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On Edelcio G. de Souza

Edelcio Gonçalves de Souza was born in the village of Bauru (in the
State of São Paulo, Brazil) in the beginning of the sixties, precisely at
the year 1960, May 22. In 1963, his family moved to the city of São
Paulo, the place where Edelcio grow up, studied, works and lives up to
recent days.

In 1979, he started undergraduate studies in Physics at the Universi-
dade de São Paulo (USP), but he decided to change his path and moved
towards Philosophy in the eighties. Edelcio got an undergraduate degree
and a PhD in the area of Philosophy (USP) supervised by the Brazil-
ian philosopher and logician Newton da Costa. Since then, Edelcio’s
researches are in the intersection of philosophy of science, mathematics
and logic. Particularly, his investigations, up to now, are in topics such
as the structure of scientific theories, category theory, model theory and
abstract logics.

During his career, he had research stays at Stanford University and
Miami University. He worked in many Brazilian universities such as
Pontif́ıcia Universidade Católica de São Paulo (where he worked for 21
years), Fundacão Escola de Sociologia e Poĺıtica do Estado de São Paulo
and also at the first center of philosophical research in Brazil: Faculdade
de São Bento. In 2013, Edelcio started his activities as professor of Logic
at the Universidade de São Paulo.

Edelcio is a enthusiastic supporter of the soccer team Sociedade Es-
portiva Palmeiras and an Aikido Master who is an strong admirer of
Brazilian cuisine, especially feijoada and churrasco. He is married with
Vanessa Boarati and they have two children: Helena and Maria Luiza.

Edelcio G. de Souza has a plurality of interests from general abstract
logic to the notion of quasi-truth. Departing from

Bueno, O; de Souza, E.G. (1996). The concept of quasi-truth. Logique
et Analyse, 39(153/154), pp. 183-199;

de Souza, E. G. (2000). Multideductive logic and the theoretic-
formal unification of physical theories. Synthese, 125, pp.253-262.

Edelcio still tries to model and represent formally the essential philo-
sophical idea of quasi-truth (developed by his professor Newton da Costa)
in the domain of the philosophy of science. This research attempts to



x

establish the formal limits of any empirical scientific knowledge about
reality. Besides that, considering multideductive logic and its role in
abstraction and unification of theories in general, he naturally goes to
the domain of model theory. His steps in this area are substantial and
they were basically conducted with the mathematician Alexandre Au-
gusto Martins Rodrigues (in memoriam). Some representative articles
of their collaboration are

Rodrigues, A.A.M; Miranda Filho, R.C; de Souza, E.G. (2006). In-
variance and set-theoretical operations in first-order structures. Reports
in Mathematical Logic, 40, pp.207-213;

de Souza, E.G; Rodrigues, A.A.M. (2017). On extensions of iso-
morphisms of substructures. South American Journal of Logic, 3(1),
pp.123-130.

A next very natural level also towards generic abstraction is to con-
sider Tarskian consequence operators as a source of logical and philo-
sophical investigation. Connecting abstract logics, category theory and
paraconsistency, we (Edelcio, myself and Diogo H.B. Dias) were able to
study in detail a particular technique of paraconsistentization (i.e. dif-
ferent ways which can be used to transform any explosive logic into a
paraconsistent formalism). The results appeared in

de Souza, E.G; Costa-Leite, A; Dias, D.H.B. (2016). On a paracon-
sistentization functor in the category of consequence structures. Journal
of Applied Non-Classical Logics, 26(3), pp.240-250;

de Souza, E.G; Costa-Leite, A; Dias, D.H.B. (2019). Paradeduction
in axiomatic formal systems. Logique et Analyse, 62(6), pp.161-176.

The title of the book Abstract Consequence and Logics intends to
capture and unify Edelcio’s main interests in logic, mathematics and
philosophy. Thanks to Prof. Dov Gabbay and to Jane Spurr for all
outstanding work they have done and, of course, they are still doing in
College Publications by means of avant-garde logical, philosophical and
scientific publications. Thanks also to all contributors of this volume for
providing original and excellent articles to celebrate Edelcio’s 60th birth-
day. The year 2020 has been very weird and complicated for all of us and
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it shows precisely the contradictory and paradoxical condition of human
life in Earth: at the same time that soon we will be probably launching
James Webb Space Telescope (NASA) and other special technologies,
which looks like amazing from our current primary technological per-
spective, we, as species, are desperately (and anxiously) searching for
a (successful) vaccine against coronavirus. It was in this inconsistent
situation, in world quarantine, that Edelcio’s 60 years old arrived and
in this context it was celebrated: obrigado por ser esse querido amigo,
Tio Ed, saúde e paz, um forte abraço!

Braśılia, September 15, 2020
Alexandre Costa-Leite

Departamento de Filosofia
Universidade de Braśılia

costaleite@unb.br
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Figure 1: Edelcio G. de Souza at the III Colóquio UnB-USP de Lógica
e Filosofia da Lógica, Universidade de Braśılia, Braśılia, 2018.



Part 1

Abstraction, unity and logic





Logical structures from a

model-theoretical viewpoint

Jean-Yves Beziau

Federal University of Rio de Janeiro (UFRJ),
Brazilian Research Council (CNPq), Brazil

Dedicated to Edelcio Gonçalves de Souza for his 60th birthday

Abstract

We first explain what it means to consider logics as structures.
In a second part we discuss the relation between structures and ax-
ioms, explaining in particular what axiomatization from a model-
theoretical perspective is. We then go on by discussing the place
of logical structures among other mathematical structures and by
giving an outlook on the varied universe of logical structures. Af-
ter that we deal with axioms for logical structures, in a first part
in an abstract setting, in a second part dealing with negation. We
end by saying a few words about Edelcio.

1 Logics as structures

It is usual nowadays to consider a logic as a structure of type L = 〈F;�〉
where
• F is a set of objects, called formulas. Sets of formulas are called
theories.
• � is a binary relation between theories and formulas, i.e. �⊆ P(F)×F,
called consequence relation.

The idea is to consider this kind of structure in the same way as
other mathematical structures. A structure than can be seen as a model
of some axioms, similarly for example to a structure of order O = 〈O;<〉
where
• O is a set of objects.
• < is a binary relation between objects i.e., <⊆ O × O, called order
relation.

The situation for logical structures is a bit ambiguous, tricky, mys-
terious because there is an interplay between the method used and the
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objects under study. These objects are logics and the method used is
part of logic, namely model theory. There are four mammals of mathe-
matical logic, in order of appearance:
• Set Theory
• Proof Theory
• Recursion Theory
• Model Theory.

In modern times there has been a proliferation of logical systems, that
can be simply called logics and that we consider here as logical structures.
The study of logical systems can be called metalogic. It is performed
using the four mammals of modern logic. Since 1993 the present author
has promoted universal logic [3], not as one system among the jungle
of logical systems, not even as a super system. Universal logic is a
general theory of all these logical systems, in a way similar to universal
algebra, which is a general theory of algebraic systems, or simply algebras.
And, like in universal algebra, the idea is to consider these systems as
mathematical structures. Universal logic is part of metalogic or/and a
way to approach metalogic, using in particular model theory, but it can
also be developed using for example category theory.

One ambiguity we are facing here is that the word theory is used in
three different ways:
• When we are talking about model theory, the word is used in the sense
of a general scientific field, like relativity theory, the theory of evolution
or number theory.
• In model theory, a set of axioms that characterizes a given class of
structures, is called a theory, for example a set of of axioms for lattices.
This is different from Lattice Theory, which is the study of all the dif-
ferent kinds of lattices and the way they can be axiomatized.
• In universal logic we are considering structures where a set of objects
is called a theory. This is not the case when dealing with a structure
whose elements are, for example, numbers.

2 Structures and axiomatization

Model theory does not reduce to the study of logical structures, it deals
with any kind of structures. There is no canonical definition of model
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theory. In a general perspective, we can say that model theory studies
the relations between structures and axioms.

Given a class of structures, we may want to axiomatize it, by find-
ing some axioms whose models are exactly the structures of this class.
On the other hand, given some axioms, we can investigate the class of
structures that are models of these axioms.

What is a structure? We can reply to this question in the same
way as we can reply to the question What is a cat? by pointing at our
favorite cat Miaou. Let us therefore first start with an ostensive reply,
by pointing at a famous structure, the structure N = 〈N, <〉 where
• N is the set of natural numbers.
• < is the relation of strict order between natural numbers.

In some sense it is quite easy to understand what it is, a 7-year
old child can understand it. Natural numbers such as 0, 1, 2, 3, 4, 5,
are well-known and also one can understand what a big number like
7.794.798.739 (the number of human beings on Earth, right now) is. All
numbers have a name, it is not like dogs. And if we ask if 7689 < 987
we know how to answer. We don’t even need a calculator (curiously
calculators generally don’t make this kind of operation, maybe they
think there is no operation to perform here).

A more complicated story is to find some axioms which characterize
this structure. What does this mean? An order relation is transitive
and anti-symmetric:
• If a < b and b < c then a < c.
• If a < b then b �< a.

But the relation of strict order on natural numbers does not reduce to
these axioms, or, to put it the other way round, such axioms are not
enough to characterize it. An additional axiom is for example the fol-
lowing:
• Given any number a, there is a number b such that a < b.
This can be expressed in a more colloquial way as:
• There is not greatest natural number.
And in a more formal way as:
• ∀x∃y xRy.
Note that in both cases the symbol “<” was sent to the sky. Its presence
is only in the middle way, which is generally the way of the mathemati-
cian by contrast to the butcher and the logician.
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One may want to find a set of axioms that exhausts all properties
of the relation < of the structure N = 〈N;<〉. From a structuralist
point of view, this also means that it characterizes the natural numbers
themselves. The numbers are nothing else than their relations, a number
like 9 has no inner nature, what it has, is, its position. The structuralist
approach was strongly promoted by Bourbaki [11].

It is not possible to axiomatize in first-order model theory the struc-
ture N = 〈N;<〉. Any set of axioms expressed in first-order logic has
models which are different from the structure N. This result is due to
Skolem [18]. This is an application of the compactness theorem, accord-
ing to which if every finite subtheory of a theory has a model, this theory
has a model.

We will not enter here in the details of such kind of result: its relation
with Gödel’s first incompleteness theorem and so on. But we take this
example to emphasize three important characteristics of axiomatization
from a model-theoretical perspective:
• Model-theoretical axiomatization is not the same as proof-theoretical
axiomatization, i.e. to derive some theorems from some basic principles,
called axioms.
• In the perspective of model-theory, axioms are specific cases of theories,
they are finite or recursive sets of formulas.
• Axioms, as well as theories, are generally expressed in a specific formal
language, the most famous one being the language of first-order logic.

Having made these clarifications, we will in the next sections present
logics as structures in a model-theoretical way, studying the relation be-
tween these structures and some axioms. We will stay in the middle way
of ordinary mathematics, not specifying, not formalizing too much, the
language we are using for expressing the axioms. We just want to point
out that if this would be formalized, it would not be naturally formalized
in the language of first-order logic, because the central concept of logical
structures, the notion of consequence relation, is a relation between sets
and objects, typically a second-order relation, by contrast to first-order
relations which are only between objects.

We conclude this section emphasizing two points. The first-point is
that using logic to talk about logic can be done in a fruitful and intelli-
gent way. Linguists use language to talk about languages, this is not a
problem, there are no vicious circles if the perspective is clearly under-
stood. For example it should be clear that general linguistics, the theory
of all languages, is not itself a super language. It is expressed and devel-
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oped using languages, there is no priority of a given language for doing
that. The second point is that what we are doing here is not funda-
mentally new, it is in the line of the Polish school of logic: connected to
some works of Tarski (consequence operator), Roman Suszko (abstract
logic) or Helena Rasiowa and Roman Sikorski The mathematics of meta-
mathematics (see [4], [6] and [9]). The difference between the approach
presented here, Universal Logic, is that we are thematizing the notion of
logical structure and clearly differentiating these structures from other
mathematical structures, as we will explain in the next section.

3 Logical structures within the family of math-
ematical structures

Let us come back to our starting point:

Logical structures
A logic is a structure L = 〈F;�〉 where
• F is a set of objects, called formulas. Sets of formulas are called
theories.
• � is a binary relation between theories and formulas, i.e. �⊆ P(F)×F,
called consequence relation.

Logical structures are part of the family of mathematical structures.
Using the biological hierarchical distinction between family, genus, and
species, we consider that logical structures are a specific genus of struc-
tures. Let us examine three other genera of the family.

Order structures
A structure of order is a structure O = 〈O;<〉 where
• O is a set of objects.
• < is a binary relation between objects i.e. <⊆ O × O, called order
relation.

Algebraic structures
An algebraic structure is a structure A = 〈A;f(i∈I)〉 where
• A is a set of objects.
• f(i∈I) is a collection of functions defined on A.

Topological structures
A topological structure is a structure T = 〈P;T〉 where
• P is a set of objects, called points.
• T is a set of subsets of P called a topology.
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All these four genera of structures are similar in the sense that they
are made of a pair. The left part of the pairs are all the same, this is a
naked set. But there is a variation on the right side, this is the essence of
the genus. The right part is often called the signature. Two structures
having different signatures are of different genera.

An order relation is not considered as of the same genus as an algebra
because its signature is a binary relation, whether in the case of an
algebra the signature is made of functions. The signature of an algebra
may vary: it can be only one binary function or one unary function
together with two binary functions, etc. So we have different species of
algebras. A group is not of the same species as a ring.

It is not necessarily easy to make the difference between species and
genera of structures. For example if in the definition of logical structures,
we replace the signature by a binary relation on the Cartesian product
of the the power set of formulas, i.e. �⊆ P(F) × P(F), can we say that
we still are in the same genus?

Also a structure of a particular type can be equivalent to a structure
of a different type. A striking example is a result of Stone showing that
a Boolean ring is the same as a distributive complemented lattice (see
[19]). A Boolean structure can be presented as a structure of order or
as an algebra, or as a mix.

The equivalence between structures of different types has been con-
ceptualized in model-theory with the notion of expansion. Two struc-
tures are equivalent if they have a common expansion by definition up
to isomorphism.

There is also a well-known correspondence between the notion of
Boolean algebra and logical structures: by factoring classical propo-
sitional logic, we get a Boolean algebra. Logical structures can be
“viewed” as algebras, but this is not always the case, and it is only
one point of view.

4 The diversity of logical structures

There are different ways to define a logical structure. First of all let us
consider three variations of the signature:

Tautological logical structures
A logic is a structure L = 〈F;T〉 where
• F is a set of objects, called formulas. Sets of formulas are called
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theories.
• T is a set of formulas called tautologies.

Consequence logical structures
A logic is a structure L = 〈F;�〉 where
• F is a set of objects, called formulas. Sets of formulas are called
theories.
• � is a binary relation between theories and formulas, i.e. �⊆ P(F)×F,
called consequence relation.

Multiple-conclusion logical structures
A logic is a structure L = 〈F;�〉 where
• F is a set of objects, called formulas. Sets of formulas are called
theories.
• � is a binary relation between theories and theories: �⊆ P(F)×P(F),
called multiple-consequence relation.

The first formulation corresponds to how logical systems were orig-
inally conceived at the beginning of the 20th century. The second ap-
proach was mainly promoted in Poland but using a different set-up (see
[20]), which is the following one:

Consequence Operator
A logic is a structure L = 〈F;Cn〉 where
• F is a set of objects, called formulas. Sets of formulas are called
theories.
• Cn is a binary function from theories to theories, i.e. from P(F) to
P(F), called consequence operator.

These two set-ups are equivalent independently of any axioms. Multi-
ple-conclusion logical structures were developed only in the 1970s (see
[17]), although one may say that they already showed up in the case of
Gentzen’s sequent-calculus [14], but this is rather ambiguous as we will
explain in the next section.

Let us point out that we have presented all these variations on the
one hand without specifying the structure of the set F, on the other
hand without stating some axioms for the “thing” which appears in the
signature. This is typical of the universal logic approach we have been
developing, but focusing on the second type of structures, i.e. conse-
quence logical structures. The spirit of axiomatic emptiness (cf. [7]) can
however also be applied to other types of logical structures. Regarding
the dressing of the naked set F, there are various ways to proceed also
independent of the signature. A typical dressing, for propositional logic,
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is to consider the domain of the structure as follows (cf. [15]):
• F is an absolutely free algebra 〈F;∧,∨,¬〉 whose domain F is generated
by the functions ∧,∨,¬ from a set of atomic formulas A ⊆ F.
We have then a mix of two kinds of structures, by putting within a log-
ical structure an algebra. This is what Bourbaki called a carrefour de
structures.

The model-theoretical axiomatic methodology for logical structures
does not mean that we need to fix a set of axioms. It is similar to
universal algebra. There are good reasons not to fix a set of axioms, both
philosophically and theoretically. Let us just consider the theoretical
aspect here. Among all logical structures, it is interesting to consider
the two extreme cases:
• Nothing is a consequence of nothing, i.e. �= ∅
• Everything is a consequence of everything, i.e. �= P(F)× F

And also it is interesting to consider that the opposite of classical logic,
i.e. the set-theoretical complement of the consequence relation of this
logic, is a logical structure. This is what we have called anti-classical
logic [10]. It is not possible to host all these structures, in the universe
of logical structures, if we are working with a specific set of axioms.

Similarly to the universal algebra approach the universal logic ap-
proach does not mean that we will not consider axioms. But axioms
are always relative and are a way to classify and study the relations be-
tween different logical structures, to navigate within the ocean of logical
structures

5 Axioms for abstract logical structures

The most famous axioms for logical structures are the three following
Tarski’s axioms (cf. [5]):
• a � a (Reflexivity)
• If T � a and T ⊆ U then U � a (Monotonicity)
• If T � a and U, a � b then T, U � b (Transitivity)

We call Tarskian logic, a logical structure obeying these axioms. These
axioms were originally presented by Alfred Tarski but in a different
way because, he was working with a consequence operator, not with
a consequence relation. There are lots of different equivalent ways to
present these axioms, even within the same type of structures. For
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example sometimes reflexivity is presented as
• T, a � a (Extended reflexivity)

If we are a minimalist, it is not necessary to present it in this way
because in fact this can be deduced from the three above axioms: by
reflexivity we have a � a, and since a ⊆ {T} ∪ a, applying monotonicity
we have T, a � a. Since a � a is a particular case of T, a � a, i.e. the case
when T = ∅, the axiom a � a is equivalent to the axiom T, a � a modulo
monotonicity. This means that if we replace the axiom of reflexivity by
extended reflexivity we define the same class of logical structures.

We have shown that extended reflexivity is deducible from reflexiv-
ity using monotonicity. Is this a proof? Yes! But an informal proof as
standard mathematicians are doing, when dealing with order structures,
algebraic structures, etc. Such kind of proof cannot be easily translated
into first-order logic, like in fact most of mathematical proofs, in par-
ticular here because we are using second-order structures, but this can
be translated into first-order logic for example via set theory. Although
we are aware that this is not straightforward and that some complica-
tions may show up, we are, to start with, not interested to work on the
formalization in first-order logic of such proofs.

What is important for us here is to make a clear distinction be-
tween this structural approach and a proof-theoretical approach such as
sequent calculus. There can be some confusions, which are in partic-
ular generated by terminology and symbolism. For example the above
Tarski’s axioms look like the so-called structural rules of sequent calculus.
But are they the same? Can we identify the cut-rule with transitivity?
This would be highly misleading.

Gentzen’s sequent system LK generates a logic which is the same
as the logic generated by LK−, i.e. LK wihtout the cut-rule. The
logical structure generated by LK− is the same classical logic as the
one generated by LK. The consequence relation generated by the cut-
free system LK− is transitive! This is what shows the cut-elimination
theorem.

What is interesting however is that we can develop informal proofs
about logical structures which are inspired or directly imported from
sequent calculus and vice-versa, we can import informal proofs about
logical structures within sequent calculus. This is important because
this can secure an “algorithmic” aspect. Note however that even if
everybody agrees about the computable aspect of first-order classical
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sequent-calculus, this does not mean that the metatheory of this system
is itself formalized.

But the idea we are discussing here it the applications of model-
theoretical methods to the study of logical structures. Let us give a
fairly simple example. Consider for example the following axiom:
• If T � a then there is To finite, To ⊆ T such that To � a (Compactness)
We can show that this axiom is not a consequence of Tarski’s axioms by
giving an example of a logical structure which verifies Tarski’s axioms
but not the axiom of compactness. An example of such a structure is
second-order classical logic considered from a standard model-theoretical
way.

6 Axioms for logics of pure negation

The law or principle of non-contradiction was traditionally considered as
a basic principle of logic. It was considered either as a law of thought or
a law of reality, or both. We will not discuss these pataphysical questions
here. There are even more extravagant people considering that this law
has to be rejected. We will also not comments this kind of extravagance.
What is important for us here is to show how we can have a new and
hopefully better understanding of this law using the model-theoretical
approach, independently of wanting to approve or reject it.

Boole formulated the law of non-contradiction as x(1 − x) = 0 and
showed how to deduce it from x2 = x, which for this reason he con-
sidered as the fundamental law of thought (see [8]). This is a purely
algebraic approach in the sense that he is using functions and equalities.
But we don’t consider algebra as a panacea for mathematics, there are
other mathematical structures, and moreover we consider that a differ-
ent approach provides a better understanding.

We consider negation as a unary function ¬. The second step is
to consider this function on a naked set, with only this function, so
we have the following structure: F = 〈F;¬〉. The third step, which is
properly original. is to consider the structure: LPN = 〈F;�〉. LPN is
an acronym for Logic of Pure Negation. And then we consider axioms
for this negation.

There are here two important features directly connected with the
spirit of universal logic:
• We can work with an algebra which is not necessarily an absolutely
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free algebra. We may have an algebra where ¬¬a is a, or even ¬a is a.
• The axioms for the consequence relation are not absolute. Axioms for
negation can be considered independently of axioms for the consequence
relation.

We can consider the following axiom:

Given T and a, for any x: T, a,¬a � x

independently of Tarski’s axioms for consequence relation. And also we
can consider the relations between the above axiom and the following
second one

Given T and a: T,¬a � x, for any x iff T � a

according to or not according to such or such axiom for the consequence
relation.

We have shown that it is possible to deduce all axioms for negation
from this second axiom, modulo Tarski’s axioms (see [2]). Can we call
this axiom, the axiom of non-contradiction? To answer this question it
is important to study the relation between this axiom and the following
principle:

a is true iff ¬a is false,

To do so we need to connect a theory of truth and falsity with general
abstract logic. This has been done by Newton da Costa with his theory
of valuation on which we have been working together (see [12]).

7 Dedication and acknowledgments

I am glad to dedicate this paper to Edelcio whom I have known since
1991. I met Newton da Costa in Paris in January 1991 and he invited
me to come to work with him for one year at the University of São Paulo.
Arriving at São Paulo’s airport in August 1991 da Costa was there to-
gether with Edelcio, who was one of his students. I stayed at Edelcio’s
flat for a few days in the district of Campos Eĺısios (Champs-Élysées)
and then he took me to a residence in the campus of the university.

Since then I have continuously been in touch with Edelcio, for ex-
ample taking part to the jury of his PhD Student Patricia del Nero
Velasco [16]. And we share some common interest: chess, Italian food
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and logical structures of course. That’s why I decided to choose this
topic for the present paper. In particular Edelcio took part to the 1st
World Congress on Universal Logic (UNILOG’2005) that I organized in
Montreux in 2005 with the help of Alexandre Costa-Leite, the editor of
this volume, who was doing a PhD with me at this time at the University
of Neuchâtel in Switzerland [13].

Edelcio, together with Alexandre and Hilan Bensusan, wrote a pa-
per for the Festschrift volume of my 50th birthday: “Logics and their
galaxies” [1]. I am glad to reward him by the present paper.

Edelcio on the way to Marmot’s paradise during UNILOG’05
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Abstract

In order to prove the validity of logical rules, one has to assume
these rules in one’s semantic, or metalogic. But how is a non-
circular justification of a logical system possible? The question
becomes especially pressing insofar in present time a variety of
non-classical alternatives to classical logics have been developed.
Is the threatening situation of an epistemic circle or infinite regress
unavoidable? The situation seems hopeless. Yet, in this paper
I suggest a positive solution to the problem based on the fact
that logical systems are translatable into each other. I propose a
translation method based on introducing additional concepts into
the language of classical logic. Based on this method I demonstrate
that all finite multi-valued logics - and I conjecture all non-classical
logics - can be translated into classical logic. If this argument is
correct, it shows that classical logic is optimal in the following
sense: by using it we cannot lose, because if another logic turns
out to have advantages for certain purposes, we can translate and
thus embed it into classical logic. This optimality argument does
not exclude that there can be other, non-classical logics that are
likewise optimal in the explained sense.

1 Introduction: The significance of optimality-based jus-
tifications for foundation-theoretical epistemology

In other writings (Schurz (2008a), (2018a), (2019)) I have defended
a ‘modernized’ version of an internalist and foundation-theoretic episte-
mology. Within this epistemological framework the class of ‘basic’ beliefs
that are considered as ‘immediately evident’ or not in need of further
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justification is minimalistic, consisting only of analytical and introspec-
tive beliefs. Moreover, circular justifications are rejected because they
are demonstrably epistemically worthless. This is demonstrated by the
fact that with circular justification both a proposition and its negation
may be proved. For example, both the rule of induction and the rule of
counter-induction can be circularly ‘pseudo-justified’ (Salmon (1957),
46). More drastic examples of circular ‘justifications’ of obviously irra-
tional rules are given in Achinstein (1974) and Schurz (2019), sec. 2.4
and 3.3.

In a foundation-theoretical framework of the described sort, the ‘epis-
temic load’ that has to be carried by deductive, inductive or abductive
reasoning is high. Therefore the justification of the truth-conduciveness
of these inferences - in the strict or at least high probability sense -
acquires central importance. In other writings I have studied the prob-
lem of justifying inductive inferences, i.e., Hume’s problem. I tried to
show that there is a kind of higher-order justification that doesn’t lead
into a circle or infinite regress: an epistemic optimality justification. An
optimality justification does not attempt to demonstrate that a given
epistemic method or system is strictly or probabilistically reliable, in
the sense of leading to the truth in all or most cases. It pursues a more
modest epistemic goal, namely to demonstrate that a given method (or
system) is epistemically optimal among all competing methods (of a
given kind, e.g., induction or deduction) that are cognitively accessible
to the given epistemic agent. Every optimality justification is relative
to a given epistemic goal. In the case of induction, this goal is predictive
success. I have proved that a certain method of meta-induction is pre-
dictively optimal in the long run among all prediction methods that are
accessible to the forecaster, even in possible worlds in which the success
rates of the competing prediction methods are permanently changing
(Schurz (2008b), Schurz (2019); Thorn and Schurz (2020), Schurz and
Thorn (2016)). The universal optimality result provides us with a weak
a priori justification of meta-induction that can stop the justification
regress for the problem of justifying induction.

In this paper I will apply the method of optimality justification to
the domain of logic. More precisely, the paper is devoted to the problem
of finding a non-circular justification for a system of logic. Thereby I will
focus on the system of classical logic and, moreover, on the justification
of classical propositional logic. However, as I will show in the end of the
paper, similar methods can be applied to systems of non-classical logic.
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Thus the primary question of this paper will be: how can we justify the
rules of classical logic? The question becomes especially pressing insofar
in present time a variety of non-classical alternatives to classical logics
have been developed. When we prove the validity of the rules of classical
logic, we have to assume these rules in our semantic, or metalogic. Thus,
all direct demonstrations of the validity of logical rules are inherently
circular (cf. Schurz (2018b), sec. 15.3). But how is a non-circular
justification of a logical system possible? Is the threatening situation of
an epistemic circle or infinite regress unavoidable? The situation seems
hopeless. Yet, in this paper I will suggest a positive solution to the
problem that will consist in an optimality-based justification, in relation
to the epistemic goal of representation power. I will try to show that
classical logic is representationally optimal in the sense that every non-
classical logical system can be translated into classical logic.

2 The significance of non-circular justifications for con-
temporary philosophy of logic

To a certain extent, the basic logical operators can be justified in a Kan-
tian ‘transcendental’ sense, as a presupposition of the possibility of cog-
nition at all, by the following reasoning. (i) The possibility of describing
any manifold presupposes the operation of conjunction, by which we can
represent something that has several components. (ii) The possibility of
expressing that a certain description is false presupposes the operation
of negation. (iii) Finally the possibility of expressing that something can
be described in several ways requires the operation of disjunction. (iv) If
we enrich these operations by the idea of infinity, we obtain the univer-
sal quantifier (as an infinite conjunction) and existential quantifier (as
an infinite disjunction). These ‘quasi-Kantian’ considerations give us a
reason why every rational language will need these kinds of logical op-
erations. However, this reasoning does not determine the precise logical
rules or meaning of these logical operations.

The so-called classical logic is characterized by an additional seman-
tic principle, the principle of two-valuedness: every statement p that
is expressed in a semantically complete (non-indexical) way is either
true or false (neither ‘neither true nor false’, which is the principle of
excluded middle, nor ‘both true and false’, which is the principle of
non-contradiction). Or more ontologically: every state of affairs either
obtains, or does not obtain. It has to be emphasized that the principle of
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two-valuedness is meant in a purely non-epistemic and ontological way.
It has nothing to do with our ability to find out or to know whether p
or not-p is true, but merely with the truth-value itself. Since this truth
value is understood in a correspondence-theoretic way, this means that
ultimately the principle of two-valuedness expresses the determinateness
of reality: if “p” is a semantically complete sentence, then either p or not
p must obtain. In other words, the properties of reality are objectively
determined.

I can see only two possible reasons for a philosopher to doubt the
principle of two-valuedness: (i) either the philosopher rejects the idea
of an objective reality and thus the correspondence-theoretic notion of
truth, or (ii) the philosopher accepts the idea of an objective reality
but doubts the determinateness of reality. If we look into the history of
non-classical logic, we usually find one of these two possible reasons for
the erection of a particular system of non-classical logic. �Lukasiewicz’
three-valued logic (�Lukasiewicz (1920)) was based on the second reason
(ii): it started from the thesis that there are sentences whose truth-
value is objectively undetermined, because the corresponding states of
affairs are neither ‘being’ nor ‘non-being’. One reason for this view
comes from the theory of vagueness. A more compelling reason comes
from quantum physics: according to Heisenberg’s uncertainty relation
it is impossible that both the position s and the momentum p (or the
corresponding wavelength λ ∼ 1/p) of a quantum-mechanical (wave-
particle) system can simultaneously be sharply realized; it rather holds
that Δs ·Δp ≤ h/2π.

Brouwer’s intuitionistic logic was motivated by the first reason (i): in
this logic the correspondence-theoretic notion of truth is replaced by the
mathematical notion of verification, with the consequence that for the
intuitionistic negation the classical law of double negation is no longer
valid.

�Lukasiewicz’ three-valued logics has been mathematically generalized
to many-valued logics with arbitrarily many ‘truth-values’, abstracting
from any philosophical interpretation of these truth-values (Gottwald
(1989), Rautenberg (1979), Malinowski (1993)). A second source
of non-classical logics has been relevance logics (Anderson and Bel-
nap (1975)), in particular their development into para-consistent log-
ics by Priest (1979). Later, Priest (2006) gave independent philo-
sophical motivations for the introduction of paraconsistent sentences,
i.e. sentences that are both true and false, that are discussed rather



21

controversially (cf. Williamson (2014), Williamson (2017)). A simi-
lar controversy has taken place about quantum logics, as developed by
Birkhoff and von Neumann (1936) and philosophically supported by
Putnam (1979). Quantum logic gives up the classical law of distribu-
tivity, A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C). However, this step is not
‘enforced’ by the facts of quantum physics. Critics of quantum logics
have argued that the uncertainty relation is better explicated by classical
logic, because in quantum logic the superposition of two exclusive states
p, q is expressed as a disjunction p ∨ q, which is a mistake according to
the critics of quantum logics (Popper (1968), Dummett (1976), Stachel
(1986)). In any case, the representation of the facts of quantum physics
is also possible within classical logic.

In contemporary philosophy of logic the so-called ‘anti-exceptiona-
lists’ have argued that logics are not ‘exceptional’ compared to the em-
pirical sciences. More precisely, (a) it is false that the laws of logic have
an exceptional apriori status, as it was traditionally assumed in phi-
losophy; rather (b) they have to be revised, corrected and abductively
supported by empirical facts, similar as this has been the case for phys-
ical geometries (cf. Bueno (2010); Hjortland (2017), 632). I agree with
(a) but not with (b). In other words, I think that logic is not apriori, but
yet exceptional. Logical systems are not apriori, because different possi-
ble logical systems can be constructed and reasonably applied. However,
the second thesis seems to be untenable because, in contrast to geome-
try, every attempt to ‘revise’ or ‘test’ a system of logic is beset by the
problem of circularity. The justification of different systems of geome-
try (say Euclidean versus non-Euclidean) can be based on independent
logico-mathematical description systems that do not presuppose a par-
ticular logic. However, it is impossible to describe certain facts that are
supposed to ‘support’ or ‘test’ a given logic without already assuming
a certain logic in the description of these facts - for the reason that the
logical operations are needed in every description of something, as ex-
plained above (or similar arguments see Rescher (1977), 240f.; Woods
(2019), Sereni and Sforza-Fogliani (2017)). In particular, when the
rules of non-classical logic are justified by their (non-standard) semantic
principles, these principles are described in the so-called meta-language
which uses itself a logic, the so-called metalogic.

Interestingly, even for non-classical logic it is rather common (tho-
ugh not ubiquitous) to use the classical logic in the meta-language. This
seems to speak for a certain preference of classical logic. However, this
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is merely an indicator but not a systematic argument. One could argue
that it is a just human ‘convenience’ to stick to classical logic in the
meta-language. What is much more remarkable is that it is possible at
all to justify the rules of a non-classical logic by a semantical framework
that is classical. How can that be? I hope that I will be able to explain
in this paper why this can be.

Is there any way to justify the laws of a logic in a way that is non-
circular and, thus, foundation-theoretically acceptable? If by a “justi-
fication” one means a demonstration of the validity of these laws that
the answer is negative. This insight seems to constitute a threat of
foundation-theoretic epistemology, because it suggests that there are no
objective criteria for the choice of logical systems. Since the laws of
classical logic and non-classical logics are in mutual opposition, it seems
that already at the most fundamental level of cognition, namely the level
of logic, we are exposed to the dangers of relativism and incommensu-
rability, that have been proclaimed by Kuhn (1962) for paradigms of
natural sciences.

In this paper I try to show that optimality justifications can offer an
escape. However, optimality justifications are always relative to a pre-
supposed epistemic goal. What could the epistemic goal of logic be? In
the controversies in philosophical logic, one often discusses goals such as
intuitive naturality, usefulness in mathematics, computational simplic-
ity or agreement with assumed metaphysical positions. The problem
of goals of this sort is that they are much too subjective and context-
dependent in order to enable a robust objective optimality justification.
To give an example, both Priest (2006), Williamson (2017) and Bueno
(2010) are anti-exceptionalists, but they draw opposite inferences about
the preferred logic: while Williamson prefers classical logic, Priest argues
for paraconsistent logic and Bueno for pluralism and context-sensitivity.
For a robust epistemic justification, we need a much more general epis-
temic goal, indeed a most general one, since logic is the most general
level of description.

I propose the power of linguistic representation to be this goal. The
leading idea of the optimality justification proposed in this paper will
be that the representational power of a logic L is at least as high than
that of another logic L′ if L′ can be translated into L. It is a well-known
fact that some non-classical logics L can be translated into classical
logic L2 (“2” for two-valued). If this is the case, then everything that is
expressible in L′ is also expressible in L2, thus L2 is representationally at
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least as powerful as L′. If we could prove this for all non-classical logics,
at least for all non-classical logics of minimal plausibility, we would have
a universal optimality argument for classical logic.

Let us explain the translation approach at hand of the translation
of �Lukasiewicz’ three-valued (propositional) logic L3 into the classical
logic L2. Assume the proponent of L3 claims that the sentence “there is
exactly one electron” is neither true nor false but objectively undeter-
mined. Then nevertheless, the statement that this sentence is objectively
undetermined is again two-valued, either true or false, but certainly not
undetermined. More generally speaking, even in the three-valued logi-
cal framework the statements asserting that a certain statement is true,
false or undetermined, are strictly two-valued. If we manage to trans-
late all statements of the three-valued framework into combinations of
two-valued statements of this sort, we have found a translation function.
In the next section I will carry out this idea in a logically precise way.

3 Translating three-valued (or multi-valued) logic into
classical logic

In what follows the indexed letter Li varies over systems of proposi-
tional logic, and Li designates the language of such a logic. L2 denotes
the classical (bivalent) propositional logic (consisting of its logical ax-
ioms, theorems and its valid inferences, the latter being denoted as �L2).
The language L2 contains ¬,∧,∨ as primitive propositional connectives,
moreover the material implication→ and equivalence↔ being defined in
the usual way. Languages are identified with the set of their well-formed
formulas. I use

p1, p2, ..., q, r, ... as (propositional) variables,

A,B, ..., S, ... as schematic letters for arbitrary formulas (i.e., sen-
tences), and

Γ,Δ, ... for arbitrary sets of formulas.

L3 is �Lukasiewicz’ three-valued logic (�Lukasiewicz (1920)) with the
truth-values true (t), false (f) and undetermined (u). The language L3

has four basic truth-functional connectives ¬,∧,∨ and →, where the
three-valued conditional → is not being definable in terms of the other
three connectives. As usual one assumes a linear ordering among the
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truth-values of a (finite) multi-valued logic; in our case the ordering is
f < u < t; or represented as ranks: −1, 0,+1.

Based on this ordering, �Lukasiewicz three-valued truth-tables for the
four connectives are as follows: the truth value of ¬p is the inverse of p’s
truth value, that of p∧q is the minimum and that of p∨q the maximum
of the truth values of p and q. Finally, p → q’s truth value equals true,
undecided or false, respectively, if the rank difference between q’s truth
value and p’s truth value is not smaller than

0/− 1/− 2.

p ¬p p q p ∧ q p ∨ q p → q

t f t t t t t
u u t u u t u
f t t f f t f

u t u t t
u u u u t
u f f u u
f t f t t
f u f u t
f f f f t

The notion of logical truth and validity in multi-valued logics is de-
fined analogously as in bivalent logics. We let

P be the denumerable set of propositional variables, and

val3 : P → {t, u, f} range over trivalent truth-valuations over the
(propositional) variables that are recursively extended to arbitrary
complex formulas of L3 by way of the above truth tables. Then an
L3-formula A is logically true in L3, in short �3 A iff val3(A) = t
for all (possible) trivalent valuations, and A follows from a formula
set Γ in L3, in short Γ �3 A, iff all trivalent valuations making all
formulas in Γ true make A true.

It is well known that some typical theorems and meta-theorems of
classical L2 are not among the theorems of L3:

Some theorems of L3: p → (q → p), (¬q → ¬p) ↔ (p → q),

(p ∨ q) ↔ (p → q) → q.

Some non-theorems of L3: p ∨ ¬p,¬(p ∧ ¬p), (p ∨ q) ↔ (¬p → q).

Deduction theorem (Γ, A � B iff Γ � A → B) fails for L3.
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Our translation is based on the strategy to expand the classical two-
valued language L2 by three operators T, U and F that express the truth
values of being true, undetermined and false in three-valued logic. If S is
a sentence of the three-valued logic, the sentences T (S), F (S) and U(S)
are nevertheless two-valued, obeying the following truth table:

p T (p) U(p) F (p)

t t f f
u f t f
f f f t

We don’t need to introduce these operators in L3, because they are
definable in L3 - T (S) by S ∧ ¬U(S), F (S) by ¬S ∧ ¬U(S), and U(S)
by (S ∨ ¬S) → (S ∧ ¬S). As can be easily checked, the truth-functions
of these formulas coincide with the above truth tables.

By adding the �Lukasiewicz-operators T, U, F to the classical language
L2 we obtain the extended classical language L2.Luk whose formulas are
still evaluated bivalently and whose basic logical laws are still the classi-
cal laws of L2. Within L2 the operators T, U and F figure as intensional
(non-bivalently-truth-functional) operators, similar as the operators of
modal logic. Based on the truth tables of these three operators, every
semantic rule of three-valued logic can be translated into a set of corre-
sponding axioms formulated in the expanded language of classical logic
as follows:

For negation: T (¬A) ↔ F (A), U(¬A) ↔ U(A), F (¬A) ↔ T (A)

For conjunction: T (A ∧B) ↔ T (A) ∧ T (B),
F (A ∧B) ↔ F (A) ∨ F (B),
U(A ∧B) ↔ (U(A) ∧ ¬F (B)) ∨ (U(B) ∧ ¬F (A))

For disjunction: T (A ∨B) ↔ T (A) ∨ T (B),
F (A ∨B) ↔ F (A) ∧ F (B),
U(A ∨B) ↔ (U(A) ∧ ¬T (B)) ∨ (U(B) ∧ ¬T (A))

For implication:

T (A → B) ↔ F (A) ∨ (U(A) ∧ ¬F (B)) ∨ (T (A) ∧ T (B)),
U(A → B) ↔ (T (A) ∧ U(B)) ∨ (U(A) ∧ F (B)),
F (A → B) ↔ T (A) ∧ F (B)

Finally we add the trivalent truth-value axiom:
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T (S) ∨̇ U(S) ∨̇ F (S)

(“∨̇” for exclusive disjunction).

The set of these axiom schemata forms the axiom system AxLuk of
�Lukasiewicz’ logic in the expanded language of classical logic L2.Luk.

Our translation of L3-statements into L2-statements is based on the
truth view of assertion: asserting a sentence S means to assert that S
is true. Thus our translation functions “trans3→2” (from L3 into L2) is
this:

For all S ∈ L3; trans3→2(S) = T (S).

Note that the translation based on the assertion view is not recursive but
holistic: it translates every complex L3-sentences at once into L2.Luk. By
applying the axioms in AxLuk we transform every sentence of L2.Luk into
a truthfunctional combination of modalized variables (Tpi, Upi or Fpi)
and thus find out what the translation means for the truth-value of the
modalized variables of the sentence.

Some examples of translations and their equivalent transformations :
(“=” for identity, “↔” for material L2-equivalence given AxLuk):

trans(p) = T (p),
trans(¬p) = T (¬p) ↔ F (p),
trans(p ∨ ¬p) = T (p ∨ ¬p) ↔ Tp ∨ Fp,
trans(p ∧ ¬p) = T (p ∧ ¬p) ↔ Tp ∧ Fp,
trans(p → q) = T (p → q) ↔ Fp ∨ (Up ∧ (Uq ∨ Tq)) ∨ (Tp ∧ Tq), etc.

Note that we use the same logical symbols for the two-valued and the
three-valued operators (e.g. both “→” for two-valued and three-valued
implication), but this is not a problem, because whenever we translate
an L3-formula into L2, the three-valued logical operators are hedged in
the scope of the intensional operators T, U and F .

We now show that the translation trans3→2 preserves meaning and
L3-logical truth (or validity) in a precise sense. For this purpose, we have
to introduce some terminology. In what follows, Oi ranges over the three
trivalent truth-value operators, T, U and F . P(S) = p1, ..., pn(S) denotes
the set of variables occurring in sentence S. We speak of the “pi” as “un-
modalized variables” and of the statements “Oipj” as the “modalized”
variables. For P a set of unmodalized variables, OP =

⋃
p∈P{Tp, Up, Fp}

denotes the corresponding set of modalized variables. If P is the (denu-
merable) set of unboxed variables common to L3 and L2.Luk, then fol-
lowing from the intensional nature of the operators Oi, truth-valuations
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over L2.Luk are defined over the set of elementary formulas P∪OP. Let
V al3(P) be the set of all trivalent valuations over P and V al3(L3) be the
set of (recursively extended) trivalent valuations over sentences of L3.
Moreover, let V al2.Luk(OP) be the set of all bivalent valuations over OP

satisfying the axiom T (S) ∨̇ U(S) ∨̇ F (S) and V al2.Luk(L2.Luk) be the
set of all (recursively extended) bivalent truth-valuations over formulas
of the expanded language satisfying the axioms of AxLuk. Then we can
prove:

Theorem 1.

(1.1) Every three-valued valuation function val3 over P cor-
responds exactly to a two-valued valuation function

val2 =def f(val3)

over the modalized variables OP =
⋃

p∈P{Tp, Up, Fp} satis-
fying the axioms AxLuk, such that:

for every L3-formula A, val3 � A iff f(val3) � T (A).

(1.2) An L3-statement A is logically true in L3 iff T (A) fol-
lows logically from AxLuk in L2, and analogously for logical
consequence. Thus:

�L3 A iff AxLuk �L2 T (A), and

Γ �L3 A iff AxLuk ∪ T (Γ) �L2 T (A),

where T (Γ) =def {T (B) : B ∈ Γ}.

Proof of the theorem: The proof is based on three lemmata:

Lemma 1 : Every three-valued valuation val3 over the unboxed vari-
ables in P corresponds to exactly one two-valued valuation val2 over the
corresponding boxed variables in OP satisfying the axiom T (S) ∨̇ U(S) ∨̇
F (S).

Proof of lemma 1 : We define val2 =def f(val3) as follows, for all p ∈
P : val2(Tp) = t/val2(Up) = t/val2(Fp) = t exactly if val3(p) = t/u/f .
Then, the claim of lemma 1 is satisfied.

Lemma 2 : For every S ∈ L3, AxLuk L2-entails that T (S) is equiv-
alent with a distinguished disjunctive and negationless normal form
DN(S), each elementary disjunct being a conjunction of modalized vari-
ables O1p1∧ ...∧Onpn with one modalized variable for each unmodalized
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variable in P(S) = {p1, ..., pn}. We call these conjunctions the three-
valued constituents.

Proof of lemma 2 : By successive application of the equivalence trans-
formations corresponding to the axioms of AxLuk, one can drive the
truth-value operators successively inside the formula until they stand
immediately before the unmodalized variables; negations are eliminated
thereby. By applying ∧ − ∨ distribution laws and expanding conjuncts
in which certain modalized variables Opi (for pi ∈ P(S)) are missing (via
conjoining Tpi∨Upi∨Fpi to the conjunct), one can produce the required
disjunction of three-valued constituents, abbreviated as DN(S). The
operations are analogous to those needed for producing distinguished
normal forms in two-valued logics (we omit the inductive proof).

Lemma 3 : Each elementary conjunct of DN(S) corresponds to ex-
actly one line in the three-valued truth-table of S that makes S true.

Proof of lemma 3 : For every val3 over P(S) making S true: val3
verifies exactly one line in S’s three-valued truth table of S. The corre-
sponding two-valued valuation val2 = f(val3) over OP(S) that verifies
AxLuk makes exactly one disjunct of DN(S) true (by lemma 1 and the
truth table of bivalent conjunction). Thus val2 makes T (S) true, be-
cause AxLuk �L2 S ↔ DN(S) holds, as proved in lemma 2. Vice versa,
every val2-function over O{p1, ..., pn} satisfying AxLuk that makes T (S)
true makes exactly one disjunct of DN(S) true, and this is the case ex-
actly if the corresponding three-valued function val3 = f−1(val2) makes
the corresponding line in the three-valued truth-table of S true.

Proof of theorem 1.1 : For every S ∈ L3: val3 � S iff some line in S’s
three-valued truth-table makes S true iff val2 = f(val3) � Ck(DN(S))
for some elementary conjunct of DN(S) (by lemma 3) iff val2 � DN(S)
iff val2 � T (S) (by lemma 2).

Proof of theorem 1.2 : �L3 S iff ∀val3 ∈ V al3(P(S)): val3 � S iff
∀val2 ∈ V al2(OP): val2 � S (by theorem 1.1) iff �2 S. Analogously for
inferences. Q.E.D.

4 Discussion and generalization of the proposed transla-
tion method

In the next three subsections we explain what we think has been achieved
by the translation method.
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4.1 Preservation of meaning : The translation trans3→2 together
with the axiom system AxLuk preserves the semantic meaning of the
trivalent operators, which are part of L2.Luk as well as of L3. The trans-
lation also preserves the meaning of the (propositional) variables ‘as
good as possible’. Of course, the meaning of “p” cannot be strictly the
same in L3 and L2, because in L3, p has three and in L2, two truth
values. However, the meaning of the more fine-grained propositions
T (p), O(p) and U(p) is strictly the same in L3 and in L2. Asserting
a sentence S in L3 is expressed by asserting T (S) in L2; moreover by
applying the AxLuk-equivalences (that are valid in L2.Luk as well as in
L3), the semantic composition of S in L3 is fully reflected in L2. We
conclude that every proposition that can be expressed in L3 can be also
expressed in L2.

4.2 Comparison with literature: By expanding the classical truth-
functional logic by the intensional operators T, U, F we made it possi-
ble to preserve the meaning of the operators of the non-classical logic.
This meaning-preservation distinguishes my account from the transla-
tion functions between logics studied in the previous literature. In the
latter work, translations are not accompanied by expansions of the (clas-
sical) language, on the cost that these translation functions do not and
cannot preserve the meaning and semantic composition of the translated
statements; they only preserve the consequence operation. One exam-
ple are the abstract ‘translations functions’ studied by Jerábek (2012).
These translation functions map the formulas of the language L of a
propositional logic L into formulas of a language L′ of a logic L′, such
that if A �L B, then f(A) �L′ f(B) (where f need neither be injective
nor surjective). Given an enumeration of all L-formulas and the nth
formula An of L, Jerabek’s translation of An into the language L′ is,
roughly speaking, defined as X ∨ (qn ∧ Y ), where X is the disjunction
of translations of all premises with indices smaller than n that entail
An, qn is a new variable and Y is the conjunction of all translations
of implications C → D with indices smaller than n such that {C,An}
entails D (ibid., 669). Jerábek (2012), theorem 2.6 proves that classical
logic is ‘translation-universal’ in the sense that every finitary deductive
system in countably many formulas can be conservatively translated
into classical logic; moreover that many other but not all non-classical
propositional logics are universal in this sense. The result is technically
impressing, but obviously, Jerabek’s ‘translation’ function neither pre-
serves the meaning or semantic composition of formulas nor even their
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syntactic structure; the translation is constructed just for the purpose
of preserving the consequence operation. Since the defender of a non-
classical logic can argue that such a ‘translation’ does not preserve the
meaning of the L3-statements, the translation is not useful for the pur-
pose of an optimality justification in regard to representation power.

An example of a semantic ‘translation of non-classical into classical
logic is the bivalent reduction of multi-valued logic proposed by Suszko
(1977). Given a standard multi-valued logic with a subset Des ⊂ V al
of designated truth values, Suszko proposed to translate the disjunction
(or set) of the designated truth-values into the bivalent value “true”
and the disjunction (or set) of the non-designated truth-values into
“false”. Suszko’s translation is useful for many purposes (cf. Béziau
(1999)). However, Suszko’s translation does not preserve the semantic
meaning of the propositional connectives; they become intensional un-
der Suszko’s bivalent semantics (Malinowski (1993), 79; Wansing and
Shramko (2008)). For example, both p and ¬p may have the truth-
value false; thus the law of excluded middle, p ∨ ¬P , is no longer valid
in Suszko’s bivalent semantics. Therefore, Suszko’s bivalent semantics is
not classical and, thus, does not yield a translation of L3 into a classical
logic.

4.3 Bridge axioms between L3 and L2: For every S ∈ L3, the truth
value of T (S) depends only on the truth values of its modalized but not
of its unmodalized variables. So far, the bivalent truth-values of the
modalized variables (Oip) have not been related to the bivalent truth-
value of the unmodalized variables. For the semantic coherence between
L3 and L2 we require the following bridge axioms:

T (S) → S and F (S) → ¬S.

In words, a trivalently true (or false) sentence is also bivalently true (or
false, respectively), while for undetermined sentences their bivalent truth
value is left open. It is important that our translation does not prescribe
whether a trivalently undetermined statement should be bivalently clas-
sified as true or false; this may depend on the particular context and
content of p. This has to be so: the converse implications must not
hold, since otherwise the translation would not be conservative and the
translated three-valued logic would collapse into two valued logic. If we
would accept the inverse bridge axioms we could infer T (p ∨ ¬p) and
thus �L3 p ∨ ¬p from �L2 p ∨ ¬p.
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5 Generalizations

In general, the notion of validity in multi-valued logics is defined by
assuming a subset Des ⊂ V al of designated (truth-) values (V al be-
ing the set of all truth-values) and defining a formula A as valid in
LV al if all LV al-valuations convey to A a designated value. The triple
〈V al,Des, {tc : c ∈ C}〉 (with {tc : c ∈ C} being the set of truth-tables
for a set of connectives C) is called a V al-valued logical matrix.

It is rather obvious that the translation strategy of sec. 3 applies
to all many-valued logics that are representable by means of a matrix
of finitely many truth values. Thus, if an n-valued logic Ln is based on
a matrix 〈V aln, Desk, {tc : c ∈ C}〉 with |V aln| = n, |Desk| = k < n
and C = {¬,∧,∨,→}, then we introduce the n intensional operators
O1, ..., On for the n truth values, the equivalence axioms for ¬,∧,∨ and
→ describing the truth tables in terms of these n operators and the
n-valent truth-value axiom O1(S)∨̇...∨̇On(S), and prove the translation
theorem in the same way as above. Of course, with many truth values
this translation can become rather cumbersome. It can be shown, how-
ever, that in many cases less intensional operators than truth values are
needed to obtain an adequate translation function.

It is worth emphasizing that also paraconsistent logics can be char-
acterized by means of finite truth value matrices (Priest (1979); (2013),
sec. 3.6). The simplest paraconsistent logic, LP , contains the three
truth values t, f and b for “both true and false”. The designated val-
ues are t and b, which prevents the ‘principle of explosion’, i.e. that an
inconsistent premise p ∧ ¬p entails anything.

For logics that can only be algebraically represented by infinite ma-
trices such as intuitionistic logic, the above translation strategy does
not work. However, for all of these cases known to me there exist other
methods of translation. It is well-known that intuitionistic logic is trans-
latable into the modal logic S4, by interpreting the necessity operator as
provable truth (Rautenberg (1979), 265). Also for quantum logic there
exist translation functions into modal logic (cf. Dalla Chiara and Giun-
tini (2002), sec 5). All these fact support my conjecture that for every
non-classical logic one can find a translation into an suitably expanded
classical logic. My reason for this conjecture is the mentioned fact that
all non-classical logics known to me use classical logic in their meta-
language, in which they describe the (correct and complete) semantics
of their non-classical principles. Thus there should exist ways of trans-



32

lating their non-classical principles into classical logic, by introducing
intensional operators into L2 that correspond to the concepts used in
the semantics of the non-classical logics. Elaborations of this conjecture
are work for the future.

6 Epistemological conclusions and discussion of possible
objections

If our argument is correct, it shows that every non-classical logic can be
represented within classical logic, because everything expressible in the
former can be expressed in the latter without loss of meaning, namely by
expanding the classical language with appropriate operators and axioms
for them. Since the basic laws and rules of classical logic are still valid in
the expanded system, this argument gives us an optimality justification
of classical logic: By using classical logic our conceptual representa-
tion system can only gain but can never lose, because if another logic
has advantages for certain purposes, we can translate and thus embed
it into classical logic. What is furthermore achieved by this result is
epistemic commensurability and thus a refutation of logical relativism:
different logical frameworks are not incommensurable (in the sense of
Kuhn (1962)), because they are translatable into each other.

An apparent objection to my account points out that there is also the
possibility of an inverse translation relation of classical logic into three-
valued logic (or more generally, into a non-classical logic), by expanding
the non-classical language with intensional operators for the bivalent
truth-values and corresponding axioms. Indeed, it can be shown that
such an inverse translation is often possible (because of space limitations
we cannot demonstrate this here). Yet this ‘objection’ does not refute
my optimality thesis, because optimality does not entail dominance. The
two notions come from game theory. A method (here a logic) is dominant
iff it has higher value than all other methods (in a given class of methods
and in regard to the given goal, here linguistic representation power).
It is optimal if it has maximal value, which does not exclude that there
may be methods that have the same maximal value. Thus the defender
of a three-valued logic may argue that his or her system is optimal, too,
since (s)he can translate every bivalent system into his or her trivalent
logic.

Yet the objection is not fully defeated by this move. For one may ask:
if many logics are representationally optimal, what has been achieved by
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the proposed optimality justification of classical logic? There are three
replies to this questions:

(1.) It is an open question how large the class of logics is that are
provably representation-optimal, i.e. for which a universal translation
theorem can be proved.

(2.) Even if the class of representationally optimal logics would be
very large, optimality justifications would nevertheless be of high epis-
temological importance. These justifications show that different logics,
that are incompatible on the level of their theorems, may on a deeper
level be translated into each other. Therefore different logics are neither
incommensurable nor do they put us into a situation of logical relativism.
Instead we obtain the situation of a ‘pluralism in harmony’. Every opti-
mal logical system is foundation-theoretically justified and can be chosen
as one’s basic logic, because every other logical system can be embedded
into it.

(3.) This is not all what can be said about epistemic preference of
logics. There is an important ceteris paribus criterion for the choice of
logical systems: among logics that are equally representationally optimal
one should choose the simplest logic. One can plausibly argue that,
at least in many respects, classical bivalent logic is the simplest logic.
Moreover, translations of non-classical systems into this logic are most
simple and straightforward. Moreover, one should not forget that in
most contexts the principle of two-valuedness has enormous advantages.
For example, the meta-logical properties of a logic should neither be
undetermined nor paraconsistent. No logician wants to say that his or
her preferred logic is neither correct nor incorrect, or is both consistent
and inconsistent, etc. (cf. Batens (2014), 1). All this does not exclude,
of course, that for specific application purposes a non-classical logic can
have advantages.
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Abstract

The paper proposes a new abstract notion of ‘logical system’,
and sketches some basic developments of the general theory of
such logical systems. Roughly speaking, a logical system in our
sense consists of: (‘abstract’) sets of models and of formulas, with
a binary relation of verification between them, plus (more dis-
tinctively) a set of vocables together with a vocable-function from
formulas to sets of vocables. (In a typical concrete case, the ‘voca-
bles’ of a formula will be the items of vocabulary, other than logical
constants, occurring in the formula.) This notion seems to strike a
quite good balance between simplicity and comprehensiveness on
the one hand, and conceptual richness on the other. It is particu-
larly noteworthy that it permits an elementary though non-trivial
abstract study of interpolation and related ideas. – A final section
of the paper briefly considers an extension of our basic notion of
logical system by the addition of a domain-function permitting us
to speak of the domain of a model.

1 Introduction

When one studies the semantical theory of various different logical
systems, one is likely to be struck by the constant recurrence of pat-
terns of definition of various notions in terms of simpler ones, as well as
sometimes even proofs of various results from earlier ones; so much so
that the eventual systematization of a corresponding ‘abstract’ scheme
is almost inevitable. Thus various forms of such ‘Abstract Logic’ have
appeared. The present paper proposes a new scheme of this kind.

Our scheme is meant to be very broadly applicable: in particular,
applicable to both classical and non-classical (e.g. modal) logic, both
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propositional and predicate logic, both first-order and higher-order sys-
tems, both finitary and infinitary systems, both systems with ‘function-
ally complete’ and systems with ‘functionally incomplete ’ logical lan-
guages (even languages lacking some of the classical truth-functional
connectives). Thus, within the (rather varied) field of ‘Abstract Logic’,
our formulation is along the lines of ‘Abstract Abstract Logic’, like e.g.
Tarski’s original theory of abstract consequence relations or operations
(Tarski 1930), rather than of ‘More-or-less Concrete Abstract Logic’,
like the Polish theory of structural consequence relations (on which see
e.g. Wójcicki 1988), or the ‘Abstract Model Theory’ tradition (see e.g.
Barwise and Feferman 1985).

In Tarski’s formulation there is a set of (abstract) ‘formulas’ and
an (abstract) ‘consequence relation’ which is a relation between sets of
formulas and formulas required to satisfy certain conditions (‘axioms’)
like reflexivity, monotonicity, transitivity. (Actually Tarski has a conse-
quence operation rather than relation – but it comes to the same.) Here
we will go back one step in the analysis of the situation and will have
a set of (abstract) ‘models’ (in addition to the set of ‘formulas’) and a
relation of verification between models and formulas; from which the
consequence relation can be defined and its standard properties (reflex-
ivity etc.) derived from the mere definition. (Our goal here is to develop
an abstract analysis of recurrent aspects of formal semantics; so for us
this is a natural step. Tarski’s own goal by contrast was to develop an
abstract analysis of recurrent aspects of syntactic, axiomatico-deductive
systems [‘formalized deductive disciplines’]; so for him there was no cor-
responding natural step. [At most one can think of ‘maximal consistent’
sets of formulas; but obviously this is something that would come later
than ‘consequence’ (i.e. deducibility) in the natural order of definitions
in the syntactic context.])

This step is well known and can be found in many places in the lit-
erature of Abstract Logic. What is more distinctive about the approach
taken here is that we have also (in addition to the ingredients already
mentioned) a set of (abstract) ‘vocables’ and a vocable-function L from
formulas to sets of vocables. Thus e.g. in a typical concrete system
of propositional logic, L(ϕ) would be the set of propositional variables
occurring in ϕ; in first-order predicate logic L(ϕ) would be the set of
predicate variables and free individual variables (and function variables
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and individual parameters if we have that) occurring in ϕ; and so on. (Or
if we are not speaking of ‘first-order predicate logic’ in the sense where
we have a single language with a fixed stock of predicate variables but
rather considering the usual notion of a ‘first-order language’, then L(ϕ)
is the set of ‘non-logical constants’ and free individual variables occur-
ring in ϕ [or simply the set of non-logical constants occurring in ϕ, if by
‘formula’ we understand sentence].) – With these additional ingredients
we are able to make an abstract study of concepts and conditions which
involve an interplay between ‘semantical’ notions like validity, satisfiabil-
ity, consequence, etc., and ‘syntactical’ notions like the vocables which
occur in a given formula or set of formulas – a paradigmatic example
of which is of course Interpolation. – At the same time, by including
no other ingredients we still have a framework that is quite simple and
quite broadly applicable.

I will add that, although it is concrete logical systems of usual kind
that I had primarily in mind as the paradigmatic concrete examples of
my abstract ‘logical systems’, yet there is another very interesting ap-
plication (concrete example) of these systems. Namely: the ‘models’ are
now metaphysical possible worlds; the ‘formulas’ are structured proposi-
tions (states of affairs, situations); the ‘vocables’ are simple non-logical
entities; ‘verification’ is converse of true in; and ‘vocables-of’ are simple
non-logical entities which are constituents of. (See Batchelor 2013, esp.
7.) Or again, instead of full-blown possible worlds one might have

maximally specific possible states relative to a certain subject-matter,
and a correspondingly limited notion of structured proposition.

Even in the more ‘logical’ cases there are also of course interesting
variations on the more obvious concrete examples. For instance: ‘mod-
els’ might be something like maximal consistent sets of formulas, and
‘verification’ implication (or deducibility in a certain formal calculus);
‘formulas’ might be say propositional-logic formulas in certain variables
only, and so on.
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2 Basic notions

A logical system is a 5-tuple

(Mod ,Fla,Voc,�, L),
where:

Mod (‘models’) and Fla (‘formulas’) are arbitrary non-empty sets;

Voc (‘vocables’) is an arbitrary set (not necessarily non-empty);

� (‘verification’) is a binary relation between elements of Mod and
elements of Fla (i.e. ⊆ Mod × Fla);

L (‘vocable-function’) is a function from Fla to subsets of Voc.

Remark. We speak of the set of models; but we certainly mean
to include e.g. classical predicate logic within the scope of the present
notion of logical system, although its ‘models’ would not normally be
said to ‘form a set ’. We leave to the reader the choice among alternative
methods for resolution of this discrepancy. �

As already indicated we call the elements of Mod , Fla, Voc respec-
tively models, formulas, and vocables. We use the following variables:

Variables for models: M,N,K, J, . . .

Variables for formulas: ϕ,ψ, θ, χ, . . .

Variables for vocables: p, q, r, s, . . .

Variables for sets of models: M,N , . . .

Variables for sets of formulas: Γ,Δ,Σ,Θ, . . .

Variables for sets of vocables: �, �′, . . .

– A partial logical system is like a logical system except that Voc and
L are omitted.

We give now the following battery of definitions, which are relative
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to an arbitrary logical system (and are most of them applicable also to
an arbitrary partial logical system): –

M � Γ =df ∀ϕ ∈ Γ(M � ϕ).

Sat(ϕ) =df ∃M(M � ϕ).

Sat(Γ) =df ∃M(M � Γ).

Remark. It is of course no part of our definition of logical system that
models must be ‘maximal’ (at least w.r.t. the formulas of the system) and
‘possible’ (‘internally coherent’) (nor does it seem possible to state such
requirements in the present abstract framework); but this will always be
so in the intended applications; and the present definition of satisfiability
already reflects this. If models were not ‘maximal’, a set of formulas
could be intuitively ‘satisfiable’ but not verified (implied) by any model;
and if models could be ‘impossible’, a set of formulas could be implied
by a model without being intuitively ‘satisfiable’. �

Unsat(ϕ) =df not Sat(ϕ).

Unsat(Γ) =df not Sat(Γ).

ϕ � ψ =df ∀M(M � ϕ ⇒ M � ψ).

Γ � ϕ=df ∀M(M � Γ ⇒ M � ϕ).

Γ � Δ=df ∀M(M � Γ ⇒ M � Δ).

ϕ 	 ψ =df ∀M(M � ϕ ⇔ M � ψ).

ϕ 	Γ ψ [‘ϕ is equivalent to ψ modulo Γ’] =df ∀M(M � Γ ⇒ (M �
ϕ ⇔ M � ψ)).

Γ 	 Δ=df ∀M(M � Γ ⇔ M � Δ).

� ϕ=df ∀M(M � ϕ).

� Γ =df ∀M(M � Γ).

DisjV al(Γ) [‘Γ is disjunctively valid’] =df ∀M∃ϕ ∈ Γ(M � ϕ).
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Cn(ϕ) =df {ψ : ϕ � ψ}.

Cn(Γ) =df {ϕ : Γ � ϕ}.

Γ is closed =df Γ = Cn(Γ).

Γ is complete =df ∀ϕ(Γ � ϕ or Unsat(Γ ∪ {ϕ})).

Γ is �-complete =df ∀ϕ(L(ϕ) ⊆ � ⇒ (Γ � ϕ or Unsat(Γ ∪ {ϕ}))).

(Thus of course completeness tout court is Voc-completeness.)

Γ is coherent =df not ∃ϕ(Γ � ϕ & Unsat(Γ ∪ {ϕ})).

Γ is saturated =df Sat(Γ) & ∀Δ ⊃ Γ(Unsat(Δ)).

Cons(Γ) =df ∀Γ0 ⊆fin Γ(Sat(Γ0)).

MaxCons(Γ) =df Cons(Γ) & ∀Δ ⊃ Γ(not Cons(Δ)).

Γ → Δ=df ∀M(M � Γ ⇒ ∃ϕ ∈ Δ(M � ϕ)).

ϕ settles ψ =df ϕ � ψ or Unsat{ϕ,ψ}.

Γ settles ϕ=df Γ � ϕ or Unsat(Γ ∪ {ϕ}).

T opic(Γ) =df DisjV al(Γ) & ∀ϕ,ψ ∈ Γ(ϕ �= ψ ⇒ Unsat{ϕ,ψ}).

Th(M) [‘the theory of M ’] =df {ϕ : M � ϕ}.

Th(M) =df {ϕ : ∀M ∈ M(M � ϕ)}.

Γ is a theory =df ∃M(Γ = Th(M)).

Γ is a simple theory =df ∃M(Γ = Th(M)).

Remark. Obviously M � ϕ is always equivalent to ϕ ∈ Th(M).
Thus one might ‘economize’ by defining a logical system instead as a
quadruple (Fla , STh, Voc, L) where STh is a non-empty set of sets of
formulas, corresponding to the simple theories, and the rest is as before
(and similarly for the partial case). Instead of M � ϕ for M in Mod ,
we would have now ϕ ∈ Γ for Γ in STh (∈ being of course simply part
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of the ambient mathematical framework and not a constituent of the
structure). (This kind of move is sometimes coupled with a requirement
that Fla /∈ STh, which however at least for our purposes would not
be appropriate: e.g. in classical propositional logic with connectives say
∧ and ∨ only, Fla is a simple theory. Incidentally, the same example
shows the inadequacy [at least w.r.t. our purposes here] of the definition
of Sat(Γ) as ∃ϕ(Γ � ϕ), usual in the theory of ‘abstract consequence
relations’. However, if one goes from structures (Fla ,�) to structures
(Fla,�, Sat), to which one may or may not add Voc and L, and of course
with ‘axioms’ both for � and for Sat, one can do a good deal – though
by no means all – of what we do here with our [partial or full] abstract
‘logical systems’.) – This economy seems to me however somewhat arti-
ficial: the ‘specifics’ of the development of the basic semantical theory of
a typical logical system stop precisely after the definitions of model and
verification (and formulas, vocables, L); the definition of simple theory
comes later and follows a fixed ‘abstractable’ pattern, like the definitions
of satisfiability, validity, consequence, etc. �

�-Th(M) [‘the �-theory of M’] =df {ϕ : L(ϕ) ⊆ � & M � ϕ}.

Γ is an �-theory =df ∃M(Γ = �-Th(M)).

M ≡Γ N =df ∀ϕ ∈ Γ(M � ϕ ⇔ N � ϕ).

M ≡� N =df M ≡{ϕ:L(ϕ)⊆�} N.

M ≡ N =df M ≡Fla N.

Mod(ϕ) [‘the models of ϕ’] =df {M : M � ϕ}.

Mod(Γ) =df {M : M � Γ}.

Γ axiomatizes M=df Mod(Γ) = M.

M is axiomatizable =df ∃Γ(Γ axiomatizes M).

M is finitely axiomatizable =df ∃ finite Γ(Γ axiomatizes M).

M is axiomatizable by single formula =df ∃ϕ({ϕ} axiomatizes M).

Γ is redundant =df ∃Δ ⊂ Γ(Δ 	 Γ).
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Otherwise we say that Γ is non-redundant.

Γ is independent =df ∀Δ ⊆ Γ ∃M(M � Δ & ∀ϕ ∈ Γ−Δ(M � ϕ)).

Γ is essentially finite =df ∃ finite Δ(Δ 	 Γ).

(Note that this is not always equivalent to ∃ finite Δ ⊆ Γ(Δ 	 Γ). E.g. in
a suitable form of infinitary classical propositional logic, a denumerable
set of propositional variables would be essentially finite, being equivalent
to the conjunction of such variables, but would not be equivalent to any
finite subset of itself.)

All the above definitions, with the exceptions only of �-completeness
and �-theory and ≡�, make sense for arbitrary partial logical systems;
the following on the other hand involve also vocables: –

L(Γ) =df {p : ∃ϕ ∈ Γ(p ∈ L(ϕ))}.

p is essential to ϕ=df ∀ψ 	 ϕ(p ∈ L(ψ)).

p is inessential to ϕ=df ∃ψ 	 ϕ(p /∈ L(ψ)).

p is inessential to ϕ modulo Γ =df ∃ψ 	Γ ϕ(p /∈ L(ψ)).

Ess(ϕ) =df {p : p is essential to ϕ}.

Ess(Γ) =df {p : ∀Δ 	 Γ(p ∈ L(Δ))}.

Can(ϕ) [‘ϕ is canonical’] =df L(ϕ) = Ess(ϕ).

Can(Γ) =df L(Γ) = Ess(Γ).

The following two definitions give tentative abstract versions of the
ideas of explicit definability and implicit definition.

p is explicitly definable w.r.t. Γ =df ∀ϕ: p is inessential to ϕ modulo
Γ.

Remark. This condition seems to be as close as we can get to the
usual idea of explicit definability in our abstract framework. But note
that it allows also cases of ‘context-sensitive’ definability: as long as p
is always eliminable (modulo Γ), the condition is satisfied – the ‘elimi-
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nation’ might be very different for different formulas. �

Γ implicitly defines p=df ∀M ∀N [(M � Γ & N � Γ & ∀ϕ(p /∈ L(ϕ) ⇒
(M � ϕ ⇔ N � ϕ))) ⇒ ∀ϕ(M � ϕ ⇔ N � ϕ)].

– Although our definition of logical system has no special conditions
(‘axioms’), from the above definitions it is possible to derive many prop-
erties of the notions of consequence (�), satisfiability, validity, etc. – in-
cluding e.g. all the usual ‘axioms’ for an ‘abstract consequence relation’
or ‘abstract consequence operation’ (but not Compactness of course –
Tarski included that in his original papers [in keeping with his Abstract
Syntax motivation] but it is no longer included nowadays), and hence
also of course all the theorems which can be derived therefrom. – We
list here some illustrative examples (all of which follow easily from the
definitions above): –

Sat(Γ ∪Δ) ⇒ Sat(Γ).

Γ � ϕ ⇒ Γ ∪Δ � ϕ.

ϕ ∈ Γ ⇒ Γ � ϕ.

Γ � Δ & Δ � Σ ⇒ Γ � Σ.

Γ � Δ & Sat(Γ) ⇒ Sat(Δ).

Unsat(Γ) ⇒ Γ � Δ.

	 (between formulas, or between sets of formulas) is an equivalence
relation.

� Γ ⇒ Sat(Γ).

� Γ ⇒ Δ � Γ.

Γ ⊆ Cn(Γ).

Cn(Γ) = Cn(Cn(Γ)).

Γ ⊆ Δ ⇒ Cn(Γ) ⊆ Cn(Δ).

Cons(Γ) ⇒ ∃Δ ⊇ Γ(MaxCons(Δ)). (By Tukey’s lemma.)
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∀ finite Γ ∃Δ ⊆ Γ(Δ 	 Γ & Δ is non-redundant).

Unsat(Γ) ⇔ Γ → ∅.

DisjV al(Γ) ⇔ ∅ → Γ.

Γ ∪ {ϕ} → Δ ∪ {ϕ}.

Γ → Δ ⇒ Γ ∪Σ → Δ.

Γ → Δ ⇒ Γ → Δ ∪ Σ.

Γ ∪ {ϕ} → Δ & Γ → Δ ∪ {ϕ} ⇒ Γ → Δ.

ϕ 	 ψ ⇒ Ess(ϕ) = Ess(ψ).

Γ 	 Δ ⇒ Ess(Γ) = Ess(Δ).

p is explicitly definable w.r.t. Γ ⇒ Γ implicitly defines p.

Cn(Γ) = Th(Mod(Γ)).

Every simple theory is coherent.

Remarks. (1) Note however that in general a simple theory need not
be complete. E.g. take classical propositional logic with connectives ∧
and ∨ only, and the model M which gives T to p and q and F to the
other variables. Then Th(M) 	 {p, q}, and so e.g. neither Th(M) � r
nor Unsat(Th(M) ∪ {r}).

(2) Also, a non-simple theory may not be coherent: Th(∅) = Fla
which of course may ‘easily’ not be coherent. However, this is the only
such case: clearly ∀M �= ∅: Th(M) is coherent. �

– We have been considering so far a fixed arbitrary logical system;
but it is also interesting of course to consider relations between different
logical systems. An obvious one is the sub-system relation: (where A
and B are logical systems)

A is a sub-system of B =df ModA = ModB , VocA = VocB , FlaA ⊆
FlaB , and �A, LA are the restrictions of �B , LB w.r.t. FlaA.
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(Alternatively, one might allow also Mod and/or Voc to shrink.)

Paradigmatic examples of sub-systems are ‘functionally incomplete’
systems w.r.t. a ‘functionally complete’ one – e.g. classical propositional
logic with only →, or only ∧, →, or only ¬, ↔, etc., w.r.t. full classical
propositional logic.

(Another, quite different notion of a ‘part’ of a system is: FlaA =
FlaB , VocA = VocB, LA = LB; and ModA, ModB, �A, �B are s.t.
the defined relation �A is subset of the defined relation �B [whence in
particular A-valid formulas are subset of B-valid formulas]. It is in this
sense that e.g. S4 modal logic is a [proper] ‘part’ of S5 modal logic, or
intuitionistic propositional logic [in connectives say ¬, ∧, ∨, →] is a
[proper] part of classical propositional logic.)

3 Conditions on logical systems

We list here various interesting conditions which a logical system
may satisfy (but which not all logical systems do satisfy).

Sat-Compactness: Unsat(Γ) ⇒ ∃Γ0 ⊆fin Γ(Unsat(Γ0)).

Sat-(κ-Compactness): Unsat(Γ) ⇒ ∃Γ0 ⊆ Γ(card(Γ0) < κ& Unsat(Γ0)).

�-Compactness: Γ � ϕ ⇒ ∃Γ0 ⊆fin Γ(Γ0 � ϕ).

�-(κ-Compactness): Γ � ϕ ⇒ ∃Γ0 ⊆ Γ(card(Γ0) < κ & Γ0 � ϕ).

Formula Finiteness: ∀ϕ(L(ϕ) is finite).

Formula κ-Boundedness: ∀ϕ(card(L(ϕ)) < κ).

In general, to a condition involving finiteness there always corre-
sponds a more general condition-scheme where, in effect, < ℵ0 is replaced
by < κ. We will not always explicitly state here such corresponding gen-
eral schemes.

Unrestricted Canonical Form for Formulas/Sets-of-Formulas:
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∀ϕ ∃ψ(Can(ψ) & ψ 	 ϕ).

∀Γ ∃Δ(Can(Δ) & Δ 	 Γ).

Semantically Restricted Canonical Form for Formulas/Sets-of-
Formulas:

∀ϕ(� ϕ & Sat(ϕ) ⇒ ∃ψ(Can(ψ) & ψ 	 ϕ)).

∀Γ(� Γ & Sat(Γ) ⇒ ∃Δ(Can(Δ) & Δ 	 Γ)).

Syntactically Restricted Canonical Form for Formulas/Sets-of-
Formulas:

∀ϕ(Ess(ϕ) �= ∅ ⇒ ∃ψ(Can(ψ) & ψ 	 ϕ)).

∀Γ(Ess(Γ) �= ∅ ⇒ ∃Δ(Can(Δ) & Δ 	 Γ)).

Semantic Rigidity of Closed Formulas: L(ϕ) = ∅ ⇒ (� ϕ or Unsat(ϕ)).

Halldén Property for Joint Unsatisfiability :

L(Γ) ∩ L(Δ) = ∅ ⇒ [Unsat(Γ ∪Δ) ⇒ (Unsat(Γ) or Unsat(Δ))].

Halldén Property for Disjunctive Validity :

L(Γ)∩L(Δ) = ∅ ⇒ [DisjV al(Γ∪Δ) ⇒ (DisjV al(Γ) orDisjV al(Δ))].

Halldén Property for Implication:

L(Γ) ∩ L(Δ) = ∅ ⇒ [Γ � Δ ⇒ (Unsat(Γ) or � Δ)].

Halldén Property for Equivalence:

L(Γ) ∩ L(Δ) = ∅ ⇒ [Γ 	 Δ ⇒ (� Γ or Unsat(Γ))].

Remark. All these four conditions have straightforward correlates
for formulas: in the first case we use Unsat{ϕ,ψ} etc.; in the second
DisjV al{ϕ,ψ}, � ϕ, � ψ; in the third ϕ � ψ etc.; and in the fourth
ϕ 	 ψ etc. �

Existence of Verum: ∃ϕ(L(ϕ) = ∅ & � ϕ).
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Existence of Falsum: ∃ϕ(L(ϕ) = ∅ & Unsat(ϕ)).

