
Arithmetic, Set Theory, Reduction and Explanation

William D’Alessandro

May 20, 2017

Forthcoming in Synthese.

Abstract

Philosophers of science since Nagel have been interested in the links between intertheoretic reduc-

tion and explanation, understanding and other forms of epistemic progress. Although intertheoretic

reduction is widely agreed to occur in pure mathematics as well as empirical science, the relation-

ship between reduction and explanation in the mathematical setting has rarely been investigated

in a similarly serious way. This paper examines an important and well-known case: the reduction

of arithmetic to set theory. I claim that the reduction is unexplanatory. In defense of this claim,

I offer some evidence from mathematical practice, and I respond to contrary suggestions due to

Steinhart, Maddy, Kitcher and Quine. I then show how, even if set-theoretic reductions are gener-

ally not explanatory, set theory can nevertheless serve as a legitimate and successful foundation for

mathematics. Finally, some implications of my thesis for philosophy of mathematics and philosophy

of science are discussed. In particular, I suggest that some reductions in mathematics are proba-

bly explanatory, and I propose that differing standards of theory acceptance might account for the

apparent lack of unexplanatory reductions in the empirical sciences.

[I]n the philosophy of science the notions of explanation and reduction have been extensively

discussed, even in formal frameworks, but there exist few successful and exact applications

of the notions to actual theories, and, furthermore, any two philosophers of science seem

to think differently about the question of how the notions should be reconstructed. On

the other hand, philosophers of mathematics and mathematicians have been successful in

defining and applying various exact notions of reduction (or interpretation), but they have

not seriously studied the questions of explanation and understanding.1

1[Rantala 1992], 47.
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Rantala’s observation, though now almost a quarter-century old, remains pretty much on target. In spite

of the recent surge of interest in various aspects of mathematical explanation2, philosophers have yet to

turn their attention to the explanatory (and more broadly epistemological) dimensions of intertheoretic

reduction in mathematics.

I hope the rest of the paper will show that this neglect is unwarranted. As philosophers of science

have long known in the empirical context, understanding the link between reduction and explanation

is a vital part of understanding theory succession, mathematical progress, and the nature and purpose

of foundations of mathematics. I aim to illustrate these points by examining a particularly important

single case: the reduction of arithmetic to set theory. Although a number of authors have expressed

views about the explanatory significance of this reduction, the issues involved haven’t yet been weighed

as carefully as they deserve to be. This paper sets out to do so, and to draw some considered conclusions.

My thesis is that the reduction of arithmetic to set theory is unexplanatory. After clarifying this

claim and giving some positive reasons to believe it, I devote the larger part of the paper to showing

that the most serious arguments to the contrary—due to Steinhart, Maddy, Kitcher, and Quine—are

unsuccessful. Finally, I discuss some consequences of the view for philosophy of mathematics, philosophy

of science and the theory of reduction.

1 Intertheoretic reduction and explanation in mathematics

We might start by asking what it means for one theory to be reducible to another (either in general,

or in the mathematical context specifically). This is an important question, but I won’t say very much

about it here. For present purposes I take it as a datum that arithmetic is reducible to set theory; I’m

more confident in the correctness of this claim than I am about the details of any particular theory of

reducibility.

Nevertheless, I’m inclined to think that the concept of reduction is at least closely related to the

model-theoretic notion of (relative) interpretability. Informally, a theory T1 is interpretable in a theory

T2 if there’s a theoremhood-preserving translation function from the language of T1 to the language

of T2. (The rather unwieldy formal definition won’t be necessary here; see e.g. [Feferman 1960], 49 or

[Niebergall 2000], 30-31.)

Identifying reducibility with interpretability has several advantages. For one, interpretability is quite

similar to the classic Nagel-style understanding of reduction in philosophy of science3—an approach that
2See for instance [Steiner 1978], [Mancosu 2001], [Weber & Verhoeven 2002], [Hafner & Mancosu 2005],

[Tappenden 2005], [Avigad 2008], [Lange 2009], [Baker 2010], [Lange 2010], [Lange 2014], [Pincock 2015].
3See [Nagel 1961].
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continues to find plenty of adherents. Note that for Nagel, however, “Reduction.... is the explanation

of a theory or a set of experimental laws established in one area of inquiry, by a theory usually though

not invariably formulated for some other domain.”4 I don’t follow Nagel in taking explanatoriness to

be partly definitional of reduction. But it seems likely that Nagel thought this only because he was

a deductivist about explanation (in the manner of [Hempel & Oppenheim 1948])5, and pretty much

everyone now agrees that deductivism is false. So the disagreement doesn’t trouble me much. (In any

case, those who insist on viewing intertheoretic reduction as necessarily involving explanation can simply

interpret me as denying that arithmetic is reducible to set theory.)

The interpretability criterion also gives the right results about central cases, including the case of

Peano arithmetic and ZF set theory. Finally, one can find in [Niebergall 2000] a sophisticated defense

of relative interpretability as superior to other proposed criteria for reduction.

In any case, nothing much about the issues to be discussed below hangs on details about the nature

of reducibility. I assume only the uncontroversial premise that arithmetic is reducible to set theory in

some interesting sense.

Another point worth addressing: if, as I’ve claimed, intertheoretic reduction isn’t by definition an

explanatory relation, why think the two notions are connected at all? To start with, note that the claim

in question is quite weak. It leaves open the possibility, for instance, that all cases of reduction are

actually explanatory, as a matter of empirical fact. (Or, alternatively, that this is true of all sufficiently

natural reductions, or of some other relatively large and interesting class of examples.) And indeed,

the evidence from philosophy of science strongly suggests the existence of a close connection of some

such kind. Consider the (purported) reductions of classical thermodynamics to statistical mechanics,

of Mendelian inheritance theory to biochemistry, of Kepler’s theory of planetary motion to Newtonian

mechanics, and so on.6 In each such case, the viewpoint associated with the reducing theory yields

substantial explanatory insights about the subject matter of the reduced theory. These insights can

take the form of clarifications of the nature and properties of the entities postulated by the reduced

theory (e.g., the identification of genes with regions of DNA), of the reasons why the laws of the reduced

theory hold and the circumstances under which they do (e.g., the explanation of the Second Law of

Thermodynamics in terms of the improbability of entropy-lowering microstate evolutions), of the place

of the reduced theory in a larger conceptual or nomic framework, and so on.

Examples from empirical science thus suggest that explanatory reductions are the norm, if not
4[Nagel 1961], 338.
5See [van Riel 2011] for a discussion of Nagel’s deductivism and its influence on his account of reduction.
6Whether these cases count as bona fide intertheoretic reductions has been the subject of debate. I don’t want or need

to take a stand on this issue here—letting go of some (or even many) individual examples is no problem for my purposes,
as long as there are some genuine instances of reduction that look something like the ones philosophers have discussed.
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in fact the rule. A priori, there seems to be no obvious reason to expect this pattern to fail in the

mathematical setting. It would be an interesting result, then, if a central and uncontroversial case of

intertheoretic reduction in mathematics turned out to lack explanatory value. The next section argues

that the reduction of arithmetic to set theory is such a case.

