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Abstract: This essay is a contribution to the historical phenomenology of science, 
taking as its point of departure Husserl’s later philosophy of science and Jacob 
Klein’s seminal work on the emergence of the symbolic conception of number in 
European mathematics during the late sixteenth and seventeenth centuries. Since 
neither Husserl nor Klein applied their ideas to actual theories of modern math-
ematical physics, this essay attempts to do so through a case study of the concept 
of “spacetime.” In §1, I sketch Klein’s account of the emergence of the symbolic 
conception of number, beginning with Vieta in the late sixteenth century. In §2, 
through a series of historical illustrations, I show how the principal impediment 
to assimilating the new symbolic algebra to mathematical physics, namely, the 
dimensionless character of symbolic number, is overcome via the translation of the 
traditional language of ratio and proportion into the symbolic language of equa-
tions. In §§3–4, I critically examine the concept of “Minkowski spacetime,” spe-
cifically, the purported analogy between the Pythagorean distance formula and the 
Minkowski “spacetime interval.” Finally, in §5, I address the question of whether 
the concept of Minkowski spacetime is, as generally assumed, indispensable to 
Einstein’s general theory of relativity.
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  1.  Joseph Cosgrove is Associate Professor of Philosophy at Providence College, Providence, 
Rhode Island. His philosophical work centers on early modern philosophy and historical approaches 
to the philosophy of science. His principal current interest is the philosophical significance of sym-
bolic mathematical representation in physics.
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“The only reason he [the relativist] can do his calculations is because he first 
stripped his datum of any qualitative character and considered it as an abstract 
number.”

Émile Meyerson, The Relativistic Deduction2

Einstein’s popular exposition of the theory of relativity includes a humorous char-
acterization of the process of setting up a Cartesian coordinate grid. He imagines a 
marble table top and a set of rigid rods, cut to length and laid out on the table top 
in squares: “It is a veritable wonder,” Einstein remarks, “that we can carry out this 
business without getting into the greatest of difficulties. We only need to think of 
the following”:

If at any moment three squares meet at a corner, then two sides of the fourth 
square are already laid, and, as a consequence, the arrangement of the remain-
ing two sides of the square is already completely determined. But I am now 
no longer able to adjust the quadrilateral so that its diagonals may be equal. If 
they are equal of their own accord, then this is an especial favor of the marble 
slab and of the little rods, about which I can only be thankfully surprised. 
We must needs experience many such surprises if the construction is to be 
successful.3

So you better hope the rods line up, and thank your maker, or perhaps the rods 
themselves, if they do.

Without reading too much into Einstein’s tongue-in-cheek remark about 
thanking the rods, we should not fail to note the substantive issue raised in 
this passage, one upon which Hermann Weyl would soon press Einstein more 
forcefully in connection with the latter’s continued reliance upon such gifts in 
his theory of gravity.4 Einstein, while conceding the questionable validity of the 
very concept of rigid rods and clocks, nevertheless insisted that actual rods and 
clocks “work,” so to speak, enabling us to subject our theories to empirical test.5 
Therefore, while ideally we would not have to depend upon such “elaborate appli-
ances,” as Eddington called them, from the perspective of the practicing physicist 
the concept of the rigid rod and clock remains indispensable.

Weyl was unimpressed by Einstein’s defense of rigid rods and clocks. His 
objection, as he put it, had nothing to do with the actual behavior of rods and 
clocks, but was instead a philosophically inspired objection based on Weyl’s study 
of Edmund Husserl’s transcendental phenomenology, specifically, Husserl’s Ideas 
Pertaining to a Pure Phenomenology, volume one, of 1913. Weyl argued that general 

  2.  Émile Meyerson, The Relativistic Deduction, trans. David A. Sipfle and Mary-Alice Sipfle 
(Dordrecht: D. Reidel, 1985; first published 1925), 111.

  3. A lbert Einstein, Relativity: The Special and General Theories, trans. Robert W. Lawson, with 
an introduction by Nigel Calder (New York: Random House, 2006 [1916]), 76–7.

  4. O n the exchange between Weyl and Einstein, see Thomas Ryckman, The Reign of Relativity 
(Oxford: Oxford University Press, 2005), chapters 4–6.

  5. S ee, for instance, “Geometry and Experience” (1921), trans. W. Perrett and G. B. Jeffery, in 
Einstein, Ideas and Opinions (New York: Modern Library, 1994 [1954]), 257–9.
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relativity was marred by a blemish imported via Riemannian geometry, namely, 
the illegitimate congruent displacement of vectors in respect of length. The very 
concept of congruence, maintained Weyl, is physically meaningful only in the 
immediately intuitable, infinitesimal region of an ideal observer. Accordingly, 
Riemannian geometry lacks for what Husserl terms an “eidetic intuition” or expe-
riential insight into the meaning of congruence (“intuition” in the phenomenolog-
ical sense always intending something conceptual, the experientially given, essential 
aspect of an object). Thus, for Weyl, an intuitively intelligible conception of “con-
gruence” must base distant congruence on directly intuitable local congruence.6 
Only by attending to the phenomenological context of Weyl’s criticism can we 
make sense of his otherwise puzzling assertion, skeptically regarded by Einstein, 
that the actual behavior of rods and clocks, or atoms and their spectral lines, or 
the like, has “nothing to do with the ideal process of congruent displacement.”7 
Indeed, the parallel with Einstein’s own treatment of simultaneity can hardly be 
lost on the attentive reader of the kinematical section of Einstein’s 1905 paper 
on special relativity. Einstein there argues that simultaneity is an essentially local 
concept, such that physical intelligibility accrues to the concept of distant simul-
taneity only indirectly, based on its originary local sense. Einstein could well have 
asserted in his 1905 paper on special relativity that the “ideal constitution” of 
simultaneity, its phenomenological essence or eidetic structure, has “nothing to do 
with” the empirical behavior of clocks, light beams, or any other particular physi-
cal phenomenon.

Weyl’s reinterpretation of general relativity represents an attempt at phenom-
enological reconstruction. In this essay, I wish to broaden that phenomenological 
approach by considering the theory of relativity in light of the historical phenom-
enological perspective set forth by Husserl in his last major work, The Crisis of the 
European Sciences of 1936. Here philosophy of science, understood by Husserl 
now as historical phenomenology of science, has for its task bringing the concepts 
of modern mathematical physics to intuitive clarity through a historical “desedi-
mentation,” as it were, apart from which, argues Husserl, “science as given in its 
present-day form … is mute as a development of meaning.”8 According to the 
Husserl of Crisis, that is to say, the very sense of the concepts of modern math-
ematical physics is constituted by a series of historical accretions of meaning or 
“sedimentations” which can only be brought to light by a philosophical analy-
sis, grounded in historical research, through which such sedimented meanings 

  6. S ee, for instance, Hermann Weyl “Gravitation and Electricity” (1918), trans. Perrett and 
Jeffery, in Albert Einstein, H. A. Lorentz, H. Weyl and H. Minkowski, The Principle of Relativity 
(New York: Dover, 1952), 201–16.

  7.  Quoted in Ryckman, Reign of Relativity, 87.
  8. E dmund Husserl, The Crisis of European Sciences and Transcendental Phenomenology 

(originally unfinished and unpublished), trans. David Carr (Evanston, IL: Northwestern University 
Press, 1970), 58. The term “desedimentation,” never actually used by Husserl, was first used by 
Jacques Derrida. See Burt C. Hopkins, The Origin of the Logic of Symbolic Mathematics: Edmund 
Husserl and Jacob Klein (Bloomington, IN: Indiana University Press, 2011), 71.
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are “reactivated.” Elaborating on the theme, Husserl reprehends the “surreptitious 
substitution,” as he sees it, of symbolic mathematical abstractions for intuitable 
physical realities, which substitution amounts to a kind of “reification of method,” 
where the means of representing the world is mistaken for the thing represented:

Mathematics and mathematical science, as a garb of ideas, or the garb of 
symbols of the symbolic mathematical theories, encompasses everything 
which, for scientists and the educated generally, represents the life-world, 
dresses it up as ‘objectively actual and true’ nature. It is through the garb of 
ideas that we take for true being what is actually a method …”9

To bring to intuitive clarity this “garb of ideas,” via a phenomenological investi-
gation grounded historically, is the task laid out by Husserl’s later philosophy of 
science.

Husserl did not carry out the historically grounded investigation he regarded 
as a necessary corrective to the reification of method in modern mathematical 
physics. However, even before Husserl’s Crisis was published, his interpreter Jacob 
Klein had already carried out such an investigation, at least in part, in his ground-
breaking study Greek Mathematical Thought and the Origin of Algebra, where Klein 
traces the transformation of the conception of number in European mathemat-
ics, inaugurated by Vieta in the late sixteenth century.10 Klein, for his part, while 
emphasizing the implications of his work on symbolic mathematics for our philo-
sophical understanding of modern mathematical science, did not extend his inves-
tigations to natural science itself, and in particular to the assimilation of symbolic 
mathematics to mathematical physics. His investigations thus leave unfinished the 
task of a phenomenological account of modern mathematical physics. No such 
phenomenological account as a whole will be attempted in this paper, but rather 
simply a case study, in outline form, of the concept of “spacetime” originated by 
Hermann Minkowski, in which space and time are merged into a single (four-
dimensional) continuum with time treated as if it were a geometrical dimension.11

It bears underlining that the task of “desedimentation” envisioned by Husserl, 
and actually carried out by Klein for the modern symbolic concept of number, 
remains a philosophical rather than historical task per se. That is, we attempt to 
uncover the physical or intuitive sense of a concept, to the degree possible, by 
tracing its genesis in the directly experienced “life world.” An alternate possibility, 
of course, is a concept’s “exploding,” as it were, into incoherence. In the present 
study, I demonstrate that when subjected to this type of analysis, the concept of 
“spacetime,” at least as conventionally understood by physicists and philosophers 
of science as a single geometrical continuum (“semi-Riemannian manifold”), does 

  9. H usserl, Crisis, 51.
10.  Jacob Klein, Greek Mathematical Thought and the Origin of Algebra, trans. Eva Brann (New 

York: Dover, 1968 [1934–36]).
11.  The generalized version of Minkowski spacetime in Einstein’s theory of gravity is customarily 

referred to as a “semi-Riemannian manifold.”
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in fact explode into incoherence. At the same time, however, the analysis will lend 
greater intelligibility to Einstein’s special and general theories of relativity.

The essay consists of five sections. First, I sketch Klein’s seminal contribution 
on the emergence of the symbolic conception of number beginning with Vieta 
in the late sixteenth century. In §2, through a series of historical illustrations, I 
show how the principal impediment to assimilating the new symbolic algebra to 
mathematical physics, namely, the dimensionless character of symbolic number, 
is overcome via the translation of the traditional language of ratio and proportion 
into the symbolic language of equations. In §3–4, I critically examine the concept 
of “Minkowski spacetime,” highlighting the essential role of symbolic-algebraic 
representation in the construction of this concept, and analyzing the supposed 
analogy between the Pythagorean distance formula and the Minkowski “spacetime 
interval.” Finally, in §5, I consider whether the concept of Minkowski spacetime 
is, as generally assumed, indispensable to Einstein’s general theory of relativity.