Closure under Negation: ∀ϕ ∃ψ ∀M(M � ψ ⇔ not (M � ϕ)).

A stronger version of this condition adds to the matrix-statement:
& L(ψ) = L(ϕ). – If we put ψ neg ϕ =df ∀M(M � ψ ⇔ not (M � ϕ)),
then the condition above can be formulated more briefly as
∀ϕ ∃ψ(ψ neg ϕ). And similarly for conjunction etc. below, and
Verum and Falsum above.

Closure under Binary Conjunction:

∀ϕ ∀ψ ∃θ ∀M(M � θ ⇔ (M � ϕ & M � ψ)).

Again in a stronger version we add: & L(θ) = L(ϕ)∪L(ψ). And simi-
larly in other such cases.

Similar conditions can be formulated of course for closure under any
other given finitary truth-function.

Closure under (All) Finitary Truth-Functions:

∀n ≥ 1 ∀n-ary truth-function f ∀ϕ1 . . . ∀ϕn ∃θ ∀M(M � θ ⇔ f(M �
ϕ1, . . . ,M � ϕn)).

Remark. Closure under All Finitary Truth-Functions is of course
equivalent to: Closure under Negation plus Closure under Binary
Conjunction (or Closure under Negation plus Closure under Binary
Disjunction, etc.). �

Closure under Arbitrary Conjunctions: ∀Γ �= ∅ ∃ϕ ∀M(M � ϕ ⇔
M � Γ).

Alternatively the condition may be strengthened by omitting ‘ �= ∅’:
the effect of this is adding the requirement of existence of some valid
formula.

Closure under Conjunctions Bounded by Cardinal κ:

∀Γ �= ∅: card(Γ) < κ ⇒ ∃ϕ ∀M(M � ϕ ⇔ M � Γ).

Again alternatively we may drop ‘�= ∅’, thus requiring existence of
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valid formula.

There are of course similar conditions for disjunctions etc.

‘Every vocable occurs in some formula’: ∀p ∃ϕ(p ∈ L(ϕ)).

This will hold of course in all ‘normal’ cases of logical systems. –
There are also the similar conditions for arbitrary finite set of vocables
and for completely arbitrary set of vocables. – Or again there is the
condition that: for any set of vocables with two or more elements, if it
is L(ϕ) for some ϕ, then for any set of vocables strictly in-between ∅

and L(ϕ) there is some formula ψ s.t. L(ψ) is that set of vocables.

Indefinite Strengthening of Satisfiable Formulas:

∀Sat(ϕ) ∃Sat(ψ)(ψ � ϕ & ϕ � ψ).

Indefinite Weakening of Non-Valid Formulas:

∀�ϕ ∃�ψ(ϕ � ψ & ψ � ϕ).

Existence of Relative Verum w.r.t. Single Vocables:

∀p ∃ϕ(� ϕ & L(ϕ) = p).

Existence of Relative Verum w.r.t. Finite Sets (�= ∅) of Vocables:

∀ finite � �= ∅ ∃ϕ(� ϕ & L(ϕ) = �).

Existence of Relative Verum w.r.t. Arbitrary Sets (�= ∅) of Vocables:

∀� �= ∅ ∃ϕ(� ϕ & L(ϕ) = �).

There are also of course the similar conditions for Existence of Rel-
ative Falsum.

Identity of Equivalent Models: M ≡ N ⇒ M = N.

The following scheme represents 9 (= 3× 3) conditions:

Axiomatizability [Finite Axiomatizability, Axiomatizability by Single
Formula] of All Model-Classes [All Finite Model-Classes, All Models] :
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∀M [∀ finiteM, ∀M ] ∃Γ [∃ finite Γ, ∃ϕ] (Γ [{ϕ}] axiomatizes M [M ]).

4 Interpolation etc.

We continue our list of conditions with a battery of conditions on
various forms of interpolation and related ideas.

Unrestricted Formula Separation:

Unsat{ϕ,ψ} ⇒ ∃θ(L(θ) ⊆ L(ϕ) ∩ L(ψ) & ϕ � θ & Unsat{ψ, θ}).

Such θ may be said to be a ‘separator’ of ϕ and ψ. Note that
Unsat{ψ, θ} is tantamount to ψ � ¬θ, which however is of course unsuit-
able to our abstract context where presence of negation is not assumed.

Unrestricted Formula Interpolation:

ϕ � ψ ⇒ ∃θ(L(θ) ⊆ L(ϕ) ∩ L(ψ) & ϕ � θ � ψ).

Such θ is said to be an ‘interpolant’ for ϕ and ψ.

Unrestricted Formula Retrospection:

DisjV al{ϕ,ψ} ⇒ ∃θ(L(θ) ⊆ L(ϕ)∩L(ψ) & θ � ϕ&DisjV al{θ, ψ}).

Such θ is a ‘retrospector’ for φ and ψ: the disjunctive validity of
{ϕ,ψ} ‘remounts’ to the facts that θ (which is in the common vocables
of ϕ and ψ) implies ϕ and that ¬θ implies ψ. Again, ¬θ � ψ is the more
suggestive but non-abstract equivalent of DisjV al{θ, ψ}.

Semantically Restricted Formula Separation:

Unsat{ϕ,ψ} & Sat(ϕ) & Sat(ψ) ⇒ ∃θ(L(θ) ⊆ L(ϕ) ∩ L(ψ) &
ϕ � θ & Unsat{ψ, θ}).

Semantically Restricted Formula Interpolation:

ϕ � ψ & Sat(ϕ) & � ψ ⇒ ∃θ(L(θ) ⊆ L(ϕ) ∩ L(ψ) & ϕ � θ � ψ).

Semantically Restricted Formula Retrospection:



52

DisjV al{ϕ,ψ} & � ϕ & � ψ ⇒ ∃θ(L(θ) ⊆ L(ϕ) ∩ L(ψ) &
θ � ϕ & DisjV al{θ, ψ}).

Syntactically Restricted Formula Separation :

Unsat{ϕ,ψ} & L(ϕ) ∩ L(ψ) �= ∅ ⇒ ∃θ etc.

Syntactically Restricted Formula Interpolation:

ϕ � ψ & L(ϕ) ∩ L(ψ) �= ∅ ⇒ ∃θ etc.

Syntactically Restricted Formula Retrospection:

DisjV al{ϕ,ψ} & L(ϕ) ∩ L(ψ) �= ∅ ⇒ ∃θ etc.

Unrestricted Set Separation:

Unsat(Γ∪Δ) ⇒ ∃Θ(L(Θ) ⊆ L(Γ)∩L(Δ) & Γ � Θ & Unsat(Δ∪Θ)).

Unrestricted Set Interpolation:

Γ � Δ ⇒ ∃Θ(L(Θ) ⊆ L(Γ) ∩ L(Δ) & Γ � Θ � Δ).

Unrestricted Set Retrospection:

∀M(M � Γ or M � Δ) ⇒ ∃Θ(L(Θ) ⊆ L(Γ) ∩ L(Δ) & Θ � Γ & ∀M
(M � Θ ⇒ M � Δ)).

This seems to be the most natural set-version of the formula-
retrospection condition. Where we had ∀M(M � ϕ or M � ψ) (i.e.
DisjV al{ϕ,ψ}), we now have ∀M(M � Γ or M � Δ); and so on. The
clause ∀M(M � Γ or M � Δ) is a kind of ‘meta--disjunctive-validity’.
But it comes to mind also to consider the ‘ordinary’ disjunctive validity
of Γ ∪ Δ, and then the ‘retrospector’ Θ would be required to be such
that, in vivid but non-abstract terms, Θ � ∨(Γ) and ¬Θ � ∨(Δ)
(i.e. ¬∧(Θ) � ∨(Δ)). Translating this into abstract terms we get the
condition:

DisjV al(Γ ∪Δ) ⇒ ∃Θ(L(Θ) ⊆ L(Γ) ∩ L(Δ) & ∀M(M � Θ ⇒ ∃ϕ ∈
Γ(M � ϕ)) & ∀M(M � Θ ⇒ ∃ϕ ∈ Δ(M � ϕ))).

The Restricted versions of these Set-conditions are similar to the
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Restricted versions of the corresponding Formula-conditions. Thus in
the Semantically Restricted conditions, we have the qualifications:

For Separation: Sat(Γ) & Sat(Δ).

For Interpolation: Sat(Γ) & � Δ.

For Retrospection: � Γ & � Δ.

And for the modified Retrospection condition: not DisjV al(Γ) & not
DisjV al(Δ). As for the Syntactically Restricted conditions, the quali-
fication is always the same, viz. L(Γ) ∩ L(Δ) �= ∅.

There are also ‘Set-Formula’ versions of these conditions (and to be
thorough also ‘Formula-Set’, though that is much less natural): it will
suffice to give one illustrative formulation, in the case of Unrestricted
Separation:

Unrestricted Set-Formula Separation :

Unsat(Γ∪Δ) ⇒ ∃θ(L(θ) ⊆ L(Γ)∩L(Δ) & Γ � θ & Unsat(Δ∪{θ})).

Again, there are also Finite-Set conditions where we use ‘finite set’
instead of ‘set’ or ‘formula’ at one or more places. E.g.:

Unrestricted Set-(Finite Set) Separation:

Unsat(Γ∪Δ) ⇒ ∃ finite Θ0(L(Θ0) ⊆ L(Γ)∩L(Δ) & Γ � Θ0 & Unsat(Δ∪
Θ0)).

Left-Uniform Unrestricted Formula Interpolation:

ϕ � ψ ⇒ ∃θ(L(θ) ⊆ L(ϕ)∩L(ψ) & ϕ � θ � ψ & ∀ϕ′(ϕ′ � ψ & L(ϕ′) =
L(ϕ) ⇒ ϕ′ � θ)).

Right-Uniform Unrestricted Formula Interpolation:

ϕ � ψ ⇒ ∃θ(L(θ) ⊆ L(ϕ) ∩ L(ψ) & ϕ � θ � ψ & ∀ψ′(ϕ � ψ′ & L(ψ′) =

L(ψ) ⇒ θ � ψ′)).

There are also of course the corresponding Restricted conditions –
Semantically Restricted (ϕ � ψ & Sat(ϕ) & � ψ ⇒ ∃θ etc.) and Syn-
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tactically Restricted (ϕ � ψ & L(ϕ) ∩ L(ψ) �= ∅ ⇒ ∃θ etc.) –; and the
corresponding (Unrestricted or Restricted) Set Interpolation conditions.

Also, there are Uniform conditions of Separation and Retrospection.
We state only the Unrestricted Formula conditions; the adaptations for
Set conditions and Restricted conditions are as in other cases before.

Left-Uniform Unrestricted Formula Separation:

Unsat{ϕ,ψ} ⇒ ∃θ(L(θ) ⊆ L(ϕ) ∩ L(ψ) & ϕ � θ & Unsat{ψ, θ} &
∀ϕ′(Unsat{ϕ′, ψ} & L(ϕ′) = L(ϕ) ⇒ ϕ′ � θ)).

Right-Uniform Unrestricted Formula Separation:

Unsat{ϕ,ψ} ⇒ ∃θ(L(θ) ⊆ L(ϕ) ∩ L(ψ) & ϕ � θ & Unsat{ψ, θ} &
∀ψ′(Unsat{ϕ,ψ′} & L(ψ′) = L(ψ) ⇒ Unsat{ψ′, θ})).

Left-Uniform Unrestricted Formula Retrospection:

DisjV al{ϕ,ψ} ⇒ ∃θ(L(θ) ⊆ L(ϕ)∩L(ψ) & θ � ϕ&DisjV al{θ, ψ}&
∀ϕ′(DisjV al{ϕ′, ψ} & L(ϕ′) = L(ϕ) ⇒ θ � ϕ′)).

Right-Uniform Unrestricted Formula Retrospection:

DisjV al{ϕ,ψ} ⇒ ∃θ(L(θ) ⊆ L(ϕ)∩L(ψ) & θ � ϕ&DisjV al{θ, ψ}&
∀ψ′(DisjV al{ϕ,ψ′} & L(ψ′) = L(ψ) ⇒ DisjV al{θ, ψ′})).

We now state three conditions of ‘Equivalential’ Interpolation. Again
we state only the Unrestricted Formula versions but there are also, in
each case, the obvious modified Restricted and Set versions.

Unrestricted Formula Binary Equivalential Interpolation:

ϕ 	 ψ ⇒ ∃θ(L(θ) ⊆ L(ϕ) ∩ L(ψ) & θ 	 ϕ).

Unrestricted Formula Finite Equivalential Interpolation: (∀n ≥ 2:)

ϕ1 	 ϕ2 	 . . . 	 ϕn ⇒ ∃θ(L(θ) ⊆ L(ϕ1) ∩ . . . ∩ L(ϕn) & θ 	 ϕ1).

Unrestricted Formula Generalized Equivalential Interpolation:

Γ �= ∅ & ∀ϕ,ψ ∈ Γ(ϕ 	 ψ) ⇒ ∃θ(L(θ) ⊆ ⋂{L(ϕ) : ϕ ∈ Γ} & θ 	 Γ).
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(In the Set version of this we take a set of equivalent sets of formulas.)

Unrestricted Right-wards Piecemeal Formula Interpolation:

ϕ � ψ & p ∈ L(ϕ) − L(ψ) ⇒ ∃θ(L(θ) ⊆ L(ϕ)− {p} & ϕ � θ � ψ).

Unrestricted Left-wards Piecemeal Formula Interpolation:

ϕ � ψ & p ∈ L(ψ) − L(ϕ) ⇒ ∃θ(L(θ) ⊆ L(ψ)− {p} & ϕ � θ � ψ).

There are also the versions for ‘Restricted’, ‘Set’, ‘Separation’, ‘Ret-
rospection’, ‘Equivalential Interpolation’. (But with ‘Set’ of course the
Piecemeal condition [plus Formula Finiteness] will not imply the corre-
sponding ‘full’ condition.)

Joint Satisfiability [or Robinson Property ]:

[Γ is L(Γ)-complete & Γ ⊆ Δ& Γ ⊆ Σ& Sat(Δ) & Sat(Σ) & (L(Δ)−
L(Γ)) ∩ (L(Σ)− L(Γ)) = ∅] ⇒ Sat(Δ ∪ Σ).

Beth Property : Γ implicitly defines p ⇒ p is explicitly definable w.r.t.
Γ.

5 Illustrative theorems

We give here some theorems on logical systems. Our aim is only to
illustrate the kind of results which it seems natural to try to prove in
our Abstract Logic with Vocables; obviously a great deal more can be
done along these lines.

Proposition. If S is a sub-system of S′ and S′ satisfies Compactness,
then S satisfies Compactness.

Proof. Immediate from the definitions.

Proposition. Same for Halldén Property (in all its versions).

Proposition. (Closure under Negation) ⇒ (�-Compactness ⇔
Sat-Compactness).
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Proposition. (Semantically Restricted Formula Interpolation) & (Ex-
istence of Verum) & (Existence of Falsum) ⇒ (Unrestricted Formula
Interpolation).

The similar Proposition for Set Interpolation also holds of course;
and there are many other Propositions of this kind.

Proposition. [(Unrestricted Right-wards Piecemeal Formula Interpo-
lation) or (Unrestricted Left-wards Piecemeal Formula Interpolation)] &
[Formula Finiteness] ⇒ [Unrestricted Formula Interpolation].

An interesting class of Propositions consists of implications where the
antecedent is Closure under Truth-Functions and the consequent is the
equivalence of such things as the alternative forms of Halldén Property,
or Interpolation/Separation/Retrospection, and so on.

We give now a series of Propositions concerning Equivalential In-
terpolation. We state the simplest Propositions, for Unrestricted and
Formula conditions; but there are also the corresponding similar Propo-
sitions for Restricted and Set conditions.

Proposition. (Unrestricted Canonical Form for Formulas) ⇒ (Un-
restricted Generalized [and so also a fortiori Unrestricted Finite and
Unrestricted Binary] Equivalential Interpolation).

Proposition. (Unrestricted Formula Interpolation) ⇒ (Unrestricted
Formula Binary Equivalential Interpolation).

Remark. Equivalential Interpolation is weaker than Interpolation, as
can be seen from the case of constant-domain quantified S5 where the
former holds but the latter does not hold. �

Proposition. (Unrestricted Formula Binary Equivalential Interpola-
tion) ⇒ (Unrestricted Formula Finite Equivalential Interpolation).

Proof. We can obtain equivalential interpolant for ϕ1 	 . . . 	 ϕn by
successive applications of Binary Equivalential Interpolation.

Proposition. (Unrestricted Formula Finite Equivalential Interpola-
tion) � (Unrestricted Formula Generalized Equivalential Interpolation).
(I.e. there are logical systems for which the former condition holds but
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the latter does not.)

Proof. A counterexample is provided by a logical system correspond-
ing to a suitable form of infinitary classical propositional logic with ‘few’
(say denumerably many) variables, and with verum and falsum. Here
Unrestricted Formula Interpolation holds: a simple argument for the
case of finitary classical propositional logic in terms of disjunctive nor-
mal forms is generalizable to the infinitary case. Hence by the two
preceding Propositions Unrestricted Formula Finite Equivalential Inter-
polation also holds. But Unrestricted Formula Generalized Equivalential
Interpolation does not hold here: we can take e.g. the set Γ :=

{There are infinitely many truths in Voc – {p1},

There are infinitely many truths in Voc – {p2},

. . . . . . . . . },

where Voc = {p1, p2, p3, . . .}, and the set Γ has one formula (constructed
in obvious way to have the import of the above verbal formulation) for
each pi. Each member of Γ is equivalent to ‘There are infinitely many
truths in Voc’. But

⋂{L(ϕ) : ϕ ∈ Γ} = ∅, and obviously there is no
formula θ with L(θ) = ∅ and θ 	 Γ. (All formulas without vocables are
here valid or unsatisfiable.)

Remark. The same argument serves to show the corresponding
Proposition with Semantically Restricted conditions, since (i) we have
also Semantically Restricted Interpolation for the infinitary language
without verum or falsum, by the same kind of argument from normal
forms, and (ii) the elements of Γ are neither valid nor unsatisfiable. –
As for the Proposition with Syntactically Restricted conditions: again
Interpolation holds, by normal forms, but now we need to construct Γ in
a somewhat different way, since in the Γ above the set of vocables com-
mon to all formulas in the set is empty, and so Syntactically Restricted
Generalized Equivalential Interpolation is vacuously satisfied. But it is
easy to modify the previous construction to circumvent this: we can
take our new Γ as say, where Voc− := V oc – {p1},

{p1 ∧ There are infinitely many truths in Voc− – {p2},



58

p1 ∧ There are infinitely many truths in Voc− – {p3},

. . . . . . . . . },

Now the set of common vocables is {p1}, and Ess(Γ) = {p1}, but of
course there is no formula θ with L(θ) ⊆ {p1} and θ 	 Γ. �

Proposition. (Unrestricted Formula Binary Equivalential Interpola-
tion) & (Formula Finiteness) ⇒ (Unrestricted Canonical Form for For-
mulas).

Proof. Assume the hypotheses, and let ϕ be a non-canonical formula
with inessential vocables p1 . . . pn (i.e. L(ϕ) – Ess(ϕ) = {p1, . . . , pn};
this set must be finite in view of Formula Finiteness). Since p1 /∈ Ess(ϕ),
there is formula ψ 	 ϕ with p1 /∈ L(ψ). So by Equivalential Interpolation
there is formula ϕ′ equivalent to ϕ/ψ and with L(ϕ′) ⊆ L(ϕ) ∩ L(ψ),
whence p1 /∈ L(ϕ′) and L(ϕ′) – Ess(ϕ′) ⊆ {p2, . . . , pn}. But then, if
p2 ∈ L(ϕ′) we repeat the procedure and take ψ′ 	 ϕ′ with p2 /∈ L(ψ′),
and so on. After thus ‘eliminating’ all of p1 . . . pn we obtain a canonical
equivalent of ϕ.

(There are of course also the similar ‘Restricted’ Propositions.)

From this Proposition plus an earlier one, viz. the sixth displayed
Proposition in this section, we get:

Proposition. (Formula Finiteness) ⇒ [(Unrestricted Formula Binary
Equivalential Interpolation) ⇔ (Unrestricted Canonical Form for For-
mulas)].

Proposition. (Halldén Property for Implication, Formula Version)
& (Existence of Relative Verum w.r.t. Single Vocables) & (Existence
of Relative Falsum w.r.t. Single Vocables) ⇒ [(Semantically Restricted
Formula Interpolation) ⇔ (Syntactically Restricted Formula Interpola-
tion)].

Proof. Assume the hypotheses. Now first, suppose further (Semanti-
cally Restricted Formula Interpolation), and the hypotheses of (Syntacti-
cally Restricted Formula Interpolation), viz. ϕ � ψ and L(ϕ)∩L(ψ) �= ∅.
Case (i): ϕ satisfiable and ψ not valid. Here the result (existence of in-
terpolant) follows by (Semantically Restricted Formula Interpolation).
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Case (ii): ϕ unsatisfiable or ψ valid. Here, for p ∈ L(ϕ) ∩ L(ψ), we
can take the interpolant θ as a relative falsum or (as the case may be)
relative verum w.r.t. p.

Secondly, suppose further (Syntactically Restricted Formula Inter-
polation), and the hypotheses of (Semantically Restricted Formula In-
terpolation), viz. ϕ � ψ and Sat(ϕ) and � ψ. Recall that the assumed
Halldén Property says:

L(ϕ) ∩ L(ψ) = ∅ ⇒ [ϕ � ψ ⇒ Unsat(ϕ) or � ψ],

which reformulated by elementary transformations gives

ϕ � ψ ⇒ [Sat(ϕ) & � ψ ⇒ L(ϕ) ∩ L(ψ) �= ∅].

So using our hypotheses we get L(ϕ) ∩ L(ψ) �= ∅, whence by (Syntac-
tically Restricted Formula Interpolation) there follows the existence of
interpolant θ.

Note that the Existence of Relative Verum/Falsum is used only in
the first part of the above proof; and so we have also:

Proposition. (Halldén Property for Implication, Formula Version)
⇒ [(Syntactically Restricted Formula Interpolation) ⇒ (Semantically
Restricted Formula Interpolation)].

Proposition. (Sat-Compactness) & (Semantically Restricted Finite-
Set Separation) ⇒ (Semantically Restricted Set Separation).

Proof. Suppose the antecedent and the hypotheses of the conse-
quent, viz. Unsat(Γ ∪ Δ) and Sat(Γ) and Sat(Δ). From this by
Sat-Compactness it follows that there are Γ0 ⊆fin Γ and Δ0 ⊆fin Δ
with Unsat(Γ0 ∪ Δ0). By (Semantically Restricted Finite-Set Separa-
tion) there is finite Θ0 with L(Θ0) ⊆ L(Γ0) ∩ L(Δ0) and Γ0 � Θ0 and
Unsat(Δ0∪Θ0); and such Θ0 is then a fortiori a separator for Γ, Δ.

Remark. The Θ being finite the consequent of the Proposition can
be strengthened to (Semantically Restricted Set-[Finite Set] Separation).
Various other more or less obvious modifications of this Proposition are
also possible. �
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Proposition. (Semantically Restricted Set Separation) ⇒ (Robinson
Property).

Proof. Assume the antecedent and suppose for contradiction the
hypotheses of (Robinson Property) hold but not its conclusion – i.e.
that:

Γ is L(Γ)-complete,

Γ ⊆ Δ and Γ ⊆ Σ and Sat(Δ) and Sat(Σ),

(L(Δ) − L(Γ)) ∩ (L(Σ) − L(Γ)) = ∅;

but Unsat(Δ ∪ Σ).

Then by (Semantically Restricted Set Separation) there is Θ with
L(Θ) ⊆ L(Δ) ∩ L(Σ), whence L(Θ) ⊆ L(Γ), such that Δ � Θ
and Unsat(Σ ∪ Θ). Since Sat(Δ) and Sat(Σ), we must have
Sat(Δ ∪ Θ), whence a fortiori Sat(Γ ∪ Θ), and Σ � Θ, whence a
fortiori Γ � Θ. So there is θ ∈ Θ with Γ � θ and Sat(Γ ∪ {θ}). But
since L(θ) ⊆ L(Θ) ⊆ L(Γ), this contradicts the hypothesis that Γ is
L(Γ)-complete.

The following Propositions give a sort of partial abstract character-
ization of what goes on in various ‘disjunctive normal forms’.

Proposition. Topic(Γ) & ∀ψ ∈ Γ(ψ settles ϕ) & Δ = {ψ ∈ Γ : ψ �
ϕ} ⇒ ∀M(M � ϕ ⇔ ∃ψ ∈ Δ(M � ψ)).

Proposition. Topic(Γ) & ∀ψ ∈ Γ(ψ settles ϕ) & θ disj {ψ ∈ Γ : ψ �
ϕ} ⇒ ϕ 	 θ.

Remark. In concrete cases ‘topics’ will be derived from certain ‘pa-
rameters’, such as e.g.: a finite �, in classical propositional logic or S5
modal logic; a finite � and a maximum number of nested quantifiers, in
(classical or modal) first-order predicate logic (by Hintikka’s ‘distribu-
tive normal forms’). �
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6 Adding domains

An extended logical system is a logical system in the sense previously
defined together with a domain-function dom which assigns, to each
model M ∈ Mod , a non-empty set dom(M) (‘the domain of M ’). – We
will use the letters D, E, etc. as variables for domains. (There is also of
course the notion of extended partial logical system, without Voc and
L. Indeed nearly all the conditions on extended logical systems given
below do not involve Voc and L.)

(These extended logical systems might be extended further to ‘multi-
sorted’ systems with multiple domain-functions allowed. This would be
useful to give a closer approximation not only to classical multi-sorted
systems but also to quantified modal logic with possible world semantics.
But here we will content ourselves with the simpler, ‘uni-sorted’ notion.)

D-Sat(ϕ) =df ∃M(dom(M) = D & M � ϕ).

D-Unsat(ϕ) =df Not D-Sat(ϕ).

ϕ �D ψ =df ∀M(dom(M) = D ⇒ (M � ϕ ⇒ M � ψ)).

�D ϕ=df ∀M(dom(M) = D ⇒ M � ϕ).

Similarly for D-Sat(Γ), D-Unsat(Γ), Γ �D ϕ, DisjV alD(Γ) (i.e.
DisjV alD(Γ) =df ∀M(dom(M) = D ⇒ ∃ϕ ∈ Γ(M � ϕ))).

κ-Sat(ϕ) =df ∃D(card(D) = κ & D-Sat(ϕ)).

κ-Unsat(ϕ) =df Not κ-Sat(ϕ).

ϕ �κ ψ =df ∀D(card(D) = κ ⇒ ϕ �D ψ).

�κ ϕ=df ∀D(card(D) = κ ⇒ �D ϕ).

There are also the similar notions with ‘≤ κ’ or ‘< κ’ etc. in lieu of
‘κ’ – e.g.:

≤κ-Sat(ϕ) =df ∃D(card(D) ≤ κ & D-Sat(ϕ)).

Proto-Isomorphism Property :
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card(D) = card(E) ⇒ [(D-Sat(Γ) ⇔ E-Sat(Γ)) & (Γ �D ϕ ⇔ Γ �E

ϕ)].

Remark. Any self-respecting logical system has this property. So
there is something to be said for including satisfaction of this property
as a condition in the definition of ‘(extended) logical system’. (As the
‘Isomorphism Property’ is included in the definition of ‘abstract logics’
in Lindström and the subsequent ‘abstract model theory’ tradition.) �

Formula Inflation: κ-Sat(ϕ) & κ < λ ⇒ λ-Sat(ϕ).

Formula Deflation: �κ ϕ & λ < κ ⇒ �λ ϕ.

Similarly for ‘Set Inflation’ and ‘Set Deflation’, with Γ instead of ϕ.

‘Overspill’ Property : ∀n ≥ 1∃m ≥ n(m-Sat(ϕ)) ⇒ ℵ0-Sat(ϕ).

(Again there is of course the similar property with Γ instead of ϕ.)

Strict Löwenheim Property (for Satisfiability): Sat(ϕ) ⇒ ℵ0-Sat(ϕ).

Weak Löwenheim Property : Sat(ϕ) ⇒ ≤ℵ0-Sat(ϕ).

Strict Löwenheim-Skolem Property : Sat(Γ) ⇒ ℵ0-Sat(Γ).

Weak Löwenheim-Skolem Property : Sat(Γ) ⇒ ≤ℵ0-Sat(Γ).

Downward Löwenheim-Skolem: κ > ℵ0 & κ-Sat(Γ) ⇒ ℵ0-Sat(Γ).

Upward Löwenheim-Skolem: ℵ0-Sat(Γ) & κ > ℵ0 ⇒ κ-Sat(Γ).

– There are also the similar conditions but with some other cardinal
κ instead of ℵ0; also the conditions which say that such condition holds
for some cardinal κ. E.g.:

Generalized Strict Löwenheim-Skolem Property (or: Existence of
Universally Representative Model-Size): ∃κ ∀Γ: Sat(Γ) ⇒ κ-Sat(Γ).

Generalized Weak Löwenheim-Skolem Property : Same only with ≤κ-
Sat in lieu of κ-Sat.

If this last condition holds for a given system, the least such cardinal
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κ is sometimes called the Löwenheim number of the system (e.g. in Bell
& Slomson 1974, p. 85). (As will be seen below, this is an exceptional
case in that actually the condition holds for all logical systems, given our
requirement that Fla is a ‘set’ [as opposed to ‘proper class’ or whatever
like Mod might be].)

The various Löwenheim and Löwenheim-Skolem conditions above
are all Satisfiability conditions, and there are cognates for Validity and
Implication – e.g.:

Strict Löwenheim Property for Validity : �ℵ0 ϕ ⇒ � ϕ.

Weak Löwenheim-Skolem Property for Implication: Γ �≤ℵ0 ϕ ⇒ Γ �
ϕ.

There is a batch of conditions concerning expressibility of size of
models (which we won’t bother to name individually):

∀κ ∃ϕ ∀M(M � ϕ ⇔ card(dom(M)) = κ).

(Since Fla is a set, this can only hold if ‘few’ cardinalities are model-
sizes.)

∀κ ∃Γ ∀M(M � Γ ⇔ card(dom(M)) = κ).

∀n ∃ϕ etc. (or: ∃Γ etc.).

Similarly with ≤ κ or ≤ n, or ≥ κ or ≥ n, instead of = κ or = n.

∃ϕ ∀M(M � ϕ ⇔ card(dom(M)) ≥ ℵ0).

– And so on.

And there are various other conditions to do with size of models. To
give just one more example:

∃ϕ ∀D(D-Sat(ϕ) ⇔ card(D) ≥ ℵ0).

– Also ‘local’ versions of some ‘global’ properties: –

Local Compactness: D-Unsat(Γ) ⇒ ∃Γ0 ⊆fin Γ(D-Unsat(Γ0)).
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Local Interpolation: ϕ �D ψ ⇒ ∃θ(L(θ) ⊆ L(ϕ) ∩ L(ψ) & ϕ �D

θ & θ �D ψ).

All the numerous variations on Interpolation property which we saw
above in the ‘global’ context can again be made in the ‘local’ case.

Again, there is ‘Local Canonical Forms’, ‘Local Halldén Property’,
etc. etc.

– Here are a few ‘Illustrative Theorems’:

Proposition. (Closure under Negation) ⇒ [(Strict Löwenheim Prop-
erty for Satisfiability) ⇔ (Strict Löwenheim Property for Validity)].

Proposition. (Strict Löwenheim Property for Satisfiability) & (Lo-
cal Compactness) & (Proto-Isomorphism Property) & (Closure under
Binary Conjunction) ⇒ (Strict Löwenheim-Skolem Property for Satisfi-
ability).

Proposition. [Local Interpolation] & [Generalized Strict Löwenheim
Property for Implication] & [Proto-Isomorphism Property] ⇒ [(Global)
Interpolation].

Proposition. [Finite-Set (Global) Interpolation] & [Proto-
Isomorphism Property] & [Expressibility by single formula without
vocables of each model-size] ⇒ [Local Interpolation].

Proof. Assume hypotheses and that ϕ �D ψ. Let κ be card(D), and
let δ be formula without vocables ‘saying’ that there are exactly κ things
(i.e. ∀M(M � δ ⇔ card(dom(M)) = κ)). Since every model based on D
which verifies ϕ verifies ψ, we have by the Proto-Isomorphism Property
that: every model with domain of cardinality κ which verifies ϕ verifies
ψ. Thus {ϕ, δ} � ψ. Now let θ be an interpolant for this (global)
implication. Thus {ϕ, δ} � θ, whence ϕ �D θ; and θ � ψ, whence a
fortiori θ �D ψ; also of course L(θ) ⊆ L(ϕ) ∩L(ψ), since by assumption
L(δ) = ∅.

Proposition (cp. Bell and Slomson 1974 pp. 85–86 Thm. 4.3). Every
logical system satisfies the Generalized Weak Löwenheim-Skolem Prop-
erty – or equivalently, has Löwenheim number.
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Proof. Since Fla is supposed to be a set, also

SAT := {Γ ⊆ Fla : Sat(Γ)}

is a set. (Note that SAT �= ∅, since Sat(∅) and so ∅ ∈ SAT !) But
for each such satisfiable set Γ there is the least cardinal λ s.t. Γ is λ-
satisfiable – let us call this cardinal μ(Γ). Then

{μ(Γ) : Γ ∈ SAT}

is a set. And clearly its supremum (the least cardinal ≥ every cardinal
in the set) is the Löwenheim number for the given system.

Remark. By similar arguments, we can show also other results of
this kind – e.g. that every logical system satisfies the Generalized Weak
Löwenheim Property for Validity, i.e. ∃κ ∀ϕ(�≤κ ϕ ⇒ � ϕ). �
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Abstract

In this paper we provide a formal and abstract definition of
normative system as a class of sequences of normative sets closed
by input/output operators, a definition of normative theories and
of normative coherence.

1 Introduction

There are two features of logic that Edelcio Gonçalves de Souza finds
most attractive and therefore thoroughly cultivates in his writings.

The first is precision. De Souza appreciates particularly the con-
tribution of formal methods and logical analysis to describe philosoph-
ical problems more precisely. And that is key to foresee and advance
solutions or make relevant distinctions, which provide clarification to
philosophical inquiry.

The second is abstraction. De Souza believes that core philosophical
problems are abstract in nature and therefore can only be sufficiently
explored by abstract methods. And logic is particularly suited for such
a conceptual task. No wonder that one of de Souza’s main interests lies
on “abstract logic”, which is the study of abstract properties of logical
systems.

Edelcio’s interest on normative reasoning is located exactly in this
tradition of inquiry. If there is a form of reasoning which is normative,
what are its abstract and distinctive properties? What does it mean
to say that a rule or obligation is derived or implied from other rules?
And if normative knowledge is systematized in some theory about rules,
what is exactly the object of such theory and how its propositions are
derived?

In a recent paper, which I have co-authored with de Souza [5], we
have made an effort to describe legal interpretation as a dynamic of
changing concepts employed in rules and modifying rules themselves,
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aiming at coherent descriptions of obligations and permissions derived
from those concepts and rules.

In the process of building a representation of reasoning with concepts
and the content of rules, many philosophical questions have appeared,
which bothered both of us but in particular de Souza, in his quest for
precision. For instance, what does a theory about rules describe? Are
the rules systematized or is it the theory that systematize its propo-
sitions about the rules. Is this theory a description of the rules, or a
description of the obligations, which are inferred from rules. So what is
the relation between rules, the logic that grounds normative reasoning
and the obligations which are derived? In one word what is a normative
system?

In this paper I shall make an attempt to reply those difficult ques-
tions, which we have somehow detoured in that paper. In what follows
I shall provide a definition of normative systems and of theories about
normative systems. Since there are different kinds of rules that may be
combined in normative reasoning (constitutive, regulative, value rules,
technical rules, consequential rules, preferences, etc.) and such rules may
be subject to different principles of reasoning, we shall talk about archi-
tectures of reasoning upon which normative systems are constructed. I
shall conceive a normative system as a combination of sets of rules with
a combination of underlying logics. A theory about a normative system
is a description of the obligations, prohibitions and permissions which
are the outcome of such systems, in given contexts.

2 Normative sets

A very influential concept of normative system in the legal domain was
provided by Alchourrón and Bulygin [1]. They have defined a normative
system simply as the logical closure of a set of sentences from which at
least a deontic sentence is derived. A deontic sentence was conceived as a
sentence involving deontic modalities as obligations, permissions or pro-
hibitions. It is clear that Alchourrón and Bulygin had in mind so called
“regulative rules”, that is positively rules enacted by authorities which
demand or authorize a future behaviour from individuals. Provided that,
according to Alchourrón and Bulygin, in line with Hume’s guillotine, de-
ontic modalities (representing prescritive statemens) are only derivable
from sets of sentences containing deontic modalities (among other sen-
tences) the normative set which is the base of the system necessarily
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contains at least a deontic sentence.

But their definition of normative system is abstract enough and quite
general, since it has no commitment with the kinds of rules and sentence
that may pertain to the basic set of sentences from which the obliga-
tions and permissions are derived. The normative system may contain
different kinds of rules, regulative, constitutive and also may contain
descriptive sentences. What is important is that the system delivers at
least a deontic statement. Given any set of sentences A, then Cn(A) is
a normative system if there is a sentence x, such that x ∈ Cn(A) and x
has a deontic modality in at least one subformula.

Such abstract approach to the definition of the normative system has
two limitations.

The first limitation regards the distinction between basic and implied
(or derived rules). Since the normative system is defined by a charac-
teristic of the set of consequences, it makes no difference whether a rule
belongs to the set of basic rules or whether it is the content of an implied
obligation or permission. This limitation raises both a philosophical and
a practical concern.

The philosophical concern relates to the problem about the “onto-
logical status” of derived rules [8]. If rules are positively enacted by acts
of will, is it possible to say that derived rules exist with the same status
of enacted rules, even though they were not explicitly willed, and the
legislator may not even be aware of the derivation?

The practical concern relates to the fact that normative systems
with equivalent sets of consequences in terms of implied obrigations and
permissions, but based on different formulations of rules, may react dif-
ferently to a normative change [3].

Hence, from the synchronic perspective, i.e. considering the nor-
mative system at a particular moment of time, one may assume that
two normative systems are the same if they derive the same set of obli-
gations/permissions, even if they have different formulations. That is,
from that perspective, the formulation of the base of explicit rules is ir-
relevant. However, from the dyachronic perspective, that is, considering
the normative system’s change at a moment to a second moment where
a new rule is promulgated or derogated, the formulation of the base of
explicit rules becomes relevant, given that the revision of different sets
of explicit rules with the same derived obligations/permissions may lead
to different outcomes.

The second limitation of Alchourrón and Bulygin’s abstract defini-
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tion is that it is concerned only with prescritive or positively enacted
rules. It consciously excludes other kinds of rules and particularly rules
regarding axiological considerations about positively enacted rules.

It is not the case here of arguing whether these limitations are virtues
or vices. I shall provide a definition which is able to overcome such
limitations by distinguinshing explicit from derived rules and also by
encompassing different sorts of rules that one may find relevant to legal
reasoning. For those who believe that these capacities are vices that
distorts the “real understanding” of what a normative system is, we
have to say that the general definition here provided may be reduced to
a model which is exactly Alchourrón and Bulygin’s.

I shall use the term “normative set” to refer to sets of different kinds
of rules. These rules might be (i) conceptual rules ; (ii) consequential
rules ; (iii) deontological rules (iv) axiological rules ; (v) technical rules ;
(vi) any other sort of rules that one may believe has a different logi-
cal behaviour with respect to the others. The only formal requirement
is that such rules may be reduced to conditionals which are pairs of
propositions. Such pairs of propositions may be indexed to some valua-
tion, which would be simply a function taking each pair to a particular
interval of real numbers.

Conceptual rules state that the entities described by certain factors
(relevant features) count as (are to be classified as) instances of the
ascribed concept. Conceptual rules have the form (a, c) where a is the
triggering factor (or conjunction of factors) and c is the ascribed concept.
For instance, a conceptual rule stating that text message stored in a
mobile phone (sms) counts as “data” can be represented as (sms, dat).
Conceptual rules may be indexed to degrees of confidence on a meaning
ascription. For instance, one may have a degree of confidence of .6 that
text messaging counts as a communication (sms, com).6.

Consequential rules specify the extent to which the presence of a
factor affects the impact of actions on values. That is what are the con-
sequences of an action and how they impact the promotion or demotion
of relevant values.

Consequential rules may be indexed to degrees of influence that the
presence of a certain context (or factor) has on the impact of an action
on a value. For an example consider the rule according to which the
impact that the action of searching and seizuring property items has on
privacy is increased if the item is a mobile phone (mob, Privacc).8.

We distinguish two kinds of rules establishing obligations or per-
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missions, deontological and axiological ones. Such rules lead to deon-
tic conclusions which may be in conflict. Deontological rules link the
(deontological) prohibition or permission of a given action to the pres-
ence of certain antecedent conditions. For instance, we represent as
(¬sord,¬acc) the rule prohibiting police officers from accessing personal
documents without a search & seizure order. Axiological rules are parti-
tioned into two sets: those linking the prohibition of an action to a value
demoted by that action; and those linking the permission of an action to
a value promoted by that action. We represent axiological rules in the
form (V x, x)i, where V is the value demoted or promoted by action x
and i is the weight of the value. For instance, access to a mobile phone
by police officers demotes privacy, which is a reason for prohibiting it
(Privacc,¬acc).4), while it promotes public safety, which is a reason to
permit it ((Safacc, acc).6).

There are also technical rules, which describes as duties those means
which are necessary means to reach some normative goal. For instance,
that there is a duty to provide enough beds in hospitals, as a necessary
means to fulfill the goal of providing universal health. Such rules may
also be indexed according to the degree of necessity that one may assign
to such means. One may also conceptualize different sorts of enunciates
that may be relevant to normative reasoning, where one may argue that
its logical behaviour differs from the others we have mentioned here. For
each kind of rule one may conceptualize, one may propose a different box
of conditionals that may be be combined in a chain of reasoning.

3 Normative systems

Reasoning with each kind of rule (conceptual, consequential, deontolog-
ical, axiological, or technical) has different logical properties and there-
fore requires a different output operator in an architecture of i/o logics
(see [7], for an introduction).

Let L be a standard propositional language with propositional vari-
ables and logical connectives: ¬, ∧, ∨, →, ⊥, �. Let V al = {V x

1 , V
x
2 , ...

V y
1 , V

y
2 , ...} be a set of values. We say that N ⊆ G × G, where G ∈

{L, V al} is a normative set and that each r ∈ N is a rule. For any
A ⊆ G, N(G) is the image of N under G, that is N(G) = {x : (a, x) ∈ N ,
for some a ∈ G}. We write simply N(a) to abbreviate N({a}). To
state that x is the output of input a to normative set N , we may write
x ∈ outi(N, a), or (a, x) ∈ outi(N). For any normative set N we define
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body(N) = {a : (a, x) ∈ N}.
Therefore, normative sets contain pairs of propositions or pairs link-

ing a proposition or value to another proposition or value. Cl denotes
the classical consequence operator, which will not be applied to values.
As a consequence, we shall employ basic (out2) and basic-reusable (out4)
operators [4] as well as a weakened output, defined below.

Definition 1. Let N be a normative set, A ⊆ L and V the set of all
maximal consistent sets v in classical propositional logic. Then:
(i) simple minded : out1(N,A) = Cl(N(Cl(A)))
(ii) weakened : out1−(N,A) = N(Cl(A))
(iii) basic: out2(N,A) =

⋂{out1(N, v) : A ⊆ v, for v ∈ V or v = L }
(iv) weakened basic: out2−(N,A) =

⋂{out1−(N, v) : A ⊆ v, for v ∈ V or
v = L }
(v) basic reusable: out4(N,A) =

⋂{out1(N, v) : A ⊆ v and out1(N, v) ⊆
v, for v ∈ V or v = L}

We shall also consider sets P ⊆ (L × L) of explicit permissions
and corresponding output operators permi(P,N) defined as (a, x) ∈
permi(P,N) iff (a, x) ∈ outi(N∪Q), for some singleton or empty Q ⊆ P .

One may combine normative sets N1 and N2 and output operators
outi, outj , by making the output of a normative set (possibly joined with
the input set) the input of the output operation on the other normative
set, that is outi,j(N1, N2, A) = outi(N1, outj(N2, A) ∪ I), where I ∈
{A, ∅}. We call sequence a chain of combinations of normative sets.

Definition 2. (Normative System) Let A, I ⊆ L. Let N1, ..., Nn, N be
normative sets and r ∈ {0, 1}. Then (Nouti,r1

1 , ..., Noutm,rn
n ) is a sequence

of normative sets if, and only if, for all Nj , 1 ≤ j ≤ n, it holds that
outk,l(Nj , Nj+1, ..., Nn, A) = outk(N, outl(Nj+1, ..., Nn, A) ∪ I), where
Nj ⊆ N and I = A, if ri = 1, or I = ∅, if ri = 0. A normative system is
a class of sequences of normative sets.

For instance, the arquitecture presented at [6], where the set of con-
ceptual rules (C) contributes to the determination of which deontological
rules and which axiological rules are triggered. In that architecture, the
set of conceptual rules is governed by a basic reusable output operator
and the set of deontological rules could be governed by a basic output
operator. Their combination is given by the identities:

out2,4(Od, C,A) = out2(Od, out4(C,A) ∪A)
perm2,4(Pd, C,A) = perm2(Pd, out4(C,A) ∪A).
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From now on, we may write O/Pd or O/Pv for referring to both
obligation and permission rules, Od/v and Pd/v for both deontological
and axiological rules and O/Pd/v to include all modalities.

I am not going to define a particular operator for a value assess-
ment from which one may derive axiological obligations, prohibitions
or permissions. We may assume that one set of axiological rules (Pv)
links each value to the permission of the action that promotes it, and
the other (Ov) links each value to the prohibitions of the action that
demotes it. Both are governed by an axiological output operator out�.
We may also assume that the axiological outputs are first modulated
by an analysis of the influence that factors have on the impact of an
action on a velue, that is the derivation of the axiological boxes may be
preceded by a modulation box M of consequential rules. An example of
a combination of such sets, proposed by [6], is given by:

out�,2−,4(O/Pv,M,C,A) = out�(O/Pv, out2−(M, out4(C,A) ∪A))

Below we have some examples of structures that may be specified to
form normative systems:

〈O/Pd, C〉 = {(O2,0
d , C4,1), (P 2,0

d , C4,1)}
〈O/Pv,M,C〉 = {(O�,0

v ,M2−,0, C4,1), (P�,0
v ,M2−,0, C4,1)}

〈O/Pd/v,M,C〉 = 〈O/Pd, C〉 ∪ 〈O/Pv,M,C〉

A particular normative system is specified by indicating the rules of
each normative set in the corresponding structure.

Definition 3. (Argument) A sequence (X1, ..., Xn) is an argument for
(a, x) based on the normative sequence (N1, ..., Nn) of normative sets Ni

if, and only if: (i)Xj ⊆ Nj , for 1 ≤ j ≤ n; (ii) for every outk,l(Nm, Nm+1)
and outi,j(Xm, Xm+1), it holds that k = i and l = j; (iii) (a, x) ∈
outi1,...,in(X1, ..., Xn); (iv) ifX

′
j ⊂ Xj , then (a, x) /∈ outi1,...,in(X1, ..., X

′
j ,

..., Xn).
We denote by Args(N1,...,Nn)(a, x) the set of arguments for (a, x) based
on (N1, ..., Nn). If (a, x) ∈ outi1,...,in(X1, ..., Xn) we say that (a, x) is
entailed by X1, ..., Xn.

Correspondingly, an argument is based on a normative system if it is
based on a normative sequence in the system, and a rule (a, x) is entailed
by a normative systems if it is entailed by a sequence in the system. If the
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argument (X1, ..., Xn) supporting the derivation (a, x) is such that its
top element X1 is a non-empty set of deontological (axiological) rules,
we say that (a, x) is an entailed or derived deontological (axiological)
rule, or that the normative system implies the rule (a, x).

Hence, in this norm-based semantic there is a clear difference be-
tween a rule pertaining to a normative set, or particularly, to a set of
deontological rules ((a, x) ∈ Od) and a rule being derived from a norma-
tive system ((a, x) ∈ out(Od)).

4 Normative theories

The implications of a normative system for particular real or hypothet-
ical fact situations are described by normative propositions, i.e., state-
ments that certain obligations and permissions would hold given certain
factors. Normative propositions, while being descriptive of a given nor-
mative system, may be also evaluative, reflecting the evaluations that
are embedded in the normative systems itself, i.e., the ascription of in-
dexes to each pair of rules in the corresponding normative sets. For
instance, these indexes may represent, intensities of influence (through
consequential rules) or the ascription of weights of values (through axi-
ological rules) or the ascriptions of degrees of confidence to conceptual
rules, or degrees of necessity for technical rules. Let us call such ascrip-
tion of particular indexes λ-evaluations. These λ-evaluations contribute
to determine the axiological obligations/permissions delivered by the
system.

Each normative proposition describes an entailed deontological or
axiological rule, with the exception of negative permissive propositions,
which describe the non-derivability of such a rule. Thus, following Al-
chourron [2], we distinguish a negative sense of permission P−

d/v(x/b),
as the absence of the prohibition of x given factor b, from a positive
sense of permission, as an entailed by adeontological or axiological per-
mission P+

d/v(x/b). We express normative propositions as dyadic for-
mulae, which link possible inputs to deontological or axiological deontic
qualifications.

Definition 4. Let NS = 〈O/Pd/v,M,C〉 be a normative system and
b, x ∈ L, then:
NS |= Od(x/b) iff x ∈ out2,4(Od, C, b)
NS |= P−

d(x/b) iff ¬x /∈ out2,4(Od, C, b)
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NS |= P+
d(x/b) iff x ∈ perm2,4(Od, Pd, C, b)

NS |= Ov(x/b) iff x ∈ out�,2−,4(Ov,M,C, b)
NS |= P−

v(x/b) iff ¬x /∈ out�,2−,4(Ov,M,C, b)
NS |= P+

v(x/b) iff x ∈ out�,2−,4(Pv,M,C, b)

A normative theory about a normative system NS is the ThNS =
{α : NS |= α} of normative proposition. Such a theory may be incon-
sistent, incoherent or unstable, as defined below:

Definition 5. (Consistency, Coherence and Stability) For any given
b, x ∈ L, a normative theory is:
b-inconsistent iff ⊥ ∈ out2(O/Pd, b)
b-incoherent iff ⊥ ∈ out2,4(O/Pd, C, b)
b-properly incoherent iff it is consistent but incoherent
b-unstable iff it is inconsistent, incoherent, or if it is the case that
{Ov(¬x/b),Pd(x/b)} ⊆ ThNS or {Od(¬x/b),Pv(x/b)} ⊆ ThNS

b-properly λ-unstable iff it is consistent, coherent but b-unstable.

In other words, inconsistency captures cases in which deontological
rules directly deliver incompatible conclusions, proper incoherence the
case in which the conflict of deontological rules is triggered by a concep-
tual classification, and proper instability the case in which deontological
rules are in conflict with axiological rules expressing the values of the
system. We also say that a normative theory is strongly stable, relatively
to an input and an output, if the corresponding deontological norma-
tive proposition is matched by an axiological proposition, and that it is
weakly stable, if the deontological propositions are not conflicted by an
axiological proposition.

Definition 6. (Weak and Strong Stability) Consider ThλNS and b, x ∈ L.
Then, ThNS is:
• strongly stable: if Od(x/b) ∈ ThNS then Ov(x/b) ∈ ThNS and if
Pd(x/b) ∈ ThNS then Pv(x/b) ∈ ThNS

• weakly stable: if Od(¬x/b) ∈ ThNS then Pv(x/b) /∈ ThNS and if
Pd(x/b) ∈ ThNS then Ov(¬x/b) /∈ ThNS

We say that a theory is consistent if it is b-consistent for every b
such that b ∈ Cl(a) and a ∈ body(Od ∪ Pd). It is coherent (stable)
if it is b-coherent (b-stable) for every b such that b ∈ Cl(a) and a ∈
body(C) ∪ body(Od ∪ Pd).
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5 Final remarks

Deontological rules in the regulation are meant to serve the values aimed
at by the regulation. The alignment is successfully achieved when the cir-
cumstances under which rules prohibit (permit) an action correspond to
the circumstances under which the action would be detrimental (favoura-
ble) to the relevant values. However, a mismatch is also possible: what is
deontologically prohibited may be axiologically required (having a posi-
tive impact on the relevant values) and what it deontologically permitted
may be axiologically prohibited.

The general framework we have proposed here may be compatible
with any legal theory regarding the relations between law and morality.
It is actually a framework to build any system one may like, with any sort
of rules or conditionals which one may consider relevant in normative
reasoning.

The final outcome of the normative system, here conceived as any
class of sequences of normative sets built with output operators, will be
determined by the λ-evaluation and the criteria a particular theory may
assume to solve incoherences and instabilities when there is a mismatch
between axiology and deontology.

Alchourrón and Bulygin’s conception may also be represented in this
general framework simply as a sequence where the top elements, or the
last box in the chain of derivations is a set of (obligatory or permission)
rules and which is closed under logical consequence. That is, since Al-
chourrón & Bulygin also admit that the base of elements of normative
system may include sentences other than rules (deontic sentences), their
conception may be reduced, in this framework to any any structure of the
form (Nouti,r1

1 , ..., Noutm,rn
n ), where N1 is a deontological box (of obliga-

tions or permissions), which is closed, that is N1 = outi,...,m(N1, ..., Nn).
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Abstract

Patrick Suppes’ maxim “to axiomatize a theory is to define
a set-theoretical predicate” is usually taking as entailing that the
formula that defines the predicate needs to be transportable in the
sense of Bourbaki. We argue that this holds for theories, where
we need to cope with all structures (the models) satisfying the
predicate. For instance, in axiomatizing the theory of groups, we
need to grasp all groups. But we may be interested in catching
not all structures of a species, but just some of them. In this
case, the formula that defines the predicate doesn’t need to be
transportable. The study of this question has lead us to a careful
consideration of Bourbaki’s definition of transportability, usually
not found in the literature. In this paper we discuss this topic with
examples, recall the notion of transportable formulas and show
that we can have significant set-theoretical predicates for classes
of structures defined by non transportable formulas as well.

1 Introduction

A real revolution in the discussion of scientific theories arose in the
1950s having Patrick Suppes as one and perhaps the most important
responsible. The ‘revolution’ was directed to the logical empiricist view
(started in the 1920s) that a scientific theory would be seen as a formal
calculus to which an interpretation is ascribed via what Carnap termed
correspondence rules (other philosophers used other names for the very
same thing). The axiomatics would be, in principle, within classical
first order logic, but later they have acknowledged that modal operators
could also be used; Federick Suppe’s (not Suppes) article presents us

1Dedicated to Edelcio Gonçalves de Souza, who always had demonstrated interest
in these matters.



80

three steps in the development of the empiricists’ ideas, the last one
involving modal logics (see his article in [18]).

The precise nature of the correspondence rules (CR) is not clear at
all. They look as informal associations (Carnap recalls that N. R. Camp-
bell called this set of rules a ‘Dictionary’ [7, Chap.24]) connecting the-
oretical terms (of the language) with observable terms. These two con-
cepts, roughly speaking, mean the following. Observable terms are those
terms either directly perceived by the senses (such as ‘hard’ and ‘hot’)
or those that can be measured by “a simple apparatus” [7, Chap.23],
such as the temperature of a certain body. Carnap’s own example of
a CR is the following: “The temperature (measured by a thermometer
and, therefore, an observable in the wider sense explained earlier) of a
gas is proportional to the mean kinetic energy of the molecules” (loc.
cit.). That is, the connection is given by an informal (almost ad hoc)
association. Theoretical terms, as the name indicates, are ‘theoretical’
and cannot be availated as above; a typical example is the kinetic en-
ergy in the above example. Despite Carnap had written his book after
the raising of modern model theory [8], he doesn’t consider formal se-
mantics, where the association of language-terms with ‘the reality’ is
given by formal (mathematical) rules, and this ‘reality’ is taken as a set-
theoretical structure. This brings important distinctions we shall made
later.

Several criticisms were posed to this view, some of them by Suppes
himself. It is enough to remember here that in providing this kind of
approach to a huge theory such as general relativity, which requires
several ‘step theories’ such as tensorial calculus, Riemannian geometry,
partial differential equations, real analysis and so on, would turn the
axiomatics something rather difficult to follow, for all these step theories
would be in need of being axiomatized too.

Suppes started by considering all these step theories as done in ad-
vance, presupposing them as already given by (informal) set theory and
directed the efforts to the interested theory itself. This seems simple
today, but, as we have said, constituted a real advance in the axiomatic
approach to scientific theories, a program that was suggested by David
Hilbert in the sixth of his celebrated 23 Problems of Mathematics [14].
The new resulting program was named the semantic approach to theo-
ries, in contrast to the ‘syntactical’ approach of the logical empiricists.
Suppes refers to these two views as constituting the extrinsic approach
(his semantic view) and the intrinsic one [19].
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Why informal set theory? Precisely because he didn’t wish to discuss
the foundational issues; if we need tensors, they can be defined set-
theoretically. Do we need partial differential equations? Set theory does
the job. Do we need to be more specific about proofs? We proceed
as the mathematicians usually do. But of course if it is necessary to
make this base explicit, we can choose an axiomatic set theory that
gives the desired results, say (for most physical theories) the ZFC first-
order system [8, pp.592-3]. The important thing is that we don’t need
any more to be occupied with the details of these step theories, but just
assume them, as for instance physicists do in most cases.2

Let us give a more detailed simple example, to be used also later.
This is the case of semi-groups. As it is known from any basic book
on algebra, a semi-group is a (non-empty) set endowed with a binary
operation which is associative. We can write this in terms of structures
(see more on this below) of the form

S = 〈M,�〉, (1)

where M �= ∅ and � a function from M ×M to M , that is, an element
of P(M ×M ×M). As said before, the only axiom being this one (the
quantifiers range over M):

∀x∀y∀z(x � (y � z) = (x � y) � z). (2)

Examples of semi-groups, or models of this axiomatics, abound. The
set of real numbers endowed with addition of these numbers, the set of
natural numbers with multiplication, the set of all n× n matrices with
multiplication of matrices, etc. Suppes’ account was to show that this
move can be summed up by a certain formula of the language of set
theory,3 namely, the predicate (if we need to say, a formula with just
one free variable) P(X) defined as follows:

P(X) := ∃M∃ � (X = 〈M,�〉 ∧ � ∈ P(M ×M ×M) ∧ (2)). (3)

Important to realize that those who analise the definition claim for
instance that the formula is in the free variable X, as we see, and doesn’t

2Notice that in informal set theory we can do practically everything we wish in
mathematical terms.

3Notice that the informal set theory has not a well defined language, but if nec-
essary we can reason as if the only specific predicate is membership, ∈. All other
symbols are either logical symbols or defined ones.
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depend on any specific property of the set M , referring to only to the
way it enters in the formula by means of the whole expression [9]; so,
it is transportable in the sense of Bourbaki (see below). This means
that there cannot be imposed restrictions whatever on the principal sets
occurring in the formula (in the case, in the set M), for instance, the
requirement that M must be different from another non-empty set N
(see below). But, could we use the predicate below as the axiom, as in
almost all standard books? That is,

P(X) := ∃M∃ � (X = 〈M,�〉 ∧M �= ∅ ∧ � ∈ P(M ×M ×M) ∧ (2)). (4)

Since this is important for that what follows, and since neither Bour-
baki nor those who mention his definitions are clear, we shall try to make
this claim precise.4 In fact, at 4 of his Algebra I book [4, p.30], Bour-
baki introduces the definition of group this way:

“Definition 1 – A set with an associative law of composi-
tion, possessing an identity element and under which every
element is invertible, is called a group.”

The adaptation to semi-groups is immediate, just by requiring that
the operation (law of composition) be only associative. We see that the
empty set is not excluded of being a group (or a semi-group), and there
is no justification for that. We guess this has to be with his notion
of transportable formula, although as we shall see soon, the adding of
something like M �= ∅ does not violates the transportability condition.

But sometimes we would be interested in collecting not all semi-
groups, but just some of them. Thus, we must add some restriction to
the above predicate, say by avoiding that some specific structure (or
structures) enter in the range of the predicate. In this case, some care
is to be taken into account.

Thus, we see that if we wish to axiomatize all models of a certain
kind, the formula must of course be transportable, which is the case
when we are (in Suppes’ sense) axiomatizing a certain theory, as the
theory of semi-groups, for in this case we are interested in collecting
(as models of the predicate) all semi-groups. But we can also use set-
theoretical predicates for collecting a certain classes of models, which
doesn’t require the formula to be transportable. Let us go to the details.

4Really, people in general simply adopt Bourbaki’s definitions taking into account
that they are clear. In our opinion, they are not.
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2 Mathematics: a world of structures

Nicholas (or ‘Nicolas’) Bourbaki is the pseudonym of a group of (mainly)
French mathematicians who, in the 1930s, intended to rescue French
mathematics to actuality, that is, to keep it in the level and dealing
with the methods (the axiomatic method) that were being developed
mainly in Germany (the book by van der Waerden, Modern Algebra
[22], was taken as a paradigm).5 It is known that France lost many
of its more important scientists during the first world war, so that the
mathematics taught in the universities during the post-war times were
still the ‘old’ mathematics of the XIX century, and did not cover the
most recent subjects with new methods (the axiomatic method), such
as abstract algebra. The group, initially formed by Jean Dieudonné,
Henri Cartan, André Weil, Claude Chevalley and Jean Delsarte, started
in 1934 a project termed Éléments de Mathématique and, according to
Dieudonné, planed to finish it in three years. Dieudonné recalls that
this was a plan of young and ill informed students and that they never
had planed such a thing if they were more informed [13].6 Important to
notice that the members of the group change from time to time, so that
the group is still alive today. The initial objective was yet not achieved
at all (which gives an idea of the wide task they ascribed to themselves).
A very nice historical account about the group and its realizations can
be seen in [16]; further considerations in [9], [17].

The idea was to see all mathematical theories as formed by struc-
tures of a kind.7 These structures were to be build from some funda-
mental structures, termed mother structures, which are the algebraic,
ordering and topological structures, Bourbaki also acknowledges that
this expressed a stage in the development of mathematics, so that fur-
ther developments could suggest other ‘mother’ structures. According
to Corry [9], since Bourbaki reputed ordering structures as fundamen-
tal, his axiomatics for sets initially took the notion of ordered pair as

5In explaining (p.ix) the purpose of his book, van der Waerden said that he wished
“to introduce the reader into the whole world of [algebraic] concepts”, by considering
the “recent expansion” in this field, “due to the ‘abstract’, ‘formal’, or ‘axiomatic’
school”.

6Meaning that they realized later the huge work they intended to cover in so few
years.

7Important to notice that Bourbaki didn’t deal with all fields of the mathematics
of the day, for instance leaving number theory and geometry aside. There is no
apparent reason for that.
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primitive [6], what was modified in later versions, when he turned to
the usual way of taking the unordered pair as given by a specific axion,
from which the ordered pair results by definition. All other mathemati-
cal structures would arise from suitable ‘combinations’ of these mother
structures. So, the field of the real numbers was characterized by being
a complete ordered field, these three words indicating the (topological)
completeness, ordering, and an algebraic structure [5, p.264]. A semi-
group is an algebraic structure, so are the monoids, groups, rings, etc.

We clearly see the formalistic purely syntactical approach of Bour-
baki. Mathematics is got by writing symbols in the paper according to
the rules stated in the Theory of Sets. If something was not written
yet, it does not belong to the field of mathematics. So, his notion of
truth is quite peculiar, in a certain sense constructive: something is true
if we have a proof of it, even an indirect proof, which shows that his
mathematics is ‘classic’, that is, the excluded middle law, so as reductio
at absurdum, among other ‘classical’ procedures, hold. In the same vein,
something is false if there is a proof for its negation. Thus, something
for which there is no proof neither by the affirmation nor to its negation,
is neither true nor false. In other words, the mathematics is classic, by
the metamathematics is not, being constructive. Bourbaki doesn’t think
of semantics as we are accustomed nowadays.

2.1 Species of structures

In Chapter 4 of the book on set theory, Bourbaki develops his ‘theory
of structures’, which interests us here. In [11], the authors proposed a
modification and adaptation of Bourbaki’s notions, grounding them in a
set theory with atoms. Here we shall follow Bourbaki, but without the
technical details and subtleties. As said before, most of the content of
present day mathematics, according to Bourbaki, fall under the notion
of structure.8 But, what is a structure? Bourbaki speaks of species
of structures and of structures of a certain species ; intuitively speaking,
using a terminology which departs from him, a (mathematical) structure

8Interesting to mention that the theory of categories [16] was never mentioned
by Bourbaki [9] (another omission are the Gödel’s incompleteness theorems [17]),
although the concept of category arose with one of its members, Samuel Eilenberg
(together with Saunders MacLane), and further developed for instance by another
of members, Alexander Grothendieck. Categories are ‘big enough’ to be treated as
usual sets, so it would be necessary to expand the logical (ZF) basis to cope with
them, something that perhaps Bourbaki was not being up to do.
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is precisely that we are spectating it to be since our logical courses: a
set, or a collection of sets, endowed with relations and operations not
only among their members (which would characterize order-1 structures
[15]) but also among collections of elements of these sets (the elements of
the basic sets are called individuals), relations among them, etc. So, we
may have relations whose relata are also relations, that is, the structures
may by of order-n, n > 1.9

To give an idea of how things proceed, let us start with a finite
collection of sets E1, E2, . . . , En which will be the principal sets and a
finite collection A1, A2, . . . , Am of auxiliary sets (in our examples, we
shall use just three principal sets, F , G, and H). The auxiliary sets
must not contain any references to the principal sets. For instance, the
vector space structure comprises a principal set V of vectors and an
auxiliary set K of scalars, while semi-groups have just one principal set
M and no auxiliary sets. Using the set-theoretical operations of taking
the power set and the Cartesian products, we can obtain a sequence of
new sets P(F ), F ×H, P(G)×H, . . . . These sets are constructed from
a very subtle schema S he terms an echelon construction schema we will
not recall here (but see [5, chap.4], [11], [9]). The last set in the sequence
is the echelon of scheme S. For instance, to get a binary operation over
a set F , we build a sequence of sets with a certain schema S (omitted
here), for instance (there is not just one schema, so different sequences
can be obtained) F , F × F , F × F × F , and finally we get the echelon
of scheme S, P(F × F × F ). The binary operation will be an element
s ∈ P(F × F × F ) (before, in our given example of semi-groups, we
have termed � such an s), to which we impose the restrictions we wish,
written in the form of postulates, say that s must be associative, that is
[5, p.60],

s(s(a, b), c) = s(a, s(b, c)), (5)

which in our above terminology means �(�(a, b), c) = �(a, �(b, c)), or
simply (a � b) � c = a � (b � c).

Another important concept is that of canonical extensions of map-
pings. Given an echelon construction schema S and two collections of

9We use the terminology ‘order-n’ instead of ‘first-order’, ‘second-order’ etc. to
avoid confusion with the order of the languages. Really, we can define order-n struc-
tures (n > 1) in first-order languages, say in first-order ZF; for instance, well-ordering
structures are not order-1, as it is easy to see (the postulate requires the reference to
‘all non-empty subsets’, which is not a sentence of first-order.
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sets E1, . . . , En and E′
1, . . . , E

′
n, let us consider mappings (functions)

fi : Ei → E′
i. Bourbaki defines extensions of these mappings from the

sets in an echelon based in S constructed over the Ei to the correspond-
ing sets in the echelon also based in S but now on the E′

i, until getting
a mapping from the echelon of scheme S based on the Ei to the ech-
elon of scheme S based on E′

i (the reader must be attentive with the
terminology). This last mapping is the canonical extension of the fi,
written 〈f1, . . . , fn〉S . If the fi are injective (surjective, bijective), then
〈f1, . . . , fn〉S will be injective (surjective, bijective) [5, p.261].

A species of structure Σ is defined this way. We take a collection
of principal base sets x1, . . . , xn, a collection of auxiliary bases sets
A1, . . . , Am and a specific echelon construction schema S(x1, . . . , xn, A1,
. . . , Am). An element s ∈ S(x1, . . . , xn, A1, . . . , Am) is the typification of
Σ. The typification is written by Bourbaki as a formula T (x1, . . . , xn, s).
Let now R(x1, . . . , xn, s) be a transportable formula (see below) with re-
spect to the given typification, with the xi as the principal sets and
the Aj as the auxiliary sets. This formula will be the axiom of the
species of structures with typification T . If we select some particular
sets E1, . . . , En, U so that both T (E1, . . . , En, U) and R(E1, . . . , En, U)
hold, then U is said to be a structure of species Σ. His first example
is that of the species of structures of ordered sets, where from a set A,
we get (by a suitable echelon construction schema S) the set P(A×A)
and the typification s ∈ P(A × A) (a binary relation on A), with the
axiom s ◦ s = s (reflexivity) and s ∩ s−1 = ΔA (transitivity), being ΔA

the diagonal of A (informally, the set ΔA = {(x, x) : x ∈ A}). Other
examples can be found in [5, pp.263ff].

Thus, the restrictions imposed to s constitute the axioms of the
species of structure (in the case of semigroups, the restriction is that s
must be associative). As we see, all of this relies on the notion of trans-
portability, for the axiom (the conjunction of the formulas we standardly
use) must be transportable. So, the predicate (4) defines the species of
structure of semi-groups, the semi-groups (the structures that satisfy
the predicate) being the structures of that species.

2.2 Transportable formulas

The notion of transportable formulas is important for our account, so
that it deserves a particular subsection. The definition is marked by
Bourbaki with the symbol ‘¶’, which means ‘difficult exercise’. So, let
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us go slow, even without providing all the details. Important to remark
that it does not constitute a simple and easy definition. Interesting
enough that people who mention Bourbaki’s account do not discuss it
in full and, in our opinion, neglect important aspects of it. This is why
we shall give some attention to it.

Think again of a semi-group. Remember that we (by hypothesis)
intend to develop the theory of semi-groups, which requires an axioma-
tization of all of them (by the way, this is one of the main advantages of
the axiomatic method).10 So, we need to provide a definition that does
not exclude any semi-group from the list, which requires that our defi-
nition should not refer to any particularity of the domain M that could
leave some semi-group out, being not covered by the definition. So, we
cannot characterize semi-groups by saying things like ‘a semi-group is a
set M distinct from the set of the natural numbers so that blah-blah-
blah’, for in doing this we would be eliminating important semi-groups,
such as 〈N,+〉. In other words, the formula which characterizes the
species of structure must be transportable, or invariant by substitutions
of the principal set(s), as we shall see soon.

Bourbaki calls (in our terminology) formulas ‘relations’. Suppose we
have an echelon construction schema S for n + m terms (sets), where
there are n principal sets x1, . . . , xn and m auxiliary sets A1, . . . , Am,
which, as before, is written S(x1, . . . , xn, A1, . . . , Am); let us abbreviate
by S(xi, Aj). As we have seen, an element s ∈ S(xi, Aj) characterizes
a typification of s. Notice that to typify something is just to select if
from a certain set constructed by set-theoretical operations from base
sets (principal and auxiliary). So, as seen before, � ∈ P(M ×M ×M) is
a typification of a binary operation on the base set M . Another example
is useful. Let us consider vector spaces again, with V as principal set
and K as the auxiliary set. We form the Cartesian product K × V and
chose an element · ∈ K × V . This element can be written as

· = {〈k, α〉 : k ∈ K ∧ α ∈ V }. (6)

If we write 〈k, α〉 as k · α of simply kα for short, we see that the
typification characterizes the operation of multiplication of vectors by

10Bourbaki emphasizes this. He says that the main task of axiomatization is that
enable us to study non-categorical theories (multivalent in his terminology). As he
says, “The study of multivalent theories is the most striking feature which distin-
guishes modern mathematics from classical mathematics” [5, p.385].
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scalars.
The typification could involve several choices say s1 ∈ S1(xi, Aj),

. . . , sp ∈ Sp(xi, Aj) if we have also several echelon construction schemes
S1, . . . , Sp. This of course defines a formula, which we write, as above,
adapting Bourbaki’s notation, T (x1, . . . , xn, s1, . . . , sp). Now comes the
¶ part.

LetR(x1, . . . , xn, s1, . . . , sp) be a formula, and let y1, . . . , yn, f1, . . . , fn
be variables other than the xi and the sj . The fi are bijections from xi
onto yi, and Idj are the identity functions of the auxiliary sets Aj . Once
we have the canonical extension

〈f1, . . . , fn, Id1, . . . , Idm〉S , (7)

we can get the s′j by applying these extensions to the sj , namely,

s′j = 〈f1, . . . , fn, Id1, . . . , Idm〉Sj (sj), (8)

so that the formulaR(x1, . . . , xn, s1, . . . , sn), by bijective mappings, gives
R(y1, . . . , yn, s

′
1, . . . , s

′
m). Then, the formula R is transportable if these

two formulas are equivalent, that is, iff we can prove in the system that

R(x1, . . . , xn, s1, . . . , sn)↔ R(y1, . . . , yn, s
′
1, . . . , s

′
m). (9)

The notation is in fact far-fetched. So, let us try to translate the
definition to a language closer to that we use today. Let R(x1, . . . , xn, s)
a formula (we take just one s) and S be an echelon construction schema.
If fi : xi → yi (i = 1, . . . , n) are bijections, any canonical extension
〈f1, . . . , fn〉S is also a bijection. So, we get that

〈f1 . . . , fn〉S
(
S(x1, . . . , xn, s)

)
= S(y1, . . . , yn, s

′), (10)

being s′ = 〈f1, . . . , fn〉S(s). Then, if R(y1, . . . , yn, s
′) also holds, the for-

mulaR(x1, . . . , xn, s) is transportable. Let us remark that (9) is speaking
in syntactical terms, that is, in proof. The equivalence must be shown
on syntactical grounds.11

11We emphasize once more the purely syntactical aspect of Bourbaki’s approach.
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But nowadays we are accustomed with semantics, so some authors
prefer to express the idea on semantical groundings [11]. In this case, we
can grasp the concept by considering two isomorphic structures A andB.
Let α be a sentence of the language appropriated for both structures.12

In the present day ‘semantical’ language, α is transportable if and only
if

A |= α iff B |= α, (11)

that is, if and only if α is preserved under isomorphisms [11]. Let us
take an example. Think of the Peano’s axioms for arithmetics (within
set theory). The axioms can be written, in a standard language, as
follows, where the quantifiers range over the set of natural numbers N,
except for the third one, where quantification over subsets of N is also
allowed, and where 0 means ‘zero’ and n′ stands for the sucessor of n:

1. ∀n(0 �= n′)

2. ∀n∀m(n′ = m′ → n = m)

3. ∀A(A ⊆ N→ (0 ∈ A ∧ ∀n(n ∈ A→ n′ ∈ A)→ A = N))

Thus, N = 〈N, 0, ′〉 is a model of these axioms, the standard model.
According to Bourbaki, the axioms must be transportable. Let us prove
that using the semantic approach, by considering the first axiom. It is
easy to show that it is transportable. Really, let us consider another
set N1 such that N1 = 〈N1, 01, ”〉 is also a model of the above axioms
(that is, it is also a structure of that species). Thus, let f : N → N1

be a bijection such that f(0) = 01 and f(n′) = (f(n))”, the sucessor of
f(n) in the second structure. If m ∈ N1, let n = f−1(m) ∈ N, so that
since n′ �= 0, then f(n′) �= f(0) = 01. Thus m” �= 01. In other words,
N |= ∀n(0 �= n′) entails N1 |= ∀m(01 �= m”). The converse is also easy
to prove. With more patience, we can prove that the other two axioms
are also transportable.

Notice that this ‘semantic’ account is an interpretation of Bourbaki’s
notions and, although we agree that most mathematicians will take it
for granted, it can’t t be shown to be equivalent to the original approach,

12We leave the formal definition of ‘appropriate’ out, keeping only with its intuitive
aspect. But see [11], [15].
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for there is no way of comparison between then: one is syntactical, the
other is semantical, and we know that set theory is not a complete theory
(when syntax agrees with semantics). So, we must take care.

We also remark that neither axiom poses a restriction on the princi-
pal set (namely, N). The restriction of being different of 0 is ascribed to
the sucessor of n, and this does not violate the definition of transporta-
bility.13 But let us take the following formula s(s(0)) = {{∅}} (Zermelo’s
‘two’). Notice that now we have something different, namely, the pres-
ence of the set {{∅}} which is not part of the formal language. And,
of course, taking another definition of ‘two’, we could have s(s(0)) be-
ing associated to another set, say {∅, {∅}} (von Neuman’s ‘two’). Thus,
s(s(0)) = {{∅}} is not transportable.

Bourbaki gives us the following not so clear example, as fas as we
know, never discussed elsewhere:

“For example, if n = p = 2 and if the typification (. . . ) is
‘s1 ∈ x1 and s2 ∈ x1’, [then] the relation s1 = s2 is trans-
portable. On the other hand, the relation x1 = x2 is not
transportable.” [5, p.262].

Our explanation is as follows. The typification takes elements of a
same set x1, hence we need no more than this set in our echelon. The
(only) bijection will be some f : x1 → y1, being y1 a set whatever.
Hence the canonic extension 〈f〉S is f itself. Then, the formula (1)
s1 = s2 conduces to (2) f(s1) = f(s2) by the bijection. Obviously, if (1)
holds, so does (2). For the second case, we have two sets x1 and x2, and
two bijections f1 : x1 → y1 and f2 : x2 → y2. But x1 = x2 doesn’t entail
that the set x1 (or x2, since they are equal) is lead by the two bijections
f1 and f2 in the same set, so that not necessarily y1 and y2 are equal.

This last remark and the example may suggest something already
mentioned earlier, namely, why Bourbaki didn’t made the exigence that
the domain of a group (and this applies also to semi-groups) needs to be
not empty. Apparently, this could be due to the fact that the formula
x �= ∅ seems to be not transportable, for the negation of a transportable
formula is also transportable and we could just take x2 = ∅ above. But
this is false. The emptyset has specific properties; let us see. Suppose

13Really, the formula is a particular case of Bourbaki’s own example shown in the
quotation below, namely, that (the negation of) s1 = s2 is transportable, just taking
s1 as n′ and s2 being 0, both in N.
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we have a set M (to go along with our example) for defining the species
of structures of semi-groups; should we use (1) or (4) as the axiom? It
is indifferent, and this is due to the restriction. Really, suppose we have
again another N (which plays the role of y1 in the definition), and let
f : M → N be a bijection. Since M �= ∅, we conclude that N �= ∅, so
the restriction doesn’t impede the transportability of the formula (as we
shall see with more details below, this will be not the case with other
non-empty sets). The difference in using (1) or (4) is that, as we have
remarked, with the first we enable the emptyset to be a semi-group,
something that is avoided in the second case.

Of course the above reasoning is grounded on the following immedi-
ate theorem:

Metatheorem 1 A formula α is transportable if and only if all sub-
formulas of α are transportable.
Proof: If α has some subformula β that is not transportable, then β will
be not invariant under isomorphisms, so not will be α. The converse is
trivial.

So, from the perspective of Bourbaki, we cannot select some struc-
tures to be the models of some set-theoretical predicate; we must con-
sider all structures that satisfy the predicate. As we shall see, this is
precisely the case of Suppes’ set-theoretical predicates when used to ax-
iomatize theories. But, as anticipated, sometimes we are interested in
selecting some particular model or some class of models. Next, let us
consider this.