2 Arithmetic and set theory

2.1 The view to be defended

I claim that the reduction of arithmetic to set theory is unexplanatory.7 I’ll have much to say in defense

of this claim below, but it’s worth noting immediately that the thesis is highly plausible as a claim

about other bits of mathematics, too. Perhaps the best example is the set-theoretic reduction of the

ordered pair. Recall that, according to the now-standard definition (due to Kuratowski), the ordered

pair (x, y) is identified with the set {{x} , {x, y}}. It’s easy to see that the set in question possesses

“the characteristic property of ordered pairs”, namely the feature that (x1, y1) = (x2, y2) just in case

x1 = y1 and x2 = y2. So the reduction of the ordered pair is unobjectionable from a logical point of

view. Nevertheless, it seems clear that the reduction gives us no new insight or understanding about

the nature of order. Rather than being an explanatory achievement, we want to say, the identification

(x, y) = {{x} , {x, y}} is a stipulation designed to solve a technical problem—a clever and convenient

stipulation that does its job well, granted, but not the sort of thing that leaves us epistemically better

off than before. As Michael Potter’s set theory textbook puts it,

{{x} , {x, y}} is a single set that codes the identities of the two objects x and y, and it is for

that purpose that we use it; as long as we do not confuse it with the genuine ordered pair (if

such there is), no harm is done. In other words, the ordered pair as it is used here is to be

thought of only as a technical tool to be used within the theory of sets and not as genuinely

explanatory of whatever prior concept of ordered pair we may have had.8

Randall Dipert comments similarly that

the defining quality of an ordered pair is quite clear without a set-theoretic formulation.

Namely, two ordered pairs are identical just when their respective members are identical. It

was quite clear before the advent of sets and set-talk. ...In terms of increased precision and
7For the sake of variety or readability, I’ll sometimes use expressions like “the reduction of numbers to sets” below.

This is just loose talk. Unless the context indicates otherwise, such expressions always mean the same as “the reduction of
arithmetic to set theory”—I don’t mean to invoke some alternative, ontological notion of reduction by speaking of objects
instead of theories.

8[Potter 2004], 65.
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increased clarity, the set-theoretic reduction of ordered pair added nothing, historically and

philosophically.9

Analogous remarks may apply to other familiar set-theoretic reductions. Take functions, for example.

In set theory a function f is identified with the set of ordered pairs {(a1, b1) , (a2, b2) , . . .}, where ai

and bi are the elements of the domain and image of f , respectively, and where f (ai) = bi. Again,

nobody disputes the usefulness of this maneuver. But its usefulness arguably lies in its adequacy as a

technical device rather than its power to explain anything about functions.10 The set theorist Yiannis

Moschovakis notes in this vein that

[t]his “identification” of a function [with a set of ordered pairs] has generated some contro-

versy, because we have natural “operational” intuitions about functions and by “function”

we often mean a formula or a rule of computation. ...There is no problem with this if we

keep clear in our minds that the “definition” [just mentioned] does not replace the intuitive

notion of function but only represents it within set theory, faithfully for the uses to which

we put this notion within set theory.11

What’s going on in such cases seems to be roughly this. At the beginning of the story, before the question

of reduction enters the picture, we have some mathematical concept C with which we’re epistemically

satisfied in important respects—that is, a concept whose conditions of application aren’t in dispute

(at least in ordinary cases), and whose basic properties we feel we understand more or less fully.12 We

become convinced at some point of the desirability of set-theoretic foundations (either for mathematics as

a whole, or for the particular subject matter to which C belongs). The goal is then to find a set-theoretic

construction that can stand in for objects of type C. This is done by identifying the characteristic logical

properties of C-type objects and then producing a set (or collection of sets) with the desired properties.

If there are many different candidates, then judgments about relative simplicity, convenience, and so on

are used to narrow the field down to a single structure S (or at most a small handful of such structures).

Given a sufficiently robust consensus, S then comes to be viewed as the canonical representation of

C-type objects within set theory. Whatever its virtues qua set-theoretic surrogate, though, the purpose

of S isn’t to explain anything or generate new understanding about C-type objects. Rather, S does its
9[Dipert 1982], 366-367. Emphasis in original.

10The case of functions is more complicated and controversial than that of the ordered pair. Identifying a function with
its set-theoretic graph, for instance, allows one to prove nontrivial theorems that weren’t available to earlier mathematicians
operating with less clear or rigorous conceptions. (E.g., the theorem that there exist uncomputable functions.) The thesis
that the reduction of functions is unexplanatory is probably most plausible when restricted to some class of “classical”
functions, for instance differentiable or continuous functions of a real or complex variable.

11[Moschovakis 2006], 40. Italics in original.
12This isn’t to suggest that the correct understanding of the concept in question need have been easy to determine. The

modern notion of function, for instance, evolved slowly and rather tortuously from its roots in 17th-century geometry and
analysis to its current general form. For a brief overview of this history, see [Kleiner 1989].
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job by hewing faithfully to the defining C-properties. (And it’s precisely because we already had an

adequate epistemic handle on these properties that we were able to specify them in advance, and to use

them to guide our choice of S.)

This, I think, is pretty clearly the correct story about the reduction of ordered pairs and functions

to sets. I maintain that it’s also the correct story about the reduction of arithmetic. Viewing the

natural numbers and arithmetical operations as set-theoretic constructs is a useful expedient for certain

purposes, but doing so has no particular explanatory value.

Before saying more, we might as well recall how the reduction is supposed to go. As is well known,

there are many set-theoretic structures that model the Peano axioms, and hence many ways to reduce

arithmetic to set theory. Historically, the systems of Zermelo and von Neumann have been the most

influential. Of the two, the von Neumann approach is usually thought to have a preponderance of nice

properties, and hence has become the default choice of most mathematicians.

A model of Peano arithmetic is a structure (S, f, e,≺), where S is a set (interpreted as the collection

of natural numbers), f is a unary function (interpreted as successor), e is a constant (interpreted as

zero), and ≺ is a binary relation (interpreted as less than). Hence the first step in specifying a reduction

of arithmetic to set theory is to choose a collection of sets S to serve as the natural numbers. In the

von Neumann system, these sets are the finite von Neumann ordinals, and the correspondence is

0 =∅,

1 = {∅} ,

2 = {∅, {∅}} ,

3 = {∅, {∅} , {∅, {∅}}} ,

and in general n + 1 = n ∪ {n}. This also supplies the definitions of the successor function and the

zero constant. For less than, ≺ is identified with the proper subset relation ⊂. It isn’t hard to show

that the finite von Neumann ordinals, equipped with these definitions, satisfy the Peano axioms. (The

Zermelo system uses the correspondence 0 = ∅, n + 1 = {n}, and identifies ≺ with the ancestral of

set membership. Zermelo’s approach is rarely used today, though, so I’ll focus on the von Neumann

ordinals from now on.)

My view, then, is that correspondences of this sort between arithmetic and set theory are bona fide

intertheoretic reductions which are nevertheless unexplanatory. By this I mean that they don’t explain

(or substantially contribute to explaining) anything about the natural numbers and their arithmetic.13

13Anything except, perhaps, certain kinds of possible explanations that are too trivial, insubstantial, and pro forma
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Put another way, there’s no explanatory benefit to viewing numbers as sets or supposing that numbers

are sets—in the way that there is such a benefit to viewing a sample of radium as an assemblage of Ra

atoms, say, or temperature as mean molecular kinetic energy. In a moment I’ll say why I think so. For

now, though, let me make a clarification and fend off some likely misunderstandings about the view.