I embark upon the following study in the spirit of Heinrich Hertz, when he 
remarked regarding his critique of the foundations of the science of mechanics that 
he was driven not by any perceived clash between its predictions and experimental 
results, but rather by the desire “to rid myself of the oppressive feeling that to me 
its elements were not free from things obscure and unintelligible.”12

1  Klein on Symbolic  Number

According to Jacob Klein, in Greek Mathematical Thought, the concept of 
“number” in European mathematics undergoes a decisive change in intelligibil-
ity with Vieta’s Analytical Art of 1591.13 I briefly summarize Klein’s thesis. In the 
Greek or “pre-modern” mathematical tradition, if you will, the concept of number 
accords without exception with Euclid’s definition in Book VII of the Elements: “A 
number (arithmos) is a multitude composed of units.”14 That is to say, a number 
is an assemblage of countable items themselves, and must accordingly always be a 
determinate amount of a specific kind of units:

The fundamental phenomenon which we should never lose sight of in deter-
mining the meaning of arithmos is counting, or more exactly, the counting-off, 

12. H einrich Hertz, Principles of Mechanics, trans. D. E. Jones and J. T. Walley (New York: 
Dover, 1956), 33.

13.  Vieta’s precedence, for Klein, lies in his reinterpretation of Diophantus’ algebra, such that the 
Diophantine “species” is rendered a symbolic “generalized number” upon which numerical calcula-
tions can be performed. Klein also notes, however, that Vieta’s reinterpretation of ancient algebra, 
or Greek “logistic,” presupposes an implicitly symbolic conception of number already existing in 
the sixteenth century. The definitive study on Klein’s interpretation of symbolic number is Burt C. 
Hopkins, The Origin of the Logic of Symbolic Mathematics: Edmund Husserl and Jacob Klein. For a 
shorter treatment, see Hopkins, “Jacob Klein on François Vieta’s Establishment of Algebra as the 
General Analytical Art,” Graduate Faculty Philosophy Journal 25:2 (2004): 51–85.

14. E uclid, The Elements, trans. T. L. Heath (New York: Dover, 1956), vol. 2, 277.
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of some number of things. These things, however different they may be, are 
taken as uniform when counted; they are, for example, either apples, or apples 
and pears which are counted as fruit, or apples, pears, and plates which are 
counted as “objects.” Insofar as these things underlie the counting process they 
are understood as of the same kind. … Thus the arithmos indicates in each case 
a definite number of definite things.15

This direct or natural understanding of number is reflected in our commonsense 
manner of speaking, as when, for example, we refer to a “dozen eggs” and by 
“dozen” mean not “the number 12,” but the eggs themselves as a countable collec-
tion of units. The identical conception governs also Greek arithmetical science, the 
difference being that for the latter, we deal with a field of “pure” units or monads 
rather than particular kinds like apples, fruit, or such:

For even a “pure” number, i.e., a number of “pure” units, is no less “concrete” 
or “specified” than a number of apples. What distinguishes such a number is 
in both cases its twofold determinateness: it is, first of all, a number of objects 
determined in such and such a way, and it is, secondly, just so and so many of 
these objects.16

Accordingly, regardless of whatever questions might be raised regarding the mode 
of being of the pure monads, the sense of “number” remains the same: a countable 
collection of determinate units.

For modern algebra beginning with Vieta, by contrast, number is recast as a 
symbolic entity defined by its general relationships to other numbers in a sym-
bolic calculus. One might go so far as to say that to be a number in the modern 
sense is to be the possible value of an algebraic variable. As Klein demonstrates, 
the modern symbolic conception of number is not simply “more abstract,” but is 
rather a symbolic construction upon an abstraction, through which the abstract 
concept of number, as found, for instance, in Aristotle, is rendered a “number” in 
its own right (Vieta’s “species”):

As soon as “general number” is conceived and represented in the medium 
of species as an “object” in itself, that is, symbolically, the modern concept 
of “number” is born. Usually its development is explained by a reference to 
its ever increasing “abstractness.” But this facile and easily misunderstood 
manner of speaking leaves its true and complicated structure completely in 
the dark. The modern concept of “number,” as it underlies symbolic calculi, is 
itself, as is that which it intends, symbolic in nature—it is identical with Vieta’s 
concept of species.17

Of decisive importance for our investigation is that numbers in the sense of 
Vietan “species” are now dimensionless entities upon which numerical operations 

15. K lein, Greek Mathematical Thought, 46.
16.  Ibid., 48. For the Platonic tradition, the pure units, which serve as the basis for a science of 

arithmetic, are separately existing, non-sensible monads; whereas for the Aristotelian tradition they 
are abstracted, “neutral” monads.

17.  Ibid., 175–6.
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are nevertheless performed as if they were actual quantities in their own right. In 
Klein’s words,

While every arithmos intends immediately the things or the units themselves 
whose number it happens to be, his [Vieta’s] letter sign intends directly the 
general character of being a number which belongs to every possible number, 
that is to say, it intends “number in general” immediately, but the things or 
units which are at hand in each number only mediately. In the language of the 
schools: the letter sign designates the intentional object of a “second inten-
tion” (intentio secunda), namely of a concept which itself directly intends 
another concept and not a being. Furthermore—and this is the truly decisive 
turn—this general character of number or, what amounts to the same thing, 
this “general number” in all its indeterminateness, that is, its merely possible 
determinateness, is accorded a certain independence which permits it to be 
the subject of “calculational” operations.18

This is the conception of number that we take for granted today.
Although it is often said that that Greek mathematics recognized only the 

“natural numbers,” as if the Greek conception of number simply referred to a 
subset of our own, such an assertion betrays a failure of historical perspective. 
The Greeks knew nothing of “natural numbers” in our sense of the term, for the 
modern conception of “natural number” is already symbolic-dimensionless from 
the outset. Greek mathematics had no more conception of “the number 4” in 
our sense than it did of “the number –4.” Yet only through the natural concep-
tion of number that governed Greek mathematics can an indirect sense can accrue 
to the dimensionless, symbolic numbers employed in the equations of modern 
mathematical physics. For this reason, the modern symbolic-algebraic conception 
of number should not be regarded simply as advance on the Greek conception, 
although, to be sure, it is that in an obvious sense; but more significantly, the 
modern conception represents a transformation of the Greek conception, founded 
upon the latter and carrying it implicitly as a sedimented meaning-constituent, 
while nevertheless transgressing the very intelligibility of the Greek conception.

Having established the conceptual structure of “number” in the modern 
symbolic sense, Klein next demonstrates how Descartes succeeds in transforming 
geometry into a symbolic representation of equations.19 The procedure is explicitly 
outlined by Descartes himself in his Discourse on Method (1637):

Nor did I have any intention of trying to learn all the special sciences com-
monly called ‘mathematics’ [i.e., astronomy, music, and optics]. For I saw 
that, despite the diversity of their objects, they agree in considering nothing 
but the various relations or proportions that hold between these objects. And 
so I thought it best only to examine such proportions in general … Next I 
observed that in order to know these proportions I would need sometimes 
to consider them separately, and sometimes merely to keep them in mind 

18. K lein, Greek Mathematical Thought, 174.
19. K lein, Greek Mathematical Thought, 197–211.
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or understand many together. And I thought that to better consider them 
separately I should suppose them to hold between lines … But in order to 
keep them in mind or understand several together, I thought it necessary to 
designate them by the briefest possible symbols. In this way I would take over 
all that is best in geometrical analysis and in algebra, using the one to correct 
all the defects of the other.20

For Descartes, equations are therefore symbolic abbreviations for proportions 
among ratios, which latter can themselves be symbolized by lines (or geometrical 
figures in general). More specifically, Descartes’ particular innovation is to employ 
line lengths as symbolic representations of symbolic dimensionless numbers, and 
then to use these “coordinate systems,” as we call them, to “graph” equations.

Consider, if you will, the following diagrams:

Figure 1  “Geometrical Circle”

Figure 2  “Symbolic Circle”

20. D escartes, Discourse on Method, Part Two, in The Philosophical Writings of Descartes, trans. 
John Cottingham et al., 3 vols. (Cambridge: Cambridge University Press, 1985–91), vol. 1, 120–21.
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Let us regard Figure 1 as a circle drawn with pencil and compass, maybe from 
the books of Euclid or Apollonius. This drawn figure directly represents a geo-
metrical circle, a figure in space. It is not a graph. Figure 2 is a symbolic repre-
sentation or graph of an equation, which itself represents generalized quantitative 
relationships between symbolic dimensionless numbers. Coincidentally, the graph 
of the equation in Figure 2 also has the shape of a circle in space, even though it 
is not a circle per se, but rather a graph of the equation. Such graphs, the plot of a 
circle, for example, must accordingly be understood as symbolic representations of 
equations (so r 2 = x2 + y2), which in turn themselves symbolically represent gener-
alized relationships between symbolic dimensionless numbers, which themselves 
represent whatever it is we are actually talking about, perhaps a geometrical circle 
(but perhaps not).

Notice that “geometry” occupies two distinct levels here, functioning at one 
level as a symbolic representation of generalized quantitative relationships, and at 
another as a possible subject matter for such representation. I trust the reader will 
agree that there is ample potential for Husserlian “sedimentation” in these layers 
of symbolic representation. Klein’s claim in Greek Mathematical Thought, the full 
argument for which I will not review here, is that Descartes implicitly identifies 
the symbolic circle with the real circle in space; and more generally, that Descartes 
has actually created a “symbolic space” and implicitly identified that symbolic 
space with physical space, in the sense that he attributes to physical space the 
formal properties of symbolic space. Still more provocatively, Klein suggests that 
this Cartesian “symbolic space,” now surreptitiously identified with physical space, 
subsequently becomes the proximate object of modern mathematical physics. A 
prime candidate here, of course, would be “Minkowski space,” a symbolic space 
used for the representation of a theoretical “spacetime.”

Two decisive and closely related features of modern mathematics can be traced 
to the symbolic conception of number emerging in European science in the six-
teenth and seventeenth centuries. First, while “pre-modern,” non-symbolic math-
ematics refers directly to things, such that arithmetic is directly “about” collections 
of countable objects and geometry is directly about figures in space, the proximate 
object of modern symbolic mathematics is general symbolic possibilities. Second, 
and by consequence, modern formal mathematical systems are self-referential in 
a distinctive sense. That is to say, such systems are in the first place “about them-
selves”; only indirectly are they correlated, or “coordinated,” if you like, to things 
in the world. It is for this reason that the assimilation of symbolic mathematics to 
physics raises a unique set of questions regarding modern mathematical physics 
and its relationship to the experienced physical world. At the most general level, 
the symbolic conception of number is emblematic of a symbolic way of think-
ing that determines modern science and even, Klein suggests, modern civilization 
itself.21 At a more specific level, however, we can ask how the symbolic conception 

21.  “Thus, our own life does not belong to us. We appear to be in the most direct contact with 
the world around us, but in reality the vast machinery of our society permits us to perceive the world 
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of number actually functions in the mathematics of modern physics. What are the 
conditions for the employment of symbolic number, and how are mathematical 
concepts in physics, previously expressed by means of the traditional mathematics 
of ratio and proportion, reformulated in terms of symbolic algebra? It is to this 
more specific task that we will be devoting ourselves in the next section.

