fined as above. 

Definition: (definition of detachment as above). 

A derivation in a consequence system is a "record" of a production of a conclu- 
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sion from premises. Derivations correspond to normal, rigorous proofs from pre- 
mises except that principles used to construct a derivation are not necessarily 
normal or rigorous. 

Definition: A derivation of $ from C is a finite sequence of schemas (1) beginning 
either with a premise in C or with an axiom and (2) such that each subsequent 
schema either is a premise in C, or is an axiom, or is obtained from two previous 
schemas in the sequence by means of detachment and (3)which ends with 4. 

Logical laws are codified by derivations from the empty set of premises. This is 
exactly the method by which logical laws are codified in a logistic system except that 
in a logistic system there are derivations only from the empty set. 

Definition : A theorem of CS is the last schema of a derivation from A, the empty set. 

Valid arguments are codified by derivable argument forms. 

Definition: An argument form C :. $ is derivable in CS iff there is a derivation of 
# from C. 

Notice that CS codifies arguments having an infinite number of premises. Any 
consequence system must do this in order to make any claim to comprehensiveness 
because there are many sciences which have an infinite number of axioms and a 
consequence system certainly should be able to codify the valid arguments in 
science. More generally, because infinite sets of sentences do indeed have logical 
consequences, a consequence system should be able to codify arguments having an 
infinite number of premises. 

As a result of our general definitions there are argument forms having no pre- 
mises at all. There are derivable argument forms of the form A :. 4. This may seem 
to be an artifact of the system. But, by the definition we have that $ is a theorem 
iff A :. 4 is derivable. This accords nicely with Leibniz's observation that a logically 
true sentence is one which is derivable on the basis of logic alone without using any 
other principles. 

Below are a few examples of derivations. We will head the derivation with the 
argument form being derived and give on the right the rules used. 

A :. ( P  = P )  

(1) ( p  =, ( ( p =I p )  IPI) schema in form ( B l )  

(2) ( (P =I ( (P =I P )  = PI) I ( (P I ( P  = PI) = ( P  = P)))  
schema in form (B2) 

(3) ( ( p  =, ( p  IPI) I (p =I PI) detachment (1) (2) 

(4) ( p  =, (f' =I PI) schema in form ( B l )  

( 5 )  ( P  =, p )  detachment (3) (4) 

premise in [PI 
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premise in [P, (P  2 Q), (Q =I R)] 
premise in [P, (P  3 Q), (Q 2 R)] 
premise in [P, (P  3 Q), (Q 3 R)] 

detachment (I), (2) 
detachment (3), (4) 

In order adequately to serve the purposes (1) of codifying all and only logically 
true sentences of a language and (2) of codifying all and only valid arguments of a 
language, a consequence system must satisfy four conditions. In the first and 
second places it must be complete and sound in the above senses. Third, it must be 
strongly complete, i.e. it must codify all valid arguments. Finally, it must be strongly 
sound, i.e. it must codify only valid arguments. 

As far as CS is concerned, the discussion of soundness and completeness for LS 
carries over with only minor changes. To establish strong soundness it is sufficient 
to show that all of the axioms are logical laws and that detachment always pro- 
duces from two schemas a third which is a logical consequence. The simplest proof 
of strong completeness for CS is probably one which follows Henkin's ideas [6]. 

Post completeness is clearly not an appropriate adequacy condition for a conse- 
quence system as if the addition of any properly new axiom would destroy the 
system then the system would fail to be strongly sound. In S we should not expect 
NPto be derivable from P. 

It goes without saying that a consequence system must be effective (in an appro- 
priate sense). Otherwise we could not regard it as codifying anything. 

Both logistic systems and consequence systems, as we have seen, each have one 
kind of derivation. The basic difference between the two types of systems lies in the 
nature of their respective kinds of derivations. The derivations of a logistic system 
must be "based on" the axioms of the system whereas in a consequence system the 
derivations are derivations from arbitrary sets of premises. It  is this difference 
which makes the consequence system able to codify valid arguments as well as 
logical truths. The logistic system, on the other hand, is appropriate only to the task 
of codifying logical truths. 

There have been attempts to use logistic systems as codifications of valid argu- 
ments (see e.g. [ll], p. 341 or 171, p. 23). If this were to be done by introducing 
derivations from assumptions then, of course, it would be more reasonable to say 
that the system has been modified to a consequence system. Let us digress briefly to 
consider how logistic systems may be thought of as codifying valid arguments 
without introducing derivations from assumptions. 

In LS, for example, we could use theorems of the form (+ 2 6) to codify argu- 
ment forms with one premise [+] :. 6. But this is unsatisfactory as it codifies only 
arguments with one premise. The difficulty can be partially circumvented by use of 
the principle of the corresponding conditional which relates valid argument to 
logically true sentences. In order to state this principle neatly we need to assume a 
language L' which is like L except that it also contains & in its truth-functional 
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meaning. Assume also that LS is modified so that it codifies all logical truths of L' 
turning on 2,-, or &. For example, ((P & Q) 2 P) would be a theorem of this 
new logistic system which we will call LS'. 

The principle of the corresponding conditional relates the validity of an argument 
having a nonempty, finite set of premises to the logical truth of the conditional 
sentence whose antecedent is the conjunction of the premises and whose consequent 
is the conclusion. More precisely: 

[$I, $2, . . ., +n] .'. S is valid iff ((75, & 4, & . . . &$,) 2 6) is logically true. 

Thus we may take arguments with non-empty finite sets of premises to be codified 
by the corresponding conditional. Moreover, arguments having no premises may be 
codified by their conclusions since we have: 

A :. 6 is valid iff S is logically true. 