First the clarification. I’ve been making claims about the explanatoriness of various bits of science

and mathematics, but I haven’t yet said exactly what I take such claims to mean. Just what notion of

explanation is at stake here? To some extent I’d like to be noncommittal about this issue. Experience

suggests that we—that is, mathematicians, philosophers of mathematics and other knowledgeable ob-

servers—are usually good at agreeing about what counts as explanatory in specific cases, once all the

relevant facts are on the table. So I take considered and informed judgments of this sort, including my

own, to be generally reliable. On the other hand, there’s very little agreement about which theory of

explanation is correct (including, and perhaps especially, in the mathematical setting), and so it seems

best not to rely overmuch on any such theory.

Nevertheless, I think one can safely say at least a few things about the properties of (mathematical)

explanations. To start with, there are at least two kinds of phenomenon that arguably warrant the

name. One familiar type is an answer to a why-question.14 Another type might be termed rendering

intelligible (or elucidating or clarifying). Whereas answers to why-questions explain facts, elucidations

explain things: they illuminate the nature of an object or concept, where our previous understanding

was obscure, incomplete, inconsistent or otherwise problematic.15 The discussion below will involve

claims about both types of explanation. (For instance, section §2.4 considers Maddy’s claim that

the reductionist viewpoint explains why multiplication is commutative, while §2.6 deals with Quine’s

remarks about set-theoretic “explications” of arithmetical notions.)

What’s more, explanations stand in a characteristic pattern of relations to other epistemic and

cognitive goods. Possessing an explanation typically imparts understanding, for example, and often

improves learning, inference and problem-solving in the relevant domain.16 Hence it’s reasonable to take

the absence of epistemic and cognitive benefits to reliably indicate a lack of explanatoriness. Finally,
to be worth caring about. For instance, if one subscribes to the view that facts of the form ∃xF x are explained by
their instances, then one might think that the reduction of arithmetic to set theory explains why there exists a theory
to which arithmetic is reducible. Maybe so. But my interest is in explanations that make a substantive contribution to
mathematical understanding, and such cases clearly don’t fit the bill.

14As philosophers have taken pains to show over the past couple decades, this type of explanation is encountered in
pure mathematics no less than in the empirical sciences; working mathematicians often ask why theorems are true, and
they often go to lengths in search of answers. (See the references in footnote 2 above.) To take a random recent example,
[Tao 2015] proposes a large-scale collaborative effort to find an explanation for certain surprising polynomial identities.

15Some philosophers may want to deny that this second phenomenon is a genuine kind of explanation. If they were
right, then my main thesis would be that much easier to defend, since there would then be fewer ways for the reduction
of arithmetic to set theory to be prospectively explanatory.

16See, e.g., [Lombrozo 2006] and [Lombrozo 2012] for references and discussion.
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we know what sorts of things can serve as mathematical explananda and explanantia. Theorems often

stand in need of explanation, as do (the natures of) kinds of mathematical entities. The former can be

explained by appropriately enlightening proofs, or by other theorems or bodies of theory. The latter

can be explained by suitably clear definitions or identifications.

I hope the above gives some reassurance that the question I’ve posed makes sense, and that we have

some resources for trying to answer it. If this isn’t yet entirely clear, perhaps the details that emerge in

the rest of the paper will help make it so.

I now want to mention and try to dissolve a few possible confusions about what my view entails.

First, in denying that the reduction of arithmetic to set theory is explanatory, I don’t mean to presuppose

that it ought to have been explanatory. So I don’t claim that the lack of explanatory power means that

the reduction lacks value, or that it failed to achieve its intended purpose. Although some people have

demanded that set-theoretic foundations be explanatory—as I’ll discuss below—my view is that such

reductions can be (and are) successful without contributing to explanation or understanding. (See §2.7

for more on these issues.)

Second, it’s no part of my view that set theory contributes nothing of explanatory value to mathe-

matics generally. This claim is pretty clearly wrong. To take just one example, there were important

explanatory issues at stake in the questions about infinite sets of real numbers that originally motivated

Cantorian set theory. Consider in this regard Joseph Dauben’s comments on Cantor’s early work:

[In 1874 Cantor] had established that R was nondenumerable. Following this remarkable

discovery, certain new avenues of inquiry must have appeared simultaneously. If, in terms of

cardinality, there were more real numbers than natural numbers, were there further quan-

titative distinctions to be made between and beyond them? How did the new discovery

contribute to the explanation and understanding of continuity? ...As Cantor raised the

question of mapping lines and planes, such questions seem to have been uppermost in his

mind.17

Not only did Cantor puzzle over the correct explanation of continuity, infinite size, and other notions, his

work also yielded illuminating answers to many such questions. The thesis I defend about the reduction

of arithmetic isn’t intended as a denial of set theory’s explanatory achievements in these and other parts

of mathematics.

Finally, and perhaps most importantly, my view should also be distinguished from the claim that

set theory fails to explain anything about the natural numbers in particular. This last claim sounds
17[Dauben 1979], 58-59.
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much like the one I want to defend. But the two aren’t equivalent, and failing to properly distinguish

between them is likely to cause confusion and prompt misplaced objections. In fact the view just

mentioned is substantially stronger than my own view. Moreover, I think this stronger view is probably

false. Arguably the notion of set is needed to properly characterize the natural numbers, since the

(second-order) axiom of induction quantifies over sets of numbers.18 And the fact that the collection

of natural numbers has the smallest possible infinite cardinality is an interesting result that’s plausibly

explained by set theory. But these explanations in no way involve viewing numbers as sets. (Rather,

they involve taking the collection of natural numbers and its subcollections as sets, which is something

else altogether. Numbers need not be sets to occur as elements of sets.) So it’s important to note that

cases involving this sort of explanatory relationship pose no threat to my view.19