2  The Physical  Sense of  Equations in  
Modern Mathematical  Physics

If the symbolic conception of number is to be deployed in physics, there exists an 
obvious obstacle to be overcome; namely, how to represent the inherently dimen­
sional quantities of the physical world by means of the dimensionless symbolic 
numbers employed in algebraic “formulae.” Clearly, the equations or formulae of 
modern mathematical physics can have an indirect meaning only. We have only to 
observe that algebraic formulae equate quantities, which require unit conventions 
for their physical sense, while proportions directly equate relations (ratios) between 
quantities, with no necessary reference to unit conventions. Moreover, the equa-
tions of physics employ arithmetical operations that are nonsensical if performed 
directly on dimensional quantities. For instance, in the formula for momentum 
p = mv, what could it mean to “multiply” a quantity of mass by a quantitiy of 
velocity? Euclid’s definition of multiplication characterizes the operation, in a per-
fectly intelligible way, as repeated addition: “A number is said to multiply a number 
when that which is multiplied is added to itself as many times as there are units in 
the other, and thus some number is produced.”22 Thus, three kilograms taken four 
times is twelve kilograms, but there is no more sense to saying “three kilograms 
taken four feet per second times” than there is to saying “three apples taken four 
oranges times.” Strictly speaking, that is, quantities cannot intelligibly be multi-
plied together. We perform such algebraic operations by regarding the quantities 
as symbolic dimensionless numbers, multiplying them together, and then “plug-
ging” the result back into physically intelligible units (e.g., given 3 kg × 4m/sec we 
multiply “3×4” and then plug “12” into the units of momentum [kg-m/sec]). The 
operation therefore cannot be even carried out except by means of the modern, 
symbolic conception of number.

The traditional understanding of physics in terms of ratio and proportion is 
plainly at work in Galileo. Since Galileo neither knew what an equation was nor 

only through generally accepted views. The directness of our contact with the world is of the same 
symbolic character as the concepts we use to understand it. We can comprehend how our whole 
social and economic system, which we term Capitalism, and which is, in its origins, closely con-
nected to the modern idea of knowledge and science, has acquired such symbolic unreality.” Jacob 
Klein, “Modern Rationalism,” in Klein, Lectures and Essays, ed. Robert W. Williamson and Elliott 
Zuckerman (Annapolis, MD: St John’s College Press, 1985), 64. 

22. E uclid, Book VII, Definition 15, 278. 
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operated with the symbolic conception of number at all, we will misunderstand 
his mathematical conception if, as is often done, we translate the method of ratio 
and proportion he employs into algebraic equations. Thus, when Galileo says, for 
instance, in Two New Sciences (1638), that if a body accelerates uniformly, “the 
spaces run through in any times whatever are to each other as the duplicate ratio 
of their times; that is, as the squares of those times,”23 he does not mean by “the 
square of time” that we are to “multiply” time by itself, a senseless operation in any 
case. Multiplication, recall, insofar as we have any conception of it that could be 
intelligibly applied to the dimensional quantities of physics, is repeated addition. 
While we are used to performing the operation “2 seconds times 2 seconds,” for 
example, by multiplying “2×2” and then appending the units “sec2,” we obviously 
have no direct physical conception of a “square second.”

Galileo himself uses geometrical squares (built on line lengths which them-
selves represent quantities of time) to represent duplicate or compound ratios of 
time intervals.24 Note that in the method employed by Galileo, the geometri-
cal squares function representatively rather than as objects of representation. For 
clearly, Galileo’s law of accelerated motion, which we are accustomed to expressing 
algebraically in the form s = at 2/2, has no more essentially to do with geometrical 
squares than it does with multiplying time by itself.25 Likewise, while our algebraic 
expression t2 might appear, at first glance, to represent some physical quantity 
of interest, it actually represents no physical quantity at all, but rather represents 

23. G alileo, Two New Sciences, Third Day, “On Naturally Accelerated Motion,” Proposition II, 
Theorem II, trans. Stillman Drake (Toronto: Wall and Emerson, 2000 [1638]), 166.

24. A  duplicate ratio, for readers unfamiliar with the term, is a species of “compound ratio” 
whereby a ratio is compounded with itself. A compound ratio, in turn, is a ratio formed by combin-
ing two or more ratios in a prescribed way. The compounding of ratios is defined geometrically in 
Euclid, VI. 23, but since compounding is not a geometrical operation per se, I will here suggest a 
more general definition for our purposes: Given the ratio a:b and the ratio b:c, the compounded ratio 
is a:c (where a, b, and c are any quantities of the same kind). For illustrative purposes, to compound 
6:5 and 4:3, we first rewrite those ratios as 24:20 and 20:15 (thereby obtaining the requisite middle 
term b). Compounding yields 24:15 or 8:5. Thus the compounded ratio is the ratio formed by the 
extremes when we take the antecedent of one ratio as the consequent of that ratio with which the 
former is to be compounded. Accordingly, in our example we took 4 (the antecedent of 4:3), and 
made it the consequent of a 6:5 ratio (which, of course, required our rewriting the original 4:3 as 
20:15). In the Galilean example, where time is represented by the length of the side of a square, the 
ratio of the area of the square to the unit of area gives the duplicate ratio. Note that strictly speaking, 
compounding is not possible unless we are dealing with ratios all of whose terms are homogeneous 
in dimension. For example, while we can place the ratio 6 meters to 5 meters in proportion with 
the ratio 6 seconds to 5 seconds, we cannot “compound” these ratios, since the compounded ratio 
would be, per impossibile, 8 meters to 5 seconds. This latter operation is nevertheless often referred 
to as “compounding,” since it translates into algebra as multiplication of fractions, just as does the 
compounding of ratios in the proper sense of the term.

25. W ith this example we might contrast, for instance, the Pythagorean Theorem expressed alge-
braically, in which case the squared terms genuinely represent physical quantities, namely, areas 
of actual geometrical squares. Pythagorean squares are squares, not duplicate ratios, while Galileo’s 
squares are representations of duplicate ratios of times. 
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indirectly a relation (ratio) between physical quantities. Let us term such algebraic 
artifacts “pseudo-quantities” or symbolic quantities, since they function as symbolic 
abbreviations for relations between actual quantities. We will see that such sym-
bolic quantities are generated whenever ratios are treated as if they were fractional 
numbers and then subjected to numerical operations such as multiplication, divi-
sion, and so forth.26

Isaac Newton, writing some fifty years after Galileo, is willing to countenance 
the multiplication and division of heterogeneous physical quantities, although he 
clearly regards such operations as a kind of abbreviated notation for ratios and 
proportions. For instance, at the outset of the Principia (1687), Newton character-
izes the concept of “quantity of motion” in traditional terms of ratio and propor-
tion: “Therefore, in a body twice as large, with equal velocity, it [the motion] is 
double, and with double velocity, quadruple” (“ideoque in corpore duplo maiore, 
aequali cum velocitate, duplus est, & dupla cum velocitate quadruplus”).27 On the 
other hand, in his scholium to the Laws of Nature, Newton obtains the quantity 
of motion by “multiplying” (“ducere … in”)28 the quantity of matter or mass by the 
velocity, significantly adding, in the third edition of 1726, the qualifying phrase 
“as I thus shall say” (“ut ita dicam”), as if to assure the reader, “I know you can’t 
really do this.”29

26.  The distinction I have drawn between physical quantities and symbolic quantities has prec-
edent in J. B. Stallo’s The Concepts and Theories of Modern Physics (1881), where Stallo complains of 
“the error respecting the true nature of arithmetical and algebraic quantities [which] has become next 
to ineradicable by reason of the inveterate use of the word ‘quantity’ for the purpose of designating 
indiscriminately both extended objects or forms of extension and the abstract numerical units or 
aggregates by which their metrical relations are determined … The use of letters as algebraic symbols, 
i.e., as representatives of numbers, is in itself a serious (though, perhaps unavoidable) infirmity of 
mathematical notation. In the simple formula, for instance, expressive of the velocity of a moving 
body in terms of space and time (v =   s 

 v = t  ), the letters have a tendency to suggest to the mathematician 
that he has before him direct representatives of the things or elements with which he deals, and not 
merely their ratios expressible in numbers. In every algebraic operation the use of letters obscures the 
real nature, both of the processes and of the results, and tends to strengthen ontological preposses-
sions.” J. B. Stallo, The Concepts and Theories of Modern Physics, third edition (1888), ed. Percy W. 
Bridgman (Cambridge, MA: Harvard University Press, 1960), 275, 277.

27.  Newton, Principia, p. 1 (my translation)..
28.  “Ducere in” is geometrical language; the construction of a rectangle with sides represent-

ing mass and velocity respectively is implied. See Newton, Arithmetica Universalis, trans. Raphson, 
1720, facsimile (http://www3.babson.edu/archives/newton_collection/UniversalArithmetick1720.
pdf ), 4–5. This text was originally published in 1707 without Newton’s approval, and Newton’s 
name did not appear on the English translation of 1720. A second Latin edition appeared in 1722. 
Although in this text Newton explicitly dismisses the traditional Euclidean or intuitive conception of 
number (“multitude of units”) in favor of the Vietan symbolic conception (“species”), he nevertheless 
attempts, at least for negative numbers (“less than nothing”), an intuitive accounting by means of 
an example from “human affairs,” remarking that we designate our possessions “affirmative goods” 
(positive) and our debts “negative” ones.

29.  Ibid., 23. A similar instance is Proposition LXXXVIII, Theorem XLV, where the multipli-
cation of physical quantities is qualified, in the third edition, by the phrase “si ita loquar” (212). 
Guicciardini plausibly suggests that even though Newton uses the language of proportion in the 
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While as early as 1699, Pierre Varignon expressed velocity algebraically as a 
“ratio” of distance and time (v =  ds 

v = dt
), fully a century later, Laplace, in his Celestial 

Mechanics (1798), is still at pains to justify such use of non-homogeneous ratios 
in physics:

Time and space, being heterogeneous quantities, cannot be directly compared 
with each other; therefore an interval of time, such as the second is taken for 
the unit of time and a given space, such as the meter, is taken for the unit 
of space; then space and time are expressed as abstract numbers, denoting 
how many measures of these particular species each of them contains, and 
they may then be compared with each other. In this manner the velocity is 
expressed by the ratio of two abstract numbers, and its unit is the velocity of a 
body which describes one meter in a second.30

Note that the “abstract numbers” of which Laplace speaks here, which alone 
render the procedure workable, are not simply abstractions per se, but rather sym­
bolic dimensionless numbers (in Klein’s sense). To paraphrase: Time and space, being 
heterogeneous quantities, have no ratio (which is to say, that no quantity of space 
can be a multiple of any quantity of time, or vice versa). Therefore, we define a 
unit of time and a unit of space, and treat the ratios of measured times and spaces 
to their respective units as if those ratios were dimensionless (“abstract”) numbers. 
These dimensionless numbers, rendered symbolically “homogeneous” with one 
another, can now be placed in ratio. That ratio is then to be rewritten as a frac-
tional number, and the ratio of this fractional number to unity will be propor-
tional to the ratio of the velocity to unity. We can then rewrite the proportion as an 
equality. Thus, velocity expressed as “distance over time,” as we say, is understood 
by Laplace here as a symbolic abbreviation for a proportion (“The ratio of veloc-
ity to its unit is jointly proportional to the ratio of the distanced traversed to its 
unit and the ratio of the unit of time to the time elapsed”). In general, equations 
in mathematical physics were understood throughout the eighteenth century as 
symbolic abbreviations of this kind.31

Principia, the proportions contained therein should generally be understood as equations, since 
Newton analyzes single quantities at specific points, whereas a genuine proportion requires two ratios 
and therefore four terms. Guicciardini carefully analyzes Proposition VI of Book I, and Huygens’ 
criticism thereof in the latter’s notes on the Principia. Newton in Proposition VI concludes that 
the quantity of force at a particular point “will be inversely as the solid SP2QT 2

QR
 .” The locution “be 

inversely as” suggests a proportion, but since we find no ratio of two forces, the sense appears to be 
rather F =     QR

F = SP2QT 2, and Guicciardini cites Huygens’ critical comment: “He [Newton] says that the 
centripetal force in P is reciprocally as the solid … In order to say reciprocal, it is necessary to give or 
to conceive another point p, in which the centripetal force can be compared to the centripetal force 
which is at P.” Niccolò Guicciardini, Reading the Principia (Cambridge: Cambridge University Press, 
1999), 125–35. The most plausible interpretation, it seems to me, is that while Newton may indeed 
often be thinking mathematically in terms of equations, he regards the physical meaning of these 
equations in terms of ratio and proportion.