3 Selecting classes of models

According to one of most widespread characterization of the semantic
approach to scientific theories, a theory is specified by a family of struc-
tures, the models of the theory [21, p.77]. Models of most scientific the-
ories are, as said already, set-theoretical structures. In first-order logic,
models (of first-order languages or theories) are order-1 structures, or
structures comprising sets as their domain(s) and the relations (and op-
erations) are defined among the elements of the domain(s). No relation
(operations are particular cases of relations, so we shall speak of relations
only) can have as arguments other relations or sets of such elements, as
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the case of topological spaces illustrates.14 With respect of such lan-
guages, we have an important theorem which goes as follows. Given a
certain collection of order-1 structures, there exists a necessary and suf-
ficient condition for axiomatizing such a collection, that is, a condition
that says that there can exist a theory (set of postulates) whose models
are exactly the chosen structures, namely, the collection must be closed
by elementary equivalence and by ultraproducts [8, Thm.4.1.12, p.220].
The right definitions are not important here, but just the fact that there
is such a criterium for first-order languages. Concerning higher-order
languages or classes of structures, there is no a similar theorem; given
classes of such structures, we need to study them case by case. The
importance of this fact is that most structures that model postulates of
a scientific theory are higher-order structures, or order-n structures with
n > 1. A typical example is that of classical particle mechanics, which
can be summarized as follows (this is one of the most simple examples
we have, so it is explored to exhaustion by several authors too).

According to Suppes, going to the characterization of a theory in
terms of structures, “A system of classical (particle) mechanics is a
mathematical structure of the following sort . . . ”, and then specifies
a basic finite domain P of entities, the particles, a set T of instants
of time (usually an interval of the real number line), and some other
elements which are not of our interest here (but see [20, p.320]). All
of this is collected in a structure P = 〈P, T, . . .〉, subjected to suitable
postulates.

The set-theoretical predicate would be something saying that some
set X is a classical particle mechanics iff it obeys the predicate

CPM(X) := ∃P∃T . . . (X = 〈P, T, . . .〉 ∧ P �= ∅ ∧ T = [a, b] ⊆ R ∧ . . .(12)

But there are two important restrictions in this definition: the prin-
cipal set P must be finite and non empty, and the auxiliary set T must
be an interval of real numbers (ibidem). So, as we have seen already,
the set-theoretical predicate is a transportable formula (the other ele-
ments of the structure are typifications), and so it defines a specie of
structures in the sense of Bourbaki, selecting a huge class of structures
that satisfy it, the models of the predicate or, as Suppes suggests, the
‘classical particle mechanics’.

14A topological space (in terms of structures) is an ordered pair T = 〈X, τ〉 where τ
is a collection of subsets of X satisfying certain axioms [5, p.263], that is, τ comprises
sets of elements of the domain.
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But sometimes we may wish to consider just a small part of the whole
class of models. Let us take a simple example. Suppose again that we
have a set-theoretical predicate for semi-groups, but we wish, by some
hidden reason, to avoid considering all semi-groups having the set of real
numbers as domain, say A = 〈R,+〉, the semi-group of the real numbers
with usual addition. How should we proceed? This is simple, one may
say. Just take the predicate (4) and impose that the domain must be
different from R, that is, something like

P(X) := ∃M∃ � (X = 〈M,�〉 ∧M �= R ∧ � ∈ P(M ×M ×M) ∧ (2)). (13)

It is easy to see that the models of such a predicate are all semi-
groups (the empty set included) except those that have R as the domain.
But wait! The formula, as we have seen, is not transportable due to the
imposed restriction. So, it doesn’t axiomatize the theory of semi-groups,
for in this case no semi-group should be leaved out.

A more relevant example should be the following. Suppose we wish
to consider just those models characterized by a representation theorem
our theory may admit. Let us say something on this point. Suppes em-
phasizes that sometimes a theory is so that there is a subclass of models
with the following property: for every model of the theory, there is in
this class a model which is isomorphic to the given model. In mathe-
matics, it is simple to give examples, namely, every group is isomorphic
to a group of permutations (Cayley’s representation theorem) or Stone’s
representation theorem, which says that every Boolean algebra is iso-
morphic to a a certain field of sets. Thus, in a certain sense, it is enough
to have this subclass in order to know all possible models of a theory
(up to isomorphisms). (Just to comment, as Suppes recalls, in the case
of empirical theories it may be quite difficult to find a representation
theorem, or to prove it. But let us move on without discussing the
details.)

The important fact is that we may be interested in some specific class
of models, or then we wish at to disregard some specific model of the
theory which is not interesting to us. In the case of the example, we need
to impose that the models of the predicate will be precisely those we wish
and not others. Although we shall not provide the details here, it is to
be acknowledged that this can be done. The problem is that this step,
which seems to be justified by the interest of the scientist, finds problems
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with the above definition of a set-theoretical predicate or Bourbaki’s
species of structures. Really, as we have seen, the formula which stand
for the predicate that defines the theory must be transportable, that
is, we cannot impose arbitrary restrictions on the principal sets, which
need to be instantiated by any sets whatever (with possible exceptions
such as the empty set, as seen earlier).

So, we see that set-theoretical predicates can be used both to de-
fine theories and also to select classes of structures, yet that sometimes
things may go to not useful results, as in the case when we take the pred-
icate P(x) := x = ∅ [11], which apparently does not define any theory
whatsoever, yet selects a structure having the emptyset as its domain
(and vacuous typifications, of course).

Two things need to be enlighten: the first is that, as we have said,
in considering such (set-theoretical) predicates for defining theories or
classes of structures, all the step theories are being presupposed. Sec-
ondly, remember that (in general) we are working within a set theory
such as the ZF system, and we could be interested in finding a set-
theoretical predicate for ZF itself. In this case, as it results from Gödel’s
incompleteness theorems, being consistent, ZF does not admit ZFC-sets
as models, that is, models that are sets of ZF. For doing that, we need
to strengthen ZF with additional postulates, say by assuming the ex-
istence of universes,15 or going to another stronger theory. But this
(apparently) is not necessary for most theories in the empirical domain.

The fact is that there is no one solution to all problems. The use of
set-theoretical predicates will depend on the set-theory being used and
the needs of the scientist. Important is to be aware of the technique and
of its importance. The details must be fulfilled in each particular case.

4 Conclusion

In this paper we have shown the dependence of Bourbaki’s notion of
species of structures to the concept of transportable formulas. Further-
more, we have enlighten that his definition of transportable formulas
does not enable us to introduce arbitrary restrictions on the principal
sets, for once some restriction is made, the formulas may not be invari-
ant by isomorphisms. So, there is a strong difference between Bourbaki’s

15Universes, initially introduced by Alexander Grothendieck (who was a member
of the Bourbaki group) to cope with categories in set theoretical terms; see [3]. The
existence of universes is equivalent to the existence of inaccessible cardinals.
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species of structures and Suppes’ set-theoretical predicates, which also
characterize certain structures, the models of the predicate, but enabling
us to introduce restrictions on the principal sets, thus allowing the se-
lection of just the models we may be interested in. But, when the
set-theoretical predicate is a transportable formula, Suppes’ approach
coincides with Bourbaki’s.

Summing up, Bourbaki’s approach and Suppes’ account using trans-
portable formulas are directed to the axiomatization of theories, where
no model can be left out, while the use of set-theoretical predicates with-
out such a restriction (of being a transportable formula) is more general,
for it enables also to grasp just some relevant models of a certain class
of models.
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On a reconstruction of the valuation

concept1

Patrı́cia Del Nero Velasco
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Abstract

The aim of this work is to show that the concept of valuations
proposed by Da Costa can serve as a general framework for defin-
ing the usual notions of consequence, consistency and validity. I
show that, developed in this way, these notions satisfy some in-
tuitively expected properties, which is an interesting result, if we
remember that the original purpose of the valuation theory was
the construction of a correct and complete semantic to the para-
consistent calculus, and not to furnish a framework for defining
such notions.

The results herein presented were first obtained in my PhD
thesis, On a reconstruction of the valuation concept, written under
the supervision of Professor Edelcio Gonçalves de Souza.2

1 Introduction

In 1963, N.C.A da Costa presented his Chair Thesis at the Depart-
ment of Mathematics at the Federal University of Paraná. The work,
“Formal Inconsistent Systems” (da Costa, 1963), synthesized previous
inquiries from the author. The formal systems in questions are simply
axiomatic systems for which it is possible to precisely define a deduction
notion, understood merely as a relation between sentences and sets of
sentences in a given formal language; examples of such axiomatic sys-
tems are the usual formalizations of classical logic.

1The present article is a result of my PhD thesis with the same title, obtained at
PUC-SP in 2004, under the supervision of Professor Edelcio Gonçalves de Souza—
a clear existence proof that academic life can also be permeated with generosity,
affection, and good humor. Saudações alviverdes!

2The English version of this chapter was revised by Daniel Arvage Nagase; I’m
most grateful for his precious contributions to its final version.
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Recall that, from the classical logician perspective, inconsistent sys-
tems are those that can deduce a sentence as well as its negation; classi-
cally, this implies that any sentence could be deduced in an inconsistent
system. In other words, in classical logic, inconsistent systems are triv-
ial (everything is deductible). In contrast, da Costa presented in his
work systems whose inconsistency did not imply trivialization. We can
therefore say that paraconsistent logics were born in that work (cf. de
Souza; da Costa; Maranhão, 2001).

Paraconsistent logics are a class of non-classical logics that reject
the principle of non-contradiction. Another example of a class of non-
classical logics is the class of multi-valued logics that reject the principle
of the excluded middle. There is, however, a basic difference in how such
logics came into being. Multi-valued logics were first created by consid-
ering a logic from the semantic point of view, introducing tables with
more than two truth values, and one of the first problems concerning
such logics was to find axiomatic systems that were sound and complete
with respect to this new semantics.

The creation of paraconsistent logics followed the inverse direction.
They were born as formal systems, and the problem was to find an
adequate semantics for these systems. It was known that logical matrices
with truth-functional connectives were not suitable for this end. The
theory of valuations appeared in this context to furnish a sound and
complete semantics for the paraconsistent calculus, abandoning the idea
of truth-functional connectives and creating a powerful instrument for
the demonstration of completeness of formal systems that obey certain
basic properties (cf. da Costa and Loparic, 1984; da Silva, 2000; de
Souza, 2001).

The present article considers a different path toward the valuation
notion, a path that takes as its starting point an informal (but adequate)
definition of logical consequence and related notions. This work can be
understood as an attempt to answer the question: what is the simplest
mathematical framework (i.e. the one that requires the least number of
primitive concepts) in which the concepts of consequence, consistency
and validity can be defined, fulfilling certain requirements of material
adequacy?

I will argue that the theory of valuations from da Costa is precisely
this simplest mathematical framework adequate for this task.
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2 A intuitive notion of consequence

The notion of logical consequence is widely discussed by philoso-
phers and logicians. Let us, at first, investigate the informal and usual
definition of consequence.

We say that an argument is valid “if the conclusion follows neces-
sarily from the premises”, or, in other words, “if it is impossible for the
premises to be true and the conclusion false”. Such definition is not very
enlightening, since it does not contain clearer concepts than those that
we want to define, viz. the notion of logical consequence. What does
“follows necessarily from” mean? In what consists the “impossibility”?
Is it, for instance, a material or logical impossibility? It seems desir-
able for a good definition of logical consequence to use the least possible
number of concepts, such as the definition proposed by G. Priest:

So what is a valid inference? One, we saw, where the premisses

can’t be true without the conclusion also being true. But what

does that mean? In particular, what does the can’t mean? (...)

It is natural to understand the ‘can’t’ relevant to the present case

in this way, to say that the premisses can’t be true without the

conclusion being true is to say that in all situations in which all

the premisses are true, so is the conclusion. (Priest, 2000, [12], p.

05)

Here, Priest mentions only “situations” and “truth”. It is never-
theless possible to make a further generalization: we could replace the
notions of “conclusion” and “premise” by the notion of “formula”. This
would result in a notion of consequence as a property of formulas, that
is, as a relation between formulas and sets of formulas. Proceeding in
this way, we would obtain the following definition:

Definition 1. A formula is a logical consequence of a set of formulas
if and only if there is no situation in which the formulas of this set are
true and the formula in question is false.

Even if we took the notion of formula as primitive (by not consider-
ing its internal structure), the notion of logical consequence so defined
would, however, remain obscure, since this definition still depends on
the definitions of situation and of formula true in a situation. It there-
fore leads us to the following questions: (1) what is situation? And (2)
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once a formula and a situation are given, when is the formula true in the
situation? (By answering this second question, we will also answer the
question of when a formula is false in a situation, since we can consider
here truth and falsity as opposites.)

Still, let us bracket these questions for the moment and see whether
any interesting properties follow from this informal (and typical) defi-
nition of logical consequence. The following three properties, called, re-
spectively, “reflexivity”, “monotonicity” and “transitivity”, are a good
example of such properties.

Property 1. If a formula is an element of a set of formulas, then it is
a consequence of the set.

Property 2. If a formula is a consequence of a set of formulas and this
set is contained in another one, then the formula is also a consequence
of this second set, i.e., if a formula is consequence of a set, it is also a
consequence of any other set that contains the first set.

Property 3. If a formula is logical consequence of a set and the formu-
las of this set are consequence of another set, then the given formula is
a consequence of this further set.

To obtain further interesting results related to the notion of conse-
quence, it will be necessary to introduce new concepts, which will be
defined from previously mentioned concepts.

Definition 2. A set of formulas is consistent if and only if there is a
situation in which all the formulas of the set are true. Otherwise, the
set is said to be inconsistent.

As with the concept of consequence, it is possible to state some
properties of this notion of consistency.

Property 4. Every subset of a consistent set is consistent.

Property 5. Any formula is a consequence of an inconsistent set of
formulas.

Next, let us state the definition of validity:

Definition 3. A formula is valid if and only if it is true in all situations,
i.e., if there is no situation in which the given formula is false.
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Property 6. If a formula is valid, then it is a consequence of every set
of formulas.

Even though there are other properties involving the notions of con-
sequence, consistency and validity, we will limit our exposition to the
ones stated above.

Now that we have seen the notions of consequence, consistency and
validity, it is possible to establish a material adequacy criterion for each
one of these.

In order to formalize the criterion of material adequacy mentioned
above, let us fix a set FOR of formulas, denoting the elements of FOR
by lower case Greek letters and the subsets of FOR by upper case Greeks
letters. I will use the symbol |= to indicate the relation of logical con-
sequence, so that Γ |= α means that the formula α is a consequence of
the set Γ of formulas; similarly, Γ |= Δ means that for each formula δ
that belongs to the set Δ, Γ |= δ.

Definition 4. A relation |= is materially adequate if and only if for every
formula α and sets of formulas Γ, Δ, we have:

(i) if α ∈ Γ, then Γ |= α;
(ii) if Γ |= α and Γ ⊆ Δ, then Δ |= α;
(iii) if Γ |= Δ and Δ |= α, then Γ |= α.

The conditions in the above definition correspond to the previously
mentioned properties 1-3, that is, respectively, to reflexivity, monotonic-
ity and (generalized) transitivity.

The material adequacy criterion for definitions of consistency may
be formalized this way:

Definition 5. A definition of consistency is materially adequate if and
only if:

(i) if Δ ⊆ Γ and Γ is consistent, then Δ is consistent, i.e., every
subset of a consistent set is consistent;

(ii) if α is a formula and Γ is an inconsistent set, then Γ |= α, i.e.,
every formula is a consequence of an inconsistent set of formulas.

Finally, the material adequacy criterion for definitions of validity is:

Definition 6. A definition of validity is materially adequate if and only
if:

(i) if α is a valid formula and Γ is any set, then Γ |= α, i.e., every
valid formula is a consequence of every set of formulas.
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Having formulated the material adequacy criteria for definitions of
consequence, consistency and validity, I will now give formal definitions
for these notions using the language of set theory.

3 Situation framework

However we understand the notion of situation, it is possible to for-
malize the definitions of consequence, consistency and validity by using
the definition of a situational structure S. Such a structure is com-
posed of a non empty set FOR whose elements will be called formulas,
an equally non-empty SIT whose elements will be called situations, a
set V AL of truth-values (V AL = {V,F}) and a function fS , which
attributes to each formula in a given situation a truth-value. In the
definition below, the symbol × denotes the usual Cartesian product of
sets.

Definition 7. A situational structure S is a 4-tuple

S = 〈FOR, SIT, V AL, fS〉 such that:

fS : FOR× SIT → V AL

(α, s) �→ fS(α, s)

We thus say that a given formula α is true in a situation s if and
only if fS(α, s) = V. The situational structure S is, therefore, a possible
interpretation of the language, and it answers the questions we had asked
above: (1) a situation is an element of the set SIT and (2) a formula α
is true in a situation s if and only if fS(α, s) = V, that is, if the function
fS assigns to α the truth-value V.

Now that we have defined situational structures, as well as speci-
fied when a formula is true in a situation, we can, finally, introduce
the definitions of consequence, consistency and validity in a situational
structure.

Definition 8. A formula α is a logical consequence (in the structure S)
of a set Γ of formulas, in symbols, Γ |=S α, if and only if ∀s ∈ SIT such
that fS(γ, s) = V for all γ ∈ Γ, then fS(α, s) = V.

This definition states that a formula α is consequence of a set Γ
(in the structure S) if and only if for every situation in which all the
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formulas of Γ are true, α is also true. In other words, the formula α
is logical consequence (in the structure S) of a set Γ of formulas if and
only if there is no situation in which the formulas of Γ are true and α is
false.

The formal definition suggested above corresponds to the informal
definition of logical consequence that we saw in the previous section.
Still, before accepting this definition, it is necessary to show that it
satisfies our material adequacy criterion.

Proposition 1 (Material adequacy for S-consequence). |=S is materially
adequate (|= is materially adequate in S), i.e., for all α and all Γ, Δ,
we have:

(i) if α ∈ Γ then Γ |=S α;

(ii) if Γ |=S α and Γ ⊆ Δ, then Δ |=S α;

(iii) if Γ |=S Δ and Δ |=S α, then Γ |=S α.

(I will not provide here a proof this and other results; the interested
reader can find the proofs in my PhD thesis (Cf. Velasco, 2004).)

Next, let us examine the notions of consistency and validity in a
situational structure.

Definition 9. A set Γ of formulas is consistent (in the structure S) if
and only if there is at least some situation s ∈ SIT such that fS(γ, s) =
V for all γ ∈ Γ. Otherwise, the set Γ is said to be inconsistent.

It would be more accurate to call consistency in the structure S, S-
consistency. However, for simplicity, I will employ consistency whenever
there is no threat of ambiguity.

Proposition 2 (Material adequacy for S-consistency). This definition
of consistency in S is materially adequate, i.e.:

(i) if Δ ⊆ Γ and Γ is consistent, then Δ is consistent;

(ii) if α is any given formula and Γ is inconsistent, then Γ |=S α.

Definition 10. A formula α is valid (in the structure S), or S-valid,
if and only if for every situation s, fS(α, s) = V, i.e., if there is no
situation that attributes the value F to α.

Proposition 3 (Material adequacy for S-validity). This definition of
validity in S is materially adequate, i.e.:

(i) if α is a valid formula and Γ a set, then Γ |=S α.
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Given the above definitions, it is natural to ask: is there a set of
situations in which all the formulas of a particular set are true? This set
can be defined in the following way. Start with s ∈ SIT and Γ ⊆ FOR.
We say that s is an S-model of Γ if and only if fS(γ, s) = V, ∀γ ∈ Γ.

Using this, the set of the models of Γ in the structure S, in symbols,
MODS(Γ), can be defined in the following way: MODS(Γ) =def {s ∈
SIT : s is an S-model of Γ}.

This new notion allows another characterization for the above no-
tions of consequence, consistency, and validity: a formula α is logic
consequence of a set Γ in the structure S if and only if all models of Γ
are models of {α}, i.e., Γ |=S α if and only if MODS(Γ) ⊆MODS({α});
a set Γ is S-consistent if and only if there is at least one situation s such
that s ∈MODS(Γ), i.e., Γ is S-consistent if and only if MODS(Γ) �= ∅;
a formula α is S-valid if and only if the set of models of {α} in the
structure S coincides with the set of all models in the same structure S,
i.e., α is S-valid if and only if MODS({α}) = MODS.

This new characterization does not mention the terms “truth” or
“situation”. It is therefore possible to define another logical framework
by using concept of model as a primitive. Of course, if we opted for
this new framework, we would need to show that the new definitions of
consequence, consistency and validity were materially adequate. I will
examine this possibility in the next section.

4 Model-based framework

I will denote the structures defined in this new framework—called
model-based—by M. Let FOR be a non-empty set of formulas from a
previously fixed language and MOD a non-empty set whose elements
are called models of the structure M. I will construct a function fM that
attributes to each element of MOD a subset of FOR.

Definition 11. A model-based structure M is a 3-tuple

M =〈FOR,MOD, fM 〉 such that:

fM : MOD → P(FOR)

m �→ fM (m)

Now, we can define the set of the models of Γ in the structure M:
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Definition 12. Let Γ ⊆ FOR. We define the set of the models of Γ in
the structure M, in symbols, MODM(Γ), in the following way:

MODM(Γ) =def {m ∈MOD : ∀γ ∈ Γ, γ ∈ fM (m)}.

This allows us to define the notions of consequence, consistency and
validity.

Definition 13. A formula α is logical consequence (in a structure M)
of a set Γ of formulas, in symbols, Γ |=M α, if and only if MODM(Γ) ⊆
MODM({α}), i.e., all models of Γ are also models of {α}.

Whenever there is no threat of ambiguity, I will simply write MOD
(instead of MODM).

The set of the models of Γ in a structure M is denoted by MODM(Γ)
and is thus defined: MODM(Γ) =df {m ∈MOD : ∀γ ∈ Γ, γ ∈ fM (m)}.
Therefore, a set Γ of formulas is said to be consistent in a model-based
structure if and only if there is at least some model m such that γ ∈
fM (m), ∀γ ∈ Γ, i.e., MODM(Γ) �= ∅.
Definition 14. A set Γ of formulas is consistent (is structure M) if and
only if MODM(Γ) �= ∅. Otherwise, the set Γ is said to be inconsistent.

Definition 15. A formula α is valid (in a structure M), or M-valid, if
and only if MODM({α}) = MODM.

The following results show the material adequacy of the above defi-
nitions of consequence, consistency and validity.

Proposition 4 (Material adequacy for M-consequence). |=M is mate-
rially adequate, i.e.:

(i) if α ∈ Γ then Γ |=M α;
(ii) if Γ |=M α and Γ ⊆ Δ, then Δ |=M α;
(iii) if Γ |=M Δ and Δ |=M α, then Γ |=M α.

Proposition 5 (Material adequacy for M-consistency). Consistency in
M is materially adequate, i.e.:

(i) if Δ ⊆ Γ and Γ is consistent, then Δ is consistent;
(ii) if α is any formula and Γ is an inconsistent set, then Γ |=M α.

Proposition 6 (Material adequacy for M-validity). Validity in M is
materially adequate, i.e.:

(i) if α is a valid formula and Γ is any set, then Γ |=M α.
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Now that I have demonstrated the material adequacy of the defini-
tions of consequence, consistency and validity in a model-based frame-
work, it is possible to give a new characterization for such notions using
the definition of a valuation.

Let K = Im(fM ), i.e., let K be the image of the function fM . El-
ements of K are called valuations. Consequently, we can define the set
of valuations for a given subset of formulas: let be Γ ⊆ FOR. We de-
fine the set of valuations for Γ, in symbols, V(Γ), in the following way:
V(Γ) = V ∈ {K : Γ ⊆ V }.

Notice that each element of a valuation is a set of formulas. It is
therefore possible to develop the theory without using a function that
selects interesting formulas (i.e., the true ones), since the set of valua-
tions is defined, directly, for a subset of formulas of the language. Thus,
the family K of subset of formula of the language gives us the subset of
the true interpretations, precisely because it is defined as the image of
the function fM .

Using this notion of valuation, it is possible to formulate—in the
model framework—a new characterization of logical consequence, namely:
a formula α is a consequence of a set Γ of formulas if and only if the set
of the valuations for Γ is subset of the set of the valuations for {α}, i.e.,
Γ |=M α is and only if V(Γ) ⊆ V({α}).

Similarly, a consistent set can be defined as one whose set of the
valuations is different from the empty set, that is, Γ is M-consistent if
and only if V(Γ) �= ∅. Therefore, we say that a formula is valid if and
only if the set of valuations for it coincides with the set K of valuations,
i.e., α is M-valid if and only if V({α}) = K.

Such a characterization of the notion of logical consequence (and its
correlates) suggests an even simpler framework: one that only involves
the notion of formula.

5 Valuation framework

This new paradigm for the notion of logical consequence (and its
correlates) was created from the theory of valuations, which originated
in the work of professor Newton C. A. da Costa.3

I will denote by V a valuation-based structure, which consists only in
a set FOR of formulas of a fixed language and a family K of subsets of

3Cf. Da Costa, N.C.A and Loparic, A., 1984, [4].



109

FOR, that is:

Definition 16. A structure of valuations V is a pair V = 〈FOR,K〉.

Thus, we can define the set of valuations of a set of formulas.

Definition 17. Let K ⊆ P(FOR). We define the set of valuations for a
set Γ of formulas, in symbols, VV(Γ), in the following way:

VV(Γ) =def {V ∈ K : Γ ⊆ V }.

Let us now introduce the definitions of logical consequence, consis-
tency and validity for the structure V, as well as their corresponding
properties.

Definition 18. Let FOR be a non empty set, K ⊆ P(FOR), α ∈ FOR
and Γ ⊆ FOR. We define that α is logical consequence of Γ (in structure
V), in symbols, Γ |=V α, if and only if VV(Γ) ⊆ VV({α}).

Proposition 7 (Material adequacy for V-consequence). |=V is materi-
ally adequate, i.e.:

(i) if α ∈ Γ then Γ |=V α;

(ii) if Γ |=V α and Γ ⊆ Δ, then Δ |=V α;

(iii) if Γ |=V Δ and Δ |=V α, then Γ |=V α.

Definition 19. Γ is consistent (in structure V), or V-consistent, if and
only if VV(Γ) �= ∅. Otherwise, the set Γ is said inconsistent.

Proposition 8 (Material adequacy for V-consistency). Consistency in
V is materially adequate, i.e.:

(i) if Δ ⊆ Γ and Γ is consistent, then Δ is consistent;

(ii) if α is any formula and Γ is an inconsistent set, then Γ |=V α.

Definition 20. Let Γ ⊆ FOR, α ∈ FOR and K ⊆ P(FOR). We say
that α is valid (in structure V), or V-valid, if and only if VV({α}) = K,
that is, α ∈ ⋂

K.

Proposition 9 (Material adequacy for V-validity). Validity in V is ma-
terially adequate, i.e.:

(i) if α is a valid formula and Γ a set, then Γ |=V α.
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6 Equivalence of the frameworks

In the preceding sections we built three logical frameworks that for-
malized the notions of consequence, consistency and validity in a mate-
rially adequate and also extremely general way, without specifying the
internal structure of the concept of formula. Therefore, it is possible to
ask: are these frameworks equivalent? The answer is affirmative, as the
theorems below state.

Theorem 1 (1st Theorem of equivalence). Let α ∈ FOR and Γ ⊆ FOR.
Thus, we have:

(a) let S = 〈FOR, SIT, V AL, fS〉 be a situational structure. There
is then a model-based structure M = 〈FOR,MOD, fM 〉 such that:

(i) Γ |=S α if and only if Γ |=M α;
(ii) Γ is S-consistent if and only if Γ is M-consistent;
(iii) α is S-valid if and only if α is M-valid;
(b) let M = 〈FOR,MOD, fM 〉 be a model-based structure. There is

then a situational structure S = 〈FOR, SIT, V AL, fS〉 such that:
(i) Γ |=M α if and only if Γ |=S α;
(ii) Γ is M-consistent if and only if Γ is S-consistent;
(iii) α is M-valid if and only if α is S-valid;

Theorem 2 (2nd Theorem of equivalence). Let α ∈ FOR and Γ ⊆
FOR. Thus, we have:

(a) let M = 〈FOR,MOD, fM 〉 be a model-based structure. There is
then is a valuation-based structure V = 〈FOR,K〉 such that:

(i) Γ |=M α if and only if Γ |=V α;
(ii) Γ is M-consistent if and only if Γ is V-consistent;
(iii) α is M-valid if and only if α is V-valid;
(b) let V = 〈FOR,K〉 be a valuation-based structure. There is then

a model-based structure M = 〈FOR,MOD, fM 〉 such that:
(i) Γ |=V α if and only if Γ |=M α;
(ii) Γ is V-consistent if and only if Γ is M-consistent;
(iii) α is V-valid if and only if α is M-valid;

7 Conclusion

The two theorems from the previous section show us the equiva-
lence of the three studied frameworks: the situational, the model-based,
and the valuation-based. Moreover, I have also shown that, given the
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two theorems, there is no epistemological loss in adopting the simplest
framework, namely the valuation one. Therefore, even if it is less intu-
itive than the others, the valuation framework is shown to better satisfy
the methodological precept known as Ockham’s Razor—being thus the
natural endpoint for our analysis of the notions of logical consequence,
validity, and consistency. Indeed, the very organization of this work is
an argument for this thesis: one can see the paring down of the concepts
involved in the definitions above as successive applications of Ockham’s
Razor, applications that culminate in the construction of a valuation-
based structure! This is surprising, given that the original motivation for
the introduction of such structures by Da Costa was not to find a com-
mon core for these notions , but rather the construction of a semantics
for the paraconsistent calculi.
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Internal logic of the H − B topos1

Vladimir L. Vasyukov

Institute of Philosophy, Russian Academy of Sciences, Russia

Abstract

Chris Mortensen in his book “Inconsistent Mathematics” intro-
duced the notion of complement topos which internal logic is dual
to the usual logic of standard topos. Since complement-classifier
is indistinguishable (via categorial methods) from a standard sub-
object classifier then topos, in fact, always can be considered as
H−B topos in which we have both Heyting algebra of subobjects
of any object and co-Heyting (Brouwerian) algebra too. A formu-
lation of internal logic of such H − B topos is proposed which is
based on C.Rauszer’s H −B logic.

1 Introduction

For each topos one can define a language which would be employed
as a convenient mean for yielding statements on objects and arrows of
the topos in question or even for proving theorems about them (cf. [3,
p.172]). Brief description of the language and zero-order topos logic,
formulated in this language, according C.MacLarty’s version [4, p.126]
is as follows.

For any topos C the internal language is typed, with each C-object
as one type2. Terms and their types are defined inductively.

(LT1) Each C-object A has a list of variables over A, x1, x2, x3, ... Every
variable over A is a term of type A.

(LT2) For any arrow f : A → B and term s type A, fs is a term of
type B. Every arrow c : 1→ A with domain type 1 is itself a term
of type A (we will call it a constant of type A). Let ! means a
constant for identity arrow on 1.

1This resarch is supported by RFBR grant 19-011-00799.
2MacLarty considers not types but sorts while we will speak of types for conve-

nience, following the commonly accepted usual practice.
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(LT3) For every term s1 of type A and s2 of type B there is a term
〈s1, s2〉 of type A×B.

(LT4) For every term s of type B and variable y of type A there is a
term (λy)s of type BA.

A variable x is free unless it is bound by a lambda operator (λx).
We will write (λx.A) to indicate the type of the variable. A term with
no free variables is closed.

Now let us a term s has type B and all its free variables are in
the list y1, ..., yk, where the y

′s are variables over A1, ..., Ak respectively.
Then s refers to a morphism |s| : A1 × ... × Ak → B, which we call
the interpretation of s. Informally, any assignment of a value to each
variable, giving yi a value in Ai, determines a value for s. The morphism
|s| actually depends on the list of variables involved, therefore we should
show the list in the notation.

Let us use x̄ to abbreviate a list x1, ..., xn. Then A1, ..., An is the
list of types of the variables in the same order. A variable can only
appear in a list, but an object A will appear as many times as there
are variables over A in the list. For a term s of type B and a list x̄
including all the free variables of s we write |s|x̄ : A1 × ...×Ak → B for
the interpretation of s relative to the list x̄. We always assume that lists
of variables include all those that are free in the terms we apply them
to. If s has no free variables then x̄ can be an empty list of variables,
and of course the product of an empty list of types is �.

Now we define inductively the interpretation relative to the lists:

(I1) For any list x̄ and variables xi in the list, |xi|x̄ is the ith projection

A1 × ...×An → Ai

(I2) For any arrow f : A→ B, if s is a term of type A then |fs|x̄ is

A1 × ...×An
|s|x̄→ A

f→ B

For any constant c, |c|x̄ is

A1 × ...×An → 1
c→ B

(I3) For any terms s1 of type A and s2 of type B, |〈s1, s2〉|x̄ is the pair
morphism to A×B induced by |s1|x̄ and |s2|x̄.
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(I4) For any term s of type B, if the variable y over A is not in the list
x̄ then |(λy)s|x̄ is the transpose of |s|x̄,y : A1 × ...× An × A→ B,

i.e. an arrow |s|x̄,y : A1 × ...× An → BA. If the bound variable y
is in the list x̄ that is an irrelevant coincidence. Then we replace
y in (λy)s by some variable over A neither in s nor in the list x̄.

According to (LT2) for any term g of type BA and s of type A there
is a term ev(〈g, s〉) which we will abbreviate to g(s). Also, we will use
set builder notation for lambda abstraction over Ω writing {x.A : s}
instead of (λx.A)s when s has type Ω.

Formulas are the terms of type Ω. By (LT2) for any formulas ϕ and
ψ there are formulas ∧(ϕ, ψ) and → (ϕ, ψ) which we will write as ϕ∧ ψ
and ϕ→ ψ. There are also formulas �,⊥,¬ϕ,ϕ∨ ψ.

For any formula ϕ and variable y over any object A, we define the
formula (∀y.A)ϕ as an abbreviation for ∀A{y.A : ϕ}. Thus (∀y.A)ϕ says
that {y.A : ϕ} is all of A. Its interpretation over a list of variables x̄
follows the definition. It is

A1 × ...×An
|ϕ|x̄,y→ ΩA ∀A→ Ω

if the variable y does not occur in the list x̄. If y is in the list it is first
replaced by some new variable. Note that y is bound in (∀y.A)ϕ.

The existential quantification of formula ϕ at a variable x can be
defined to be (∀w)((∀x)(ϕ→ w)→ w), where w is a variable over Ω not
free in ϕ.

As in [4, p.120], for any sub-objects q : Q � A and r : R � A, we
define Q =⇒ R to be the sub-object classified by χq → χr and call
Q =⇒ R the (material) inplicate of R by Q (here χq → χr abbreviates
→ ◦〈χq, χr〉 and →: Ω× Ω→ Ω is the material conditional arrow).

The extension of ϕ over a list of variables x̄ is the subobject A1×...×
An classified by |ϕ|x̄. We will write [x̄ : ϕ] for this extension intending
’all x̄ such that ϕ’. For example, we have:

[x̄ : �] = A1 × ...×An

[x̄ : ϕ ∧ ψ] = [x̄ : ϕ] ∩ [x̄ : ψ]

[x̄ : ϕ ∨ ψ] = [x̄ : ϕ] ∪ [x̄ : ψ]

[x̄ : ϕ→ ψ] = [x̄ : ϕ] =⇒ [x̄ : ψ]
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and [x̄ : (∀x)ϕ] is the universal quantification of [x̄, y : ϕ] over the
projection corresponding to y.

A formula ϕ is called true if its extension [x̄ : ϕ] is all of A1 ×
... × An when x̄ lists exactly the variables free in ϕ. We say that a
formula ϕ implies ψ if the extension of ϕ is contained in that of ψ. More
generally, for any finite set of formulas Γ, we will write [x̄ : Γ] for the
intersection of the extensions over x̄ of all formulas in Γ. In particular,
[x̄ : ] = A1 × ...× An for the empty set of formulas. Then Γ implies ϕ
iff [x̄ : Γ] ⊆ [x̄ : ϕ] when x̄ lists exactly the free variables in Γ and ϕ. A
sequent is an expression Γ : ϕ, where Γ is a finite (possibly empty) set of
formulas and ϕ is a formula. Think of Γ : ϕ as a claim that the formula
in Γ imply ϕ. The sequent is true iff Γ does imply ϕ. In particular, a
sequent : ϕ with empty left side is true iff [x̄ : ϕ] is all of A1 × ... × An

and thus iff ϕ is true. When we know a sequent Γ : ϕ is true we write
Γ � ϕ. Topos logic, as it is known [4, p.129], can be formulated by way
of the list of rules of inference for these sequents; that is, rules such that
applying them to true sequents always yields true sequents. We would
describe topos logic by means of the following rules:

∗
ϕ : ϕ

∗
: �

∗
⊥ : ϕ

Γ : ϕ

Γ, ψ : ϕ
(Thinning :)

Γ : ϕ

Γ(x/s) : ϕ(x/s)
(Substitution :)

(for any term s free for x in
all the formulas)

Γ, ψ : ϕ Γ : ψ

Γ : ϕ
(Cut :)

(if every variable free in ψ is
free in Γ or in ϕ)

Γ, ϕ : θ Γ, ψ : θ

Γ, ϕ ∨ ψ : θ
(: ∨ )

Γ : ϕ Γ : ψ

Γ : ϕ ∧ ψ
(: ∧ )

Γ, ϕ : ψ

Γ : ϕ→ ψ
(:→ )

Γ, ϕ : ⊥
Γ : ¬ϕ (:¬)

Γ : ϕ

Γ : (∀x)ϕ(: ∀) Γ, ϕ : ψ

Γ, (∃x)ϕ : ψ
(∃ :)

(if the variable x is
not free in Γ or ψ)
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An emergence of the complement topos introduced by Chris Morten-
sen (cf.[5]) raise the issue of the internal logic of it which version was
proposed by L. Estrada-González in [1]. But if we take into account
that complement-classifier is indistinguishable (via categorial methods)
from a standard subobject classifier then topos, in fact, always can be
considered as dual topos for which we have the Heyting algebra of sub-
objects of any object as well as co-Heyting (Brouwerian) algebra. Such
”two-faced Janus” hypothetically will also have its own internal logic
which reconstruction is the task of present paper.

In the second section as the first step on this way the typed internal
language and logic of a complement topos is described in MacLarty’s
style. To that end some dual topos concepts are introduced and some
troubles of such approach are analyzed.

Since Heyting logic and Brouwer logic always appear as Siamese
twins and so do both the standard topos and the complement topos
then in third section we discuss not the standard topos alone and not
the complement topos alone but another type of category which, in a
sense, contains them both. Such category - H −B topos - is developed
and for that topos the typed internal language and logic are described.

Finally, in the fourth section the proof of the correctness of H − B
topos logic is given. The question of completeness of this logic is disre-
garded in view of the fact that H−B toposes are practically unexplored.
So we have to postpone the analysis of this issue especially because even
the standard topos logic itself is not complete for each individual topos,

2 Complement topos logic

Chris Mortensen in his book ”Inconsistent Mathematics” [5] introduced
the notion of complement topos which internal logic is dual to the usual
logic of standard topos. A principal peculiarity of complemented topos
lies in a presence of complement classifier in the latter. Its definiion is
as follows.

Definition 1 For a category C a complement classifier is a C-arrow
false : 1 → Ω where for any monic f : A � B there is one and only
one C-arrow B → Ω, denoted χ̄f , making the following a pullback in C,
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f
A

!

> � B

χ̄f

�
1 � Ω

�

false

At the same time Mortensen shown that a complement classifier in a
topos Set is indistinguishable (via categorical methods) from a standard
subobject classifier, that they are isomorphic. Thus, in Set we always
have paraconsistency because of the presence of both types of subobject
classifiers. Moreover, the following proposition is obviously true:

Proposition 2 Complement toposes support paraconsistency logic via
Brouwerian algebra in a way exactly parallel to the way toposes support
intuitionistic logic via Heyting algebras.

Since toposes support intuitionistic logics due to reflecting the Heyt-
ing algebra structure by subobject classifier then in a complement topos
complement classifier reflects the Brouwerian algebra structure respec-
tively. Hence, to describe an internal logic of complement topos we have
to proceed in a dual way.

Unfortunately, here immediately arises the problem of the ”dual ex-
ponentiation”. In standard topos the idea is that BA represents arrows
from A to B. But what is the ”dual idea” in complement topos?

Let us turn usual definition inside out. Given objects A and B,
a co-exponential of B by A will consist of an object I and an arrow
evo : B → I + A with the following property. For any object C and
arrow go : B → C + A there is a unique arrow go : I → C that makes
this triangle commute:

evoI +A

�

B

go + 1A go

C +A

�
�

�
��

�

Co-exponentials are unique up to isomorphism. We say that the
category is co-Cartesian closed if it has all finite co-products, and each
two objects in it have a co-exponential. For any objects A and B we
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write AB, and evo : B → AB + A to indicate a co-exponential of B by
A.

An arrow B → A is (up to the natural isomorphism A ∼= 0 + A)
an arrow B → 0 + A, and that gives a unique arrow AB → 0. But we
have to make this correspondence between arrows B → A and global
elements of AB precise, and extend it to generalized elements of AB.

For each go : B → C + A, call the corresponding go : AB → C
the co-transpose of go. Each go : B → C + A uniquely determines its
co-transpose, by definition, but is also determined by its co-transpose
since the definition says that go = ( go + 1A) ◦ evo. Furthermore, every
f : AB → C is the co-transpose of an arrow (and thus of a uniqe arrow)
from B to C+A, namely ( f +1A) ◦ evo. We will also call (f +1A) ◦ evo
the co-transpose of f , and write it as f : B → C + A. So arrows from
B to C + A corresponds exactly to arrows from AB to C. We pass in
either direction by forming the ”co-transpose”, and the co-transpose of
co-transpose is the original arrow.

For any arrow f : B → A the co-name of f , �f� : AB → 0, is

defined to be the transpose of B
f→ A

∼→ 0+A and it follows that every
global co-element x : AB → 0 is the co-name of an arrow; specifically,

B
x→ 0 +A

∼→ A.
Again, for any complement topos C the internal language is typed,

with each C-object as one type. Co-terms and their types are defined
inductively:

(LT5) Each C-object A has a list of variables over A, x1, x2, x3, ... Every
variable over A is a term of type A.

LT6 For any arrow f : A → B and a term s of type B an expression
(fs)o = fos is a term of type A. Each arrow c : A → 0 with 0 as
its domain is itself a term of type A (we call it a co-constant of
type A). Let ? means co-constant of identity arrow for 0.

(LT7) For every terms s1 of type A and s2 of type B there is a term
[s1, s2] of type A+B.

(LT8) For every term s of type B and the variable y of type A there is
a term s(λy) of type AB.

A variable x is free unless it is bound by a ”co-lambda operator”
(λx). We will write (λx.A) to indicate the type of the variable. A
co-term with no free variables is closed.
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For a term s of type A and a list x̄ including all the free variables of
s we write ||s||x̄ : A → A1 + ... + Ak for the interpretation of s relative
to the list x̄. The definition of intepretation relative the lists contains
the following points of ”co-interpretation”:

(I5) For any list x̄ and variables xi in the list, ||xi||x̄ is the ith injection

Ai → A1 + ...+An

(I6) For any arrow f : A1 → A2, if s is a co-term of type A2 then
||fos||x̄ is

A2
f−1

→ A1
||s||x̄→ A1 + ...+An

For any co-constant c, ||c||x̄ is

A2
cO→⊥→ A1 + ...+An

(I7) For any co-terms s1 of type A1 and s2 of type A2, ||[s1, s2]||x̄ is the
pair arrow from A1 +A2 induced by ||s1||x̄ and ||s2||x̄.

(I8) For any co-term s of type A2, if the variable y over A1 is not
in the list x̄ then ||s(λy)||x̄ is the co-transpose of ||s||x̄,y : A2 →
A1 + ...+An +A1, i.e. an arrow ||s||x̄,y : A1A2 → A1 + ...+An.

If the bound variable y is in the list x̄ that is an irrelevant co-
incidence. Then we replace y in s(λy) by some variable over A′

neither in s nor in the list x̄.

According to (LT6) for any co-term g of type A1A2 and s of type
A1 there is a co-term evo([g, s]) which we will abbreviate to gos. Also,
we will use coset builder notation for lambda abstraction over Ω writing
{x.A1 : s}o instead of s(λx.A1) when s has type Ω.

Formulas are the co-terms of type Ω. By (LT7)-(LT8) for any for-
mulas ϕ and ψ there are formulas ∨(ϕ, ψ) and ← (ϕ, ψ) which we will
write as ϕ ∨ ψ and ϕ← ψ. There are also formulas �,� ϕ,ϕ ∧ ψ.

For any formula ϕ and variable y over any object A, we define the
formula (∀oy.A)ϕ as an abbreviation for ∀A{y.A : ϕ}o. Thus (∀oy.A)ϕ
says that {y.A : ϕ}o is all of A. Its interpretation over a list of variables
x̄ follows the definition. It is

Ω
∀oA→ AΩ

||ϕ||x̄,y→ A1 + ...+An
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if the variable y does not occur in the list x̄. If y is in the list it is first
replaced by some new variable. Note that y is bound in (∀oy.A)ϕ.

The co-existential quantification of formula ϕ at a variable x can be
defined to be (∀ow)((∀ox)(ϕ ← w) ← w), where w is a variable over Ω
not free in ϕ.

For any sub-objects q : Q � A and r : R � A, we define Q ⇐= R
to be the sub-object classified by χ̄q ← χ̄r and call Q ⇐= R the
(material) co-implicate of R by Q (here χ̄q ← χ̄r abbreviates← ◦〈χ̄q, χ̄r〉
and ←: Ω× Ω→ Ω is the material co-conditional arrow).

The co-extension of ϕ over a list of variables x̄ is the subobject
A1+...+An classified by |ϕ|x̄. We will write [x̄ : ϕ]o for this co-extension
intending ’all x̄ dually such that ϕ’. For example, we have:

[x̄ : �]o = A1 + ...+An

[x̄ : ϕ ∧ ψ]o = [x̄ : ϕ]o ∪ [x̄ : ψ]o

[x̄ : ϕ ∨ ψ]o = [x̄ : ϕ]o ∩ [x̄ : ψ]o

[x̄ : ϕ← ψ]o = [x̄ : ϕ]o ⇐= [x̄ : ψ]o

and [x̄ : (∀x)ϕ]o is the co-universal quantification of [x̄, y : ϕ]o over the
injection corresponding to y.

A formula ϕ is called false if its co-extension [x̄ : ϕ]o is all of A1 +
...+An when x̄ lists exactly the variables free in ϕ.

We say that a formula ϕ co-implies ψ if the co-extension of ψ is
contained in that of ϕ. More generally, for any finite set of formulas
Γ, we will write [x̄ : Γ]o for the join of the co-extensions over x̄ of all
formulas in Γ. In particular, [x̄ : ]o = A1 + ...+An for the empty set of
formulas. Then ϕ co-implies Γ iff [x̄ : ϕ]o ⊆ [x̄ : Γ]o when x̄ lists exactly
the free variables in Γ and ϕ.

A sequent is an expression ϕ : Γ, where Γ is a finite (possibly empty)
set of formulas and ϕ is a formula. Think of ϕ : Γ as a claim that the
formula in ϕ co-imply Γ. The sequent is false iff ϕ does co-imply Γ. In
particular, a sequent ϕ : with empty right side is false iff [x̄ : ϕ]o is all
of A1 + ... + An and thus iff ϕ is false. When we know a sequent ϕ : Γ
is false we write ϕ � Γ. Following C. Rauszer [7, p.64], we say that ϕ
is formally rejected from a set Γ of formulas. In Shütte’s style ϕ � Γ
means the proof of the alternatives Γ from hypothesis ϕ.

L. Estrada-González in [1] present a sequent calculus for the zero-
order complement topos logic. A sequent calculus for the first-order
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complement topos logic is obtained by adding rules for substitution and
quantification:

∗
ϕ : ϕ

∗
ϕ : �

∗
⊥:

ϕ : Γ

ϕ : Γ, ψ
(: Thinning)

ϕ : Γ

ϕ(x/s) : Γ(x/s)
(: Substitution)

(for any term s free for x in
all the formulas)

ϕ : Γ, ψ ψ : Γ

ϕ : Γ
(Cut)

ϕ : Γ ψ : Γ

ϕ ∨ ψ : Γ
( ∨ :)

θ : Γ, ϕ θ : Γ, ψ

θ : Γ, ϕ ∧ ψ
(: ∧ )

ψ : ϕ,Γ

ψ ← ϕ : Γ
(← :)

� : Γ, ϕ

�ϕ : Γ
(� :)

ϕ : Γ

(∀ox)ϕ : Γ
(∀o :)

ϕ : Γ, ψ

ϕ : Γ, (∃ox)ψ (: ∃o) (if the variable x is
not free in Γ or ψ)

Ttroubles with the complement topos (and thus with its internal
logic) are caused by the lack of the ”pure” example being independent
of the standard topos structure. According to the legend, Saunders Mac
Lane, in response to Mortensen and Laver’s paper on complement topos
which they sent him, said that complement toposes are just standard
toposes, that they are indistinguishable because they have the same
categorical structure. But it is not generally accepted point of view.
L.Estrada-Gonzáles writes thereupon: ”There is a ‘bare’ or ‘abstract’
categorial structure of toposes that can filled in at least two ways (the
standard way and the way suggested by Mortensen and Lavers). Said
otherwise, there are underlying universal properties in topos logic dis-
sembled by certain intuitive conceptualizations of the categorial struc-
ture of toposes, yet not necessitated by this” [2].
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3 H − B topos logic

But it seems that this ’abstract’ categorical structure of toposes is prin-
cipally twofold by its nature. Actually, Heyting logic and Brouwer logic
always appear as Siamese twins - if one is given then the second might
be reconstructed. So do the standard topos and the complement topos
too. They are not dual in the traditional categorial sense. So, maybe in
this case we, in fact, discuss not the standard topos alone and not the
complement topos alone but another type of category which, in a sense,
contains them both?

One of such would-be categories is known as bi-Heyting topos. Its
definition is the next [9, p.36]:

Definition 3 A bi-Heyting topos is a topos for which the Heyting al-
gebra of subobjects of any object is a co-Heyting algebra (and hence a
bi-Heyting algebra).

Unfortunately, the internal logic of a bi-Heyting topos is never dual
to an intuitionistic logic. It is just a co-Heyting algebra wthin a Boolean
algebra. It is known that Boolean algebra is a self-dual algebra and hence
we arrive at a Boolean topos and not at the topos we search for.

Probably, required category should be a topos which algebra of sub-
objects of any object is an algebra somehow combining both Heyting and
Brouwerian algebras. One of the pretendnt is a semi-Boolean algebra
whose definition is the following: an abstract algebra 〈A,∨,∧,=⇒,⇐=
,¬,� 〉 will be called a semi-Boolean algebra provided that 〈A,∨,∧,=⇒
,¬〉 is a Heyting algebra and 〈A,∨,∧,⇐=,� 〉 is a Brouwerian algebra [8,
p.8]. It seems to be that semi-Boolean algebra might be regarded as the
join of Heyting and Brouwerian algebras. Anyway, respective an B−H
topos is defined as follows:

Definition 4 An H − B topos is a topos for which an algebra of sub-
objects of any object is a semi-Boolean algebra.

Since a semi-Boolean algebra is regarded as an extension of Heyting
algebra then an H − B topos also to be, in a sense, an extension of
standard topos. Such H − B topos will be cartesian and co-cartesian
closed, to wit, having both exponentals and co-exponentials.

For an H − B topos one can also define a language which would be
employed as a convenient mean for yielding statements on objects and
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arrows of such topos in question. And obviously an internal language of
H −B topos will contains elements both of kinds of toposes above.

So, for any H −B topos C the internal language is typed, with each
C-object as one type. Terms and their types are defined inductively:

(LT9) Each C-object A has a list of variables over A, x1, x2, x3, ... Every
variable over A is a term of type A.

(LT10) For any arrow f : A → B and term s type A, fs is a term
of type B,and term r type B, (fr)o(= for) is a term of type A.
Every arrow c : 1→ A with domain type 1 is itself a term of type
A (we will call it a constant of type A). ! means a constant for
identity arrow on 1.

(LT11) For every term s1 of type A and s2 of type B there is a term
〈s1, s2〉 of type A×B and a term [s1, s2] of type A+B.

(LT12) For every term s of type B and variable y of type A there is a
term (λy)s of type BA and a term s(λy) of type AB.

Now let us a term s has type B and all its free variables are in the list
y1, ..., yk, where the y

′s are variables over A1, ..., Ak respectively. Then s
refers to an arrow |s| : A1×...×Ak → B, which we call the interpretation
of s. The arrow |s| actually depends on the list of variables involved,
therefore we should show the list in the notation.

Let us use x̄ to abbreviate a list x1, ..., xn. Then A1, ..., An is the
list of types of the variables in the same order. A variable can only
appear in a list, but an object A will appear as many times as there are
variables over A in the list. For a term s of type B and a list x̄ including
all the free variables of s we write |s|x̄ : A1 × ... × Ak → B for the

interpretation of s relative to the list x̄ and |s|ox̄ : B
|s|ox̄→ A1 + ...+An for

co-interpretation of s relative to the list x̄. We always assume that lists
of variables include all those that are free in the terms we apply them
to. If s has no free variables then x̄ can be an empty list of variables,
and of course the product of an empty list of types is �.

Now we define inductively the interpretation relative to the lists:

(I9) For any list x̄ and variables xi in the list, |xi|x̄ is the ith projection

A1 × ...×An → Ai
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(I10) For any arrow f : A→ B, if s is a term of type A then |fs|x̄ is

A1 × ...×An
|s|x̄→ A

f→ B

and |fos|x̄ is

B
f−1

→ A
|s|ox̄→ A1 + ...+An

For any constant c, |c|x̄ is

A1 × ...×An → 1
c→ B

(I11) For any terms s1 of type A and s2 of type B, |〈s1, s2〉|x̄ is the pair
arrow to A×B induced by |s1|x̄ and |s2|x̄ while [s1, s2]x̄ is the pair
arrow from A+B induced by |s1|ox̄ and |s2|ox̄.

(I12) For any term s of type B, if the variable y over A is not in the list
x̄ then |(λy)s|x̄ is the transpose of |s|x̄,y : A1 × ...× An × A→ B,

i.e. an arrow |s|x̄,y : A1 × ... × An → BA, and |s(λy)|x̄ is the
co-transpose of |s|ox̄,y : B → A1 + ... + An + A, i.e. an arrow

|s|ox̄,y : AB → A1 + ...+An.

If the bound variable y is in the list x̄ that is an irrelevant coincidence.
Then we replace y in (λy)s and s(λy) by some variable over A neither
in s nor in the list x̄.

According to (LT12) for any term g of type BA and s of type A
there is a term ev(〈g, s〉) which will be abbreviated to g(s). Also for any
term g of type A1A2 and s of type A1 there is a term evo([g, s]) which
will be abbreviated to gos. We will use set builder notation for lambda
abstraction over Ω writing {x.A : s} instead of (λx.A)s and {x.A : s}o
instead of s(λx.A) when s has type Ω.

Formulas are the terms of type Ω. By (LT11)-(LT12) for any for-
mulas ϕ and ψ there are formulas ∧(ϕ, ψ),∨(ϕ, ψ),→ (ϕ, ψ),← (ϕ, ψ)
which we will write as ϕ∧ ψ, ϕ ∨ ψ, ϕ → ψ and ϕ ← ψ. There are also
formulas �,⊥,¬ϕ,� ϕ.

For any formula ϕ and variable y over any object A, we define the
formula (∀y.A)ϕ as an abbreviation for ∀A{y.A : ϕ} and (∀oy.A)ϕ as
∀A{y.A : ϕ}o. Thus (∀y.A)ϕ says that {y.A : ϕ} is all of A and (∀oy.A)ϕ
says that {y.A : ϕ}o is dually all of A. Its interpretation over a list of
variables x̄ follows the definitions. It is
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A1 × ...×An
|ϕ|x̄,y→ ΩA ∀A→ Ω

Ω
∀oA→ AΩ

||ϕ||x̄,y→ A1 + ...+An

if the variable y does not occur in the list x̄. If y is in the list it is first
replaced by some new variable. Note that y is bound in (∀y.A)ϕ and in
(∀oy.A)ϕ too.

The existential quantification of formula ϕ at a variable x can be
defined to be (∀w)((∀x)(ϕ → w) → w) while the co-existential quan-
tification can be defined to be (∀w)((∀x)(ϕ ← w) ← w),where w is a
variable over Ω not free in ϕ.

The extension of ϕ over a list of variables x̄ is the subobject A1×...×
An classified by |ϕ|x̄. We will write [x̄ : ϕ] for this extension intending
’all x̄ such that ϕ’. The co-extension of ϕ over a list of variables x̄ is the
subobject A1 + ...+An classified by |ϕ|x̄. We will write [x̄ : ϕ]o for this
co-extension intending ’all x̄ dually such that ϕ’.

A formula ϕ is true if its extension [x̄ : ϕ] is all of A1 × ... × An

when x̄ lists exactly the variables free in ϕ. A formula ϕ is called false
if its co-extension [x̄ : ϕ]o is all of A1 + ...+An when x̄ lists exactly the
variables free in ϕ.

A formula ϕ implies ψ if the extension of ϕ is contained in that of
ψ. A formula ϕ co-implies ψ if the co-extension of ϕ is contained in
that of ψ. More generally, for any finite set of formulas Γ, we will write
[x̄ : Γ] for the intersection of the extensions over x̄ of all formulas in Γ
and [x̄ : Γ]o for the join of the co-extensions over x̄ of all formulas in Γ.
In particular, [x̄ : ] = A1 × ... × An for the empty set of formulas and
[x̄ : ]o = A1 + ... + An for the empty set of formulas. Then Γ implies
ϕ iff [x̄ : Γ] ⊆ [x̄ : ϕ] and ϕ, while ϕ co-implies Γ iff [x̄ : Γ]o ⊆ [x̄ : ϕ]o,
when x̄ lists exactly the free variables in Γ and ϕ.

A sequent is an expression Γ : Δ where Γ,Δ are a finite (possibly
empty) sets of formulas. In the sequents Γ : Δ the antecedent Γ and the
succedent Δ cannot be sequences more than one-element simultaneously,
i.e., if the sequence Γ is a sequence more than one-element then the
sequence Δ can consists of at most one formula only and the other way
round. Think of Γ : Δ as a claim that either Γ imply the one-element
Δ or the one-element Γ co-imply Δ. At the same time both if in Γ and
Δ formulas as the main connectives contain ← and � (→ and ¬) then,
firstly, we should apply rules of inference to the formulas of Γ (Δ).
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Finally, we will describe H−B topos logic by means of the following
rules:

∗
ϕ : ϕ

∗
: �

∗
⊥: ϕ

Γ : Δ

Γ : Δ, ϕ
(: Thinning)

Γ : ϕ

Γ, ψ : ϕ
(Thinning :)

Γ : Δ

Γ(x/s) : Δ(x/s)
(Substitution :)

(for any term s free for x in
all the formulas)

Γ : Θ, ϕ ϕ,Δ : Σ

Γ,Δ : Θ,Σ
(Cut)

(if every variable free in ϕ is
free in Γ or in ϕ)

Γ, ϕ : Δ Γ, ψ : Δ

Γ, ϕ ∨ ψ : Δ
( ∨ :)

Γ : Δ, ϕ Γ : Δ, ψ

Γ : Δ, ϕ ∧ ψ
(: ∧ )

Γ, ϕ : ψ

Γ : ϕ→ ψ
(:→ )

ϕ : Γ, ψ

ϕ← ψ : Γ
(← :)

Γ, ϕ : ⊥
Γ : ¬ϕ (:¬)
� : Γ, ϕ

�ϕ : Γ
(� :)

Γ : ϕ

Γ : (∀x)ϕ(: ∀) Γ, ϕ : ψ

Γ, (∃x)ϕ : ψ
(∃ :)

(if the variable x is
not free in Γ or ψ)

ϕ : Γ

(∀ox)ϕ : Γ
(∀o :)

ϕ : Γ, ψ

ϕ : Γ, (∃ox)ψ (: ∃o) (if the variable x is
not free in Γ or ψ)

4 Correctness of H − B topos logic

Variables that are not free in a term have no effect on its interpretation
exept in determining the domain, as it follows from lemma below.

Lemma 5 (the superfluous variable lemma ) Let s be ay term of
type A. Let x̄ be a list of variables over A1 × ...×An and A1 + ...+An,
including those free in s. Let ȳ be a list of variables over B1 × ... × Bk
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and B1+ ...+Bk, including all the variables of x̄. Then |s|ȳ is the arrow

B1 × ...×Bk
proj→ A1 × ...×An

|s|ȳ→ A

and ||s||ȳ is the arrow

A
||s||ȳ→ A1 + ...+An

inj→ B1 + ...+Bk

where proj is the projection of B1× ...×Bk on to those factors that are
in A1× ...×An, while inj is the injection from A1+ ...+An in to those
factors that are in B1 + ...+Bk.

Proof. This is immediate if s is a variable and easy for terms given by
(LT2),(LT3) and (LT6),(LT7). The result holds for terms (λy)s since the
obvious projection of B1× ...×Bk×A to A1× ...×An is just (proj)×1A
and the transpose of any h ◦ (k × 1A) is h̄ ◦ k. In a dual case the result
holds for terms (λy)s since the injection A1+ ...+An to B1+ ...+Bk+A
is (inj) + 1A and the co-transpose of any (k + 1A) ◦ ho is k ◦ ho.

Corollary 6 For any formula ϕ and list x̄ including all its free vari-
ables,and list ȳ including all variables in x̄, the extension [ȳ : ϕ] is the
pullback along proj of [x̄ : ϕ] while the co-extension [ȳ : ϕ]o is the pushout
along inj of [x̄ : ϕ]o. Thus, if Γ : ϕ is true then [ȳ : Γ] ⊆ [ȳ : ϕ] for every
list ȳ including all variables free in the sequent. Respectively, if ϕ : Γ is
false then [ȳ : ϕ]o ⊆ [ȳ : Γ]o for every list ȳ including all variables free
in the sequent.

Lemma 7 (the substitution lemma) Consider a term s of type B
and suppose that x̄ contains every variable free in s. For each variable
xi in x̄ let ci be a term free for xi in s. Let s(x̄/c̄) denote the result of
substituting each ci for xi in s. Suppose that a list ȳ of variables over
B1× ...×Bk and B1+ ...+Bk includes all variables free in s(x̄/c̄). Then
|s(x̄/c̄)|ȳ is the arrow

B1 × ...×Bk

〈c1,...,cn〉ȳ→ A1 × ...×An
|s|x̄→ B

where 〈c1, ..., cn〉ȳ is the n-tuple of the arrows |ci|ȳ, and ||s(x̄/c̄)||ȳ is the
arrow

B
||s||x̄→ A1 + ...+An

[c1,...,cn]ȳ→ B1 + ...+Bk

where [c1, ..., cn]ȳ is the n-tuple of the arrows ||ci||ȳ.
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Proof. If s is a variable then the theorem merely repeats the definitions
of 〈c1, ..., cn〉ȳ , [c1, ..., cn]ȳ . From there, the proof is virtually the same
as that of the superfluous variable lemma.

Corollary 8 The extension [ȳ : ϕ(x̄/c̄)] is the pullback of [x̄ : ϕ] along
〈c1, ..., cn〉ȳ , the extension [ȳ : ϕ(x̄/c̄)]o is the pushout of [x̄ : ϕ]o along
[c1, ..., cn]ȳ , The same holds for a finite set of formulas, so if [x̄ : Γ] ⊆
[x̄ : ϕ] then

[ȳ : Γ(x̄/c̄)] ⊆ [ȳ : ϕ(x̄/c̄)]

and if [x̄ : ϕ]o ⊆ [x̄ : Γ]o then

[ȳ : ϕ(x̄/c̄)]o ⊆ [ȳ : Γ(x̄/c̄)]o

The structural rules are correct by simple properties of inclusion and
intersection. We have [x̄ : ϕ] ⊆ [x̄ : ϕ], [x̄ : ϕ]o ⊆ [x̄ : ϕ]o as well as [x̄ :
] ⊆ [x̄ : �], [x̄ : ]o ⊆ [x̄ :⊥]o respectively and if [x̄ : Γ] ⊆ [x̄ : ϕ], [x̄ : ϕ]o ⊆
[x̄ : Γ]o then [x̄ : Γ, ψ] ⊆ [x̄ : ϕ], [x̄ : ϕ]o ⊆ [x̄ : Γ, ψ]o respectively. The
preceding corollary shows that substitution is correct.

For the cut rules the free variables restriction guarantees that the list
x̄ of variables free in the sequent Γ : ϕ,ϕ : Γ is also the list of variables
free in Γ, ψ : ϕ and ϕ : Γ, ψ respectively and includes all variables free
in Γ : ψ,ψ : Γ respectively. Given [x̄ : Γ] ⊆ [x̄ : ψ], [x̄ : ψ]o ⊆ [x̄ : Γ]
it is easy to see that [x̄ : Γ, ψ] ≡ [x̄ : Γ], [x̄ : Γ, ψ]o ≡ [x̄ : Γ]o. And
in that case [x̄ : Γ, ψ] ⊆ [x̄ : ϕ], [x̄ : ϕ]o ⊆ [x̄ : Γ, ψ]o itself says that
[x̄ : Γ] ⊆ [x̄ : ϕ], [x̄ : ϕ]o ⊆ [x̄ : Γ]o.

For the connective rule for conjunction we have [x̄ : Γ] ⊆ [x̄ : ϕ], [x̄ :
ϕ]o ⊆ [x̄ : Γ]o and [x̄ : Γ] ⊆ [x̄ : ψ], [x̄ : ψ]o ⊆ [x̄ : Γ]o iff we have
[x̄ : Γ] ⊆ [x̄ : ϕ] ∩ [x̄ : ψ], [x̄ : ϕ]o ∪ [x̄ : ψ]o ⊆ [x̄ : Γ]o.For the connective
rule for the disjunction we have [x̄ : Γ, ψ] ⊆ [x̄ : ϕ], [x̄ : ϕ]o ⊆ [x̄ : Γ, ψ]o

and [x̄ : Γ, χ] ⊆ [x̄ : ϕ], [x̄ : ϕ]o ⊆ [x̄ : Γ]o iff we have [x̄ : Γ, ψ] ∪ [x̄ :
Γ, χ] ⊆ [x̄ : ϕ], [x̄ : ϕ]o ∪ [x̄ : ψ]o ⊆ [x̄ : Γ]o.

For the correctness of →- and ←- rules we need the following theo-
rem:

Theorem 9 For any sub-objects Q,R,and s : S � A, we have (S∩Q) ⊆
R iff S ⊆ (Q =⇒ R) and (S ∪Q) ⊆ R iff S ⊆ (Q ⇐= R).

Proof. Since for any sub-objects q : Q � A and r : R � A, we
define Q =⇒ R to be the sub-object classified by χq → χr, then
S ⊆ (Q =⇒ R) is equivalent to→ ◦〈χq, χr〉◦s = �s. This is equivalent
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to (χq◦s) ≤1 (χr◦s) and so to (S∩Q) ⊆ (S∩R), which is easily equivalent
to (S ∩Q) ⊆ R.

S ⊆ (Q ⇐= R) is equivalent to ← ◦〈χ̄q, χ̄r〉 ◦ s = ⊥s and this
is equivalent to (χ̄q ◦ s) ≥ (χ̄r ◦ s) (≥ is the dual of ≤1) and so to
(S ∪Q) ⊆ (S ∪R),which is easily equivalent to (S ∪Q) ⊆ R.

The correctness of (: ∀)- and (∀o :)-rules is by the following theorem:

Theorem 10 For any s : S � B,S ⊆ (∀a)R iff S × A ⊆ R and
(∀oa)R ⊆ S iff R ⊆ S +A.

Proof. For any E, the name ′�′
E : 1 → ΩE represents the maximal

sub-object 1E : E � E. Because every arrow from 1 is monic, ′�′
E itself

has a classifying arrow ∀E : ΩE → Ω; that is ∀E takes a sub-object of E
to true iff it is the maximal sub-object.

Given any relation r : R → B × A the universal quantification of r
over A gives us the largest sub-object of B, (∀a)r : (∀a)R � B that is
r-related to all of A and (∀a)R is the sub-object classified by ∀A ◦ χ̂r

(where χ̂r is an arrow χ̂r : B → ΩA). We have S ⊆ (∀a)R iff χ̂r ◦ s =
′�′

A◦!S . Transposing both sides gives χr ◦ (s × 1A) = �S×A. Since for
any sub-object u : U � A with classifying arrow χu, and v : V � A,
we have V ⊆ U iff χu ◦ v = �V , then we obtain that S ×A ⊆ R.

In a dual case for any E, the co-name ’⊥E ’:
E Ω → 1 represents

the minimal super-object 1E : E � E. Because every arrow from 1 is
monic, ’⊥E ’ itself has a classifying arrow ∀oE : Ω→ EΩ; that is ∀oE takes
a super-object of E to false iff it is the minimal super-object.

Given any co-relation ro : R→ B +A the dual universal quantifica-
tion of ro over A gives us the smallest super-object of B, (∀a)or0 : B �
(∀oa)R that is ro-related to all of A and (∀oa)R is the super-object
classified by χ̂o

r ◦ ∀oA (where χ̂o
r is an arrow χ̂o

r : B → AΩ). We have
(∀a)R ⊆ S iff s−1 ◦ χ̂o

r = !oS ◦ ′ ⊥A ′ (where !oS : S → 0). Co-transposing
both sides gives (s−1 + 1A) ◦ χ̄r0 =⊥S+A . Since dually for any super-
object u : A � U with classifying arrow χ̄u, and v : A � V, we have
U ⊆ V iff v ◦ χ̄u =⊥V , then we obtain that R ⊆ S +A.

Since the rules for ¬, � and (∃x), (∃ox) can be derived from rules that
we have proved correct, they are correct too.

Tte final question is concerned with the completeness of internal logic
of H−B-topos. The completeness of the structural rules and connective
rules means that they are complete in this sense: if in every H−B topos
every sequent with the logical form of Γ : ϕ or ϕ : Γ is deducible from
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the rules and axioms of H−B topos logic. But taking into account that
H −B toposes are practically unexplored then we have to postpone the
analysis of this issue especially because even the standard topos logic
itself is not complete for each individual topos (cf.[4, p.139]).
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Abstract

We propose in this paper a generalization of fibring of propo-
sitional logic systems within the framework of category theory.
Specifically, we generalize the categorial construction of fibring by
using arbitrary colimits and limits. We prove that limits and col-
imits preserve completeness (under reasonable conditions) in the
category of propositional Hilbert calculi endowed with general al-
gebraic semantics, generalizing a well-known result in the literature
of combining logics.

1 Introduction

Combining logics is still a young subject in contemporary logic.1 It
offers a natural philosophical interest, given the possibility of defining
mixed logic systems in which the logical operators satisfy laws of differ-
ent nature. Besides the interest coming from Philosophy, there are also
pragmatical and methodological reasons which justify considering com-
bined logics. For instance, in Computer Science it can be required the
integration of several logic systems into a homogeneous environment, in
the context of knowledge representation.

Several interesting questions in the philosophy of logic naturally arise
concerning this topic: by asuming a pluralist position, are there logics
which are incompatible? Is it possible to combine different logics by
producing new coherent logic systems? If it is possible to compose logics,
would it also be possible to decompose them? By decomposing a given
logic into several fragments, would it be possible to recover the original

1For general references on combining logics see [13] and [14].
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logic by combining such fragments? What kind of metaproperties of
given logics can be transferred to their combinations?

As observed in [12], an illustrative and early example of combin-
ing logics can be found in the well-known “ought-implies-can” thesis
attributed to I. Kant, according to which, if an agent ought to do an
act, then it has to be logically possible to do it. This problem could
be analyzed from the perspective of combining logics, specifically con-
nected to accepting properties of combining deontic and alethic logics.
In formal terms, the “ought-implies-can” thesis concerns sentences of
the form Op → ♦p, where O represents the deontic “obligatory” op-
erator, the diamond ♦ denotes the alethic “possibly” operator, and p
is a proposition (representing an action). Thus, this principle means
that if an action is obligatory then it must be possible. According to
another interpretations, what Kant allegedly believed is that we can-
not be obliged to do something if we are not capable of acting in that
way. This would be formalized by the contrapositive of the previous for-
mula, namely ¬♦p → ¬Op, meaning that “cannot-implies-has no duty
to”. Formulas involving modalities of different kind (or, more generally,
connectives from different logics) naturally arise when combining logics,
and are called bridge principles in [12].2

The first methods for combining logic systems were products of logics,
independently introduced by K. Segerberg in [27] and by V. Šehtman
in [33]; fusion, introduced by R. Thomason in [32]; and fibring, intro-
duced by D. Gabbay in [24], Observe that all of these methods were
defined exclusively to combine modal logics. It should be mentioned
that M. Fitting in 1969 already gave early examples of fusion of modal
logics, anticipating the notion of fusion (see [23]).

Other combination mechanisms where afterwards introduced: in the
context of formal software specification, M. Finger and D. Gabbay in-
troduced temporalization ([22]), which was generalized in [9] towards the
method called parameterization.

All of these methods are designed for creating new logic systems
from given ones, with the aim of integrating different aspects of them.
This situation can appear in Computer Science, for instance in software
engineering and security. Specifically, in formal specification and veri-
fication of algorithms and protocols it is useful and convenient to work

2This name has been introduced in the literature to denote a statement that
binds factualities to norms, which appears in the context of David Hume’s “is-ought
problem”.
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with several logics. This direction (or approach) to combining logic is
what is called in [11] a process of splicing logics. In the terminology
introduced in [14], it would be a synthesis process, in which a logic is
synthesized from given ones.

However, it would be reasonable to expect that a method for com-
bining logics would work in the opposite directions: hence, a logic that
one wants to investigate could be decomposed into factors of lesser com-
plexity. To give an example, a bimodal alethic-deontic logic could be
decomposed into its alethic and deontic fragments. It would be inter-
esting to see whether the given logic is the least extension of its factors,
or if additional bridge principles would have to be added in order to
recover the original system, a problem which has been analyzed in [16].
This approach to combining logics, in which a given logic is decomposed
into (possibly) simpler factors, is what is called in [11] a process of split-
ting logics. According to the terminology introduced in [14], it would
correspond to an analysis process, in which a given logic is analyzed
into simpler components. An important method for splitting logics is
possible-translations semantics, introduced by W. Carnielli in [10].

Many of the early splicing methods for combining logics mentioned
above have been generalized by the categorial (a.k.a. algebraic) notion
of fibring introduced by A. Sernadas, C. Sernadas and C. Caleiro in [28].
Indeed, this framework dramatically improved the scope of these tech-
niques by means of (universal) categorial constructions. From this, it is
possible to combine wider classes of logics besides modal logics, see for
instance [28, 34, 30, 31, 7, 18, 21, 8, 16, 19, 29, 17].

The interplay between the general framework of category theory and
abstract logic has shown to be extremely useful. For instance, E. de
Souza, A. Costa-Leite and D. Dias consider in [20] a functor between
categories of suitable logics in order to provide, in an uniform way, a
natural paraconsistent expansion of any given logic. In the realm of
combining logics, the work of A. Sernadas and his collaborators in for-
malizing fibring for several classes of logic systems by using category
theory clarifies the fact that fibring can be seen as a particular kind of
colimit in the category in which the fibred logics are represented.

In fact, in the ‘classical’ approach to categorial fibring, there are two
possibilities for fibring logics: to perform a free (or unconstrained) fib-
ring, without sharing of connectives, or to perform a constrained fibring,
by sharing some connectives. In terms of category theory, the former is
characterized as a coproduct in the underlying category of logic systems.
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The latter is constructed by a cocartesian lifting from the category of
signatures. In most cases it is possible to substitute the cocartesian lift-
ing by a pushout in the underlying category of logic systems (cf. [34]).
Therefore, fibring two logics, from the point of view of category theory,
consists basically of coproducts or pushouts in the category in which the
logic systems are represented.

The main goal of this paper is to extend the standard notion of cat-
egorial fibring to arbitrary colimits and limits in appropriate categories
of logic systems. In particular, when the category of logic systems is
composed by systems with both semantic and syntactic consequence re-
lations, it is desirable to preserve completeness through the combination
process. This important question will be addresed here.

As a first approach to the question of extending fibring to other cate-
gorial constructions, in this paper we concentrate our attention in three
categories of logic systems: Hil, Int, and Lsp, which were introduced
in [34]. The first consists of (propositional) Hilbert calculi in which the
notions of local (derivations) and global (proofs) inferences are distin-
guished. The second consists of the semantic (algebraic) counterpart of
Hilbert calculi: the category of interpretation systems, which generalizes
Kripke frames. The third category consists of logic system presentations
(l.s.p.’s) where the objects are simultaneously a Hilbert calculus as well
as an interpretation system. Clearly, a l.s.p. is interesting when both
semantic and syntactic entailments coincide.

The framework for representing logics proposed in [34], both at the
proof-theoretical level (by means of Hilbert calculi) and at the semanti-
cal level (by means of interpretation systems) is cleary oriented to modal
logics. Indeed, as mentioned above, two notions of semantical entailment
are considered: the global ones, which deal with global truths (formu-
las valid in every state or world), and the local ones, whose trueness is
preserved pointwise (from world/state to world/state). Accordingly, the
Hilbert calculi have two kind of inference rules: the proof rules, which
represent theoremhood, and the derivation rules, apt to deal with infer-
ences from premisses. This difference is clear in the context of modal
logics, which are usually presented in terms of global semantics and
theoremhood instead of local semantics and derivations from premisses.
The kind of semantical structures adopted in [34] is formed by alge-
bras defined over subsets of the powerset ℘(U) of a given universe U .
This framework is slightly more general than the one proposed in [28],
in which the algebras are defined exclusively over the powerset ℘(U) of
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U . It is worth noting that, in [14, Chapter 3], general algebras were
considered instead of algebras defined over powersets.

In [34], general conditions which guarantee the preservation of com-
pleteness of l.s.p.’s by fibring were found. The main result of this paper
states that the same conditions ensure the preservation of completeness
by arbitrary colimits. On the other hand, it is shown that completeness
is preserved by arbitrary limits. These stimulating results suggest that it
is possible to obtain complex systems of logics through specifications by
diagrams, taking limits or colimits, and completeness will be preserved
under reasonable assumptions.

2 The category of signatures

Propositional signatures constitute the formal basis to describe terms in
abstract algebras, as well as propositional languages for logic systems.
We begin by briefly analyze the category Sig of propositional-based
signatures, on which all the logic systems considered in this paper are
based. We assume that the reader is familiar with the (very) basic
notions from category theory, such as limits, colimits and functors.3

In what follows, Set (Cls, respectively) denotes the category of sets
(classes, resp.) and functions between them.

Definition 2.1 (Propositional signatures). A propositional signature is
a denumerable family of sets C = {Ck}k∈N such that Ck ∩ Ci = ∅ for
every i �= k. A signature morphism h : C−→C ′ between signatures is a
family h = {hk}k∈N of functions hk : Ck−→C ′

k. The composition h′ ◦h :
C−→C ′′ of two signature morphisms h : C−→C ′ and h′ : C ′−→C ′′ is
given by the family {h′k ◦hk}k∈N. For any signature C the identity arrow
idC : C−→C is given by the family {idCk

}k∈N, where idCk
: Ck → Ck is

the indentity function.