The thesis I’m defending, then, is more modest than the above claims. The view, to reiterate, is just

that the reduction of arithmetic to set theory—not set theory itself, or the relationship between sets and

numbers on the whole—is unexplanatory. There are both positive and negative reasons to think so. The

positive reasons are considerations that directly cast doubt on the explanatoriness of the reduction. The

negative reasons consist in the lack of evidence for the contrary claim (that the reduction is explanatory

after all). As is often the case when one tries to establish a nonexistence claim, the issues surrounding

the negative reasons are arguably more interesting and weighty than those surrounding the positive

reasons—after all, once we’ve shown that the alleged evidence for the existence claim is unconvincing

and that the claim isn’t needed to account for the phenomena, considerations of parsimony give us good

reason to reject it. So most of the work below will focus on answering various arguments purporting to

show that the reduction of arithmetic to set theory is explanatory.
18Thanks to both Kenny Easwaran and an anonymous referee for Synthese for suggesting this example.
19An anonymous referee suggests that results like Goodstein’s theorem—which are unprovable in first-order Peano

arithmetic, but provable in the second-order setting using set-theoretic methods—might count as set-theoretic explanations
of arithmetical facts, and hence might seem problematic for my view. I’m inclined to group this sort of case, together
with the others mentioned in this paragraph, under the heading of “ways of applying set theory to arithmetic that may
be explanatory, but which don’t depend on viewing numbers as sets”. So I don’t find such cases worrying.
To see why, it’s helpful to briefly describe the set-theoretic proof of Goodstein’s theorem. One starts by considering

an arbitrary Goodstein sequence G (m), which is a certain sequence of natural numbers. One wants to show that G (m)
eventually terminates, i.e. that it takes the value 0 at some point. (Goodstein’s theorem is the statement that all Goodstein
sequences terminate.) To show this, one constructs a sequence of ordinal numbers O (m) with the properties that (1) G (m)
can be shown to terminate if O (m) terminates, and (2) O (m) does in fact terminate. This is a sparse sketch of the proof,
of course, but hopefully it’s clear from the sketch that the proof doesn’t exploit the set-theoretic representation of the
natural numbers in any way. One could view the numbers as any sort of object whatsoever and the proof would still go
through.
In any case, I think it’s far from clear that the set-theoretic proof of Goodstein’s theorem is explanatory in the first

place. The fact that a certain sequence of ordinals terminates, it seems to me, surely isn’t the reason why the associated
Goodstein sequence terminates. The behavior of the two sequences is correlated, but what happens with the sequence
O (m) can hardly be said to “ground” or “determine” what happens with the sequence G (m). So I’m doubtful that we’re
even dealing with a case of mathematical explanation here.
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2.2 Some positive considerations

First, however, the positive considerations. One serious reason for doubt, alluded to above, is the fact

that certain other set-theoretic reductions—e.g. that of the ordered pair—are pretty clearly unexplana-

tory. If it turns out that the reduction of arithmetic is similar to these cases in important respects, then

we have good inductive grounds to expect that the reduction of arithmetic isn’t explanatory either.

Are the two kinds of case similar in ways that matter? I think so. In particular, the account

sketched above about the translation of an antecedently well-understood concept C into set-theoretic

language seems to fit the case of arithmetic nearly as well as it fits the case of the ordered pair. In

both cases, a specification of the logical properties of the structure preceded the attempt to model

the the structure in set theory. Also in both cases, several such surrogates were proposed20—each of

which satisfied the relevant postulates, but which differed along various other dimensions—before the

mathematical community eventually settled on a favorite. And the consensus in each instance was based

on practical considerations of simplicity, well-behavedness and so on, rather than epistemic claims about

explanatoriness or understanding.

In the case of the ordered pair, this process yielded a construction that pretty obviously has no claim

to explanatory value. Since the (von Neumann) reduction of arithmetic to set theory was the result of

much the same type of process, it’s reasonable to expect much the same outcome.

Another reason for doubt is based on number theorists’ own attitudes and behavior. It’s evident

that mathematicians care a great deal about obtaining understanding, and that this value substantially

influences mathematical practice and pedagogy.21 It’s also a commonplace that explanation and under-

standing are closely related22, insofar as good explanations typically produce better understanding of

their explananda (and the associated subject matter). Thus, if viewing numbers as sets had apprecia-

ble explanatory value, we should expect number theorists to adopt this vantage point for the sake of

exploiting its epistemic and cognitive resources.

But this isn’t in fact what happens. Although number theorists draw extensively on other areas of

mathematics to gain insight and solve problems—think of Wiles’s use of algebraic geometry in the proof

of Fermat’s Last Theorem, Hrushovski’s model-theoretic approach to the Mordell-Lang conjecture, the

application of Fourier-type methods in studying prime distributions, and so on—one doesn’t find the
20The 1921 Kuratowski definition of the ordered pair was preceded by attempts by Wiener (1914) and Hausdorff (1914),

who identified (a, b) with {{{a} , ∅} , {{b}}} and {{a, 1} , {b, 2}}, respectively. (The 1 and 2 in Hausdorff’s definition are
arbitrarily chosen objects distinct from a, b, and each other.)

21See for instance [Avigad 2008], [Carter 2008], [Lipton 2011], [Sierpinska 1994], [Tappenden 2005].
22It’s sometimes argued (e.g. by [Khalifa 2012]) that understanding is nothing other than having an explanation. At

other times (e.g. by [Strevens 2013]) the two states are treated as distinct, but explanation is viewed a necessary component
or precondition of understanding.
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identification of numbers with sets being deployed for such purposes.23 Viewing the natural numbers as,

say, the von Neumann ordinals has led to no breakthroughs on longstanding problems, insightful new

ways of organizing and teaching number theory, or the like. The fact that number-theoretic practice

has so little use for the set-theoretic viewpoint suggests that the latter doesn’t contribute significantly

to understanding. Hence the reduction of arithmetic to set theory is probably not explanatory.

I turn next to negative considerations. In the parts to follow, I’ll consider four arguments purporting

to show that the reduction of arithmetic to set theory is explanatory after all. The first, due to Zermelo

and his followers, centers on the ontological thesis that numbers just are sets. The second, due to

Maddy, claims that there are explanatory set-theoretic proofs of some arithmetical facts. The third,

due to Kitcher, suggests that the reduction of arithmetic to set theory sheds light on some high-level

features of the natural number system. The last, due to Quine, maintains that the reductionist viewpoint

renders the concept of number more intelligible. These arguments raise many interesting issues, but

none, I think, are ultimately successful. Hence we’ve been given no good reason to think that the

reduction of arithmetic to set theory is explanatory.

2.3 A reductionist argument

Reductionism about objects of a given type, say A, is the view that there exist objects of some notionally

different type B such that the As are in fact identical to some of the Bs. Reductionism about As is thus

a stronger thesis than the claim that the A-theory is reducible to the B-theory, since reducibility (on

the Nagel-style view that I endorse) is a formal rather than metaphysical affair.24

It’s often tempting to make the leap from reducibility to reductionism—if the A-theoretic truths

correspond systematically to B-theoretic truths (with nothing left over), why not try to keep ontological

costs down by doing away with the As entirely? This maneuver has made plenty of appearances in

philosophy of science, philosophy of mind and elsewhere. It’s not too surprising, then, that some

mathematicians and philosophers have embraced set-theoretic reductionism of one sort or other.

The version of reductionism that’s relevant for present purposes is the claim that the natural numbers

in particular are nothing but sets. (This thesis is arguably traceable to, and most famously associated

with, the early work of Ernst Zermelo. See [Zermelo 1909a] and [Zermelo 1909b] for statements of Zer-

melo’s reductionism, and [Taylor 1993] and [Hallett 1984] for analysis and commentary.) If reductionism

about the natural numbers is true, then the line I’m defending about set theory and arithmetic is in

trouble. After all, if numbers are identical to sets, it’s hard to see how the reduction of arithmetic to set
23As I pointed out before, care should be taken not to confuse this point with the claim that set theory in general has

nothing of explanatory value to contribute to number theory. I take the latter claim to be false, or at least highly dubious.
24See [Klein 2009] for an extended (and convincing) defense of this claim.
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theory could fail to be explanatory. Ascertaining what numbers really are surely counts as explaining

something important about them, to start with. And presumably this identification will have all sorts

of explanatorily valuable further consequences. Compare the identification of water with H2O, of genes

with regions of DNA, and so on. Such identifications are always explanatory achievements in their own

right, it seems, and they invariably give rise to explanations involving other properties of the reduced

entity—why salt but not sand is soluble in water, or how allelic dominance and recession are imple-

mented at the molecular level, for instance. So it should go with numbers and sets, if reductionism is

true.