30.  Quoted in John Roche, The Mathematics of Measurement (London: Athlone Press, 1998), 138.
31. S ee Roche, Mathematics of Measurement, chapter 7.
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To the degree we fail to recognize the equations of physics as symbolic abbre-
viations for proportions among directly intelligible physical quantities, the proxi-
mate object of our physics is rendered a symbolic entity, which we are nevertheless 
wont to take for the physical world itself. One symptom of such symbolic reifica-
tion is our inevitably imagining, for instance, that the equations of mathematical 
physics are definitions of the associated concepts. We learn at the beginning of an 
elementary physics textbook, for example, that “force” is defined as “a push or a 
pull.” But once we get used to the formula F=ma, where ma is conceived as if it 
were a physical quantity in its own right rather than a symbolic abbreviation for 
the conjoint proportion F1:F2 :: m1:m2 and F1:F2 :: a1:a2, we can easily imagine that 
force is “defined as” ma. Our original push and pull, by means of which a measure 
of physical intelligibility accrued to the concept of force, thus finds itself “sedi-
mented” in that concept, and we regard ourselves as having attained the deeper 
insight that force “is” the symbolic entity ma. But, of course, force cannot “be” 
ma, since ma is merely a symbolic quantity, not a physical quantity. Whatever 
Newton’s own qualms about the concept of force, he never reduces the definition of 
force (“an action exerted upon a body, in order to change its state”32) to its quanti­
fication (“The change of motion is proportional to the motive force impressed”33).

It is worth observing, to conclude this section, that while the prima facie 
problematic employment of symbolic dimensionless numbers in physics is still on 
Laplace’s radar, so to speak, in 1798, symbolic number itself, if the passage quoted 
above is any indication, has already been effectively sedimented in Western mathe-
matical history by the end of the eighteenth century. By the close of the nineteenth 
century, however, not just symbolic number, but “symbolic nature” will have been 
rendered part of a sedimented history. The concept of spacetime, we shall see, is a 
notable legacy of this sedimented history.

We are, of course, far from regretting either the development of modern sym-
bolic mathematics or its assimilation into mathematical physics. Quite the con-
trary, symbolic mathematics not only enables calculations that cannot be carried 
out with the traditional mathematics of ratio and proportion, but also reveals 
physical relationships in nature that could not otherwise be discovered. However, 
with the obvious advantages of symbolic mathematics comes an inevitable loss of 
meaning due to its reliance on numerical operations carrying no direct (or some-
times even evident indirect) physical sense. Such is the case, I shall now argue, 
with Hermann Minkowski’s “four-dimensional” interpretation of Einstein’s special 
theory of relativity.

32.  Newton, Principia, 2.
33.  Ibid., 13.
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3  “Minkowski  Spacetime”34

In his famous essay “Space and Time” (1908), Hermann Minkowski presents for 
the first time the concept of “spacetime” in the sense of a single continuum of 
space and time.35 Since there is already a kind of union of space and time in 
pre-Minkowski special relativity (as originally published by Einstein in 1905), 
however, it behooves us to give the notion of “merging” space and time in a single 
continuum some added precision. In pre-Minkowski special relativity, the unifica-
tion of space and time is simply the interdependence of space and time expressed 
by the Lorentz equations (i.e., distance and time variables respectively in one 
inertial reference frame are dependent on both variables in another inertial ref-
erence frame36). However, this special relativistic unification of space and time 
has nothing do with merging space and time into a single continuum as per the 
concept of the Minkowski “spacetime line element.”37 The necessary distinctions 
here are often glossed over. For instance, Roberto Torretti remarks that

though the notion of an n-manifold … was first conceived by Bernhard 
Riemann in the 1850s, one can now, with the benefit of hindsight, reasonably 
maintain that spacetime was already handled as a 4-manifold when Galileo 
plotted spaces against times in his discussion of the motion of projectiles.38

Such an assertion is at least misleading, since the mere fact that Galileo represents 
time as the length of a line on a diagram no more implies that he conceives of space 
and time as a single “spacetime manifold” than my plotting the amount of beer 
I drink against time on a graph entails my thinking of a unified “beertime mani-
fold.” If all that is meant by “four-dimensional manifold” is that we can represent 
points (events) in space and time by means of four numbers (coordinates), the 
concept of a “four-dimensional manifold” is innocuous enough; but the notion of 
a “manifold” in the Riemannian sense suggests the notion of a single geometrical 
continuum defined by a line element. There is certainly no such notion in Galileo.

Michael Friedman more helpfully points out that the minimal notion of a four-
dimensional spacetime manifold (set of events defined by four coordinates) in no 
wise implies any unification of space and time such as we associate with relativity 

34. M inkowski spacetime has been a subject of philosophical interest since Einstein employed it 
in the formulation of his general theory of relativity, and there now exists a sizable body of literature 
that takes the validity of the concept for granted, focusing instead on its scientific and philosophical 
significance. Since our analysis is situated on a different conceptual level, where the validity of the 
concept cannot be taken for granted, we shall refrain from engaging this body of literature unless a 
specific occasion should arise.

35. H ermann Minkowski, “Space and Time,” in Einstein et al., The Principle of Relativity, 75–96.
36. I  speak here of the transformation of space and time intervals themselves, not coordinate trans-

formations per se. That is, while the so-called Galilean transformation for coordinates is x′ = x − vt 
and t ′ = t, the transformation for distance and time intervals themselves is simply x ′ = x and t ′ = t.

37. A lthough Minkowski does not actually use either the term “line element” or “spacetime 
interval” in the 1908 paper, the concept is clearly intended.

38. R oberto Torretti, Relativity and Geometry (Oxford: Pergamon Press, 1983), 22. 
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theory: “As we shall see, we effect a relativistic unification of space and time only if 
we view space-time as a four-dimensional semi-Riemannian manifold.”39 In other 
words, “spacetime” could be a four dimensional manifold in the minimal sense 
without being a single continuum.40 But even Friedman is too imprecise for our 
purposes, since he fails to distinguish the two senses of “relativistic unification” we 
have noted, namely, Einstein’s original 1905 (pre-Minkowski) version of special 
relativity, on the one hand, and Minkowski’s (1908) on the other. Apart from 
Minkowski’s conception of the “interval” or four-dimensional line element, there 
is no sense in speaking of a “semi-Riemannian manifold” at all, since it is a fun-
damental principle of Riemannian geometry that any geometry is defined by its 
line element.

Einstein himself often uses the term “continuum” in an imprecise way, as, for 
instance, when he remarks in the “Autobiographical Reflections” of the Schillp 
volume that the idea of a “four-dimensional continuum” is not something newly 
introduced by the special theory of relativity, since Newton also employed a four-
dimensional continuum. The difference, Einstein explains, is that the Newtonian 
four-dimensional continuum “falls naturally into a three-dimensional and a one-
dimensional (time), so that the four-dimensional point of view does not force 
itself upon one as necessary.”41 However, the “necessity” (in special relativity) to 
which Einstein adverts in the preceding passage is not the necessity of a “single 
continuum” in the Minkowskian sense, but rather simply the necessity, as Einstein 
puts it, of a “formal dependence between the way in which the space coordinates, 
on the one hand, and the temporal coordinates, on the other, have to enter into the 
natural laws.” But this latter “necessity” (formal interdependence of space and time 
variables), which after all simply reflects the interdependence of space and time in 
the special theory of relativity, is inherent to the Lorentz transformation itself, with 
or without the Minkowski formalism. Indeed, the significance of the Minkowski 
formalism, according to Einstein here, is merely that

before Minkowski’s investigation it was necessary to carry out a Lorentz-
transformation on a law in order to test its invariance under such transfor-
mations; he, on the other hand, succeeded in introducing a formalism such 
that the mathematical form of the law itself guarantees its invariance under 
Lorentz-transformations.42

Such “automatic covariance” is, to be sure, a noteworthy mathematical technique, 
but it in no wise implies that space and time themselves have been unified in a 
single continuum.

39. M ichael Friedman, Foundations of Spacetime Theories (Princeton, NJ: Princeton University 
Press, 1983), 34.

40. I  shall conform to custom by referring to time as a “dimension,” even though strictly speak-
ing the term “dimension” is a metaphor originating in the geometrical representation of time. 

41.  Paul Arthur Schillp, ed., Albert Einstein: Philosopher–Scientist (Evanston, IL: Library of 
Living Philosophers, 1949), 57–9.

42.  Ibid., 59.
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We must, therefore, ask whether Minkowski actually demonstrates any uni-
fication of space and time beyond that already accomplished by Einstein himself 
in the original 1905 version of the special theory of relativity. To that end we shall 
consider in turn the concepts of “spacetime interval” and “four-vector.”

3.1  The concept  of  the  “spacet ime interva l”

Minkowski remarks upon a suggestive similarity between the Pythagorean dis-
tance formula x2 + y2 and the special relativistic, Lorentz-invariant quadratic form 
c2t2 − x2 (for simplicity we here include just two dimensions). Not only are both 
sums of squares with as many terms as there are dimensions in the manifold under 
consideration, but both are invariant for a certain coordinate rotation, the “space-
time” version of which Minkowski illustrates with the well-known diagram shown 
in Figure 3.43

Figure 3  Spacetime coordinate rotation

In the spacetime “rotation” depicted above, which represents a relative veloc-
ity between reference frames K and K′, the time axis t rotates clockwise to become 
oblique axis t′, while the space axis x rotates counter-clockwise to become oblique 
axis x′. And, just as for any point on a circle centered on the origin of a Cartesian 
plane, the equation x2 + y2 = x′2 + y′2 holds true, regardless of how we orient the 
coordinate system, likewise for any point on the hyperbola drawn through A (each 
such point representing an event at a given time and place with reference to the 
origin), c2t2 − x2 = c2t′2 − x′2 (where c=velocity of light).