Observe that propositional signatures and their morphisms, with
composition and identity morphisms as described in Definition 2.1, con-
stitute the comma category Set/N, which is (small) complete and co-
complete. That is, it contains the limits and colimits of every (small)
diagram.

In order to describe propositional logic systems and their combi-
nations, it will be convenient to consider schema formulas. This will

3Good general references to category theory are [25] and [26].
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be done by following the approach introduced by A. Sernadas et al.
in [28], by using a set of variables (called schema variables) which acts
as metavariables for denoting arbitary (concrete) propositional formu-
las. Observe that schema variables are not the same as propositional
variables: while the latter are concrete formulas (usually called atomic
fomulas), the former are not formulas, but schema formulas. The in-
tended meaning of a schema formula is that it represents an arbitary
formula of a given language. The distinction between schema formulas
and formulas is useful in order to describe process for combining logics,
but this is also interesting for describing propositional logic systems: it
avoids, for instance, the necessity of using the uniform substitution in-
ference rule in the context of Hilbert calculi (see Definition 3.4 below).4

Definition 2.2 (The category Sig of propositional signatures over Ξ).
Let us fix from now on a denumerable set Ξ = {ξk : k ∈ N} of symbols
called schema variables. The category Sig of signatures over Ξ is the
full subcategory of the category of signatures described in Definition 2.1,
by considering as objects signatures C such that Ck ∩ Ξ = ∅ for every
k ∈ N.

It is easy to see that Sig is (small) complete and cocomplete. This is
a fundamental feature of Sig given that the limits and colimits in all the
categories of logics to be considered along this paper are based on limits
and colimits, respectively, of the underlying signatures over Ξ. When
there is no risk of confusion, given a signature morphism h = {hk}k∈N,
the subscript k in hk will be omitted. Clearly a morphism h : C−→C ′

is monic iff each hk is an injective map, and it is epic iff each hk is a
surjective map.

Definition 2.3 (Schema formulas). Let C be a signature in Sig. Let
CΞ be the propositional signature obtained from C by adding Ξ to C0.

5

The set of schema formulas over C is the CΞ-algebra freely generated
by C0 ∪ Ξ, which will be denoted by L(C,Ξ). That is, L(C,Ξ) is the
least CΞ-algebra satisfying:

C0 ∪ Ξ ⊆ L(C,Ξ);

4In [16] the notion of schema variables for schema formulas was generalized to
schema variables for contexts in formal sequent calculi, in order to consider their
combination by fibring. This technique was extended in [17] to fibring of formal
hypersequent calculi.

5Observe that CΞ is not an object in Sig, given that (CΞ)0 ∩ Ξ = Ξ �= ∅.
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if c ∈ Ck (for k > 0) and γ1, . . . , γk ∈ L(C,Ξ) then c(γ1, . . . , γk) ∈
L(C,Ξ).

The set of formulas over C (which is the C-algebra freely generated by
C0) will be denoted by L(C).

As usual, a morphism h : C−→C ′ induce a (unique) function

ĥ : L(C,Ξ)−→L(C ′,Ξ)

defined inductively as follows:

ĥ(ξ) = ξ if ξ ∈ Ξ;

ĥ(c) = h0(c) if c ∈ C0;

ĥ(c(γ1, . . . , γk)) = hk(c)(ĥ(γ1), . . . , ĥ(γk)), for c ∈ Ck and k > 0.

2.1 Limits in Sig

Recall that a (small) diagram in a category C is a pair D = 〈O,M〉,
where O = {Oi}i∈I is a small (possibly empty) family of objects of
C, and M is a (possibly empty) set of morphisms in C contained in⋃

i,j∈I C(Oi, Oj).

Let D = 〈{Ci}i∈I ,M〉 be a diagram in Sig. The limit of D in Sig is
〈C, {hi}i∈I〉 where

Ck = {(ci)i∈I ∈
∏

i∈I C
i
k : if Ci h �� Cj is in M then cj =

hk(ci)} for all k ∈ N.

hi : C−→Ci, hik((ci)i∈I) = ci.

In particular, the terminal object in Sig is 1 given by 1k = {∗k} for
every k ∈ N. For any signature C, the unique morphism !C : C−→1 is
given by !C(c) = ∗k if c ∈ Ck. The product C of a family {Ci}i∈I is
given by Ck =

∏
i∈I C

i
k.

2.2 Colimits in Sig

Let D = 〈{Ci}i∈I ,M〉 be a diagram in Sig. For each k ∈ N consider the
set Ck =

⋃
i∈I C

i
k × {i} and the equivalence relation: (c, i) ∼k (c′, j) iff

there exist f1, . . . , fn, g1, . . . , gm inM (possibly n = 0 or m = 0) with
Dom(fn) = Dom(gm) and there exists c ∈ Dom(fn

k ) = Dom(gmk ) such
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that c = (f1
k ◦ · · · ◦ fn

k )(c) and c′ = (g1k ◦ · · · ◦ gmk )(c). For (c, i) in Ck let
(c, i)/∼k

be its equivalence class under ∼k and let Ck = Ck/∼k
be the

quotient of Ck under ∼k. The colimit of D in Sig is 〈C, {hi}i∈I〉 where
C = {Ck}k∈N;
hi : Ci−→C, hik(c) = (c, i)/∼k

for all i ∈ I, k ∈ N and c ∈ Ci
k.

Therefore hi((f1 ◦ · · · ◦ fn)(c)) and hj((g1 ◦ · · · ◦ gm)(c)) always coincide
in Ck, whenever f

1, . . . , fn, g1, . . . , gm belongs to M and n,m ≥ 0.

3 The category of Hilbert calculi

In this section we analyze the categoryHil of propositional-based Hilbert
calculi as defined in [34]. In this context there exist two kinds of infer-
ences: the local entailment and the global entailment. The latter uses
proof rules (those in the set P below) while the former uses derivation
rules (those in the set D below) plus proof rules applied to theorems.
These two kinds of inferences appears frequently in complex inference
systems such as modal logic and first-order logic, in which the necessita-
tion rule or the generalization rule only can be applied to theorems (see
for instance [28, 34]). On the other hand, in some cases (propositional
classical logic, for instance) there is no distinction between proofs and
derivations. A detailed discussion on local and global inferences can be
found in [14, Section 3.1].

From now on, ℘fin(X) denotes the set of finite subsets of a given set
X.

Definition 3.1. A Hilbert calculus is a triple 〈C,P,D〉 such that C is
a signature, P ⊆ ℘fin(L(C,Ξ))× L(C,Ξ) and D ⊆ P ∩ ((℘fin(L(C,Ξ)) \
∅)× L(C,Ξ)).

As observed at the beginning of Section 2, elements in Ξ play the
rôle of “arbitrary” formulas, which can be replaced through substitution
maps σ : Ξ−→L(C,Ξ) when an inference rule is applied (see Defini-
tion 3.2 below). Observe that any substitution σ : Ξ−→L(C,Ξ) can
be extended to a unique endomorphism σ̄ : L(C,Ξ)−→L(C,Ξ) defined
inductively as follows:

σ̄(ξ) = σ(ξ) if ξ ∈ Ξ;

σ̄(c) = c if c ∈ C0;
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σ̄(c(γ1, . . . , γk)) = c(σ̄(γ1), . . . , σ̄(γk)), for c ∈ Ck and k > 0.

Definition 3.2. Let Γ ∪ {δ} ⊆ L(C,Ξ) be a set of schema formulas.

(1) We say that δ is provable from Γ in the Hilbert calculus 〈C,P,D〉,
denoted by Γ �p〈C,P,D〉 δ, if there exists a finite sequence γ1, . . . , γn in

(L(C,Ξ) such that γn is δ and, for every 1 ≤ i ≤ n, either

γi ∈ Γ, or

there exists a rule 〈Δ, ψ〉 in P and a substitution map
σ : Ξ−→L(C,Ξ) such that σ̄(Δ) ⊆ {γ1, . . . , γi−1} and σ̄(ψ) = γi.

We say that δ is provable in 〈C,P,D〉 if ∅ �p〈C,P,D〉 δ.

(2) We say that δ is derivable from Γ in the Hilbert calculus 〈C,P,D〉,
denoted by Γ �d〈C,P,D〉 δ, if there exists a finite sequence γ1, . . . , γn in

(L(C,Ξ) such that γn is δ and, for every 1 ≤ i ≤ n, either

γi ∈ Γ, or

δi is provable in 〈C,P,D〉, or
there exists a rule 〈Δ, ψ〉 in D and a substitution map
σ : Ξ−→L(C,Ξ) such that σ̄(Δ) ⊆ {γ1, . . . , γi−1} and σ̄(ψ) = γi.

Example 3.3 (Modal Hilbert calculi). Let C be a modal signature such
that C0 = V AR = {pn : n ∈ N} (a denumerable set of propositional
variables); C1 = {¬,�}; C2 = { ⇒ }; Cn = ∅ for n > 2.

(1) A Hilbert calculus for the alethic modal systemK isHK = 〈C,PK , DK〉
such that PK consists of the following rules:6

〈∅, ξ1 ⇒ (ξ2 ⇒ ξ1)〉
〈∅, (ξ1 ⇒ (ξ2 ⇒ ξ3))⇒ ((ξ1 ⇒ ξ2)⇒ (ξ1 ⇒ ξ3))〉
〈∅, (¬ξ1 ⇒ ξ2)⇒ ((¬ξ1 ⇒ ¬ξ2)⇒ ξ1)〉
〈∅,�(ξ1 ⇒ ξ2)⇒ (�ξ1 ⇒ �ξ2)〉
〈{ξ1}, {�ξ1}〉
〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2〉

6As usual, we will adopt infix notation, writing (ψ ⇒ ϕ), or even ψ ⇒ ϕ, instead
of ⇒ (ψ,ϕ). Moreover, we will write ¬ψ and �ψ instead of ¬ (ψ) and � (ψ).
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and DK = { 〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2〉 }.
(2) A Hilbert calculus for the standard deontic system KD is HKD =
〈C,PKD, DKD〉 such that PKD = PK∪{ 〈∅,�ξ1 ⇒ ¬�¬ξ1〉 } andDKD =
DK .

Definition 3.4. The category Hil of Hilbert calculi is defined as follows:

Objects: Hilbert calculi 〈C,P,D〉.
Morphisms: A morphism h : 〈C,P,D〉−→〈C ′, P ′, D′〉 in Hil is
given by a morphism h : C−→C ′ in Sig such that:

– 〈Γ, δ〉 ∈ P implies that ĥ(Γ) �p〈C′,P ′,D′〉 ĥ(δ);

– 〈Γ, δ〉 ∈ D implies that ĥ(Γ) �d〈C′,P ′,D′〉 ĥ(δ).

Composition and identity arrows: Inherited from Sig.

Definition 3.5. The forgetful functor N : Hil−→Sig is given by
N(〈C,P,D〉) = C and N(h) = h.

Proposition 3.6. The forgetful functor N has a left adjoint N : Sig−→Hil.

Proof. For every signature C consider the Hilbert calculus N(C) =
〈C, ∅, ∅〉. Then 〈idC ,N(C)〉 is N-universal for C. For ifH ′ is a Hilbert cal-
culus and h : C−→N(H ′) is a morphism in Sig then h∗ = h : N(C)−→H ′

is the unique morphism in Hil such that

C
idC��

h ��

N(N(C))

N(h∗)
��

N(H ′)

commutes in Sig.

This means that, if Hi = 〈Ci, P i, Di〉 is a Hilbert calculus and fi :
C−→Ci is a monic in Sig (for i = 1, 2) then the pushout in Hil of the
diagram

N(C)
f1

��

f2

��
H1 H2
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is the fibring of H1 and H2 constrained by fi : C−→Ci (i = 1, 2) (cf.
[6] and [34]). Thus, unconstrained fibrings (when C = ∅) are coprod-
ucts, and constrained fibrings are pushouts (cf. [28] and [34]). We will
prove now the existence in Hil of arbitrary (small) limits and colimits,
extending the notion of fibring in Hil.

3.1 Limits in Hil

As discussed in Section 1, there is a way of decomposing a logic system
by a splitting or an analysis process. This kind of process could be rep-
resented by a limit in the corresponding category of logics. In particular,
this could be done in the category Hil of Hilbert calculi. With this aim
in mind, in this section it will be proven that Hil is (small) complete,
by showing how to construct the limit of any given diagram.

Let D = 〈{Hi}i∈I ,M〉 be a diagram in Hil, where Hi = 〈Ci, P i, Di〉
for each i ∈ I. The limit of D in Hil is 〈H, {hi}i∈I〉 where H = 〈C,P,D〉
is defined as follows:

〈C, {hi}i∈I〉 is the limit in Sig of 〈{Ci}i∈I ,M〉;
P = {〈Γ, δ〉 ∈ ℘fin(L(C,Ξ)) × L(C,Ξ) : ĥi(Γ) �pHi

ĥi(δ) for all
i ∈ I};
D = {〈Γ, δ〉 ∈ (℘fin(L(C,Ξ)) \ ∅) × L(C,Ξ) : ĥi(Γ) �dHi

ĥi(δ) for
all i ∈ I}.

Observe that D ⊆ P , hence H is indeed a Hilbert calculus.

Proposition 3.7. The pair 〈H, {hi}i∈I〉 defined above is the limit in
Hil of D.
Proof. Note that each hi : H−→Hi is in fact a morphism in Hil such
that h ◦ hi = hj for all h : Hi−→Hj in M. Let H ′ = 〈C ′, P ′, D′〉 be a
Hilbert calculus and let gi : H ′−→Hi for every i ∈ I such that h◦gi = gj

for all h : Hi−→Hj in M. Since C is the limit in Sig of 〈{Ci}i∈I ,M〉
there exists an unique morphism h′ : C ′−→C in Sig such that hi◦h′ = gi

for all i ∈ I, therefore

L(C ′,Ξ)
̂h′

��

ĝi ��

L(C,Ξ)

̂hi

��
L(Ci,Ξ)
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commutes in Set for all i ∈ I. Let 〈Γ, δ〉 ∈ P ′. Since gi : H ′−→Hi in Hil
then ĝi(Γ) �pHi

ĝi(δ) for each i ∈ I, that is, ĥi(ĥ′(Γ)) �pHi
ĥi(ĥ′(δ)) for

each i ∈ I. By definition of P we infer that ĥ′(Γ) �pH ĥ′(δ). Analogously,

if 〈Γ, δ〉 ∈ D′ then ĥ′(Γ) �dH ĥ′(δ). Hence h′ : H ′−→H is a morphism in
Hil such that

H ′ h′
��

gi ��

H

hi

��
Hi

commutes in Hil for all i ∈ I. Clearly h′ is unique, by the universal
property of C, thus H is the limit in Hil of D.

Corollary 3.8. Let D be a diagram in Hil and let H = 〈C,P,D〉 be
its limit with morphisms hi, for i ∈ I. Let Γ ∪ {δ} ⊆ L(C,Ξ) be a set
of schema formulas. Then Γ �pH δ iff ĥi(Γ) �pHi

ĥi(δ) for all i ∈ I, and

Γ �dH δ iff ĥi(Γ) �dHi
ĥi(δ) for all i ∈ I.

Limits of Hilbert calculi can be interesting, as the following examples
show.

Example 3.9. As a particular case of the construction of limits given
in the proof of Proposition 3.7, the product of a family {Hi}i∈I in Hil
is 〈H, {hi}i∈I〉 where H = 〈C,P,D〉 is defined as follows:

〈C, {hi}i∈I〉 is the product in Sig of {Ci}i∈I ;
P = {〈Γ, δ〉 ∈ ℘fin(L(C,Ξ)) × L(C,Ξ) : ĥi(Γ) �Hi

p ĥi(δ) for all
i ∈ I};
D = {〈Γ, δ〉 ∈ (℘fin(L(C,Ξ)) \ ∅) × L(C,Ξ) : ĥi(Γ) �Hi

d ĥi(δ) for
all i ∈ I}.

In particular, the terminal object in Hil is H1 = 〈1, P1, D1〉 where 1 is
the terminal signature in Sig (see the end of Subsection 2.1) and

P1 = ℘fin(L(1,Ξ))× L(1,Ξ);

D1 = (℘fin(L(1,Ξ)) \ ∅)× L(1,Ξ).

For any H = 〈C,P,D〉, the unique morphism !H : H−→H1 is given by
!C : C−→1.
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Remark 3.10. From the perspective of combining logics, a product
of Hibert calculi could be seen as a splitting of the product into its
factors, the canonical projections being translations between them. The
relationship between products of logics and splitting logics by means of
traslations between them was already investigated in [4] (see also [5]).
The latter establishes a link between category theory and the splitting
method of possible-translations semantics mentioned in Section 1.

Example 3.11. Consider the well-known hierarchy of da Costa’s para-
consistent calculi C = {Cn}n∈N, where C0 is propositional classical logic
(see, for instance, [15]). By the very definition, Th(C0) ⊃ Th(C1) ⊃ · · ·,
where Th(Cn) denotes the set of theorems of Cn. An interesting question
is how to axiomatize the so-called limit of the hierarchy C, a calculus
Clim such that Th(Clim) =

⋂
n∈N Th(Cn) (see [15]). However, it is inter-

esting to note that in fact Clim appears in Hil as the limit of C (together
with the respective embeddings). Consider for each n ∈ N the signature
Cn
0 = {pnk : k ∈ N}, Cn

1 = {¬n}, Cn
2 = {⇒n,∧n,∨n}, and Cn

k = ∅
if k > 2, as well as the morphism gn : Cn+1−→Cn, gn0 (p

n+1
k ) = pnk ,

gn1 (¬n+1) = ¬n and gn2 (c
n+1) = cn for all cn+1 ∈ Cn+1

2 . Define a Hilbert
calculus Hn = 〈Cn, Pn, Dn〉 corresponding to Cn (identifying local and
global inferences, cf. [7]). Thus gn : Hn+1−→Hn is a morphism in Hil
and D = 〈{Hn}n∈N, {gn}n∈N〉 is a diagram with limit H = 〈C,P,D〉
such that C0 = {pk : k ∈ N}, C1 = {¬}, C2 = {⇒,∧,∨}, Ck = ∅ if
k > 2, with the obvious morphisms hn : H−→Hn, c �→ cn. Clearly the
limit H represents Clim (compare with Corollary 7.3 in [11]).

3.2 Colimits in Hil

By duality, and taking into account the discussion in Section 1, it makes
sense to consider now the other way of combining logics, by a splicing or a
synthesis process. Such a process could be represented by a colimit in the
corresponding category of logics, generalizing so the notion of categorial
fibring. In particular, this process could be done in the category Hil.
Then, as a natural counterpart of what was done in Subsection 3.1, in
this section it will be proven that Hil is (small) cocomplete. The proof
will be constructive, that is, by showing how to construct the colimit of
any given diagram.

Let D = 〈{Hi}i∈I ,M〉 be a diagram in Hil, where Hi = 〈Ci, P i, Di〉
for each i ∈ I. The colimit of D in Hil is 〈H, {hi}i∈I〉 where H =
〈C,P,D〉 is defined as follows:
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〈C, {hi}i∈I〉 is the colimit in Sig of 〈{Ci}i∈I ,M〉;

P = {〈ĥi(Γ), ĥi(δ)〉 ∈ ℘fin(L(C,Ξ))×L(C,Ξ) : i ∈ I and 〈Γ, δ〉 ∈
P i};

D = {〈ĥi(Γ), ĥi(δ)〉 ∈ (℘fin(L(C,Ξ)) \ ∅) × L(C,Ξ) : i ∈ I and
〈Γ, δ〉 ∈ Di}.

Clearly D ⊆ P , and so H is indeed a Hilbert calculus.

Proposition 3.12. 〈H, {hi}i∈I〉 defined above is the colimit in Hil of
D.

Proof. Note that each hi : Hi−→H is in fact a morphism in Hil, by
definition of H. Moreover, if h : Hi−→Hj is in M then hj ◦ h = hi in
Sig and then, by definition of Hil, the diagram

Hi
hi

��

h ��

H

Hj

hj

		

commutes in Hil. Let H ′ = 〈C ′, P ′, D′〉 be a Hilbert calculus and let
gi : Hi−→H ′ for every i ∈ I such that gj ◦ h = gi for all h : Hi−→Hj

in M. Since C is the colimit in Sig of 〈{Ci}i∈I ,M〉 there exists an
unique morphism h′ : C−→C ′ in Sig such that h′ ◦ hi = gi for all
i ∈ I, therefore ĥ′ ◦ ĥi = ĝi for all i ∈ I. Let 〈ĥi(Γ), ĥi(δ)〉 ∈ P such
that 〈Γ, δ〉 ∈ P i. Since gi : Hi−→H ′ in Hil then ĝi(Γ) �pH′ ĝi(δ), that

is, ĥ′(ĥi(Γ)) �pH′ ĥ′(ĥi(δ)). Analogously, if 〈ĥi(Γ), ĥi(δ)〉 ∈ D such that

〈Γ, δ〉 ∈ Di then ĥ′(ĥi(Γ)) �H′
d ĥ′(ĥi(δ)), thus h′ : H−→H ′ is a morphism

in Hil such that

Hi
gi ��

hi ��

H ′

H

h′

		

commutes in Hil for all i ∈ I. Clearly h′ is unique, by the universal
property of C, thus H is the colimit in Hil of D.

Corollary 3.13. The category Hil is (small) complete and cocomplete.
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4 The category of interpretation systems

In this section we analyze the category Int of Interpretation systems as
defined in [34]. This is the semantic counterpart of Hil.

Definition 4.1. Let C be a signature. A C-structure is a triple S =
〈U,B, ν〉 such that U is a non-empty set, B is a non-empty subset of ℘(U)

and ν = {νk}k∈N is a family of maps νk : Ck−→B(Bk). We denote by
Str(C) the class of all C-structures. If 〈U,B, ν〉, 〈U ′,B′, ν ′〉 ∈ Str(C) we
say that they are isomorphic if there exists a bijection f : U−→U ′ such
that f(B) = B′ and f(νk(c)(�b)) = ν ′k(c)(f(�b)) for all k ∈ N, c ∈ Ck and
�b ∈ Bk (here, f(�b) denotes (f(b1), . . . , f(bk)) whenever �b = (b1, . . . , bk)).
In this case we write 〈U,B, ν〉 ∼= 〈U ′,B′, ν ′〉.
Example 4.2 (Kripke C-structures). Recall the modal Hilbert calculi
K and KD defined over the modal signature C in Example 3.3. Let
m = 〈W,R, V 〉 be a Kripke model, that is: W is a non-empty set (of
worlds) and R ⊆W ×W is a relation over W (the accessibility relation).
Then, m induces a C-structure Sm = 〈W,℘(W ), ν〉 called Kripke C-
structure, which is defined as follows:

ν0(p) = V (p) for every propositional variable p ∈ V AR;

ν1(¬)(b) = W \ b for every b ⊆W ;

ν1(�)(b) = {w ∈ W : wRw′ implies that w′ ∈ b, for every w′ ∈W} for

every b ⊆W ;

ν2(⇒ )(b, b′) = (W \ b) ∪ b′ for every b, b′ ⊆W .

If m is a Kripke model for KD (that is, R is serial, meaning that for
every w ∈ W there exists some w′ ∈ W such that wRw′) then the
induced C-structure Sm is called a Kripke C-structure for KD.

Definition 4.3. The category Int of Interpretation systems is given by:

Objects: Triples 〈C,M,A〉 where C is a signature, M is a class
and A : M−→Str(C) is an injective map. We also assume that
〈C,M,A〉 is closed under isomorphic images, disjoint unions and
subalgebras, that is:

– if A(m) ∼= S for S ∈ Str(C) and m ∈ M then there exists
m′ ∈M such that S = A(m′);
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– assume the notation A(m) = 〈Um, Bm, νm〉 for each m ∈ M ,
and let N be a subset of M such that Un ∩ Un′ = ∅ for
every n �= n′ in N . Then there exists m ∈ M such that
Um =

⋃
n∈N Un, Bm = {b ∈ ℘(Um) : b ∩ Un ∈ Bn for

all n ∈ N} and, for every k ∈ N, c ∈ Ck and �b ∈ Bk
m,

νmk (c)(�b) =
⋃

n∈N νnk (c)(b1 ∩ Un, . . . , bk ∩ Un);

– let m ∈ M and suppose that B ⊆ Bm is a νm-subalgebra of
Bm, that is: B is closed under every operation νmk for all
k ∈ N. Then there exists m′ ∈ M such that Um′ = Um,
Bm′ = B and νm

′
k (c) = νmk (c)|Bk .

Morphisms: A morphism 〈h, F 〉 : 〈C,M,A〉−→〈C ′,M ′, A′〉 in Int
is given by a morphism h : C−→C ′ in Sig and a function F :
M ′−→M such that:

– UF (m′) = Um′ and BF (m′) = Bm′ for every m′ ∈M ′;

– ν
F (m′)
k (c) = νm

′
k (hk(c)) for every k ∈ N, c ∈ Ck and m′ ∈M ′.

Composition: 〈h, F 〉 ◦ 〈h′, F ′〉 = 〈h ◦ h′, F ′ ◦ F 〉.
Identity arrows: id〈C,M,A〉 = 〈idC , idM 〉.

Remark 4.4 (Modal interpretation systems). Recall the modal sig-
nature C introduced in Example 3.3, as well as the notion of Kripke
C-structure given in Example 4.2. In [34, Proposition 4.8] it was shown
that every C-structure in the interpretation system 〈C,M,A〉 given by
the closure by isomorphic images, disjoint unions and subalgebras of
a given class M of Kripke C-structures is isomorphic to a Kripke C-
structure. Such interpretation system will be called the modal interpre-
tation system generated by M. Thus, for every m ∈ M there exists a
Kripke model m′ such that A(m) is the Kripke C-structure Sm′ (up to
isomorphisms).

Definition 4.5. The forgetful functor O : Int−→Sig is given by O(〈C,M,
A〉) = C and O(〈h, F 〉) = h.

Proposition 4.6. The forgetful functor O has a left adjoint
O : Sig−→Int.

Proof. Given C define O(C) = 〈C, Str(C), idStr(C)〉. Then 〈idC ,O(C)〉
is O-universal for C. For if 〈C ′,M ′, A′〉 is an interpretation system and
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h : C−→C ′ is a morphism in Sig then there exists an unique morphism
h∗ : O(C)−→〈C ′,M ′, A′〉 in Int such that the diagram below commutes
in Sig.

C
idC ��

h ��

O(O(C))

O(h∗)
��

O(〈C ′,M ′, A′〉)
In fact h∗ = 〈h, F 〉 such that F : M ′−→Str(C) is given as follows: let
m′ ∈ M ′ and A′(m′) = 〈Um′ ,Bm′ , νm

′〉. Then F (m′) = 〈Um′ ,Bm′ , νm
′〉

such that νm
′

k (c) = νm
′

k (h(c)) for every k ∈ N and c ∈ Ck.

This means that, if 〈Ci,M i, Ai〉 is an interpretation system and fi :
C−→Ci is a monic in Sig (for i = 1, 2) then the pushout in Int of the
diagram

O(C)
f∗
1





f∗
2

��
〈C1,M1, A1〉 〈C2,M2, A2〉

is the fibring of 〈C1,M1, A1〉 and 〈C2,M2, A2〉 constrained by
fi : C−→Ci, for i = 1, 2 (cf. [6] and [34]). Thus, unconstrained fibrings
(i.e., when C = ∅) are coproducts, and constrained fibrings are pushouts
(cf. [34]). We will prove in the next subsection the existence in Int of
arbitrary (small) limits and colimits, extending so the notion of fibring
in Int.

4.1 Limits in Int

As it was done in Subsection 3.1 for Hilbert calculi, in this section it
will be proven that the category Int of interpretation systems is (small)
complete. According to the discussions above, limits constitute the cate-
gorial realization of a splitting or an analysis process of combining logics,
in this case involving logics presented semantically as interpretation sys-
tems.

Let D = 〈{〈Ci,M i, Ai〉}i∈I ,M〉 be a diagram in Int and let M1 =
{h : 〈h, F 〉 ∈ M for some F}, M2 = {F : 〈h, F 〉 ∈ M for some h}.
Consider the pair 〈〈C,M,A〉, {〈hi, F i〉}i∈I〉 defined as follows:

〈C, {hi}i∈I〉 is the limit in Sig of 〈{Ci}i∈I ,M1〉;
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〈M, {F i}i∈I〉 is the colimit in Cls of 〈{M i}i∈I ,M2〉;
A : M−→Str(C) is a map such that, if i ∈ I, m ∈ M i and
Ai(m) = 〈Um,Bm, νm〉 then A(F i(m)) = 〈Um,Bm, νF

i(m)〉 is given
by

ν
F i(m)
k ((ci)i∈I) = νmk (ci) for all k ∈ N and (ci)i∈I ∈ Ck.

Proposition 4.7. Let D be a diagram and consider
〈〈C,M,A〉, {〈hi, F i〉}i∈I〉 as defined above. The limit of D in Int is
〈〈C,M/∼, A〉, {〈hi, F i〉}i∈I〉 where

M/∼ is the quotient of M under the equivalence relation F i(m) ∼
F j(m′) iff A(F i(m)) = A(F j(m′));

A(F i(m)/∼) = A(F i(m)); and

F i(m) = F i(m)/∼.

Proof. First we must prove that A is well-defined. Suppose that F i((F1◦
· · ·◦Fr)(m)) = F j((G1◦· · ·◦Gs)(m)) inM for some 〈h1, F1〉, . . . , 〈hr, Fr〉,
〈k1, G1〉, . . . , 〈ks, Gs〉 ∈ M and m ∈ Dom(Fr) = Dom(Gs) = M i1 . Let
m = (F1 ◦ · · · ◦Fr)(m) ∈M i, m′ = (G1 ◦ · · · ◦Gs)(m) ∈M j and (ci)i∈I ∈
Ck. By definition of Int we have that, letting c = (hr ◦ · · · ◦ h1)(ci)
and c′ = (ks ◦ · · · ◦ k1)(cj) then νmk (ci) = νmk (c) and νm

′
k (cj) = νmk (c′).

Since (ci)i∈I ∈ Ck then c = ci1 = c′, therefore νmk (ci) = νm
′

k (cj) and thus
A is well-defined. Clearly A is well-defined, and it is injective. More-
over, 〈C,M/∼, A〉 is closed under isomorphic images, disjoint unions
and subalgebras, therefore it is an interpretation system. If (ci)i∈I ∈ Ck

and m ∈ M i then ν
F i(m)
k ((ci)i∈I) = νmk (ci) = νmk (hi((ci)i∈I)), therefore

〈hi, F i〉 : 〈C,M/∼, A〉−→〈Ci,M i, Ai〉 is a morphism in Int such that

〈C,M/∼, A〉 〈h
i,F i〉��

〈hj ,F j〉 ��

〈Ci,M i, Ai〉
〈h,F 〉
��

〈Cj ,M j , Aj〉

commutes in Int for each 〈h, F 〉 : 〈Ci,M i, Ai〉−→〈Cj ,M j , Aj〉 in M.
Now consider a family of Int-morphisms 〈gi, Gi〉 : 〈C ′,M ′, A′〉−→〈Ci,M i,
Ai〉 for i ∈ I such that 〈h, F 〉 ◦ 〈gi, Gi〉 = 〈gj , Gj〉 for each 〈h, F 〉 :
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〈Ci,M i, Ai〉−→〈Cj ,M j , Aj〉 inM. Since 〈C, {hi}i∈I〉 is the limit in Sig
of 〈{Ci}i∈I ,M1〉 there exists in Sig an unique morphism h : C ′−→C
given by hk(c) = (gik(c))i∈I , such that hi ◦ h = gi for all i ∈ I. Since
〈M, {F i}i∈I〉 is the colimit in Cls of 〈{M i}i∈I ,M2〉 there exists in Cls
an unique map G : M−→M ′ given by G(F i(m)) = Gi(m), such that
G ◦ F i = Gi for all i ∈ I. Suppose now that A(F i(m)) = A(F j(m′)) =
〈U,B, ν〉. Then
(∗) νmk (ci) = νk((ci)i∈I) = νm

′
k (cj) for all k ∈ N and (ci)i∈I ∈ Ck.

By definition of morphism in Int we have that A′(Gi(m)) = 〈U,B, ν1〉
and A′(Gj(m′)) = 〈U,B, ν2〉 such that ν1k(c) = νmk (gik(c)) and ν2k(c) =

νm
′

k (gjk(c)). But hk(c) = (gik(c))i∈I ∈ Ck thus, using (∗) above, ν1k(c) =
ν2k(c) for all c ∈ C ′

k, that is, A′(Gi(m)) = A′(Gj(m′)). Since A′ is
injective we infer that Gi(m) = Gj(m′), therefore the function G :
M/∼−→M ′ given by G(F i(m)/∼) = Gi(m) is well-defined, and then
〈h,G〉 : 〈C ′,M ′, A′〉−→〈C,M/∼, A〉 is a morphism in Int which com-
mutes in Int all the diagrams below.

〈C ′,M ′, A′〉 〈h,G〉 ��

〈gi,Gi〉 ��

〈C,M/∼, A〉
〈hi,F i〉
��

〈Ci,M i, Ai〉

Clearly 〈h,G〉 is the unique morphism with this property, therefore the
pair 〈〈C,M/∼, A〉, {〈hi, F i〉}i∈I〉 constitutes the limit of D.

4.2 Colimits in Int

Now, the results obtaned in the previous subsection will be dualized.
In [34, Prop/Definition 3.9] it was defined (and proved the existence of)
the constrained and unconstrained fibring of two given interpretation
systems 〈Ci,M i, Ai〉 (for i = 1, 2). In Proposition 3.13 of that paper
it was provided a categorial characterization of unconstrained fibring,
namely, when no connective is shared by the two given interpretation sys-
tems: it corresponds to the coproduct of 〈C1,M1, A1〉 and 〈C2,M2, A2〉
in the category Int. If some connectives are to be shared, then the un-
constrained fibring, presented in categorial terms, is obtained through
the coequalizer in Int of a suitable pair of parallel arrows (see [34, Propo-
sition 3.14]). Taking into consideration that coproducts and coequalizers
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are special cases of colimits, it is a natural question whether these con-
structions can be generalized to arbitrary colimits, as we already done
for the category Hil. This should provide new ways of combining in-
terpretation systems by a splicing or synthesis process, as observed in
Subsection 3.2 for Hilbert calculi. We will prove in this section that Int
is (small) cocomplete, showing how to construct the colimits.

Let D = 〈{〈Ci,M i, Ai〉}i∈I ,M〉 be a diagram in Int and letM1 and
M2 given by

M1 = {h : 〈h, F 〉 ∈ M for some function F},

M2 = {F : 〈h, F 〉 ∈ M for some Sig-morphism h}.
Consider the pair 〈〈C,M,A〉, {〈hi, F i〉}i∈I〉 defined as follows:

〈C, {hi}i∈I〉 is the colimit in Sig of the diagram 〈{Ci}i∈I ,M1〉;

let 〈M, {F i}i∈I〉 be the limit in Cls of the diagram 〈{M i}i∈I ,M2〉;
then M = {(mi)i∈I ∈ M : Umi = Umj and Bmi = Bmj for all
i, j ∈ I}, and F i : M−→M i is the function given by F i((mi)i∈I) =
F i((mi)i∈I) = mi for all i ∈ I;

A : M−→Str(C) is the map defined as follows: let (mi)i∈I ∈ M
and Ai(mi) = 〈Umi ,Bmi , ν

mi〉 for each i ∈ I; then A((mi)i∈I) =
〈Umi ,Bmi , ν

(mi)i∈I 〉 where

ν
(mi)i∈I

k (hik(c)) = νmi
k (c) for all k ∈ N, i ∈ I and c ∈ Ci

k.

Proposition 4.8. Let D be a diagram. Then 〈〈C,M,A〉, {〈hi, F i〉}i∈I〉
as defined above is the colimit of D in Int.

Proof. First we need to prove that A is well-defined and it is injective.
Suppose that hi((f1 ◦ · · · ◦ f r)(c)) = hj((g1 ◦ · · · ◦ gs)(c)) in Ck where
c ∈ Ci1

k and Dom(f r) = Ci1 = Dom(gs). Let c = (f1 ◦ · · · ◦ f r)(c),
c′ = (g1◦· · ·◦gs)(c), m = (F r◦· · ·◦F 1)(mi) and m′ = (Gs◦· · ·◦G1)(mj).
By definition of Int we have that νmi

k (c) = νmk (c), and ν
mj

k (c′) = νm
′

k (c).
But (mi)i∈I ∈M , thus m = mi1 = m′ and then νmi

k (c) = ν
mj

k (c′), there-
fore A is well-defined. If A((mi)i∈I) = A((m′

i)i∈I) then, by definition of
A,

Ai(mi) = A((mi)i∈I)|hi = A((m′
i)i∈I)|hi = Ai(m′

i)
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for each i ∈ I, therefore mi = m′
i for all i ∈ I, that is, (mi)i∈I = (m′

i)i∈I
and then A is injective. Now we will check that 〈C,M,A〉 is closed un-
der isomorphic images, disjoint unions and subalgebras. Suppose that
A((mi)i∈I) = 〈Umi ,Bmi , ν

(mi)i∈I 〉 ∼= 〈U,B, ν〉, and let f : Umi−→U a

bijection such that f(Bmi) = B and νmi
k (c)(b) = ν

(mi)i∈I

k (hik(c))(b) =
νk(h

i
k(c))(f(b)). This means that 〈U,B, ν〉|hi

∼= A((mi)i∈I)|hi = Ai(mi)
for all i ∈ I. Since 〈Ci,M i, Ai〉 is closed under isomorphic images, there
exists m′

i ∈ M i such that 〈U,B, ν〉|hi = Ai(m′
i). It suffices to prove

that (m′
i)i∈I ∈ M . In order to do this, consider a morphism 〈h, F 〉 :

〈Ci,M i, Ai〉−→〈Cj ,M j , Aj〉 in M. Then νF (m′
j)(c) = νm

′
j (h(c)) =

ν(hj(h(c))) = ν(hi(c)) = νm
′
i(c), thus Ai(m′

i) = Ai(F (m′
j)), there-

fore m′
i = F (m′

j), because Ai is injective. This shows that (m′
i)i∈I ∈

M such that A((m′
i)i∈I) = 〈U,B, ν〉, then 〈C,M,A〉 is closed under

isomorphic images. Consider now a subset N of M such that Un ∩
Un′ = ∅ for every n �= n′ in N , and let Ni = {n ∈ M i : n =
ni for some (nj)j∈I ∈ N} for each i ∈ I. Since Un ∩ Un′ = ∅ for
every n �= n′ in Ni there exists mi ∈ M i such that Umi =

⋃
n∈Ni

Un,
Bmi = {b ∈ ℘(Umi) : b ∩ Un ∈ Bn for all n ∈ Ni} and, for ev-
ery k ∈ N, c ∈ Ci

k and b ∈ Bk
mi

, νmi
k (c)(b) =

⋃
n∈Ni

νnk (c)(b ∩ Uk
n).

In order to prove that (mi)i∈I ∈ M , consider a morphism 〈h, F 〉 :
〈Ci,M i, Ai〉−→〈Cj ,M j , Aj〉 inM. If (ni)i∈I ∈ N then, by definition of
colimit and morphism in Int, F (nj) = ni and, moreover, νF (nj)(c) =
νnj (h(c)) and Unj = Uni . By definition of Ni and Nj it follows that

F (Nj) = Ni. Thus, νF (mj)(c)(b) = νmj (h(c))(b) =
⋃

n′∈Nj
νn

′
(h(c))(b ∩

Uk
n′) =

⋃
n′∈Nj

νF (n′)(c)(b ∩ Uk
n′) =

⋃
n∈Ni

νn(c)(b ∩ Uk
n) = νmi(c)(b).

Therefore Ai(F (mj)) = Ai(mi), then F (mj) = mi because Ai is injec-
tive. This shows thatm = (mi)i∈I ∈M such that Um =

⋃
n∈N Un, Bm =

{b ∈ ℘(Um) : b∩Un ∈ Bn for all n ∈ N} and, for every k ∈ N, hi(c) ∈ Ck

and b ∈ Bk
m, νmk (hi(c))(b) =

⋃
n∈N νnk (h

i(c))(b ∩ Uk
n). That is, 〈C,M,A〉

is closed under disjoint unions. Finally we show that 〈C,M,A〉 is closed
under subalgebras. Letm = (mi)i∈I ∈M and B′ ⊆ Bm a νm-subalgebra.
Then B′ ⊆ Bmi is a νmi-subalgebra, thus there exists m′

i ∈M i such that
Ai(m′

i) = 〈Umi ,B′, νm′
i〉, where νm

′
i(c) = νmi(c)|B′ for all i ∈ I. We

prove now that m′ = (m′
i)i∈I is in M . Consider a morphism 〈h, F 〉 :

〈Ci,M i, Ai〉−→〈Cj ,M j , Aj〉 in M. Then νF (m′
j)(c) = νm

′
j (h(c)) =

νmj (h(c))|B′ = νm(hj(h(c)))|B′ = νm(hi(c))|B′ = νmi(c)|B′ = νm
′
i(c).

From this we infer that Ai(F (m′
j)) = Ai(m′

i) and so F (m′
j) = m′

i, since

Ai is injective. Thus m′ ∈ M such that A(m′) = 〈Um,B′, νm′〉 with
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νm
′
(hi(c)) = νm(hi(c))|B′ , that is, 〈C,M,A〉 is closed under subalgebras.

This shows that 〈C,M,A〉 is an interpretation system. Clearly every
〈hi, F i〉 is a morphism in Int such that 〈hj , F j〉◦〈h, F 〉 = 〈hi, F i〉 for each
〈h, F 〉 : 〈Ci,M i, Ai〉−→〈Cj ,M j , Aj〉 in M. Now consider a family of
Int-morphisms 〈gi, Gi〉 : 〈Ci,M i, Ai〉−→〈C ′,M ′, A′〉 for i ∈ I such that
〈gj , Gj〉 ◦ 〈h, F 〉 = 〈gi, Gi〉 for each 〈h, F 〉 : 〈Ci,M i, Ai〉−→〈Cj ,M j , Aj〉
inM. Since 〈C, {hi}i∈I〉 is the colimit in Sig of 〈{Ci}i∈I ,M1〉 there ex-
ists in Sig an unique morphism h : C−→C ′ given by hk(h

i
k(c)) = gik(c),

such that h ◦ hi = gi for all i ∈ I. Since 〈M, {F i}i∈I〉 is the limit in
Cls of 〈{M i}i∈I ,M2〉 there exists in Cls an unique map G : M ′−→M
given by G(m′) = (Gi(m′))i∈I , such that F i ◦G = Gi for all i ∈ I. Note
that UGi(m′) = Um′ and BGi(m′) = Bm′ for all i ∈ I and m′ ∈ M ′, by
definition of Int. Therefore, there exists a map G : M ′−→M defined by
G(m′) = (Gi(m′))i∈I such that F i ◦G = Gi for all i ∈ I. It is clear from
the definitions that 〈h,G〉 is the unique morphism in Int such that

〈Ci,M i, Ai〉 〈g
i,Gi〉��

〈hi,F i〉 ��

〈C ′,M ′, A′〉

〈C,M,A〉
〈h,G〉
		

commutes in Int for each i ∈ I. This concludes the proof.

Corollary 4.9. The category Int is (small) complete and cocomplete.

4.3 Entailment in Int

The notion of (semantic) inference can be naturally defined in Int. As
in the case of Hil, there are two kind of entailments in Int: a local
entailment (corresponding to derivations) and a global entailment (cor-
responding to proofs). Recall from [34] the following notions. A variable
assignment over a C-structure S = 〈U,B, ν〉 is a map α : Ξ−→B. Given
S and α, the interpretation map of L(C,Ξ) in S with assignment α is
the function [[·]]Sα : L(C,Ξ)−→B defined inductively by

[[ξ]]Sα = α(ξ), if ξ ∈ Ξ;

[[c]]Sα = ν0(c), if c ∈ C0;

[[c(δ1, . . . , δk)]]
S
α = νk(c)([[δ1]]

S
α, . . . , [[δk]]

S
α).
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The global and local semantic entailment are respectively defined as
follows:

Γ|=p
S = {δ : (∀α)((

⋂

γ∈Γ
[[γ]]Sα = U)⇒ ([[δ]]Sα = U))};

Γ|=d
S = {δ : (∀α)(

⋂

γ∈Γ
[[γ]]Sα ⊆ [[δ]]Sα)}.

Finally, given an interpretation system 〈C,M,A〉 it is defined

Γ
|=p

〈C,M,A〉 =
⋂

m∈M
Γ
|=p

A(m) ;

Γ
|=d

〈C,M,A〉 =
⋂

m∈M
Γ
|=d

A(m) .

Observe that the notions of local and global entailment are simi-
lar to the ones usually considered for Kripke semantics in modal logics
(see, for instance, [2, Definitions 1.35 and 1.37]). By its turn, these
notions correspond, respectively, to the idea of degree-preserving and
truth-preserving reasoning considered by [3] in the context of algebraic
semantics.

5 The category of logic system presentations

We study here the combined category of Hil and Int, called Lsp. Its
objects are endowed with both a syntactic component (via a Hilbert
calculi) and a semantic component (via an interpretation system). Of
course, it is a desirable property that both entailments (syntactic and
semantic) coincide. From an intuitive point of view, it would be rea-
sonable to require that logic systems should be at least sound, that is,
syntactic derivations should be valid semantically. As we shall see along
this section, we can restrict to sound logic systems since this feature is
preserved by arbitrary limits and colimits. On the other hand, in Sec-
tion 6 it will be shown that, in order to preserve completeness by colimits
in Lsp, the involved logic systems must be necessarily sound (see Re-
mark 6.2). Then, for the purposes of the present study, the relevant
logic systems are the sound ones.

Definition 5.1. The category Lsp of logic system presentations (in
short, l.s.p.’s) is defined as follows:
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Objects: Tuples 〈C,M,A, P,D〉 where 〈C,P,D〉 is a Hibert calcu-
lus and 〈C,M,A〉 is an interpretation system.

Morphisms: A morphism λ : 〈C,M,A, P,D〉−→〈C ′,M ′, A′, P ′, D′〉
in Lsp is a pair λ = 〈h, F 〉 such that h : 〈C,P,D〉−→〈C ′, P ′, D′〉
is a morphism in Hil and 〈h, F 〉 : 〈C,M,A〉−→〈C ′,M ′, A′〉 is a
morphism in Int.

Composition and identity arrows: Inherited from Int.

Definition 5.2. The forgetful functor F : Lsp−→Sig is given by

F(〈C,M,A, P,D〉) = C;

F(〈h, F 〉) = h.

Proposition 5.3. The forgetful functor F has a left adjoint F : Lsp−→Sig.

Proof. For each signature C consider the l.s.p.

F(C) = 〈C, Str(C), idStr(C), ∅, ∅〉.

Using Proposition 4.6 it is easy to prove that 〈idC ,F(C)〉 is F-universal
for C. In fact, if 〈C ′,M ′, A′, P ′, D′〉 is an logic system presentation and
h : C−→C ′ is a morphism in Sig then, by Proposition 4.6, there exists an
unique morphism h∗ : O(C)−→〈C ′,M ′, A′〉 in Int such that the diagram
below commutes in Sig.

C
idC ��

h ��

O(O(C))

O(h∗)
��

O(〈C ′,M ′, A′〉)

By definition of Hil we have that h∗ : F(C)−→〈C ′,M ′, A′, P ′, D′〉 is a
morphism in Lsp which commutes the following diagram in Lsp.

C
idC ��

h ��

F(F(C))

F(h∗)
��

F(〈C ′,M ′, A′, P ′, D′〉)
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This means that, if 〈Ci,M i, Ai, P i, Di〉 is a logic system presentation
and fi : C−→Ci is a monic in Sig (for i = 1, 2) then the pushout in Lsp
of the diagram

F(C)
f∗
1



f∗
2

��
〈C1,M1, A1, P 1, D1〉 〈C2,M2, A2, P 2, D2〉

is the fibring of 〈C1,M1, A1, P 1, D1〉 and 〈C2,M2, A2, P 2, D2〉 constra-
ined by fi : C−→Ci, for i = 1, 2 (cf. [6] and [34]). Thus, unconstrained
fibrings are coproducts, and constrained fibrings are pushouts. Now we
will extend the notion of fibring in Lsp to arbitrary (small) limits and
colimits.

Proposition 5.4. The category Lsp is (small) complete and cocom-
plete.

Proof. By definition of Lsp, limits in Lsp are limits in both Hil and
Int, and colimits in Lsp are colimits in both Hil and Int. The result
follows from Corollaries 3.13 and 4.9.

Let L = 〈C,M,A, P,D〉 be a l.s.p.. In accordance with [34], and

using the notation from Subsection 4.3, we define Γ|=p
L = Γ

|=p
〈C,M,A〉 and

Γ|=d
L = Γ

|=d
〈C,M,A〉 , as well as the following.

Definition 5.5. Let L = 〈C,M,A, P,D〉 be a l.s.p.. We say that L is

p-sound if, for all Γ ⊆ L(C,Ξ), Γ�p
L ⊆ Γ|=p

L .

p-complete if, for all Γ ⊆ L(C,Ξ), Γ|=p
L ⊆ Γ�p

L .

d-sound if, for all Γ ⊆ L(C,Ξ), Γ�d
L ⊆ Γ|=d

L .

d-complete if, for all Γ ⊆ L(C,Ξ), Γ|=d
L ⊆ Γ�d

L ,

where Γ�q
L = Γ

�q
〈C,P,D〉 = {δ : Γ �q〈C,P,D〉 δ} for q ∈ {p, d}.

Definition 5.6 (Modal logic system presentations). Recall the modal
Hilbert calculi K and KD defined over the modal signature C in Exam-
ple 3.3, as well as the notion of modal interpretation systems introduced
in Remark 4.4. A l.s.p. L = 〈C,M,A, P,D〉 over the modal signature C
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is said to be a modal logic system presentation if 〈C,M,A〉 is a modal in-
terpretation system and 〈C,P,D〉 is a Hilbert calculus such that PK ⊆ P
and D = DK .

Example 5.7 (Modal logics K and KD as modal l.s.p.’s). From the
previous definitions, it is easy to consider modal l.s.p.’s LK and LKD

for modal logics K and KD, respectively. Indeed, consider LK =
〈C,MK , AK , PK , DK〉 such that 〈C,MK , AK〉 is the modal interpreta-
tion system generated by the class of Kripke C-structures, as described
in Remark 4.4, and 〈C,PK , DK〉 is the modal Hilbert calculus HK

for K introduced in Example 3.3. On the other hand, let LKD =
〈C,MKD, AKD, PKD, DKD〉 such that 〈C,MKD, AKD〉 is the modal in-
terpretation system generated by the class of Kripke C-structures for
KD (that is, where the accessibility relation is serial, recall Exam-
ple 4.2), and 〈C,PKD, DKD〉 is the modal Hilbert calculus HKD for
KD introduced in Example 3.3. It is easy to prove, by adapting well-
known results of modal logic, that LK and LKD are both q-sound and
q-complete for q ∈ {p, d}.

The preservation of soundness by limits and colimits in Lsp is im-
mediate.

Proposition 5.8. Soundness is preserved by limits in Lsp.

Proof. With same notation as in Propositions 3.7 and 4.7, let D be a
diagram in Lsp and let L be its limit with morphisms 〈hi, F i〉. Since

A(F i(m)) = Ai(m)|hi then [[ĥi(δ)]]
Ai(m)
α = [[δ]]

A(F i(m))
α for all δ ∈ L(C,Ξ)

and α : Ξ−→Bm, and the result follows.

Proposition 5.9. Soundness is preserved by colimits in Lsp.

Proof. With same notation as in Propositions 3.12 and 4.8, let D be
a diagram in Lsp and let L be its colimit with morphisms 〈hi, F i〉.
Since Ai(mi) = A((mi)i∈I)|hi then [[δ]]

Ai(mi)
α = [[ĥi(δ)]]

A((mi)i∈I)
α for every

δ ∈ L(Ci,Ξ) and α : Ξ−→Bmi , and the result follows.

The latter results suggest considering the full subcategory SLsp of
Lsp whose objects are the l.s.p.’s which are both p-sound and d-sound.
Conceptually, sound l.s.p.’s are more interesting structures than arbi-
trary l.s.p.’s. Moreover, the category SLsp is well-behaved with respect
to categorial combinations, as the following result (an immediate conse-
quence of the previous ones) shows:
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Corollary 5.10. The category SLsp is (small) complete and cocom-
plete.

As we shall see in the next section, sound l.s.p.’s will be also relevant
in order to preserve completeness by colimits in Lsp (see Remark 6.2).

Remark 5.11. The modal l.s.p.’s LK and LKD for K and KD intro-
duced in Example 5.7 are both p-sound and d-sound. Hence, they belong
to the category SLsp.

Example 5.12 (The bimodal alethic-deontic logic K ⊕KD). Consider
the modal signature C ′, which is obtained from the modal signature
C (recall Example 3.3) by replacing � by the modal operator O (for
“obligatory”). Let H ′

KD = 〈C ′, P ′
KD, D

′
KD〉 be the version of the Hilbert

calculus HKD for KD, now presented in the signature C ′ (observe that
D′

KD = DKD). Analogously, given a Kripke model m = 〈W,R, V 〉 for
KD, let S′

m = 〈W,℘(W ), ν ′〉 be the Kripke C ′-structure for KD induced
by m as in Example 4.2. Finally, let L′

KD be the version of the l.s.p.
LKD over C ′. That is, L′

KD = 〈C ′,M ′
KD, A

′
KD, P

′
KD, D

′
KD〉 such that

〈C ′,M ′
KD, A

′
KD〉 is the modal interpretation system generated by the

class of Kripke C ′-structures for KD. Let C ′′ be the classical signature
underlying C and C ′, i.e., C ′′

0 = V AR, C ′′
1 = {¬}, C ′′

2 = { ⇒ } and
C ′′
n = ∅ for n > 2. By the results presented in [34] (see Corollary 4.1

and the Examples below it, on page 428), the constrained fibring of LK

and L′
KD by sharing C ′′ is the l.s.p. L = LK

C′′
⊕ L′

KD = 〈C̄,M,A, P,D〉
such that:

C̄ is the bimodal signature given by C̄0 = V AR, C̄1 = {¬,�, O},
C̄2 = { ⇒ } and C̄n = ∅ for n > 2;

P = PK ∪ P ′
KD and D = DK = DKD = D′

KD;

m ∈M iffm is a Kripke model for the bimodal alethic-deontic logic
K⊕KD; that is, m = 〈W,R,R′, V 〉 such that m′ = 〈W,R, V 〉 and
m′′ = 〈W,R′, V 〉 are Kripke models for K and KD, respectively
(equivalently, m = 〈m′,m′′〉 where m and m′′ are as above);

A : M−→Str(C̄) is the map defined as follows: A(m) = Sm =
〈W,℘(W ), ν〉 is the Kripke C̄-structure induced by m as in Exam-
ple 4.2; in particular,
ν1(�)(b) = {w ∈ W : wRw′ implies that w′ ∈ b, for every w′ ∈W}
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and ν1(O)(b) = {w ∈W : wR′w′ implies that w′ ∈ b, for every w′ ∈W},
for every b ⊆ W (equivalently, A(m) = Sm such that the respective

reducts of Sm to C and C ′ are Sm′ and Sm′′).

By using standard arguments of modal logic, it is easy to see that L
is sound and complete. Observe that the bimodal alethic-deontic logic
K ⊕KD, formally represented by the l.s.p. L, is the least modal logic
capable to express the “ought-implies-can” thesis Op → ♦p as well as
the “cannot-implies-has no duty to” thesis ¬♦p→ ¬Op briefly discussed
in Section 1. Here, ♦p denotes, as usual, the formula ¬�¬p. It can be
proven that none of these two bridge principles (which are equivalent in
K ⊕KD, since the underlying propositional logic is classical) are valid
in L. This is coherent with the fact that the fibring L is the least l.s.p.
which extends both components LK and L′

KD while sharing the classical
connectives.

6 Completeness preservation by colimits in Lsp

Finally, in this section the results on completeness preservation by fib-
rings in the category Lsp obtained in [34] will be generalized to colimits.
Thus, it will be proven that completeness is preserved by arbitrary col-
imits in Lsp, under the same assumptions for the given logic systems
stated in [34] in order to prove completeness preservation by fibring.
From the results obtained in [34], we know that the following conditions
are sufficient to preserve completeness by fibring: (1) the l.s.p.’s are full,
with implication ⇒ and with equivalence ⇔; and (2) both connectives
are shared. We recall in Definitions 6.1, 6.3 and 6.4 the basic concepts
of [34] concerning this question.

Definition 6.1. A l.s.p. L = 〈C,M,A, P,D〉 is full if {A(m) : m ∈M}
is the class of all the C-structures S satisfying: δ ∈ Γ|=p

S for all 〈Γ, δ〉 ∈ P ,

and δ ∈ Γ|=d
S for all 〈Γ, δ〉 ∈ D.

Remark 6.2. By [34, Proposition 4.3], if L is a full l.s.p. then it is both
p-sound and d-sound.

Definition 6.3. A Hilbert calculus H = 〈C,P,D〉 is with implication if
C2 contains a connective ⇒ satisfying:

Γ �dH (δ1 ⇒ δ2) iff Γ, δ1 �dH δ2
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for every Γ ∪ {δ1, δ2} ⊆ L(C,Ξ) such that Γ = Γ�p
H . A l.s.p. L =

〈C,M,A, P,D〉 is with implication if 〈C,P,D〉 is with implication.

Definition 6.4. A Hilbert calculus H = 〈C,P,D〉 with implication ⇒
is with equivalence if C2 contains a connective ⇔ satisfying

Γ �dH (δ1 ⇒ δ2) and Γ �dH (δ2 ⇒ δ1) iff Γ �dH (δ1 ⇔ δ2);

Γ �dH (δ1 ⇔ δ2) iff Γ �dH (γ ⇔ γ′), where γ′ is obtained from γ
by replacing some ocurrences of δ1 by δ2

for every Γ ∪ {δ1, δ2} ⊆ L(C,Ξ) such that Γ = Γ�p
H . A l.s.p. L =

〈C,M,A, P,D〉 is with equivalence if 〈C,P,D〉 is with equivalence.

Using the left adjoint to F (cf. Proposition 5.3), it is easy to share a
signature C through a diagram, that is, without imposing any properties
to the connectives in C (as, for example, being an implication or being
an equivalence). We will prove now that the completeness preservation
theorem stated in [34] can be generalized to any colimit, by extending
any diagram by the free sharing of both implication and equivalence.
Indeed, by Theorems 6.6 and 5.7 in [34] we know that every full l.s.p.
with equivalence is q-complete (q = p, d). The first step for obtaining a
general theorem of completeness preservation is to introduce the notion
of sharing of connectives through a diagram in Lsp.

Definition 6.5. Let D = 〈{Li}i∈I ,M〉 be a diagram in Lsp. A free
sharing for D is a family F = {fi : C−→F(Li)}i∈I of monics in Sig. The
diagram D restricted to F is DF = 〈{Li}i∈I ,M∪{f∗

i : F(C)−→Li}i∈I〉.
Note that we cannot assume any logical properties for the connectives

in C because F(C) is free. For example, F(C) is without implication and
equivalence. On the other hand, since F(C) has no rules, the colimit
of any non-empty diagram of l.s.p.’s with implication and equivalence
restricted to the sharing of these connectives, is with implication and
equivalence, as the following proposition states:

Proposition 6.6. Let D = 〈{Li}i∈I ,M〉 be a non-empty diagram in
Lsp such that every Li is with implication⇒i and with equivalence⇔i.
Consider the signature C ′ defined as follows: C ′

2 = {⇒′,⇔′}, and C ′
k = ∅

if k �= 2. For every i ∈ I let fi : C
′−→F(Li) be the monomorphism in Sig

given by fi(⇒′) = ⇒i and fi(⇔′) = ⇔i. Let F = {fi : C ′−→F(Li)}i∈I
and DF as in Definition 6.5. Then, the colimit L of DF is a l.s.p. with
implication and equivalence.
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Proof. Let L = 〈C,M,A, P,D〉 be the colimit of DF , with morphisms
hi : Li−→L (for i ∈ I) and h′ : F(C ′)−→L. Let ⇒ = hi(⇒i) = h′(⇒′)
and ⇔ = hi(⇔i) = h′(⇔′) (for i ∈ I). By Proposition 6.2 in [34] we
have that ⇒ is an implication in L iff it holds:

1. {(ξ1 ⇒ ξ2)}�L
p , ξ1 �Ld ξ2;

2. �Ld (ξ1 ⇒ ξ1);

3. {ξ1}�L
p �Ld (ξ2 ⇒ ξ1);

4. if r = 〈{γ1, . . . , γk}, γ〉 is in D and ξ ∈ Ξ does not occur in r then

{(ξ ⇒ γ1), . . . , (ξ ⇒ γk)}�L
p �Ld (ξ ⇒ γ).

Let i ∈ I. Since Li is with implication then {(ξ1 ⇒i ξ2)}�
Li
p , ξ1 �Li

d

ξ2, therefore ĥi({(ξ1 ⇒i ξ2)}�
Li
p ), ξ1 �Ld ξ2. But clearly ĥi({(ξ1 ⇒i

ξ2)}�
Li
p ) ⊆ {(ξ1 ⇒ ξ2)}�L

p , then L satisfies item 1 above. Items 2 and
3 are proved analogously. Finally, observe that any r ∈ D is of the form
〈{ĥi(γ1), . . . , ĥi(γk)}, ĥi(γ)〉 for some i ∈ I and some ri = 〈{γ1, . . . , γk}, γ〉
∈ Di. In fact F(C ′) has no inference rules, therefore the derivation
(and proof) rules of L are just those inherited from the l.s.p.’s Li. Let
r = 〈{ĥi(γ1), . . . , ĥi(γk)}, ĥi(γ)〉 ∈ D and ξ ∈ Ξ not occurring in r. Since

Li is with implication then {(ξ ⇒i γ1), . . . , (ξ ⇒i γk)}�
Li
p �Li

d (ξ ⇒i γ),

thus ĥi({(ξ ⇒i γ1), . . . , (ξ ⇒i γk)}�
Li
p ) �Ld (ξ ⇒ ĥi(γ)). But ĥi({(ξ ⇒i

γ1), . . . , (ξ ⇒i γk)}�
Li
p ) ⊆ {(ξ ⇒ ĥi(γ1)), . . . , (ξ ⇒ ĥi(γk))}�L

p , therefore

{(ξ ⇒ ĥi(γ1)), . . . , (ξ ⇒ ĥi(γk))}�L
p �Ld (ξ ⇒ ĥi(γ))

and then L satisfies item 4. With respect to equivalence, by Proposition
6.5 in [34] we have that ⇔ is an equivalence in L iff it holds:

1. {(ξ1 ⇒ ξ2), (ξ2 ⇒ ξ1)}�L
p �Ld (ξ1 ⇔ ξ2);

2. {(ξ1 ⇔ ξ2)}�L
p �Ld (ξ1 ⇒ ξ2);

3. {(ξ1 ⇔ ξ2)}�L
p �Ld (ξ2 ⇒ ξ1);

4. {(ξ1 ⇔ ξ′1), . . . , (ξk ⇔ ξ′k)}�
L
p �Ld (c(ξ1, . . . , ξk)⇔ c(ξ′1, . . . , ξ′k)) for

any c ∈ Ck (where k > 0).
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Since any c ∈ Ck is of the form hi(ci) for some i ∈ I and ci ∈ Ci
k,

and since every Li is with equivalence, item 4 is proved as above. The
proof of the other items is also as above, therefore L is with equivalence,
concluding the proof.

Finally, we state the following results, omitting the proofs (which are
easy).

Proposition 6.7. The l.s.p. F(C) = 〈C, Str(C), idStr(C), ∅, ∅〉 is full,
for any signature C.

Proposition 6.8. Fullness is preserved by colimits in Lsp.

As an immediate consequence of the results above we obtain a gen-
eralization of the Theorem 6.7 of completeness preservation of fibring
stated in [34].

Theorem 6.9. Let D = 〈{Li}i∈I ,M〉 be a non-empty diagram in Lsp
such that every Li is with implication ⇒i and with equivalence ⇔i, and
let DF be as in Proposition 6.6. Assume additionally that every Li is
full. Then the colimit of DF is p-complete and d-complete.

Proof. Let L be the colimit of DF . By Proposition 6.6 we obtain that
L is with equivalence. By Propositions 6.7 and 6.8 we get that L is
full. Therefore, by Theorems 6.6 and 5.7 in [34] we obtain that L is
p-complete and d-complete.

In particular, if both implication and equivalence are already shared
in D, is no longer necessary to extend the diagram D to DF , and we
obtain immediately the following completeness preservation result.

Theorem 6.10. Let D = 〈{Li}i∈I ,M〉 be a diagram in Lsp such that
every Li is with implication ⇒i and with equivalence ⇔i which are
shared through D, that is, in the colimit of D it holds: hi(⇒i) = hj(⇒j)
and hi(⇔i) = hj(⇔j) for all i, j ∈ I. Assume additionally that every Li

is full. Then the colimit of D is p-complete and d-complete.

Proof. Clearly, in this case the colimit L of D is the colimit of DF . The
result follows from Theorem 6.9.

The preservation of completeness by limits in Lsp is easier to state
and it holds in general, without any assumptions on the l.s.p.’s involved.



166

Theorem 6.11. Let D = 〈{Li}i∈I ,M〉 be a diagram in Lsp such that
every Li is p-complete (d-complete, resp.). Then the limit of D is p-
complete (d-complete, resp.).

Proof. Let L = 〈C,M/∼, A, P,D〉 be the limit of D with morphisms

〈hi, F i〉, obtained from F i and A as in Proposition 4.7. Since [[ĥi(δ)]]
Ai(m)
α

= [[δ]]
A(F i(m))
α for all δ ∈ L(C,Ξ) and α : Ξ−→Bm, we obtain the follow-

ing:

Γ |=p
A(F i(m))

δ iff (∀α)[(⋂γ∈Γ[[γ]]
A(F i(m))
α = Um)⇒ ([[δ]]

A(F i(m))
α =

Um)]

iff (∀α)[(⋂γ∈Γ[[ĥ
i(γ)]]

Ai(m)
α = Um)⇒ ([[ĥi(δ)]]

Ai(m)
α =

Um)]

iff ĥi(Γ) |=p
Ai(m)

ĥi(δ)

for all Γ∪{δ} ⊆ L(C,Ξ), i ∈ I andm ∈M i. In other words, Γ
|=p

A(Fi(m)) =

(ĥi)−1(ĥi(Γ)
|=p

Ai(m)) for all Γ ⊆ L(C,Ξ), i ∈ I andm ∈M i. Let Γ ⊆ L(C,Ξ),
and suppose that every Li is p-complete. Then

Γ|=p
L =

⋂
i∈I

⋂
m∈M i Γ

|=p

A(Fi(m)) =
⋂

i∈I
⋂

m∈M i(ĥi)−1(ĥi(Γ)
|=p

Ai(m))

=
⋂

i∈I(ĥ
i)−1(

⋂
m∈M i ĥi(Γ)

|=p

Ai(m)) =
⋂

i∈I(ĥ
i)−1(ĥi(Γ)

|=p
Li )

⊆ ⋂
i∈I(ĥ

i)−1(ĥi(Γ)
�p
Li ) = Γ�p

L

by Corollary 3.8. Therefore, L is p-complete. The proof for d-completeness
is similar.

7 Concluding remarks

We show, through the analysis of three categories, that it is possible to
generalize the basic construction of fibrings of logics — which are colimits
of a simple kind — to arbitrary colimits and limits. The main result of
this paper states that, under reasonable conditions, arbitrary colimits
preserve completeness, thus generalizing the result for fibring presented
in [34]. On the other hand, we prove that no requirements are necessary
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in order to preserve completeness by arbitrary limits. This suggests that
it is possible to obtain complex systems of logics through specifications
given by diagrams, by taking limits or colimits of such diagrams, and
completeness will be preserved under reasonable assumptions.

In this paper, following the approach in [34], we have studied catego-
rial combinations of propositional logic in which the syntactic entailment
is expressed by means of Hilbert calculus, and the semantics is truth-
functional, characterized by classes of algebras defined over powersets.
The study of limits and colimits in other categories of logic systems such
as the ones introduced in [7] and [29], with the aim of defining sophisti-
cated forms of composing and decomposing logics of many kinds, is an
issue that could be addressed in the future research. In particular, it
could be interesting to analyze the generation of relevant bridge princi-
ples by means of colimits in the categories of sequent calculi introduced
in [16], given that they are suitable to this end, as discussed in Section 5
of that paper (see also [1]). This issue is relevant to questions such as the
“ought-implies-can” thesis mentioned in Section 1 which, as discussed in
Example 5.12, has a negative answer in the context of (standard) fibring
in the categories studied here.

Besides being interesting and useful from the technical and pragmat-
ical points of view, the generalization of fibring to arbitrary limits and
colimits proposed here brings us several intriguing questions from the
conceptual side. For instance, by looking at the dual constructions from
the perspective of category theory, unconstrained fibrings are coprod-
ucts, and their duals correspond to products of logics, a way to split a
logic into factors. On the other hand, constrained fibrings are pushouts
of diagrams consisting of two morphisms with the same domain in the
category in which the logic systems are represented. What would be
the significance, from the point of view of abstract logics and combin-
ing logics, of pullbacks of diagrams consisting of two morphisms with a
common codomain in such categories? Of course this question can be
formulated for limits and colimits of diagrams in general.

We consider that category theory offers a extremely useful conceptual
framework to deal with combining logics. We hope that the notions and
results presented in this paper can contribute to that discussion.
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[33] V. Šehtman. Two-dimensional modal logics. Akademiya Nauk
SSSR. Matematicheskie Zametki, 23(5):759–772, 1978.

[34] A. Zanardo, A. Sernadas, and C. Sernadas. Fibring: Completeness
preservation. Journal of Symbolic Logic, 66(1):414–439, 2001.
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Abstract

This paper explores the general question of the validity of
Gödel’s incompleteness theorems by examining the respective ar-
guments from a paraconsistent perspective, while employing com-
binations of modal logics with Logics of Formal Inconsistency (LFIs).
For this purpose, abstract versions of the incompleteness theorems,
employing provability logic, need to be carefully crafted. This
analysis considers distinct variants of the notion of consistency for
formal systems, which, together with the lighter character of the
negation operator of the LFIs, enable new formalization variants
of the Gödelian arguments, eventually leading to some thought-
provoking conclusions. We show that the standard formulation
of Gödel’s theorems is not valid under some weak LFIs: a valid
reconstruction requires further premises corresponding to the con-
sistency (in the sense of LFIs) of particular formulas. This readily
leads us to a reformulation of Gödel’s theorems as an existence
claim. We counted with the assistance of the proof assistant Is-
abelle/HOL for verifying and falsifying certain hypotheses during
the process of formal proof reconstruction.

1 How universal are Gödel’s arguments?

In a rough and intuitive formulation, Gödel’s first incompleteness theo-
rem (G1) says that for certain consistent formal systems there are (true)
sentences that the systems cannot decide, i.e., neither prove nor dis-
prove; in its turn, the second incompleteness theorem (G2) says that
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such a system cannot prove its own consistency. A formidable amount
of papers deal with explanations or interpretations of the Gödelian ar-
guments, but few of them touch on their limits.

Gödel formulated his incompleteness theorems1 employing notions
such as axiomatic systems, primitive recursive arithmetic, arithmetiza-
tion/numbering, representability/interpretability, consistency, complete-
ness, diagonalization, etc; even a cursory literature survey reveals several
different (and in some cases non-equivalent) ‘formalizations’, or more ap-
propriately, explications, of these notions. In this paper we focus on the
notions of consistency and negation from the point of view of paracon-
sistent logic. For this purpose, we will abstract away the complexities of
Gödel’s arithmetization procedure and assume the corresponding fixed-
point (diagonalization) lemma as a premise. We will employ for this (a
paraconsistent version of) provability logic [30, 3].

In view of the abundant literature and approaches towards Gödel’s
results, we are obliged to restrict ourselves to considering only a few
sources. Succinct, but self-contained and fairly detailed, discussions
emphasizing the most important points in Gödel’s proofs can be found,
for example, in the works of Smoryński [26, §1–§2], Epstein & Carnielli
[18, Ch. 23–24], and in the Stanford Encyclopedia of Philosophy [23].

Section 2 raises the question of the range of Gödel’s theorems, setting
the stage for an analysis of the dependence of the Gödelian arguments
on standard logical conventions. Section 3 introduces the paraconsis-
tentist program, and foresees some difficulties as regards the validity
of the Gödelian objection in more subtle logical scenarios. Section 4
discusses the Logics of Formal Inconsistency, and justifies the choice
of the logic RmbC among eligible paraconsistent scenarios. Section
5 illustrates the mechanism by which we add a provability operator to
RmbC, thus obtaining the logic RmbC⊕K. Section 6 reconstructs
some proofs for paraconsistent variants of Gödel’s theorems employing
the logic RmbC⊕K (and extensions). Finally, Section 7 offers the main
conclusions of this paper.

1There is some controversy in referring to Gödel’s results as either ‘a theorem’ or
‘theorems’. Saul Kripke (in private conversation with the first author) insists that we
should refer jointly to both as ‘Gödel’s theorem’, since G2 is a corollary of G1. We
prefer to maintain the plural.
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2 On the range of Gödel’s theorems

Gödel’s incompleteness theorems do not apply unrestrictedly to every
mathematical system. G1 does not apply, for instance, to Euclidean
geometry. Tarski proved in 1948 [29] that the first-order theory of Eu-
clidean geometry is complete and decidable,2 in the sense that every
statement in its language is either a theorem (i.e., provable) or its nega-
tion is a theorem, and that there is an algorithm to determine which
is the case. Even non-Euclidean geometry falls outside the Gödelian
barrier: if plane Euclidean geometry is a consistent theory, then so is
plane hyperbolic geometry. Nor do Gödel’s theorems apply to systems
of arithmetic with the addition operation only, such as Presburger arith-
metic. It is necessary to have a certain critical mass of mathematical
strength to be attacked by the Gödelian objection, or, in other words:
to qualify as what Gödel himself defined as ‘a formal system’.

Our aim in this paper is to give some first steps towards the anal-
ysis, using non-classical logics, of the applicability of Gödel’s theorems
to formal systems. Very little investigation, if any, touches on the va-
lidity of Gödel’s proofs in non-classical environments. For instance, [1]
claims to be studying versions of Gödel’s arguments under the umbrella
of non-classical logics, but only concentrates on substructural logics:
the authors show that the Gödelian reasoning presupposes a certain
amount of contraction in the underlying logic, that is, the validity of
the meta-rule ‘from Γ, ψ, ψ � ϕ follows Γ, ψ � ϕ’. They then exhibit
a modal system without contraction that invalidates Gödel’s argument.
On the other hand, several authors including Kreisel, Feferman, Löb,
Jeroslow, Bezboruah–Shepherdson, Pudlák, Wilkie–Paris, Adamowicz–
Zdanowski, Willard, Friedman, and Visser, among others (see [1] for
references) have studied abstract conditions that permit the incomplete-
ness theorems to be derived in a way somewhat independent of logic, but
without changing the underlying standard logic. The interested reader
may further consult some book-length discussions on Gödel’s results,
e.g., [25] and [27]; for a more philosophically-oriented discussion, a good
reference is [19].

The intuition behind Gödel’s proof of G1 is basically the following:
assume that the formal system F is consistent (otherwise it proves every
sentence by the Principle of Explosion of classical logic, and thus it is

2According to [22], the results were obtained in 1930 and published privately in
their full development in 1948.
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trivially complete). By Gödel’s diagonal (or fixed-point) lemma, one can
then construct a sentence GF (hinging on F) that is neither provable
nor refutable in F, and that can also be shown to be true. Thus F is
incomplete, both in the sense that there is a sentence that it cannot
‘decide’, and in the sense that there is a true sentence that it cannot
prove. G2, stating that F cannot prove its own consistency, follows as
a corollary of G1. Alternatively, G2 can be derived directly from Löb’s
theorem.

As is well recognized, the notion of consistency employed in G1 is
not the same in the different variants that have been presented; these
variants range from the so-called ω-consistency originally introduced by
Gödel, through the (weaker) 1-consistency commonly used in the liter-
ature, while also including a more classical notion of consistency as in
the variant introduced by Rosser in 1936.

But what is the idea of consistency behind G2? At first sight, one
can say that consistency means simply the imperative not to derive
a contradiction (absence of contradiction, or universal validity of non-
contradiction), which is the same as non-triviality, in view of the Prin-
ciple of Explosion (PEx) of traditional logic. However, the PEx is an
unnecessary burden that classical logic carries uselessly: it is not used,
except to mark the ban on contradictions. Contrary to what some un-
suspecting people may think, the PEx is not even used in reductio ad
absurdum proofs: a little thought will convince them that what is at
stake in such proofs is the rule of negation introduction. Indeed, any
time we have a bottom particle ⊥, the rule α→ ⊥ � ¬α can be applied,
as it involves the introduction of negation, and not any use of PEx. In
classical logic the variant ¬α→ ⊥ � α also holds; notice, however, that
this second variant does not hold in intuitionistic logic. This means that
the beloved and useful reductio ad absurdum method of proof acquires
its legitimacy independently of PEx.

Paraconsistent logics, particularly the Logics of Formal Inconsistency
(LFI), liberate logical systems from this burden by weakening the PEx,
and for a good reason. As is widely acknowledged (see, e.g., [17]), in
many situations we have no other choice but to reason from contradic-
tory premises, and this is a critical issue, since large knowledge bases or
complex arguments almost inevitably include contradictions. A conse-
quence of weakening the PEx is that consistency does not coincide with
non-contradiction anymore, nor does it coincide with non-triviality. This
is already a major philosophical difficulty for the classical stance on G2,
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which also affects, to a lesser extent, G1. As pointed out in the lit-
erature, e.g., in [1], we cannot easily pinpoint a class of formulas that
expresses consistency. When we paraphrase G2 as saying that ‘a suf-
ficiently strong consistent theory cannot prove its own consistency’ we
are forced to remain vague, and more so in the domain of paraconsistent
logics.

A natural question thus emerges: is there a way to avoid Gödel’s
conclusions by changing the underlying logic? Admittedly, it is not
very encouraging to know that G1 and G2 are both intuitionistically
valid; this is so because the usual proof of G1 is entirely constructive.
Moreover, the usual proof of G2 consists in coding the proof of G1 us-
ing arithmetic, which is, again, constructive. This means that neither
classical nor intuitionistic logic are free of the Gödelian challenge. We
show that the situation is different for paraconsistent logics, while at the
same time providing a means to recover Gödel’s results by adding fur-
ther premises that concern the consistency (in the paraconsistent sense
to be explained below) of particular formulas.

3 The paraconsistentist program

The Logics of Formal Inconsistency (LFIs) are a broad family of para-
consistent logics, which constitute a wide generalization of da Costa’s
original hierarchy Cn by incorporating operators for consistency (◦) and
inconsistency (•). LFIs turn out to be highly flexible logic systems (see,
e.g., [12] for references and discussion).