The most influential argument against reductionism is due, of course, to Paul Benacerraf ([Benacerraf 1965]).

Benacerraf’s reasoning is roughly as follows. There are several alternative reductions of arithmetic to

set theory, each giving a different correspondence between numbers and sets. If numbers are identical

to sets, as the reductionist claims, then any particular number must be determinately identical to some

particular set. So at most one of the alternative reductions gives the right identification of numbers

with sets. Suppose that R is this reduction. Then R must have some special feature in virtue of which

it stands out as uniquely correct. But, in fact, none of the alternative reductions has any such special

feature. (There seems to be nothing outstanding in the relevant way about the von Neumann ordinals

0 = ∅, 1 = {∅} , 2 = {∅, {∅}} , . . . as compared to the Zermelo ordinals 0 = ∅, 1 = {∅} , 2 = {{∅}} , . . .,

for instance.) Therefore reductionism is false.

The broad consensus in philosophy of mathematics has been that Benacerraf was right, and hence

that reductionism is untenable. Even philosophers who are sympathetic to some version of mathematical

realism tend to think that numbers are obviously not sets: the platonist Mark Balaguer, for instance,

writes that “it is more or less beyond doubt that no sequence of sets stands out as the sequence of

natural numbers.”25 Still, there are occasional voices of dissent. The most extensive recent defense of

reductionism is [Steinhart 2002], which argues that the natural numbers are identical to the finite von

Neumann ordinals.26

25[Balaguer 1998], 64.
26Of course, Benacerraf’s argument has generated a great deal of discussion over the years, and some post-Benacerrafian

philosophers have continued to hold views that ascribe some special metaphysical status to sets vis-à-vis the natural
numbers. One might think that a proper examination of the reductionism issue would include some mention of these
views. In fact, though, the views in question—or at least the ones I’m aware of—uniformly concede Benacerraf’s point
that numbers can’t be uniquely identified with any particular sets in a principled way. Hence they’re not directly relevant
to the line of thought I take up here. Some noteworthy examples of what I have in mind are the views of Penelope Maddy,
W.V. Quine and Nicholas White.
Maddy’s early work (e.g. [Maddy 1990]) argues that numbers are (equinumerosity) properties of sets. This is indeed

reductionism of a certain sort. But Maddy explicitly says that, for Benacerrafian reasons, there’s no hope of identifying
numbers with sets themselves. (Whether numbers can or should be identified with properties of sets, and whether such
an identification would have explanatory value, is an interesting question. But it’s not quite the question this paper is
trying to answer.)
Quine (e.g. [Quine 1960]) held a view that can be described as claiming that “numbers are sets”, which sounds anti-

Benacerrafian. But his version of reductionism basically amounts to the thesis that it’s convenient to identify numbers
with sets, together with a pragmatic approach to ontology. On Quine’s view, we’re free to make any identification of
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Steinhart’s argument has two parts. The first part consists of an enumeration of some nice properties

of the finite von Neumann ordinals (FVNOs) as compared to the Zermelo ordinals and other candidates.

(The list includes the naturalness of the extension of the FVNOs to the transfinite ordinals, the elegance

of identifying the numerical ordering < with set membership, and so on. Other candidate reductions

also have some of these features, but the FVNOs arguably boast the most impressive assortment.) As

Steinhart points out, mathematicians standardly represent the natural numbers with the FVNOs on

account of their having these convenient features. This fact, Steinhart thinks, amounts to “an argument

from mathematical practice” that the natural numbers are the FVNOs.

There are at least two ways to understand the argument in question. One possible claim is that

mathematicians (or set theorists, at any rate) are themselves committed to the view that the FVNOs

are the natural numbers—and so, since we should defer to epistemic authorities about questions within

their domain of expertise, we should follow them in being so committed. A second possible claim is

that, irrespective of what mathematicians actually happen to believe, their reasons for preferring the

FVNOs are in fact compelling grounds to identify the FVNOs with the natural numbers.

Neither version of the argument is very convincing. Starting with the first version, it’s doubtful

that mathematicians (or set theorists in particular) are generally committed to identifying the natural

numbers with the FVNOs. For one, some prominent set theorists are quite clear about rejecting this sort

of reductionism. For instance, as we saw above, Moschovakis takes pains to warn his readers against

supposing that functions and other familiar objects are identical to the sets used to represent them.

Even setting this point aside, however, there’s no good reason to think that mathematicians’ preference

for the FVNOs should be understood as an ontological prescription rather than a practical one. Even if

some set theorists have suggested that “the natural numbers are (or ought to be viewed as) the FVNOs”,

the context in which such claims are made is that of ascertaining which practices are most amenable to
numbers with sets that serves our purposes; if there are several equally handy choices, then each identification counts as
equally correct, as long as we stick with the one we’ve chosen. So there’s no notion here of getting at a deep truth about
what numbers “really were all along”. In particular, Quine agrees with Benacerraf that there’s nothing metaphysically
special about either the Zermelo ordinals or the von Neumann ordinals. (Nevertheless, one might think that Quine’s view
still imputes a type of explanatory value to set-theoretic reductions, even if it isn’t for the metaphysical reasons discussed
in this section. See §2.6 below for more on this issue.)
A less well-known but notable reaction to Benacerraf is [White 1974]. White agrees with the anti-uniqueness part of

Benacerraf’s argument, but from here he takes the unusual line that “the existence of multiple set-theoretic models of
arithmetic should prompt us, not to say with Benacerraf that numbers cannot be sets, but rather to suggest that there are
multiple full-blown series of natural numbers. Thus, for example, instead of there being only one three, there are after all
many threes, and many thirty-sevens, and so on” (112). White’s view sounds at first like a version of reductionism, but
it later becomes clear that this isn’t what he has in mind. His view is rather that objects of any kind count as numbers,
insofar as they can be placed in an N-like progression. So White doesn’t, after all, identify numbers with set-theoretic
finite ordinals in particular (although these are among the objects that count as numbers for him). As he points out, the
view is better described as a sort of Pythagoreanism than a type of set-theoretic reductionism.
Finally, it’s worth mentioning that another prominent claim from “What Numbers Could Not Be” is Benacerraf’s thesis

that numbers aren’t objects of any sort at all. This is a claim with which many people have directly disagreed. I find
Benacerraf’s argument for this view unconvincing myself, but its truth or falsity doesn’t directly bear on anything I say
below, so there’s no need to canvass responses to it here.
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doing set theory, not that of answering philosophical questions about identity.

As for the second version, suppose we grant for the sake of argument that the FVNOs edge out other

candidates in the possession of nice properties. Does any interesting metaphysical conclusion follow?