This is no doubt an interesting result, but what does it have to do with a 
“spacetime interval” or single continuum of space and time? As it stands, after all, 
c2t2 − x2 is simply the difference, in a given inertial reference frame, between the 

43. M inkowski, “Space and Time,” 78. Figure redrawn from Scott Walter, “The Non-Euclidean 
Style in Minkowskian Relativity” www.fisica.net/relatividade/the_non_euclidean_style_of_
minkowskian_relativity_by_scott_walter.pdf ), 10; also published in The Symbolic Universe, ed. 
J. Gray (Oxford: Oxford University Press, 1999), 91–127.
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square on the distance between two events and the square on the distance light 
would travel in the time interval between the events. It is all space, not “space-
time.” However, Minkowski reminds the reader that by an appropriate choice of 
units, the velocity of light can be rendered c = 1, yielding t 2 − x2 = t′2 − x′2, which 
does augment the Pythagorean resemblance, at least visually.44 Moreover, if we 
replace the time variable t with √−1 t, such that −t2 − x2 = −t′2 − x ′2 (or with req-
uisite algebraic manipulation t2 + x2 = t′2 + x′2), the expression takes on an even 
more Pythagorean appearance.45 This last intervention (substitution of √−1 t for t) 
is pivotal, since otherwise we have no transformation equations, as a function 
of the rotation angle from K to K′, for the individual space and time variables; 
and without a transformation equation we could have no grounds whatsoever for 
deeming the construction a representation of a single “spacetime continuum.”46 
As physicist David Bohm observes (of the analogous Euclidean/Pythagorean 
transformation):

Without such a transformation we would hardly even be justified in regarding 
the three dimensions as united into a single space as ‘continuum’ (e.g., in an 
arbitrary graph, in which one physical quantity such as temperature is plotted 
against another, such as pressure, there is no such unification).47

Of course, it is difficult to see what physical basis or justification there could 
be for substituting √−1  t for t, besides the desire to obtain a notational resem-
blance with the Pythagorean line element formula. Today we employ hyperbolic 
trigonometric functions instead, thus obviating the need for √−1 t.48 The use of 
hyperbolic functions, however, comes at the price of reverting to t 2 − x 2 = t ′2 − x ′2, 
which again detracts from the Pythagorean “look” of the equation. And the expres-
sion appears still less Pythagorean if we restore, as we must, the units of the veloc-
ity of light. For even if we designate c unit velocity and, as a matter of convenience, 
drop its units, those units are still there—adjusting our units such that c is unity 
has nothing whatsoever to do with dropping those units and treating c as a dimen-
sionless number. If we adjust our units, c will equal one unit of distance per one unit 
of time. Clearly, if we really wish to drop the units of light velocity, we can do so 
without first adjusting them to unity, and if we wish to so adjust them, we can do 
so without dropping them. These two operations have absolutely nothing to do 
with one another.

What can fairly be called Minkowski’s algebraic “sleight of hand,” then, 
merely enhances the visual–notational resemblance between the Lorentz-invariant 

44. M inkowski, “Space and Time,” 88.
45.  Ibid.
46.  The transformations are: x = x ′cosθ − t ′sinθ and t = x ′sinθ + t ′cosθ exactly analogous, at least 

notationally, to the Euclidean x = x ′cosθ − y ′sinθ and y = x ′sinθ + y ′cosθ.
47. D avid Bohm, The Special Theory of Relativity (London: Routledge, 1996; first published 

1965), 148. 
48.  The equivalent hyperbolic transformations are t = t ′cosh β − x ′sinh β and x = x ′cosh β − t ′sinh β 

(where β =	       1    
			    v2

		
1−

	
√

		
c 2

 ).
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quadratic c2t2  −  x2 and the Pythagorean theorem (when the latter is expressed 
algebraically). The significance of this visual-notational resemblance for the plausi-
bility of Minkowski’s theory should not be underestimated. Indeed, at the earliest 
stage (1910) in his acceptance of the Minkowski formalism, Einstein comments 
that “the formal analogy of the transformations (a1) [x2 + y 2 = x′2 + y ′2] and (a2) 
[c2t2 − x 2 = c2t′2 − x ′2] jumps out at the eyes [my italics].”49 And we are suscepti-
ble to forgetting that the physical meaning of the Lorentz invariant c2t2  − x 2 is 
wholly determined by the transformation equation from which it is originally 
derived. It carries no independent meaning. The Pythagorean invariant x2 + y 2, 
by contrast, has no essential connection to any transformation equation what-
soever. The analogy between the two must therefore appear dubious, especially 
given Minkowski’s notational machinations. Furthermore, a Euclidean coordinate 
rotation can in fact be physically performed. That is, I can lay out a Cartesian grid 
made of wire mesh in my backyard, pick two points on the ground and measure 
the distance between them, then rotate the wire mesh, transform the coordinates, 
and calculate the same distance by means of the Pythagorean Theorem. However, 
no “time axis” can be rotated physically, but merely a line representing time, rotated 
on a graph. That is to say, the so-called “spacetime rotation,” upon which the plau-
sibility of the Minkowski “interval” so depends, is merely a symbolic rotation, not a 
physical rotation. Einstein himself never tired of emphasizing that frames of refer-
ence consist of actual physical objects (rods and clocks).

3 .2   The concept  of  “four-vector”

On the basis of the supposed analogy, described above, between the Pythagorean 
distance formula and the Lorentzian quadratic invariant, Minkowski introduces 
the notion of “four-vectors” in spacetime, all specific instances of which are tied to 
the concept of the four-dimensional interval.50 We must ask whether Minkowski’s 
“four-vectors” can be regarded as “vectors” in any physically intelligible sense. A 
vector, in the usual sense, is a single physical or geometrical quantity with a direc-
tion in space. Such a quantity might be a directed line segment, for instance, a 
velocity, a force, or the like. A vector thus conceived is a single quantity which, 
given a system of reference, we may elect to resolve into its “components.” Thus, 
for a displacement vector in space we typically have the x, y, and z components, 
related to their counterparts x′, y′, and z′ in some other system of reference by a 
transformation equation. Observe that the converse does not follow; that is, given 
a set of quantities related by a transformation equation, it is not necessarily the case 
that those quantities are “components” of a vector in the proper sense of the term 

49.  “saute aux yeux” (the article appeared in 1910 in French translation only). “Le principé de 
relativité et ses consequences dans la physique moderne,” in The Collected Papers of Albert Einstein, 
vol. 3, ed. Martin J. Klein et al. (Princeton, NJ: Princeton University Press, 1993), 155–76, 169.

50. M inkowski, “Space and Time,” 84ff.
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(single directed physical or geometrical quantity). Nevertheless, it is customary to 
regard any such set of quantities, in a purely formal or mathematical sense, as a 
“vector.”51

Let us keep these two concepts of “vector” distinct by terming the latter variety 
(in which the so-called “components” are not necessarily components of any single 
directed quantity) an analytical or “symbolic” vector. A symbolic vector, that is 
to say, is simply a set of quantities subject to a transformation law. Taking the 
so-called Minkowski “four-velocity” (spacetime distance per unit of proper time 
or dxμ 

dτ ) as an example, we can immediately see that Minkowski’s four-vectors are 
analytical or symbolic vectors rather than vectors in the physical or geometrical 
sense. For the time component ( dt 

dτ ) is simply the ratio between coordinate time 
and proper time (or, if you like, the dimensionless number =        c  

√c2−v2, itself a sym-
bolic representation of a ratio of velocities). Since a ratio is not itself a physical 
or geometrical quantity, but a relation between quantities,  dt 

dτ  cannot be a vector 
component in the proper (physical) sense. By contrast, the spatial components  x 

 τ , 
 y 
 τ ,  z 

 τ  indeed comprise a vector (vβ since τ =  t 
v = β ), but not a four-dimensional vector 

in “spacetime,” but rather the usual three-dimensional velocity in space, rendered 
Lorentz covariant via the correction factor β.

From our perspective, then, it is an irony that Minkowski is often cited as 
having departed from Einstein’s algebraic approach in favor of a “geometrical” or 
vectorial approach, given that Minkowski’s very notion of “four-vector” is essen-
tially tied to the method of representation in terms of Cartesian components. 
Indeed, special relativity could not have been originally formulated by Einstein in 
terms of Minkowskian “four vectors,” since the vectorial approach requires that 
the Lorentz transformation be already in hand. The time component  dt 

dτ  of the 
Minkowski “four velocity,” as we said, is simply the relativistic factor β =	      c  

	 √	c2−v2 , 
which can in no wise be originally derived from the Minkowski formalism.52

51.  Thus Einstein himself, in his Princeton lectures (1921), remarks, “The ensemble of three 
quantities, defined for every system of Cartesian coordinates, and which transforms as the com-
ponents of an interval, is called a vector. … We can thus get at the meaning of the concept of a 
vector without referring to a geometrical representation.” Albert Einstein, The Meaning of Relativity 
(Princeton, NJ: Princeton University Press, 1988 [1922], 11). Einstein here defines a “vector” as a set 
of three quantities transforming as an interval. But the mere fact that a set of quantities transforms as 
an interval is not a sufficient condition for regarding it as an interval; or, for that matter, as a set of 
components of any vector quantity at all. Einstein is here speaking of what we will call an “analytical” 
or “symbolic” vector.

52. A t least one commentator has noted this feature of Minkowski’s formulation. Alberto 
Martínez observes, “Physicists did not merely neglect the use of vector algebra to formulate relativ-
ity theory; ordinary vector analysis could not be used to derive relativity theory. This is remarkable 
because physicists believed that vector algebra and coordinate algebra were equivalent, in that either 
could be used to obtain the same results.” Alberto Martínez, Kinematics: The Lost Origins of Einstein’s 
Relativity (Baltimore, MD: Johns Hopkins University Press, 2009), 381. Martínez adds, “A related 
issue concerns the sense in which early relativity received a vectorial interpretation. After the works 
of Poincaré and Einstein, theorists reformulated relativistic kinematics in terms of “four-dimensional 
vectors.” This movement was impelled by Minkowski, who pursued a symmetric interpretation of 
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One final feature of Minkowski’s presentation merits brief mention, namely, 
the concept of “proper time” (τ) itself. As Minkowski observes, the integral ∫ dτ 
along the path of a particle, with the proper time τ measured in the frame of the 
particle (i.e., by a clock traveling with the particle) is proportional to the integral  
∫ √c2dt 2 − dx2 − dy2 − dz2. We note here that, clearly, this proportion holds whether 
or not √c2dt 2 − dx2 − dy2 − dz2 is regarded as a “spacetime interval.” Therefore, 
the successful employment of the proportion, for whatever purpose, can in no 
wise constitute evidence for the physical validity of the concept of Minkowski 
spacetime.