The paraconsistent program is the investigation of logic systems en-
dowed with a negation ¬, such that not every contradiction of the form
α and ¬α entails everything; in other words, a paraconsistent logic does
not suffer from deductive trivialism, in the sense that a contradiction
does not necessarily trivialize the deductive machinery of the system by
proving everything.3

Formalizing what has been said before, deductive trivialism stems
from the fact that classical logic cannot stand contradictions, since it
endorses the inference rule ex contradictione sequitur quodlibet, or Prin-
ciple of Explosion:

(PEx) α,¬α � β,

3Deductive trivialism should not be confused with trivialism, according to which
everything is true.
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which authorizes the derivation of any proposition β from a pair of con-
tradictory propositions α,¬α.4 The challenge for paraconsistent logics
is to shun such an ‘explosive’ negation, while still preserving resources
for designing an expressive logic.

As mentioned above, the language of LFIs internalizes a notion of
consistency at the formula-level, independent of (but related to) nega-
tion. Consistency thus becomes represented in the logic by a new unary
connective ◦. In the same vein, some LFIs internalize a notion of in-
consistency employing the connective •. In this setting, the notion of
inconsistency (•) does not necessarily correspond to the negation of con-
sistency (¬◦).

In the LFIs, consistent statements are those too rigid to admit con-
tradictions, errors or vagueness, as exemplified by yes–no statements
(e.g., whether or not you are pregnant, or have a certain disease). Those
statements are rigid, or ‘consistent’, in the sense that they cannot stand
any contradiction. On the other hand, more flexible, ‘non-consistent’ or
‘inconsistent’ statements (like whether it is hot today) have the ability
to resist to contradictions (by not entailing everything).

This intuitive notion of consistency becomes expressed formally by
means of the connective ◦, whose meaning is governed by axioms and
rules. Analogous ideas can be found in the notion of rigidity, as em-
ployed in computational ontologies (cf. OntoClean and UFO), as well
as in the notion of rigid or stable predicates found in quantified modal
logics (cf. [20] for an application in the analysis of another Gödelian ar-
gument). This indicates that the idea of formally abstracting a notion of
consistency is a natural desideratum, and has instances in other fields.

The basic intuition is that contradictions should not affect all sen-
tences (or all judgments) in the same way, and this is why the sort of
Principle of Explosion employed in the LFIs is restricted to a special set
of consistent sentences. Hence a contradictory theory is not necessarily
trivial, provided that the contradictions do not involve statements that
have been tagged as ‘consistent’ by employing the connective ◦. This
flexibility characterizing LFIs is expressed in the so-called Principle of
Gentle Explosion, which is an essential part of the definition of LFIs,

4This is independent from the fact that classical logic endorses the validity of the
Principle of Non-Contradiction: 	 ¬(α ∧ ¬α), see [11]. Also note that the principle
ex contradictione sequitur quodlibet is often conflated with ex falso sequitur quodlibet
(⊥ 	 β). As we will see, they are not equivalent from the point of view of the LFIs,
where the former fails to hold while the latter continues to be valid.
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which we present below.

Definition 3.1. Let L = 〈Θ,�〉 be a Tarskian, finitary and structural
logic defined over a propositional signature Θ, which features a negation
¬ and a (primitive or defined) unary connective ◦. L is then said to be
a Logic of Formal Inconsistency (LFI) with respect to ¬ and ◦, if the
following holds:

(1) ϕ,¬ϕ � ψ for some ϕ and ψ;

(2) ◦ϕ,ϕ,¬ϕ � ψ for every ϕ and ψ;

(3) there are two formulas α and β such that

(a) ◦α, α � β;

(b) ◦α,¬α � β.

Condition (1) signals the failure of the Principle of Explosion. Con-
dition (2) represents the Principle of Gentle Explosion. Condition (3) is
required in order to prevent condition (2) from being trivially satisfied.

As a consequence, and in contrast to classical logic, consistency in
LFIs is not synonymous with freedom from contradiction, and here the
role of negation is fundamental. The meaning of consistency in the LFIs
is dictated by its axioms, as occurs with negation (and the other connec-
tives). For conceptual clarifications the reader is referred to [10] and to
[8]. The LFI-hierarchy starts from a logic called mbC, which extends
positive (i.e., ‘negation-less’) classical logicCPL+ by adding a (paracon-
sistent) negation ¬ and a unary consistency operator ◦ satisfying some
minimal requirements in order to define an LFI (as in Definition 3.1).

Gödel’s theorems are, of course, crucially dependent on the prop-
erties of negation, and we will evaluate how this new perspective may
affect their validity. It should from now on become clear that the state-
ments ◦α (α is consistent) and ¬(α ∧ ¬α) (α is non-contradictory) are
not equivalent for a paraconsistent negation ¬, that is, for a negation
subject to the Principle of Gentle Explosion (instead of the classical
Principle of Explosion).

This separation between consistency and non-contradiction, contra-
diction and non-consistency, as well as inconsistency and non-consistency,
together with the consequent distinction between contradiction and triv-
iality, are the main tenets of LFIs. As we shall see in Sections 5 and
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6, they will lead to distinct proposals for the formalization of Gödel’s
theorems, and thus affect the proofs accordingly.5

4 Choosing among paraconsistent scenarios

We start by introducing a ‘negation-less’ fragment of classical logic, or
full classical positive logic:

Definition 4.1 (Classical Positive Logic). The classical positive logic
CPL+ is defined over the language containing {∧,∨,→} by the following
axioms and inference rule:

Axiom schemas:

α→ (
β → α

)
(Ax1)

(
α→ (

β → γ
))→

((
α→ β

)→ (
α→ γ

))
(Ax2)

α→
(
β → (

α ∧ β
))

(Ax3)
(
α ∧ β

)→ α (Ax4)
(
α ∧ β

)→ β (Ax5)

α→ (
α ∨ β

)
(Ax6)

β → (
α ∨ β

)
(Ax7)

(
α→ γ

)
→

(
(β → γ)→ (

(α ∨ β)→ γ
))

(Ax8)
(
α→ β

) ∨ α (Ax9)

Inference rule:
α α→ β

β
(MP)

Starting from CPL+ above as a base logic, we extend it with a
(paraconsistent) negation ¬ and a (primitive or defined) consistency
operator ◦ satisfying the conditions stated in Definition 3.1. We thus
obtain the paraconsistent logic mbC, which is a basic LFI in the sense

5We will investigate these effects only at an abstract level and by employing prov-
ability logic. In particular, we will not consider Gödel’s arithmetization procedure,
nor the fixed-point (diagonalization) lemma, which we simply assume. One can thus
describe our work as formally reconstructing ‘the last mile’ of Gödel’s proofs.
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that its negation and consistency operators enjoy the minimal properties
in order to satisfy the definition of LFIs.6

Definition 4.2. The logic mbC, defined over the language containing
{∧,∨,→,¬, ◦}, is an LFI obtained from CPL+ by adding the connec-
tives ¬, ◦ and the following axiom schemas:

α ∨ ¬α (Ax10)

◦α→
(
α→ (¬α→ β

))
(bc1)

Moreover, we can use ¬ and ◦ to define bottom particles in the lan-
guage of mbC, as well as classical negation, also called strong negation.

Definition 4.3. For any sentences α and γ:

• ⊥α := ◦α ∧ α ∧ ¬α act precisely as bottom particles, i.e., they
satisfy ⊥α �mbC β for every sentence β;

• ∼γα := α → ⊥γ act precisely as classical (strong) negations,
i.e., they satisfy �mbC α ∨ ∼γα, and α ∧ ∼γα �mbC β for ev-
ery sentence β.

Since ⊥α are equivalent for all α, and ∼γ are equivalent for all γ
(see [8, Ch. 2] for an elaborate discussion), we write simply ⊥ and ∼.
It is worth remarking that mbC (as introduced below) both extends
and is extended by classical logic. Indeed, on the one hand mbC is
obviously a subclassical logic by definition, and on the other hand the
defined connectives ⊥ and ∼, added to {∧,∨,→}, completely encode
classical logic. mbC can be (equivalently) expounded as a direct ex-
tension of classical logic, by incorporating an additional negation ¬ to
the language, thus defining the logic mbC⊥. The equivalence between
mbC⊥ and mbC is shown in [8, Ch. 2]. Moreover, recalling the Princi-
ple of Gentle Explosion (cf. Definition 3.1), we note that the presence of
⊥ in the logic validates the inference rule ex falsum sequitur quodlibet :
⊥ �mbC β, which in the paraconsistent paradigm is clearly distinct from
ex contradictione sequitur quodlibet, see e.g. [14].

6Some strong extensions of mbC, such as the logic Cie (and its extensions), do
not distinguish between inconsistency and contradiction as a consequence of their
axiomatic presentation, and some may even allow for the reduction of double nega-
tions (this is, however, contrary to what happens in most other LFIs; see [8] for a
discussion). We will thus restrict ourselves to relatively weak systems starting from
the minimal (weakest) Logic of Formal Inconsistency mbC.
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mbC is the basis for a potentially infinite hierarchy of logics, going
up to da Costa logics Cn, paraconsistent many-valued logics [10], para-
consistent modal logics [4, 5], and eventually reaching classical logic,
all of them characterized by axiomatic systems extending mbC (see [8,
Ch. 3–4] for a detailed discussion).

It has been proved that the logics in the da Costa hierarchy Cn (C1

included) are hardly algebraizable. This is partly due to the non-validity
of a replacement meta-theorem which would establish the validity of
intersubstitutivity of provable equivalents (IpE) for such logics. Indeed,
Theorem 3.51 in [15] shows that IpE cannot hold in any paraconsistent
extension of the logic Ci (or, for that matter, in any LFI) in which
(¬α ∨ ¬β) � ¬(α ∧ β) holds or ¬(α ∧ β) � (¬α ∨ ¬β) holds.

We will sketch the main lines of RmbC, an extension of mbC (as
mentioned, a minimal LFI extending CPL+) which satisfies the re-
placement property, a meta-property that grants that if α ↔ β is a
theorem then γ[p/α]↔ γ[p/β] is a theorem, for every formula γ(p). As
mentioned, mbC does not generally satisfy replacement for sentences
containing ¬ and ◦. By adding replacement for ¬ and ◦ as new global
inference rules, full replacement can be recovered, in the sense that if
α↔ β is a theorem then ¬α↔ ¬β is also a theorem, and if α↔ β is a
theorem then ◦α ↔ ◦β also is. As discussed in [9], this makes RmbC
and its extensions fully algebraizable in the standard Lindenbaum-Tarski
sense, which enables their combination with other similarly algebraiz-
able logics by means of algebraic fibring [6, 7]. This is very important
for us, since we want to be able to combine RmbC with other modal
logics (e.g., extending K) for the sake of formally reconstructing Gödel’s
arguments.

Definition 4.4. The logic RmbC, defined over the language containing
{∧,∨,→,¬, ◦} is obtained from mbC by adding the following inference
rules:

α↔ β

¬α↔ ¬β (R¬)
α↔ β

◦α↔ ◦β (R◦)

As observed in [9], where RmbC was introduced and from where
we borrow its presentation, the rules that grant replacement are global
instead of local rules; this means that in order to apply each global
rule the corresponding premise must be a theorem. This is similar to
what happens with the necessitation rule in modal logics. Observe that
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adding global rules of this kind requires special care with the definition
of derivation in the logic.

Definition 4.5 (Derivation in RmbC).

• A derivation of a formula ϕ in RmbC is a finite sequence of for-
mulas ϕ1 . . . ϕn such that ϕn is ϕ and, for every 1 ≤ i ≤ n, either
ϕi is an instance of an axiom of RmbC, or ϕi is the consequence
of some inference rule of RmbC whose premises appear in the
sequence ϕ1 . . . ϕi−1.

• We say that a formula ϕ is derivable in (or a theorem of) RmbC,
denoted by �RmbC ϕ, if there exists a derivation of ϕ in RmbC.

Definition 4.6 (Derivation from assumptions in RmbC). Let Γ ∪ {ϕ}
be a set of formulas in RmbC. We say that ϕ is derivable in RmbC
from Γ, and we write Γ �RmbC ϕ, if either ϕ is derivable in RmbC,
or there exists a finite, non-empty subset {γ1, . . . , γn} of Γ such that the
formula (γ1 ∧ γ2 ∧ . . . ∧ γn)→ ϕ is derivable in RmbC.

Remark 4.7. The deduction meta-theorem is not generally valid in
RmbC when considering the (global) notion of derivation in Defini-
tion 4.5. However, it is easy to see (by the properties of ∧ and →
inherited from CPL+) that the deduction meta-theorem does hold when
considering the (local) notion of derivation from assumptions in Defini-
tion 4.6. Note also that RmbC is a Tarskian and finitary logic (see [9]
for details).

As presented in [9], a sound and complete semantics for RmbC can
be given by means of a suitable class of Boolean algebras with LFI opera-
tors (BALFIs), a (non-additive) generalization of the standard Boolean
algebras with operators (BAOs) used in algebraic semantics for (normal)
modal logics. It is important to highlight that the possibility of such
a semantic characterization for paraconsistent logic RmbC opens the
door to its combination with other logics (e.g., modal logics) by means
of algebraic fibring [6, Ch. 3], as well as its use in many other application
areas for algebraic methods in logic. Moreover, a neighborhood seman-
tics characterizing RmbC (and its extensions) has been introduced in
[9], where it was shown that RmbC can be defined within the minimal
bimodal non-normal logic E (cf. minimal models in [16]). In this re-
spect, RmbC can indeed be considered as a (non-normal) modal logic.
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We have exploited this fact in our Isabelle/HOL reconstruction [13],
where we conduct automated reasoning with combinations of RmbC
and other modal logics, by employing the technique of shallow semanti-
cal embeddings (SSE) [2].

Before finishing this section, it is convenient to emphasize some prop-
erties of the consistency operator and of the paraconsistent negation in
the logic RmbC. Note that these properties concern particularly the
notions of consistency and inconsistency:

Theorem 4.8. The following properties hold in RmbC:

(1) ⊥ �RmbC β;

(2) ◦α,¬α �RmbC α→ ⊥;
(3) α ∧ ¬α �RmbC ¬◦α but ¬◦α ��RmbC α ∧ ¬α;
(4) ◦α �RmbC ¬(α ∧ ¬α) but ¬(α ∧ ¬α) ��RmbC ◦α;
(5) ¬α→ β �RmbC α ∨ β but α ∨ β ��RmbC ¬α→ β;

(6) ◦α, α ∨ β �RmbC ¬α→ β;

(7) α→ β �RmbC ¬β → ¬α but ◦β, α→ β �RmbC ¬β → ¬α;
(8) α→ ¬β �RmbC β → ¬α but ◦β, α→ ¬β �RmbC β → ¬α;
(9) ¬α→ β �RmbC ¬β → α but ◦β,¬α→ β �RmbC ¬β → α;

(10) ¬α→ ¬β �RmbC β → α but ◦β,¬α→ ¬β �RmbC β → α.

Proof. The first two properties can be easily derived from Definition 4.3
above and the Principle of Gentle Explosion. The other proofs can also
be easily adapted from [8], Chapter 2, Propositions 2.3.3, 2.3.4, and
2.3.5.

The above properties help us to understand the connections between
consistency, non-consistency, contradictions, and non-contradictions, as
well as to anticipate some of their effects on Gödelian arguments. Item
(1) corresponds to the principle ex falso sequitur quodlibet (interpreting
‘falso’ as falsum, i.e., ⊥). Item (2) shows that negating a consistent for-
mula implies its classical negation. Item (3) shows that contradiction
implies non-consistency, but not vice-versa. Item (4) shows that consis-
tency implies non-contradiction, but not vice-versa. Items (5) and (6)
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show that disjunction cannot be fully recovered from negation and im-
plication, as in the classical case (however, this can be done when some
parts are consistent). Items (7) to (10) show that contraposition rules
for implication do not hold when the paraconsistent negation is consid-
ered, but will hold under the guarantee of consistency for the consequent
(disregarding negation) in the original conditional form.

The discussion in this section has been aimed at explaining our choice
of a paraconsistent scenario for dealing with the plethora of variants of
Gödel’s theorems that emerge by weakening the Principle of Explosion
and, in particular, when consistency is liberated from being defined as
non-contradiction. The following sections introduce a logic combination
featuring both LFI operators and a (normal) modal operator � aimed at
capturing the notion of provability in formal systems like Peano Arith-
metic, drawing upon systems of modal logic extending K. We also dis-
cuss some notable (though not exhaustive) conclusions achieved through
the reconstruction of proofs for paraconsistent variants of Gödel’s theo-
rems (in joint work with the proof assistant Isabelle/HOL).

5 A paraconsistent logic of provability

We have so far introduced the logic RmbC as a candidate logic for
the formalization of the Gödelian proofs. However, the most important
component for such a logical system is still missing, namely, a provability
operator, since we want to encode the notion of being derivable/provable
directly in our object language. Following the tradition of provability
logic [30, 3], we will employ the modal operator � for this purpose. But
first of all, what is this provability logic? Generally speaking, every time
we apply modal logic to the study of formal provability (in some given ex-
pressive system) it becomes provability logic. However, not every system
of modal logic is appropriate for modeling the notion of derivability in a
system including (Peano) arithmetic (e.g., some common modal axioms
like T or D are unqualified). Hence, the logics that usually come into
consideration when it comes to provability are normal modal logics ex-
tending the well-known systemK with either the axiom 4: � �φ→ ��φ
(logic K4) and/or the inference rule LR : � �φ→ φ =⇒ � φ (logic
K(4)LR), or the axiom L : � �(�φ → φ) → �φ (logic GL).

To get an idea of how these modal logics relate to provability, let
us consider a formal system F that includes Peano Arithmetic. We
write �F φ to indicate that φ is a theorem of F. If φ is an expression
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of the language of F (i.e., an F-formula), we shall let �φ# denote the
corresponding numeral for the Gödel number of φ (which we henceforth
call the Gödel numeral of φ).7 Given the F-formula PfF (y, x), stating
that there is a proof in F with Gödel numeral y for the formula with
Gödel numeral x, we can construct the formula PrF (x) := ∃y.PfF (y, x).
Hence PrF (�ψ#) expresses that �ψ# is the Gödel numeral of a sentence
ψ that is provable in F.

The link between modal logic and provability in F (both sharing the
primitive logical connectives ⊥ and→)8 becomes explicit by considering
the following notion (cf. [3, Ch. 3]).

Definition 5.1 (Realization). A realization r(p) is a function that as-
signs to each sentence letter p a sentence of the language of F. A real-
ization r induces a translation (·)r such that:

1. (p)r = r(p)

2. (⊥)r = ⊥
3. (φ→ ψ)r = (φ)r → (ψ)r

4. (�φ)r = PrF (�(φ)r#)
Remark 5.2. Since we aim at obtaining a paraconsistent provability
logic, we need to add the following additional items to Definition 5.1
above:

5. (¬φ)r = ¬(φ)r (for LFIs only)

6. (◦φ)r = ◦(φ)r (for LFIs only)

Observe that, in adding the last two items, we assume the existence of
counterparts for ¬ and ◦ in the language of F. Since F is also assumed to
contain (Peano) arithmetic, we can, at least in principle, articulate arith-
metic formulas featuring ¬ or ◦. This prima facie ability to employ a

7Recall that we can establish an injection between the set of F-formulas (and
also their sequences) and the set of natural numbers, in such a way that each natu-
ral number is recursively associated with at most one formula according to Gödel’s
arithmetization procedure. Also recall that a numeral corresponding to some natural
number n is the F-formula consisting of the symbol 0 preceded by n occurrences of
the symbol S.

8Recall that ∼φ can be defined as φ → ⊥. Other connectives can be defined by
employing ∼ and → as usual.
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paraconsistent negation, as well as a consistency operator, in arithmetic
formulas has interesting philosophical repercussions. Their analysis is,
however, beyond the scope of this paper. An interesting discussion can
be found in [24].

The link between theoremhood in both systems, i.e., between a sys-
tem F containing Peano Arithmetic and some extensions of K, is given
by the three results below.

Proposition 5.3. �GL φ if and only if for every realization r, �F (φ)r.

Proposition 5.4. If �K4 φ, then for every realization r, �F (φ)r.

Corollary 5.5. If �K φ, then for every realization r, �F (φ)r.

Proof. Proposition 5.3 is Solovay’s arithmetical completeness theorem
for the logic GL [28]. Proposition 5.4 (arithmetical soundness theorem
for K4) and its Corollary 5.5 (arithmetical soundness for K) are earlier
results; see [30] and [3] for discussion.

We now recall the well-known derivability conditions for PrF (x)
(drawing on the ones introduced by M.H. Löb [21]) and their coun-
terpart axioms in the modal logic K4 (note that the logic GL is an
extension of K4 [3]).

Proposition 5.6 (Derivability conditions). Let F be a formal system
containing Peano Arithmetic; we have:

1. If �F φ then �F PrF (�φ#)
2. �F PrF (�φ#) ∧ PrF (�φ→ ψ#)→ PrF (�ψ#)
3. �F PrF (�φ#)→ PrF (�PrF (�φ#)#)

Proof. Consult, e.g., [21] or [3, Ch. 2].

Remark 5.7. Observe that the previous results apply in general to
every system F which contains (classical) Peano Arithmetic. Hence it
also applies for arithmetic systems featuring LFI operators ¬ and ◦;
recall from Definition 4.3 that ⊥ (and in consequence ∼) is definable in
the LFIs.

Definition 5.8. The conditions above are encoded in K as follows:
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1. Necessitation rule: � φ =⇒ � �φ

2. Axiom K: � �(φ→ ψ)→ (�φ→ �ψ)

Moreover, we have in modal logic K4:

3. Axiom 4: � �φ→ ��φ

Furthermore, we can enrich our logic with another postulate further
restricting the behavior of the provability operator �. This postulate
draws upon the following result:

Proposition 5.9 (Löb’s Theorem). Let φ be any sentence of the lan-
guage of F. We have that

if �F PrF (�φ#)→ φ then �F φ.

Proof. Consult M.H. Löb’s original result [21] (see also [3]).

Definition 5.10. Löb’s theorem can be encoded in (extensions of) modal
logic K as follows:

• Löb’s rule LR: � �φ→ φ =⇒ � φ

• Löb’s axiom L: � �(�φ→ φ)→ �φ

The modal logic KLR is obtained by extending K with the inference
rule LR above; similarly, the logic K4LR is obtained by extending K4
with rule LR. The modal logic GL (Gödel–Löb logic, or provability logic
in the strict sense) is obtained by extending K with axiom L. Note that
axiom 4 follows from L, and also that logics K4LR and GL validate
the same formulas (consult [3] for this and other interesting results).

Concerning our present purposes, we define a paraconsistent logic of
provability RmbC⊕K by means of algebraic fibring (which generalizes
fusion of normal modal logics) [6, Ch. 3] between the logic RmbC and
the logic K, sharing the connectives {∧,∨,→,⊥}.9 It is evident that
RmbC⊕K is an LFI (Def. 3.1), as well as its extensions featuring
axioms 4 and L.

9Recall that the classical negation ∼ and the bottom particle ⊥ are definable in
logic RmbC, see Definition 4.3. Observe that we can combine both logics by means
of algebraic fibring, since, as recently shown in [9], RmbC can be seen as a fragment
of a (non-normal) modal logic with an algebraic semantics based on Boolean algebras
extended with additional operations. Further modal axioms such as 4 and L can be
employed to extend this logic combination (as we do in Section 6). Results concerning
the preservation of meta-properties (soundness, completeness, interpolation, etc.) for
combinations of logics employing the algebraic fibring approach can be consulted in
[6, Ch. 2–3].
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6 Which assumptions lie behind paraconsistent
incompleteness theorems?

We now put the logical machinery developed in the previous sections
to work. We provide a formulation of Gödel’s incompleteness theorems,
utilizing our paraconsistent provability logic RmbC⊕K (and its exten-
sions), and reconstruct their proofs. It is important to observe that,
in the proofs below, we reason by applying global inference rules to
theorems (Definition 4.5). This also includes applying rules like modus
ponens and derived rules like those in Theorem 4.8. Note that this is dif-
ferent than carrying out derivations from assumptions (Definition 4.6),
where the use of global rules is not allowed (unless the assumptions are
theorems), but, on the flip side, the deduction meta-theorem is recovered
(recall the corresponding discussion in Section 4). Not only the correct-
ness of these proofs has been mechanically verified using the proof as-
sistant Isabelle/HOL, but Isabelle also helped to fill numerous gaps and
provided relevant counter-examples: our recognition to the dolce guida,
the sweet guide as the Beatrice of Dante. The corresponding source files
are available online [13].

6.1 First incompleteness theorem (Gpar
1 )

The (paraconsistent) formulation of Gödel’s theorem presented in The-
orem 6.1 below, as well as its corresponding proof, draws upon the anal-
ysis by Smoryński [26, §2], Raatikainen [23], and Epstein & Carnielli
[18, Ch. 24]. It is worth mentioning that these three variants (as well
as many others) are indeed very similar, up to an additional premise
(which we will discuss below).

Theorem 6.1 (Gödel’s first incompleteness theorem Gpar
1 ). Assume F

is a consistent formal system which contains Peano Arithmetic. Let GF

be a formula that satisfies �F GF ↔ ¬PrF (�GF #), we have:

• GF exists; (existence lemma)

• ��F GF ; (non-provable lemma)

• under an additional premise, ��F ¬GF . (non-refutable lemma)

Proof. As remarked previously, the first condition (existence), drawing
on Gödel’s arithmetization procedure, is simply assumed in this analy-
sis. Recalling the discussion in Section 5, we provide a semi-formal proof
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for the other two lemmas, as encoded in the logic RmbC⊕K (conve-
niently using � as shorthand for �RmbC⊕K). The proof rests on an
(intuitionistically valid) use of the method of reductio ad absurdum.

The proof for lemma non-provable is simple. Assume that GF is a
theorem of F; this becomes formulated in our provability logic as: � GF .
Thus, applying necessitation (Definition 5.8), we obtain � �GF . More-
over, since GF satisfies the fixed-point lemma � GF ↔ ¬�GF , we ob-
tain � ¬GF reasoning by contraposition under the premise � ◦�GF

(cf. Theorem 4.8). Next, from � GF and � ¬GF we derive an ‘incon-
sistent’ (absurdum) statement � ⊥ by drawing on the definition of ⊥
(Definition 4.3), under the premise � ◦GF . Finally, �� GF follows by
reductio ad absurdum.

As for lemma non-refutable, we draw on the proof presented by
Smoryński in [26, §2], which operates under “an additional assump-
tion” (in the author’s own words), and which we interpret here in modal
terms. The additional premise is ‘�F PrF (�ϕ#) implies �F ϕ’ (for any
ϕ), which becomes formalized using our provability logic as the rule:
� �ϕ =⇒ � ϕ. The proof goes as follows:

Assume that GF is refutable in F, i.e., that � ¬GF ; thus, employ-
ing (the right-to-left direction of) the fixed-point lemma and reasoning
by contraposition under the premise � ◦GF , we obtain � �GF . We
further obtain � GF , by instantiating ϕ as GF in the additional premise
previously discussed and applying it as a rule, thus obtaining a contradic-
tion. As in the previous case, this contradiction leads to � ⊥ (absurdum)
under the premise � ◦GF (recall the definition of ⊥ in Definition 4.3).
Finally, this gives us �� ¬GF by reductio ad absurdum.

Remark 6.2. Observe that in the previous proof we have made salient
(using boldface) the inferences which, though classically valid, require
further additional assumptions from the point of view of the LFIs. They
correspond to contraposition and ‘⊥-introduction’ steps. Remember
from Theorem 4.8 that contraposition requires the (LFI) consistency
of the formula (disregarding negation) in the consequent. That is, we
require � ◦�GF and � ◦GF as further premises in order to validate
the corresponding contraposition steps in the proofs for lemmas non-
provable and non-refutable respectively, as remarked above. Also note
that these two assumptions are necessary and sufficient, in the context
of LFIs, to validate the respective (final) ‘⊥-introduction’ steps; recall
from Definition 4.3 that ⊥ := ◦ϕ∧ ϕ∧¬ϕ (for an arbitrary ϕ) acts as



191

the bottom particle in LFIs.

6.2 Second incompleteness theorem (Gpar
2 )

We formalize two (paraconsistent) variants of the proof for Gpar
2 ; the first

one draws from Smoryński [26, §2], and the second one draws from Boo-
los [3, Ch. 3]. Both variants presuppose the existence of an object-logical
formula ConsF which faithfully encodes the consistency of a system F
(i.e., ��F ⊥) in the arithmetic. We will employ the formula ¬�⊥ as
a working formalization for ConsF in provability logic, following the
established practice (see, e.g., [3]).

Theorem 6.3 (Gödel’s second incompleteness theorem Gpar
2 ). Assume

F is a consistent formal system which contains Peano Arithmetic. Let
ConsF be a formula of F representing the consistency of the system.
We also assume the derivability conditions on PrF from Proposition
5.6. We have two variants:

(i) Let GF be some formula of F that satisfies the fixed-point lemma:
�F GF ↔ ¬PrF (�GF #). We show that �F GF ↔ ConsF . Hence
Gpar

2 (i.e., ��F ConsF ) follows as an immediate corollary from
Gpar

1 (namely from one half: ��F GF ) by replacement.

(ii) From Löb’s theorem (Proposition 5.9), it follows that ��F ConsF .

Proof. We now provide a semi-formal proof for (i), drawing on the proof
presented in [26, §2], paraphrased using the logic RmbC⊕K4, i.e., we
have axiom 4 : � �ϕ → ��ϕ (for any ϕ) as a further premise.

The proof for the left-to-right direction of (i) is relatively simple. We
start with � ⊥ → GF (since ⊥ implies anything). Applying necessita-
tion we obtain � �(⊥ → GF ), and then � �⊥ → �GF by instantiating
modal axiom K (with ⊥ and GF ) and applying modus ponens. Now,
we obtain � �GF → ¬GF from the (left-to-right) fixed-point lemma
by contraposition, under the premise � ◦�GF (cf. Theorem 4.8).
Chaining the two previous formulas together we get � �⊥ → ¬GF ,
and, reasoning by contraposition under the premise � ◦GF , we obtain
� GF → ¬�⊥ as desired.

The proof for the right-to-left direction is more elaborate. We start
with the left-to-right direction of the fixed-point lemma � GF → ¬�GF .
Applying contraposition, under the premise � ◦�GF , we obtain
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� �GF → ¬GF , which becomes � ��GF → �¬GF after applying ne-
cessitation followed by modus ponens (after instantiating axiom K with
�GF and ¬GF ). Instantiating axiom 4 with GF , which gives us
� �GF → ��GF , and applying the chain rule, we get � �GF → �¬GF ,
which can be trivially expanded to � �GF → (�GF ∧�¬GF ). Now,
assuming � ◦GF as a further premise, we obtain � �◦GF by necessi-
tation, and thus � �GF → �◦GF (since implication is classical). Both
previously derived formulas give us: � �GF → (�GF ∧�¬GF ∧�◦GF ).
Moreover, as is well known, normal propositional modal logics satisfy
� �(α1 ∧ . . .∧ αn) ↔ (�α1 ∧ . . .∧�αn) for finite n; this makes the
consequent in the previous formula equivalent to�(GF ∧ ¬GF ∧ ◦GF ),
thus giving us � �GF → �(GF ∧ ¬GF ∧ ◦GF ). Now, recalling the
definition of ⊥ (Definition 4.3), we obtain � �GF → �⊥ (using re-
placement of equivalents). Reasoning, again, by contraposition, under
the premise � ◦�⊥, we get � ¬�⊥ → ¬�GF . Finally, drawing on the
fixed-point lemma, we obtain � ¬�⊥ → GF by replacement.

We now provide a semi-formal proof for (ii). This proof is consid-
erably simpler than the previous one; however, it relies on a stronger
premise, namely Löb’s theorem (Proposition 5.9). As the correspond-
ing representation in provability logic we choose the Löb’s rule variant
LR : � �ϕ → ϕ =⇒ � ϕ (Definition 5.10).10 Thus, our logic of for-
malization corresponds to the logic combination RmbC⊕KLR.

We start by assuming that ConsF is provable, i.e., � ¬�⊥. We thus
have � �⊥ → ⊥ by the properties of negation, under the additional
premise � ◦�⊥. Instantiating rule LR with ⊥ (� �⊥ → ⊥ =⇒ � ⊥),
we obtain � ⊥; from where �� ¬�⊥ follows by reductio ad absurdum.

Remark 6.4. Similarly as we did for Gpar
1 , we have made salient (using

boldface) the inferences which, though classically valid, require further
additional assumptions from the point of view of the LFIs (correspond-
ing in this case to contraposition and ‘⊥-introduction’ inferences). As
for the first step of the proof for (i), we note that ex falso (qua fal-
sum: ⊥) sequitur quodlibet is still valid in the LFIs. As regards the
subsequent contraposition steps in that proof, we have remarked that
� ◦�GF , � ◦GF and � ◦�⊥ are required as further premises for those
steps to succeed; recall that contraposition requires the consistency of
the formula in the consequent (disregarding negation), cf. Theorem 4.8.

10A proof along similar lines can be given if employing modal Löb’s axiom L.
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Also recall that ⊥ is defined in the LFIs as ◦ϕ ∧ ϕ ∧ ¬ϕ for arbitrary
ϕ (Definition 4.3); hence ◦GF is also required for the step involving ‘⊥-
introduction’ to get off the ground. As regards the proof for (ii), we note
that the inference � ¬ϕ , � ◦ϕ =⇒ � ϕ → ⊥ is valid in LFIs, as
the reader can easily verify. It is also worth noting that, in contrast to
variant (i), neither � ◦�GF nor � ◦GF are required as further premises
in this second variant.

7 A long story short: conclusions

Our results in Section 6 show that a condition for validating a paracon-
sistent version Gpar

1 of Gödel’s first incompleteness theorem is to assume
that both GF and �GF (i.e., PrF (GF )) are consistent in the LFI sense
of ‘contradiction-intolerant’. This is mainly due to the failure of explo-
sion and contraposition in the logic RmbC (and generally in LFIs),
unless the ◦-consistency of certain sentences is assumed.

Similarly to the proof reconstruction of Gpar
1 , the paraconsistent ver-

sion Gpar
2 of Gödel’s second incompleteness theorem requires some fur-

ther premises in order for contraposition steps to succeed, namely, the
◦-consistency of GF , �GF and �⊥ for the first presented variant (i).
As regards the second variant (ii) of Gpar

2 , we have seen that only the
◦-consistency of �⊥ is required. Recall that, in contrast to the first
variant (i), variant (ii) of Gpar

2 does not depend on Gpar
1 , but relies on

Löb’s theorem instead.

We may summarize, in a sketchy form, the ideas above as follows:

If FP (GF ) and ◦GF and ◦�GF then Gpar
1 ;

where FP (GF ) stands for ‘GF is a fixed-point for ¬�(·)’ andGpar
1 stands

for ‘ConsistencyF entails IncompletenessF ’. Reasoning by contraposi-
tion:11

If FP (GF ) and not Gpar
1 then not ◦GF or not ◦�GF .

A similar reasoning applies to Gpar
2 , as the reader can verify. Based

on this, in an exercise of counterfactual imagination, we can envision
that, if things had been different in the thirties (e.g., if logics like LFIs

11We can do this, since our reasoning (meta-logic) is taken to be classical.
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already existed), the Gödelian results could have been presented along
the following lines:

Theorem 7.1 (Gödel’s Existence Theorem). For every consistent ( �=
non-contradictory) and complete formal system F, which includes Peano
Arithmetic, a sentence GF can be constructed such that GF or PrF (GF )
is a non-consistent statement (i.e., it is ‘contradiction-tolerant’). More-
over, if F can prove its own consistency, then PrF (⊥) is also a non-
consistent statement.

A less technical, more conceptual conclusion is that, by adopting
a lighter, more flexible negation (such as the paraconsistent negation
featured in RmbC), we genuinely avoid the Gödelian objection, which
is mistakenly taken to be universal (although Gödel himself never saw
it this way). To be sure, Gödel’s argumentation is still sound, it just
becomes interpreted, more appropriately, as an existence claim.

Limitations of Gödel’s arguments are totally understandable, spe-
cially if we take into account that they were aimed at challenging the
foundations of mathematics, whose notion of negation is the classical
one, with its brutal simplification, conflating negation, denial, subtrac-
tion, and falsity in just one idea. But a Gödelian objection cannot
be readily directed against the subtle linguistic and pragmatic usage of
negation, nor at its usage in contemporary areas like knowledge repre-
sentation in computer science. The non-mathematical usage of negation
needs to adhere to some additional postulates to fall prey to Gödel’s
arguments; we have shown that the consistency (in the sense of LFIs,
namely, ‘contradiction-intolerance’) of the formulas GF and PrF (GF ) is
among them. In this respect, an interesting question is whether there
are any ‘natural’ mathematical statements (i.e., those not involving the
numerical coding of logical notions) which could be shown to be unde-
cidable in our basic paraconsistent systems, just as the celebrated Paris–
Harrington theorem is a ‘natural’ undecidable combinatorial statement
in the standard case. This and similar issues deserve further investiga-
tion.
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∃Department of Philosophy, University of Braśılia, Brazil

Abstract

The aim of this paper is to develop a systematic analysis for the
notion of existence towards a precise, conceptual definition of the
intuitive notion of set existence axiom in the arithmetical context.
This goal is achieved by the main definition, that is coherent with
the reverse mathematics foundational program and also with a
systematic analysis of the notion of existence in the context of the
set theory. Additionally, from the existential analysis is extracted
a criterion that separates formal systems that are framed from
different mathematical practices even though they are considered
equivalent in view of bi-interpretability.

1 Introduction

A precise definition of set existence axiom in the arithmetical con-
text is missing, despite the widespread use of a corresponding undefined
notion, and our goal is to fill this gap. This notion plays a key role
in the foundational program known as reverse mathematics - explic-
itly acknowledged in the influential Simpson‘s book [10]. According to
him, mathematics can be divided in two: set-theoretic mathematics and
ordinary mathematics. The latter can be characterized by its indepen-
dence from abstract set-theoretic concepts and it encompasses geometry,
number theory, calculus, countable algebra and mathematical logic, for
example. The former, on the contrary, relies heavily on set-theoretic
concepts and it covers general topology, abstract functional analysis,
and set theory itself.

Reverse mathematics is occupied with ordinary mathematics only,
for the strength of set existence axioms for ordinary mathematics is, in
a sense, much weaker than that required for set-theoretic mathematics.
By doing that, reverse mathematics discharges ordinary mathematics
from the set-theoretic heavyweight system.
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In this scenario, reverse mathematics uses second order arithmetic
to answer the following “Main Question: Which set existence axioms
are needed to prove the theorems of ordinary, non-set-theoretic mathe-
matics?” [10, p. 2]. Although the Main Question explicitly mentions
set existence axioms, such a notion remains undefined and unaddressed
throughout the investigation. This is not an apparent problem for Simp-
son’s book - he proceeds by choosing and applying set existence axioms
as needed, and the question of what does it mean to be an existence
axiom is never raised. However, for foundational studies, it is desirable
to have a conceptual definition.

In order to provide a conceptual definition of existence axiom, we
consider that the relevant notion of existential import of a sentence par-
allels the notion of validity: while the validity of a sentence is determined
by its truth-conditions, the existential import of a sentence is determined
by its existential-conditions. The motivation for this approach is that
it does not seem reasonable to associate the existential import of a sen-
tence with its syntax. After all, from that association, it would follow
that prenex sentences with existential quantifiers would have existential
import, implying that each first-order sentence is logically equivalent to
one with existential import. Since we want a notion of existential import
which is stable under logical equivalence, that should not be our path.

Naturally, other approaches can be taken. For example, Corcoran
and Massoud ([1] and [2]) pursue an entirely different path:

“Let us say that a given universalized conditional has exis-
tential import if it implies the corresponding existentialized
conjunction. It may seem awkward at first but we will also
say that a given existentialized conjunction has existential
import if it is implied by the corresponding universalized
conditional”. [1, p. 3].

According to this, a sentence of the form ∀x(Px → Qx) has exis-
tential import if it implies the sentence ∃x(Px ∧Qx), and the sentence
∃x(Px ∧ Qx) has existential import if it is implied by ∀x(Px → Qx).
Therefore, there would be a situation in which two logically equivalent
sentences are different with respect to their existential import. More-
over, for every sentence ϕ there would be a logically equivalent sentence
ψ with the same logical form and such that ϕ has existential import if
and only if ψ does not have.
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We think that stability under logical equivalence is a crucial feature
for a definition of existential import, so the Corcoran and Massoud’s
approach is unsuitable in our view. In order to achieve a satisfactory
definition, we have adapted the work of Freire [5], concerning set theory,
to arithmetic. Accordingly, the key role is played by the notion of exis-
tence requirement degree. The degrees of existence requirement corre-
spond to existential-conditions. There are natural existential-conditions
for sentences in set theory, based on the cumulative hierarchy concept,
hence arithmetic can inherit this previously explored environment once
interpreted in set theory. The following assumption is a basic component
of our plan. If we are given a standard bi-interpretation1 A between two
formal systems T and T ′, then the existential-conditions of a sentence
ϕ in T can be identified with the existential-conditions of its image ϕA.

For instance, suppose that T is a formal system for arithmetic and T ′

is a formal system for set theory; ϕ is a L(T )-sentence, A is a standard
interpretation of T in T ′ and B is a standard interpretation of T ′ in T
such that the composition of A with B is isomorphic to the identity and
the composition of B with A is also isomorphic to the identity. Then,
the existential-conditions of ϕ and ϕA are the same and, consequently,
they have the same existential import (assuming the hypothesis that
existential import is determined by the existential-conditions).2

From this, if T ′ is a formal system for set theory and ϕA is a L(T ′)-
sentence, then the existential-conditions of ϕA is identified with the
closure-conditions that a domain D must fulfill for the validity of (ϕA)D

in T ′.
The method of analysis can be illustrated by the following diagram:

1For a precise presentation of the notion of interpretation here considered see [9,
4.7]. The theories T and T ′ are bi-interpretable if there is an interpretation A of T
in T ′ and an interpretation B of T ′ in T such that their compositions are isomorphic
to the identity. By an abuse of terminology, we say that A is an interpretation of T in
T ′ when, strictly speaking, A is an interpretation of T in an appropriate conservative
extension of T ′.

2Since the existential analysis of arithmetic featured in this paper considers a spe-
cific pair of interpretations A and B, the results are, in principle, relative to the given
pair of interpretations. So we should develop the existential analysis of the arith-
metic sentence ϕ by first working out the analysis of the arithmetic equivalent ϕ(A,B)

and then transposing it back to ϕ. However, for the sake of cleaner notation, the
interpretation B will be often dropped. The existence of bi-interpretations between
systems for arithmetic and set theory which are not trivial variations of the standard
bi-interpretations that will be presented in the next two sections is an open issue, but
we will have something more to say about the dependence on the choice of A and B.
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ϕ

A
��
ϕA D ��

B

�� (ϕA)D

What are the closure-conditions on D to guarantee the validity of
(ϕA)D in T ′?

Keeping the above diagram in mind, we stipulate the following:

Definition 1. Let Z be a formal system for arithmetic, T a theory of
sets and A an interpretation of L(Z) in T . Under these conditions, D
is said to be an ∈-arithmetical interpretation of the language of T if and
only if the composition of D and A is an interpretation of the language
of Z in T satisfying the following conditions:

If A is the domain of A, then (Ax)D is Ax.

If s is a symbol in the signature of the language of Z, then (sA)D

is sA.

2 Second order arithmetic

Our presentation of the formal system Z2 for second order arithmetic
separates and highlights the relational, functional and existential com-
ponents of each axiom. The language of Z2 is {A,P, S,M,Z,N,C,∈},
and the formulas A(x, y, z) and P (x, y, z) are read, respectively, z is the
sum of x with y and z is the product of x and y. The formulas S(x, y),
M(x, y) and Zx express that the successor of x is y, x is less than y
and x is zero, respectively. Now, Nx means that x is a number and
Cx expresses that x is a set of numbers. The usual defined symbols ⊆,
ω, etc will be used without been explicitly introduced. They must be
understood as the abbreviation of standard formulas defining them, and
their explicit formulation can be viewed, for example, in Drake [3]. The
axioms of Z2 are distributed in eight groups.

1. Relational axioms: the universal closure of each formula below is
a relational axiom.

(a) Nx ∧Ny ∧Nz ∧ Zy ∧ S(x, z)→ y �= z.

(b) Nx ∧Ny ∧Nz ∧ S(y, x) ∧ S(z, x)→ y = z.
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(c) Nx ∧Ny ∧ Zy → A(x, y, x).

(d) Nx ∧Ny ∧Nz ∧Nv ∧Nu ∧ S(y, u) ∧ S(z, v) ∧ A(x, y, z) →
A(x, u, v).

(e) Nx ∧Ny ∧ Zy → P (x, y, y).

(f) Nx∧Ny∧Nz ∧Nv∧Nu∧S(y, u)∧A(z, x, v)∧P (x, y, z)→
P (x, u, v).

(g) Nx ∧Ny ∧ Zy → ¬M(x, y).

(h) Nx ∧Ny ∧Nz ∧ S(y, z)→ (M(x, z)↔M(x, y) ∨ x = y).

2. Closure axioms:

(a) ∃x (
Nx ∧ Zx

)
.

(b) ∀x (
Nx→ ∃y (

Ny ∧ S(x, y)
))
.

(c) ∀x∀y (
Nx ∧Ny → ∃z (

Nz ∧A(x, y, z)
))
.

(d) ∀x∀y (
Nx ∧Ny → ∃z (

Nz ∧ P (x, y, z)
))
.

3. Axioms of functionality: the universal closure of each formula be-
low is an axiom of functionality.

(a) Nx ∧Ny ∧ Zx ∧ Zy → x = y.

(b) Nx ∧Nu ∧Nv ∧ S(x, u) ∧ S(x, v)→ u = v.

(c) Nx ∧Ny ∧Nu ∧Nv ∧A(x, y, u) ∧A(x, y, v)→ u = v.

(d) Nx ∧Ny ∧Nu ∧Nv ∧ P (x, y, u) ∧ P (x, y, v)→ u = v.

4. Axioms for numbers and sets:

(a) ∀x (
Zx→ Nx

)
.

(b) ∀x [(
Nx ∨ Cx

) ∧ ¬(Nx ∧ Cx
)]
.

(c) ∀x∀y (
Nx ∧ S(x, y)→ Ny

)
.

5. Membership axiom: ∀x∀y (
x ∈ y → Nx ∧ Cy

)
.

6. Axiom of Induction:

∀x [
Cx ∧ (

Zy → y ∈ x
) ∧ ∀z∀u (

Nz ∧ z ∈ x ∧ S(z, u)→ u ∈ x
)→

→ ∀z (
Nz → z ∈ x

)]
.

7. Extensionality axiom:

∀x∀y [
Cx ∧ Cy ∧ ∀z (z ∈ x↔ z ∈ y

)→ x = y
]
.
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8. Totality axioms:

(a) ∀x∀y (
Cx ∧ S(x, y)→ Zy

)
.

(b) ∀x∀y∀z (
(Cx ∨ Cy) ∧A(x, y, z)→ Zz

)
.

(c) ∀x∀y∀z (
(Cx ∨ Cy) ∧ P (x, y, z)→ Zz

)
.

(d) ∀x∀y (
Cx ∨ Cy → ¬M(x, y)

)
.

9. Axiom of Comprehension: for each L(Z2)-formula ϕ whose vari-
ables are x, z1, ..., zn (assuming that y is not among those vari-
ables), the following formula is a comprehension axiom:

∀z1 · · · ∀zn∃y
(
Cy ∧ ∀x (

x ∈ y ↔ Nx ∧ ϕ
))
.

The closure axioms guarantee that the relation symbols Z, S, A
and P are total, i.e., for each point in the domain of the corresponding
relation there exists a point in the range such that these points are re-
lated. Sometimes we will call these formulas the existential part of the
corresponding relational symbol. The axioms of functionality express
that those relations are functions: for each point in a relation’s domain
there is just one related point in the range. With this axiomatization
the usual successor operation can be set up by the conjunction of ax-
ioms 1(a), 1(b), 2(b) and 3(b). Similarly to the operations of sum and
multiplication and the constant zero. The other axioms are standard.

We will introduce a set theory, denoted by ZFe, that is bi-interpretable
with Z2. The language of ZFe has only one predicate symbol - the mem-
bership symbol ∈ - and its axioms are:

Some of the axioms of ZF: the axiom of extensionality; the ax-
iom of regularity; the axiom of separation; the axioms of com-
prehension; the axiom of pair; the axiom of union; the axiom of
replacement and the axiom of infinity.

Axiom of finite power set:

∀x (
Finite(x)→ ∃y ∀z(z ∈ y ↔ z ⊆ x

))
.

Axiom of enumerability: ∀x (
Enum(x)

)
, where

Enum(x)↔ ∃f (
func(f) ∧ bij(f) ∧ img(f) ⊆ ω ∧ dom(f) = x

)

and func(f), bij(f) and img(f) mean, respectively, that f is func-
tion, f is bijective and the image of f .
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A natural strategy to construct an interpretation I of Z2 in ZFe
is based on the association between natural numbers and ordinals and
between sets of natural numbers and sets of ordinals. Unfortunately, the
association will not work without some adjustment, because an ordinal
is a set of ordinals, so that the natural number 2 and the set of natural
numbers {0, 1} are associated with the same ordinal. We can circumvent
this problem by the usual trick for obtaining disjoint interpretations of
N and C. The disjoint union of the adjusted interpretations of N and
C gives us the domain UI of I.

N I = {〈0, x〉 : x ∈ ω}; CI = {〈1, x〉 : x ⊆ ω}; UI = N I ∪ CI .

The predicate symbols Z and M are interpreted by the relations

ZI = {〈0, 0〉 : 0 ∈ ω}.
M I = {〈〈0, x〉, 〈0, y〉〉 : x ∈ y ∈ ω}.

The interpretation ∈I is defined from the predicate ∈2 in the follow-
ing:

〈i, x〉 ∈2 〈j, y〉 ↔ x ∈ y,

∈I= {〈x, y〉 : N Ix ∧ CIy ∧ x ∈2 y}.
In ZFe the interpretation of the arithmetical operations are defined

from successor, sum and product of ordinals, which are denoted respec-
tively by x+, x⊕ y and x$ y.

†∗ : N I → N I such that 〈0, x〉 �→ 〈0, x+〉,
+∗ : N I ×N I → N I such that 〈〈0, x〉, 〈0, y〉〉 �→ 〈0, x⊕ y〉,
·∗ : N I ×N I → N I such that 〈〈0, x〉, 〈0, y〉〉 �→ 〈0, x$ y〉.

The last step is to define the interpretations of S (successor), A (sum)
and P (product):

SI =
{〈x, y〉 : (x ∈ N I ∧ y = x†

∗
) ∨ (x ∈ CI ∧ y = 〈0, 0〉)},

AI =
{〈x, y, z〉 : (x ∈ N I∧y ∈ N I∧z = x+∗y)∨((x ∈ CI∨y ∈ CI)∧z = 〈0, 0〉)},

P I =
{〈x, y, z〉 : (x ∈ N I∧y ∈ N I∧z = x·∗y)∨((x ∈ CI∨y ∈ CI)∧z = 〈0, 0〉)}.

Following these definitions, it is a routine exercise to verify that

〈UI , N
I , CI ,M I , ZI , SI , AI , P I〉
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is a model for Z2. Such a model is a definable class in ZFe, hence can
be taken as an interpretation of Z2 in ZFe.3

The interpretation from ZFe back to Z2 involves a massive amount
of codification of sets in numbers and sets of numbers; it will not be
presented here because, for our purposes, it is enough to know that
there is an interpretation J of ZFe in Z2 such that the pair (I, J) is a
bi-interpretation between Z2 and ZFe. A rigorous and complete presen-
tation of an appropriate J can be seen in Simpson [10, VII.3] and in
McLarty [7].

The final step before our main definition is provided by the natural
closure conditions under which the existential import analysis will take
place. Those conditions reflect the key role played by the second coor-
dinate in the set-theoretic constitution of numbers and sets of numbers
under the above interpretation.

Definition 2. Let D a set of ordered pairs in which the first coordinate
is an ordinal.

D is a 2-nonempty domain iff 〈0, α〉 ∈ D for some ordinal α.

D is a 2-transitive domain iff D is a 2-nonempty domain and
〈0, y〉 ∈ D whenever 〈α, x〉 ∈ D and y ∈ x, for some ordinal α.

D is a 2-supertransitive domain iff D is a 2-nonempty domain and
〈1, y〉 ∈ D whenever 〈α, x〉 ∈ D and y ⊆ x, for some ordinal α.

D is a 2-level domain iff D is a 2-nonempty domain and D =
{〈k, x〉 | k ∈ {0, 1} ∧ x ⊆ β ∧ β ∈ α)}, where α is an ordinal.

D is a 2-limit level domain iff D is a 2-nonempty domain and
D = {〈k, x〉 | k ∈ {0, 1} ∧ x ⊆ β ∧ β ∈ λ)}, where λ is a limit
ordinal.

The next definition coordinates the notions of existential import and
interpretation and plays a key role in our analysis.

3This close relation between the model-theoretic discourse and the interpretation-
theoretic discourse is stated in Shoenfield’s passage: “We have so far discussed struc-
tures in English. We could, of course, translate the entire discussion into any language
in which there is sufficient set-theoretic notation to discuss functions, predicates, etc.”
[9, p. 61].
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Definition 3. Let us fix a standard bi-interpretation between Z2 and
ZFe, that is, a standard interpretation A of Z2 in ZFe and a standard
interpretation B of ZFe in Z2 such that their compositions are isomor-
phic to the identity. A L(Z2)-sentence ϕ:

Admits degree 0 of existence requirement iff for every 2-nonempty
∈-arithmetical interpretation D of the language of ZFe in ZFe, the
formula (ϕA)D is valid in ZFe.

Admits degree 1 of existence requirement iff for every nonempty
2-transitive ∈-arithmetical interpretation D of the language of ZFe
in ZFe, the formula (ϕA)D is valid in ZFe.

Admits degree 2 of existence requirement iff for every nonempty
2-supertransitive ∈-arithmetical interpretation D of the language
of ZFe in ZFe, the formula (ϕA)D is valid in ZFe.

Admits degree 3 of existential requirement iff for every ordinal α
the corresponding 2-level domain D is an ∈-arithmetical interpre-
tation of the language of ZFe in ZFe, and Ord(α)→ (ϕA)D is valid
in ZFe.

Admits degree 4 of existence requirement iff for every limit ordinal
λ the corresponding 2-limit level D is an ∈-arithmetical interpre-
tation of the language of ZFe in ZFe, and Lim(λ) → (ϕA)V (λ) is
valid in ZFe.

Admits degree 5 of existence requirement iff the identity interpre-
tation V = {x : x = x} is an ∈-arithmetical interpretation of the
language of ZFe in ZFe and (ϕA)V is valid in ZFe.

If D is an ∈-arithmetical interpretation, then we will write ϕAD in-
stead of (ϕA)D. Each clause in the above definition coordinates a degree
of existence requirement that ϕ may admit with a closure condition on
domains fulfilling the existential-conditions of ϕ. We assume that V is a
limit level, so that all closure conditions obtain in V. One must picture
the least degree of existence requirement admitted by ϕ as the minimal
closure condition on the universe V fulfilling the existential demands of
ϕA in ZFe, that is, as the existential import of ϕ in Z2.

We have that the sentences which are valid in Z2 are the only sen-
tences in Z2 admitting a degree of existence requirement. Indeed, if
Z2 � ϕ then ZFe � ϕA; therefore ZFe � ϕAV and we have that ϕ admits
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a degree of existence requirement. But if ϕ is not valid then it is not the
case that ZFe � ϕAV, hence it is nonsense to ask for the identification
of the exact closure condition on V fulfilling the existential demands of
ϕ in Z2.

Furthermore, if a sentence admits some existence requirement degree
d, then it admits all the existence requirement degrees greater than d. In
fact, if ϕ admits degree 0 of existence requirement then ϕAD is valid in
every 2-nonempty D and, in particular, ϕAD is valid in every 2-transitive
domain, etc and hence ϕ admits degrees 1, 2, 3, 4 and 5 also. This remark
legitimates the association of a unique degree of existence requirement
to each valid arithmetical sentence.

Definition 4. The degree of existence requirement of a L(Z2)-sentence
ϕ (relative to a bi-interpretation) is the least degree of existence require-
ment that ϕ admits (under that bi-interpretation). If d is the degree
of existence requirement of ϕ, we say that ϕ has degree d of existence
requirement.

The next result concerns the stability of the degrees of existence re-
quirement under logical consequence: the degree of a logical consequence
is bounded by the degrees of the premisses.

Theorem 1 (Following [5, Proposition 7]). Let ϕ and ψ be L(Z2)-
sentences. If ϕ has degree of existence requirement d and ψ is a logical
consequence of ϕ, then ψ has degree of existence requirement no greater
than d.

Proof. If ψ is a logical consequence of ϕ, then ψA is a logical conse-
quence of ϕA; consequently, ϕA → ψA is logically valid. Let D be
any ∈-arithmetical interpretation satisfying the closure condition cor-
responding to degree d. Since ϕ has degree d of existence requirement,
then ZFe � ϕAD. From this and the logical validity of ϕA → ψA, we have
that ψA is valid in D, hence ψ admits degree d of existence requirement.
So, ψ has degree d′ ≤ d of existence requirement.

A straightforward consequence of this result is that two logically
equivalent arithmetical sentences have the same degree of existence re-
quirement. Moreover, two sentences which are logically equivalent in
the inclusive logic have exactly the same quantitative and qualitative
existential demands, and, in this sense, our existential analysis is stable
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under logical variations. This theorem, together with definition 3, guar-
antee that a theorem has no more existential import than its premisses.
In other words, logical consequences do not demand more ontological
commitments than their hypotheses.

It is clear that our analysis of the existential import of a sentence
is relative to a specific pair of fixed interpretations. Therefore, we will
not make explicit reference to that pair and we will use the short ex-
pression degree of existence requirement of a sentence, instead of degree
of existence requirement of a sentence with respect to such-and-such bi-
interpretation. If there are two bi-interpretations between the theories
under analysis, then it is natural to inquire about the stability of the
degree of existence requirement under a change of bi-interpretation. The
next definition points to a first answer.

Definition 5. Let T1 and T2 be formal systems playing a role similar to
that of Z2 and ZFe in definition 3. Let A and A� be interpretations of T1

in T2, and let B and B� be interpretations of T2 in T1 such that the pairs
(A,B) and (A�,B�) are bi-interpretations. Under these conditions, the
bi-interpretations (A,B) and (A�,B�) are equivalent for the evaluation
of the existence requirement iff for every axiom ϕ of T1 the degree of
existence requirement of ϕA ↔ ϕA�

is less than or equal to the minimum
of the degrees of existence requirement of ϕA and ϕA�

.

The next result is a partial answer to the question about the sta-
bility of the degree of existence requirement with respect to the bi-
interpretation: if two bi-interpretations are equivalent for the evalua-
tion of existence requirement, then the respective degrees of existence
requirement are equal.

Proposition 1. If (A,B) and (A�,B�) are bi-interpretations of T1 in
T2 which are equivalent for the evaluation of existence requirement, then
for every axiom ϕ of T1 the degree of existence requirement of ϕ with
respect to A is equal to the degree of existence requirement of ϕ with
respect to A�.

Proof. Assume, without loss of generality, that the degree of existence
requirement of ϕA is less than or equal to the degree of ϕA�

. If the
degree of existence requirement of ϕA is d, from the hypothesis that
the bi-interpretations are equivalent, we have that ϕA ↔ ϕA�

admits
degree d of existence requirement. So, ϕA�

admits degree d of existence
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requirement. Therefore, the degree of existence requirement of ϕA�
is d

also.

We can derive here two important qualitative notions. The first one
is the notion of productivity, which is directly connected to definition
3. The other notion gives the distinction between conditional and un-
conditional assertions, which is very natural in the purely set-theoretic
context and has its place here too. For example the axiom of the empty
set in set theory is an unconditional and nonproductive assertion - it
unconditionally affirms that there is a set which is empty and it admits
degree 0 of existence requirement. Something analogous happens with
arithmetic: the claim that there exists the number zero is an uncondi-
tional assertion. In opposition, the axiom of union is a productive and
conditional assertion: it does not admit degree 0 and it conditionally
affirms that if there is a set, then there is a set which is the union of
the given set. Something analogous can be said about arithmetical as-
sertions: the existence of the sum of two numbers is conditioned to the
existence of the summands.

The notion of productivity is easily defined: an assertion is produc-
tive if it does not admit degree 0. The distinction between conditional
and unconditional assertions can become accurate with the help of the
empty structures. The basic idea is that unconditional existence asser-
tions are not valid in the empty structure, while conditional assertions
are valid in this structure. However, standard first order logic presup-
poses that all domains of interpretation are nonempty, and for this rea-
son the underlying logic of this work is the inclusive logic. The inclusive
logic is described by Mendelson [8, 2.6], to which we add axioms of
equality and identity.4

Definition 6. Let ϕ be a L(Z2)-sentence.

ϕ is a nonproductive assertion iff ϕ admits degree 0 of existence
requirement.

ϕ is a productive assertion iff ϕ does not admit degree 0 of exis-
tence requirement.

4Axioms of equality are the universal closure of formulas with the form x1 = x2 →
· · · → xn = yn → fx1...xn = fy1...yn and x1 = x2 → · · · → xm = ym → Px1...xm →
Py1...ym in which f and P are, respectively, an n-ary function symbol and an m-ary
relation symbol. An axiom of identity is a sentence of the form ∀x(x = x).
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ϕ is a conditional assertion iff ϕ is valid in the empty interpreta-
tion.

ϕ is an unconditional assertion iff ϕ is not valid in the empty
interpretation.

A productive assertion of degree d is a productive assertion whose degree
of existence requirement is d.

We can now evaluate the axioms of second order arithmetic.

Theorem 2. The axioms of Z2 are classified as follows5:

1. Relational axioms, axioms of functionality, membership axiom, ax-
ioms for numbers and sets and axioms of totality: conditional un-
productive assertions.

2. Extensionality axiom and axiom of induction: conditional produc-
tive assertion with degree 1.

3. Axiom of comprehension: conditional productive assertion with de-
gree 5.

4. First closure axiom: unconditional productive assertion with de-
gree 1.

5. The remaining closure axioms: conditional productive assertions
with degree 4.

Proof. With the exception of the first closure axiom, all other axioms
are universal formulas and, consequently, they are conditional assertions.
The first closure axiom is not valid in the empty structure, so it is an
unconditional assertion. The degrees of the axioms are directly deter-
mined from the definitions, and we will be provide the details just for
some paradigmatic cases. In the following, D denotes ∈-arithmetical
interpretations with domain D.

Relational axioms. The interpretation of the second relational axiom

∀x∀y∀z (
Nx ∧Ny ∧Nz ∧ Zx ∧ S(y, z)→ x �= z

)

by interpretation I is equivalent to

5The degree of an axiom schema is defined as the greatest degree of its instances.
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∀x∀y∀z (
N Ix ∧N Iy ∧N Iz ∧ ZIx ∧ SI(y, z)→ x �= z

)
.

The D-interpretation of this is

∀x∀y∀z [
Dx ∧Dy ∧Dz∧

∧(N Ix
)D ∧ (

N Iy
)D ∧ (

N Iz
)D ∧ (

ZIx
)D ∧ (

SIyz
)D → (

x �= z
)D ]

.

From the definition of ∈-arithmetic interpretation, this is

∀x∀y∀z [
Dx ∧Dy ∧Dz ∧N Ix ∧N Iy ∧N Iz ∧ ZIx ∧ SIyz → x �= z

]
.

The validity of this last sentence in any 2-nonempty domainD follows
immediately from the definitions of N I , ZI and SI , and the axiom has
degree 0.

In exactly the same way, the other relational axioms, axioms of func-
tionality, axioms for numbers and sets, membership axiom and totality
axioms have degree 0.

Closure axioms. Let us begin with the first axiom of this group.
When it is interpreted in ZFe successively by I and then by D we obtain

∃x(Dx ∧N Ix ∧ ZIx).

If D is a 2-transitive domain (so that there is some 〈0, α〉 ∈ D), then,
from the 2-transitivity of D, we conclude that 〈0, 0〉 ∈ D. So, the axiom
admits degree 1 but not degree 0. Indeed, the sentence above is not
valid in D = {〈0, 1〉}.

Consider now the second axiom of this group and, as in the previous
cases, interpreting the axiom in ZFe and then in D gives

∀x (Dx ∧N Ix→ ∃y (Dy ∧N Iy ∧ SIxy)).

Consider that D is the 2-level domain {〈k, z〉 | k ∈ {0, 1} ∧ z ⊆
β ∧ β ∈ α}. If α is a finite successor ordinal n + 1, then x = 〈0, n〉 is
in D and the antecedent of the sentence is valid in D. Suppose that the
consequent is valid in D too. So, there is y ∈ D such that SIxy ∈ D, i.e.,
y = 〈0, n+1〉 = 〈0, α〉 ∈ D, absurd. So, the axiom does not admit degree
3. If D is a 2-limit level, it is immediate that if the antecedent of the
sentence above is valid in D, then the consequent is also; consequently
the axiom has degree 4. The other axioms of this group are analysed in
the exactly same way.
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Axiom of induction. Interpreting this axiom gives

∀x [
Dx ∧ CIx ∧ ∀y (

Dy ∧N Iy ∧ ZIy → y ∈I x ∧
∧∀z∀w (

Dz ∧Dw ∧N Iz ∧ SIzw ∧ z ∈I x→ w ∈I x
))→

→ ∀y (
Dy ∧N Iy → y ∈I x

)]
.

Assume that the antecedent holds, i.e., assume that (i) x is a set of
numbers in the sense of I in D, (ii) if y is a zero in the sense of I in D,
then it belongs to x and (iii) if z is a number in D which belongs to x in
the sense of I and w is a successor of z in the sense of I that belongs to
D in the sense of I, then w belongs to x in the sense of I too. Moreover,
assume that y /∈I x. From the antecedent y is a number in I, so there is
some y0 such that y = 〈0, y0〉 /∈2 〈1, x0〉 = x. Since ∈2 is well-founded,
if we assume that D is 2-transitive then there is an ∈2-minimal element
u = 〈0, u0〉 such that u ∈ D and u0 ∈ ω and 〈0, u0〉 /∈2 x. From u /∈2 x
and 〈0, 0〉 ∈ x, we conclude that u0 �= ∅. Since u0 �= ∅ and u0 ∈ ω, there
is a t0 ∈ ω such that u0 = t+0 . From the fact that D is 2-transitive and
〈0, u0〉 ∈ D and t0 ∈ u0 we conclude that t = 〈0, t0〉 ∈ D and u ∈I x,
absurd. So, the axiom admits degree 1.

With D = {〈0, 1〉, 〈1, 0〉} we see that the axiom of induction does not
admit degree 0. Indeed, the antecedent of the axiom is vacuously true
in D but if we take y = 〈0, 1〉 and x = 〈0, 1〉, then it is not the case that
y ∈I x.

Extensionality axiom. Interpreting the axiom in ZFe by I and then
by D gives

∀x∀y∀z(ψ → γ → x = y),

where ψ is Dx ∧Dy ∧ CIy ∧ CIy ∧Dz ∧ Uz and γ is z ∈I x↔ z ∈I y.
Assume ψ and x �= y. We have to conclude ¬γ.

We can take y = 〈1, y0〉 and x = 〈1, x0〉. From the fact that x �= y, we
have 〈1, x0〉 �= 〈1, y0〉. Therefore, there is a z0 in the symmetric difference
x0Δy0 and, without lost of generality, we may assume z0 ∈ x0. From
the assumption that 〈1, x0〉 ∈ D, if D is 2-transitive then 〈0, z0〉 ∈ D.
We know that z0 /∈ y0, therefore z = 〈0, z0〉 /∈I 〈1, y0〉 = y. Therefore,
extensionality admits degree 1.

If we take z = 〈0, 0〉, x = 〈1, 1〉, y = 〈1, 2〉 and D = {x, y, z}, then
the antecedent ψ → γ is valid in D but x �= y. So, the axiom does not
admit degree 0.

Axiom of comprehension. Let z̄ denote the sequence of variables
z1, ..., zn that occur in ϕ and let Dz̄ denote Dz1 ∧ ... ∧ Dzn. The
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interpretation of the axiom by I and D results in

∀z̄∃y∀x (
Dz̄∧Dx∧Dy∧UI z̄∧CIy∧UIx→

(
x ∈I y ↔ N Ix∧ϕI(z̄, x)

))
.

If D is the 2-limit level domain determined by the ordinal ω, then the
sentence above is not valid. In fact, there is no y containing all of N I ,
which corresponds to the instance in which ϕ is a tautology. Therefore,
comprehension has degree 5 of existence requirement.

We have evaluated the productivity of the axioms.

3 Conclusions

We are now in position to achieve the main goal of this work, a
precise definition of the notion of set existence assertion in arithmetic.

Definition 7 (Main Definition). A L(Z2)-sentence ϕ is an assertion of
existence iff ϕ is an unconditional assertion or a productive assertion
and ϕ is a nonexistence assertion iff ϕ is an unproductive conditional
assertion. A sentence has existential import iff it is an assertion of
existence. A L(Z2)-sentence ϕ is an axiom of existence iff ϕ is an
axiom of Z2 and ϕ has existential import.

This definition is worthy of our attention because it is directly related
to the notion of existence axiom present in the reverse mathematics
program. As an evidence of the uniformity between this definition and
the reverse mathematics program can be seen again in Simpson’s book.
There the Main Question is always answered considering restrictions
of either the induction axiom, or the comprehension axiom, or both.
For example, Weyl’s predicativism is formalized by the formal system
ACA0, which is obtained from Z2 with the restriction that the axiom
of comprehension is valid for arithmetical sentences only. Feferman’s
predicativism is identified with the formal system Π1

1 − CA0, framed
by restricting the axiom of comprehension to Π1

1-formulas. Bishop’s
constructivism is associated to the theory RCA0, obtained restricting
the axiom of comprehension to Δ0

1-formulas and restricting the axiom of
induction to Σ0

1-formulas. These examples make a lot of sense according
to our analysis: comprehension is the strongest existence axiom in the
context of second order arithmetic.

Additionally, when the existential analysis of Z2-axioms, summarized
in theorem 2, is compared to the existential features of ZFC-axioms
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presented in [5, Proposition 41], we can say in a precise way that the
informal forecast made by Simpson is sound:

(...)“that the set existence axioms which are needed for
set-theoretic mathematics are likely to be much stronger
than those which are needed for ordinary mathematics”. [10,
p. 2].

An interesting byproduct concerns the relational formulation of arith-
metic adopted here and the closure axioms. These axioms are assertions
of existence according to the Main Definition but they do not play a rel-
evant role in the existential analysis developed in reverse mathematics.
There are at least two ways to understand this omission.

The first one is very straightforward: the existential analysis devel-
oped in this work throws light on existential aspects of sentences that
were in the shadows until now. In particular, the existential character
of functional closure axioms was hidden by the use of function symbols,
therefore, not included in the intuitions that motivates the existential
analysis in reverse mathematics. According to this point of view, the
analysis presented in this work reveals existential nuances that are usu-
ally ignored by reverse mathematics.

The second one is that this omission is justified because the corre-
sponding existential import comes from the use of function symbols in
the formal framework formalizing second-order arithmetic. It is easy to
eliminate that kind of existential import. In order to achieve this we
need just to move to a relational framework and eliminate the closure
axioms. According to this perspective the existential import given by
the closure axioms is not unavoidable, hence it is not due to the arith-
metical practice. They emerge from a choice in the process of formalizing
arithmetic.

The analysis developed to elucidate the notion of set existence axiom
in Z2 can be applied to make subtle distinctions between formal sys-
tems forged from distinct practices. The idea that two bi-interpretable
formal systems are equivalent is well disseminated in the foundational
studies. This idea displays some plausibility. Indeed, if two systems are
bi-interpretable, their languages are inter-definable, every theorem of one
formal system is interpreted as a theorem of the other one and every de-
duction developed in a formal system can be recursively converted into
a deduction of the interpreted sentence. From a deductive-theoretical
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perspective, the differences between the formal systems involved seem
to be irrelevant.

A concrete example of this attitude is seen in Kaye and Wong’s
work [6]. They affirm that the purpose of their work is to investigate
the following

Folklore Result First-order theories Peano arithmetic and
ZF set theory with the axiom of infinity negated are equiv-
alent, in the sense that each is interpretable in the other and
the interpretations are inverse to each other. [6, p. 497].

They have shown that this result is wrong - the theory that is bi-
interpretable with Peano arithmetic is not ZF set theory with the axiom
of infinity negated - but they have not questioned the idea that bi-
interpretable theories are equivalent. Their attitude motivate us to ask
this Question:

In which sense, if any, the axiomatizations of a formal system for
arithmetic T and a bi-interpretable set theory T ∗ could be

inequivalent?

Nothing prevents the application of the strategy developed in this
work to answer this general question. After all, if a formal system T
is bi-interpretable with T ∗ and T ∗ is a set theory, the existential anal-
ysis realized in ZFe for Z2 can be, mutatis mutandis, applied to T in
T ∗. If the existential classification of the axioms of both theories is the
same, then the axiomatic systems will be equivalent in a stronger sense.
Otherwise, the existential classification of the selected axioms provides
a criterion for distinguishing the axiomatic systems. This criterion con-
ceptually separates the axioms of second order arithmetic Z2 and ZFe
set theory. Those systems are usually taken as indistinguishable from a
model-theoretic point of view, as remarked by Enayat in this passage:

“[T]he recent discussion about Woodin’s reference to the
well-known fact that the standard model for second order
number theory is “essentially the same” as the model (M,
epsilon), where M is the set of hereditary countable sets. As
suggested out by Bill Tait, the above two structures are in-
timately related at the interpretability level, i.e., they are
*bi-interpretable*. Note that this is stronger than saying
that they are mutually interpretable”. [4]
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Following the same ideas given in the previous sections and consider-
ing nonempty domains, nonempty transitive domains, and so on, instead
of 2-nonempty domains, 2-transitive domains, and so on, in definition 3,
from the results presented in [5] (in particular from the proofs of propo-
sitions 12, 13 and remark 34), it follows that the axioms of ZFe can be
classified:

The axiom of regularity is an unproductive conditional assertion.

The axiom of extensionality is a productive conditional assertion
with degree 1.

The axiom of comprehension is a productive conditional assertion
with degree 2.

The axiom of union is a productive conditional assertion with de-
gree 3.

The axioms of finite power set, pair and enumerability are produc-
tive conditional assertions with degree 4.

The axiom of replacement is a productive conditional assertion
with degree 5

The axiom of infinity is a productive unconditional assertion with
degree 5

The axiom of empty set is an unproductive unconditional assertion.

The comparison of the results above and theorem 2 reveals that the
formal systems of the structures mentioned in Enayat’s quote above are,
in a precise way, not equivalent: their axioms have distinct ontological
demands. Such differences are an indication that these systems reflect
different mathematical practices.

A natural further direction in this work is to understand the existen-
tial import of axioms of other theories which are bi-interpretable with set
theories. In particular Peano Arithmetic is specially interesting, since
it is bi-interpretable with the set theory described in Kaye and Wong’s
work.
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Non-classical inferences





A note on semi-implication with negation

Arnon Avron

School of Computer Science, Tel-Aviv University, Israel

Abstract

In [4] we introduced a general notion of semi-implication, which
is mainly based on the relevant deduction property (RDP) — a
weak form of the classical-intuitionistic deduction theorem which
has motivated the design of the intensional fragments (R→ and
R ¬→) of the relevance logic R. We showed there that with exactly
one exception, in the pure language of → the connective → has
in a finitary logic L the RDP iff L has a strongly sound and com-
plete Hilbert-type system which is an extension by axiom schemas
of HR→ (the standard axiomatization of R→). Another result
proved in [4] is that if a logic L has a conjunction or a disjunction,
then it cannot have a semi-implication for which the basic relevant
property of variable sharing obtained. The goal of this note is to
show that in contrast, the inclusion of a (relevant) negation does
not affect the results of [4] in an essential way.

In [4] we introduced a general notion of semi-implication which gen-
eralizes the implications used in classical logic, intuitionistic logic and
its extensions, and relevance logics. It is mainly based on the relevant
deduction property (RDP) — a weak form of the classical-intuitionistic
deduction theorem which has motivated the design of the intensional
fragments (R→ and R ¬→) of the relevance logic R. (See [1, 6].) We
showed there that with one exception, in the pure language of → the
connective → has in a finitary logic L the RDP iff L has a strongly
sound and complete Hilbert-type system which is an extension by axiom
schemas of HR→ (the standard axiomatization of R→). The only excep-
tion is CL↔, the pure equivalential fragment of classical logic (where we
denote the biconditional by →). Another result proved in [4] is that if a
logic L has a conjunction or a disjunction, then it cannot have a semi-
implication for which the variable sharing property obtained. (The latter
is the most basic property of any relevance logic, including HR→.) The
goal of this note is to show that in contrast, the inclusion of a (relevant)
negation does not affect the results of [4] in an essential way.
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In the sequel L denotes a propositional language. ϕ, ψ vary over the
formulas of L. p, q vary over the atomic formulas of L. T varies over
theories of L (where by a ‘theory’ we simply mean here a set of formulas
of L).

Definition 1. A (propositional) logic is a pair L = 〈L,�L〉, where L is
a propositional language, and �L is a structural and non-trivial Tarskian
consequence relation for L. A logic L = 〈L,�L〉 is finitary if so is �L.1

Definition 2. Let L = 〈L,�L〉 be a propositional logic, and let → be a
(primitive or defined) connective of L.

1. → has in L the relevant deduction property (RDP) if it satisfies the
following condition: T , ϕ �L ψ iff either T �L ψ or T �L ϕ→ ψ.

2. → is called a semi-implication for L if → has in L the RDP, and
in addition there are formulas ϕ and ψ such that �L ϕ → ψ but
��L ψ → ϕ.

3. → has in L the variable sharing property if Atoms(ϕ)∩Atoms(ψ) �=
∅ whenever �L ϕ → ψ. (Here Atoms(ϕ) is the set of atomic for-
mulas in ϕ.)

Next we turn to the negation connective. Our starting point is the
notion of a negation associated with a semi-implication → that was in-
troduced and analyzed in Chapter 11 of [5]. What we need here from
that analysis is one fact that immediately follows from Proposition 11.76
of [5] and Theorem 3.5 of [4]: If L is a logic in a language which contains
→ and ¬, → has in L the RDP, and ¬ is a negation associated with →,
then L contains the system LL ¬→ below.

Definition 3. HLL ¬→ is the Hilbert-type proof system in {→,¬} which
is presented in Figure 1.

Note 4. Let LL ¬→ be the pure implication-negation fragment of linear
logic ([7]). HLL ¬→ is the axiomatization of this fragment given in [3].
An axiomatization HLL→ for LL→ (the pure implicational fragment of
linear logic) is obtained by omitting from HLL ¬→ the negation axioms
[N1] and [N2].

1This is the notion of propositional logic which has been used in [4], as well as
throughout in [5]. See either for the definitions of the notions involved.
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Axioms:

[Id] ϕ→ ϕ (Identity)

[Tr] (ϕ→ ψ)→ (
(ψ → θ)→ (ϕ→ θ)

)
(Transitivity)

[Pe]
(
ϕ→ (ψ → θ)

)→ (
ψ → (ϕ→ θ)

)
(Permutation)

[N1] (ϕ→ ¬ψ)→ (ψ → ¬ϕ) (Contraposition)

[N2] ¬¬ϕ→ ϕ (Double negation)

Rule of inference:

[MP]
ϕ ϕ→ ψ

ψ

Figure 1: The proof system HLL ¬→

Definition 5. Let L = {→,¬}.
1. HR ¬→ is the extension of HLL ¬→ by the following axiom:

[Ct] (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ) (Contraction)

2. HCL ¬↔ is the extension of HLL ¬→ by the following axiom:

[Eq] (ϕ→ (ϕ→ ψ))→ ψ (Equivalence)

Theorem 6. Let L be a finitary extension of LL ¬→. → has in L the
RDP iff L has a strongly sound and complete Hilbert-type system which
is an extension by axiom schemas of either HR ¬→ or HCL ¬↔.