It’s hard to see how it could. It’s not clear what sort of plausible principle would let us infer “the Xs

are the Y s” from “representing the Xs as the Y s within set theory is moderately more convenient than

doing otherwise”. (Analogously: there are many possible ways of representing the natural numbers by

arrays of dots. Some such representations are more simple, elegant and practical than some others;

perhaps there’s some reasonable way of assigning each one an overall niceness score, and perhaps if we

did so there’d be a convincing overall winner. In itself, though, none of this seems seems to convey

any information about whether numbers really are arrays of dots, or which arrays of dots they’d be

if they were.) In particular, if this line of reasoning is to be understood as an inference to the best

explanation, it’s unclear how to make it work: the proffered explanans hardly seems to count as any

sort of explanation of the explanandum, let alone as a uniquely good such explanation.

In any case, Steinhart himself concedes that the “argument from mathematical practice” is incon-

clusive. But he also offers a second, and supposedly decisive, argument for reductionism. (Indeed, he

refers to the second argument as “a precise mathematical demonstration that the natural numbers are

the finite von Neumann ordinals.”27) The reasoning is as follows. To start with, Steinhart borrows from

Benacerraf two sets of conditions that a structure S must satisfy in order to serve as the set of natural

numbers. The first set of conditions is the Peano axioms for arithmetic. The second set consists of two

“cardinality conditions”:

1. For all n ∈ S—i.e., for all putative natural numbers n—there exists a set n∗ = {m ∈ S : m < n}

of all numbers less than n.

2. The cardinality of any set A is n if and only if there’s a bijection between A and n∗.

Steinhart argues that, pace Benacerraf and his followers, accepting these two sets of conditions (“the

NN-conditions”) commits us to identifying the natural numbers with the FVNOs.

Steinhart’s argumentative maneuvers aren’t always easy to follow, but the general shape of the

reasoning seems to be this. First, suppose that reductionism is true, so that the natural numbers and

arithmetical operations are uniquely identifiable with a particular set-theoretic structure (S, f, e,≺), or

S for short. (As above, S is a set, f is a one-place function to be interpreted as successor, e is an

element of S to be interpreted as 0, and ≺ is a two-place relation to be interpreted as less than.) Then,

whatever structure S might be, the cardinality conditions above “[compel] us to form certain definite
27[Steinhart 2002], 355.
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sets” of the elements of S, namely the sets n∗ for each n ∈ S.28 With appropriately chosen definitions

for zero, successor, and less than, however, the sets n∗ themselves constitute a structure S∗ that satisfies

the Peano axioms and the cardinality conditions. This structure S∗ is in fact nothing other than the

FVNOs. By uniqueness, therefore, S = S∗, and so the natural numbers are uniquely identifiable with

the FVNOs.

Perhaps the most important problem with Steinhart’s argument is that it’s not clear why the struc-

ture S∗ is the only candidate we’re permitted to consider in determining the identity of S (and hence

that of the natural numbers). That is, it’s unclear why the following reasoning is apparently not al-

lowed: “Suppose that the natural numbers and arithmetical operations are uniquely identifiable with a

particular structure S. As is well known, the finite Zermelo ordinals with the usual operations constitute

a structure Z that satisfies the Peano axioms and the cardinality conditions. By uniqueness, therefore,

S = Z, and so the natural numbers are uniquely identifiable with the finite Zermelo ordinals.”

Steinhart’s answer to this challenge seems to involve the idea that “the cardinality [condition] compels

us to form certain definite sets... Specifically: we have to form, for each [n ∈ S], the set of all numbers

less than n. For every number n, we must form the set [n∗ = {m ∈ S : m ≺ n}]. ...We cannot avoid

forming all these sets of numbers.”29 Later, he adds that the conditions mentioned above “do not allow

you to form any other sets of [numbers from S]. They do not assert or imply that the NN-universe

contains any other sets built from [such] numbers.”30 (“The NN-universe” is defined to be “the universe

of objects to which we may ontologically reduce the natural numbers”.31)

This is rather puzzling. Steinhart’s thought seems to be that we can only consider S and S∗ (and

not any other structures to which we might reduce the natural numbers) because the existence of S∗,

and only that of S∗, is entailed by the existence of S together with the cardinality conditions. But

why should this matter? Given that we accept ZFC (or some other system of set theory), we have a

universe’s worth of sets already at our disposal. It makes little sense to forgo the use of these other sets,

or to pretend they don’t exist, for the reasons Steinhart gives. Whether or not we can “avoid forming”

other sets on the basis of the existence of S and the cardinality conditions seems hardly relevant, and

perhaps isn’t even a coherent question—the other sets are in some sense already there, and hence not

in need of being “formed” by us at all. Thus, as long as we’re committed on good independent grounds

to the existence of the Zermelo ordinals (say), they ought to be fair game in our deliberations about the

identity of the natural numbers. And I take it we are so committed. Hence I fail to see how Steinhart
28[Steinhart 2002], 351.
29[Steinhart 2002], 351.
30[Steinhart 2002], 353.
31[Steinhart 2002], 352.
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can block the S = Z argument sketched above in a motivated way. (Of course, if he can’t do so, then

nothing prevents Benacerraf’s reductio from arising again: in that case we’ll have S = Z and also S =the

FVNOs, and hence we’ll have to reject the assumption that the numbers are uniquely identifiable with

a particular series of sets.)

In light of these issues, I conclude that Steinhart’s defense of reductionism is unsuccessful. There

remains no compelling reason to identify the natural numbers with any particular set-theoretic structure.

Hence we needn’t think that the reduction of arithmetic to set theory is explanatory in virtue of its

revealing the true nature of the numbers.

2.4 A Maddian argument

Here’s another worry. It might be that general, a priori reflection about set theory and arithmetic is

liable to paint an incomplete picture of the relationship between the two. Set-theoretic language and

reasoning have a distinctly different flavor from their number-theoretic counterparts, after all, and it’s

not easy to imagine how the theorems and proofs of arithmetic will look when viewed through the lens

of set theory. If we pay close attention to details, the reduction of numbers to sets might yet yield an

unexpectedly insightful proof or piece of reasoning.

What might a case of this sort look like? Here’s a suggestion from an early paper of Penelope Maddy:

[L]et me give an elementary example of what I take to be a demonstration of the explanatory

power of set theory. Suppose you wonder why multiplication is commutative. You could

prove this by induction from the Peano postulates by showing:

(1) n · 0 = 0 · n

(2) if n ·m = m · n, then (n + 1) m = m (n + 1)

...If you were convinced of the truth of the Peano postulates and of the soundness theorem,

this exercise should convince you of the commutativity of multiplication, but you were con-

vinced of this in the first place; your question was why, and the proof did little towards

answering it. Now suppose you take a set theoretic perspective and again ask why multipli-

cation is commutative. Here an answer is forthcoming: because if A and B are sets, then

there is a one-to-one correspondence between the cartesian products A×B and B×A. The

central idea in the proof of this fact is the old observation that a rectangle of n rows of m

dots contains n · m dots, but turned on its side it contains m · n dots. I take it that this

explains why multiplication is commutative, and their ability to provide such an explanation
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provides some theoretical support for the set theoretic axioms involved.32

This is an interesting idea, but I don’t think it works. The main problem is that the envisaged proof

doesn’t look like proper set-theoretic reasoning at all, since rectangles made of rows of dots aren’t

objects of pure set theory. What Maddy is describing is instead a (partly) diagrammatic or geometric

proof—i.e., something like the following.