To be sure, we have no reason to object to Minkowski’s four-dimensional 
“spacetime,” especially given its proven fruitfulness in the history of relativity 
theory, so long as the latter is interpreted strictly as a formal-mathematical construc-
tion. However, Minkowski further suggests that he has uncovered the true “abso-
lute world,” the only world “given by phenomena.”53 Too often since Minkowski 
this assertion has been accepted at face value, even though no such proposition 
is actually demonstrated or even defended in Minkowski’s essay. The idea that 
the “single continuum” view of space and time is, in Minkowski’s words, “forced 
upon us” by phenomena seems predicated rather on the philosophical assumption 
that if the metrical properties of space and time are determined relative to the 
velocity of a reference frame, then space and time as previously understood (qua 
distinct continua) must not be “real.” But however powerful Minkowski’s four-
dimensional approach proves itself from a purely mathematical point of view, and 
however fruitful for relativity theory it has proved itself historically, it must appear 
of dubious value as an intelligible representation of the physical world. For the very 
notion of “spacetime” hinges entirely on a strained analogy between the relativistic 
invariant c2t2 − x 2 and the Pythagorean distance theorem. A secure judgment on 
this matter, however, must be based on more careful consideration of the physical 
sense of the relativistic quadratic invariant itself.

4  Genetic  Explication in Terms of  Ratio and Proportion of  
the Purported Analogy between Space and “Spacetime”

If we discard the physically gratuitous features of Minkowski’s presentation, we are 
left with the special relativistic transformation equation itself: c2t2 − x 2 = c2t′2 − x ′2. 
This equation, and in particular the squared terms, must bear the entire weight of 
the supposed analogy between space and spacetime. When we represent the line 
element of space (Euclidean or non-Euclidean) algebraically, the squared terms 

the parameter t analogous to the coordinates x, y, z. In Minkowski’s interpretation, the concept of a 
vector summarized coordinate-analytic notions. Previously, vector theorists had advocated the prior-
ity of vectors by conceiving them as consisting fundamentally of direction and magnitude and only 
incidentally as expressible in terms of Cartesian coordinates” (384–5).

53. M inkowski, “Space and Time,” 83.
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must be understood as symbolic quantities which refer, ultimately, to geometrical 
squares. For instance, the line element of three-dimensional Euclidean space in 
tensor form ds2 = gαβdxαdxβ (

	 	1 0 0	
gαβ =		0 1 0	
	 	0 0 1	

), represents the Pythagorean Theorem alge-
braically, such that ds2 designates a geometrical square on a hypotenuse of length 
s, and each squared term dx 1 dx1, dx2 dx2, and dx3 dx3, designates a geometrical 
square on a side of length dx1, dx2, and dx3 respectively. Even if we generalize the 
tensor to accommodate non-Euclidean spaces, we still necessarily represent (small) 
geometrical squares. There is no geometrical line element without the Pythagorean 
Theorem, and there is no Pythagorean Theorem without geometrical squares.

Of course, squared terms in the equations of physics as a rule are not indirect 
representations of geometrical squares. Thus, if we wish to physically interpret the 
so-called “spacetime interval” c 2 t2 − x2, it will be helpful to first derive this expres-
sion (the origin of which, we recall, lies in the Lorentz transformation rather than 
in geometry), non-algebraically in terms of ratio and proportion. This is surpris-
ingly easy to do. Consider reference bodies A and B, in uniform motion relative 
to one another and coinciding in place and time at event D (readers may easily 
furnish their own diagram if needed). Some time after event D, a light pulse is 
emitted from A and overtakes B on its way to hitting a mirror (event E), and 
reflecting back past B on its way to finally arriving back at A.54 For the light pulse’s 
trip to the mirror, we form the ratio between B’s reception time and A’s emission 
time (event D being zero reference time), and since the trip back to A is sym-
metrical, the same ratio will obtain for the reception time at A and the “emission” 
time at B (that is, the time the reflected pulse passes B on its way back to A). If we 
designate the time interval between events D and E as either tA or tB appropriately, 
the distance between these events as xA or xB, and the time it takes light to travel 
from either body A or body B to event E as TA or TB, then for the “to” trip the 
transmission time at A is tA − TA, and the reception time at B is tB − TB. The light 
pulse is then reflected at event E and passes B at tB + TB , being received back by A 
at tA + TA . Thus, the ratio of (tB + TB )  to (tA + TA )  is proportional to the ratio of 
(tA − TA )  to (tB − TB );  or, in proportion notation, (tB + TB ): (tA + TA ) :: (tA − TA ): 
(tB − TB ). Note that this proportion represents the relations obtaining between time 
intervals in two inertial reference frames, and designates no invariant or absolute 
physical quantity.

To convert the proportion to an algebraic equation, we first rewrite TA  and TB 
respectively as symbolic fractional numbers: xA 

c  (the time it takes light to go from 
reference body A to event E) and xB 

c  (the time it takes light to go from reference 
body B to event E). Then we rewrite the original ratios as fractions and the original 

proportion as an equality: (tB +  xB )      c
(tA +  xA )      c

  = (tA −  xA )      c
(tB −  xB )      c

. Rearranging these terms, we obtain 

54. I  borrow this example from Bondi, who as a matter of course treats it algebraically; Hermann 
Bondi, Relativity and Common Sense (Mineola, NY: Dover, 1964), 116–18. Note that it does not 
matter whether we assume a frame of reference relative to which everything occurs on a single line, 
though it is easier to visualize things if we do.
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(tA +  xA )      c (tA −  xA )      c  = (tB +  xB )      c (tB −  xB )      c , and multiplying through by c produces (ctA + xA) 
(ctA − xA) = (ctB + xB) (ctB − xB). Further reduction yields the familiar Lorentzian 
transformation in its general form: c 2tA

2 − xA
2 = c 2tB

2 − xB
2. Clearly, the squared 

terms in the Lorentz transformation are notational artifacts that result from treating 
ratios as symbolic fractional numbers and multiplying them together. That is, these 
squared terms are symbolic representations of compounded ratios. It follows that 
the resemblance between the Lorentzian invariant c 2t 2 − x 2 and the Pythagorean 
line element x2 + y 2 is strictly notational, and indeed merely visual; for the squared 
terms in the Pythagorean line element symbolically represent actual geometrical 
squares, not compounded ratios. There is, therefore, little basis for invoking any 
physical/geometrical analogy between space and so-called “spacetime,” least of 
all one that could underwrite the concept of a “spacetime interval.” The formal 
analogy at issue, that is, obtains simply between two forms of representation by 
means of coordinate transformation, not between the things represented by those 
transformations.

In light of this result, the following three propositions would appear to hold 
for the metrical properties of special relativistic space and time:

1.	 The metrics of space and time are heterogeneous; whereas were it physically 
real, the “spacetime metric” would necessarily be homogeneous and thus 
expressible solely in units of “spacetime.” Thus, the special theory of rela-
tivity implies no single continuum of spacetime.

2.	 The metrics of space and time are relativistic; whereas were it physically 
real, the “spacetime interval” would be an invariant or “absolute” quantity.

3.	 The metrics of space and time are interdependent or “entangled”; whereas 
in Newtonian mechanics, the metrical properties of “absolute space” and 
“absolute time” are independent of one another.

5  Minkowski  Spacetime and the General  Theory of  Relativity

We have cast doubt, in the preceding analysis, on the physical intelligibility of the 
concept of Minkowski spacetime (the merging of space and time in a single con-
tinuum). This very concept, however, is by consensus indispensable to the general 
theory of relativity. Such an interpretation has the authority of Einstein himself, 
who, in his popular treatment of the general theory, for instance, famously remarks 
that general relativity “would perhaps have gotten no farther than its long clothes” 
if it had not been for Minkowski’s innovation.55 On the question of the precise 
nature of general relativity’s reliance on the Minkowski approach, the “maximal” 
interpretation, as it were, is that Einstein’s appropriation of Minkowski commits 
us to regarding the physical world itself as a single geometrical continuum or 
“semi-Riemannian manifold.” More modest would be the assertion that while the 

55. E instein, Relativity: The Special and General Theories, 54.
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Minkowski “single continuum” approach is indispensable to the mathematical for­
mulation of general relativity, this does not commit us to regarding the physical 
world itself as a single continuum. The minimal claim, which I will urge here, is 
that it is solely the quadratic invariant c 2t 2 − x 2 that is essential to the formula-
tion of general relativity, not the concept of Minkowski spacetime itself; and that 
Minkowski’s contribution lies rather in his having seen a significance to the pro-
portionality between this quadratic invariant and proper time τ. The concept of 
Minkowski spacetime, I shall now demonstrate, is not only physically incoherent, 
as sufficiently demonstrated in the preceding section, but also both mathemati-
cally and physically superfluous to the general theory of relativity.

Turning our attention to Einstein’s own presentation of the general theory, we 
first note in passing that the famous “rotating disk” thought experiment described 
in Einstein’s 1916 paper, on the basis of which the connection between gravity and 
the so-called “curvature of spacetime” is deduced, has no relation to the idea of a 
unification of space and time beyond that already effected by the special theory 
of relativity. The non-Euclidean metric of space is derived from special relativistic 
length contraction of the measuring rod along the circumference, but not along 
the diameter, of the disk, while the gravitational effect on time is deduced from 
special relativistic “time dilation” at the periphery, but not at the center, of the 
disk.56 Up to this point in Einstein’s paper, then, we have nothing that could be 
termed “spacetime” in the relevant sense. Only when the “purely mathematical 

56. I n his definitive treatment of the role of the rotating disk in the development of general rela-
tivity, John Stachel emphasizes that for Einstein, the rotating disk thought experiment showed the 
impossibility of employing Euclidean geometry in a gravitational field. John Stachel, “The Rigidly 
Rotating Disk as the ‘Missing Link’ in the History of General Relativity,” in Einstein and the History of 
General Relativity, ed. Stachel and Howard (Boston, MA: Birkhäuser, 1989), 48–62. Stachel further 
remarks that “Minkowski’s four-dimensional formulation played an important role in Einstein’s con-
siderations at this point” (58). The significance of Minkowski for Einstein, according to Stachel, 
resided in Einstein’s realization that a theory of gravity based on the notion of a non-Euclidean 
metric requires a generalization of Gauss’s two-dimensional surface theory (that is, Gauss’s geometry 
of curved surfaces), which could be accomplished by a suitable generalization of Minkowski’s four-
dimensional “flat” spacetime. Stachel is surely correct that this was Einstein’s thinking, the coherence 
of which we analyze in this section. The claim that a single “spacetime continuum” is a necessary con-
dition for the formulation of a theory of gravity incorporating the results of the rotating disk thought 
experiment is one I in fact dispute. It bears mention as well that there is some potentially misleading 
terminology in play here. We have already noted (pages 168–9 above) the ambiguity of the term 
“four-dimensional,” which in the context of the Minkowski approach must be taken in the sense of 
a single continuum defined by a spacetime line element. However, when we say that according to 
general relativity, gravity arises from (or actually is) the “curvature of spacetime,” we are employing 
at least two layers of metaphor. In the first place, the very term “curved space” is a metaphor lifted 
from the Gaussian theory of curved surfaces, based on the appropriation of Gauss’s mathematics to 
describe the metrical properties of space itself. “Curved space” in this sense is simply a metaphor for 
“non-Euclidean.” But when time is involved as well, and we speak of “curved spacetime,” then an 
additional layer of metaphor has been added, since to call time “non-Euclidean” is to speak of time 
as if it were a spatial phenomenon. “Non-Euclidean time” is a metaphorical way of communicating 
the idea that the metrical properties of time are affected by gravity.
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task,” as Einstein puts it, of finding generally covariant equations through the 
formation of tensors arises does the Minkowski interval (“linear element”) make 
its appearance.57 Clearly, neither this “linear element” nor any “four-dimensional 
continuum” is implied by anything Einstein has said thus far in the paper, nor 
is it obvious that any such concept is required for the formation of the requisite 
tensors.