Thus all finite arguments are codified within a logistic system. To codify an infinite 
argument we may use a conditional whose antecedent is a conjunction of some of 
the premises and whose consequent is the conclusion. For example if H is the set of 
all schematic letters then the valid argument form H :. P would be codified by 
(P 2 P) since [PI is a subset of H. 

This arrangement would not be adequate in case there were an infinite set of 
premises (1) which implied a conclusion but (2) which was such that no finite subset 
also implied the same conclusion. But since derivations are only of finite length, the 
consequence system would not be able to codify such an argument either. 

Thus a logistic system can indeed be used to codify valid arguments as well as 
logical truths. But this is like cutting pie with a pencil-the tool is not appropriate 
to the task but can still be used if one does not mind a messy job. In general, the 
derivations of the corresponding conditional will be much longer and more difficult 
to discover than the derivation of the conclusion from the premises. Moreover, 
there are many interestingrelations among valid arguments which are nicely manage- 
able in a consequence system but almost impossibly complicated in a logistic 
system. On this point one may compare the development of the deduction theorem 
in a consequence system (e.g. [14], p. 32) with its development in a comparable 
logistic system (e.g. [3], pp. 86-89). 

Probably the most troublesome difficulty with trying to treat valid arguments in 
a system not suited for the task is a conceptual one. If we take an argument 

$2,. . ., (5,] :. 6 as codified by ((4, & (5, . . . & (5,) 2 S) then there is a tendency 
to confuse 'implies' with '2 .' It is a social fact that mathematicians, needing a 
short word to express 2 , use the word 'implies.' This fact does nothing to resolve 
the confusion but actually seems to lend authority to maintaining it. The obvious 
facts resolving the confusion (e.g.ithat '3' is in L whereas 'implies' need not be) 
tend to be overlooked when one is working in a logistic system. 

In summary we reiterate that logistic systems are naturally thought of as con- 
cerned only with logical truth whereas consequence systems treat logical consequence 
as well as logical truth. Since the consequence systems treat a more comprehensive 
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class of problems the adequacy conditions for a consequence system are more com- 
prehensive than those for the logistic system. In addition to being sound a conse- 
quence system must also be strongly sound. For a consequence system, not only is 
completeness desirable but strong completeness is as well. Moreover, although it is 
not unreasonable to expect a logistic system to be Post complete no adequate con- 
sequence system can have this property as it conflicts with strong soundness. Fin- 
ally, although valid arguments can be codified in a system which does not have 
derivations from premises the details of the codification are unnecessarily compli- 
cated, inefficient and the opposite of enlightening. 

3. Proofs: Deductive Systems 

"Proofs . . . had to exist before the structure of a proof could be logically analysed; and this 
analysiu . . . must have rested. . . on a large body of mathematical writings. In other words, 
logic, so far as we mathematicians are concerned, is no more and no less than the grammar of 
the language which we use, a language which had to exist before the grammar could be 
constructed." 

BOURBAKI 

In addition to codifying the logically true sentences and the valid arguments, a 
logician may be concerned to codify the proofs of a language. In other words, one 
may wish to examine the steps of reasoning involved in showing that a conclusion 
follows from premises. In order to get an idea of what the proofs of a language are 
one may examine a number of them in some existing corpus of deductive reasoning 
(like geometry). 

By examining a number of proofs one is almost forced to conclude that proofs 
are finite discourses structured in accordance with certain rules which may be 
called rules of inference. Thus we may codify the proofs of a language by specifying 
the rules of inference and how they are applied. 

In logic we do not aim to codify all proofs which occur but we idealize in two 
directions. In the first place we do not wish to codify mistakes so we require that 
rules of inference be sound, i.e. that they lead from premises to conclusions which 
actually follow. In the second place we do not want to codify great leaps of logical 
intuition-we want our rules to be absolutely simple, i.e. we want to codify the 
proofs which have the maximum amount of logical detail. In short we wish to 
codify the logically rigorous proofs. 

As an example we will consider the problem of codifying the proofs of L and only 
those which turn on the meanings of 2 and -. We will codify them by codifying 
proof forms which are discourse schemas all of whose instances are proofs involving 
only the meanings of 2 and -. One reasonable candidate for proof forms is the 
derivations of CS. But there is one obvious obstacle to taking these as forms of 
rigorous proofs even though they are sound. 

The writing of axioms (especially, long and intricate ones) is neither a principle 
actually found in normal reasoning nor is it rigorous. The writing of axioms as in 
the derivations of CS is not rigorous because more logical detail can reasonably be 
requested and easily supplied. Thus, a proof which cited such an axiom would con- 
tain a logical gap. 
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Derivations from premises are rejected despite the fact that they are sound and 
this is as it should be as it is one thing for an inference to be sound and quite another 
for it to be logically simple, i.e. have no "gaps" in the reasoning. One may soundly 
infer a very complicated theorem of geometry directly from the axioms but one 
would hardly regard this as proving the theorem from the axioms. 

(a) Principles of Reasoning 

Below we shall survey in thought the kinds of principles actually found in normal 
reasoning. Our aim is not that of characterizing normal or natural reasoning- 
natural reasoning is certainly not rigorous. However, as we will see below, there 
are rigorous principles frequently used in normal reasoning. We will use some 
of these principles to set up a deductive system which codifies not only logical 
truths and valid arguments but also proofs which may, with good reason, be called 
rigorous. 