1. If a and b are natural numbers, then the product a · b is equal to |A×B| (i.e., the number of

elements in the Cartesian product of A and B, where these sets are the ordinals representing a

and b respectively). [Fact]

2. |A×B| is equal to the number of dots in a rectangle consisting of |A| rows of |B| dots. [“Bridge

premise”, established by a separate argument]

3. The number of dots in a rectangle consisting of |A| rows of |B| dots is equal to the number of dots

in a rectangle consisting of |B| rows of |A| dots. [Geometric premise, evident from an appropriately

constructed diagram]

4. So |A×B| = |B ×A|. [From 2 and 3]

5. Therefore a · b = b · a. Hence multiplication is commutative. [From 1 and 4]

The geometric premise 3 is clearly essential to the argument. I don’t think it has any place in a

supposedly pure set-theoretic proof, and so I don’t think Maddy can claim the proof she describes as

an explanatory victory for set theory. But suppose one is convinced for some reason that premise 3 is

fair game for the set theorist. Then, presumably, it should also be fair game for the number theorist. In

that case, though, nothing prevents the number theorist from constructing a similar proof of her own:

1. The product a · b is equal to the number of dots in a rectangle consisting of a rows of b dots.

[Bridge premise]

2. The number of dots in a rectangle consisting of a rows of b dots is equal to the number of dots in

a rectangle consisting of b rows of a dots. [Geometric premise]

3. Therefore a · b = b · a. Hence multiplication is commutative. [From 1 and 2]

The second proof is simpler, more transparent, and arguably more explanatory than the first, since

it avoids the extra detour through set theory. So even if we allow proofs of the commutativity of
32[Maddy 1981], 498-499.
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multiplication that appeal to dot diagrams, the set-theoretic viewpoint still has no explanatory advantage

over the “naïve” number-theoretic approach.

In response to this criticism, one might claim that the so-called geometric premise should in fact be

viewed as a set-theoretic proposition, so that Maddy’s proof is really a purely set-theoretic argument.

The idea could be cashed out in a number of different ways. One could hold, for instance, that the

notions of dots and rectangles are somehow dependent upon, or grounded in, or best understood in terms

of the primitive notions of set theory, e.g. the concept of Cartesian product.

I’m not convinced by this line of thought. The correct response will depend to some extent on the

way the details are spelled out, of course. Nevertheless, I see no reason to accept that set theory is

epistemically or metaphysically prior to geometry in any interesting sense. As with any mathematical

theory, it’s certainly possible to model arrangements of dots or whatever with sets. But this doesn’t show

that such objects are identical to sets, or metaphysically grounded in sets, or rendered more intelligible

by sets. And there’s plenty of reason to doubt such claims. (Indeed, the idea that geometry depends in

some such way on set theory may be more dubious than the corresponding claim about numbers and

sets.) Compare these remarks of Moschovakis on the relation between lines, points and sets of numbers:

What is the precise meaning of this “identification” [of a line with a set of real numbers]?

Certainly not that points are real numbers. Men have always had direct geometric intuitions

about points which have nothing to do with their coordinates... Every Athenian of the

classical period understood the meaning of the sentence ‘Phaliron is between Piraeus and

Sounion along the Saronic coast’ even though he was (by necessity) ignorant of analytic

geometry. In fact, many educated ancient Athenians had an excellent understanding of the

Pythagorean theorem, without knowing how to coordinatize the plane.33

If this is true for lines and points, as I think it is, then something analogous is surely also true for

arrangements of dots. We can “identify” the content of such a picture with the Cartesian product of

two sets if we want. But to suggest that this content depends in some way on products of sets, or that it

can only be properly understood in light of set theory, is a different (and much less plausible) story. On

the contrary, it’s exactly the visuospatial character of the diagram that makes premise 3 of the Maddian

argument obvious, and in turn makes the whole proof explanatory. And this visuospatial character is

lost when we boil the diagram down to a proposition about sets.

In any case, Maddy’s framing of the situation is misleading in a more basic way. To explain why,

let’s say that a proof of an arithmetical theorem is reductive if the proof involves viewing numbers as
33[Moschovakis 2006], 33. The italics are Moschovakis’s, but the sentence in single quotes is displayed on a separate line

in the original.
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sets and non-reductive otherwise. Maddy’s argument compares a reductive proof of the commutativity

of multiplication with one particular non-reductive proof, which starts from the Peano axioms and

proceeds by induction. Maddy may well be right that this proof is unexplanatory. (Cf. [Lange 2009],

which argues that proofs by induction are unexplanatory as a rule.) But the more interesting question

here is whether some reductive proof is more explanatory than any non-reductive proof. It could be,

after all, that Maddy’s non-reductive proof is particularly unexplanatory, but that better alternatives

exist. Even if Maddy’s claims are all true, their force would be less clear in this sort of situation.

So are there better non-reductive proofs of commutativity? I think so. One such proof, for instance,

is a simple and compelling argument based on the Principle of Recursive Definition. The idea here is

to show that the functions m× n and n×m both satisfy the definition of multiplication

∀m, n ∈ N :


m× 0 = 0

m× (n + 1) = m× n + m.

Since the Principle of Recursive Definition says that there exists exactly one function satisfying such

a recursion formula, it follows that m × n = n ×m, so multiplication is commutative. (See Theorem

16.10 and its proof in [Warner 1990].) I don’t want to claim too much on behalf of this proof, but it

at least doesn’t strike me as totally lacking in explanatory value. Note that it allows a straightforward

and fairly satisfying answer to the commutativity question: multiplication is commutative because, if it

weren’t, there would be two distinct functions satisfying the recursive definition of multiplication, which

is impossible.

I conclude that Maddy is wrong to claim that set theory explains the commutativity of multipli-

cation. The proof she offers, though plausibly explanatory, is essentially geometric or diagrammatic,

and this geometric element can’t be harmlessly replaced with more set theory. And the purely set-

theoretic, “reductive” version of Maddy’s proof is no more explanatory than the non-reductive proof

just mentioned.

Obviously Maddy’s example represents just one way that set theory could be claimed to explain a

fact about numbers. I don’t claim to have ruled out all the other possible candidates. On the other

hand, few philosophers have thought about set theory as much and as well as Maddy, so the failure of

her preferred example is a discouraging sign for this line of thought in general.
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2.5 A Kitcherian argument

The objection in the last section involved the possibility that, once we’ve reduced numbers to sets,

some number-theoretic facts might turn out to be explained by set-theoretic considerations. The focus

there was on individual theorems, like the commutativity of multiplication, and their proofs. Here I’ll

consider a different type of objection. Instead of (or in addition to) explaining particular results, the

thought goes, it might be that set-theoretic reduction makes its explanatory contribution by shedding

light on higher-level, relational features of the natural numbers and their arithmetic. Such features

might include, for instance, revealing analogies or unexpected logical connections involving arithmetic

and other branches of mathematics. A defense of this line of thought comes from Philip Kitcher:

Mathematical proofs can serve other functions besides that of increasing the certainty of our

knowledge. In some cases, as in the case at hand, they can be part of a scheme of ontological

reduction in which our justifications for accepting the theorems proved remain unaffected.