In his “Notes on the Origin of the General Theory of Relativity” (1934), 
Einstein presents two related reasons for the indispensability of the “spacetime 
line-element” to the general theory of relativity. The first is the need for a refor-
mulation of the law of inertia in terms of the concept of a geodesic line, that 
is, a “straightest line” analogous to the classical conception of the “shortest line” 
between two points: “A material point, which is acted on by no force, will be rep-
resented in four-dimensional space by a straight line, that is to say, by a shortest 
line, or more correctly, an extremal line.”58 The second reason follows immediately 
upon the first. The determination of such an extremal or straightest line requires 
a metric or line element conforming to a generally covariant transformation. That 
is to say, we must generalize the “quasi-Euclidean” Minkowski line-element such 
that the restriction to inertial reference frames is removed. Riemannian geometry 
is to supply this line element:

This concept [extremal distance] presupposes that of the length of a 
line element, that is to say, a metric. In the special theory of relativity, as 
Minkowski had shown, this metric was a quasi-Euclidean one, i.e., the square 
of the “length” ds of a line element was a certain quadratic function of the dif-
ferentials of the coordinates. If other coordinates are introduced by means of 
a non-linear transformation, ds2 remains a homogeneous function of the dif-
ferentials of the coordinates, but the coefficients of this function (gμν) cease to 
be constant and become certain functions of the coordinates. In mathematical 
terms this means that physical (four-dimensional) space has a Riemannian 
metric.59

Einstein forthwith sums up the entire line of thought as clearly as one could want:

The timelike extremal lines of this metric furnish the law of motion of a mate-
rial point which is acted on by no force apart from the forces of gravity. The 
coefficients (gμν) at the same time describe the gravitational field with refer-
ence to the coordinate system selected.60

In Einstein’s admirably lucid account, then, we require (1) a metrical descrip-
tion of space and time in terms of the gμν or metric tensor, and (2) a law of motion 

57. E instein, “The Foundation of the General Theory of Relativity,” in The Principle of Relativity, 
119.

58.  “Notes on the Origin of the General Theory of Relativity,” in Einstein, Ideas and Opinions, 
316.

59.  Ibid., 316–17.
60.  Ibid., 317.
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(timelike extremal line). This raises two questions for our consideration: (1) Is the 
quadratic form requisite for the desired generally covariant transformation of space 
and time variables a geometrical quadratic form per se? Or is it the case merely that 
Riemannian geometry may be used to represent this transformation? And (2), what 
is the physical meaning of the term “straightest line” given that time is in involved 
rather than space alone? That is, is a “straight line” in so-called “four-dimensional 
spacetime” a line anywhere but on a graph?

Regarding the first of these questions, it can be demonstrated that the coef-
ficients (gαβ) in the quadratic form gαβ(x)dxαdx β transform as a covariant tensor of 
second rank. As such, however, the tensor is merely an analytical entity having no 
relationship to geometry or “four-vectors” per se. That is to say, if we define a cov-
ariant tensor of rank two in a purely analytical way as follows:

A′αβ	=
		  ∂xγ		  ∂xδ	 Aγδ		  (	∂x′α)	(	∂x′β)

then there is no reason to suppose that the variables, which transform as indi-
cated, represent anything geometrical. To determine whether they do, we must 
first ascertain whether the particular quadratic form for which this tensor supplies 
coefficients is derived from geometry.

The transformations for dt ′ and dx ′ respectively, when the restriction to 
inertial reference frames is removed, will take the form dt ′  =  Adt  +  Bdx, and 
dx ′ = Cdt + Ddx, where A, B, C, and D are position-dependent coefficients (partial 
differential functions of the space and time variables) rather than constants. These 
transformations are entailed by the original Lorentz transformation itself (applied 
to a small region of space and a small interval of time), not by Riemannian geom-
etry. For the desired generally covariant transformation, we obtain, by substitution 
into the Lorentz transformation c 2dt 2 − dx 2 = c 2dt ′2 − dx′2:

g′11c2dt ′2 + g′22dx ′2 + 2g′12cdt ′dx ′ = g11c2dt2 + g22dx2 + 2g12cdtdx

or more compactly g ′μνdx′μdx′ν = gμνdx μdxν. Note that we have as yet no reason 
to regard g μνdx μdx ν as anything other than one side of a transformation equa-
tion, even though it does notationally resemble the line element of differential 
geometry. Furthermore, while the quadratic differential form (line element) of 
differential geometry is obtained by substitution into the Pythagorean Theorem, 
the quadratic differential form above is obtained, as we saw, by substitution into 
the Lorentz transformation (which is why the metric “signature” is different, with 
a minus sign appearing where the Pythagorean Theorem has a plus sign).

Clearly, the mere use of tensors does not entail a geometrical subject matter, 
and merely coining the term “semi-Riemannian” to account for the change of signs 
in no way alters the essentials of the case. As John Norton reminds us, “Ricci and 
Levi-Civita’s x1, …, xn were variables and not necessarily geometric coordinates. 
They were at pains to emphasize that what was then called infinitesimal geometry 
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was just one of the many possible applications of their calculus.”61 Indeed, Levi-
Civita opens his 1923 monograph, The Absolute Differential Calculus, with this 
observation regarding the use of “geometrical terminology”:

In analytical geometry it frequently happens that complicated algebraic rela-
tionships represent simple geometric properties. In some of these cases, while 
the algebraic relationships are not easily expressed in words, the use of geomet-
rical language, on the contrary, makes it possible to express the equivalent geo-
metrical relationships clearly, concisely, and intuitively. Further, geometrical 
relationships are often easier to discover than are the corresponding analytical 
properties, so that geometrical terminology offers not only an illuminating 
means of exposition, but also a powerful instrument of research.62

Note the three domains identified in the passage above: (1) geometry itself; 
(2)  analysis or algebra; and (3) geometry as a form of representation (“geometri-
cal language” or “geometrical terminology”). Clearly, the expressed idea is that 
there are instances where the general analytical relationships at issue are obscure, 
such that we can advantageously represent these “analytical properties,” themselves 
intended to represent the geometrical relationships under study, by means of a 
“geometrical language.” Presumably, this point would remain in force were the 
general analytical procedure (algebra) used to study something other than geom-
etry; that is, it might still be advantageous to use geometry to represent the ana-
lytical properties under study. The analytical procedure itself, then, has nothing 
essentially to do with geometry, even though it may both be represented by means 
of geometry, and used to study geometry.

Levi-Civita here echoes Descartes with remarkable exactitude by distinguish-
ing the distinct levels at which geometry may come into play. As Descartes remarks 
of his own symbolic method, although we are developing a general analytical–sym-
bolic calculus that can be used to investigate geometrical or other subject matter, it 
is convenient to use geometry as a means of representing that calculus, whether or 
not the subject matter under study is itself geometrical in character:

We have as much reason to abstract propositions from geometrical figures, if 
the problem has to do with these, as we have from any other subject matter. 
The only figures that we need to reserve for this purpose are rectilinear and 
rectangular surfaces, or straight lines, which we also call figures, because, as 
we noted above, these are just as good as surfaces in assisting us to imagine an 
object that is really extended. Lastly, these same figures must serve to represent 
sometimes continuous magnitudes, sometimes a set or a number.63

61.  John Norton, “General Covariance and the Foundations of General Relativity: Eight 
Decades of Dispute,” Rep. Prog. Phys. (1993), 799–800.

62.  Tullio Levi-Civita, The Absolute Differential Calculus, trans. Marjorie Long (Mineola, NY: 
Dover, 1977), 1.

63. D escartes, Rules for the Direction of the Mind, Rule 14, in The Philosophical Writings of 
Descartes, vol. 1, 65.
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Taken on their own terms, the tensors of Ricci and Levi-Civita simply regard 
the transformation of variables by invariance, as Levi-Civita again notes in the 
section of the same monograph entitled “Algebraic Foundations of the Absolute 
Differential Calculus: Effect on Some Analytical Entities of a Change in Variables”:

Consider n independent variables x1, x2, … xn, which we shall as usual denote 
collectively as x, and suppose a transformation applied to them which leads 
to another set of n independent variables … The geometrical name for this 
operation is of course change of coordinates …64

Such “analytical entities,” which may, but need not be, interpreted geometrically, 
are simply algebraic expressions which transform by invariance. The answer to 
our initial question above, then, is no, the general relativistic quadratic form 
g μν(x)dx μdx ν is not a geometrical form per se, although it may be represented 
via Riemannian geometry regarded as a “symbolic space.” The quadratic form is 
derived from the Lorentz transformation rather than geometry, and the coeffi-
cients g μν have no intrinsic connection to geometry.65

Let us proceed to the second question raised above, which regards the law of 
motion. We are entitled to suppose that the principle of maximal proper time, 
derived from the special theory of relativity, still holds in general relativity. Or 
at least this hypothesis must be made if we are to employ Einstein’s principle of 
equivalence, according to which we are to extend our analysis of the restricted 
case where special relativity holds in a finite region to the general case (presence of 
gravitational source masses) where it does not:

We now make the assumption, which readily suggests itself, that this covariant 
system of equations also defines the motion of the point in a gravitational field 
in the case when there is no system of reference … with respect to which the 
special theory of relativity holds good in a finite region.66

Moreover, we know already, from the special theory of relativity, that for free 
body motion the proper time τ is proportional to the Lorentz quadratic invariant 
√(ct)2−x2, which implies that for the equation of motion or geodesic, the expres-
sion c 2t 2 − x 2 is maximized.67 Clearly, the interpretation of this expression as a “line 

64. L evi-Civita, Absolute Differential Calculus, 61.
65.  To be sure, space in general relativity may be with justification called a “Riemannian mani-

fold” (not “semi-Riemannian”), since the non-Euclidean metric of space is obtained by substitution 
into the Pythagorean Theorem. But the ten independent coefficients gμν of the metric tensor in 
general relativity are simply position-dependent, partial differential functions of the space and time 
variables, which latter in no sense need be merged into a single geometrical continuum.

66. E instein, “Foundation of the General Theory of Relativity,” 143.
67. I f we assume the law of inertia, we can deduce by means of the Lorentz transformation the 

principle of “extremal proper time” for the geodesic of flat space and time. If a clock occupies the 
same spatial point in inertial reference frame A at two different times, for instance, then were it to 
undergo any acceleration during this time interval, the clock would experience a time dilation effect 
such that the proper time interval would be less than if the clock remained at rest. Thus, the law of 
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element” or spacetime interval is superfluous, since all that matters for determin-
ing the inertial trajectory of a free body is this symbolic quantity’s proportionality 
to proper time. Thus, for the geodesic of general relativity, the foregoing yields

c ∫B
A dτ = ∫B

A  √g11c2dt2 + g22dx2 + g12dx2 + 2g12cdtdx

or, more compactly, c ∫B
A dτ = ∫B

A  √gµvdxµdxv. And since proper time is maximized, 

the proportional symbolic quantity ∫B
A  √gµvdxµdxv  is also maximized, yielding the 

desired gravitational trajectory δ ∫B
A  √gµvdxµdxv = 0.