Proof. Immediate from Corollary 4.4 and Theorem 4.5 of [4].

Theorem 7. A finitary extension of LL ¬→ has a semi-implication con-
nective → iff it has a strongly sound and complete Hilbert-type system
which is an extension by axiom schemas of HR ¬→.

Proof. Using Theorem 6, the proof is practically identical to the proof
of Theorem 6.4 in [4].

Note 8. The last theorem means that R ¬→ is the minimal logic which
has a semi-implication together with an associated negation.
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Corollary 9. Suppose → has in a finitary logic L the VSP, the RDP,
and an associated negation. Then L is an axiomatic extension of R ¬→,
and → is a semi-implication for it.

Proof. Similar to the proof of Corollary 6.6 [4].

Note 10. In [2] one can find an infinite family of logics in the language
of R ¬→, all of which has the VSP and are extensions of R ¬→ by axiom
schemas.

Let us turn now to the question how many logics are there that have
a connective → which has both the RDP and an associated negation,
but is not a semi-implication. By the results above, this is equivalent to
the question how many non-trivial axiomatic extensions HCL ¬↔ has.

Note 11. The two main facts about HCL↔ (the pure implicational
fragment of HCL ¬↔) that were shown in [4] were:

1. HCL↔ is strongly sound and complete for CL↔.

2. HCL↔ is strongly Post-complete: it has no proper extension in
its language.2

In what follows we show that HCL ¬↔ has similar, though weaker, prop-
erties.

Definition 12. CL ¬↔ is the equivalence-negation fragment of classical
logic.

The most important fact that is known about HCL ¬↔ is that it is
weakly complete for CL ¬↔, that is: �HCL¬↔

ϕ iff �CL¬↔
ϕ. ([8].3 See

also a review by Bennet of this paper in JSL, Vol. 2, P. 173, 1937.)
It is also easily proved that HCL ¬↔ is strongly sound for CL ¬↔, that
is: if T �HCL¬↔

ϕ then T �CL¬↔
ϕ. However, in [4] it was shown that

HCL→ (the pure implicational fragment of HCL ¬↔) is not only strongly
sound and weakly complete for CL→, but is also strongly complete for
it. Unfortunately, the corresponding proposition is not true for HCL ¬↔.

Proposition 13. ¬p, p �CL¬↔
q, but ¬p, p ��HCL¬↔

q.

2Already in [9] (P. 307) it was shown that CL↔ is Post-complete in the sense that
one cannot add any new axiom to it in its language.

3The system used in [8] is easily seen to be equivalent to HCL¬↔.
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Proof. The first part is obvious. The second one easily follows from the
fact that HCL ¬↔ has the RDP (Theorem 6).

Corollary 14. HCL ¬↔ is not strongly sound and complete for CL ¬↔.

Definition 15. HCLi
¬↔ is the system obtained from HCL ¬↔ by adding

to it ϕ→ ¬ϕ as an axiom.

Theorem 16. HCLi
¬↔ is the sole non-trivial proper axiomatic extension

of HCL ¬↔.

Proof. Let HL be a non-trivial proper axiomatic extension of HCL ¬↔.
Let ϕ be a formula such that �HL ϕ, but ��HCL¬↔

ϕ. By the weak
completeness of HCL ¬↔ for CL ¬↔, ϕ is not valid in classical logic. Let
ν be a classical valuation such that ν(ϕ) = f . Let ϕ′ be obtained
from ϕ by substituting p → p for every atomic formula q such that
ν(q) = t, and ¬(p → p) for every atomic formula q such that ν(q) = f .
Then �HL ϕ′. On the other hand, v(ϕ′) = f for every valuation v,
and so ¬ϕ′ is a tautology. By weak completeness again, it follows that
�HCL¬↔

¬ϕ′. Hence both ϕ′ and its negation are theorems of HL. Since

¬ϕ′ → (ϕ′ → (ψ → ¬ψ) is a tautology (where → is interpreted as
the biconditional), we get that �HL ψ → ¬ψ for every ψ. Hence HL
is an extension of HCLi

¬↔. Suppose that it is a proper extension of

HCLi
¬↔. Then there is a formula ψ such that �HL ψ, while ��HCLi¬↔

ψ.

Let ψ� be a formula in which ¬ does not occur, and is equivalent to
ψ in HCLi

¬↔. (It is easy to show that such a formula exists.) Then

�HL ψ�, while ��HCLi¬↔
ψ�. Hence ��HCL→ ψ� too. Since HCL→ is Post-

complete (Note 11), this implies that every formula in → is provable in
HL. In particular �HL p when p is an atom, and so HL is trivial. A
contradiction. Hence HL and HCLi

¬↔ are equivalent.

Note 17. By Theorem 16, HCL ¬↔ is not even Post-complete.4 How-
ever, the difference from HCL↔ is small: HCL ¬↔ has just one proper
axiomatic extension.

4That CL¬↔ has no Post-complete axiomatization has already been noted in Sec-
tion 8 of [9].
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Jas, pages 369–408, 1937.

[9] A. N. Prior. Formal Logic. Oxford, 1962. second edition.



A roadmap of paraconsistent hybrid logics

Diana Costa♦

Manuel A. Martins�

♦ University College London, United Kingdom
� CIDMA – Center for R&D in Mathematics and Applications, Department

of Mathematics, University of Aveiro, Portugal

Abstract

Paraconsistent logics allow inconsistencies without the collapse
of systems and their development has been driven not only by theo-
retical interest, but also by genuine problems in different scientific
domains, such as Computer Science, Medicine or Robotics. On
the other hand, the description of relational structures is easily
formalized by resorting to hybrid logics. The addition of nomi-
nals and a satisfaction operator to modal logic makes it possible
to specify what happens at a particular state as well as to specify
equalities and transitions between states. This roadmap explores
two recent new logics which combine both of the above mentioned.
In a first instance, we allow inconsistent propositional variables,
and later we extend paraconsistency to transitions. In the latter,
modal operators are no longer dual.

From modal to hybrid logics

The study of modal logics begins by considering an extension of clas-
sical propositional logic that incorporates modalities [9]. The tradi-
tional alethic modalities regard possibility, necessity and impossibility
but there are other modalities that have been formalized such as tempo-
ral, epistemic and deontic ones. The use of modal logics is widespread
as they provide a simple formalism for working with relational struc-
tures (or multigraphs). The basic modal logic incorporates the modal
operator �, which expresses necessity, and its dual ♦, that captures the
notion of possibility; thus the formula �ϕ represents that ϕ is the case
in every possible circumstance and the formula ♦ϕ that ϕ is the case in
at least one possible circumstance. These two modal operators are dual
in a similar way as quantifiers ∀ and ∃ are, namely �ϕ ≡ ¬♦¬ϕ.



228

In 1959 Saul Kripke introduced what is now the standard seman-
tics for modal logics. Truth in a model is relative to points in a set,
the domain, which are usually taken to represent possible worlds, times,
epistemic states, states in a computer, or something else. Therefore a
propositional variable may have different truth values relative to dif-
ferent points. A model also includes an accessibility relation between
worlds and a valuation that assigns to each propositional variable the
set of worlds where it holds. Modal formulas are evaluated as follows:
♦ϕ is true in a world w if and only if there is a world accessible from w
where ϕ is true; similarly �ϕ is true in a world w if and only if ϕ is true
in all worlds accessible from w.

Unfortunately, modal logics lack in mechanisms for naming possible
worlds, asserting equalities and describing accessibility relations between
them. These limitations are overcome with hybrid logics, an extension
of modal logic but whose history begins with Arthur Prior’s work in
tense logic in the 50s, [8]. In its most basic form we find a new class of
atomic formulas, called nominals, which are true at exactly one state.
We can say that nominals act as names for the unique world they are
true at. Propositional hybrid logic also includes the so called satisfaction
operator @, such that if i is a nominal and ϕ is an arbitrary formula, then
@iϕ is a new formula, called a satisfaction statement. This machinery
allows us to express what happens at a specific state, thus can be viewed
as a jump operator:

@iϕ is true ⇐⇒ ϕ is true
relatively to a state w in the state named by i

Note that the satisfaction operator @ shifts the state of evaluation w
of a satisfaction statement @iϕ to the state that is named by i, thus the
state where we evaluate a satisfaction statement is irrelevant. Observe
therefore that either @iϕ is true at all worlds, or false at all worlds,
depending on whether ϕ is true or false at the world named by i.

In particular we can express that two states are identical:

@ij is true ⇐⇒ j is true
relatively to a state w in the state named by i

⇐⇒ i and j name the same state

Observe that a world can be named by more than one nominal but
a nominal names a single world.

Another special case is that of the accessibility between states:
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@i♦j is true
relatively to a state w

the state named by j is
⇐⇒ reachable in one step from

the state named by i

In a standard modal logic there are properties of the underlying
transition structure which are simply not definable but that are easily
expressed in a hybrid extension, such as irreflexivity, asymmetry or an-
tisymmetry. Nonetheless, although being strictly more expressive than
its modal fragment, the basic hybrid logic (where only nominals and
the satisfaction operator are added) does not increase the complexity of
the problem of determining whether a formula is valid or not, which is
still decidable. However, in the strong Priorean logic, where quantifi-
cation over world variables is possible, the complexity of that problem
increases.

We can see nominal-like features and glimpses of the hybrid ma-
chinery in the work of Arthur Prior. In what he called the I-(later
U-)calculus, propositions of the tense calculus are treated as predicates
expressing properties of dates, represented by variables. He established
that the formula px should be read as “p at x” and considered a binary
relation I over dates, where xIy should be read as “y is later than x”,
[15]. By representing the time of utterance by means of an arbitrary
date x, Fp represents “it is now the case that it will be the case that
p happens” and it is equated with ∃y(xIy ∧ py). Similarly for the past,
Pp is equated with ∃y(yIx ∧ py). In order to obtain a Kripke model
for the logic of time, possible worlds become moments in time and the
accessibility relation is taken as an ordering relation between moments
in time. Thus the formula Fp is true at moment w if for some moment v
in the future, i.e., a moment such that w < v, p is true at v; analogously
the formula Pp is true at moment w if for some moment v in the past,
i.e., a moment such that v < w, p is true at v.

In the 80s, the Bulgarian school of logic revived the interest in hy-
brid logic. It started with the proof that the union of two accessibility
relations is definable in the basic modal language, i.e., that the formula
〈T〉p↔ 〈U〉p ∨ 〈S〉p is valid on a frame precisely if RT, the relation that
interprets the modality T, is the union of RU and RS, the relations that
interpret modalities U and S, respectively. Yet, and it came as a sur-
prise, the intersection of two accessibility relations does not work in the
same way [29]. Gargov, Passy and Tinchev showed that the intersection
can be defined using nominals, stating that 〈T〉i↔ 〈U〉i ∧ 〈S〉i [28]. The
same occurs for complementation: although there is no formula of the
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basic modal logic that is valid on a frame where RU is the complement
of RS, there is such a formula when nominals are added to the language,
namely 〈U〉i↔ ¬〈S〉i.

Another interesting result is that named models, i.e., models in
which each world is named by at least one nominal, can be completely
described by a set of formulas of the form @ip,@ij,@i♦j, known as the
diagram of a model [7].

Tableau [12], Gentzen, and natural deduction [13] style proof-theory
for hybrid logic work very well compared to ordinary modal logic. Usu-
ally, when a modal tableau, Gentzen, or natural deduction system is
given, it is for one particular modal logic and it has turned out to be
problematic to formulate such systems for modal logics in a uniform way
without introducing metalinguistic machinery. This can be remedied
with hybridization which enables the formulation of uniform tableau,
Gentzen, and natural deduction systems for wide classes of logics.

Hybrid logics have been an opulent source of inspiration for many
researchers in many areas and have been studied under the scope of
feature logic, model theory, proof theory and natural language. It is
worth mentioning some of the most relevant works in the field of hybrid
logic, amongst which those of Patrick Blackburn, Maarten Marx, Carlos
Areces, Balder ten Cate and Torben Braüner with studies on interpola-
tion and complexity of hybrid logics [4, 2, 3], on bisimulation in hybrid
logics, results on Hilbert axiomatizations for some extensions of basic
hybrid logic [11], and the development of first-order hybrid logic [16],
intuitionistic hybrid logic [17] and many-valued hybrid logic [30]. More
recently hybrid logics took another dimension and we can find works on
hierarchical hybrid logic [33] and hybridization [35, 32, 36] by Alexandre
Madeira, Manuel Martins and Lúıs Barbosa. The group constituted by
Maŕıa Manzano, Antónia Huertas, Carlos Areces, Manuel Martins and
Patrick Blackburn have been actively working on hybrid type theory
[1, 34] and on the concept of intensionality [10].

However, there is a combination barely explored: we are talking
about a crossing between hybrid logic and paraconsistency.

Notes on paraconsistency

Paraconsistent logics were created with the purpose of allowing incon-
sistencies without producing the collapse of systems. They do so by
excluding the Principle of Non-Contradiction which states that from
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contradictory premises any formula can be derived. The prefix “para”,
of Greek origin, has three synonyms: (1) “against”, as in “paradox”,
for “against the common sense”; (2) “beyond”, as in “paranormal”; and
finally (3) “very similar”, “connected” or “nearby” as in “parallel” and
“parabola”. �Lukasiewicz was a pioneer in discussing the possibility of
violating this principle. His disciple, Stanis�law Jaśkowski, constructed
the first system of propositional paraconsistent logic and for the last
sixty years many philosophers, logicians and mathematicians have be-
come involved in this area, with the Brazilian logic school (Newton
da Costa, Walter Carnielli, Jean-Yves Béziau, João Marcos, Alexandre
Costa-Leite) taking a prominent role.

Discussed for almost a century, paraconsistency is a growing topic
of interest and many paraconsistent logics have been developed over
the years, either to meet different aims or to target genuine problems
in different scientific domains, such as Computer Science, Medicine or
Robotics. In Computer Science, subdomains like requirements engineer-
ing ([25]), artificial intelligence ([26]) and automated reasoning within
information processing knowledgebases ([24]), are amongst the most rel-
evant areas in which paraconsistent logic can address difficulties raised
by inconsistent data.

Traditionally, the consensus amongst the computer science commu-
nity is that inconsistencies are undesirable. Many believe that databases,
knowledgebases, and software specifications should be completely free
of inconsistencies and thus try to eradicate them by any means possi-
ble. However, if contradictory information is the norm rather than the
exception in the real world, it should be formalized and used to our ad-
vantage. Furthermore, contradictory information does not always mean
wrong information, it can be part of a fraudulent operation thus detect-
ing it would be a major step, while resolving it would result in the loss
of valuable information.

Comparing heterogeneous sources often involves comparing conflicts
and there are situations of our daily lives where we apply a paraconsis-
tent reasoning. The simple gathering of the opinions of a group of people
about a certain subject (when formalized roughly known as discussive
logic) is a major source of contradictions. For some common examples,
suppose that we are dealing with a group of clinicians giving advice to a
patient, a group of witnesses of an incident or a set of newspaper reports
covering some event – in all of these situations, some degree of inconsis-
tency is expected. Therefore inconsistencies are no longer seen purely
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as anomalies and paraconsistent logics are now viewed as flexible logical
systems able to handle heterogeneous and complex data as they accom-
modate inconsistency in a sensible manner that treats contradictions as
informative.

In what follows we will make on overview of the cases when hybrid
logic meets paraconsistency.

Hybrid logics meet paraconsistency (and para-
completeness)

We can roughly say that there are three components of hybrid logics that
are prone to inconsistencies: (a) propositional variables, (b) accessibility
relations and (c) nominals. Versions of hybrid logic where propositional
variables are allowed to be inconsistent without trivializing the whole
system can be found in [14] where intuitionistic hybrid logic and Nelson’s
logic N4 meet and [21] where a restriction of classical hybrid logic to
formulas in negation normal form allows inconsistent and incomplete
information on propositional variables. We will focus our attention in
the latter.

Quasi-hybrid (QH) logic [21] is inspired by Besnard and Hunter’s
quasi-classical (QC) logic introduced in [6]. Whilst their work con-
sidered only formulas in conjunctive normal form, the hybrid version
considers only formulas in negation normal form. This is still a huge
limitation. Nonetheless, inconsistent and incomplete information about
propositional variables is allowed by simply splitting the usual valuation,
V, into two valuations, V+,V− such that V+(p) is the set of worlds where
the propositional variable p holds and V−(p) as the set of worlds where
¬p holds. We have thus guaranteed a way in which propositional vari-
ables may take one of four values at each world: both true and false at
w if w ∈ V+(p)∩V−(p), only true if w ∈ V+(p), w /∈ V−(p), only false if
w /∈ V+(p), w ∈ V−(p), or neither true nor false if w /∈ V+(p) ∪ V−(p).
The key thing to remember is that w � ¬p � w � p.

The semantics for disjunction, as in QC logic, resorts to the classical
notion of disjunctive syllogism. This will preserve the link between a
disjunct and its negation; for a disjunction ϕ ∨ ψ to hold when one of
the disjuncts and its negation both hold, for example ϕ and ¬ϕ, the
other disjunct, in this case ψ, must hold as well. Observe that in QH
logic, ¬ϕ is replaced with ∼ ϕ which is the formula that results from
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putting ¬ϕ in negation normal form. A detailed discussion about the
use of the disjunctive syllogism can be found in [5].

As in classical hybrid logic, the new structures where propositional
variables may be inconsistent or incomplete can be described by a set of
atomic formulas. Loosely speaking, a diagram is constituted by all evi-
dence of what happens at specific states (at the most basic level – that of
propositional variables), all evidence about the presence of transitions,
and finally all evidence about equalities between states. Classically, if a
formula is part of a diagram, then it is satisfied in the structure the dia-
gram represents; on the other hand, a formula missing from the diagram
is such that it is not satisfied in the structure, therefore its negation is.
In QH logic there is not a direct connection between the satisfaction of a
propositional variable and its negation, since their interpretations resort
to distinct valuations. Therefore, in order to describe what happens at
specific states we need both formulas of the form @ip and @i¬p. Ev-
idence about transitions and equalities between states are represented
by formulas of the form @i♦j and @ij; since the behaviour of these for-
mulas remains classical, either they are part of a diagram, meaning that
they are satisfied in the structure we are describing, or they are missing
from the diagram, which means that their negation is satisfied in the
structure. Therefore, a diagram is composed of sets of formulas of the
form @ip,@i¬p,@ij,@i♦j for p ∈ Prop, i, j ∈ Nom. Here is a simple
example:

Figure 1: A structure with local inconsistencies.

The diagram of the structure represented in Figure 1 is as follows:

{@ii,@jj,@kk,@ll,@mm, // nominal equalities
@jp,@k¬q,@lp,@l¬p, // local properties
@i♦j,@j♦i,@j♦l,@k♦j,@l♦k} // transitions

A sound and complete tableau system and a decision procedure to



234

check if a formula is a consequence of a set of formulas can be found
in [18]. The construction of a tableau follows the usual steps, with re-
strictions to avoid repetition of formulas, the application of the same
rule and entering loops. However, since inconsistencies are allowed, a
branch will not close when arbitrary formulas ϕ and ¬ϕ occur, as for
example the case ϕ = p is acceptable and does not lead to explosion.
A branch will close when formulas ϕ and ϕ∗ occur, where ϕ∗ holds if
and only if ϕ does not. The occurrence of a formula and its starred ver-
sion corresponds to a real inconsistency. Observe that since a nominals’
behaviour remains classical, the formulas i∗ and ¬i are equivalent. A
formula ϕ is a consequence of a set of formulas Δ whenever ϕ holds in
all the structures that satisfy all formulas in Δ, i.e. are models of Δ. A
tableau-based decision procedure to check this consists of the construc-
tion of a tableau with root Δ, ϕ∗. A formula ϕ is a consequence of Δ if
and only if the tableau closes. Moreover, the tableau construction algo-
rithm can be used to obtain syntactic representations of models for a set
of formulas. Several measures of inconsistency for models and databases
were introduced in [21], allowing for comparisons and ultimately leading
to choosing the best, as in least inconsistent, model or database. There
is also a notion of bisimulation that preservers satisfiability in QH logic.
The definition is a straightforward extension of the classical one and can
be found in [21].

Let us now move on to our second topic: versions of hybrid logic with
paraconsistency at the level of accessibility relations. Even though we
can find modal versions where that is the case, such as Modal bilattice
logic MBL in [38], the work of Wansing and Odintsov with BKFS logic
in [37] and Many-valued modal logic by Fitting in [27], the only hybrid
variants are found under the form of Many-valued hybrid logic [30] and
more recently Double-belnapian hybrid logic (DBHL) [23]. We move on
to discussing the latter, and how it compares with the previous ones.

DBHL is a four-valued logic at the level of both propositional vari-
ables and accessibility relations whose main characteristic is the fact
that the modal operators � and ♦ do not act as duals.1 The argument
invoked to sustain this choice is that when it is not possible ϕ, formally
represented as ¬♦ϕ, it should not be assumed that the negation of ϕ is
necessarily the case, �¬ϕ. If the duality was kept, the usual semantics
for modal operators would make it so that in a structure that satis-

1For the sake of simplicity, this paper deals with the case with a single modality,
which is then ommitted. In [23], the multimodal case is considered.
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fies the formulas @i♦p and ¬@i♦p, negation would be carried towards
the propositional variable and the latter would be equivalent to @i�¬p.
Thus we would conclude that p was inconsistent in a world accessible
from i. In this scenario, negation shifts from the perspective of the rela-
tion to the propositional variable and that is precisely what one wants
to avoid.

In DBHL, @i♦ϕ and @i¬♦ϕ shall be interpreted as “there is evidence
of a transition from the world named by i to a world where ϕ holds” and
“there is evidence that all transitions from i to worlds where ϕ holds are
missing”, respectively. The latter is not compatible with the interpreta-
tion of @i�¬ϕ which is that “there is evidence that all transitions from
the world named by i lead to a world where ¬ϕ holds”.2 This alone,
is already enough reason to claim that DBHL is neither an extension
of pre-existing paraconsistent modal logics with hybrid logic features
(namely nominals and the satisfaction operator), nor can it be captured
by MVHL. For a more detailed comparison, check [23]. Additionally, in
the semantics for disjunction, the classical notion of disjunctive syllogism
is used, as in [21].

The structures underlying this system will incorporate two valuations
in order to deal with contradictions at the level of propositional variables,
V+ and V−, and will, analogously, consider two accessibility relations,
R+ and R− in order to deal with contradictions at the level of the
accessibility relations. The semantics for nominals is the usual one:
each nominal holds at a unique state. There is now no restriction to the
language used, all the usual hybrid formulas are evaluated.

We update the tableau system for QH logic in order to incorporate
rules for the new formulas allowed and adjust the rules for modal oper-
ators. The new system is still sound, complete and terminating. Once
again, resorting to a tableau-based decision procedure it is possible to
check if a formula follows from a set of formulas and it is also possible to
build models for a certain database, i.e., given a set of hybrid formulas
Δ a tableau whose root consists of all formulas in Δ allows us to extract
a syntactic representation of a structure where all the initial formulas

2We have recently submitted an extended version of [23] where the semantics for
¬�ϕ is slightly different. In what we called 4HL, ¬�ϕ holds at a world w if and
only if there exists a world w′ such that w�R−w′ (in other words, there is no evidence
of the lack of transition between w and w′) and ϕ does not hold at w′; in DBHL
the last condition is that ¬ϕ holds at w′. This does not change the interpretation of
¬�i since nominals behave classically, thus diagrams (more on this in what follows)
represent the same structure in both DBHL and 4HL.
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hold. The syntactic representation referred is none other than the di-
agram of the structure. For structures where local inconsistencies and
inconsistencies on transitions are allowed, the representation in DBHL
resorts to sets of formulas of the form @ip,@i¬p, to represent the for-
mer, formulas of the form @i♦j,@i¬♦j to represent the latter, and @ij
to represent equalities between nominals. Note that the non-classical
behaviour that was exclusive of propositional variables in QH logic, is,
in DBHL, also shared by modal formulas, which is the reason why, not
only do we need formulas of the form @ip and @i¬p, but also of the
form @i♦j and @i¬♦j. Additionally, observe that, analogously to what
happens in QH logic, formulas of the form @i¬j are simply unnecessary.
An example is as follows:

Figure 2: A structure with local inconsistencies and inconsistent transi-
tions.
A full line indicates evidence of a transition and a dashed line indicates
evidence of the lack of a transition.

The diagram of the structure represented in Figure 2 is as follows:

{@ii,@jj,@kk,@ll,@mm, // nominal equalities
@jp,@k¬q,@lp,@l¬p, // local properties
@i♦j,@i¬♦j,@i¬♦k,@j♦i, // transitions
@j♦l,@k♦j,@l♦k}

The measures of inconsistency for models and databases can be ap-
plied to these new structures, bearing in mind that they would only
count the number of inconsistencies at the level of propositional vari-
ables. These measures can of course be extended so that they count the
number of inconsistent transitions as well. Both absolute and relative
measures (which come as a ratio between the number of actual inconsis-
tencies and the number of possible inconsistencies) can be found in [18].
Curiously enough, a suitable notion of bisimulation in DBHL that would
preserve satisfiability was not as simple to find as that for QH logic. In
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fact, the usual construction did not preserve satisfiability. Nonetheless,
a new notion of bisimulation for 4HL, a marginally different logic from
DBHL briefly discussed in Footnote 2, has been proved invariant.

At this moment the reader may wonder about what happens when
nominals join the party. The third topic we introduced in the beginning
of the section is still unexplored. Allowing inconsistencies at the level of
nominals has several nuances. First of all, it should be defined when is it
that a nominal is inconsistent: is it the case that the same nominal holds
in more than one world, making it closer in behaviour to propositional
variables, or shall we keep the restriction that a nominal holds only in
a single world and assume that at that world its negation may hold as
well? This choice and the constructions carried by it and how it fits with
previous work, especially when intertwined with inconsistencies at the
level of accessibility relations, will certainly constitute a nice challenge.

A wrap-up of the present and future of paracon-
sistent hybrid logics

Have you ever hear of the story of the mountaineers lost in the Alps
who rescued themselves after a member of the group found a map of the
Pyrenees? Even though they were holding a wrong map, the discussion
created around it was enough to propel the mountaineers in the right
direction towards safety.3 What the story illustrates is how powerful
discussing the information we have at hands can be. It is clearly also
a way for us to advocate in favour of paraconsistency. Gathering infor-
mation is rarely immune to gluts and gaps, but when we embrace these
imperfect bits of information and make them part of a bigger system,
we can reach meaningful conclusions.

This roadmap intended to give a brief flavour on variants of hybrid
logic where contradictions are allowed, in a first instance at the level of
propositional variables, and latter at the level of accessibility relations
as well. Even though the combination of hybrid logic with paraconsis-
tency is still understudied, it certainly holds a lot of potential. Hybrid
logic’s machinery, in special nominals and the satisfaction operator, have
been widely used and almost surely in situations where some degree of
inconsistency is expected. That is why we strongly believe that a thor-

3The story is attributed to the Hungarian biochemist and Nobel laureate Albert
Szent-Gyorgi and dates back to the 1930s.
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ough study of this topic must be carried. Brief incursions in the fields
of robotics and healthcare where paraconsistent hybrid logics are sug-
gested as a means to formalize systems can be found in [20] and [19, 22],
respectively.

DBHL makes the description of inconsistent maps an easy task;
building a map from inconsistent information is equally simple. Some
of our next steps include the development of graph algorithms where
the underlying graph is replaced with one where transitions and local
data may contain inconsistencies. We aim to explore problems as the
travelling salesman one where the map given is either incomplete or in-
consistent and answer the question “is there a way to travel from point
A to point B?” with a level of (un)certainty.

Talking about levels of uncertainty, it is often the case that propo-
sitions are neither totally true nor totally false, but rather somewhat
true and somewhat false. The study of situations when positive and
negative evidence of the occurrence of a proposition do not add up to 1
is another topic for future research. There are several real-life situations
where this may occur, namely we may get conflicting results when a
property and its complement are being independently evaluated using
different methods.

In the near future we hope to come up with a suitable notion of
composition of four-valued relations. The classical case is described with
dynamic logic [31] and we reckon that some interesting behaviours will
emerge when belnapian relations are considered.
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[13] Torben Braüner. Natural Deduction for Hybrid Logic. Journal of
Logic and Computation, 14(3):329–353, 06 2004.
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[24] Sandra de Amo and Mônica Pais. A paraconsistent logic program-
ming approach for querying inconsistent databases. International
Journal of Approximate Reasoning, 46(2):366–386, 2007.

[25] Neil Ernst, Alexander Borgida, Ivan Jureta, and John Mylopou-
los. Agile requirements engineering via paraconsistent reasoning.
Information Systems, 43(0):100 – 116, 2014.

[26] J. Filho, Germano Lambert-Torres, and Jair Abe. Uncertainty
Treatment Using Paraconsistent Logic: Introducing Paraconsistent
Artificial Neural Networks. IOS Press, Amsterdam, The Nether-
lands, 2010.

[27] Melvin Fitting. Many-valued modal logics. Fundam. Inform., 15(3-
4):235–254, 1991.

[28] George Gargov, Solomon Passy, and Tinko Tinchev. Modal envi-
ronment for boolean speculations. In DimiterG. Skordev, editor,
Mathematical Logic and Its Applications, pages 253–263. Springer
US, 1987.

[29] R. Goldblatt and S. Thomason. Axiomatic classes in proposi-
tional modal logic. In JohnNewsome Crossley, editor, Algebra and
Logic, volume 450 of Lecture Notes in Mathematics, pages 163–173.
Springer Berlin Heidelberg, 1975.

[30] Jens Hansen, Thomas Bolander, and Torben Braüner. Many-valued
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Abstract

The logic of deduction originated from Tarski consequence op-
erators. While Tarski with your operator highlighted important
characteristics of deduction and described them as a function, the
logic of deduction put those characteristics in a logical environ-
ment. The first proof of adequacy for the logic of deduction was
proposed via algebraic models, with TK-algebras. Naturally any
set with a Tarski operator is a case of a TK-algebra and this con-
dition permits the adequacy. Posteriorly some new models for the
logic of deduction were proposed. In this paper, we introduce an-
other one completely connected with a very popular definition of
consequence relation. This is a model in Kripke style, but it is not
exactly a Kripke model, given that the logic of deduction is not a
normal modal logic.

Introduction

The logic of deduction or logic TK was proposed as a counterpart of
Tarski consequence operators. In order to clean the way in which we de-
velop this paper, we start with three very short sections where we remem-
ber the definition of Tarski consequence operator, show that TK-algebras
are completely connected with consequence operators, and present the
logic TK. In other section we present consequence as a relation and com-
pare this definition with the definition of consequence operator. These
two definitions are cases of Tarski spaces. As an original result, moti-
vated by the consequence relation defined in this paper, we introduce a
new relational semantic for the logic TK. This model is relational and it
is in the Kripke style, but it is not exactly a Kripke model because the
logic of deduction is not a normal modal logic. In [5] a relational model
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for TK was introduced, but motivated by modal properties of this logic,
what generates a neighbourhood model.

1 Consequence operator

In this section we present the definition of Tarski consequence operator
and Tarski spaces.

Definition 1.1. A consequence operator on E is a function − : P(E)→
P(E) such that, for every A,B ⊆ E:

(i) A ⊆ A

(ii) A ⊆ B ⇒ A ⊆ B

(iii) A ⊆ A.

Of course, from (i) and (iii), for every A ⊆ E, it holds A = A.

Definition 1.2. A consequence operator − : P(E) → P(E) is finitary
when, for every A ⊆ E:

(iv) A = ∪{Af : Af is a finite subset of A}.

Definition 1.3. A Tarski space (Tarski deductive system or closure
space) is a pair (E,− ) such that E is a non-empty set and − is a conse-
quence operator on E.

Definition 1.4. The set A is closed in a Tarski space (E,− ), if A = A,
and A is open if its complement relative to E, denoted by AC , is closed
in (E,− ).

Since, for all A ⊆ E, it follows that A = A, then A is closed in
(E,− ).

Proposition 1.5. If (E,− ) is a Tarski space, then:

(i) A is the least closed set that includes A

(ii) the set E is closed

(iii) the set ∅ is open.

So ∅ and E correspond to the least and the greatest closed sets,
respectively, associated to the consequence operator −.

Definition 1.6. The set A is the closure of A.
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Proposition 1.7. If (E,− ) is a Tarski space, then:
(i) every intersection of closed sets is closed set in (E,− )
(ii) A = ∩{X : A ⊆ X and X = X}.

Proof: (i) If {Ai} is a collection of closed sets, then ∩iAi ⊆ ∩iAi ⊆
∩iAi = ∩iAi. Hence, ∩iAi = ∩iAi.

Definition 1.8. The interior of A is the set: Å = ∪{X ⊆ E : X ⊆
A and X is open}
Proposition 1.9. If (E,− ) is a Tarski space, then for every A,B ⊆ E:

(i) Å ⊆ A ⊆ A

(ii)
˚̊
A ⊆ Å

(iii) ∅̊ ⊆ ∅
(iv) A ⊆ B ⇒ Å ⊆ B̊.

2 TK-algebras

TK-algebras (cf. [4]) were introduced motivated by the concept of Tarski
consequence operator. Now the definition of TK-algebra.

Definition 2.1. A TK-algebra is a 6-tuple A = (A, 0, 1,∨,∼, •) such
that (A, 0, 1,∨,∼) is a Boolean algebra and • is a new operator, called
operator of Tarski, such that:

(i) a ∨ •a = •a
(ii) •a ∨ •(a ∨ b) = •(a ∨ b)
(iii) •(•a) = •a.
Since we are working with Boolean algebras, the item (i) of the pre-

vious definition asserts that, for every a ∈ A, a ≤ •a.

Examples:
(a) The space of sets P(A) with A �= ∅ and •a = a, for all a ∈ A, is a
TK-algebra.
(b) The space of sets P(R) with •X = X ∪ {0} is a TK-algebra.
(c) The space of sets P(R) with •X = ∩{I : I is an interval and X ⊆ I}
is a TK-algebra.

Proposition 2.2. If A = (A, 0, 1,∨,∼, •) is a TK-algebra, then it holds:
(i) ∼ •a ≤∼ a ≤ • ∼ a
(ii) a ≤ b⇒ •a ≤ •b
(iii) •(a ∧ b) ≤ •a ∧ •b
(iv) •a ∨ •b ≤ •(a ∨ b).
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3 The logic TK

The Logic TK (cf. [3]) was introduced from the TK-algebras.

The propositional logic TK is constructed over the propositional lan-
guage L = {¬,∨,→,	, p1, p2, p3, ...} with the following axioms and rules:

(CPC) ϕ, if ϕ is a tautology

(TK1) ϕ→ 	ϕ

(TK2) 		ϕ→ 	ϕ

(MP)
ϕ→ ψ, ϕ

ψ

(RM	)
� ϕ→ ψ

� 	ϕ→ 	ψ .

As usual, we write � ϕ to indicate that ϕ is a theorem. If Γ∪ {ϕ} is
a set of formulas, then Γ deduces ϕ, what is denoted by Γ � ϕ, if there is
a finite sequence of formulas ϕ1, ..., ϕn such that ϕn = ϕ and, for every
ϕi, 1 ≤ i ≤ n:

ϕi is an axiom, or

ϕi ∈ Γ, or

ϕi is obtained from previous formulas of the sequence by some of the
deduction rules.

The TK-algebras are algebraic models for the logicTK, as it is shown
in [3].

4 Consequence relation

Now we see the consequence as a relation.

Definition 4.1. Let E be a non-empty set. A consequence relation on
E is a relation � ⊆ P(E)× E such that, for every A ∪B ∪ {x, y} ⊆ E:

(i) x ∈ A⇒ A � x

(ii) A � x and A ⊆ B ⇒ B � x

(iii) A � x and B ∪ {x} � y ⇒ A ∪B � y.
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Proposition 4.2. The conditions (i) and (iii) implies (ii).
Proof: If A � x and A ⊆ B, using (i), B ∪ {x} � x and, by (iii),
A ∪B � x. As A ⊆ B, then B � x.

Proposition 4.3. The conditions (iii) implies (iv) A � x and A∪{x} �
y ⇒ A � y.

Proposition 4.4. If � is a consequence relation on E and − : P(E)→
P(E) is defined for each A ⊆ E by A = {x ∈ E : A � x}, then − is a
consequence operator.

Proposition 4.5. If − : P(E)→ P(E) is a Tarski consequence operator,
then the induced relation A � x⇔ x ∈ A is a consequence relation.

So we have a bridge connecting consequence relations and conse-
quence operators.

5 A new model for TK

Now we define a relational model for TK.

Definition 5.1. A frame for TK is a structure 〈W,�〉 in which W is a
non-empty set of possible worlds and � is a relation on P(W )×W such
that:

(i) x ∈ A⇒ A � x

(ii) A � x and B ∪ {x} � y ⇒ A ∪B � y.

Of course, 〈W,�〉 is a consequence relation.

Definition 5.2. A valuation v on W is a function from the set of atomic
formulas of TK to P(W ).

Definition 5.3. The valuation v must be extended to the set of all
formulas by:

(i) v(¬ϕ) = v(ϕ)C

(ii) v(ϕ ∨ ψ) = v(ϕ) ∪ v(ψ)

(iii) v(ϕ→ ψ) = v(ϕ)C ∪ v(ψ)

(iv) v(	ϕ) = {y ∈W : v(ϕ) � y}.
So, if � and ⊥ represent respectively any formula TK-valid and

TK-invalid, then v(�) = W and v(⊥) = ∅.
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Definition 5.4. A model for TK is a pair M = 〈F, v〉 or a triple M =
〈W,�, v〉 such that F = 〈W,�〉 is a frame for TK and v a valuation on
W .

We denote that a model M in a world x satisfies a formula ψ or that
ψ is true in the world x of M by (M, x) � ψ.

Definition 5.5. The satisfaction of ψ is inductively defined by:

(i) if ψ is a propositional variable p, then (M, x) � p⇔ x ∈ v(p)

(ii) (M, x) � ¬ϕ⇔ (M, x) � ϕ

(iii) (M, x) � ϕ ∨ σ ⇔ (M, x) � ϕ or (M, x) � σ

(iv) (M, x) � ϕ→ σ ⇔ (M, x) � ϕ or (M, x) � σ

(v) (M, x) � 	ϕ ⇔ if there is y ∈ W such that v(ϕ) � x and
v(ϕ) ∪ {x} � y, then (M, y) � ϕ.

The condition (v) uses the bridge between consequence operator and
consequence relation.

Definition 5.6. A formula ϕ is valid in the model M = 〈W,�, v〉 if it is
true in every world x ∈ W . The formula ϕ is valid if it is true in every
model M.

We denote that ϕ is valid in M by M � ϕ, and that ϕ is valid by
� ϕ.

If Γ is a set of formulas and M a model, then we write M � Γ if, and
only if, M � ϕ, for every ϕ ∈ Γ.

Definition 5.7. Let Γ ∪ {ϕ} be a set of formulas. The set of formulas
Γ implies ϕ when, for every model M, if M � Γ, then M � ϕ.

We denote that Γ implies ϕ by Γ � ϕ.
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Abstract

In this paper, I propose an extension of partial models in-
troduced first by Irene Mikenberg, Newton C. A. Da Costa, and
Rolando Chuaqui. The partial models were made to explicate the
notion of pragmatic truths. In my extension of partial models we
can define partial relations for explicating the notion of emotional
truths.

1 Introduction

Recall that in classical logic a well-formed proposition is evaluated as
either true or false and in conventional logics as a degree of truth (the
latter could be however very different, e.g. it could run the unit interval
[0, 1] as in fuzzy logics, trees of some data as in spatial logics and behav-
ior logics, sets of truth values as in higher-order fuzzy logics and some
paraconsistent logics, etc.) [2]. However, the question raised by Ronald
de Sousa [5], [6], [7] how we should evaluate emotional (performative)
propositions that contain speaker’s pragmatic values such as ‘I fear this
one,’ ‘I order you to leave the room,’ ‘I am thinking about’ is open still.

In [5], there was introduced the rule of evaluating emotional propo-
sitions such as ‘Fear that p’:

‘Fear that p’ is satisfied iff p is true, but it is successful iff p
is actually dangerous.

Let E(p) be a performative proposition, where E is an emotion and
p is a proposition. Then the rule of R. de Sousa is formulated as follows:

E(p) is satisfied iff p is true E(p) is successful iff p actually
fits E’s formal object.

We can assume that a performative proposition E(p) cannot be suc-
cessful if it is not satisfied:
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E(p) is successful iff p is true and p actually fits E’s formal
object.

So, in everyday speeches a non-defective performative proposition
is evaluated as either successful or unsuccessful in the given context
of utterance (notice that within the more detailed consideration in the
same way as in non-classical logics, the meaning of non-defective simple
performative proposition could be evaluated as a degree of successful-
ness). It seems as though we can consider performative propositions just
within informal logic and never within symbolic logic taking into account
the fact that the successfulness of performative propositions depends on
human actions and utterance contexts and cannot be completely formal-
ized.

The point is that the classical conception of semantical truth was
developed by Alfred Tarski [14]. According to him, the semantical model
for the class of n-ary predicates {Pn

i }i as atomic propositions is defied
as an ordered system D = 〈D, {Rn

j }j , {Pn
i }i, V, {�,⊥}〉, where D is a

non-empty set, Rn
j are n-ary relations on this set, V is an evaluation

function: ({Pn
i }i×{Rn

j }j) �→ {�,⊥}, where � is the meaning to be true
and ⊥ is the meaning to be false. So, V (Pn

i , R
n
j ) = t is to read Pn

i has
the value t (either true, �, or false, ⊥) on the relation Rn

j .

An atomic n-ary proposition Pn
i is true in D (symbolically

D |= Pn
i ) iff there exists a relation Rn

j in D such that the
evaluation function V gives the meaning � for Pn

i on Rn
j .

Within this approach, we assume that the reality is completely given
for us in the form, first, of all real objects (the set D) and, second, of all
n-ary relations on D which can realize our n-ary predicates as atomic
propositions. As we see, this assumption puts forward a context-free
interpretation of atomic propositions. And, as a consequence, within it
we cannot consider a kind of semantics for performative propositions.

The main disadvantage of the Tarskian approach is that we suppose
to have a complete knowledge about reality. But, as we guess, it is abso-
lutely impossible. In order to avoid this disadvantage, Irene Mikenberg,
Newton C. A. Da Costa, and Rolando Chuaqui [9] proposed to replace
the set of relation {Rn

j }j from the Tarskian model by the set of partial

relations {R̃n
j }j .

Let us recall that each usual relation Rn
j is regarded as a subset of

the Cartesian product D ×D × · · · ×D︸ ︷︷ ︸
n

= Dn, so that we can define the
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complement of Rn
j in Dn denoted by ¬Rn

j in the way: ¬Rn
j = Dn\Rn

j .
So, for each relation Rn

j we have the rule of excluded middle Rn
j ∪¬Rn

j =
Dn and the rule of contradiction Rn

j ∩ ¬Rn
j = ∅.

The partial relation R̃n
j is said to be a relation which does not cover

the whole Dn. It means that R̃n
j consists of all n-tuples that we know

that belong to R̃n
j . There are also n-tuples that we know that do not

belong to R̃n
j . Let us denote them by ¬R̃n

j . It means that for R̃n
j we

have the rule of contradiction: R̃n
j ∩ ¬R̃n

j = ∅, but we do not have the

rule of excluded middle: R̃n
j ∪ ¬R̃n

j ⊂ Dn, i.e. R̃n
j ∪ ¬R̃n

j �= Dn. As a

result, Dn\(R̃n
j ∪ ¬R̃n

j ) is the set of n-tuples for which it is not defined

whether they belong or not to R̃n
j .

Thus, within this new approach proposed in [9], we deal with an
ordered system D̃ = 〈D, {R̃n

j }j , {Pn
i }i, V, {�,⊥}〉, where R̃n

j are partial
relations. This new structure is called pragmatic or partial and the
new notion of truth is called pragmatic truth or quasi-truth. These
notions give a weaker conception, which is more appropriate for the
‘partialness’ and the ‘openness’ of our reality. The idea of quasi-truth
was further developed by Otávio Bueno and Edelcio G. de Souza in [3],
where partial models are investigated, as well as by Newton C. A. da
Costa, Otávio Bueno and Steven French in [4], where a new formulation
of a coherence theory of truth is provided by using the resources of
the partial structures approach, and in many other papers. The true
meaning of atomic propositions is defined there as follows:

An atomic n-ary proposition Pn
i is quasi-true in D̃ (symbol-

ically D̃ |= Pn
i ) iff there exists a relation R̃n

j in D̃ such that

the evaluation function V gives the meaning � for Pn
i on R̃n

j .

Let D and D̃ be structures of the same signature and each Rn
j in

D be an extension of R̃n
j to be defined for every n-tuples of D. Then

between the Tarskian model D and the pragmatic model D̃ we have the
following inequality:

If an atomic n-ary proposition Pn
i is true in D, then Pn

i is
quasi-true in D̃, but not vice versa.

Emotional truths cannot be explicated within the Tarskian models
D, but we can try to explicate them within the pragmatic (or partial)
models D̃ as follows:
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An atomic n-ary proposition Pn
i is emotionally true in D̃, if

there exists a pragmatic model D̃, where Pn
i is quasi-true,

and there are no Tarskian models D, where Pn
i is true.

In this paper, I try to sketch this definition formally.

2 Self-reference and indexicals

In conventional logic (it contains the classical one and the majority of
non-classical logics), atomic propositions are being considered as claim-
ing about the world presented as D of D and these claims are true just
in case the world is as it is claimed to be – the function V gives � for
the atomic proposition Pn

i on Rn
j ⊆ Dn. We assume that each fact

Rn
j ⊆ Dn can be expressed by a proposition, i.e. there is a reference

(correspondence) relation between facts and propositions (see Figure
1). This Tarskian approach to semantics was inspired by Aristotle and
Bertrand Russell.

Figure 1: Tarskian semantics

However, very often we face propositions that refer to facts and it
seems as though they express something about the world. Consider one
of these propositions: ‘I am just lying.’ There are two options: either
the proposition is true or it is not. Assume that it is true and then what
it says is the case. As a result, the proposition is not true. Suppose,
on the other hand, that it is not true, then this is what it says. Hence,
the proposition is true. In either case it is both true and untrue. Such
propositions are called semantic paradoxes (see Figure 2). They are
self-referent.

Another example is to regard performative or emotional propositions.
All propositions divide into informative and performative ones [11], [12],
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Figure 2: The Liar paradox

[13]. The first are built up by using an informative verb that describes
an action which I can observe as process (e.g. ‘walk,’ ‘jump,’ ‘run,’ etc.),
the second are built up by using a performative verb that describes an
action which I cannot observe (e.g. ‘think,’ ‘like,’ ‘hate,’ etc.).

Let us consider the performative proposition ‘You are looking good’.
Let an appropriate fact say that a girl I am saying about is pretty indeed.
In this case it is a true statement. However, we could assume that she is
upset right now, e.g. her relative has just dead. Can I state that she is
looking good now? Or she has got very tired, or she is very busy and so
on. Further, assume that she is not very pretty, but she is very happy
right now. Cannot I state that she is looking good?

Notice that ‘be looking good’ is a performative verb and its meaning
depends on a context of utterance, not on facts. An appropriate state-
ment is true if my utterance is accepted by a hearer I am talking to.
Performative propositions such as ‘you are looking good’ are not true or
false, they are successful or unsuccessful, i.e. their content is evaluated
as either successful or unsuccessful in the given context of utterance (see
Figure 3).

Figure 3: The performative statement
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Let us assume that someone utters ‘I am thinking’ or shows this by
gestures. Can I verify if (s)he is thinking in fact? No way, I cannot. The
same case is if someone utters ‘I like you’ or shows this by gestures. The
matter is that such propositions are more actions, than words. They
have no references, because they are self-referent. I am thinking just in
case I show it before a hearer. I like somebody just in case I let her/him
know about it. The meaning of performative proposition is a fact of
its successful utterance before a hearer, nothing more. Hence, meanings
of performative propositions directly depend on our actions, not on the
world.

Performative propositions (semantic paradoxes too) necessarily con-
tain indexicals, expressions whose content, on a given occasion of use,
depends systematically upon features of the context in which it is ut-
tered. Indexicals include many types of words: ‘I,’ ‘you,’ ‘he,’ ‘she,’
etc. (the speaker of the context), ‘here,’ ‘this,’ ‘that,’ etc. (the context
itself), ‘now,’ ‘a day ago,’ etc. (the time of the context), ‘actually’ (the
world of the context), ‘you’ (the audience of the context), etc.

According to Saul Kripke, some propositions involving indexicals
on a given occasion of use might express a content which seems to be
knowable a priori such as ‘I am the speaker of the context,’ ‘I am here
now,’ ‘Stick S is one meter long at t0.’ Each of these examples, relative
to our imagined contexts of utterance, expresses a contingent a priori
[8].

Sometimes contingent a priori truths are said to be analytic a posteri-
ori [1]. Notice that analytic a priori truths express logical relations (the
latter may be verified in all possible worlds), synthetic a priori truths
express semantic relations, more precisely rigid semantic connections
(the latter may be verified just in some possible worlds), contingent a
posteriori (analytic a posteriori) express pragmatic relations which hold
everywhere, although they cannot be verified in possible worlds at all,
they depend on human actions and possible worlds are not sufficient for
verifying them.

3 Semantical models for atomic performative
propositions

Let D be a set and I an infinite set of indices. Then the family DI is the
set of all functions f : I �→ D. A filter F on I is a family of sets F ⊂ 2I for
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which: (1) A ∈ F , A ⊂ B → B ∈ F ; (2) A1, . . . , An ∈ F →
n⋂

k=1

Ak ∈ F
for any n ≥ 1; (3) ∅ /∈ F . The set of all complements for finite subsets
of I is a filter and it is called a Fréchet filter on I and it is denoted by
UI .

Let us define a relation 
 on the set DI by f 
 g ≡ {α ∈ I : f(α) =
g(α)} ∈ UI . It is easily be proved that the relation 
 is an equivalence.
For each f ∈ DI let [f ] denote the equivalence class of f under 
. The
ultrapower DI/UI is then defined to be the set of all equivalence classes
[f ] as f ranges over DI : DI/UI := {[f ] : f ∈ DI}.

The ultrapower DI/UI is said to be a proper nonstandard extension
of D and it is denoted by ∗D, see [10]. Recall that each element of ∗D
is an equivalence class [f ] where f : I → D. There exist two groups
of members of ∗D: (1) equivalence classes of constant functions, e.g.
f(α) = m ∈ D for all α ∈ I. Such equivalence class is denoted by ∗m or
[f = m], (2) equivalence classes of functions that aren’t constant.

The set σD = {∗m : m ∈ D} is called a standard set. The members of
σD are called standard. It is readily seen that σD and D are isomorphic:
σD % D.

Let D be a set of all possible facts as it is supposed in the Tarskian
model D. Now let us define the standard extension of D denoted by σD
and its non-standard extension denoted by ∗D. These σD and ∗D can
be considered as sets of infinite streams consisting of the members of D,
but σD and D are isomorphic. Let ∗D be the set of all situations, i.e.
the set of all contexts of utterances, and σD be the set of all facts.

Definition 1. Assume that L is any first-order language containing
n-ary predicates {Pn

i } such that {Pn
i } = {infPn

i } ∪ {perPn
i }, where

{infPn
i } is the set of informative atomic propositions and {perPn

i } is
the set of performative atomic propositions. Then the ordered system
∗D = 〈∗Dn \ σDn, σD, {∗Rn

j }j, {Rn
j }j, {R̃n

j }j, {Pn
i }i, V , ∗{�, ⊥}〉 is

called a situation model for informative and performative atomic propo-
sitions, where

∗Dn \ σDn is the set of n-tuples of situations, σDn is the set of
n-tuples of facts;

each ∗Rn
j ⊆ ∗Dn \ σDn and each Rn

j ⊆ σDn;

each R̃n
j is a partial relation of σDn;
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V is a valuation from the set of atomic propositions {Pn
i } such

that

– for any informative atomic proposition infPn
i , V (infPn

i , R
n
j ) =

{t}, where {t} is the singleton such that t ∈ σ{⊥,�};
– for any performative atomic proposition perPn

i , V (perPn
i ,

∗Rn
j )

= ∗T , where ∗T ⊆ ∗{⊥,�} \ σ{⊥,�}.
In the way of [3], we can consider partial structures D̃ = 〈σD, {Rn

j }j ,
{R̃n

j }j , {Pn
i }i, V , {�, ⊥}〉, where for each R̃n

j there exists its extension

Rn
j . Then an atomic proposition Pn

i is quasi-true in D̃ if Pn
i is true in

D̃ in the Tarskian sense. If Pn
i is not quasi-true in D̃, we say that Pn

i is
quasi-false.

Let us show how we can interpret semantic paradoxes in ∗D formu-
lated as an atomic proposition. So, the Liar paradox is not addressed to
some outside objects. It means that it is false on all non-empty sets, i.e.
its truth meaning is equal to the infinite stream ∗⊥ = 〈⊥,⊥, . . . 〉. But it
can be presented as an infinite stream of evaluations on the empty set:

(V (‘this proposition is not true’, ∅) = ⊥) −→ (V (‘this propo-
sition is not true’, ∅) = �) −→ (V (‘this proposition is not
true’, ∅) = ⊥) −→ . . .

Thus, a pragmatic value of semantic paradox is considered as an
infinite stream ∗t = 〈t,¬t, t,¬t, t, . . . 〉, where t ∈ {⊥,�}. This stream
can be defined by the following two mutual recursions: a = 〈t, a′′〉 and
a′′ = 〈¬t, a〉. So, in fact we have the set consisting of two infinite streams
∗T = {〈�,⊥,�,⊥, . . . 〉, 〈⊥, �, ⊥, �, . . . 〉} and ∗T ⊂ ∗{⊥,�}\ σ{⊥,�}.

Now, we can define V (‘this proposition is not true’, ∅) = {〈�,⊥,�,⊥,
. . . 〉, 〈⊥, �, ⊥, �, . . . 〉} and for any ∗Rn ⊆ ∗D we have V (‘this propo-
sition is not true’, ∗Rn) = {∗⊥}.

Let us consider how emotional values of performative propositions
are defined in ∗D. A relation ∗Rn

j ∪ ¬∗Rn
j for a performative atomic

proposition Pn
i is said to be a type of situations to be successful talk

(to be fulfilled on ∗Rn
j ) or unsuccessful talk (to be fulfilled on ¬∗Rn

j ). A
performative proposition Pn

i is successful if it is uttered under conditions
of an appropriate successful talk. Then it is followed by an expected
(e.g. desirable) action. A performative proposition Pn

i is unsuccessful
if it is uttered in an unsuccessful talk, i.e. conditions of executing an
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appropriate performance are not kept. Then it will not be followed by
the expected action. Out of the type of situation (relation) ∗Rn

j ∪¬∗Rn
j

with uttering Pn
i there are sets which are inappropriate for the meaning

of Pn
i . The union of these inappropriate sets is denoted by ∗Dn \ (∗Rn

j ∪
¬∗Rn

j ). Hence, as we see, the following proposition is obvious:

Proposition 1. Let D be a Tarskian submodel of ∗D = 〈∗Dn\σDn, σD,
{∗Rn

j }j, {Rn
j }j, {R̃n

j }j, {Pn
i }i, V , ∗{�, ⊥}〉, i.e. D = 〈σD, {Rn

j }j,
{Pn

i }i, V , ∗{�, ⊥}〉, where each Rn
j is an extension of R̃n

j from ∗D
and each Rn

j ⊆ σD. Then there are no performative atomic proposi-
tions realized in D. In other words, each ∗Rn

j , where an appropriate
performative atomic proposition is successful or unsuccessful, is partial.

From this proposition it follows that in ∗D we can explicate emotional
truths indeed.

Take the atomic proposition Pn := ‘You are looking good’. Now let
us try to find its type of situation ∗Rn

j ∪ ¬∗Rn
j combined its successful

and unsuccessful talks. Assume the following set of the process alphabet:
{‘successful talk ’, ‘unsuccessful talk ’, ‘you are looking good ’, ‘cheering up
by means of compliment ’, ‘not cheering up by means of compliment ’}.
We find out there one performative atomic proposition ‘you are looking
good ’ that is a label of the process ‘my dialogue with the girl ’ and the
four states of the process: {‘successful talk ’, ‘unsuccessful talk ’, ‘cheering
up by means of compliment ’, ‘not cheering up by means of compliment ’}.
The process is defined as follows:

‘my dialogue with the girl ’ = (‘successful talk ’ −→ ‘cheering
up by means of compliment ’ | ‘unsuccessful talk ’ −→ ‘not
cheering up by means of compliment ’)

‘cheering up by means of compliment ’ = (‘you are looking
good today ’ −→ ‘cheering up by means of compliment ’ | ‘un-
successful talk ’ −→ ‘not cheering up by means of compli-
ment ’)

‘not cheering up by means of compliment ’ = (‘you are looking
good today ’ −→ ‘not cheering up by means of compliment ’ |
‘successful talk ’ −→ ‘cheering up by means of compliment ’)

Thus, we obtain a labelled transition system, which consists of an
infinite tower of states L = 〈Rn

0 , R
n
1 , . . . R

n
i . . . 〉i→∞ ⊂ ∗Dn and a col-

lection T = {Pn} of labels (transitions, actions) over them. The set L
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consists of infinite streams from ∗Dn, the set T consists of performative
propositions.

Our dialogue is formalized as an infinite sequence (stream) of subsets
from D:

Rn
0α0R

n
1R

n
2α0R

n
3R

n
4α0 . . . ,

where α0 is a performative proposition ‘you are looking good ’ as a label,
Rn

0 , R
n
2 , R

n
4 , . . . ∈ {‘successful talk ’, ‘unsuccessful talk ’}, Rn

1 , R
n
3 , R

n
5 , . . . ∈

{‘cheering up by means of compliment ’, ‘not cheering up by means of
compliment ’}.

Let us notice that ‘successful talk ’ may be presented by a set of facts
from D, e.g. by the following: ‘the girl is happy ’, ‘she is in good spirits ’.
Hence, each level Rn

i from the infinite tower L = 〈Rn
0 , R

n
1 , . . . R

n
i . . . 〉i→∞

is presented as a subset of D that is a partial relation to fix just some
facts for the successful talk with uttering Pn and some facts for the
unsuccessful talk wth uttering Pn. As a result, the infinite tower L is
egual to the type of situation ∗Rn

j ∪ ¬∗Rn
j for the performative atomic

proposition Pn.

Definition 2. Let Pn
i be a performative atomic proposition. Then its

emotional truth is expressed as follows:

Pn
i is emotionally true in ∗D (symbolically ∗D |= Pn

i ) iff
there exists a relation ∗Rn

j in ∗D such that the evaluation
function V does not give the meaning {∗⊥} for Pn

i on ∗Rn
j .

From this definition we entail that the Liar paradox is emotionally
true in any model ∗D.

4 Conclusion

In the paper, I have proposed a strong extension of the idea of prag-
matic (or quasi-) truths and obtained some models to explicate the
idea of emotional (performative) truths. Within these models we can
interpret performative atomic propositions expressing different atomic
illocutionary acts as they are given in illocutionary logic [13].

The main idea of this paper was inspired by the investigations in
truth theory performed by the Brazilian logicians [2], [3], [4], [5], [6], [7],
[9].
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Abstract

As part of an investigation into non-Taskian logics, we intro-
duce a method of paraconsistentization by generating the mini-
mal, fully non-monotonic counterpart of a logical system. Anti-
monotonic systems are such that no addition in the premises can
preserve conclusions. Further, antimonotonic systems are not only
paraconsistent but also minimal in an important sense. Antimono-
tonicity is also a crucial feature of what Derrida intended by his
idea of a logic of supplement.

1 Introduction

Any system, formal or not, is revised or abandoned when a refutation
or a contradiction is found. Refutation is a negation of an axiom, often
through a negation of one or more of its consequences. Contradiction
is the commitment, in the system, of both something and its negation.
Negation is behind any episode of conclusions loss. In fact, conclusions
are otherwise preserved by assumptions of monotonicity, that is, that
adding new premises or new information would not harm conclusions.
Monotonicity is a common assumption —it amounts to postulating that
we are hiking to reach something like the top of the Mount Fuji, every
step up is in the right direction. Likewise, negation is a step downward
and if it doesn’t occur, nothing can harm the attained conclusions.

Indeed, given a formula ϕ and a sets of formulas Γ and Δ and relation
of consequence �, usually logical systems satisfy the following condition:

�-Monotonicity: If Γ � ϕ and Γ ⊆ Δ then Δ � ϕ
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Further, negation itself has embedded assumptions of monotonicity. Clas-
sical systems assume that negation prefixes harms conclusion but only
in odd numbers. In contrast, some non-classical systems posit that the
negation prefix is never innocuous —and therefore double negation can-
not fully restore the original conclusions. Those non-classical systems
can be viewed as dropping the assumption that whenever negation pro-
motes neither refutation nor contradiction it is monotonic. The dis-
cussion introduces the crucial issue when monotonicity is at stake: are
additions always innocuous? It is indeed possible that addition is effec-
tively as harmful to attained conclusions as negation —or rather, that
negation is harmful because it is an addition. If the landscape is not like
Mount Fuji, a step up will distance one from the top while a step down
is not necessarily a step backwards. What would happen if we drop the
assumption that adding premises is at least non-regressive? This paper
sketches an approach to formal systems that assume no monotonicity.
In other words, our concern is with systems where no conclusion can be
safe when something new is added (even if nothing is negated).

A formal system where no argument is monotonic proves to be para-
consistent. Edelcio de Souza, with Alexandre Costa-Leite and Diogo
Dias (2016), have studied strategies to paraconsistentize a logical sys-
tem —to make a non-paraconsistent logic into one. We show here that
when all monotonicity is dropped from a system, it is paraconsistentized.

2 Supplement as a novel (yet old) logical notion

Jacques Derrida introduced the idea of a non-innocuous addition under
the name of supplement. While a complement completes something,
a supplement only makes clear that what is supplemented is incom-
plete and admitted a supplement. The basic intuition can be explained
through simple examples. An ordinary car is only shown to have been
incomplete when it is supplemented with automated devices that make
much of the driving easier —or redundant. An ordinary plate of fries
could be shown to be incomplete when it is supplemented by some drops
of vinegar. Neither the automated parts of the car nor the vinegar are
complements to what was already there in any sense, they are supple-
ments in the sense that they promote a change when the supplemented
result replaces the unsupplemented original. Derrida first mentions ‘sup-
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plement’ in the Of Grammatology while discussing Rousseau’s1 use of
the word while describing what writing does to the spoken word. Der-
rida then writes: “Either writing was never a simple ‘supplement’, or it
is urgently necessary to construct a new logic of the ‘supplement”’(Of
Grammatology, 7). The simple “supplement” would be an innocuous
addition and this is not what writing is for it changes our relation to
the spoken word —ignorance and forgetfulness become acceptable, as
Plato remarks in the Phaedrus(274c-275b). Further, the spoken word
– like the car without the automated supplements or the fries without
vinegar —is rendered incomplete by the very non-necessary addition of
the supplement of writing. Derrida pictures supplement as forcefully
two-fold: a supplement is an exterior, unnecessary and unpredictable
addition and it scarcely leaves nothing as they were.

Derrida understands the logic of supplement as a departure from “the
logic of identity”(Of Grammatology, 61). If we define + as the addition
of a formula to a set of formulas, this can be understood as follows:

(i) ϕ � ϕ

(ii) ϕ + ψ � ϕ

If (1) is the case, so is (2). Hence, nothing can be established once and
for all and supplementarity is therefore incompatible with monotonicity.
The principle of identity is not indifferent to supplement. Indeed, a logic
of supplement is such that none of its arguments are monotonic.

Often, the attempts to represent the supplement logically focused
on metalogical discussions. They do offer intuition about the nature
of supplement and, in particular, with its relation to contradictions.
In fact, the logic of supplement is suppose to be in contrast with any
logic of identity, as we have just seen. Accordingly, Graham Priest,
in Beyond The Limits of thought, understands the supplement as an
instance of a broader inclosure schema defined for a totality T . Let id
be the identity function that takes from x to itself, and let diag(fA) be
the diagonalization2, defined for a one-place function f on one set A,

1“Languages are made to be spoken, writing serves only as a supplement to
speech... Speech represents thought by conventional signs, and writing represents
the same with regard to speech. Thus the art of writing is nothing but a mediated
representation of thought”. Rousseau, apud Derrida (Of Grammatology, 144).

2The diagonalization is a very common technique used to expose many different
paradoxes and to prove important results, as the well know Cantor’s theorem and
Gödel’s incompleteness theorems. Observing the pattern in the application of this
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as the set of x in A that are such that x is not a member of the object
delivered when fA is applied to x —what is denoted by fA(x):

(1) T exists
(2) if x ⊆ T either

(2a) diag(idx) �∈ x
(2b) diag(idx) ∈ T

Transcendence (2a) and Closure (2b), Priest claims, are the basis for
any contradiction that arise in the attempt to go beyond (Beyond, 3).
In Priest’s words, for any contradiction

“the limit of what can be expressed; the limit of what can
be described or conceived; the limit of what can be known;
the limit of iteration of some operation or other, the infi-
nite in its mathematical sense. [...] There is a totality (of
all things expressible, describable, etc.) and an appropriate
operation that generates an object that is both within and
without the totality. I will call these situations Closure and
Transcendence, respectively”. (Beyond, 4.)

The formal presentation of the coincidences of the inclosure schema
and the supplement follows the pattern of one trying to express some-
thing not expressible. Because of the supplement, no all-encompassing
totality is possible. Further, the supplement is rendered unintelligible
by the very logic of identity that grounds intelligibility by assuming no
addition can alter what something is.

Paul Livingston, in Derrida and formal logic: formalising the un-
decidable, summarizes this issue as a mixture of three central elements.
First, it takes in account the syntax, the language involving a given logic,
for example. Second, the totality, that in the context of Gödel’s results
can be considered as totality of a decision procedure or simply proofs.
Finally, the in-closure, that means that any linguistic system can be

“closed only at the price of the inherent paradox of tracing
its limits, and open just insofar as this paradoxical closure
also operates as the diagonalization that generates a contra-
dictory point that is both inside and outside”.

method, Priest proceeds to demonstrate that the diagonalisation is the common de-
nominator the expressibility paradoxes, which should be seen as “inherent in the
object of discourse” (Beyond, 140).
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So, diagonalization would not just be central in Gödel’s argument
for the incompleteness theorems, as well in many other formal results,
but also the procedure that expose the transcendence —what can not
be expressed. This proximity, as it is, seems to capture the behavior of
what we described as the supplement.

A logic of supplement, however, should be more than a remark about
enclosure and diagnonalization. In the next section, we elaborate on
what we take to be the crucial feature of a logic of supplement: a radical
departure from monotonicity.

3 Antimonotonicity and paraconsistentization

Monotonicity is a salient feature of classical reasoning —it is accordingly
captured by classical logic. As we have seen, it ensures that any addition
is innocuous to identity assertions like ϕ � ϕ. In a monotonic system,
(ii) above is not true for any ψ. The so called Taskian logics defined
by a ordered pair (F, �), where F is set and � is a relation between
the powerset of F and F , are those where the consequence relation
satisfies reflexivity, transitivity and monotonicity. Those are often also
called well-behaved logics. To have an initial idea of what we could find
beyond the scope of Taskian logics, consider an antilogic L̄ defined as

Γ �L̄ ϕ iff Γ �L ϕ

The antilogic (see Bensusan et al. 2015) can be defined for any logic L,
Tarskian or not. We can then define, however, an anticlassical system
as the antilogic of classical (propositional) logic. Such an anticlassical
system is not Tarskian for what makes it non-monotonic makes it also
unable to satisfy the other two requisites (see Béziau et al. 2015). In-
deed, if the concept is considered to the fullest, non-monotonic systems
can behave in interesting and surprising ways. Still, it is easy to see that
in the anticlassical system some of its arguments are monotonic, but not
all.

In contrast, we take the logic of supplement to require all of its ar-
gument to be non-monotonic. That is, no addition is innocuous. If we
accordingly define a logic L as a ordered pair (F, �), we define anti-
monotonicity as follows:

�-Antimonotonocity: If Γ � ϕ, then Γ′ � ϕ, for all Γ′ such that
Γ ⊂ Γ′.
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From now on we will omit the scope of the property whenever is clear
that it is applies to the consequence relation (�). We can also define:

Non-antimonotonocity: If Γ � ϕ, then Γ′ � ϕ, for at least one Γ′

such that Γ ⊂ Γ′.

That is to say, the negation of antimonotonicity is equivalent to a weaker
form of monotonicity. More generaly, given any logic L, its antimono-
tonic counterpart L̂ is such that

Antimonotonization: If Γ �
L̂

ϕ, then Γ �L ϕ or Γ �L ϕ, in which
case there is a Γ∗ ⊂ Γ such that Γ∗ �L ϕ.

Once no addition can be made to the premises that will not spoil the ar-
gument, an antimonotonic logic is akin to minimal logical systems where
only the smallest proof (or the smallest entailment) is valid. In fact, it
is easy to see that antimonotonic systems are in that sense minimal.
Antinomonotonization is, in this sense, minimization. For example, the
antimonotonic counterpart of the classical propositional logic is such
that p � p but p & q � p.

Minimal systems are paraconsistent for whatever a given logic has
as falsity constant (usually denoted as ⊥), the principle of explosion will
fail in all cases that the premises are not solely ⊥. For instance, we can
affirm that

⊥ �
L̂

ϕ,

for any ϕ, but if we take any α and add it to the premises, this makes
the argument invalid:

⊥ ∪ α �
L̂

ϕ.

In other words, minimal systems are such that contradiction fails to
prove anything in any occasion —they are paraconsistent (see Da costa,
1963). There is a deep and interesting connection between antimono-
tonicity, minimality and paraconsistency in the logic of supplement. If
it is an antimonotonic system, it is also minimal and paraconsistent.
Because it is a logic where no addition is innocuous, no addition can col-
lapse the system; an addition that brings a contradiction to the premises
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makes the previous conclusions, as any addition, false. In fact, if Γ � ϕ
then Γ + ψ � ϕ and, in particular, if {ψ} ⊂ Γ3.

In order to show how the concept of antimonotonocity is connected
with paraconsistency, it is interesting to note that the antimonotoniza-
tion can be seen as instance of paraconsitentization. The latter was
introduced to study an unified method for producing paraconsistent
logic out of any given logical system by Edelcio De Souza, Alexandre
Costa-Leite and Diogo Dias (2016). Through category theory and uni-
versal logic, they were able to create a paraconsistentization functor (P).
In the original formulation, this functor is the result of the construc-
tion of a endofunctor on CON, the category of consequence structures,
constituted by consequence structures as objects and homomorphisms
as CON-morphisms. For a precise characterization, the authors take
(X, Cn) to be the usual consequence structure, and a new operation
CnP : ℘(X) −→ ℘(X) such that for all A ⊆ X:

CnP(A) :=
⋃{Cn(A′) : A′ ⊆ A, Cn-consistent}

This operation unable to take x ∈ CnP(A) if and only if there is A′ ⊆ A
Cn-consistent such that x ∈ Cn(A′). In other words, an conclusion
is present in CnP just in case it can be obtained from a smaller set of
consistent premises. For all consequence structures (X, Cn) that satisfies
ex falso quodlibet4, joint consistency5 and the conjunctive property6,
holds as a theorem that (X, CnP) is paraconsistent7.

If there is certain inconsistent set in X for a normal structure (X,
Cn), the paraconsistentized version of it shall not have such inconsistent
set. In similar way, the antimonotonic version of a explosive logic be-
comes not-explosive once a smaller set of premises can be designated in
a given argument. Minimization —and antimonotonization —is a form
of paraconsistentization. For instance, in the antimonotonic version of

3Work on paraconsistency and antimonotonicity was carried out by the authors
with Agnes Caiado and Emanuel Paiva; some results were compiled in Bensusan,
Carneiro et al. (2019).

4Using the structure provided in the original paper, that means a (X, Cn) that for
all A ⊆ X, if x ∈ X such that x, ¬x ∈ Cn(A), then Cn(A) = X.

5A system (X, Cn) satisfies joint consistency iff there is x ∈ X such at {x}, {¬x}
are consistent but {x, ¬x} is Cn-inconsistent.

6A (X,Cn) satisfies the conjunctive property iff for all x, y ∈ X, there is z ∈ X
such that Cn({x, y}) = Cn({z}).

7The authors present the propositional paraclassical logic as a particular applica-
tion of the procedure described.
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propositional logic, the inconsistent set o premises {p, ¬p} can not de-
rive q, for p and q atomics, because the argument would not minimal;
in the paraconsistentized version, the set u ∈ X, such that {u} is Cn-
inconsistent, in a structure (X, Cn), such u would not be present in
the structure (X, CnP), because CnP contains no inconsistent sets8. In
the case of paraconsistentization through antimonotonization we get rid
of more arguments than would be necessary to preserve consistency in
a given consequence structure. As the minimal counterpart of a logic
is paraconsistent, to antimonotonicize a logic is to paraconsistentize it.
The force of minimality seems to be strong enough to avoid explosion
and to stop contradiction from deriving everything.

4 The supplement and its oppositions

The property of monotonicity and related ones can be applied not only
to derivations (the relation of consequence �) but also to its failure (to
Γ � ϕ ). If a failure or absence of derivation is monotonic, every addition
to it is innocuous:

�-Monotonicity: If Γ � ϕ and Γ ⊆ Δ then Δ � ϕ

A logical system which satisfies this property is such that nothing can
be added to ensure a conclusion. It is a system where nothing could
be supplemented (in the sense elaborated above) to a failure to derive.
Clearly, systems that hold such feature would hold that Γ � ϕ only if Γ
is empty (It is a system of axioms only).

Computer scientists have explored issues related to monotonicity,
mostly connected to the management of large datasets. In these con-
texts, it could be the case that if a item does not satisfies the minimum
requirement to pass a test, all its extensions will also going to fail the
same test. In other words, if the item fails a test, every addition is in-
nocuous and will not improve its performance. This is a case where it
is failure itself which is monotonic. Interestingly, Han, Pei & Kamber
coined the term antimonotonicity to describe the monotonicity of fail-
ures (see Han, Pei and Kamber, 2011). Notice that �-monotonic systems
are in fact different from �-antimonotonic ones for in the latter if ∅ � �ϕ,
there could still be an α such that α � ϕ. Conversely, in a �-monotonic

8Proposition 3.6 in the original paper.
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system, if ∅ � ϕ there could be an α such that α � ϕ. A minimal sys-
tem, which is �-antimonotonic, still admits that Γ � ϕ but, if Γ ⊆ Δ,
Δ � ϕ and therefore is not �-monotonic. Conversely, a �-monotonic
system is not minimal for whenever Γ � ϕ - and this is the case only
when Γ is empty - Γ + α � ϕ for any α. We can see that the properties
of �-antimonotonic and �-monotonic are therefore disjunct. Any one of
two could be true of a given logic while the other is false —and they
both could be true or false of one logic.

Further, we can also define �-antimonotonicity, for systems where
additions are not innocuous with respect to failure:

�-Antimonotonicity: If Γ � ϕ and Γ ⊆ Δ then Δ � ϕ

Here failure can always be supplemented for additions bring in con-
clusions. Here the supplement leads to triviality for in such systems,
everything can be derived by adding new premises. From anything
including from contradictions, quodlibet sequitur. Well-behaved logics
are not �-antimonotonic for such systems enable anything to be de-
rived. Classical logic and possibly all Tarskian systems, which are �-
monotonic, are neither �-monotonic nor �-antimonotonic; rather they
are simply �-nonmonotonic. A �-nonmonotonic system could also be
�-nonmonotonic, and the anticlassical logic mentioned above is both.

It is enough for a system to be �-antimonotonic to enable anything
to be derived —to be a trivial logic. It is worth mentioning that the
notions of �-antimonotonicity and �-antimonotonicity combined would
make any logic circular (and trivial, of course): if one adds premises the
derivation is suppressed, but adding premises again would restore the
derivation —in this sense, the two notions are incompatible.

In contrast, if a logic is both �-antimonotonic and �-monotonic, it
is empty. For, if a logic has both these properties, for all Δ such that
Γ ⊂ Δ, if Γ � ϕ, then Δ � �ϕ, and if Γ � ϕ, then Δ � ϕ. In any case,
Δ � ϕ; nothing is ever derived.

We can begin to study the relation between these properties in
terms of a geometry of oppositions (Blanché, 1966; Moretti, 2009). �-
Monotonicity and �-antimonotonicity cannot both be true but both can
be false of a given logic, they are in an opposition by contrariety. Addi-
tionally, �-nonmotonicity and �-non-antimonotonicity cannot be both
false but can be both true of a given logic, they are subcontraries.
These last two properties can be seen as subalterns with respect to
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�-monotonicity and �-antimonotonicity respectively. We can sketch the
following figures:

�-Monotonicity �-Antimonotonicity

�-Non-monotonocity�-Non-antimonotonicity

Contradictories

Contraries

Subcontraries

Su
ba

lt
er

ns
Subalterns

�-Antimonotonicity �monotonicity

�-Non-antimonotonicity�-Non-monotonocity

Contradictories

Contraries

Subcontraries

Su
ba

lt
er

ns
Subalterns

Additionally, we have pointed at some relations between the prop-
erties in the two squares. We have seen that some of these properties
combined result in empty or trivial logics. We conjecture that further
developments could expand the relations around the concepts involving
antimonotonicity towards a geometric figure that could integrate the two
squares above. For now, it is enough to observe that these two squares
give us a wide image of the relations between premises and conclusion
—a image that would be undoubtedly incomplete without the idea of
the logic of supplement.

5 Conclusion

Supplement, as an addition that collapses inferences and challenge iden-
tities, have been proven to provide a strategy of paraconsistentization.
If a logic is antimonotonicized —converted to its minimal version where
nothing can be added to its arguments —it becomes paraconsistent. The
logic of supplement is �-antimonotonic. It is clearly a non-Tarskian logic.
We have shown some interesting features of the �-antimonotonic prop-
erty in comparison to other related notions such as �-nonnomotonicity
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and �-monotonicity. Work on non-Tarskian logics as much as on the
logic of supplement promise to reveal further frontiers of the capacity
to rigorously study controlled inferences. The logic of supplement, in
particular, with its complete rejection of innocuous addition opens the
possibility of understanding how inferences can find their homes far away
from the safe harbour of fixed and unchallenged identities.
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Abstract

Hans Hahn can be considered as the real founder of the Vi-
enna Circle. Nonetheless, there are few studies on his philosophical
work. This paper investigates Hahn’s Philosophy of Mathematics,
with special emphasis on his proposal concerning the foundations
of mathematics. This analysis can cast some light on the influence
Hahn had on the Circle’s debate on these matters, thus contribut-
ing for a broader understanding of the philosophical landscape of
the Vienna Circle.

1 Introduction

This paper aims at highlighting some essential aspects regarding
Hans Hahn’s Philosophy of Mathematics, as well as his relation with
the Vienna Circle.