In surveying the proofs of geometry (or any other body of deductive reasoning) 
we find many kinds of inference-some sound and, most likely, some unsound, 
some "gapless" and some which could bear having some additional logical detail 
filled-in. Of the gapless or rigorous principles of proof we find three kinds. 

The first type of principle to be noticed will most likely be an imnzediate inference 
rule. An immediate inference rule is a rule which permits the writing of a new line in 
a proof on the basis of one or two previous lines. Detachment is of this sort. An- 
other is the principle by which we infer P from (P  & Q), for example. An immediate 
inference rule which will be of importance below is called repetition. This rule per- 
mits one to repeat an earlier line. (Note that we are not using the word 'immediate' 
in the sense of "obvious." Many of the nonimmediate inferences mentioned here are 
also obvious.) 

The next principle to be noticed in such a survey is the rule which permits us to 
enter as a line in a proof one of the assumptions from which we wish to draw a con- 
clusion-provided that we clearly note that it is an assumption (and not a conclu- 
sion on the basis of steps above it). This rule we call assumption and put it in a class 
by itself. 

Notice that apart from the rule permitting the introduction of axioms a conse- 
quence system generally has only immediate inference rules and the rule of assump- 
tion. Since the introduction of logical axioms generally makes gaps in a proof we 
are not regarding principles of this sort as rigorous. The third type of rule to be 
noticed provides the key not only to giving rigorous proofs of the complex axioms 
of CS (which are never seen in normal reasoning) but also to giving rigorous proofs 
of simple axioms like (P v -P) and -(P & -P) which do occur in normal reason- 
ing. The third type of rigorous principle of proof is ubiquitous in normal reasoning 
but generally does not occur in consequence systems. It  might even be maintained 
that it is the absence of this third type of rule which makes derivations in conse- 
quence systems unnatural and unrigorous. 

The third type of principle of proofs we call a structural rule. The distinguishing 
feature of a structural rule is that it permits inference not from previous lines in a 
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proof but on the basis of apattern of reasoning. Consider, for example, the following 
bbproof" of ((P & Q) 2 (Q & P)) (from the empty set): 

Assume (1) ( P  & Q). From (I) we have 
(2) Q. Again from (1) we have 
(3) p. From (2) and (3) we have 
(4) tQ &PI. 


Thus (5) ((P & Q) = (Q &P>>. 


Notice that lines (2), (3), and (4) all depend on line (1) and all were immediate in- 
ferences from previous lines. Line (5),  however, does not depend on line (1) nor on 
any other line or lines above it. Line (5) was inferred on the basis of a pattern of 
reasoning. On the basis of reasoning from (P  & Q) to (Q &P)we inferred ((P & Q) 
3 (Q &P)) and not as depending on any previous lines. 

In general the principle of conditionalization permits the inference of (4 3 6) on 
the basis of reasoning from + to 6 and not as depending on 4 but only, perhaps, on 
other previous assumptions used in the reasoning. There are two structural rules 
which cover indirect proof. The first is called negation introductiorz: on the basis of 
reasoning from + to 6 and reasoning from + to -- 6 we conclude -4. The second 
negation is called negation elimination: on the basis of reasoning from -4 to 6 and 
the reasoning from -4  to -6 we conclude 4. These are the principles behind 
"reductio" type proofs. 

Below we will give "gapless" proofs of the three axioms of LS by using the rules: 
assumption (A), repetition (R), detachment or 2-elimination (2E), conditionaliza-
tion or -introduction (1I),negation-elimination ( - E )  and negation-introduction 
(-1). We will use a plus sign (+) to mark assumptions and we will box off patterns 
of reasoning. For simplicity we require that each pattern of reasoning contain only 
one assumption and that the assumption be the f is t  schema in the pattern. 

The idea of this proof is as follows. Since we want to prove (P 2 (Q 3 P))we could 
try assuming P and then reasoning to (Q 2 P). Thus we assume P (line 1). Since we 
now want to prove (Q 2 P) from our assumption we could try assuming Q and 
reasoning to P. Thus we assume Q (line 2). Pfollows by repetition from our assump- 
tion P (line 3). We now have a pattern of reasoning from Q to P-so we box it off 
and conclude (Q 3 P) (line 4). Now we have a pattern of reasoning from P to 
(Q 3 P)-so we box it off and write the conclusion (line 5). 
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Notice that when we said that a box can contain one assumption we meant only 
one unboxed assumption-once some reasoning is boxed off the individual schemas 
in it no longer function as individual steps of the proof-inferences can no longer be 
made from them as they are now part of a pattern of reasoning. 

These proofs contain the maximum amount of logical detail. They are absolutely 
rigorous. Each time a new line was written in the proof there was no additional 
logical detail which could be asked for and none which could (nonredundantly) be 
supplied. 

The reason that such apparently extravagant claims can be made is, very roughly : 
each lengthening of the proofs by the addition of a new line involved either an 
assumption or the introduction or elimination of exactly one logical symbol. 
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(b) Deductive Systems 

We use the term deductive system to indicate a logical system which codifies 
logical truths, valid arguments and (sound, rigorous) proofs. The term deductive is 
chosen to indicate that the most comprehensive purpose of such a system is the 
codification of deduction. (Note: recently the term 'deductive system' has been used 
in a sense somewhat like the above but in the past it was used synonymously with 
the modern technical term 'theory' to denote a class of sentences which contains 
all of its own consequences relative to a consequence system.) 