To reiterate, none of the preceding requires our interpreting √g μνdx μdx v as a 
line element or as anything essentially geometrical. We are liable to be misled, of 
course, when we express this proportion symbolically in the form of an equation 
and drop the units of light velocity (∫B

A dτ = ∫B
A  √gµvdxµdxv  ), for then we can easily 

imagine that proper time “is” the symbolic quantity ∫B
A  √gµvdxµdxv , and that the 

proper time registered on a clock therefore “measures” a spacetime interval. But 
“proper time” is and can only be simply time, and therefore it cannot measure 
“spacetime.” The very confusion at work here, with which the literature on space-
time is replete, is the conflation of measurement and representation. Any quantity, 
of whatever kind, can be measured solely in units homogeneous with the quantity 
itself. If I am talking about how much money I have, the unit of measure must 
be an amount of money. To be sure, I can represent a quantity by means of units 
heterogeneous with the quantity, as I would do were I to draw a graph in which 
the length of a bar represented how much money I have. But this would not be to 
measure my wealth in units of length. Granted that the invariability of the veloc-
ity of light in special relativity entails a determinate relationship between distance 
and time, such that we can measure distance indirectly by means of time (as we do 
with radar, for instance), or vice versa, but strictly speaking this is not to measure 
distance in units of time. Were there such a thing in the physical world as the 
spacetime interval, it could be measured solely in units of “spacetime.”

Clearly, the law of motion (general relativistic “geodesic”), as we have derived 
it above, has nothing whatsoever to do with any concept of “four-dimensional 
straight line,” being determined rather by the principle of maximal proper time 
(read off a clock), in keeping with the law of inertia. Nevertheless, the gravitational 
trajectory can be represented geometrically as a straight (or “straightest”) line by 
means of the now-preferred method of tangent vector parallel transport. This 
method is based on the following considerations: Given a time axis, we can graph 
the motion of a physical particle by drawing a line through a series of plotted dots, 
each dot standing for the body’s position in space at an instant of time. For a free 
body uninfluenced by gravity, such a line will be straight in Cartesian coordinates. 

inertia implies that the proper time will assume the maximum value in inertial reference frame A. 
The preceding, of course, applies as well to any other inertial reference frame.
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Therefore, if we draw a vector tangent to this line, that vector will obviously lie 
on the line and be parallel to itself (that is, point always in the same direction) at 
any point on the line. The vector’s direction (angle) with respect to the time axis 
represents the speed of the moving particle. Thus, our body is making a straight 
line in three-dimensional space and, since this body is maintaining a constant speed, 
the graphed line on a “spacetime diagram” is also straight.

Clearly, it is only when time is represented on a graph that can we speak of the 
trajectory of a free body as a “straightest” or geodesic line. To speak of a “straightest 
line” in spacetime is therefore to employ a metaphor from geometry. As noted in our 
discussion of Minkowski’s 1908 essay, the so-called “four-velocity” is an analytical 
or symbolic vector, not a physical vector, with the time component ( dt 

dτ ) being a 
symbolic representation of a ratio of velocities (the dimensionless number        c  

√c2−v2 
or β). Thus, if we take the traditional law of inertia in three-dimensional terms 
( dv 
dt   = 0, or component-wise  d

2x
dt2  = 0,  d

2y
dt2  = 0,  d

2z
dt2  = 0), it trivially follows that  d

2x
dτ2  = 0, 

 d 2y
dτ2  = 0,  d

2z
dτ2  = 0, and  d

2t
dτ2  = 0 (or in the preferred indexical notation,  d

2xμ
dτ2  = 0). But all 

the physically relevant information is contained in the standard three-dimensional 
acceleration terms  d 2x

dt2 ,  d 2y
dt2 , and  d 2z

dt2 .
Extending the notion of parallel transport to the general case where the special 

theory of relativity does not hold in a finite region (that is, extending it to gravi-
tational fields generated by source masses), we obtain the law of motion (gravita-
tional geodesic) in terms of parallel transport of the tangent “four-velocity” vector:

d 2xμ			   μ	 dxα	 dxβ

dτ 2	
+	 Г	αβ	 dτ	 dτ  	

= 0

or

d 2xμ			   μ	 dxα	 dxβ

dτ 2	
=	−Г	αβ	 dτ	 dτ  

The term containing Γμ
αβ may be regarded as a “correction factor” for the presence 

of gravitational source masses, since the Γμ
αβ (Christoffel symbols), constructed 

from the first derivatives of the gμν, vanish for the special case of constant gμν, where 
no source masses are present. In the general case, however, unlike the preceding 
case where the special theory of relativity held in a finite region, the time term 
 d 2t
dτ 2  carries essential information, not because it is a vector component in the geo-
metrical or physical sense, but rather simply because it supplies the ratio between 
t and τ, which is no longer a constant ratio since the gμν are no longer constant. 
Therefore, although the method of tangent vector parallel transport is perfectly 
functional in a purely mathematical sense, we must conclude that extremal proper 
time, which carries a direct physical meaning, is to be preferred. Moreover, we have 
confirmed our initial thesis that the concept of the Minkowski “interval” is both 
physically and mathematically superfluous to the general theory of relativity.
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6  Concluding Remarks

Our desedimentation of the concept of “spacetime” has yielded a twofold result. 
The concept itself has been revealed in its inherent incoherence, while the govern-
ing idea of the general theory of relativity (that gravity is to be understood in terms 
of inertial motion where the metrical properties of space and time are affected by 
source masses), has disclosed itself in a more intuitively coherent way. The theory 
of relativity, both special and general, gains significantly in physical intelligibility 
when interpreted apart from the concept of “Minkowski spacetime.”

But why should this result matter, if the experimental predictions of the theory 
remain unaltered? I want to suggest three respects in which it does matter. The first 
regards the aim of scientific understanding itself. It is sometimes suggested that the 
only criterion for a mathematical formalism is whether it “works,” and since the 
Minkowski formalism does in fact work, such criticisms of the concept of space-
time as I have offered are otiose. But at a minimum, and prior to consideration of 
whatever philosophical issues may arise in connection with such an “instrumen-
tal” view of science, we should remind ourselves that whether something “works” 
depends on what one is trying to do with it. If we are trying to understand the 
world, and not just predict its course or manipulate it technologically, then the 
intuitive coherence of physical concepts is paramount. Genuine science is simply 
not served by the reification of symbolic mathematical entities as if they were 
physical realities.

A second reason concerns the need for conceptual clarity in the philosophy of 
space and time. Philosophers tend to assume, as a starting point in the philosophy 
of space and time, the validity of the concept of Minkowski spacetime. The result is 
no end of philosophical mischief, such as the idea that change is an “illusion,” that 
we have no free will, that time is “static,” and so forth. Einstein himself was not 
immune to such ill-considered metaphysical extrapolations, as when he poignantly 
attempted to console the family of his recently deceased friend Michele Besso with 
the thought that in mathematical physics the distinction between past, present, 
and future is no more than a “stubbornly persistent illusion.” If only spacetime 
physics could be a cure for grief or the fear of death. Unfortunately, the Minkowski 
“geometrical” approach gives the erroneous impression that mathematical physics 
supports philosophical theories of static or “block” time. As Meyerson observed 
already in 1925,

It should be noticed that if space and time are henceforth to be more or less 
merged into a single continuum, this change will clearly work to the advan-
tage of space … . Let us observe, moreover, that this already follows from the 
very fact that the construction at which one arrives is a geometry. And one need 
only open an exposition of the doctrine to note that, where time is concerned, 
the writer always speaks of one dimension, obviously conceived as spatial, 
while no attempt is ever made to represent the properly spatial dimensions in 
terms of time.68

68. M eyerson, Relativistic Deduction, 72.
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In whatever way we regard philosophically the paradoxes of time in the special 
theory of relativity, only a kind of bewitchment by symbolic mathematics could 
make us imagine that such paradoxes have been resolved through the concept of 
spacetime.

Thirdly, I believe scientists themselves have an interest in the critique of 
Minkowski spacetime. A number of philosophically-minded scientists, for 
example David Bohm and Ilya Prigogine, to mention just two, have expressed 
reservations about the manner in which time is conceived in contemporary math-
ematical physics.69 More recently, Lee Smolin, in his critical assessment of the 
state of contemporary theoretical physics (The Trouble With Physics, 2006), sug-
gests that the principal impediment to a successful unification of general relativ-
ity and quantum mechanics is the static representation of time. Smolin descries 
the origin of this problem in seventeenth-century mechanics, when Galileo and 
Descartes discovered that “you could draw a graph, with one axis being space and 
the other being time,” such that “time is represented as if it were a dimension of 
space.”70 Concludes Smolin, “We have to find a way to unfreeze time … .” Of 
course, neither Galileo nor Descartes ever imagined that representing time geo-
metrically meant that time itself was a geometrical phenomenon. Minkowski’s 
“spacetime” interpretation of the special theory of relativity, on the other hand, is 
the very example of Smolin’s concern, since here time is not merely represented by 
means of space, but actually conceived to be a geometrical dimension.

Along the same lines as Smolin, physicist Joy Christian, a theorist of quantum 
gravity, seeks to break what he calls

the spell of the “block” view of time which is widely thought to be an inevi-
table byproduct of Einstein’s special relativity. According to this “block” view, 
since in the Minkowski picture time is as “laid out” a priori as space, and 
since space clearly does not seem to “flow,” what we perceive as a “flow of 
time,” or becoming,” must be an illusion. Worse still, in Einstein’s theory, the 
relativity of simultaneous events demands that what is “now” for one inertial 
observer cannot be the same, in general, for another. Therefore, to accom-
modate “nows” of all possible observers, events must exist a priori, all at once, 
across the whole span of time. As Weyl once so aptly put it, “The objective 
world simply is, it does not happen.”71

A good beginning toward breaking this “spell” would be to discard the Minkowski 
conception altogether.

69. S ee David R. Griffin, ed., Physics and the Ultimate Significance of Time (Albany, NY: State 
University of New York, 1986).

70. L ee Smolin, The Trouble With Physics (Boston, MA: Houghton Mifflin, 2006), 256–7. To be 
precise, while Galileo does use such a form of representation, although of course not with Cartesian 
axes, Descartes to my knowledge never does so.

71.  Joy Christian, “Passage of Time in a Planck Scale Rooted Local Inertial Structure,” Cornell 
University archive (http://xxx.lanl.gov/PS_cache/gr-c/pdf/0308/0308028v4.pdf ), 2003, 12.
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Beyond the theory of spacetime itself, it could be that other areas of contem-
porary mathematical physics are similarly impeded by the reification of symbolic 
mathematical entities. If so, the genetic approach originally suggested by Husserl, 
pioneered for the case of modern symbolic mathematics by Klein, and concretely 
demonstrated in this essay for the concept of “spacetime,” might make a contribu-
tion to clarifying concepts in those areas as well.
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