Hahn is a member of the so called First Vienna Circle, together with
Phillip Frank, Neurath and von Mises1. Not only that, but he is also con-
sidered by Frank as the real founder of the Circle2. Moreover, according
to Menger3, Hahn is responsible for introducing into the Circle the dis-
cussion regarding logic and the foundations of mathematics4. Therefore,
for a comprehensive understanding of these discussions inside the Circle
it is essential to return to Hahn’s thought. Thus, this investigation is a
first step of this broader analysis.

*Dedicated to Edelcio Gonçalves de Souza, my first logic teacher, on his 60th
birthday.

1For an account of the activities of the First Circle, cf. Haller (1991).
2Cf. Stadler (1997), p. 7.
3Cf. Menger (1980).
4He is also responsible for Schlick’s nomination for the position previously occupied

by Mach and Boltzman; for including the reading of Wittgenstein’s Tractatus in the
Circle’s meetings and for advising Gödel’s PhD.
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2 Foundations of mathematics

In this period, as it is known, three main philosophical schools were com-
peting for the role as the foundation of mathematics, namely: logicism,
formalism and intuitionism.

Hahn endorses logicism, which consists, in general terms, in an at-
tempt to reduce mathematics to logic. But only saying that is to forget
that this discussion is part of a broader picture inside the Vienna Circle,
which is the formulation of a scientific conception of the world with an
empiricist character. In the Manifesto written by the Circle, and signed
by Carnap, Hahn and Neurath (1929), the basic tenant of this concep-
tion is presented, that is: there are only two forms of knowledge; one
through experience, and another one through logical transformation.

In this sense, the choice of a foundation for mathematics must suit
these philosophical considerations. Hence, the fundamental question
formulated by Hahn regarding mathematics is: “How is the empiricist
position compatible with the applicability of logic and mathematics to
reality?” (Hahn (1931), p. 32). This is the main requirement that
such foundation should fulfill. For, in developing an empiricist’s theory,
according to Hahn, we have to deal with the fact that logic and math-
ematics seem to provide knowledge about the world and, besides that,
they are absolute and universal.

Thus, his main foundational concern is not to find a formal proof
of the non-existence of contradictions in mathematics - as the formalist
would pursue -, nor to carry out a reduction of mathematics to a primor-
dial intuition, but an explanation of the “compatibility of mathematics
with an empiricist position” (Sigmund (1995b), pp. 236-7). Of course
this is not a new philosophical problem. The novelty rests in Hahn’s
proposal.

The traditional attempt to develop an empiricist account of mathe-
matics have always failed given that, in the final analysis, they under-
stood logic as the study of the most general properties of objects. To
overcome this difficulty, Hahn claims that

“logic does not in any way deal with all objects, and it does not deal with
any objects at all: it only deals with the way we talk about objects (. . . ).
And the certainty and universal validity of a proposition, or better, its
irrefutability, flows precisely from this, that it says nothing about any
objects”. ((Hahn , 1933a), p. 29, emphasis on the original)
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In the same sense, on another paper, he says that

“logic first comes into being when - using a symbolism - people talk
about the world, and in particular, when they use a symbolism whose
signs do not (as might at first be supposed) stand in an isomorphic
one-one relation to what is signified.” (Hahn (1929), p. 40, emphasis
on the original)

Put in other words, logic is “a set of directions for making certain
transformations within the symbolism we employ” (Hahn (1930a), p.
24). And this is what he calls the “tautological character of logic” (Hahn
(1930a), p. 23).

3 Hahn’s novelty

These quotes contain the essential features of Hahn’s philosophy of math-
ematics. First, it is clear that his logicism is different from Russell’s. For,
according to the English philosopher’s views on logic at that time, logic
deals with individuals, properties of individuals, properties of properties
of individuals and so on.

Nonetheless Hahn believes that the formal apparatus developed by
Russell, even requiring reformulations, can be adjusted for a foundation
of mathematics. The fundamental change would be in its philosophical
interpretation. Thus, logic would no longer speak about the world, but
only about the way in which we talk about the world.

Second, there is a strong influence of Wittgenstein. Hahn’s general
conception of logic is openly taken from the Tractatus (1922). Even
though Hahn had opposed to some specific topics of this work - such as
regarding the possibility of a metalanguage -, he takes Wittgenstein’s
position that logic deals only with tautologies.

But here we can see another novelty introduced by Hahn. Although
he accepts the tautological character of logic, he does not take the notion
of tautology in the same strict sense of Wittgenstein, that is, as being
true solely due to its logical form. Hahn, in his turn, uses this concept,
as he himself asserts, in a broader way. But what does this enlargement
of the concept of tautology consists of and why is it necessary?

In Wittgenstein’s notion of logic, it was possible to apprehend formal
properties of the world through an analysis of language. According to
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him, “Logic is not a body of doctrine, but a mirror-image of the world.
Logic is transcendental” (Wittgenstein (1922), 6.13). Therefore, the
logical form is not merely an abstraction, but has also a transcenden-
tal function. It is precisely this transcendental character that must be
abandoned, according to Hahn, for it consists on what he and Neurath
call the metaphysical traps of the Tractatus. Hahn says that “it is a
big mistake to infer the structure of the world from the structure of
language” (Hahn (1930b), p. 8). Here it is clear why the symbolism of
logic cannot be in an isomorphic relation to what is meant. If this was
the case, it would be possible to pass from a logical analysis of language
to a metaphysical analysis of reality.

Thus even if Wittgenstein’s notion of tautology refused Russell’s view
that logic deals with objects’ most abstract properties, it still kept a
transcendental function. And this is the restricted view of tautology
that Hahn needs to enlarge in case he wants to free logic from any
relation with the world. Also, Hahn extend the tautological character
of logic to mathematics, which Wittgenstein never accepted, due to the
non-logicality of some mathematical axioms, such as that the axioms of
choice and infinity.

4 Hahn’s logicism

These considerations consist in the core of Hahn’s answer for the rela-
tion between empiricism and logicism: given that it is only possible to
obtain knowledge from experience, or from logical transformation; that
knowledge of reality is only possible from experience, and that logic
does not have any empirical character, but consists only in tautological
transformation, then mathematics must also consist in these transfor-
mations. And, therefore, if we prove that mathematics is part of logic,
a radical empiricism becomes compatible with a logical foundation of
mathematics.

Hence, the solution for the problem concerning the foundation of
mathematics may be expressed in the following passage:

“I assume, like Russell, that for describing the world (or better: a section
of the world) we have at our disposal a system of predicative functions,
of predicative functions of predicative functions, etc. - though, unlike
Russell, I do not believe that the predicative functions are something
absolutely given, something we can point out in the world. Now the
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description of the world will turn out differently according to the rich-
ness of this system of predicative functions; we therefore make certain
assumptions about its richness (. . . ). Now the whole of mathematics
arises out of the tautological transformation of the requirements we
make about the richness of our system of predicative functions”. (Hahn
(1931), pp. 35-36, emphasis on the original)

This way, the core of the solution is in the word assumptions. Then,
although Hahn agrees with Wittgenstein on the non-logical character
of some axioms, such as the axiom of choice, Hahn considered that ac-
cepting it or not was a pragmatic matter to be taken when constructing
a language. This position also differs essentially from Frege’s and Rus-
sell’s. The debate on the foundations of mathematics turns into a purely
pragmatic question and, to Hahn, the main pragmatic question was the
compatibility between logic and mathematics with empiricism.

For this reason Hahn chooses logicism, since intuitionism, in the
final analysis, rests on a primitive intuition with no connection with
the empirical world and, which, in Hahn’s words, consists in a “mys-
tical” concept5; and formalism, by already pressuposing finite arith-
metic,“cannot be regarded as a theory of the foundations of mathemat-
ics” (Hahn (1931), p. 32).

It is important to note that claiming that logic and mathematics
are tautologies does not mean that they are trivial. It could be strange
to accept that all mathematical and logical demonstrations are nothing
more than tautological transformations, that is, different ways of saying
the same thing. Nonetheless, according to Hahn, this strangeness comes
from forgetting that we are not omniscient beings. “An omniscient sub-
ject”, says Hahn, “needs no logic, and contrary to Plato we can say:
God never does mathematics” (Hahn (1930a), p. 23).

Although Hahn is a great mathematician, he never attempts to
demonstrate the tautological character of the mathematical statements.
Nonetheless, he believes that it is easy to see the tautological character
of finite arithmetic. For instance, the expression “5 + 7 = 12”6 is tau-
tological in the sense that it is obtained merely through manipulations
and transformation of sentences. In this particular case the result can

5Cf. Hahn (1931), p. 32.
6The choice of the example is not random; it is precisely the same example used

by Kant to explain that arithmetic is synthetic a priori.
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be derived from the definition of numbers and operations between them,
and from Peanos’ axioms. However, this reduction is not clear in other
fields of mathematics.

Another important aspect of his solution is that, in principle, it is
not affected by Gödel’s Incompleteness Theorems. Even though Hahn
never writes about this subject, he surely knows Gödel’s results. Sig-
mund (1995a) conjectures that this absence is due to the fact that Hahn
considers Gödel’s results as mathematical theorems and not philosoph-
ical insights. Hahn (1934) seems to reply the possible objection of
incompleteness towards logicism when he asserts that an absolute proof
of consistency is impossible; this kind of proof is always relative to an-
other system. And he claims that this is not a problem for logicism,
since the demand of an absolute knowledge, of an absolute certainty, is
absurd and intangible in any sphere of knowledge. And this is a thesis
that, although in an incipient way, it is already present in 1919, in a
review that Hahn made of a book on Number Theory by Aldred Pring-
shem7. One of the main reasons for choosing this Book was Pringshem’s
intention to drive intuition from any mathematical demonstration. Let
us then analyze briefly Hahn’s position on mathematical intuition.

In Hahn (1933b), Hahn tries to show that intuition is not a source
of geometrical knowledge. This field is particularly chosen because it
is considered as a typical example of knowledge grounded on intuition.
Hahn’s strategy is to present several examples of geometrical objects and
counterintuitive results, making it clear that intuition has been gradually
abandoned even in geometry, which seemed to be its original domain in
mathematics. The examples presented by Hahn were already known
among the mathematicians of his time, and were used, for instance, by
Poincaré8, and were called “pathological examples”. However, they were
used to defend a limitation of intuition, and not to banish it. They were
also referred as monsters because, at first sight, they seem impossible or
paradoxical.

Hahn’s final result of this analysis is that

“Every theorem of geometry appears as the (tautological) implication
P → Q, where the antecedent P is the logical product of the axioms
and the consequent Q the theorem in question. In this way the axioms

7Cf. Hahn (1919).
8Cf. Poincaré (1889).
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no longer appear as self-evident though unprovable truths, but as as-
sumptions from which deductions are made; and the basic concepts no
longer appear as objects incapable of being dissected further by defi-
nition though capable of being grasped immediately by intuition, but
merely as logical variables”. (Hahn (1930a), pp. 26-7)

In even more abstract terms, we can see geometry as a branch of
logic. Since the axioms are relations between variables that, on their
turn, represent basic concepts, geometry is nothing but a specific kind
of relational system. Hence, it belongs to the theory of relations, which
is part of logic.

Curiously, while attempting to explain the limits of intuition, Hahn
manages to create visual representations of these monsters. Not only
that, but also to deal with one of them, he ends up creating what later
came to be called fractal geometry. Some commentators, such as Er-
hard Oeser, claims that Hahn’s reasoning, in the final analysis, has as
result “the possibility of an extension of intuition beyond just the visual
intuition, rather than proving the failure of intuition.” (Oeser (1995),
p. 251). Besides that, Hahn recognizes that the non-intuitive character
of a mathematical construction becomes intuitive when it is clear how
to apply it in the empirical sciences. In the end of this paper, Hahn
reiterates that intuition is not capable of providing a priori knowledge,
but consists merely in ”force of habit rooted in psychological inertia”
(Hahn (1933b), p. 101).

5 Final remarks

To conclude, it is important to state some future lines of investigation.
At the beginning, we saw that Hahn argues that logic only provides
guidelines for the manipulation of symbols, and that this thesis was
partly an objection to the transcendental character of logic defended by
Wittgenstein. It is necessary to investigate more deeply this point, and
to verify, as Uebel suggests9, whether this thesis consists in an antici-
pation of - and, therefore, influences - Carnap’s Principle of Tolerance.
For, in the final analysis, this conventionalism proposed by Hahn does
not favor some set of rules over others. In being so, we can interpret
this thesis as an important step towards tolerance and logical pluralism.

9Cf. Uebel (2005).
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Note that Hahn wrote this in 1929, and that Carnap’s Principle of Tol-
erance was only explicitly stated in his Logical Syntax of Language, fist
published in 1934, when Hahn had already passed away.

Moreover, it is necessary to analyze some technical aspects of the
logicism proposed by Hahn. In the Second Conference on Theory of
Knowledge in the Exact Sciences, in Konigsber, in 1930, having Car-
nap, Heyting and von Neumann defending, respectively, logicism, intu-
itionism and formalism, Hahn made it clear that his position differs in
essential points from those of Frege, Russell and Wittgenstein. There
was a huge discussion regarding some mathematical axioms, such as
the axiom of choice and infinity. Many argued that they consisted in
extra-logical axioms and, since they were used on the reduction of math-
ematics to logic, logicism had failed. Here, Hahn’s position, as well as
his originality, is evident:

“Whether a certain proposition is or is not valid (e.g., the proposi-
tion about the cardinal number of the set of powers or the proposition
about well-ordered sets) depends on the requirements we have made
about the richness of the underlying system of predicative functions, or
if you want to call them that, on the axioms; the question about the
absolute validity of such propositions is completely senseless”. (Hahn
(1931), p. 36, emphasis on the original)

Therefore, the axioms of choice and infinity will be valid according
with the expressive power of the chosen systems. Given that they are
not necessary for the notion of deduction, they can be inserted as mere
hypothesis. Hence, they are not treated as independent axioms, but
used as antecedent in conditional mathematical statements. In this way,
the reduction of mathematics to logic is no longer absolute, but relative
to certain hypothesis, which is in agreement with a certain relativism
presented before. Note that, once again, we have an allusion to a logical
pluralism, given that, according to the choices regarding the richness of
the language, we can formulate different logics.
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Abstract

In this paper, I will shortly present C. S. Peirce’s develop-
ment of his algebra of logic. Starting from his logic of relatives,
since the very beginning Peirce was concerned with quantification.
So, around 1870 already Peirce had devised ways of dealing with
quantification in an algebraic manner, even though he had not yet
devised a specific notation for the quantifiers themselves. Peirce’s
concerns were focused both upon Boole’s conflation of logic and
mathematics and upon De Morgan’s rigid restraint of logic to rela-
tions. Striving to distinguish the specific difference between logic
and mathematics, Peirce came then to a multiple quantification
system from which a very original conception of logic as semiotic
arises.

To my friend Edelcio, parmerense, porém gente boa.

Any account of Charles S. Peirce’s logic is not an easy thing to ac-
complish1. Peirce is nowadays considered as one of the greatest logicians

1For Peirce’s works, I mostly follow the usual international convention among
Peirce’s scholars for abbreviations and quotations, as follows: 1) CP, followed by
volume and paragraph numbers: Collected Papers of Charles Sanders Peirce. Ed.
by: C. Hartshorne and P. Weiss (vols. 1-6); A. Burks (vols. 7-8). Cambridge,
MA: Harvard University Press, 1931-1958. 8 vv.; 2) EP, followed by volume and
page numbers: The Essential Peirce: Selected Philosophical Writings. Ed. by: N.
Houser and C. Kloesel (vol. 1: 1867-1893); “Peirce Edition Project” (vol. 2: 1893-
1913). Bloomington; Indianapolis: Indiana University Press, 1992-1998. 2 vv.; 3) LF,
followed by volume and page numbers: Logic of the Future: Writings on existential
graphs. Edited by Ahti-Veikko Pietarinen. Berlin; Boston: Walter de Gruyter GmbH,
2020.; 4) W, followed by volume and page numbers: Writings of Charles S. Peirce: A
Chronological Edition. Ed. by “Peirce Edition Project”. Bloomington; Indianapolis:
Indiana University Press, 1982-2000. 7 vv.
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of the 19th century, one of the greatest logicians of all times indeed, to-
gether with Aristotle, Ockham, Leibniz, Boole, Frege and anyone else
one might think of. His work is deemed as a source of original ideas
for all who study logic. But it was not like this some forty years ago,
when the mainstream narrative of the development of logic would in-
clude Peirce as a relatively important but nonetheless minor figure, at
best an obscure forerunner of ideas better worked out by other logicians
(Frege, Russell, Tarski, for instance). Peirce would then deserve a min-
imal recognition, and his contributions to logic could be packed up into
some 5 or 6 pages, or no recognition and no pages at all2.

Now everything seems to have changed. Peirce’s importance seems
clear to everyone interested in logic, its philosophy and its history3. But
his ideas are yet not as known as Frege’s or Booles, for instance, and
his works only recently began to be published in more reliable editions4.
This is crucial for a proper evaluation of his contributions. Some intro-
ductory remarks are needed to give the reader a bit more of context.

Peirce began his work on logic very early. He himself tells the tale he
fell in love with logic when he was 12 years old (1851), and grabbed his
older brother Jem’s copy of Richard Whately’s (1787-1863) Elements of
logic; and ever since Peirce defined himself as a logician5. His main works
in the field began to be developed in the late 1860’s and early 1870’s,
when upon George Boole’s algebra of logic and Augustus De Morgan’s
logic of relations Peirce developed his own logic of relatives. In the
1880’s, about four years after and independently from Frege, Peirce in-

2For instance, see W. Kneale and M. Kneale 1962. In J. van Heijenoort 1967,
Peirce is quoted 18 times, but not a single one of his major papers is included. The
idea one gets is he is not totally absent from the history of logic, but is just a noble
forerunner. See Anellis 2012 for a consistent approach to van Heijenoort’s omission
of Peirce.

3Several works have contributed for a more just evaluation of Peirce’s importance
in the history of logic. The bibliography has recently grown up to a point it is
impossible to keep up with everything. Some indications might serve as didactic
introductions from which the reader may find deeper approaches by her/him-self: H.
Putnam 1982; N. Houser 1994; R. Dipert 1995; G. Brady 2000; N. Houser, D. D.
Roberts and J. van Evra (eds.) 1997; I. H. Annelis 2012; C. Terra Rodrigues 2017.

4For more on the difficulties of editing Peirce’s works, see N. Houser 1992 and A.
De Tienne 2014. The most recent account is by M. Keeler 2020. The newest edition
of Peirce’s work on logic up to date is the Peirceana collection to be published in
3 volumes by De Gruyter, edited by Francesco Bellucci and Ahti-Veikko Pietarinen,
the first volume of which collection is referenced in note 1 above).

5See W 1: xviii.
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troduced quantifiers in an algebraic symbolic system as variable binding
operators, having invented the very term “quantifier”, according to J.
�Lukasiewicz6. If only for this, he can be considered together with Frege
as the founder of contemporary symbolic logic. The contemporary stan-
dard logical notation owes indeed much more to Peirce than to Frege,
since not only Russell’s and Whitehead’s Principia Mathematica relies
heavily upon Peirce’s and Schroeder’s works; Tarski’s works also take a
lot from Peirce’s7. Peirce was also the first to apply those connective
to electric circuits, having defined the complete table of sixteen forms
of the binary connectives for the first time in 18808. Around the same
time, Peirce had discovered and proved the functional completeness of
the joint denial and its dual, the alternative denial, from which he also
developed a proto-truth-table-device, decades before the more known
work of L. Wittgenstein and H. M. Sheffer. He also worked on modal
logic and began developing a three-valued system of his own. Dissatis-
fied with his linear notation, Peirce sought to develop a diagrammatic
system of logical graphs, as well as he continued to deepen his approach
to higher order and modal logic in a rich and yet not fully examined
correspondence with E. Schroeder9. In his later years, in his bulky
correspondence with Lady Victoria Welby and William James, Peirce
developed a broader conception of logic not restricted to deductive sym-
bolic logic, but extended to a quasi -formal and general theory of signs,
his semiotics, or semeiotic, as he himself preferred to call just for etymo-
logical reasons. Peircean semeiotic is divided into: speculative grammar,
the analytical and classificatory study of signs; critical logic, the study of
the validity and justification of the forms of reasoning; and methodeutic
or speculative rhetoric, the theory of logical methods and their appli-
cations to all areas of knowledge. This includes perhaps Peirce’s most
famous achievements, such as the distinction between icons, indexes and
symbols as kinds of signs relative to the objects they signify, and the
three basic forms of reasoning, namely, deduction, induction, and a dis-
tinct third kind of reasoning he called abduction or retroduction, which
he claimed characterizes the logic of scientific discovery within the con-

6J. �Lukasiewicz 1934.
7see Tarski 1975; Anellis 1997.
8See Clark 1997.
9See Houser 1991; Brady 2000; Anellis 2004 and 2012; Salatiel 2011 and 2017;

Bellucci and Pietarinen 2016; Hintikka 1997; Legris 2016; Terra Rodrigues 2017.
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text of his pragmatism10. A great part of this production was published
in the form of independent yet related articles during Peirce’s lifetime,
since he was never able to publish a whole book of his own.

Much more could be enlisted as Peircean contributions to logic. But
of course I cannot pretend to present all of them in this single article.
Having to choose, I decided then to concentrate upon Peirce’s logic of
relatives, for it contains what I judge are the basics for understanding
Peirce’s approach to exact logic, as he later in his life began to say,
following Ernst Schroeder 11. As I hope, this is the first of a series of
articles about Peirce’s contributions to the study of logic. I have dealt
before in other places and in a scattered manner with some other topics,
and my treatment of the subjects profited from Edelcio’s knowledge. So,
I also hope he finds this one as interesting and intriguing as I found his
helpful remarks were for me.

From relatives to quantification

The first thing we have to know is that Peirce was the first logician
to develop a consistent and workable expressive notation for Boole’s
calculus, by combining it with the logic of relations De Morgan and he
himself developed.12 So, Peirce’s logic is not simply an algebra. In point
of fact, the main objection Peirce makes to Boole is the latter’s equation
of logical propositions to algebraic equations. For Peirce, logic is not and
cannot be something like a lingua characterica devised in a mathemati-
cal fashion. His conception of language as a calculus13 is an instrumental
one, for one question is to reason, the other is how to understand reason-
ing regardless of the code expressing it. So, the main question becomes
how to clearly distinguish logical from mathematical operations in a sys-
tem of signs, and Boole’s first attempts were very insightful but far from
adequate. First of all, if only because Boole’s calculus is a helpful in-
strument for making deductions. Besides, Boolian algebra is restricted
to quantitative operations between classes, not comprising the whole of
reasoning processes logical implication involves.14 And this leads to a

10See Savan 1988; Santaella 1995; Terra Rodrigues 2011.
11See CP 3.616-618, 1902.
12I have given a deeper treatment of the subject in Terra Rodrigues 2017.
13This point was more notoriously put forward by J. Hintikka 1997. But this is not

the whole picture. See my Terra Rodrigues 2017 p. 462 ff. for some qualification on
this point.

14See W2: 12 seq., 1867.
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second, but not at all less important reason why Peirce’s algebra of logic
is original: he sees no reason why to get entirely rid of the idea of a
proposition as a subject-predicate structure. For Peirce, it is all a mat-
ter of predication, but understood in a novel way, as the following will
make it clear.

So, instead of the sign for mathematical identity = used by Boole,
Peirce uses a sign he himself devised for the primary and fundamental
relation of illation, expressed by ergo: ≺ 15. Peirce uses the sign also to
mean inclusion, so that ≺ functions as a sort of subsumption operator, at
once subsuming implication (→) in propositional logic, subset inclusion
(⊆) in class logic, and logical consequence (�) in a metatheoretical level.
In this manner, all logical relations can be defined solely upon the formal
characters of illation.16 Take, for instance, the following quotation:

“Logic supposes inferences not only to be drawn, but also to
be subjected to criticism; and therefore we not only require
the form P∴C to express an argument, but also a form, Pi

≺ Ci, to express the truth of its leading principle. Here Pi

denotes any one of the class of premises, and Ci the corre-
sponding conclusion. The symbol ≺ is the copula, and sig-
nifies primarily that every state of things in which a propo-
sition of the class Pi is true is a state of things in which the
corresponding propositions of the class Ci are true”17.

By identifying this illative relation as the most basic logic operation,
Peirce understands propositions themselves as basic forms of inference.
For instance, the proposition “A is B” can be interpreted as a rudimen-
tary sort of reasoning itself, namely, “any A is B and any B is A” 18.
Even terms could be interpreted in this way. Boole’s system in fact is
defective for expressing particular and hypothetical propositions.19 This
means that the logic of relations was a natural outcome of an attempt
(Peirce’s) to overcome the expressive difficulties of Boole’s algebraic cal-
culus, and not the converse, as it is usual to assume when one restricts
the study of the history of modern logic to the artificial Peano-Frege-
Russell narrative framework.

15See W 4: 170, 1880.
16For more detail, see Terra Rodrigues 2017.
17W 4: 166, 1880.
18W 2: 60, 1867.
19W2: 421, 1870.
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Now, given his interest in dealing with the composition of classes
and relations, Peirce gives a step De Morgan was unable to give, making
quantifications quite explicit. De Morgan was working with relational
compositions, such as “X is a lover of a servant of Y”, or as in a most
famous example, “Every man is an animal, therefore every head of some
man is the head of some animal”.20 His concern was with inferences
that could not be represented syllogistically, so the problem was how
to quantify the predicate and still maintain the logical nature of the
inference.

Peirce, in his turn, preferred to work with a somewhat different kind
of propositions, such as “lover of a woman” or “lover of a servant of a
woman”, so the relative places of terms could be more easily identified.
In his 1870 article on a proper notation for Boole’s system, Peirce intro-
duced ways of dealing with quantified expressions, but not specific signs
for the quantifiers themselves. He accomplished this by introducing re-
lational expressions, which he called “logical terms”, with gaps for the
insertion of variables, from one to three gaps, or more. These terms are
named according to the number of gaps in the following way:

1. “Absolute terms” are one-gaped terms, like “a ”.
Absolute terms are like single functional terms, possible
expressions of individuals.

2. “Simple relative terms” are also one-gaped terms, but
they do not refer to a single object, rather expressing
dual relations, like “father of ” or “lover of ”.

3. “Conjugative terms” are at least two-gaped terms, and
their distinctive character is that “they regard an object
as medi-um or third between two others, that is, as
conjugative”. For instance, “giver of to ”,
or “buyer of to from ”21.

Later on, Peirce identified simple relative terms and conjugative terms
as “blank forms of propositions” 22, calling the latter predicates as well.

20The example is not exactly what De Morgan writes. De Morgan is of course
aware of the problem, but only in his second article on the syllogism (De Morgan
1850) he deals with such quantified expressions even though without quantifiers; so,
not yet in his 1847 Formal Logic.

21W 2: 365, 1870.
22EP 2: 299, 1907.
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These blank forms are truly schematic patterns for various possible for-
mulas; the blanks are places to introduce individual signs as variables,
so it is possible to refer to different individuals in different possible log-
ical situations. This makes Peirce’s system capable of expressing both
Boole’s class operations and De Morgan’s relational operations. Besides,
already in 1870 it is also almost fully functionally complete.

Completeness comes with the adoption of specific signs for the nowa-
days widely known universal and existential quantifiers, a term �Lukasiewicz
claims was invented by Peirce23 himself. The very first introduction of
those signs is documentedly accomplished by Peirce in 1882, in a letter
to his student O. H. Mitchell.24 In 1883, Peirce used specific signs for
quantifiers in print for the first time, in one of his contributions to the
only whole volume he organized as a professor while at Johns Hopkins.

The first basic feature of Peirce’s linear notation is the use of juxta-
posed subscript letters to the side of the operative sign. These subscripts
are called indexes, that is, deictic signs pointing to specific items within
the universe of discourse, like “a pointing finger”25. Subscripts also
serve to indicate which terms are linked by a certain relation and in
which specific order. For instance, if l denotes the relation of loving,
then lij signifies “i loves j”, while lji signifies “j loves i”, and lii sig-
nifies “i loves him-/her-/it-self” (“i” and “j” are indexes for whatever
individuals are in this love relation). The notation very easily allows for
expressing reflexivity, as in the last example, and convertibility, as in
lij = lji : “j is loved by i”. It also allows for expressing binary or higher
level relations or predicates, as for instance, Peirce’s favourite example
of a relation:

gijk : “i gives j to k” .

Now, Peirce adds to this system two specific signs for quantifying rela-
tions, namely, Greek letters

∏
– for product – and

∑
– for sum, respec-

tively denoting the universal quantifier and the existential quantifier26.
So, for instance, if x denotes whatever property:

1.
∏

i xi = xsxpxcxmxy . . . , etc.
∏

i xi means x is a property of all
the individuals denoted by i. For instance, “All men are mortals”

23J. �Lukasiewicz 1930, p. 147.
24See C. Terra Rodrigues 2017, p. 454 ff.
25W 5: 163, 1885.
26W 5: 178–180, 1885.
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means that Socrates, and Pelé and Chaplin, and me, and you ...
are all mortals.

2.
∑

i xi = xs+xg+xc+xy . . . , etc.
∑

i xi means x is a property of at
least one of the individuals denoted by i. For instance, “Some men
are philosophers” means that Socrates, or Gramsci, or Chaplin,
or you ... are philosophers 27.

The propositions “Everybody loves Chaplin” and “Everyone loves
someone” can then be respectively expressed as follows:

∏
i liC (C as an

index for the individual Chaplin) and
∏

i

∑
j lij (j for jemand, German

for someone). So, the coefficient and the signs for quantifiers are enough
to represent all propositions of traditional logic. In fact, much more.28

Two final remarks are noteworthy. First, in this famous paper from
1885, “On the algebra of logic: A contribution to the philosophy of no-
tation”, Peirce remarks the symbols

∏
and

∑
were chosen to make the

notation as iconic as possible, that is, as representative of the form of
the operations as possible. Indeed, the quantifiers are defined in terms
of potentially infinite conjunctions and disjunctions, with the care not
to straightforwardly identify them with sum and product, since “the in-
dividuals of the universe may be innumerable” 29, but not necessarily
are, as the examples show. Second, although G. Frege has chronologi-
cal precedence over Peirce for the invention of the quantifiers, Peirce’s
system was an independent achievement, being just as Frege’s function-
ally complete for first-order predicate calculus. Notwithstanding, Peirce
wanted to avoid any understanding of his logic as a universal language,
“like that of Peano”30, preferring instead to adopt a meta-theoretical
approach aiming at second-order logic since the very beginning31. This
makes Peirce’s approach akin to a contemporary model-theoretic one,
as Hintikka has suggested,32 but it also puts Peirce in a long-termed
tradition of symbolic thought, according to which logic is not restricted
the study of deductive forms of human reasoning, but extends itself to
inquiring about how thought embodies itself in semiotic processes in the
world.33 These subjects are to be reserved for a further occasion.

27W 5: 180, 1885.
28The power of Peirce’s symbolism can be seen for instance in W 5: 181.
29W 5: 180.
30CP 4.424, c. 1903.
31W 2: 56, 1867; W 5: 185, 1885; see Dipert 1997.
32J. Hintikka 1997.
33See J. Legris 2016; C. Terra Rodrigues 2017, p. 450.
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Abstract

Logical anti-exceptionalism is the view that logic is not special
among the sciences. In particular, anti-exceptionalists claim that
logical theory choice is effected on the same bases as any other the-
ory choice, i.e., by abduction, by weighting pros and cons of rival
views, and by judging which theory scores best on a given set of
parameters. In this paper, we first present the anti-exceptionalists
favourite method for logical theory choice. After spotting on im-
portant features of the method, we discuss how they lead to trouble
when the subject matter of choice is logic itself. The major diffi-
culty we find concerns the role of the logic employed to evaluate
theory choice, or, more specifically, the role of the metalanguage
employed to run the abductive method. When rival logical theo-
ries are being evaluated and compared, we argue, it is difficult not
to beg some important questions; the metalanguage introduces bi-
ases difficult to avoid. These difficulties seem to be inherent to the
method described. We suggest that they put some constraints on
the scope of application of the method of abductive theory choice
in logic and on the kind of disputes the anti-exceptionalist may
plausibly expect to solve with it. We end the paper with some
suggestions for how the anti-exceptionalist may address these is-
sues on this front.

1 Introduction

Logic is typically conceived as being a priori, necessary, and analytic. In
this traditional view, at least prima facie, there is no sense attached to
the idea of choosing a logic, or of revising logic, in the face of any kind
of (conflicting) evidence. Now, despite its venerable credentials, this
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traditional view has been attacked, among others, by Quine, and most
recently, by the so-called anti-exceptionalists. Hjortland characterizes
logical anti-exceptionalism thus:

Logic isn’t special. Its theories are continuous with sci-
ence; its method continuous with scientific method. Logic
isn’t a priori, nor are its truths analytic truths. Logical the-
ories are revisable, and if they are revised, they are revised
on the same grounds as scientific theories. [Hjortland, 2017,
p. 632]

The anti-exceptionalist plan for logical theory revision is that what-
ever it is that counts as our current logical system, it may be replaced by
a more suitable system after all relevant matters are considered, just like
Newtonian physics was replaced by the Special Theory of Relativity, so
to say. This possibility has captured the attention of many philosophers
who are fond of the idea of having a method for logical revision and log-
ical theory choice that works just like theory choice in other sciences1.
As Routley has argued,

Choice of a logical theory is a special case of the choice
of a theory or a system, and choice of these does not differ in
principle from choice of such diverse items as a new house,
a winner (e.g. of a gymnastics or equestrian contest), or of
a recording of a symphony. [Routley, 1980, p. 81]

In this sense, the plan for logical theory choice sounds rather simple:
choose some features that count as important virtues a system of logic
ought to have (explanatory power, capacity of systematization and sim-
plicity, for instance), evaluate how well the competing logical systems
fare according to those virtues, and choose the one that scores best. The
idea seems simple, and employs a method we seem to be familiar with
when choosing a new car or a new umbrella. Far from being a non-sense,
logical revision — from this perspective — is just part of the scientific
enterprise of finding the theory that best squares with the evidence we
currently have; in the case of logic, the concern is with inferences, but
there is nothing special about it, the process is similar to any other
process of theory choice.

1Logical revision and logical theory choice are used almost as synonymous in the
anti- exceptionalist literature. Here, despite our reservations concerning it, we follow
common practice.
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However, in spite of its attractivenes, to assume this analogy between
logical and scientific theories is not exempt from problems. In a nutshell,
in the following paper we shall explore the following concern: given
that the process of theory choice requires inferences to be made, and
that these require that a system of logic is already settled to guide the
inferential steps, the process of logical theory choice seems to presuppose
the use of a logic, and this fact, we shall argue, leads us to beg the
question against those in disagreement over what concerns the most
appropriate logic to be used. As we shall explain, this type of choice
procedure is vulnerable to some kinds of circularity, thus leaving room
for non-rational features2.

The paper proceeds as follows. In section 2 we briefly revise the
anti-exceptionalist method for logical theory choice. In section 3 we
advance two major arguments against this method. As we have already
mentioned, the arguments concern the relation between the logic we use
to evaluate logical choice and the evidence in favour or against distinct
systems. We conclude in section 5 by suggesting that these difficulties
may be overcome if the anti-exceptionalist could better specify the sort
of logical disputes to which the theory choice method being discussed
is applicable. We also indicate lines in which this suggestion may be
carried out.

2 The anti-exceptionalist basic tenets

In this section, we shall provide for a clear assessment of the main fea-
tures of anti-exceptionalism view on logical theory choice. There are
certainly further aspects of anti-exceptionalist views of logic, such as
its modal status and analyticity issues, but we shall not discuss them
here. We shall concentrate on logical theory choice and bring to light
two special features of the process recommended for such.

The first aspect of the versions of anti-exceptionalism that are being
taken into account here, and that must be further specified, is that it is
widely assumed that we use a logic for reasoning in natural language.3

This involves the so-called canonical application of logic, the use of logic
for studying the validity of inferences in natural language, as opposed

2Some of these problems are already known by authors such as Hjortland [2017]
andWoods [2017]. Our purpose in the following paper is to explore how these elements
play a role in the process of decision by abductive means.

3See Priest [2006].
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to a purely mathematical study of logic on the one hand, as well as
to the applications of logic in technology; for instance, in the study of
electric circuits. In other words, it is assumed that natural language
does embody a logic (the so-called logica utens, in medieval terms), and
when one considers logical revision, or choice of a logical system, one is
talking about this logic. As [Woods, 2017, p. 02] puts it, the target cases
of logical revision that concern the typical anti-exceptionalists deal with
“our most general canons of implication”, our “background logic”.

That means that whenever we make inferences about any subject,
in particular about the most appropriate system of logic, we are already
using logic, where the logic in use is the logic of natural language. Al-
though that seems reasonable enough, as we shall see, this fact engenders
difficulties for the anti-exceptionalist. It is not as if anti-exceptionalists
try to pretend that no logic is needed; rather, they try to minimize the
effects of the background logic in the process of logical theory choice
by the rational evaluation of the theoretical virtues of disputant logical
theories. Hence a natural problem is to know whether (or how) this is
possible. As an example of an anti-exceptionalist that clearly deals with
this issue, [Priest, 2016, p. 51] comments on that topic, claiming that
there seems to be no urgent problem in that:

But some logic (and arithmetic) is necessary. Which?
The logic (and arithmetic) we have. If we were trying to
establish logical knowledge from first principles, then any
use of logic would generate a vicious regress. But we are
not: our epistemic situation is intrinsically situated. We are
not tabulae rasae. In a choice situation, we already have a
logic/arithmetic, and we use it to determine the best theory
— even when the theory under choice is logic (or arithmetic)
itself.

[Routley, 1980, p. 94] makes a similar case by arguing that at some
point one will have to rely on natural language and the informal reason-
ing conduced in this language; he also claims that this informal reasoning
must be reproducible in the system one claims to be the best candidate
for correct system. We shall take this to be enough evidence for the
claim that logic is involved in the choice of a logical theory, and that
we “adopt” the logic we have in order to discuss logical theory revision,
provided that this claim makes sense.
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The second aspect of anti-exceptionalism we wish to spot on con-
cerns the methodology of logical theory choice. According to the anti-
exceptionalist tenets, recall, theory choice proceeds just as in any case
of theory choice for any scientific theory. For this one must first choose
some relevant factors on the basis of which the systems will be evalu-
ated, and according to a measure attributing to each system how well
it fares according to each factor. A weighted sum of the values is calcu-
lated and determines which system scores best in the end. The factors
to be taken into account in the evaluation include simplicity, capacity
of systematization, fruitfulness, economy (Ockham’s razor), but are not
limited to these.

Let us briefly present some of the features most praised in a log-
ical system, according to some anti-exceptionalists.4 They seem to be
uncontroversial, but we shall discuss whether this is really the case later:

1 extensive scope: logic is the science with the most extensive
scope; it applies overall. Systems that do satisfy this requirement
score better than those that do not apply in some specific situations
(e.g. not dealing with intensional contexts).

2 conformity to the facts: there may well be logical facts, some
claims that no one can deny that an appropriate logic should ac-
count for (for instance, that a conditional is false when its an-
tecedent is true and its consequent is false). A system of logic not
accounting for the logical facts is ruled out as inadequate.

3 accountability of the data: our linguistic practices may provide
important data that a logical system may have to account for. The
data are somehow ‘soft’, theory laden, and one may sometimes
reject the data if a theory has many other relevant virtues.

4 explanatory power: it is not enough to catalog the valid infer-
ences. A logical theory must explain why such inferences are valid
or invalid, i.e., give an account of validity that illuminates the valid
and invalid consequences.

Now, suppose we have agreed on a list of factors that must be taken
into account in logical theory choice, among which the above factors
may be included. We provide a list of such factors:

4Here we follow the list presented in Routley [1980], but see also Priest [2016].
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c1, c2, c3, . . . cn

Distinct factors may even be evaluated differently. For instance,
simplicity may be less important than conformity to the facts and/or
explanatory power. Consistency may be also less important for some
(e.g. paraconsistent logicians), and not even counted as a relevant factor
that a system of logic must possess. This difference in the importance of
each factor is reflected in the anti-exceptionalist model by assigning each
criterion ci a weight wi, which is taken into account in the evaluation
process. In the end, once every criterion receives a weight and a value
according to a measure m, we have what Priest [2016] calls a rationality
index for theories, a weighted sum of each of the criteria:

ρ(T ) = m(c1)w1 +m(c2)w2 + . . .+m(cn)wn (1)

Although it is clear that while the method operates on a given list
of relevant factors, it is not clear how to motivate the selection of some
factors as having priority over others. For instance, Routley draws a
distinction between heavyweight and lightweight factors, in which the
former includes theoretical factors like scope, conformity to the data
and explanatory power, and the latter includes aesthetic factors like
simplicity and elegance. In a different perspective, Williamson’s anti-
exceptionalist defense of classical logic is based on prioritizing factors
like scope, elegance and simplicity.5

Furthermore, even where authors coincide in choosing some factors
as of greatest importance, there may be disagreement over how to prop-
erly understand them. For instance, consider adequacy to the data and
conformity to the facts. These may or may not be distinct factors, de-
pending on how one further specifies the terms ‘data’ and ‘facts’. Rout-
ley [1980] distinguishes between data and facts, while Priest [2016] does
not. For the sake of argument, in this paper we shall not distinguish
between data and facts. What is relevant for us is that even if there
is agreement that a logical theory must be faithful to the data and/or
facts, it is not clear which facts and/or data are relevant. Routley [1980],
in particular, presents the following list of Facts that must be accounted
for by a system of logic:

Fact 1) Much of our discourse is intensional (while classical logic
is extensional).

5See Williamson [2016].
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Fact 2) Much of philosophical discourse is about the non-existent.

Fact 3) There are inconsistent non-trivial theories and inconsistent
non-trivial situations (while classical logic is explosive in the face
of inconsistency).

Notice: consistency is not welcome here! If we take this list at face
value, classical logic fails to meet the facts. And as we have already
mentioned, the choice of factors to be taken into account in logical choice
is not without problems. As the reader may foresee, the discussion over
which are supposed to be the relevant facts may also bring in a great
deal of trouble, for the very choice of relevant facts may be detrimental
to the rationality of the choice procedure.

In the following, we explore two kinds of problems related to the
anti-exceptionalist choice method: 1) the role of the logic we have as the
base logic for logical theory choice, and 2) the role of the background
logic in the metatheory and the selection of the relevant logical facts.

3 No neutral metalanguage

The anti-exceptionalist recommends that logical theory choice must be
carried through by the logic we use in a given language, i.e., we should
employ the logic we have for running the choice procedure. In this
section, we shall start by arguing that the logic we have may play a
major role in the process of logical choice.

We start with the Kripkean objection that logic is not revisable (see
Berger [2011]). Kripke argued that the very idea of adopting a logic
does not make sense, in light of the fact that adoption of a logic already
presupposes that a logic is given. We shall leave this more skeptical ring
aside, dealing with a challenge for the claim that one can coherently
change logic when a logic is already given. The argument indicates that
the metalanguage we do employ impacts on the possibility of evaluating
evidence against our current system. This makes the role of the logic we
have much more relevant to the evaluation of a dispute than the anti-
exceptionalists are willing to concede. The logic we use in the evaluation
of distinct candidates to revise it impinges on the very result of the
evaluation Berger [2011].

For the Kripkean argument, the desired conclusion is reached by
a kind of thought experiment. We shall call it the perverse inference



308

(PI) argument, and it runs as follows. Suppose someone believes that
from ‘every x is B’ it follows logically that ‘x is not B’ (this is the
perverse inference). We may also assume that the user of PI does not
accept universal instantiation (UI), given that this would make for an
inconsistent set of rules (not impossible, of course, but let us not take it
into account for the moment). Consider an opponent attempting to call
the user of PI to her senses by arguing that this inference is fallacious and
the logic containing it should be dropped. It seems plausible to suppose
that the contender would have to claim something along the following
lines: ‘look, every instance of PI is fallacious, so that this inference
you made is fallacious’ (this is an instance of universal instantiation).
The friend of PI may agree on the relevant data (every instance of PI
is fallacious), but disagree on what results from it and on the need of
revision. Nota bene: there may even be agreement between the two
contenders over the truth of the premise, without that implying that
the user of PI could agree that she needs to change logic; she may
simply not get to the claim that some particular inference of hers is
fallacious when she applies her accepted forms of reasoning. The user of
the rule PI could claim that, by using the rules of inference she accepts,
even if the contender is correct in claiming that every instance of PI
is fallacious, the conclusion the contender wishes her to accept does
not follow. In fact, by using PI we have: ‘Every instance of the rule
PI is fallacious, therefore, this instance is not fallacious’. As a result,
the evidence available for both, friend and foe of PI, may be the same,
but the logic the friend of PI has as her background logic may not
allow her to see that the PI rule must be revised. The patterns of
inference we already use won’t allow us to change our inference rules
in these cases [Berger, 2011, p. 185]. Basically, once a set of inference
rules is assumed, we can’t see the problem with them, because we are
always operating with them to judge the data available. In other words:
the claim that some set of inference rules is fallacious can’t be justified
when one employs that same set of inference rules. The trouble with
those inferences must be seen ‘from the outside’, as it were, given that
someone using that set of inference rules will not think she is inferring
illegitimately.6

6One might object that Kripke’s example is too borderline, since, in many logical
disputes, the disputants agree on some (or perhaps even most) inference rules. How-
ever, even if they disagree over one inference rule relative to a single logical constant,
it is not clear that one disputant will then be able to “adopt” the point of view of the



309

This last remark leads us to our second point, which generalizes
the first one. The Kripkean argument shows that the logic adopted in
the metatheory determines which inferences are accepted and therefore
brings trouble to any process of theory choice. We shall argue further
that this kind of consideration may be expanded to other features of the
choice choice procedure. In particular, the metalanguage and metalogic
we have (or think we have) infiltrates in the process of theory choice not
only by the inferences accepted, but also by interfering on how we judge
simple issues such as the choice of relevant factors for theory evaluation.
Philosophical agendas infiltrate, consciously or unconsciously, in these
discussions. Consider, for instance, the logical facts which a system must
accommodate in order to be appropriate. What is taken to be a logical
fact, or the data, is already logic-laden, as it were, and the facts that
must be taken into account already reveal the preferences of those in
the dispute. Problems of this kind are already known in the philosophy
of science, where the available data needs to be described within the
language of the old theory and therefore are susceptible to all the biases
inflicted by the old theory.

Hence, our claim is that choice of the relevant factors on logical
evaluation is very much purpose driven, and the purposes one has in
mind as the most relevant ones determine the factors that weight more.
Our focus will be on the broad features of a logical system. Given that
logic is involved with many important concepts, it is also open to bias
infiltration in any consideration of theory choice. As [Priest, 2016, p. 39]
puts it:

The central notion of logic is validity, and its behaviour
is the main concern of logical theories. Giving an account
of validity requires giving accounts of other notions, such as
negation and conditionals. Moreover, a decent logical theory
is no mere laundry list of which inferences are valid/invalid,
but also provides an explanation of these facts. An explana-
tion is liable to bring in other concepts, such as truth and

other, so that Kripke’s worries could be overcome. There are many very interesting
cases of logical disputes of this kind, in which the minor difference in the assump-
tion/rejection of the inference rule in dispute carries with it many consequences that
imply the change in a number of philosophical assumptions by each party. Such
is the case of the dispute between paraconsistent logics and classical logic, with its
far-reaching consequences for our theories of truth.
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meaning. A fully-fledged logical theory is therefore an am-
bitious project.

That is, logical theorizing is already involved in basic matters such as
the meaning of the connectives and truth, not only logical consequence.
In fact, logical consequence and the logical vocabulary are often inter-
twined, so that it is not clear how to changing one without altering the
other. When discussing logical theory choice, these features are also
involved. Furthermore, when one assumes, as anti-exceptionalists typi-
cally do, that a logic must be available for us to actually use it in the
process of logical theory choice, these items (connectives and their mean-
ings, a theory of truth or, at least, a view on how truth behaves) are
also assumed as settled in the logic we use. As a result, the logic one
uses impacts on theory choice not only with its notion of logical conse-
quence, but also with its accompanying meaning for the connectives and
(importantly) its available notion of truth.

In order to illustrate how the argument of the impact of the features
of the metalanguage would run in this broader scenario, let us focus on
the informal semantic characterization of logical consequence:

Def[Logical consequence] A follows from B iff in every case in which
formulas in B are true, A is also true.

One obtains a specific notion of logical consequence provided that the
very concept of ‘cases’ is made more precise. What is the range of
the quantifier in the definition of logical consequence? The cases that
one needs to have available are the cases that make the premises and
conclusions of inferences holding or not.7 One evaluates inferences on
the set of cases available.

This issue hinges on the data that must be accounted for by any
candidate system of logic, and on the facts that logic must convey. Recall
Routley [1980] enumerating the ‘facts’ that must be accounted for: Fact
1) Much of our discourse is intensional; Fact 2) Much of philosophical
discourse is about the non-existent; Fact 3) There are inconsistent non-
trivial theories and inconsistent non-trivial situations.

The facts to be accounted for already reveal some features of an in-
tended underlying logic. Let us focus on fact 3. The claim that there

7We use the neutral ‘holding’ instead of true or false to allow cases where there
may be more than just the two truth values.
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are inconsistent non-trivial theories makes it analytic that the under-
lying logic must be paraconsistent. In fact, that encompasses the very
definition of paraconsistency, so that it results analytically that a para-
consistent logic must be adopted if we are to take those facts into ac-
count (see also Michael [2016].). In other words: one cannot even state
‘the facts’ appropriately unless a paraconsistent negation is assumed at
work in the metalanguage. Indeed: consider a classical logician using
her classical connectives and concepts sincerely stating that ‘there are
inconsistent non-trivial theories and inconsistent non-trivial situations’.
That would be self-refuting! On the other hand, a paraconsistent logi-
cian saying that is merely a reflection of the definition of paraconsistency.
So, the logic one uses in the metalanguage affects the very account of
the data and of the facts.

This general kind of difficulty infiltrates from the mere appraisal
of the data available to the proper assessment of the most appropriate
set of rules of inference to deal with those data. That is, in order to
evaluate the available inferences, one must, in this case, already accept
that some of the cases available comprise inconsistent non-trivial theories
or situations (or worlds). That is precisely what the classical logician
will deny. In this case, there is a disagreement over what counts as a
legitimate case, or a legitimate fact that a system of logic must take into
account. This makes for both contenders, paraconsistent and classical
logicians, using incompatible evidence, as seen from their own point of
view.

Other features of the data or the cases that must be taken into ac-
count are similarly logic-laden. The idea that inconsistent cases must be
taken care of in the scope of the quantifier ‘for every case’, allowing for
instance that some propositions are both true and false in some cases
(instantiating thus a truth value glut), or rather other way around, that
every case is consistent (no gluts available), depends on the logic em-
ployed to legislate over the cases. That is, one cannot legitimately claim
that some cases are available to the evaluation of propositions where con-
tradictions obtain, for instance, without beforehand having settled that
propositions are allowed to be evaluated in such situations as legitimate
cases. Logic has priority over the cases by constraining the behavior of
the truth values. It is precisely in this sense that the evidence available
depends on the logic we assume beforehand. As a further example, not
involving the notion of logical consequence, think of paraconsistent set
theories based on naive principles of set formation that lead to sets such
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as Russell’s set; the data available for these theories are simply denied
by the classical logician for their very threat of inconsistency.

When these difficulties are plugged in with the typical claim by the
anti-exceptionalist, things get even more obscure. Consider the claim
that the logic in the metalanguage (the one in which talk about the
object system is performed) and the logic chosen as the correct one (the
one that scores best) should be the same. [Routley, 1980, p. 94] is clear
on this subject:

The choices of system and metasystem — more generally,
system and extrasystematic adjuncts — are by no means en-
tirely independent. It is not satisfactory for example, to
reject classical logic systemically, e.g. as involving mistakes
or illegitimate assumptions (such as the law of excluded mid-
dle), and to use it metasystemically without further ado or
qualification; for to do so would be to proceed by what are
confessedly mistaken paths.

[Priest, 2006, p. 98] puts the same point about the meaning of the
logical operators (which are related to logical consequence, to be sure):

Any intuitionist or dialetheist takes themself to be giving
an account of the correct behaviour of certain logical parti-
cles. Is it to be supposed that their account of this behaviour
is to be given in a way that they take to be incorrect? Clearly
not. The same logic must be used in both “object theory”
and “metatheory”.

However, given that a metatheory is required in order to evaluate
the logical choice, and once it is assumed that it must be the same logic
that is available both in metatheory as in the object language, troubles
arise. If we follow the advice of Routley and Priest, and choose to use in
the metalanguage the account we think is correct, the evidence available
will be relative to the choice of metasystem. For instance, once one has
chosen a paraconsistent negation, it will be available to her that some
facts may be contradictory without triviality. Those facts will not be
available for a classical logician, though. Classical and paraconsistent
logicians, in this setting, are talking past each other. Even if one chooses
the metatheory of a paraconsistent logic able to recover the rationale of
classical logic in consistent situations, the defender of classical logic may
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argue that the full power of classical logic is not present, and that many
of the advantages of classical logic were sacrificed for little gain.

The anti-exceptionalist may avoid this “incommensurability” be-
tween theories by requiring that the disputants must at least share the
set of logical facts. This seems to result as a minimal desiderata for
the kind of dispute able to be settled by anti-exceptionalist means. This
move, of course, significantly shrinks the range of logical disputes treated
by the anti-exceptionalist, and goes on a different direction than that
pursued by authors such as Williamson [2016] and Routley [1980] in or-
der to settle the debate between defenders of paraconsistent logics and
defenders of classical logic.

The further relevant questions to be raised are: what other desiderata
are required to hold for sensible application of the anti-exceptionalist
method for logical theory choice? How to characterize the set of logical
disputes open for treatment by current anti-exceptionalist means? When
rival theories are in dispute for the description of a set of facts, the
elements of the theory are present not only in the object language, but
in the metalanguage as well.

A clear example of this type of problem may be seen in Priest’s
([Priest, 2006, chap.4]) discussion of Boolean negation. Given that Priest
does not agree with Boolean negation, he feels free to use De Morgan
negation in the metalanguage to characterize Boolean negation (in the
object language). This has as a result that one cannot prove, in the
object language, that Boolean negation is explosive (the inferences re-
quired for that are not available in the metalanguage). However, if a
friend of Boolean negation could do the same, and characterize De Mor-
gan negation in her own terms, then, it seems, De Morgan negation
could also lead to results such as ex falso. It seems there is no easy way
out of this kind of question begging scenario, when the supposition of
being using ‘the right logic’ in the metalanguage is in force. Therefore,
a natural problem is to know how to perform a non-biased choice pro-
cedure in these scenarios (assuming the parties in dispute are, indeed,
comparable) 8.

8See the discussion in Arenhart and Melo [2017]. In Anderson et al. [1992] another
example of this kind is introduced by the authors. Given the presence of De Morgan
and Boolean negation in the object-language, if De Morgan negation is adopted in
the metalanguage, then both negations collapse. However, if Boolean negation is
assumed, then the relevantist can claim not to understand the classical reasoner.
This is considered by the authors as illustrative of an incompatibility between the
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Even when a new theory emerges against the accepted theory so
that the adherents start to accept the peaceful coexistence of both, the
metalanguage of the old theory is still present and spreads across all the
disputants in question. This is the case because rival theories are born
out of the background of the old theories. Examples of this kind are
found not only in logic, but also in mathematics or in physics.9

4 Theory-choice loops

Our next argument against the feasibility of the method presented earlier
comes from Woods [2017]. According to Woods, using a specific meta-
language in the evaluation process also engenders loops in the choice of
the most appropriate logic. In a nutshell, the argument runs by creating
loops in the choice of a logical system. Once a system is chosen and
adopted due to its best results in the theory selection method, when
the anti-exceptionalist choice procedure is performed again, now using
the newly adopted system as background logic, it leads one to choose
the rival (old) system back again. Hence when one changes back to the
“old” logic, one sees that the rival system scores better again. And so
on. The logic we use determines the evaluation of the evidence, and in
some particular cases, the logic we use seems always to imply that we
would be better off changing the logic. Woods’s loops illustrate how the
choice of relevant factors seems not to provide enough grounds for the-
ory choice. Some kind of choice underdetermination still arise in face of
the relevant factors conjoined with the adoption of a background logic.

The most prominent example of such loops concerns a discussion
between classical logic and the relevant logic T (for Tennant). The ex-
istence of a loop in logical choice is clearly illustrated here. Assuming
classical logic in the metalanguage, one is able to show that T recaptures
classical logic in the object language level. This opens up the possibility
of obtaining all of classical mathematics that depends on the use of clas-
sical logic. Also, given that proofs in T are more informative, T seems
to be preferable. That is, T scores better than classical logic, because
its proofs are more informative, and one loses nothing of classical math-
ematics. So, a choice of T is advisable. However, once T is assumed

worldviews of the disputants.
9For instance, quantum mechanics needs classical physics to account for the results

of its experiments. Non-classical logic is sometimes said to need classical set theory
as a background.
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as the logic we have and use, it is part of the language in which we
evaluate the evidence for logical choice. So, let us run the method of
logical choice again. When the metalanguage is T , there is no way to
recapture classical logic in T , and T cannot reproduce classical math-
ematics. Although T is more informative on its proofs, the recapture
of classical logic in order to have classical mathematics is much more
important, so that it is preferable to have classical mathematics than
a more informative deduction system. In this sense, from the point of
view of T , classical logic is preferable. And then, the loop is created.

Similar loops seem to arise in cases of relevant logics in general, or in
non-contractive logics, non-transitive logics [Woods, 2017, p. 16]. These
systems recapture classical logic only when classical logic is already avail-
able in the metalanguage. So, from the point of view of classical logic,
these systems should be adopted, given that they have clear advantages
over classical logic when reasoning with so-called versions of naive the-
ory of truth are concerned. However, when those systems are adopted
and become the system we use, they cannot be used to recapture the full
power of classical logic, and then, they fall short of providing for classical
mathematics. Again, the result is that it is preferable to have classical
mathematics than these treatments to the paradoxes of self-reference.
Thus, from the point of view of such sub-structural logics, classical logic
should be adopted as preferable. The loop reappears.

A possible solution is found by following a suggestion of Bueno [2010].
Bueno argues that disagreements about which logic to choose must pro-
ceed by employing a logic, but that this logic need not be the same
logic that is under evaluation. The logic in the metalanguage does not
need to be the same as the logic in the object language. That is, we
may disagree on which logic to choose for a given purpose (inferences
in natural language, say), but may agree on which logic to use when we
conduce disputes about that. For instance, it is possible that we could
agree that we may use classical logic to debate over which logic to use
when dealing with inferences in natural language.

Bueno’s strategy goes in a direction already pointed out in Dummett
[1991]. For Dummett, in order to solve logical disputes the disputants
must agree on a metalanguage that is completely insensible to the object-
language. As described by the author:

What is needed, if the two participants to the discussion
are to achieve an understanding of each other, is a semantic
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theory as insensitive as possible to the logic of the metalan-
guage. Some forms of inference must be agreed to hold in
the metalanguage, or no form of inference can be shown to
be valid or to be invalid in the object-language; but they had
better be ones that both disputants recognise as valid. Fur-
thermore, the admission or rejection in the metalanguage
of the laws in dispute between them ought, if possible, to
make no difference to which laws come out valid and which
invalid in the object-language.(. . . ) If both disputants pro-
pose semantic theories of this kind, there will be some hope
that each can come to understand each other; there is even
possibility that they may find a common basis on which to
conduct a discussion of which of them is right. [Dummett,
1991, p. 55]

Dummett’s concern with an agreement relative to the metalanguage
comes from the fact that he takes it to be a pernicious principle to re-
quire the coherence between the metalanguage and the object-language
of the disputant theories. The reason for this is that when this coherence
is achieved, the defender of a non-classical logic can always resist argu-
ments in favour of a classical law rejected by the non-classical adopter,
namely, by claiming that the argument assumes the validity of the law
in the metalanguage. However, this same counter-attack is often pre-
sented by defenders of classical logic against attempts of showing how
to recover the classical derivations within non-classical theories.

Could then Dummett-Bueno’s strategy work for the purposes of the
anti-exceptionalist? It seems it couldn’t, for many distinct reasons.
First, assuming that the logic we use to discuss adoption of logics may be
distinct from the systems that are under discussion, we beg the question
against the logical monist, who accepts that only one logic must be true.
As a second point, the logical monist may claim that discussions as to
the most reasonable system of logic involve cases of inferences in natural
language, so that if we agree on which logic to use in this discussions,
then we have already settled the issue. Third: by claiming that we must
agree on a metalogic, one could ask: how is this agreement achieved?
By the method of the anti-exceptionalist? But then, the problems we
have just examined reappear, and the suggestion amounts to no real
progress at all. On the other hand, if the metalogic is not chosen by
these standards, then, there are other means by which to choose a logic,
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and the relevance of the anti-exceptionalist method for logical choice is
lost. Both horns of the dilemma seem to lead to trouble. On the one
hand, to require the coherence between object-language and metalan-
guage may not allow us to characterize the dispute as a genuine logical
dispute; on the other hand, dispensing such coherence may lead to the
irrelevance of the anti-exceptionalist method.

These arguments have shown, again, that the metalogic one has in
the background, in other words, the logic we use in conducting logical
theory evaluation, plays a pivotal role much more detrimental to the
choice of a logical system than the anti-exceptionalists seem willing to
concede. In order to settle these issues, the anti-exceptionalist must
adequately characterize — probably by restricting — the set of logical
disputes their method is supposed to apply for.

5 Conclusion: possible routes

In the present contribution we have exhibited a set of problems related
to the anti-exceptionalist strategy of selecting logical theories through
abductive means. We argued that all these obstacles arise from the idea
that logical theory choice has to be performed from a background logic.
For this, we presented different types of ‘intrusions’ that the background
logic may employ during the process of theory choice.

On one hand, if the principle of uniformity between theory and
metatheory is to be demanded as a desiderata for logical theory choice,
then it is not clear how to avoid the biases inflicted by the background
logic. On the other hand, if uniformity is not demanded, then any choice
procedure also seem to result problematic.

All difficulties raised in the previous section point to a limitation
of the anti-exceptionalist method due to the absence of an adequate
characterization of the set of logical disputes intended to be accounted.
Even if the anti-exceptionalist drops the assumption that we employ our
background logic in the choice procedure, she still ought to establish
what kind of logical dispute she takes to be genuine and susceptible to
be settled by the proposed abductive means. Based on what has been
discussed, we introduce bellow a set of desiderata for a possible logical
theory comparison, which an anti-exceptionalist will have to take into
account in order to avoid the difficulties raised here:

Set of logical facts: As discussed in Section 3.1, a minimal
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desiderata for the existence of a genuine logical dispute seems to
be that the disputants share the same set of logical facts. One may
suggest that a difference in the set of logical facts can be handled by
the existence of a translation between the vocabularies of the logics
in dispute. However, even when charitable interpretations of the
principle in dispute are available for one of the disputants, prob-
lems like the ones mentioned in Section 3 appear again, namely the
choice of metatheory may intrude the description of the relevant
factors from the point of view of the disputant.

Coherence between object-language and metalanguage:
The horns of this dilemma were discussed in Section 3.2. However,
it seems that for the pluralist this is no practical requirement. The
pluralist might accept very well that the metalanguage of an old
theory is kept within the disputant logic. The relevant question
then is why would the pluralist want to choose among logics, to be-
gin with? A local pluralist in the sense of Da Costa and Arenhart
[2018] may just want to find the (provisionally) best tool for a spe-
cific job. The anti-exceptionalist ought to seriously take the issue
of how pluralist or monist commitments might infiltrate into the
choice procedure. Anti-exceptionalists like Hjortland [2017] have
defended that the anti-exceptionalist ought to promote a form of
ecumenism. However, it is not clear how ecumenical one can be
when choice of metatheory is in play.10

Agreement on the set of heavyweight epistemic virtues:
Another important desiderata for a genuine logical dispute in the
sense intended by the anti-exceptionalist is that the parties in dis-
pute agree at least on the set of heavyweight epistemic virtues,
i.e. the set of epistemic virtues they take to be most important.
Many anti-exceptionalist arguments talk past each other because
different epistemic virtues are prioritized.

It might very well be the case that the fulfillment of these con-
ditions will significantly reduce the range of application of the anti-
exceptionalist method. It shall remain as a future work the develop-
ment of a precise characterization of the desiderata above. However, to
establish them would clarify the usefulness and the very possibility of co-
herently choosing logics by abductive methods. The anti-exceptionalist

10See Read [2006] on this matter.
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might prefer to work and produce logics that she is sure to be comparable
through abductive means.
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Abstract

Logical realism is the view according to which the truths of
logic describe a reality that is independent of our beliefs, concep-
tual schemes, and linguistic practices. Logical pluralism is the
view according to which there is more than one correct account
of logical consequence. At first sight, these two views seem to be
incompatible. In this paper, we present an approach to logical
pluralism that makes it possible to reconcile different accounts of
logical consequence with a realist view of classical logic.

1 Introduction

Realism about some field or object is usually characterized as the view
according to which the truths about that field or object do not depend on
our beliefs, linguistic practices, and mental processes. So, for example,
if one says she is a realist about mathematics, she is endorsing a view
according to which mathematical objects exist and are as they are in-
dependently of our conceptual schemes, mental processes, and linguistic
practices.

In the 20th century logic as a field of study was divided into different
disciplines, but it is fair to say that the main concept of logic is the
concept of logical consequence, and the central question of logic is what
follows from what. So, when one says she is a logical realist, she is
endorsing a view according to which the laws of logic, like the laws of
nature, are matters of fact, and whether or not a conclusion follows from

1The second author acknowledges support from CNPq (Conselho Nacional de De-
senvolvimento Cient́ıfico e Tecnológico) research grant 311911/2018-8. Parts of sec-
tions 4.1 and 4.2 of this text have been already published in the text On epistemic
and ontological interpretations of intuitionistic and paraconsistent paradigms [13].
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a set of premises does not depend on our conceptual schemes, linguistic
practices, and mental processes.

Frege conceived the laws of logic as laws of being true – which must
be understood rather as laws of preservation of truth – and thought of
logic as an investigation of reality analogous, in some sense, to empirical
sciences.

[Logic] has much the same relation to truth as physics has to
weight or heat. To discover truths is the task of all sciences;
it falls to logic to discern the laws of truth [21, p. 289].

As expected, since he was a realist with respect to mathematics, and
his logicist project was to prove that arithmetic could be grounded on
logic, Frege endorsed a realist view of logic.

If being true is thus independent of being acknowledged by
somebody or other, then the laws of truth are not psycholog-
ical laws: they are boundary stones set in an eternal foun-
dation, which our thought can overflow, but never displace
[20, p. 13].

Logical realism, indeed, provides a traditional and powerful way of
understanding the nature of logic that can be traced back to Aristo-
tle. Although in his Metaphysics, when defending the principle of non-
contradiction (PNC), to him the most certain of all principles, Aristotle
makes clear that it has to do with reality, thought, and language2, there
is a consensus that in its main formulation PNC is a claim about reality:
it cannot be the case that the same property belongs and does not belong
to the same object, at the same time and in the same respect (1005b15).
Thus, Aristotle conceived PNC primarily with an ontological character,
like a general law of nature.

More recent characterizations of logical realism can be found in Rush
[40] and McSweeney [28]. For Rush, logical realism is the claim that
logic, like mathematics, is concerned with the rules of a world that exists
independently of us:

both logic and mathematics might be understood as applica-
ble to a world (either the physical world or abstract world)
independent of our human thought processes [40, p. 13].

2See [2], respectively, 1005b15, 1005b25, 1011b15.
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McSweeney offers a similar but more concise characterization of logical
realism as

the view that there is mind-and-language independent logical
structure in the world [28, p. 1].

So, once it is accepted that it is reality, the world, that makes a true
proposition true, the truths of logic do not depend on us, but rather
depend on the ‘logical structure of the world’. This is how we understand
logical realism.

2 Logic and logical realism

Being a realist about logic does not necessarily require the endorsement
of a particular logic. But it is clear that the principle of excluded middle,

(PEM) � A ∨ ¬A
which is valid in classical logic, fits well with the realist claim that given
a proposition A, either A is true or ¬A is true, independently of us and
what we know, or could possibly know, about A.3 It is precisely the
rejection of a realist view of mathematics that was the motivation of
Brouwer’s intuitionism and the rejection of excluded middle as a univer-
sally valid principle [see, e.g. 8].

The principle of explosion, according to which anything follows from
a pair of contradictory propositions,

(EXP) A,¬A � B,

is also classically valid. Note that EXP is not an inference that is really
applied in reasoning. Nobody concludes an arbitrary proposition B from
a pair of contradictory propositions A and ¬A precisely because contra-
dictory propositions, in both classical and intuitionistic logic, cannot be

3Excluded middle is not the same as bivalence (BIV). The latter is a metatheoret-
ical principle that says that a proposition A is either true or false, or more precisely,
that the semantics of a given formal system has two semantic values, which in the case
of classical logic are the true and the false. Since both hold in classical logic, saying
that either A is true or A is false and saying that either A is true or ¬A is true, end up
being tantamount in the classical framework. However, PEM and BIV are not equiva-
lent: it may be that PEM holds in a many-valued semantics (e.g. the logic of paradox
[34]), or that PEM does not hold in a two-valued semantics (e.g. non-deterministic
valuation semantics for intuitionistic logic [25]).
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simultaneously true. EXP, in a certain sense, compared to PNC, is just
a more effective way of saying that contradictions cannot be simultane-
ously true – as Aristotle (correctly) claimed some time ago. Let us call
classical a view of truth that endorses excluded middle and rejects true
contradictions, and so is in line with classical logic.

Dialetheism is the view according to which some contradictions are
true. A dialetheia is defined as a proposition A such that both A and its
negation ¬A are true, and dialetheism claims that there are dialetheias
[e.g. 36, 37]. Together with a realist conception of logic, dialetheism
requires that reality is in some sense contradictory, or that there are
contradictory things in the world. A good reason for accepting EXP rests
on the view according to which reality is not contradictory in any sense
whatsoever – a view that is a basic methodological tenet for scientific
investigations, philosophy, and the ordinary use of language. But once
one accepts that there are, or there might be, real contradictions, as
dialetheists do, of course one must reject EXP.4

In a two-valued semantics, the principles of explosion and excluded
middle characterize classical negation. The latter is defined by two con-
ditions: a pair of propositions A and ¬A cannot be simultaneously true,
nor simultaneously false. So, one and at most one between A and ¬A
holds. Logics in which excluded middle is not valid, like intuitionis-
tic logic, are called paracomplete, and logics that reject the validity of
explosion are called paraconsistent.

A realist view of classical logic is suitable in justifying both PEM and
EXP, and rejecting them led to the development of some non-classical
logics. But one should not draw the conclusion that a non-classical logic
is obliged to reject a realist view on logic. A dialetheist can stick to
the claim that logic is grounded on the logical structure of the world,
that in this case allows some contradictions. In the case of intuitionistic
logic, the point is a more subtle one. Brouwer rejects a realist view of
mathematics and claims that logic is just a description, in the language
of mathematics, of patterns of mental constructions [see 8, Sect. 1],
which arguably makes Brouwer’s intuitionism a form of idealism. But

4The expression ‘real contradictions’ of course has to be understood as a façon
de parler, since strictly speaking only sentences, propositions, formulas etc. can be
contradictory. But our point is that if a proposition A ∧ ¬A is true, there must be
something in reality that makes it true: a contradictory object, fact, truthmaker,
property, whatever. This is indeed how dialetheism is usually understood [see e.g.
13, 17, 18, 27, 30].
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once the thesis that mathematical objects are constructed by the human
mind is accepted, mathematics turns out to be a sector of objects that
has to be described by a logic that cannot be classical logic.

3 Logical pluralism

Logical pluralism is the view according to which there is more than one
correct account of logical consequence, or more than one correct logic.
Logical monism, on the other hand, is the claim that there is only one
correct logic. The fact that there are several different accounts of logical
consequence as formal systems with a syntax and/or a semantics math-
ematically defined is not enough to qualify as logical pluralism. In the
philosophically interesting sense, logical pluralism requires that different
logics are, indeed, applied to analyze and describe real-life contexts of
reasoning.

At first sight, logical pluralism and logical realism may seem two
irreconcilable positions. Once it is accepted that logic is a theory about
reality, how can there be different but correct theories about reality? The
answer is simply that there cannot be. Indeed, if logical consequence
is defined as preservation of truth, if truth depends on reality in the
sense that reality determines unequivocally the truth or falsity of a given
proposition, and given that there is only one reality, it is hard to see
how a logical realist could be a pluralist without saying that there are
different notions of truth. In our view, it is not an available alternative to
endorse a form of alethic relativism and to claim that different accounts
of logical consequence are truth-preserving. We think that the only sense
in which a truth-predicate could be regarded as a two-place predicate,
like ‘x is true according to y ’, would be ‘x is true according to reality’,
which is in fact a one-place predicate.5

Indeed, as already mentioned above, for a full-blooded intuitionist,
classical logic and constructive mathematics are incompatible because
mathematical objects cannot be described by classical logic. So, such an
intuitionist would be a monist about logic. Priest, as expected, defends
a monist view according to which the paraconsistent logic LP (the logic
of paradox) is the unique correct logic [see, e.g. 34, 35]. Another view
that rejects PEM but is not restricted to the domain of mathematics
is Dummett’s anti-realism [see 1, Sect. 6]. Nevertheless, it should be

5On alethic relativism, see [3, Sect. 4.3].
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clear that when a dialetheist like Priest endorses a paraconsistent logic,
or an anti-realist defends some paracomplete logic, this is not pluralism
about logic. Rather, the anti-realist and the dialetheist, as well as a
staunch defender of classical logic like Quine, are logical rivals, each one
defending a particular view about ‘the right logic’.

3.1 Two views on pluralism in logic

3.1.1 Carnap’s pluralism

One of the precursors of logical pluralism is Carnap. In an often-quoted
passage, we read:

In logic, there are no morals. Everyone is at liberty to build
his own logic, i.e. his own form of language, as he wishes.
All that is required of him is that, if he wishes to discuss it,
he must state his methods clearly, and give syntactical rules
instead of philosophical arguments. [10, p. 52]

Carnap’s pluralism results from language variance: different linguistic
frameworks give rise to different logics. It is not our purpose here to an-
alyze in detail Carnap’s pluralism. But in our view, the idea of pluralism
based only on language variance without further considerations about
why and how the languages at stake differ from each other yields an
uninteresting form of pluralism. Note, moreover, that pluralism based
only on language variance is not capable of replying to a criticism like
the one presented by Quine [38, Chap. 6] according to which the defend-
ers of two different logics whose connectives have different meanings are
not, in fact, in disagreement because they are talking about different
things.6

As has been mentioned above, there is a distinction between logics
that can be, and logics that cannot be applied to formalize real-life rea-
soning and explain meanings. Following Copeland [14], let us call them,
respectively, applied logics and pure logics. Clearly, different logics that
are not applied logics provide trivial examples of pluralism. Carnap’s
passage quoted above seems to be in line with the fact that nowadays
we find in the literature plenty of pure logics, but even these logics do
not come without conceptual motivation. However, as interesting as

6On Quine’s views on non-classical logics, see Sect. 5 footnote 10.
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the study of these pure logics may be, it is clear that they do not pro-
vide philosophically relevant examples of logical pluralism. In fact, the
derogatory tone in which Carnap refers to philosophical arguments is
closely connected to the idea of the ‘rejection of metaphysics’ that per-
vaded philosophy in the first half of the 20th century. But what justifies
the rejection of explosion in Priest’s dialetheism and in Belnap-Dunn
four-valued logic (cf. Sect. 4.2.2 below), as well as the invalidity of
excluded middle in intuitionistic logic, are philosophical arguments.

It is also worth noting that, as a result of Carnap’s pluralism, logic
loses at least two of its main features, namely, universality and norma-
tivity. It may not be a problem if one is mainly interested, as Carnap
was, in eliminating any ‘metaphysical ingredient’ from philosophical dis-
cussion, which in the end may be tantamount to eliminating philosophy
itself. However, we do think that a logic has to be normative and univer-
sal to be legitimately called logic. Besides, but no less important, that
‘metaphysical ingredient’, that should be rather called a conceptual in-
gredient, is not only unavoidable in philosophy, logic, and sciences, but
is a necessary condition for understanding as best as possible what is
going on in philosophy, logic, and sciences.

With respect to the requirement of normativity, we cannot see what
the point is in building a language with a bunch of arbitrary syntactical
rules without a conceptual motivation. That is, without an intended
interpretation, a context to be formalized, or some formal and deductive
properties to be investigated. The logician is just not free to do whatever
she wants. Moreover, if the proposal is to express the deductive behavior
of some context of reasoning, obviously there will be constraints, given
by the very context of reasoning that is the object of analysis. Again,
the anti-realist, as well as the dialetheist, cannot propose the logic she
wants, and neither the classical logician, who is constrained by a classical
notion of truth. These constraints have a normative character, for in
each case it is established which inferences are sound. And if the point
is not preservation of truth, such as the approaches to paraconsistency
in terms of preservation of evidence and information [7, 12, 30, 39] that
will be seen in Sect. 4.2 below, the invalidity of disjunctive syllogism,
for example, has a normative character because it is not sound from the
viewpoint of preservation of evidence/information.
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3.1.2 Beal and Restall’s pluralism

A more substantial and sustained approach to pluralism is proposed by
Beall and Restall [4, 5, 6] (hereafter, B&R). Unlike Carnap’s pluralism,
B&R’s pluralism does not depend on language but relies on a sort of
vagueness of the standard model-theoretic notion of logical consequence
defined in terms of cases: a conclusion A follows from a set of premises
Γ if and only if any case in which each premise in Γ is true is also a case
in which A is true. B&R argues that a case can be specified in different
ways, and these different ways of specifying what a case is yield different
logics. They propose the generalized Tarski thesis:

(GTT) An argument is validx if and only if, in every casex in
which the premises are true, so is the conclusion [6, p. 29].

Pluralism results from different specifications of x. If x are Tarskian
models, we get standard classical validity. By means of other specifica-
tions of x, we get intuitionistic logic when cases are stages of intuition-
istic Kripke models [6, p. 62], and a paraconsistent and paracomplete
relevant logic when cases are Barwise and Perry’s situations [6, p. 49].
Note, however, that although different kinds of cases are allowed, logical
consequence is still defined in terms of truth-preservation. In our view,
this is the main problem with B&R’s approach because it is hard to see
how they can stick to different kinds of cases preserving truth without
falling into alethic relativism.7

4 Two epistemic approaches

In this section, we will see two epistemic approaches to paraconsistency
and paracompleteness that may be reconciled with the ontological, and
realist, character of classical logic.

4.1 Intuitionistic logic

From the viewpoint of a convinced intuitionist, classical and intuition-
istic logic cannot be reconciled because the former is just wrong. But
a compromised position that is perfectly compatible with a realist con-
ception of mathematical objects is already found in Heyting [22], where
we read that

7Beall and Restall pluralism will be discussed in more detail in [9].
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Here, then, is an important result of the intuitionistic cri-
tique: The idea of an existence of mathematical entities out-
side our minds must not enter into the proofs. I believe that
even the realists, while continuing to believe in the transcen-
dent existence of mathematical entities, must recognize the
importance of the question of knowing how mathematics can
be built up without the use of this idea [22, p. 306].