Below we will give as an example of a deductive system a system DS which 
(1) codifies the same logical truths of L as codified by LS (and CS), which (2) codifies 
the same valid arguments of L as codified by CS and which (3) codifies the (sound, 
rigorous) proofs of L whose "correctness" turns on the symbols 3 and -. The 
latter will be accomplished by the codification of proof forms (PFs) which are dis- 
course forms all of whose instances are proofs of the above sort. The forms referred 
to above as proofs of (Al), (A2), and (A3) are not themselves proofs in L because 
the symbols P, Q, and R are schemas. But, when P, Q, and R are replaced by 
sentences of L the results are instances of the forms and these instances indeed are 
proofs. 

In order to define a deductive system which codifies proofs, valid arguments and 
logical truths one may (1) define proofs, (2) define proofs from a set of premises S 
to a conclusion p, (3) define a derivable argument as one for which there is a proof 
from its premises to its conclusion, and finally (4) define a theorem as a sentence p 
such that A :. p is a derivable argument. 

Taking the term 'plussed schema' to indicate a schema preceded by a + sign and 
taking the term 'boxed schema' to indicate a schema enclosed in a box we offer the 
following four definitions as defining DS. In the inductive definition of PFwe will 
indicate the clauses corresponding to the various principles of inference by using the 
abbreviation of the name of the principle. 

Definition: A PFof the deductive system DS is defined: 

(i) (A)  (a) a plussed schema is a PF 
(b) every PF may be extended to another PF by adding any plussed 

schema 
(ii) (R) every PFmay be extended to another PFby adding any unboxed schema 

already occurring in it omitting the plus if the schema to be added was plussed. 
(iii) ( 3E) any PF containing unboxed 4 and (4 3 6) (plussed or not) may be 

extended by adding 6. 
(iv) any PF ending with a sequence which (1) begins with a plussed unboxed 

schema and (2) contains no other (unboxed) plussed schema may be extended 
to another PF by boxing off the latter sequence provided that it ends in an 
unboxed and unplussed schema. 

(v) ( 1 I )  any PF ending with a boxed sequence which (1) begins with f + and 
(2) ends with 6 may be extended to another PFby adding (4 16). 

(vi) (-I) any PF ending in two successive boxed sequences one of which begins 
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with +# and ends in 6 and the other of which begins with +# and ends with -6 may be extended by adding -#. 
(vii) 	(- E) any PFending in two successive boxed sequences one of which begins 

with +-4and ends with 6 and the other of which begins with +-# and ends 
with -6 may be extended by adding (5. 

(viii) only those things constructible by a finite number of applications of the above 
rules are PFs. 

Note that there is no rule corresponding to the introduction of axioms. This 
logical system contains no axioms. The first clause ((i)a) says that every PFbegins 
with an assumption. Clause (iv) is a rule for boxing off patterns of reasoning. The 
remaining clauses specify how a given proof may be lengthened by the addition of a 
new schema. These rules are diagrammed below. 

Diagrams of Rules for Proof Forms in DS 

(i) Assumption: 	A (ii) Repetition: R 


( 4  +# 

(b) 	 i ) PF 

+# 

# # 


(iv) Boxing off patterns of reasoning 

Note: The part of the proof being boxed off 
can contain only one unboxed assumption 
(plussed schema). 

S 

(iii) Detachment: 3E (v) Conditionalization: 3I 

(vii) Reductio: -E (vi) Reductio: - I  
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Now we define what it means for a PF to  be a PFof # from C where # is a schema 
and X is a set of schemas. 

Definiton: A PF, say a, is a PFof I$ from C iff I$ is the last line of a and 4 is unboxed 
and every unboxed plussed schema in a is a member of X. 

As an example we give a PFof (P 2 R) from [(P 3 (Q 3 R)), (P 3 Q)] 

+ ( P =  (Q = R)) 

+(P  = Q) 


:. AiffDSis a theorem of 4Definition: 

By extending this PF as above we obtain a PF of (A2) and from the empty set, 
i.e. we obtain what corresponds to a proof of (A2) based on logical principles alone. 
In CS a derivation of (A2) from the empty set is merely a one line derivation: 

((P = (Q= R)) = ((P = Q) = (P = R))) 

This seems to epitomize a gap in reasoning. If we ask for more logical detail then 
we must go to a system like DS as in CS there is no way to fill-in the gap without 
creating other gaps. 

Definition: X :. # is a derivable argument form in DS iff there is a PFfrom I:to I$. 

I$ is a derivable argument form in DS. 

As far as this particular deductive system is concerned, soundness, completeness, 
strong soundness and strong completeness can easily be inferred from the strong 
soundness and strong completeness of CS. Since completeness and soundness 
follow, respectively, from strong completeness and strong soundness it is sufficient 
to prove these latter properties of DS from the properties of CS. Both proofs are 
instructive. 

To show that DS is strongly complete we must show that every valid argument 
form is derivable in DS. From the strong completeness of CS we know that every 
valid argument form is derivable in CS. Thus it is sufficient to show that every argu- 
ment form derivable in CS is also derivable in DS. Let C :. + be derivable in CS. 
Then there is a derivation of # from X in CS. Let a be such a derivation. If we can 
show how to modify a so that it becomes a PF of # from C in DS we are finished. 
Now a may already be a PFof # from X.In this case nothing need be shown. But if 
a is not a PF then there must be axioms in it-because gaps occur in derivations 
when and only when axioms are introduced; detachment and assumption are the 
only other ways of making derivations. Replace each axiom in a by a PFof that axiom 
(as'in the examples above). Thus a is changed to a' and a' is now a PF as all gaps 
have been eliminated. Thus every argument form derivable in CS is also derivable 
in DS. Thus if CS is strongly complete so is DS. 