Heyting remarks open the possibility of a peaceful coexistence between
classical and constructive mathematics, and so between classical and
intuitionistic logic – something that was not feasible in the end of 1930s,
given the animosity between Brouwer and Hilbert.8

The central point that allows the reconciliation of classical and intu-
itionistic logic is to understand that the latter is not expressing preser-
vation of truth, but rather preservation of availability of a constructive
proof. Thus, a realist view of mathematical objects does not exclude an
interest in intuitionistic logic as a study of such objects from the perspec-
tive of maybe more informative constructive proofs. So, the claim that in
a given circumstance both A and ¬A do not hold means only that there
is no constructive proof of them, independently of the question whether
any of them has been proved true by non-constructive (classical) means.

A result of this reading of classical and intuitionistic logic as ‘talking
about different things’ is that the meanings of classical and intuitionistic
connectives are not the same. Indeed, excluded middle holds in classical
logic because it is always the case that at least one between A and ¬A
is true, and does not hold in intuitionistic logic because it may be that
there is no constructive proof of A nor of ¬A, no matter if A or ¬A has
been proved true.

This idea of a peaceful coexistence between classical and intuition-
istic logic that depends on the meanings of the connectives has been
proposed and worked out by Prawitz [33]:

the classical as well as the intuitionistic codification of de-
ductive practice is fully justified on the basis of different
meanings attached to the involved expressions (...)

When the classical and intuitionistic codifications attach dif-

8On the Grundlagenstreit, the conflict between Brouwer and Hilbert that culmi-
nated in the exclusion of Brouwer from the board of Mathematische Annalen in 1928,
see [13, footnote 5] and [41].
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ferent meanings to a constant, we need to use different sym-
bols (...)

The classical and intuitionistic constants can then have a
peaceful coexistence in a language that contains both. [33,
p. 28]

Prawitz’ ecumenical system that combines classical and intuitionistic
connectives has been further investigated in [32] and [31].

The idea that intuitionistic logic does not talk about truth can be
traced back to Kolmogorov [24], who proposed a reading of intuitionistic
logic in terms of solutions of problems instead of truth, and Heyting [22,
p. 307], where we read that an assertion of A means in classical logic
that A is true, while in intuitionistic logic it means that it is known
how to prove A. Accordingly, a formula A ∨ ¬A means different things
in classical and intuitionistic logic, and this is not exactly because the
connectives ¬ and ∨ have different meanings; on the contrary, classical
and intuitionistic connectives have different meanings because classical
and intuitionistic assertions of A mean different things. So, classically,
PEM means that either A or ¬A is true, while intuitionistically it means
that either it is known how to prove A or how to prove ¬A, or as we prefer
to put it, either a proof of A or a proof of ¬A is (in some sense) available.
And of course when we are talking about availability of proof instead
of truth, PEM is not universally valid. So, there is nothing wrong in
accepting the universal validity of PEM in the classical reading on the
one hand, and still endorse the “intuitionistic critique” mentioned by
Heyting (page 329 above) on the other hand. Indeed, if intuitionistic
logic is understood as not being concerned with preservation of truth
but rather with preservation of availability of constructive proofs, there
is no conflict with classical logic, as is the point of Prawitz’ ecumenical
system [32, 33].

4.2 On epistemic contradictions

In his seminal paper on paraconsistency, Jaśkowski [23] presented three
conditions that a paraconsistent logic should satisfy: (i) it must be non-
explosive in the presence of a contradiction; (ii) it should be rich enough
to enable practical inference; (iii) it should have an intuitive justification.
Condition (i) is just what defines a paraconsistent logic. Condition (ii)
is required if a logic is designed to give an account of real-life contexts
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of reasoning, and condition (iii), in our view, is a consequence of (ii)
because a plausible and intuitive justification is a necessary condition
for (ii). In fact, conditions (ii) and (iii) are closely connected with a
central question for the philosophy of paraconsistency: how to explain,
in a plausible and intuitive manner, the nature of contradictions accepted
by paraconsistent logics? We do not think that dialetheism provides a
convincing answer to this question.

In order to accept contradictions without endorsing dialetheism we
need a non-explosive negation not committed to the truth of a pair of
propositions A and ¬A. Such a negation can only occur in a context
where what is at stake is a property weaker than truth, in the sense
that a proposition may enjoy that property without being true. So
understood, paraconsistency can be combined with a realist view of truth
that endorses excluded middle and rejects true contradictions.

4.2.1 Inconsistency in sciences

The fact that contradictions are unavoidable in empirical sciences is
pointed out by Nickles [29], who sees empirical sciences as “non-monotonic
enterprises in which well justified results are routinely overturned or se-
riously qualified by later results”, and ‘non-monotonic’ implies ‘tempo-
rally inconsistent’ [29, p. 2]. These provisional contradictions are not
dialetheias. They may be a result of limitations of our cognitive ap-
paratus, failure of measuring instruments and/or interactions of these
instruments with phenomena, provisional stages in the development of
theories, or even simple mistakes that in principle could be corrected
later on. In all these cases, contradictions do not belong to reality but,
rather, are related to thought and to the process of the acquisition of
knowledge. We call them epistemic contradictions.

The notion of non-conclusive evidence provides an account of contra-
dictions without commitment to their truth that explains contradictions
in empirical sciences. The notion of evidence for the truth (resp. falsity)
of a proposition A is explained in [12, Sect. 2] as reasons for believing in
or accepting A as true (resp. false). Such reasons may be non-conclusive,
and in their turn can be explained as justifications that might be wrong.9

In [12] two paraconsistent logics have been proposed and studied.
BLE (the basic logic of evidence), which is Nelson’s logic N4 interpreted
in terms of preservation of evidence, and LETJ (the logic of evidence and

9We return to the notion of evidence in the end of Sect. 4.2.2 below.
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truth), a logic of formal inconsistency and undeterminedness [cf. 11, 26]
that extends BLE/N4. LETJ is a paracomplete and paraconsistent logic
equipped with a classicality operator ◦ that recovers classical negation
by means of the following inference rules:

◦A A ¬A
B

EXP ◦ ◦A
A ∨ ¬A PEM◦

The unary operator ◦ divides the propositions of LETJ into two groups:
one subjected to BLE, another subjected to classical logic [12, Sect. 4].
Analogously to Prawitz’ ecumenical system that combines classical and
intuitionistic logics (cf. Sect. 4.1 above), LETJ combines classical logic
and the paraconsistent logic BLE in the same formal system. But while
in Prawitz’ system different symbols are used for classical and intuition-
istic connectives, in LETJ the connective ◦ works like a context switch
that changes the meanings of the connectives according to the context.

The logic BLE preserves evidence instead of truth. The underlying
idea is that a proposition A follows from a set Γ just in case there
cannot be a circumstance in which there is evidence available for all the
propositions in Γ but no evidence available for A. So, not only explosion,
but several classically valid inferences fail. The following inferences are
not valid in BLE because they do not preserve evidence:

1. B � A ∨ ¬A,

2. A,¬A � B,

3. ¬A,A ∨B � B,

4. A→ B,A→ ¬B � ¬A,

5. A→ B,¬B � ¬A.
The counterexamples are straightforward. For 1, a circumstance without
any evidence for both A and ¬A; for 2 and 3, conflicting evidence for
both A and ¬A but no evidence for B. The implication of BLE, like
classical and intuitionistic implication, is not relevant: it validates the
principle known as ex quodlibet verum,

(EQV) � A→ (B → A),

tantamount in natural deduction systems to the vacuous discharge of an
assumption and in sequent calculus to the structural rule of weakening.
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So, given B, for any A, A→ B follows. A circumstance in which there is
conflicting evidence for B and ¬B but no evidence for ¬A shows that 4
and 5 are not valid in BLE. Note, however, that the following inferences
are all valid in LETJ :

6. ◦A,B � A ∨ ¬A,

7. ◦A,A,¬A � B,

8. ◦A,¬A,A ∨B � B,

9. ◦A, ◦B,A→ B,A→ ¬B � ¬A,

10. ◦A, ◦B,A→ B,¬B � ¬A.
Disjunctive syllogism and explosion, for example, are valid from the
viewpoint of preservation of truth (cf. 7 and 8), but invalid from the
viewpoint of preservation of evidence (cf. 2 and 3), and so on.

4.2.2 Paraconsistency and information

Databases, in particular non-structured ones like the web, are prone
to having contradictions. Inconsistent databases were the motivation
of Belnap [7] when he proposed a four-valued semantics for the logic
of first-degree entailment (FDE ), a paracomplete and paraconsistent
propositional logic that is the implication-free fragment of BLE/N4.

Belnap thinks of FDE as a local logic, that is, a logic to be used by a
computer that receives information from different sources which may not
be a hundred percent reliable. A logic such as this does not substitute
classical logic because they are going to be used in different contexts.
The information received by the computer can be incomplete or con-
tradictory, and four scenarios are possible, represented by the semantic
values True, False, Neither, and Both. These values are explained with
the notion of a computer ‘being told’, so they mean, respectively, ‘just
told true’, ‘just told false’, ‘told neither true nor false’, and ‘told both
true and false’. Since a computer may ‘be told’ that a proposition A is
true even if A is not true, and vice-versa, the propositions that receive
one of these four values are true or false independently of these values.
Belnap’s proposal is clearly pluralist, since different logics are used in
different contexts, its underlying idea is that classical logic and FDE
are talking about different things – namely, truth and information – and
it explains paraconsistency by means of a property weaker than truth,
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which may be characterized as information that is not a hundred percent
reliable.

About 30 years after Belnap’s paper, Dunn explained a basic notion
of information as what remains when we subtract “justification, truth,
belief, and any other ingredients such as reliability that relate to justi-
fication” from Plato’s analysis of knowledge as justified true belief [19,
p. 589]. Accordingly, information is something expressible by means
of a proposition, is objective, does not imply belief, and does not need
to be true. In [39, Sect. 2.2.1], the notion of non-conclusive evidence
is explained as information in the sense of Dunn [19] to which a non-
conclusive justification has been added.

5 Logical realism and logical pluralism

If one sticks to the claim that logic is a matter of preservation of truth
and keeps the generally uncontroversial idea that a true proposition is
made true by reality, it is hard to see how one could be a pluralist about
logic. What makes logical realism and logical pluralism two incompatible
views is the idea that any account of logical consequence has to be
defined in terms of preservation of truth.

The interpretation of paraconsistent logic and intuitionistic logic in
terms of availability, respectively, of evidence/information and construc-
tive proof, sketched in the sections 4.1 and 4.2 above, shows that these
logics can be justified with no need of rejecting a classical view of truth,
and so they can be combined with classical consequence in terms of
preservation of truth. And the central idea that makes it possible is
to understand paraconsistent, intuitionistic and classical logic as talk-
ing about different things.10 The more effective argument in defense of
this approach to pluralism is the fact that the readings of intuitionistic
and paraconsistent logics sketched in the Sect. 4.1 and 4.2 above are
successful in describing correct reasoning in the respective contexts.

Logics of formal inconsistency (LFI s) have a character intrinsically
pluralist because, from the very beginning, since the seminal writings of
da Costa [15, 16], the idea was to establish a distinction between what

10That non-classical logics and classical logic talk about different things is the point
of Quine’s slogan ‘change of logic, change of subject’ [38]. But the moral Quine wants
to draw is that a non-classical logic is simply not logic. We have of course a completely
different view. What was a problem for Quine for us is what makes possible a pluralist
view of logic.
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da Costa called well-behaved and not well-behaved propositions.11 The
logic LETJ is an LFI, and the claim that how a property weaker than
truth can be transmitted from premises to conclusion is worth study-
ing and deserves to be called logic is the point of the logics presented
and studied in [12, 39]. The invalidity of EXP in LETJ is explained
by means of the notion of evidence, which can be non-conclusive and
even wrong. So, there may be contradictory evidence for a proposition
A. Thus, the motivation for paraconsistency is not some contradictory
character of reality. Rather, paraconsistency has to do with how to rea-
son correctly in contexts where contradictory information or conflicting
evidence occur.

In [13] it is argued that Brouwer’s idealism provides an ontological
interpretation of intuitionistic logic, while dialetheism is an ontological
interpretation of paraconsistency. We cannot see how these positions
could be combined with a pluralist view of logic. On the other hand,
the interpretations of intuitionistic logic in terms of preservation of con-
structive proof and of paraconsistent logic in terms of preservation of
evidence are called epistemic in [13] because both have an epistemic in-
gredient, a conclusive justification in the case of a constructive proof,
and a (maybe) non-conclusive justification, in the case of evidence. The
epistemic interpretation makes a pluralist view possible in which intu-
itionistic, paraconsistent, and classical logic do not conflict with each
other. Note, besides, that these readings of intuitionistic, classical and
paraconsistent logic keep the universal character of logic because, in each
case, they can be understood as universal accounts of constructibility,
truth and evidence. They also keep the normative character of logic
because, again, in each case, they say which inferences are and are not
allowed. In this way, intuitionistic and paraconsistent logics achieve a
‘peaceful coexistence’ with a classical notion of truth, and therefore with
classical logic. This is how logical pluralism and logical realism can be
combined without conflict.
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Abstract

It is argued in this paper that modal rationalism can be recon-
ciled with logical pluralism together with the metaphysical foun-
dation of logic. Namely, ideal conceivability is extensionally more
akin to metaphysical modality than to logical modality, given that
the space of conceivable worlds (scenarios) is (like the space of
metaphysically possible worlds) narrower than the space of log-
ically possible worlds, which opens room for the claim that the
space of conceivable scenarios and the space of metaphysically
possible worlds are coextensive. These considerations corroborate
the claim that even if it turns out that modal monism (a view
that logical modality and metaphysical modality are extensionally
equivalent) is false, modal rationalism might still be true. At the
end of this paper, I address pluralism in geometry (according to
which there is more than one correct system of geometry) to show
that modal rationalism is compatible with that view either.

Introduction

In contemporary modal epistemology, a lot of attention is paid to the
question of what makes a good justification of our beliefs about meta-
physical modality. According to modal rationalism, which will be as-
sessed in this paper, conceivability (properly understood) is a good evi-
dence that some states of affairs are metaphysically possible. In David
Chalmers’s settings (see Chalmers 1996; 1999; 2002, 2010 for more de-
tails), ideal positive primary conceivability entails primary (or counter-
actual) possibility, which, together with established nonmodal facts, en-
tails metaphysical (or counterfactual) possibility.1 Here, “ideal positive

1The distinction between counteractual (or primary) and counterfactual (or sec-
ondary) possibility is typically drawn in the two-dimensional semantic framework
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primary conceivability” refers to envisaging a pertinent scenario (or a
situation) that verifies a proposition one is conceiving of,2 and which is
undefeatable by better reasoning (Chalmers 2002: 1–3).3

In that respect, Kripkean cases of necessary a posteriori statements
(which might, at first sight, seem to be counterexamples to modal ratio-
nalism),4 such as ”Water is H2O”, are understood by modal rationalists
as statements in which nonmodal component (in our purported example,
that liquid with properties that we typically ascribe to water is H2O)
is knowable a posteriori, while their modal component (that they are
necessary) is knowable a priori (through conceptual analysis and deduc-
tion).5

Many potential counterexamples to modal rationalism have been
proposed by now, and there is an ongoing debate with regard to their
plausibility (see, for example, Chalmers 2002; Vaidya 2015; Prelević
2013). Relatedly, it is usually taken for granted that modal rationalism
relies upon modal monism, a view that logical modality and metaphys-

(various interpretations of such a framework are presented in Garcia-Carpintero and
Maciá 2006). The latter evaluates possibilities relative to the truths of the ac-
tual world, while the former evaluates possibilities independently of that. Chalmers
(2002: 3) draws a parallel distinction between primary and secondary conceivability:
the latter is a posteriori, because it relies upon our knowledge of the truths about the
actual world), while the former is a priori since it does not depend on it.

2Chalmers also holds that ideal negative primary conceivability entails primary
possibility (this is what he calls ”strong modal rationalism”), where negative con-
ceivability refers to conceiving of a scenario (or a situation) which itself does not
determine whether a conceived proposition is true or not (like in the cases of vague
predicates, and the like). Strong modal rationalism presupposes that all truths are
scrutable from a compact class of truths and therefore it is incompatible with the
existence of inscrutable truths (Chalmers addresses this issue in detail in Chalmers
2012).

3Undefeatability by better reasoning is, according to Chalmers (2002: 1), a hall-
mark of ideal conceivability, which separates it from prima facie and secunda facie
conceivability.

4Actually, Kripke himself has famously used strategies that are characteristic of
modal rationalist approach to criticize materialism in philosophy of mind (Kripke
1980). Nonetheless, many philosophers hold that his views about essence and modal-
ity are opposite to the modal rationalist view.

5Namely, conceptual analysis shows in the purported example that water is a
colorless, odorless, tasteless (etc.) liquid (that is water’s primary intension). From
this information and a posteriori information that such a liquid is H2O, we can infer
that water’s molecular structure is H2O (that is water’s secondary intension; see
Chalmers 2002:161–165 for more details).
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ical modality are extensionally equivalent (see, for example, Chalmers
1999: 3.5.; Vaidya 2008:192–193). While Chalmers (1999) thinks that
modal monism should be preferred over modal dualism (a view that
both logical modality and metaphysical modality are primitive) for the
sake of simplicity and other methodological reasons, many philosophers
disagree mainly because they believe that the source of logical modality
and metaphysical modality is not the same, that is, because the former
is, unlike the latter, rooted in the makeup of the actual world (which, ac-
cording to essentialists, include essential properties as well; see, Mallozzi
2018 for more details).

In what follows, I argue that logical pluralism, a view that there is
more than one correct system of logic (see, Russell 2019 for more de-
tails) together with a metaphysical foundation of logic (which will be
presented in due course) and a proper understanding of conceivability,
allow us to endorse modal rationalism independently of whether modal
monism (as defined above) is true or not. Namely, even if it turns out
that modal monism is false, modal rationalism still might be true be-
cause conceivability, as it will be shown in due course, can be understood
so that it is extensionally more akin to metaphysical modality than to
logical modality. At the end of this paper, I address pluralism in geom-
etry (which consists in the existence of more than one correct system of
geometry) to show that modal rationalism is compatible with that view
either.

1 Grounding logic in metaphysics

Although many philosophers believe that logical necessity is absolute
(see, for example, Hale 2013:Ch.4 for more details), many alternatives
to classical logic have been proposed by now.6 For example, intuition-
ists restrict the universal validity of the law of excluded middle (see,
for example, Heyting 1971); the proponents of three (or many) valued
logic (�Lukasiewicz 1968) are willing to restrict the universal validity of

6An overview of general ideas about various systems of logic and the metaphysical
foundation of logic, which are presented here and in the next passages, are adapted
from Prelević 2017a: 2.3.2, in which these issues are put into the context of the
debates in modal metaphysics. As it will be shown in due course, I go a step further
in this paper and argue that modal rationalism is compatible with logical pluralism.
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principle of bivalence; philosophers willing to adopt paraconsistent logic
(see, for example, da Costa, Beziau and Bueno 1995 for more details)
are ready to restrict the validity of the law of noncontradiction (adopt-
ing the ex falso quodlibet principle at the same time); possibilists hold
that all sentences are possible (Mortensen 1989). trivialists hold that
all sentences are true (see, for example, Estrada-Gonzáles 2012), while
nihilists hold that there are no laws of logic (see, for example, Russell
2018). It is also worth mentioning that even modus ponens have been
challenged by purported counterexamples (McGee 1985). Thus, classi-
cal logic is not the only option available, and logicians are by no means
unanimous as to which logical system ought to be accepted.

These considerations give rise to the claim that instead of searching
for a universally accepted logical system, it is more appropriate to hold
that there are classes of possible worlds (or galaxies) compatible with
corresponding logical systems. That is, every logic has its own class
of (logically) possible worlds (see Bensusan, Costa-Leite and de Souza
2015 for more details). Logical pluralism, if true, shows that logical
necessity is not absolute, yet it does not entail that there is no room for
absolute necessities, given that modal space is not limited to the space
of logical possibilities and necessities. The friends of absolute necessities
might still hold that, for example, metaphysical necessity is absolute (in
the ontological sense), which means that although it is rooted in the
makeup of the actual world (see, for example Mallozzi 2018), it holds
in all metaphysically possible worlds no matter what else was the case.7

This idea goes hand in hand with a metaphysical grounding of logic
since it enables us to make a choice between competing systems of logic
in view of a previously adopted metaphysical theory.

In order to get a grip on such an approach, let us recall Vaidya’s
(2006) view that there are three possible attempts of establishing which
logic ought to be accepted: one can try to make the choice within logic
itself; one can ground logic on physical facts; and finally, one can ground
logic on metaphysics. The first approach cannot be conducted in a non-
circular way, since if we, for example, try to refute paraconsistent logic

7Relatedly, Bob Hale (2013) thought that both logical and metaphysical necessities
are absolute. On the other hand, some philosophers (most notably Nathan Salmon;
see Salmon 1981 for more details) think that metaphysical necessity is not absolute,
and that a system of modal logic weaker than S4 is suitable to it.
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by using a reductio ad absurdum proof, we would do that on pain of beg-
ging the question against the law of noncontradiction and paraconsistent
logic thereof. On the other hand, if we try to ground logic on physical
facts, it is likely that such an enterprise would end up in committing a
naturalistic fallacy, given that logic is normative, and therefore it does
not seem to be reducible to descriptive facts. Bearing this in mind,
Vaidya maintains that the metaphysical foundation of logic is the only
remaining option for those who try to make a choice between various
logical systems.

Relatedly, Tuomas Tahko (2009) argues that the law of noncontra-
diction is in fact a metaphysical law. Here, Tahko appeals to Aristotle,
who claimed that ”the same attribute cannot at the same time belong
and not belong to the same subject in the same respect” (Aristotle
1984:1005b19-20). Tahko argues that recently proposed examples pur-
ported to show that the law of noncontradiction fails in the actual world
are not convincing.

In addition, it is noticeable that different logical systems are built
up for different purposes, as well as that not all of them are purported
to provide us with principles that are likely true in the actual world.
Actually, some logical laws are likely false in the actual world. For
example, if essentialism is true, then trivialism and possibilism are false.
The same goes for logical nihilism and paraconsistent logic if the law
of noncontradiction (considered to be a metaphysical principle) holds in
the actual world, and the like.

Along these lines, it is possible to recall that very often the main
motivation of building new systems of logic is to provide a formal anal-
ysis of information in one way or another (see, for example, Carnielli
1999: 1). Here, Makinson’s paradox of the preface (see Makinson 1965)
might serve as an illustration. Namely, when the author of a book says
in the preface that she is responsible for all errors in the book, the situ-
ation is paradoxical because, on the one hand, the author would correct
those errors had she noticed them before publishing, while, on the other
hand, she herself is well aware of the fact that even if she did her best in
preparing the penultimate draft of the book, errors could still remain.
The upshot is that in this particular situation the author is rational al-
beit she knows that she holds logically incompatible beliefs, which might
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suggest that the law of noncontradiction need not be accepted as axiom.

Still, Makinson’s envisaged scenario (and the whole logic purported
to handle the paradox of the preface) depicts the author’s epistemic
situation only, and it by no means shows that in reality her book both
do contain and do not contain any errors (see, for example, Prelević
2017a:110; 113). Likewise, intuitionists are not willing to accept the
law of excluded middle as axiom primarily because they think that a
disjunction should be considered true only if we already know which of its
disjuncts is true (otherwise we should refrain from making a judgment).
In the case of the principle of bivalence, �Lukasiewicz (1968) famously
claimed that our choice between accepting this principle and restricting
it depends on whether we are determinists (who believe that future is
closed) or indeterminists (who believe that future is open). This, again,
shows that the choice between competing logical systems might depend
on previously accepted metaphysical theories.

2 Ideal conceivability and logical possibility

Now, if considerations from the previous section are correct, then logical
pluralism and the metaphysical foundation of logic license a view that
logical modality and metaphysical are not coextensive, given that, for
instance, restricting the universal validity of the law of noncontradiction
is logically possible whilst being (according to some philosophers) meta-
physically impossible. Does this mean that modal rationalism would be
false in that case, given that it relies upon the assumption that logi-
cal modality and metaphysical modality are coextensive? I think this
conclusion does not follow, because the space of conceivable worlds (sce-
narios) is narrower than the space of logically possible worlds. In that
respect, conceivability is more akin to metaphysical modality than to
logical modality. This opens room for the claim that the space of con-
ceivable scenarios and the space of metaphysically possible worlds are
coextensive.

Yet, it should be noticed that some philosophers, such as Graham
Priest (see Priest 2016 for more details), think that impossible worlds
are conceivable, as well as that a proper semantics of conceivability
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requires impossible worlds. Priest also holds that Chalmers’s notion of
ideal positive primary conceivability is ”not a very useful notion for mere
mortals” (Priest 2016:fn.37) since it appeals to infinite and infallible a
priori reasoners.

As for Priest’s last point, it should be stressed that ideal positive
primary conceivability can be understood in at least two ways, either in
the non-idealized sense, or in the idealized sense. The later consists in
envisaging a pertinent counter-actual scenario that verifies a proposition
one is conceiving of, while the former consists in envisaging correspond-
ing situation (a part of a scenario) that verifies the very proposition (see,
for example, Prelević 2011; 2013: 1.5.4.; 2015a: 2 for more details; Cf.
Chalmers 1996:67).

Now, it is likely that the idealized sense of ideal positive primary
conceivability requires massive idealization that consists in specifying
all (infinitely many) details about an envisaged world (see, for example,
Hale 2013: 10.3. for more details), and that such an idealization seems
to be of no use for mere mortals, as Priest has pointed out. However, the
non-idealized sense of ideal positive primary conceivability is, contrary
to what Priest has claimed, available to mere mortals, while at the same
time it is reasonable to suppose that, when it comes to ideal conceivabil-
ity, there is a corresponding scenario into which the envisaged situation
is embedded.

Bearing this in mind, Priest’s thesis that impossible worlds are con-
ceivable turns out to be contentious: ideal conceivability is simply in-
compatible with the existence of impossible worlds and restricting the
law of noncontradiction. Of course, some other intentional notions, such
as understanding, desire, and the like, are more suitable to allow contra-
dictions.8 Be that as it may, conceivability (properly understood) does
not belong to this category.9

8It is also interesting to notice here that some philosophers hold that intentional
notions, such as hope, exclude contradictions (see, for example, Andrew Chignell’s
interpretation of Kant’s views of rational hope in Chignell 2014).

9That conceivability should not be conflated with logical possibility is stated, for
example, by Douglas Rasmussen, who says that ”no-one can conceive or imagine
a contradiction” (Rasmussen 1983:522). However, Rasmussen does not address the
problem of logical pluralism, but simply identifies contradiction with logical impossi-
bility.
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Relatedly, it should be stressed that ideal positive primary conceiv-
ability should be separated from imaginability, intuitions, understand-
ing, supposing, and the like.10 Unlike imaginability (as usually under-
stood), conceivability does not require visualization in any relevant sense
(see, for example, Costa-Leite 2010). On the other hand, ideal conceiv-
ability is epistemically more demanding than a mere supposing of a
hypothetical situation (see, for example, Horvath 2015) since it presup-
poses in addition checking the coherence of an envisaged situation or
scenario. Conceivability also differs from understanding in a sense in
which we can understand contradiction (for example, when addressing
a reductio ad absurdum proof; see, for example Vaidya 2010:817) that is
by no means ideally conceivable. Ideal positive primary conceivability
differs from intellectual seeming either, which is at the heart of George
Bealer’s moderate rationalism, according to which rational intuition is
fallible and nonetheless reliable guide to metaphysical modality (see,
for, example, Bealer 2002 for more details). Unlike intellectual seeming
above, ideal conceivability cannot be defeated by better reasoning. For
example, the Naive set theory is, on the one hand, intuitive but, on the
other hand, not ideally conceivable due to Russell’s paradox (Chalmers
2002:155).

Of note, it is also a bit surprising that Priest (2016:2658) uses Gold-
bach’s conjecture as an example purported to show that conceivabil-
ity does not entail possibility. Such an example seems to be irrelevant
here, since we already know (on a priori grounds, due to Feferman’s
completeness theorem; see Feferman 1962) that Peano arithmetic is
consistent, which implies that Goldbach’s conjecture has determinate
truth-value (albeit we do not know at the moment whether it is true
or not). So we know that either Goldbach’s conjecture or its nega-
tion is (necessarily) true, yet, in the absence of a corresponding math-
ematical proof, we should hold Goldbach’s conjecture (or its negation)
prima facie negatively conceivable rather than ideally conceivable (see
Chalmers 2002:160). However, Chalmers (2012:262) argues that an ide-
alized reasoner would be in position to determine the truth-value of

10Ideas presented in this passage are elaborated in detail in Prelević 2013: 1.5.3.
Relatedly, in Prelević 2014, the distinction between ideal positive primary conceivabil-
ity and (various senses of) intuition are used for establishing the difference between
conceivability arguments and thought experiments and avoiding the objection (which
can be found, for example, in Dennett 1991) that conceivability arguments in philos-
ophy of mind are intuition pumps.
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every statement of arithmetic (for example, by applying the omega rule
or something along these lines).11

All in all, ideal conceivability, to which modal rationalists appeal,
presupposes the validity of the law of noncontradiction and therefore
cannot be spelled out in systems of logic that restrict its universal va-
lidity. If so, then the space of conceivable worlds is (like the space
of metaphysically possible worlds) narrower than the space of logically
possible worlds.

The same holds even if we restrict our attention to classical logic12

since here logical possibility can be counted as a prerequisite for ideal
conceivability without being sufficient for it. This becomes more appar-
ent if we recall a common view that there are analytic truths that are
not logically true. For example, sentence ”All bachelors are unmarried”
is true in virtue of meaning of terms ”bachelor” and ”unmarried”, yet it
is by no means a tautology (see, for example, Zalta 1988:57; cf. Prelević
2013:9; 2017a:23). It also seems plausible to say that married bachelors
are both inconceivable and metaphysically impossible.

However, conceivability (likewise metaphysical modality) need not
be considered coextensive with analyticity either,13 given that it seems
that there are analytic truths that are conceivably (and actually) false.
Pluralism in geometry seems to be a good illustration here (examples
of contingent logical and analytic truths can be found in Zalta 1988).
So, let us turn to this case in order to get a better grip on the relation
between ideal conceivability and logical possibility.

As is well known, there are competing axiomatic systems in geom-
etry, which are, on the one hand, considered consistent, while, on the

11The cases of higher-set theory, such as the Continuum hypothesis or its negation,
are more complicated (see Chalmers 2012:263–264), but anyway they are related to
the question as to whether ideal negative primary conceivability entails primary pos-
sibility (which depends on whether there are inscrutable truths or not; see Chalmers
2002: 8 for more details), rather than whether ideal positive primary conceivability
entails primary possibility, in which I am mainly interested in this paper.

12This is probably how philosophers typically understand modal monism (see
Vaidya 2008 for more details).

13This is evident in the case of metaphysical modality, since Kripkean cases, such
as the statement ”Water is H2O”, are typically counted as metaphysically necessary
and synthetic a posteriori.
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other hand, they are incompatible to each other. For example, in Eu-
clidean geometry sum of angles of a triangle is equal to the straight
angle, which is not the case in hyperbolic and (Riemannian) spherical
geometries (in the former, the sum of angles of a triangle is less than
than straight angle, while in the later the sum of angles of a triangle
is greater than than straight angle). Relatedly, it is well known that
Einstein was aware of the fact that he could choose whether to accept
a simpler physics and a more complicated (non-Euclidean) geometry or
a simpler geometry and a more complicated physical theory (by intro-
ducing ”universal forces” that have the power to deflect light rays, and
so on; see, for example, Reichenbach 2006; BonJour 1998:221; Howard
2005:38; cf. Tahko 2008). As a physicist, he chose the first option, but
the second option was available either.

Now, it might be interesting to see how modal rationalists could
address this issue: on the one hand, we typically hold that geometrical
truths are necessary and a priori ; on the other hand, we either live in Eu-
clidean or in a non-Euclidean space, so if, for example, a non-Euclidean
geometry is true, then it is necessarily true and therefore Euclidean ge-
ometry is necessarily false. Given that all these systems of geometry
are conceivable,14 it seems that conceivability does not entail metaphys-
ical possibility, contrary to what the proponents of modal rationalism
typically hold.

Here, modal rationalists could respond in the following way: they
might say that competing systems of geometry are a priori and (geo-
metrically) necessary in their domains, yet just one of them is metaphys-
ically (secondarily) necessary. Those systems are a priori because they
are deductive systems with corresponding axiomatizations that establish
boundaries of conceivability within them. For example, in Euclidean ge-
ometry it is inconceivable that sum of angles of a triangle is not equal
to the straight angle, while in hyperbolic and spherical geometries it is
inconceivable that sum of angles of a triangle is equal to the straight
angle.

This can be represented in S5 system for modal logic by using the
distinction between accessibility relation understood as equivalence, that

14This is what makes this case different from the case of logical pluralism addressed
in the previous section.
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is, as a relation between possible worlds that is reflexive, transitive and
symmetric, and accessibility relation understood as universal accessibil-
ity, in which all worlds are accessible from one another.15 The former,
unlike the latter, allows inaccessible world, which can be seen if, for
example, we posit ”multiple systems of worlds, such that within each
system all worlds are accessible from one another, but across systems
no worlds are accessible from one another” (Picinnini 2017:85). Such
a model represents accessibility relation understood as equivalence, and
not as universal accessibility.

Bearing this in mind, it might be said that there is a sense in which
many geometrical propositions can be considered (in line with Kant)16

synthetic a priori : although sentences like ”Sum of angles of a triangle
is equal to the straight angle” are analytically true in Euclidean ge-
ometry, it is conceivable that they are false in some other systems of
geometry (actually, the sentence ”Sum of angles of a triangle is equal
to the straight angle” is analytically false in hyperbolic and spheric ge-
ometries). If we recall the two notions of accessibility in S5 system for
modal logic, we can say that although these sentences are necessarily
true in at least one system of (geometrically possible) worlds, they are
not true in all systems of (geometrically possible) worlds whatsoever.17

Now, it is an empirical question as to whether universal forces (men-
tioned above) exist in the actual world or not. At least, the dispute over
their existence does not seem to be a merely verbal. However, informa-
tion about them would be a nonmodal one, had we been able to found
it out. On the other hand, information about the spatial properties of
the world are likely a priori and modal. So, under assumption that
universal forces exist and that we live in a non-Euclidean (Riemannian)
space, statements like ”Sum of angles of a triangle is greater than the
straight angle” would be (in the twodimensionalist terminology) secon-

15Gultiero Piccinini (2017) used this distinction in his critique of Chalmers’s zombie
argument in philosophy of mind. Criticism of such a criticism is provided in Prelević
2017b.

16Kant (1998), of course, held that fundamental propositions of geometry are syn-
thetic a priori for quite different reasons.

17Sentences like ”Triangles have three edges and three vertices” are, of course.
counted as a priori by modal rationalists since they are true in all scenarios (in all
systems of worlds).
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darily necessary and primarily possible.18 This situation is much alike
the standard Kripkean examples described at the very beginning, with
the exception that, unlike in the case of the terms like ”water”, there is
more than one primary intension of the terms like ”triangle” (depending
on which axiomatic system of geometry we use). If so, then pluralism
in geometry can be easily accommodated to modal rationalist account
of our modal knowledge.

3 Conclusion

Let us summarize. Modal rationalism is compatible with logical plural-
ism and metaphysical foundation of logic. That is because the space
of conceivable worlds is narrower than the space of logically possible
worlds, contrary to what is usually presupposed in the debates over the
validity of the thesis (endorsed by modal rationalists) that conceivability
entails metaphysical possibility. Like in the case of metaphysical modal-
ity, conceivability should not be conflated with logical possibility as such.
Modal rationalism is also compatible with pluralism in geometry, given
that competing systems of geometry are both primarily conceivable and
primarily possible, but further empirical information is required for de-
ciding which of them is counterfactually (secondarily) possible.

This is by no means the whole story about the plausibility of modal
rationalism. One interesting question is to what extent this view is com-
patible with essentialism and a neo-Aristotelian account of metaphysical
modality that many philosophers in the field are ready to endorse over
last few decades. According to such an account, essence itself is not re-
ducible to necessity but nonetheless it grounds metaphysical necessity,19

which corroborates the claim that the epistemology of modality should
be based on a corresponding epistemology of essence (see, for example,
Hale 2013: 11). Much ink has been spilled by the adherents of com-

18These sentences are primarily possible if we take universal accessibility into ac-
count.

19Relatedly, Kit Fine (1994) provided well known examples purported to justify
this thesis. For example, if existing Socrates belongs to existing singleton Socrates,
then it is necessary that Socrates belongs to the singleton Socrates. Yet this by no
means helps us, according to Fine, to understand Socrates’s nature, and therefore it
is not essential to Socrates to belong to the singleton Socrates.
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peting views in the epistemology of modality (in particular, by those
who endorse various versions of modal rationalism and modal empiri-
cism) who have tried to handle various essentialist principles, such as
the essentiality of origin, the essentiality of kind, and the like (see, for
example, Roca-Royes 2011; Chalmers 2010; Prelević 2015b for more de-
tails). I think that modal rationalists can accommodate those principles
by taking further metaphysical assumptions into account, but addressing
this issue is beyond the scope of this paper.20 However, considerations
presented in this paper are fairly compatible with such endeavors.
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Abstract

A analysis of some concepts of logic is proposed, around the
work of Edelcio de Souza. Two of his related issues will be empha-
sized, namely: opposition, and quasi-truth. After a review of oppo-
sition between logical systems [2], its extension to many-valuedness
is considered following a special semantics including partial oper-
ators [13]. Following this semantic framework, the concepts of
antilogic and counterlogic are translated into opposition-forming
operators [15] and specified as special cases of contradictoriness
and contrariety. Then quasi-truth [5] is introduced and equally
translated as a product of two partial operators. Finally, the re-
flections proposed around opposition and quasi-truth lead to a
third new logical concept: quasi-opposition, borrowing the central
feature of partiality and opening the way to a potential field of
new investigations into philosophical logic.

1 Oppositions

The proper contribution of Edelcio de Souza with respect to logical op-
positions has been through its application to logical systems [2], beyond
mere formulas or philosophical concepts in a given logical system [3].
The concept of opposition comes from Aristotle’s work and consists in
logical relations between bivalent formulas, in such a way that each
of these formulas is to be interpreted as either true or false. For this
reason, oppositions should be explained in a semantic way. However,
Edelcio and the co-authors claim that every logical opposition that does
not relate propositions should not be explained in semantic terms ([2],
243):

“Because the vertices of the square (. . .) are not propositions we reconstruct
the classical oppositions accordingly. We define them in terms of relations be-
tween logics –instead of logical values”.



360

Anyway, the authors introduce the two central notions in a classical way.
Letting Γ �L ϕ the relation of consequence from any set of premisses Γ
to an arbitrary formula ϕ in a language L:

L̄ is called an antilogic of L if and only if it is not the case that ϕ
is a logical consequence of Γ in L̄: Γ ��L̄ ϕ.

L̃ is called an counterlogic of L if and only if it is the case that ¬ϕ
is a logical consequence of Γ in L̃: Γ �L̃ ¬ϕ.

Beyond the bivalent stance, the aim of the present paper is to re-
define oppositions between logics in semantic terms and to explore the
possibility of non-standard oppositions.

On the one hand, such oppositions may be formulated in the Tarskian
sense of semantic consequence as a relation of truth-preservation in a
model, i.e., interpretations of formulas such that these are true (symbol:
t) or false (symbol: f) in a model. Thus, Γ |=L ϕ means that any model
w of ψ ∈ Γ in L is also a model of ϕ in L: Γ |=L ϕ, i.e. v(w,ψ) = t ⇒
v(w,ϕ) = t. Then any model w of L̄ can be called an antimodel of L,
and any model w of L̃ can be called a countermodel of L, such that:

there exists a model w of ψ ∈ Γ in L that is not a model of ϕ in
L̄: Γ �|=L̄ ϕ, i.e., v(ψ,w) = t �⇒ v(w,ϕ) = t.

every model w of ψ ∈ Γ in L is also a model of ¬ϕ in L: Γ |=L̃ ¬ϕ,
i.e., v(w,ψ) = t⇒ v(w,¬ϕ) = t.

On the other hand, the bivalent interpretation of formulas in the models
entails that there is no logical difference between untruth and falsity. In
other words, every antimodel of ϕ is a model at which ϕ is not true,
that is, ϕ is false: v(w,ϕ) �= t = v(w,ϕ) = f ; and every countermodel
of ϕ is a model at which ¬ϕ is true, that is, ϕ is false: v(w,¬ϕ) = t
means the same as v(w,ϕ) = f . The difference between both antilogic
and counterlogic may be easily explained in terms of how many models
there are for these: an antilogic has ϕ false at some (but not all) model
of it at which ψ is true, whereas a counterlogic has ϕ false at every
model of it at which ψ is true.

And yet, what of such higher-order oppositions in a many-valued
system where bivalence does not obtain anymore? Answering to this
question will be the central task of the present section, especially because
bivalence is assumed in [2]. Our aim is to extend the notion of logical



361

oppositions into non-bivalent or many-valued systems, accordingly. For
this purpose, let us consider a general domain of valuation Vn including
n logical values. Bivalence includes the class of logical systems where
the m = 2 logical values are truth and falsehood. We assume that many-
valuedness relates to any logical system whose domain of interpretation
Vm includes more than 2 values, such that m > 2.

More generally, one way to characterize many-valuedness is by taking
logical values to be ordered n-tuples of elements whilst keeping in mind
that the basic values of logic are t and f . A characterization of such
finitely n-valued systems consists in a 2n-valued domain of values in-
cluding n ordered elements and 2m = n resulting logical values. Bor-
rowing from various works from to Jaskówski [9] to Kapsner [10] through
Shramko & Wansing [17], the following wants to focus on a specific case
of structured logical values analogous to Belnap’s 4-valued system First
Degree Entailment [1]. Thus, let V4 a 4-valued domain of structured
logical values X = 〈x1, x2〉. It includes n = 2 elements t and f such
that, for any ϕ, v4(ϕ) = 〈x1, x2〉 and xi(ϕ) �→ {1, 0}.
Given that logical values are structured objects in V4, their characteristic
valuation function proceeds as an ordered 2-uple A(ϕ) = 〈a1(ϕ),a2(ϕ)〉
wherein a1(ϕ) = x1 informs about whether ϕ is true, and a2(ϕ) = x2
about whether ϕ is false. Correspondingly, we will rephrase the four
logical values of V4 by translating first their basic elements t and f in
terms of structured values and, then, the combination of the latter.1

v(ϕ) = t means that a1(ϕ) = 1, i.e., ϕ is true.

v(ϕ) �= t (or v(ϕ) = t̄) means that a1(ϕ) = 0, i.e., ϕ is not true.

v(ϕ) = f means that a2(ϕ) = 1, i.e., ϕ is false.

v(ϕ) �= f (or v(ϕ) = f̄) means that a2(ϕ) = 0, i.e., ϕ is not false.

The logical values of V4 can be considered as ordered structured pairs
such that B = 〈t,f〉, T = 〈t,f̄〉, F = 〈t̄,f〉, and N = 〈t̄,f̄〉2.

v(ϕ) = B means that a1(ϕ) = a2(ϕ) = 1, i.e., A(ϕ) = 11.

v(ϕ) = T means that a1(ϕ) = 1 and a2(ϕ) = 0, i.e., A(ϕ) = 10.

v(ϕ) = F means that a1(ϕ) = 0 and a2(ϕ) = 1, i.e., A(ϕ) = 01.

1For a discussion about the meaning of such structured values and a doxastic
interpretation of these, see e.g. [14].

2For sake of simplicity, the ordered pairs 〈x, y〉 will be rephrased as xy throughout
the rest of the paper.
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v(ϕ) = N means that a1(ϕ) = a2(ϕ) = 0, i.e., A(ϕ) = 00.

The semantic relation of consequence between a set of formulas Γ and
a formula ϕ can also be rephrased in terms of structured logical values,
such that Γ �L ϕ means that, for every formula ψ ∈ Γ,a1(ψ,L) = 1 ⇒
a1(ϕ,L) = 1. The same does for the central notions of antilogic and
counterlogic.

Antilogic: Γ �L̄ ϕ if and only if it is not the case that Γ �L ϕ.
a1(Γ, L̄) = a1(ϕ, L̄) = 1 if and only if a1(ψ,L) = 1 and a1(ϕ,L) = 0.

Counterlogic: Γ �L̃ ϕ if and only if ΓL � ¬ϕ.
a1(Γ, L̃) = a1(ϕ, L̃) = 1 if and only if a1(ψ,L) = a2(ϕ,L) = 1.

Semantic consequence in a logical system can also be rephrased as a
mapping function FV on values such that, for a primary logical system
L where truth is preserved from premisses Γ to consequence ϕ

FV(L) = t �→ t.

The corresponding antilogics and counterlogics can be redefined as fol-
lows, accordingly:

FV(L̄) = t �→ t̄;
FV(L̃) = t �→ f .

Returning to the aforementioned paper [2], the authors gave a defini-
tion of the usual concepts of opposition whilst expressing these as set-
theoretical relations of intersection ∩ between logical systems. Once
again, we translate each of these into our semantic terms as follows: for
every ϕ, the intersection �L1 ∩ �L2 is (not) empty if, and only if, ϕ’s
being true L1 (does not) entail ϕ’s not being true in L2; and the inter-
section ��L1 ∩ ��L2 , is (not) empty if, and only, ϕ’s not being true L1

(does not) entail ϕ’s being true in L2.
3

3The second clause characterizing oppositions could be reformulated as a relation
of union ∪ between any logical systems L1, L2, by virtue of the set-theoretical relation
between intersection and union. Thus, �	L1 ∩ �	L2= ∅ means the same as 	L1 ∪ 	L2 �=
∅.
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L1 and L2 are contradictories if and only if �L1 ∩ �L2= ∅ and �L1

∩ �L2= ∅.

a1(ϕ,L1) = 1⇒ a1(ϕ,L2) = 0 and a1(ϕ,L1) = 0⇒ a1(ϕ,L2) = 1.

L1 and L2 are contraries if and only if �L1 ∩ �L2= ∅ and �L1 ∩ �L2 �= ∅.

a1(ϕ,L1) = 1⇒ a1(ϕ,L2) = 0 and a1(ϕ,L1) = 0 �⇒ a1(ϕ,L2) = 1.

L1 and L2 are subcontraries if and only if �L1 ∩ �L2 �= ∅ and �L1 ∩ �L2=
∅.

a1(ϕ,L1) = 1 �⇒ a1(ϕ,L2) = 1 and a1(ϕ,L1) = 0⇒ a1(ϕ,L2) = 1.

The fourth and ultimate case of subalternation differs from the preceding
ones by being defined without the set-theoretical relation of intersection,
in informal terms of ‘sublogic’.

L1 is subaltern to L2 if and only if L2 is a sublogic of L1.

The latter is assumed to be known by the readers, in that it means a
relation of consequence from the first system to the second one. That
is:

a1(ϕ,L1) = 1⇒ a1(ϕ,L2) = 1 and a1(ϕ,L2) = 0⇒ a1(ϕ,L1) = 0

An alternative definition of subalternation has been proposed in [15],
where oppositions are turned from relations into iterative functions.
Thus, ψ is said to be ‘subalternate’ to ϕ if, and only if, ψ is the contra-
dictory of the contrary of ϕ; and conversely, ϕ is ‘superalternate’ to ψ
if, and only if, ϕ is the contrary of the contradictory of ϕ.

It would be interesting to see how such a functional interpretation of
opposition may be implemented into the context of logical system [2].
Assuming that antilogicality and counterlogicality are special cases of
contradictoriness and contrariety, respectively, then there is a discrep-
ancy between the logical equations established in [15] and what the
author said in their own symbols [2]. Thus,

(1) The antilogic of the antilogic of a given logical system L1 is L1 itself
in [2]

¯̄L = L
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which is confirmed in [15] by stating the contradictory of the contradic-
tory of a given term ϕ is ϕ itself

cd(cd(ϕ)) = ϕ.

At the same time, (2) the counterlogic of the counterlogic of a given
logical system L1 does equate with L1 itself in [2]

˜̃L = L

whereas the contrary of the contrary of a given term ϕ may differ from
ϕ in [15]

ct(ct(ϕ)) �= ϕ.

And (3) the counterlogic of the antilogic of a given logical system L1

does equate with the antilogic of its counterlogic in [2]

˜̄L = ¯̃L

whereas we have already seen that the contradictory of a contrary differs
from the contrary of a contradictory in [14]. Indeed, the former iteration
amounts to a case of subalternation

cd(ct(ϕ)) = sb(ϕ)

whereas the latter yields the converse case of superalternation

ct(cd(ϕ)) = sp(ϕ).

How to account for such a discrepancy, and what does it entail about
the logical accuracy of [2] and [15]? In order to disentangle the situation,
we have not only to prove that antilogicality relates to contradictori-
ness and counterlogicality to contradictoriness. But also, the calculus of
opposition-forming operators set up in [15] leads to an important differ-
ence with respect to [2]. Indeed, such operators are not ‘functions’ in
the strict mathematical sense of a bijection: one input value may have
more than one contrary, subcontrary and subaltern (or superaltern), so
that the above singular expression ‘the contrary of’ is misleading. Actu-
ally, it is possible to compute the output value of such opposite-forming
operators only by means by a special semantics, namely: a ‘bitstring
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semantics’ in which terms do not receive a customary ‘truth-value’ but,
instead, a Boolean bitstring characterizing their truth-conditions in a
finite set of logical spaces. It turns out that this Boolean but not truth-
functional semantics departs from the approach of [2]. On the one hand,
it matches with [2] in that every logical system has one and only one
antilogic as a counterpart of contradictoriness ([2], 245):

“It is clear that for each L there is exactly one L̄”, which can be explained
set-theoretically once again:

�L ∩ �L̄= ∅;
�L ∪ �L̄= ℘(F )× F .

On the other hand, it is shown in [15] that what the authors call ‘coun-
terlogic’ is just a particular, truth-functional case of contrariness:

“It is clear that for each L, and for each negation operation, there is exactly
one L̃.”

The authors rightly assume that one and the same operator of negation
occurs in L1 and L2, so that there can be only one system L2 where ϕ
is false whenever ϕ is true in L1. A way to account for this unique case
of contrariness occurs in algebraic terms of abstract operators [8,12,15].
In the second reference [12], for example, Piaget’s INRC Group depicts
the operation of reciprocity as mapping from an order set of conjunctive
normal forms of literals abdc upon its reverse cdba. This helps why there
cannot be but one of ’contrariness’ once constructed in this bijective way.
In [15], the same operation is applied to make sense of ‘contrary’ beliefs
operators as ordered set of truth-conditions whilst noticing that there is
one more than such one way to characterize contrariety.

And yet, one may imagine however more than one way of satisfying
the clauses of antilogicality and counterlogicality once bivalence is not
assumed. This requires to go beyond the Boolean approach, assumed
both in [2] and [15]. For there may be more than one way of being
true and false in V4, for example, so that there may be more than one
antilogic and counterlogic to an initial logical system L1. Now going be-
yond bivalence is to go beyond the realm of ‘classical’ oppositions, which
seems to lead to a terra incognita in the literature of logic. For what
had been said thus far about ‘non-classical oppositions’? Be this as it
may, ‘classical’ oppositions may be characterized by two clauses such as
completeness and consistency. Classicality is claimed and sustained in
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[2,247] as follows:4

“It is not straightforward to present oppositional structures for any logic. We
will proceed by introducing some restrictions. First, we restrict ourselves to
logics which accept elimination of double negation in an obvious sense. Addi-
tionally, let L be a logic with negation. We say that L is well-behaved if and
only if for every pair (Γ, ϕ), it is not the case that (Γ �L ϕ and Γ �L ¬ϕ)”.

Double negation relates to completeness: �L ϕ if and only if �L ¬¬ϕ,
whist well-behavior has to do with consistency. Both properties and
their opposite may be formulated as follows:

Consistency

Γ � ϕ⇒ Γ � ¬ϕ
Inconsistency

Γ � ϕ �⇒ Γ � ¬ϕ
Completeness

Γ � ϕ⇒ Γ � ¬ϕ
Incompleteness

Γ � ϕ �⇒ Γ � ¬ϕ

These metalogical properties characterize what is considered as the proper
features of logical oppositions ([2], 427):

“We call a square complete if it is a square with all four oppositions: contra-
diction, contrariety, sub-contrariety and subalternation. A square is standard
if it fits any family of concepts satisfying traditional oppositions. A square
is perfect if it is complete and standard. Moreover, any square which is not
complete or/and standard is called degenerate square.”

Why sticking to such features, however? Let us consider in the following
what non-standard squares should amount to, assuming that they might
relate many-valued systems which are not well-behaved and do not ac-
cept elimination of double negation. In V4, for example, logical systems
may be incomplete or inconsistent whenever A(ϕ) = 00 or A(ϕ) = 11,
respectively. Let us see what does follow from this non-bivalent situa-
tion: does it result in new kinds of oppositions? In order to answer this

4Note that classicality need not be a synonym of bivalence, given that there may
be classical theorems that do not correspond to a bivalent domain (and conversely).
See e.g. [15] about this point.
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question, let us consider by now another issue which has been addressed
by de Edelcio de Souza.

2 Quasi-truth

Indeed, one of de Souza’s main contributions to the reflection in philo-
sophical logic relates to the concept of quasi-truth [4], inherited from da
Costa’s seminal work. Roughly speaking, quasi-truth is to be viewed as
a set of partial structures such that the predicates are seen as triples
of pairwise disjoint sets {R+, R−, Ru}: the set of tuples which satisfies,
does not satisfy and may satisfy or not a predicate in a given model.
Our attention will be focused on the third subset Ru, since it stands for
the ‘partial’ features of structures and leads to the notion of quasi-truth.

Ru may be taken to be the set of undeterminate logical values, {11,00},
such that logical value of ϕ is neither determinately true nor deter-
minately false. Although quasi-truth is usually interpreted into a 3-
valued domain V3+ = {11, 10, 01} or V3− = {10, 01, 00} –depending upon
whether the additional third value is designated or not, it makes sense
to consider as two proper cases of quasi-truth the situations in which
there is evidence both for and against a given formula or neither for
nor against, respectively. The concrete upshot is the same as the one
when there is evidence neither for nor against the formula, in the sense
that it leads to the same practical stance of indecision. Likewise, the
coming 4-valued framework accommodates with the 3-valued definition
of quasi-truth by treating gappy and glutty values (00 and 11) as two
pragmatic variants of the same partial structure: underdetermined and
overdetermined logical values amount to the same result of remaining
undecided about ϕ, insofar as the logical value of formulas relate to what
agents should do in the light of such informational data.

We propose to reconstruct both logical values and relations of oppo-
sition between logical systems into a common frameworkAR4[Oi] [13]. It
includes a number of logical systems distinguished by two sets of unary
operators of affirmation [Oi] and negation [Ni]. The language ofAR4[Oi]

can be described by means of the usual Backus-Naur form:

ϕ ::= [Oi]p | [Oi](ϕ • ψ) | [Oi]ϕ • [Oi]ψ | ¬1[Oi]ϕ | [Oi]¬2ϕ

The lowercase variable i of [Oi] means that there is a plurality of af-
firmative and negative operators in AR4[Oi]. Roughly speaking, both
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categories of operators constitute a variety of ways to restrict the logical
values of formulas in V4. Affirmative operators are not redundant by ex-
cluding logical values whilst always affirming their input value, whereas
negative operators always exclude the input value. Their general defini-
tions are the following, for any pairs of values {xi, xj} in Vn:

Affirmative operators

[Ai]ϕ : xi �→ xj

Negative operators

[Ni]ϕ : xi �→ xi

An essential feature of [Ai] and [Ni] is that these are partial : they turn
some, but not necessarily all input values into output values of the entire
domain V4.

5

Given any domain of valuation Vn, there is a set of i = 2n − 1
affirmative operators. In the present case of V4, there are 24 − 1 = 15
affirmative and negative operators which obey double negation in a met-
alogical sense of the word: ¯̄x = x.

[A1]ϕ : t �→ f̄ [N1]ϕ : t �→ t̄
[A2]ϕ : f �→ t̄ [N2]ϕ : f �→ f̄
[A3]ϕ : t̄ �→ f [N3]ϕ : t̄ �→ t
[A4]ϕ : f̄ �→ t [N4]ϕ : f̄ �→ f
[A5]ϕ : t �→ f̄ ⊗ f �→ t̄ [N5]ϕ : t �→ t̄⊗ f �→ f̄
[A6]ϕ : t �→ f̄ ⊗ t̄ �→ f [N6]ϕ : t �→ t̄⊗ t̄ �→ t
[A7]ϕ : t �→ f̄ ⊗ f̄ �→ t [N7]ϕ : t �→ t̄⊗ f̄ �→ f
[A8]ϕ : f �→ f̄ ⊗ t̄ �→ t [N8]ϕ : f �→ f̄ ⊗ t̄ �→ t
[A9]ϕ : f �→ f̄ ⊗ f̄ �→ f [N9]ϕ : f �→ f̄ ⊗ f̄ �→ f
[A10]ϕ : t̄ �→ f ⊗ f̄ �→ t [N10]ϕ : t̄ �→ t⊗ f̄ �→ f
[A11]ϕ : t �→ f̄ ⊗ f �→ t̄⊗ t̄ �→ f [N11]ϕ : t �→ t̄⊗ f �→ f̄ ⊗ t̄ �→ t
[A12]ϕ : t �→ f̄ ⊗ f �→ t̄⊗ f̄ �→ t [N12]ϕ : t �→ t̄⊗ f �→ f̄ ⊗ f̄ �→ f
[A13]ϕ : t �→ f̄ ⊗ t̄ �→ f ⊗ f̄ �→ t [N13]ϕ : t �→ t̄⊗ t̄ �→ t⊗ f̄ �→ f
[A14]ϕ : f �→ t̄⊗ t̄ �→ f ⊗ f̄ �→ t [N14]ϕ : f �→ f̄ ⊗ t̄ �→ t⊗ f̄ �→ f
[A15]ϕ : t �→ f̄⊗f �→ t̄⊗ t̄ �→ f⊗ f̄ �→ t [N15]ϕ : t �→ t̄⊗f �→ f̄⊗ t̄ �→ t⊗ f̄ �→ f

This language includes two main negations, the Boolean one ¬1 and
the Morganian one ¬2, in addition with a set of binary connectives
• = {∧,∨,→}. Products ⊗ are idempotent, commutative, transitive

5Another way to characterize these operators is to take these as a combination of
redundant and non-redundant mappings: they turn some (but not all) of their input
values into some other output values.
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and associative operators that merely add different mappings of the
same kind to each other. For example, [A7] proceeds in such a way
that every formula is unfalse whenever true and true whenever unfalse,
whereas [A8] means that every formula is false whenever untrue and un-
true whenever false. The single values occurring in boldface in the below
matrix correspond to the outputs altered by the affirmative operators,
the other ones remaining unchanged.

ϕ [A7]ϕ [A8]ϕ

11 10 01

10 10 10

01 01 01

00 10 01

Both [A7] and [A8] are bivalence-forming, or normalization operators:
they reintroduce bivalence by restricting the output values in different
ways, such that the resulting logical values are either 10 or 01. That is,
every true formula is thereby not false and conversely. The aforemen-
tioned case of Boolean negation correspond to a single negative operator,
that is:

¬1ϕ = [N15]ϕ : t �→ t̄⊗ t̄ �→ t⊗ f �→ f̄ ⊗ f̄ �→ f .

At the same time, the structuration of such unary operators is such that
it helps to see to what extent Morganian negation is not a ‘pure’ nega-
tion. Rather, it is case of ‘mixed’ operator conflating both affirmative
and operators into mappings of the form xi �→ xj = xi �→ xj . The corre-
sponding process is a fusion of the partial operators of affirmation and
negation, thus resulting in ‘affirmed negations’ [AN ] or, equivalently.
‘negated affirmations’ [NA]:

¬2ϕ = [NA15]ϕ = [AN15]ϕ : t �→ f ⊗ t̄ �→ f̄ ⊗ f �→ t⊗ f̄ �→ t̄.6

6Fusion of partial operators differs both from their product ⊗ and the following
operation of composition or iteration, ◦. It could be also shown that two other kinds
of redundancy-making operators are equivalent with each other in AR4[Oi], namely:
[NN ]ϕ = [AA]ϕ. The proof of such equivalences can be established as follows:
Proof.
[NA]ϕ : xi �→ [A]xi = xi �→ xj = xi �→ xj .
[AN ]ϕ : xi �→ [N ]xj = xi �→ xj = xi �→ xj .
Therefore [AN ]ϕ = [NA]ϕ.
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It turns out that antilogics and counterlogics are may be constructed by
means of the unary operators of Boolean negation ¬1 and Morganian
negation ¬2, following the definitions given in [13] and leading to the
following truth-tables:

ϕ ¬1ϕ ¬2ϕ

11 00 11

10 10 01

01 01 10

00 11 00

According to this, Boolean negation ¬1 turns logics L into antilogics L̃
whenever they turn true (or false) formulas into untrue (or unfalse) ones;
and Morganian negation ¬2 turn logics L into counterlogics L̃ whenever
they turn true (or false) formulas into false (or true) ones. Antilogics
correspond to situations in which a set of formulas belonging to L do not
belong to another language L̄, and this may be obtained by more than
negative operator –not only [N15] = ¬1, but also every negative operator
including the clauses of [N1] and [N2]: t �→ t̄⊗ t̄ �→ t. In the same vein,
counterlogics correspond to situations in which the negations of a set of
formulas belonging to L do belong to another language L̃, and this may
be obtained by more than mixed operator –not only [AN15] = ¬2, but
also every negative operator including the clauses of [AN1] and [AN2]:
t �→ f ⊗ f �→ t.

Furthermore, it can be shown by now how the equations established
in [2] may be validated or not according to the kind of partial operator
selected in AR4[Oi]. The expressions ‘antilogic of antilogic’ and ’coun-
terlogic of antilogic’ correspond to cases of iteration or composition ◦,
which are to be clearly distinguished from those of product ⊗ and mixed
operators. Whilst the difference between product and composition can
be easily shown by induction upon truth-tables,7 it also helps to see
that the following equations hold only when the corresponding opera-
tors proceed by iteration of specific operators –Boolean negation as an

[AA]ϕ : xi �→ [A]xj = xi �→ xi = xi �→ xi.
[NN ]ϕ : xi �→ [N ]xi = xi �→ xi = xi �→ xi.
Therefore [AA]ϕ = [NN ]ϕ. �

7Let [A3] and [A4] be two such partial operations. Then the following truth-tables
show both that their product differs from their composition and that, unlike product,
composition is not a symmetrical operation.
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antilogic-forming operator and Morganian negation as a counterlogic-
forming operator, once again.

¯̄L = L, that is, [N15][N15]ϕ = ϕ;

˜̃L = L, that is, [AN15][AN15]ϕ = ϕ;

˜̄L = ¯̃L, that is, [AN15][N15]ϕ = [N15][AN15]ϕ.

Again, it must be recalled that all of these equations fail whenever an-
tilogicality and counterlogicality are rephrased into AR4[Oi] by partial
operators which satisfy lesser semantic constraints whilst behaving as
proper contradictory- and contrary-forming operators. This means that
antilogic does not go on par with contradictoriness and counterlogic does
not go on a par with contrariness –they are so only in a bivalent frame,
where the unique negative operator is both Boolean and Morganian.

Coming back to the central section of the present issue, quasi-truth,
it has been shown in [13] that the affirmative operators [A7]ϕ and [A8]
are plausible candidates for being four-valued counterparts of the modal-
ities of necessity and possibility in S5. Letting τ be a translation func-
tion from S5 to AR4[Oi] and including a redundant-forming operator
[AA15] = [NN15] such that

[AA15]ϕ = [NN15]ϕ : t �→ t⊗ t̄ �→ t̄⊗ f �→ f ⊗ f̄ �→ f̄ .

It follows from this that

τ(ϕ, S5) = [AA15]ϕ = [NN15]ϕ;

τ(�ϕ, S5) = [A8]ϕ;

τ(♦ϕ, S5) = [A7]ϕ.

We are going to use the two many-valued translations of necessity and
possibility in the following, in order to propose a many-valued counter-

ϕ [A3]ϕ [A4]ϕ [A3]ϕ⊗ [A4]ϕ [A3]ϕ ◦ [A4]ϕ [A4]ϕ ◦ [A3]ϕ

11 11 11 11 11 11

10 10 10 10 10 10

01 01 01 01 01 01

00 01 10 11 10 01
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part of quasi-truth in AR4[Oi]. On the other hand, it has been claimed
in [5] that there is a connection between the concepts of quasi-truth and
contingency, ∇. According to the author ([6],176),

“non-mathematical justifications are not able to lead to necessary but, rather,
only to contingent truths. If there does not exist any demonstration about the
truth of a proposition, then there is no certainty. Therefore, the proposition is
not entitled to be acknowledged as true necessarily.”

In other words, quasi-true formulas are those for which there is no con-
clusive evidence and that remain possibly false without being so deter-
minately ([6], 180):

“Logics of justification – on its two approaches – can be used in order to define
and think about the concept of quasi-truth. This was proposed by Newton
da Costa in (1986) because, as a matter of fact, whenever we stand outside
mathematics and logic we cannot talk exactly in terms of necessary truth, but
only in terms of contingent truth, that is, quasi-truth.”

Our main idea is to render da Costa & Bueno & Souza’s insightful idea
of quasi-truth as partial structures in semantic terms of quasi-truth as
a partial operator, whereas some affirmative operators [Ai] proceed as
normalization-forming operators by restoring normal structures through
partial ones. Assuming that quasi-truth proceeds as a contingency op-
erator, and given our preceding translations of S5-modal necessity and
possibility into AR4[Oi], let us characterize quasi-truth QT as a con-
junction of possibility and unnecessity.

Quasi-truth (as contingency)

∇ϕ⇔ ♦ϕ ∧ ¬�ϕ

τ(QT (ϕ)) = [A7]ϕ ∧ ¬1[A8]ϕ.
8

8Only Boolean negation ¬1 has a wide scope in AR4[Oi], but note that the above
translation of negated possibility would result in the same truth-table had the cor-
responding operator of negation been the Morganian one ¬2 –due to the bivalent
behavior of QT . Moreover, the logical constants of AR4[Oi] have not been defined
thus far, given that these are useless for the present purpose. However, contingency
requires some words on conjunction since the latter makes part of its definition. So
let max(x, y) and min(x, y) be the functions selecting the greater and lesser value
among x and y, respectively, given that 1 > 0. Then:

A(ϕ ∧ ψ) = 〈min(a1(ϕ),a1(ψ)),max(a2(ϕ),a2(ψ))〉.
See [12,13,15] for more information about these 4-valued logical constants.
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ϕ [A7]ϕ [A8]ϕ ¬1[A8]ϕ QTϕ

11 10 01 10 10

10 10 10 01 01

01 01 01 10 01

00 10 01 10 10

The above matrix accounts for quasi-truth as being false with every
formula whose logical value is determinately true or determinately false
–i.e., A(QTϕ)) = 01 whenever A(ϕ) ∈ {10, 01}.
Such an operator may also be seen as a proper translation by satisfying
the main negative features of quasi-truth, namely:

(i) �|= QTϕ→ ϕ
(ii) QTϕ,QT¬ϕ �|= ψ
(iii) QTϕ �|= ¬QT¬ϕ.9

Our final consideration will consist in combining the previous two
issues of the paper, opposition and quasi-truth, in order to pave the
way to a third new topic: quasi-oppositions. This will answer to the
question about whether there could be further non-standard relations of
opposition in a non-bivalent frame like V4.

3 Quasi-oppositions

Following [15], we assume that consequence and opposition can be treated
either as relations R(x, y) or as operators f(x) = y (without any specifi-
cation about the nature of the objects x and y). Consequence Cn(Γ, ϕ)
has been studied since Tarski though several features like monotonicity,
closure or structurality; and it has also be viewed as a possible operator
mapping from given sets to close sets. Opposition Op(ϕ, ψ) is tradi-
tionally considered as a relation between truth-values, and it has also
been turned into an operator op(ϕ) = ψ in the above reference. Given

9The translations of the formulas (i)-(iv) into AR4[Oi] and their corresponding
counter-models are the following, given the rules established in [14] and our previous
definition of QT :
τ(i) �|= QTϕ → [AA15]ϕ (counter-model: A(ϕ) = 00.)
τ(ii) QTϕ,QT¬2ϕ �|= ψ (counter-model: A(ϕ) = 11.)
τ(iii) QTϕ �|= ¬1QT¬2ϕ (counter=model: A(ϕ) = 11.)
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that logical oppositions are set of truth- and falsity-conditions between
‘opposed’ terms, truth-values constitute an essential feature in order to
make sense of them. In the present context of a 4-valued domain, our
main concern will be something like this: what sort of opposition is
there between one formula which is neither-true-nor-false and another
one which is both-true-and-false, for example?

One simple way to make an end to this discussion until its very opening
is by applying the rationale urged by Roman Suszko, thereby reject-
ing the logical relevance of many-valuedness and reducing it to only
two possible values: designated, or not designated. Thus, formulas are
said ‘designated’ whenever they include the value of truth; they are
‘not designated’, otherwise. There are at least two ways not to follow
this path, otherwise. Firstly, philosophical arguments –including those
about quasi-truth, gave some reason to develop a set of many-valued in-
ferences beyond Suszko’s strictly bivalent policy. Following this stance
introduced by Malinowski [11] and extended by Frankowski [7], there
may be more than one way to characterize semantic consequence (or ‘en-
tailment’) beyond the Tarskian classical pattern of truth-preservation.
Here is a remainder of the four ways of dealing with consequence in a
many-valued framework:

(Cnt) Γ |=t ϕ iff ∀v[(∀ψ ∈ Γ : v(ψ) ∈ D+)⇒ v(ϕ) ∈ D+]

(Cnf ) Γ |=f ϕ iff ∀v[(∀ψ ∈ Γ : v(ψ) �∈ D−)⇒ v(ϕ) �∈ D−]
(Cnq) Γ |=q ϕ iff ∀v[(∀ψ ∈ Γ : v(ψ) �∈ D−)⇒ v(ϕ) ∈ D+]

(Cnp) Γ |=p ϕ iff ∀v[(∀ψ �∈ Γ : v(ψ) �∈ D−)⇒ v(ϕ) ∈ D+]

In addition to the Tarskian pattern (Cnt), the other three extensions
depict semantic consequence as either a relation of non-falsity presenta-
tion (Cnf ), or a derivation of truth from non-refuted premises (Cnq),
or a derivation or mere plausibility from truth (Cnp).

Following the developments around 4-valued inference by Blasio &
Marcos & Wansing [4], three central issues will be approached in this
last section: (a) What does truth and falsity mean into such a 4-valued
frame? (b) How to systematize the kind of semantic consequence en-
dorsed by Malinowski’s line? (c) How to express the logical difference
between the relations of consequence and opposition into one and the
same framework?

With respect to (a), our 4-valued framework is such that the two main
sets of logical values D+ and D− will receive a special interpretation. For



375

although these are generally taken to be exclusive from each other, the
domain of values V4 motivates another treatment. For let D+ = {11, 10}
be the subset of designated values that are cases of truth, and D− =
{11, 01} the subset of antidesignated values that are cases of falsehood.
Then the glutty value 11 is both designated and antidesignated whereas
the gappy value 00 is none, which entails that

D+ ∩ D− �= ∅

D+ ∪ D− �= ℘(F )

This means that D− is not the mere complementary of D+, due to the
overlapping relation of truth and falsity in V4.

With respect to (b), one can make abstraction from the intuitive mean-
ing of truth-values and conceive an exhaustive set of relations between
designated and anti-designated sets. The reason why there are four
kinds of entailment can be explained in a combinatorial way, given that
it relies upon two clauses: belonging to the set of true formulas, and not
belonging to the set of false formulas. This results in a set of 22 = 4 pos-
sibles clauses for entailment, and we are going now to see how to extend
this set to further semantic clauses. Starting from an initial set of two
sets of formulas, i.e. designated and anti-designated, one can conceive
of further relations between formulas and whose clauses of satisfaction
do not consist in tracking truth whilst avoiding falsehood. Such is pre-
cisely the case with opposition, insofar as the latter essentially consists
in tracking falsehood for a given formula whenever its ‘opposed’ term is
true.

By thus introducing the additional two clauses of belonging to the set of
false formulas and not belonging to the set of true formulas, it results in a
set of 24 = 16 kinds of relations. Letting O be a general meta-operator
mapping between sets or their complementaries, two main interpreta-
tions of O will be naturally of interest in the following: consequence
Cn, and opposition Op. Here is an exhaustive list of possible relations
between subsets of values Di = {D+,D−} ∈ V4:

from D+ onto D+

(i) v(ϕ) ∈ D+ ⇒ v(ψ) ∈ D+

(ii) v(ϕ) �∈ D+ ⇒ v(ψ) �∈ D+

(iii) v(ϕ) ∈ D+ ⇒ v(ψ) �∈ D+
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(iv) v(ϕ) �∈ D+ ⇒ v(ψ) ∈ D+

from D+ onto D−

(v) v(ϕ) ∈ D+ ⇒ v(ψ) ∈ D−

(vi) v(ϕ) �∈ D+ ⇒ v(ψ) �∈ D−

(vii) v(ϕ) ∈ D+ ⇒ v(ψ) �∈ D−

(viii) v(ϕ) �∈ D+ ⇒ v(ψ) ∈ D−

from D− onto D+

(ix) v(ϕ) ∈ D− ⇒ v(ψ) ∈ D+

(x) v(ϕ) �∈ D− ⇒ v(ψ) �∈ D+

(xi) v(ϕ) ∈ D− ⇒ v(ψ) �∈ D+

(xii) v(ϕ) �∈ D− ⇒ v(ψ) ∈ D+

from D− onto D−

(xiii) v(ϕ) ∈ D− ⇒ v(ψ) ∈ D−

(xiv) v(ϕ) �∈ D− ⇒ v(ψ) �∈ D−

(xv) v(ϕ) ∈ D− ⇒ v(ψ) �∈ D−

(xvi) v(ϕ) �∈ D− ⇒ v(ψ) ∈ D−

With respect to (c), let us recall that the framework assumed in [2] was
bivalent. This gave rise to a standard view of the square of opposition,
in which whatever is not true is false and conversely. That is, in terms
of structured values:

a1(ϕ) = 1⇒ a2(ϕ) = 0 and a1(ϕ) = 0⇒ a2(ϕ) = 1.

Such a normal or complete square may be depicted as follows, thereby
fulfilling the clauses of consistency and completeness.

a1(ϕ) = 0
ct

sb
��

cd

a2(ϕ) = 0

sb
��cd

a2(ϕ) = 1
sct

a1(ϕ) = 1
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The situation is sensibly different into a ‘non-standard square’, that is,
a non-bivalent set of relations where the aforementioned clauses are not
followed:

a1(ϕ) = 1 �⇒ a2(ϕ) = 0 or a1(ϕ) = 0 �⇒ a2(ϕ) = 1

So what should such a non-standard square look like? Given that
the extension of logical values and their subsequent logical relations must
complicate the resulting picture, one may begin answering to the above
question by making a list of the possible relations of consequence and
opposition. It appears that each of the four aforementioned relations of
many-valued consequence corresponds to one case of the exhaustive list
of the 16 O-relations (i)-(xvi) . Thus,

Many-valued consequence

(Cnt) ϕ ∈ D+ ⇒ ψ ∈ D+ (i)

(Cnf ) ϕ �∈ D− ⇒ ψ �∈ D− (xvi)

(Cnq) ϕ ∈ D+ ⇒ ψ �∈ D− (vii)

(Cnp) ϕ �∈ D− ⇒ ψ ∈ D+ (xii)

Bueno & Souza [5] depicted quasi-truth in terms of partial structures
whose final conclusion is open, which means that the formula into consid-
eration may be true without being definitely so through the justification
process [4]. For this reason, the above three non-Tarskian characteriza-
tions of consequence Cnf , Cnq, Cnp may be taken to be various sorts of
quasi-consequence. Likewise, the introduction of untrue and unfalse sets
with D+ and D− also seems to be in position make sense of the coming
quasi-oppositions.

Roughly speaking, each case of ‘quasi’-X is a situation in which the as-
sessed object (proposition, concept, logical system, or whatever) is not
X whilst being possibly so. Let us take the case of contrariness. Accord-
ing to the standard definition, any two objects are contrary to each other
if, and only if, they cannot be true together in such a way that the sec-
ond is false whenever the first is true. In a case of of quasi-contrariness,
however, the second term is merely not true (or untrue) whenever the
first is true. Assuming that being almost or being still in position to be
(true or false) affords an intuitive meaning of the ‘quasi’-phrase, here
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is the list of quasi-oppositions Opf , Opq, Opp that correspond to the re-
maining cases of non-consequence relations (or operators) O.

Many-valued opposition

Contrariness

(Ctt) ϕ ∈ D+ ⇒ ψ ∈ D− (v)

(Ctf ) ϕ �∈ D− ⇒ ψ �∈ D+ (x)

(Ctq) ϕ ∈ D+ ⇒ ψ �∈ D+ (iii)

(Ctp) ϕ �∈ D− ⇒ ψ ∈ D− (xvi)

Contradictoriness

(Cdt) ϕ ∈ D+ ⇒ ψ ∈ D− and ϕ ∈ D− ⇒ ψ ∈ D+ (v)⊗ (ix)

(Cdf ) ϕ �∈ D− ⇒ ψ �∈ D+ and ϕ �∈ D+ ⇒ ψ �∈ D− (x)⊗(vi)

(Cdq) ϕ ∈ D+ ⇒ ψ �∈ D+ and ϕ �∈ D+ ⇒ ψ ∈ D+ (iii)⊗(iv)
(Cdp) ϕ �∈ D− ⇒ ψ ∈ D− and ϕ ∈ D− ⇒ ψ �∈ D− (xvi)⊗(xv)

Subcontrariness

(Sctt) ϕ ∈ D− ⇒ ψ ∈ D+ (ix)

(Sctf ) ϕ �∈ D+ ⇒ ψ �∈ D− (vi)

(Sctq) ϕ �∈ D+ ⇒ ψ ∈ D+ (iv)

(Sctp) ϕ ∈ D− ⇒ ψ �∈ D− (xv)

Subalternation

(Sbt) ϕ ∈ D+ ⇒ ψ ∈ D+ (i)

(Sbf ) ϕ �∈ D− ⇒ ψ �∈ D− (xvi)

(Sbq) ϕ ∈ D+ ⇒ ψ �∈ D− (vii)

(Sbp) ϕ �∈ D− ⇒ ψ ∈ D+ (xii)

It clearly appears that subalternation and consequence are one and the
same logical relation (or operator), at least when these resort to the same
non-standard kind Cnx and Sbx. This amounts to say that every such
O-mapping is a single case of opposition, reminding that subalternation
can be parsed as the iteration of two simple opposite-forming operators
[14].

Two future investigations might be pursued with respect to this new
concept of quasi-opposition, provided that the latter turn out to be a
relevant issue. One first work would have to do with the philosophical
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applications to it into informal contexts use, just as q-entailment and p-
entailment had been interpreted by their authors in terms of plausibility
and degrees of truth [7,11]. Another work would be about a calculus
of quasi-operators, thus extending the work devoted to consequence-
forming operators [15].
Thanks already to Edelcio for opening the way towards these potential
tools of logic.
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