To show that DS is strongly sound we must show that every derivable argument 
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form is valid. From the strong soundness of CS we know that every argument form 
derivable in CS is valid. Thus if we can show that every argument form derivable in 
DS is also derivable in CS we will be finished. What we must show is that the 
simple patterns of reasoning permitted by applications of R, 3I, N E, and -I in DS 
can be carried out by "chunks" of derivations in CS. In standard terminology, we 
must show that R, 31, -E, and - I  are dericed rules of iizference ([3], p. 83) in CS. 
To show that 3I i s  a derived rule of inference in CS is to prove Herbrand's famous 
deduction theorem, viz. :if there is a derivation in CS of 6 from assumptions C and 
4 then there is a derivation in CS of ($ 16 )  from C alone. In other words, if 
2' :. 6 is derivable in CS then so is 2 :. (# 3 6 )  where C' contains (b and C is 
obtained fromC1 by deleting #. Actually, to show that 1 1 i s  a derived rule the proof 
must do a bit more; the proof must give a uniform procedure which, when applied 
to a derivation of 6 from 2 and 4, produces a derivation of (# 3 6 )  from C above. 
This can be done very easily by well-known methods (e.g. as in [12], p. 32). Similar 
methods can be used to show that R, -E, and -I are derived rules. As an example 
let us see how repetition (R) can be obtained as a derived rule. We will give a uni- 
form method which will produce from a given derivation a having a line (b another 
derivation a' among whose lines all lines of a are found and whose last line 
is #. To the given derivation add a derivation of (# 1(b) (as above) and to this 
derivation add (b. The result is a derivation because the last line 4was obtained by 
detachment from the postulated earlier line 4 and the line (# 3 $1. Using these 
results one can show that any argument form derivable in DS can also be derived in 
CS and (by the strong soundness of CS) is, therefore, valid. 

Actually it is easier, but perhaps less instructive, to prove the strong soundness of 
DS directly by mathematical induction on the length of a PF. 

Thus DS is sound, complete, strongly sound and strongly complete. Also, need- 
less to say, DS is effective. 

If DS is to be thought of as more than a mere consequence system there must be 
stronger adequacy conditions satisfied by its derivations (PFs). Otherwise we have 
no precisely articulated reason for regarding it as anything but a different kind of 
consequence system. It is not enough that its derivations are sound and effective; 
they must be rigorous as well, i.e. they must contain a maximal amount of relevant 
logical detail. Intuitively, of course PFs satisfy this condition-but since the concept 
of a rigorous PFhas not been precisely defined we can not prove that PFs are rigorous. 

Here we find ourselves in the same kind of position as that occupied by logicians 
before Tarski defined the concept of logical consequence or valid argument: they 
knew intuitively that some of their systems were strongly sound but lacking the 
definition of validity they could not offer proof. 

Assuming that we understand what is meant by the term rigorous we notice that 
since DS is intended to codify rigorous proofs it is desirable that DS codify all of 
them. We may define a deductive system to be deductively complete if it codifies all 
rigorous proofs (of the appropriate kind). Now the need for a definition of a 
rigorous proof (or rigorous PF in the case of DS) becomes all the more pressing 
because we would like to be able to show either that DS is deductively complete or 
that it is not. Lacking the definition we can only resort to plausibility arguments. 



170 JOHN CORCORAN 

We suggest that DS is not deductively complete because it fails to codify the 
following two kinds of rigorous proofs: (1) proofs from C to # which, after the 
assumptions in C have been entered, infer # on the basis of a pattern of reasoning 
beginning with a new assumption -4 and ending with # ;(2) proofs from C to -- C$ 

which, after the assumptions in C have been entered, infer -#  on the basis of a 
pattern of reasoning beginning with a new assumption # and ending with -#. 

Examples of these respective kinds of proofs follow. 

(1) [(- P 3 P)] :. P (2) [(P 2 -P)] :. ffP 
1. + ( w P z P )  (inC) 1 ( P ) (inC) 

Proofs of these sorts can easily be seen as "abbreviations" of PFs in DS. Put 
(a) (below) between lines 3 and 4 of (1) and put (b) (below) between lines 3 and 4 of 
(2)-the results are PFs in DS. 

However, the principles of reasoning in (1) and (2) as they stand are sound and are 
part of every (classical) mathematician's reasoning. Moreover, intuitively these 
proofs are rigorous. 

In general, a deductive system codifies logical truths, valid arguments and sound, 
rigorous proofs. Thus it is necessary that a deductive system be effective, sound, 
strongly sound and rigorous. Moreover, it is desirable that a deductive system be 
complete, strongly complete and deductively complete. As we have seen, the 
rationale for each of these conditions is to be found in the intended purposes of a 
deductive system. 

In table I we have summarized a comparison of the three types of systems. 

Table I 
Comparison of Types of Systems 

-- 

Logical Concern Necessary Desirable properties 
systems properties 

Logistic Codification Effective 
Logical truth Sound Complete 

(Post complete) 

Consequence Codification Effective 
Logical truth Sound Complete 
Valid arguments Strongly sound Strongly complete 

Deductive Codification Effective 
Logical truth Sound Complete 
Valid argument Strongly sound Strongly complete 
Proof Rigorous Deductively complete 
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In passing we note two things. First: some logicians may find it desirable to 
formulate concepts of maximal strong completeness and maximal deductive com- 
pleteness which bear, respectively, to strong completeness and deductive complete- 
ness a relation like that which Post completeness bears to completeness. Second: in 
his thoughtful history of logic ([lo], p. 535), Kneale has suggested that logic should 
be concerned to codify rules of inference. This suggestion entails a fourth type of 
logical system naturally to be referred to as an inferential system. In this connection 
DS could be misleading because in codifying valid arguments by codifying valid 
argument forms it seems to be codifying rules of inference. Notice, however (1) that 
no structural rules of inference could be thought of as mere valid argument forms 
and (2) that although we have defined the concept of valid argument form we have 
not formulated a general definition of a rule of inference. 

4. Rigorous Rules and Structural Rules. 
Rigorous Deduction: Above we have emphasized that logic is concerned to codify 

proofs as well as logical truths and valid arguments. We have suggested that the 
term 'deductive system' be used to indicate a logical system which is intended to 
accomplish these three aims. We also suggested that a deductive system should not 
aim to codify all proofs of a language but only the sound and rigorous ones. The 
codification of mistakes in reasoning and the codification of great leaps of logical 
intuition are both eschewed. 

Thus in the discussion of purposes of deductive systems and, consequently, in the 
formulation of appropriate adequacy conditions for them, the terms 'sound' and 
'rigorous' are prominent. As a result of Tarski's explication of the concept of logical 
consequence the concept of soundness is no longer problematic. However, the con- 
cept of rigor lacks a similar careful explication. One purpose of this section is to 
suggest lines along which such an explication may be constructed. 

In investigation of deductive systems a definition of "a rigorous proof" is needed. 
In such studies it is desirable to be able to answer two types of questions. First, is a 
deductive system rigorous, i.e. is every proof codified by a given system a rigorous 
proof? Second, is a deductive system deductively complete, i.e. is every rigorous 
proof actually codified by the system? Below we shall not concern ourselves directly 
with the concept of a rigorousproof but rather with the related concept of a rigorous 
rule of inference. Moreover, we will restrict our discussion to rules used for inference 
in the strict sense, i.e. we will exclude from consideration the rules of assumption 
and repetition. 

In the first place a rule should be sound in order for it to be regarded as rigorous. 
Moreover, it should be effective in order to be regarded as a rule at all. Over and 
above soundness and effectiveness there seem to be two distinct ideas involved in 
rigor. In the first place a rigorous rule should issue in proofs which contain a maxi- 
mum amount of relevant logical detail-a rigorous rule should not permit gaps in 
reasoning. In the second place a rigorous rule should be simple in some sense. 

We suggest that a maximum amount of logical detail is achieved by rules which 
either introduce or eliminate exactly one occurrence of a logical symbol. For 
example, detachment eliminates one occurrence of 3 and conditionalization intro- 
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duces one occurrence, while modus tollens (from -6 and ($ 3 6) infer -$) elimi-
nates one occurrence of - and one occurrence of 3 while introducing one occur- 
rence of -. Contraposition (on the basis of a pattern of reasoning from -6 to --$ 
infer (4 3 6)) eliminates two occurrences of - and introduces one occurrence of 3 . 
The rules of double negation (from --$ infer $, from y5 infer --$1 also "turn 
on" two symbol occurrences. 

Simplicity, on the other hand, seems to be exemplified by rules which involve 
only one kind of logical symbol. Modus ponens, detachment, and negation-intro- 
duction and negation-elimination have both of these properties, i.e. each of these 
rules (1) either introduces or eliminates exactly one occurrence of a logical symbol 
and (2) involves only one kind of logical symbol. With the exception of the double 
negation rules which involve only N ,the other rules just mentioned above have 
neither of these properties. It  might be true that every rule introducing or eliminat- 
ing exactly one occurrence of a logical symbol also involves in its application (or 
statement) only one logical symbol. 

As a sketch of an explication of the concept of a rigorous rule of inference we 
offer the following : 

A rule of inference is rigorous iff (1) it is effective, (2) it is sound, (3) it intro- 
duces or eliminates exactly one occurrence of a logical symbol (and not both), 
and (4) its application involves only one kind of logical symbol. 

As an aside we want to point out that the condition of involving only one logical 
symbol has some interesting consequences. In the development of a deductive 
system, assumption and repetition may be put down first. Thereafter each logical 
symbol may be treated in complete independence of the other symbols. For each 
logical symbol in the language under consideration one may introduce one intro- 
duction rule and one elimination rule without reference to any other logical symbol 
in the language. 

Since in the specification of the rules of the deductive system there is no interac- 
tion among the logical symbols it is possible to regard a complex deductive system 
as a product of simple, mutually independent deductive systems. Each of these 
simple systems consists in one elimination rule, one introduction rule, the rule of 
assumption and the rule of repetition. DS is the product of a simple system for 
negation and simple system for 'if. . . then.' Questions of completeness and strong 
completeness can be asked of each simple system. By factoring a complex system 
into simple systems it might be possible to isolate the "causes" of various undesir- 
able features such as undecideability, incompleteness, or noncompactness. 

Another possible application of this idea is in providing a more intuitive point of 
view for understanding the result of Hiz [8] concerning the construction of a con- 
sequence system based on one set of logical symbols by translating the rules of a 
system based on another. Hii  indicates by example that by translating a complete 
system one may obtain an incomplete system. The underlying idea is that in translat- 
ing a rule of inference soundness is preserved but "deductive power" is not. 

In a rigorous system the deductive power may be thought of as the ability to 
introduce a symbol as a principal symbol and the ability to eliminate a symbol from 
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the position of a principal symbol. Since every definition of a logical symbol in- 
volves at least two other logical symbols, the translation of any rigorous system 
must result in an unrigorous system. For example, if we translate detachment using 
(P 3 Q) =df w (P & w Q) then we get as an elimination rule the following: from 
P and -(P & -Q) infer Q. Thus by translating the rigorous rule of detachment we 
obtain a rule which eliminates two occurrences of - and one occurrence of & and 
which, moreover, involves in its statement two different logical symbols, Further- 
more, while detachment has the power of eliminating 3 from a principal position 
the new rule can eliminate Bi. only when it is embedded in the complex structure 
-(P & -Q)! Translating conditionalization we get the rule: on the basis of a 
pattern of reasoning from P to Q infer -(P & w Q). This rule is not rigorous. 
Moreover it is inherently weaker than conditionalization because it does not permit 
the introduction of & into the principal position. 

Consider the deductive system based on the connectives & and whose rules w 

are the same as for DS except for the two translations above. Because the &-
elimination rule only eliminates & from the context -(P  & - Q) one is led to con- 
jecture that in this system one cannot prove 

[(P & 1211 .'. a 
Indeed, the following two matrices provide a sound three-valued semantics for this 
system in which an interpretation of P as 1 and Q as 1 makes (P  & Q) true (de- 
signated) and Q false (undesignated). 

Another interesting application is to experimentation in modal logics. Given a 
nonmodal logic based on a language having modal operators one may form the 
modal rules by introducing two rigorous rules for each operator. The modal prob- 
lems may be thought of in isolation from the rest of the system. Where applicable, 
this approach greatly facilitates experimentation with modal systems. 

It  should be emphasized that these considerations are secondary to the main pur- 
pose of this paper which was to investigate logical systems from the viewpoint of the 
problems which they may reasonably be thought of as solving. Logistic systems are 
obviously intended to codify logical truths. Consequence systems are obviously in- 
tended to codify valid arguments. The conditions that these two types of systems 
must satisfy in order to be completely adequate are already well-known. Deductive 
systems are obviously intended for an additional purpose, viz., the codification of 
proofs. Being faced with the problem of formulating the conditions of adequacy of 
deductive systems we were led to conjecture the existence of simple and "gapless" 
proofs. This, in turn, issued in the formulation of the concept of rigor introduced 
above. 

4-P.s. 
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Our formulation of the concept of rigor is defective in at least two ways. 
In the first place, although the basic idea "rigorous" involves effectiveness, sound- 

ness, simplicity and maximality of relevant logical detail and, in fact, our definition 
has components corresponding to each-our definition still seems to be too specific. 
What we should like to have is a more general concept. In fact, we should like to 
have a concept of rigor which (1) is so general that it would require a mathematical 
proof to show that the system DS is rigorous and which (2) obviously characterizes 
the idea. 

Secondly, and perhaps unimportantly, we have not given a mathematically pre- 
cise definition of what it means to "introduce" or to "eliminate" a logical symbol. 
The intuitive idea is perfectly clear and it is easy to give for each symbol an ad hoc 
definition of introducing or eliminating it. But it would be much better to have a 
general definition which did not refer to any specific symbol and from which the 
ad hoc definitions follow. 

These deficiencies are not germane to the main purpose of the paper. In regard to 
our present purpose it is enough that we have brought to light the necessity for 
some precise formulation of adequacy conditions for the concept of proof-over 
and above mere soundness and effectiveness. Moreover, it should also be emphasized 
that the above suggested applications for our idea of "rigorous" still stand regard- 
less of whether the idea proves appropriate to its intended purpose. 

Str~ctural  Rules of Inference: The distinction between immediate inference rules 
and structural inference rules was introduced above. Assumption is not being con- 
sidered a rule of inference in this discussion because it does not, in itself, permit in- 
ferences. Each inference rule, whether discussed above or not, either is applied on 
the basis of a fixed number of lines or is applied on the basis of a pattern of 
seasoning whose length can not be fixed in advance. For example, detachment is 
always applied to two lines whereas conditionalization is applied on the basis of 
reasoning from + to 6 and this reasoning may be of any finite length. Similarly, 
existential generalization is always applied to one line and has no dependence on the 
rest of the proof in which it is applied, whereas existential instantiation permits the 
inference of 6 (containing no free x) in a proof (none of whose assumptions contain 
free x) on the basis of: (1) a line (3x) + and (2) a pattern of reasoning from + to 6. 
Coordinately, universal instantiation permits inference on the basis of a single line, 
whereas in order to apply universal generalization the entire proof must be con- 
sidered. (See inside covers of [I].) 

For a rule of inference to be structural it seems to be necessary and sufficient 
that the number of lines on the basis of which the rule can be applied is not fixed. 
This provides a criterion for classifying rules as structural. 

By going to a corpus of deductive reasoning or by unselfconsciously writing some 
proofs oneself (if one happens to be in the habit of proving things) it is possible to 
discover the rationale of the patterns of reasoning involved in these rules. The im- 
portant idea in structural rules is the pattern of reasoning-the necessary and 
sufficient conditions given above are mere grammatical criteria. 

Apparently, the structural nature of some rules of inference has not been ex- 
plicitly recognized before. Indeed, it might be possible to explain the difficulties 
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experienced by competent logicians (see Foreword to Revised Edition [17] and also 
[15]) in trying to formulate certain structural rules by noticing a tendency to express 
structural rules in the form of immediate inference rules with restrictions. 

5. Conclusion. 
Another Hierarchy: It should be pointed out that the hierarchy of systems dis- 

cussed above is completely independent of the following hierarchy: propositional 
logic, monadic predicate logic, predicate logic, second order logic, etc. This latter 
hierarchy concerns the depth of logical analysis: there are sentences analyzable as 
logical truths in second order logic but not so analyzable in predicate logic, there 
are sentences analyzable as logical truths in predicate logic but not so analyzable in 
monadic predicate logic, similarly for monadic logic compared to propositional 
logic. Below are examples. 

(1) 	 Everything has a property. 
Second order : (Vx)(3P)Px 

Predicate : (Vx)Hx 


( 2 )  	 If there is a cause of everything then everything has a cause. 
Predicate : ((3x)(Vy) Cxy 2 (Vy)(3x)Cxy) 

Monadic: ((3x) Cx 2 (Vy)Hy) 


(3) 	 If all men are Greek, then if Socrates is a man, Socrates is Greek. 
Monadic: ((Vx)(Mx 2 Gx) 3 (Ms 2 Gs)) 
Propositional: ( A  2 ( M  2 G)) 

This hierarchy, of course, extends upward and can be repeated for modal logics. 
The problems raised above were raised in general (although we took our examples 
from a very simple propositional logic). Needless to say, all of the observations con- 
cerning logical systems apply at each level of the hierarchies just mentioned. 

Hierarchy of Logical Systems: We have seen three increasingly complex types of 
logical systems. The logistic systems were seen to be appropriate to the problem of 
codifying logical truths. The consequence systems codified logical truths but were 
also appropriate to the task of codifying valid arguments although this task was 
performable by logistic systems only with the greatest difficulty. Finally, the deduc- 
tive system codified proofs in addition to logical truths and valid arguments. 

Paralleling the increasing comprehensiveness of the three types of systems are the 
increasingly comprehensive adequacy conditions for the systems. The ideal logistic 
system is sound and complete. The ideal consequence system is strongly sound and 
strongly complete. Since soundness and completeness are special cases respectively 
of strong soundness and strong completeness the consequence systems are inher- 
ently more comprehensive than the logistic systems. Moreover, the distinction 
between these two types of systems is underlined by the fact that a logistic system 
might reasonably be expected to satisfy a condition which conflicts with strong 
soundness-viz. Post completeness. For clear rationales of the adequacy conditions 
for logistic systems and consequence systems one may refer to their respective in- 
tended aims. 
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By considering actual deductive practice we are led to distinguish between valid 
arguments and proofs. Thus we may set as a reasonable aim the codification of 
proofs and use the term 'deductive system' to denote a system which has this pur- 
pose. From an informal but thoughtful point of view we are led to reject conse- 
quence systems as codifications of proofs for two reasons-in the first place, they 
treat intuitively rigorous proofs (e.g. those using conditionalization or existential 
instantiation) as having gaps; in the second place, derivations from premises in con- 
sequence systems themselves have unmistakable gaps. Moreover, necessary con- 
ditions generally agreed upon for consequence systems, viz. strong soundness and 
efSectiveness, have no reference to any idea of rigor. Thus we are faced with the 
problem of formulating a mathematical condition (1) that proofs must satisfy in 
order to be rigorous and (2) which goes beyond mere strong soundness and 
effectiveness. 

For the purposes of this conclusion it is beside the point whether the concept of 
rigor introduced above is correct. On the basis of (1) the fact that codification of 
proofs is a reasonable aim and (2) the obvious but unscientific fact that conse- 
quence systems do not fulfill this purpose-we conclude that a third type of system 
is needed. 

Historical Remarks: We would like to conclude with a brief consideration of the 
relationship between the above hierarchy of logical systems and the actual historical 
development of them in modern times. This consideration can not be thought of as 
a sketch of the history of modern logic; the questions considered above constitute 
an important but relatively small part of modern logic. 

Within this part of the history of logic we focus on two interrelated themes: first, 
the construction of logical systems; second, the formulation of adequacy conditions 
for the systems. Obviously, the conclusions we would like to be able to make are the 
following: 

(1) In regard to systems themselves; logistic systems, consequence systems, and 
deductive systems were developed sequentially in that order. 

(2) In regard to adequacy conditions; first the concepts of completeness, sound- 
ness and Post completeness were formulated, next strong soundness and strong 
completeness, finally the concept of rigorous was dealt with. 

Our criterion for priority is date-of-publication; use of a more sophisticated 
criterion would involve considerable historical research. 

The earliest systems were certainly logistic systems. For Frege and Russell, the 
motivation was the belief that all theorems of mathematics are "logical laws." In 
1934 the first investigations into the nature of proof were published ([lo], pp. 538 
and 539). One is due to Gentzen, the other to Jaskowski. Subsequent development 
in this area has been based on these two works ([lo], p. 539 and [I], p. v). In order 
to establish that consequence systems were developed before 1934 it is enough to 
cite Tarski's important methodological study of consequence systems which was 
first published in 1930 ([19], pp. 30-37). 

The adequacy conditions for logistic systems were formulated by Post 1161 in 
1920. Post discussed soundness, completeness and Post completeness (though not 
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by these names). Apparently strong soundness and strong completeness were first 
discussed in print by Abraham Robinson in 195 1 ([I 81, Theorem 3.1.2 and Theorem 
3.2.2, respectively). This is a truly surprising conclusion in view of the importance 
of these concepts; however, it is probably true that many logicians had used these 
concepts in their thinking and in their teaching before 1951. In this regard it is 
worth noting that theorems trivially implying the strong completeness of first order 
logic were published by Godel [5] in 1931 and by Henkin [6] in 1949. But neither of 
them mention strong completeness despite the fact that this theorem is conceptually 
more interesting than the theorems they actually proved. As far as I have been able 
to determine, apart from this paper, there is no published consideration of any 
conditions for proofs over and above effectiveness and soundness. 
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