Moreover, without making us any more certain that a theorem is true, a proof can show us

why it is true: proofs may yield explanatory dividends. ...Reducing arithmetic to set theory

has explanatory, as well as ontological, value. For, in the light of the reduction, our under-

standing is advanced through exhibition of the kinship between theorems of arithmetic and

theorems in other developments of set theory (in particular, branches of abstract algebra).34

Kitcher doesn’t explain what sort of kinship he has in mind, but I think the general idea is clear

enough. When Kitcher speaks of abstract algebra and its influence on our understanding of arithmetic,

he’s presumably referring to the developments surrounding the birth of “modern algebra” around the

beginning of the 20th century. This period—which saw the first general definitions and systematic

study of objects like groups, rings and fields, owing to the work of Noether, Hilbert, Artin, Steinitz, van

der Waerden and others—had major consequences for almost every area of mathematics, including our

understanding of the natural numbers and related number systems.

One type of progress was classificatory. By categorizing number systems according to their abstract

algebraic properties, modern algebraists got a better fix on the essential features of particular structures,

and a better understanding of genus-species relations between structures. For instance, the natural

numbers with addition (N, +) were seen to be an example of a commutative monoid, the integers with

addition (Z, +) an abelian group, the integers with addition and multiplication (Z, +, ·) a commutative

ring, the rationals (Q, +, ·) a field, and so on. Along with these taxonomic advances, algebraists figured

out how to pass from the natural numbers to other number structures by way of rigorous algebraic
34[Kitcher 1978], 123.
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constructions. The integers, for example, can be obtained as the Grothendieck group of the natural

numbers (as the construction is now called). Similarly, the rationals arise as the fraction field of the

integers, and the complex numbers as the algebraic closure of the reals.

Finally, algebraists in the modern era discovered general theorems about algebraic structures that

shed new light on the properties of the familiar number systems. For instance, the Fundamental The-

orem of Arithmetic—the fact that every natural number greater than 1 has a unique decomposition as

a product of primes—had been known at least since Euclid. But only with the help of abstract algebra

did the FTA clearly emerge as an instance of a more general phenomenon, involving notions like com-

mutative ring and irreducible element35. The picture is as follows. A commutative ring in which every

element factors uniquely as a product of irreducibles (and which lacks zero divisors) is called a “unique

factorization domain”. The integers Z, of course, are a unique factorization domain, and it turns out

that the irreducible elements of Z are exactly the primes. Taken together, these facts imply the FTA. So

abstract algebra gives us a nice story about why the FTA holds for the natural numbers, where before

this looked like a more or less brute fact. (It also reveals how FTA-like results hold, or fail to hold, in

other structures.)

In light of these kinds of advances, it’s reasonable to think that developments in algebra have

explained some things about the natural numbers and their place in the mathematical universe. In

particular, I take it that the example of the previous paragraph is the sort of thing Kitcher has in mind

when he talks about “the kinship between theorems of arithmetic and theorems in... abstract algebra”.

And I agree that understanding why and to what extent results like the FTA hold in various number

systems can improve our understanding of arithmetic, as this line of thought has it.

So where does the reduction of arithmetic to set theory enter this picture? According to Kitcher,

both arithmetic and algebra count as “developments of set theory” in some sense, and this is supposed

to explain why the reductionist viewpoint deserves the credit for the illuminating parallels between the

two subjects. How exactly this argument is supposed to work is a little unclear. But perhaps what

Kitcher has in mind is something like this. As a matter of historical fact, it’s true that abstract algebra

reached maturity around the same time as set theory, and set-theoretic language and tools exerted a

notable influence on algebra during this period (as did as the axiomatic method pioneered by Hilbert,

along with other trappings of the emerging “modern” style of mathematics). For instance, van der

Waerden’s Moderne Algebra—the first definitive modern algebra textbook, published in 1930—defines a

group as a set equipped with a certain type of binary operation. And a great deal of progress during this
35An element of an integral domain is irreducible if it’s neither zero nor a unit, and if it isn’t expressible as a product

of two non-units. (An integral domain is a commutative ring with no zero divisors, meaning that the product of nonzero
elements is always nonzero. A unit is an element with a multiplicative inverse.)
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period was due to Dedekind, who was extremely interested in rigorous set-theoretic foundations, and

who used “set-theoretic tools and techniques... to construct new mathematical objects (the natural and

real numbers, ideals, modules, etc.) or whole classes of such objects (various algebraic number fields,

rings, lattices, etc.).”36

With these facts in mind, one might be tempted to make the following sort of argument:

1. Abstract algebra is fundamentally set-theoretic in nature, and so anything explained by algebra

is ultimately explained by set theory.

2. Algebra provides explanations of some arithmetical facts (e.g., the explanation of the FTA men-

tioned earlier).

3. Therefore, set theory provides explanations of some arithmetical facts.

I don’t know whether this is exactly the argument Kitcher had in mind, but it’s the most plausible way

I can see to make the general idea more precise. Still, I think the argument is unsuccessful for at least

two reasons.

For one, the first premise is doubtful, at least under any interpretation that’s interesting for present

purposes. To start with, it’s certainly not the case that algebra developed from set theory, or that

algebra couldn’t possibly be done outside a set-theoretic framework. The roots of modern algebra lie

with Lagrange, Ruffini, Galois and others in the 18th and early 19th centuries, well before Cantor

was born. Their successes, and those of their pre-Cantorian followers, show that much of abstract

algebra could—and surely would—have been worked out without the backing of a formalized set theory.

The kinds of algebraic insights about number theory I’ve mentioned, in particular, mostly work just

fine without a rigorous notion of set. There’s nothing particularly set-theoretic about the “algebraic

explanation” of the Fundamental Theorem of Arithmetic outlined above, for instance.

Actually, though, the truth or falsity of the first premise doesn’t matter much in the end. That’s

because, even if the above argument is sound, it nevertheless misses its mark. The view we wanted to

investigate—and the one Kitcher claimed to be defending—is that the reduction of arithmetic to set

theory is explanatory. But if the above argument shows anything, it’s that algebra is reducible to set

theory, and that algebra explains some things about arithmetic. Nothing about this conclusion depends

in any way on viewing numbers as sets.

Thus I disagree with Kitcher’s assessment of the reduction of number theory to set theory. On

the one hand, Kitcher is right that one theory can advance our understanding of another by showing
36[Reck 2016].

22



how the latter is situated in the broader mathematical universe—by “exhibiting its kinship” with other

areas of mathematics, showing its theorems to be special cases of more general phenomena, and so on.

What’s more, Kitcher is also right to think that abstract algebra has advanced our understanding of

arithmetic in these ways. But he’s mistaken to conclude that the explanatory virtues of algebra accrue

to set theory. Still less do they accrue to the reduction of arithmetic to set theory.

2.6 A Quinean argument

I conclude this section with a line of thought due to Quine, tracing to his well-known discussion of set-

theoretic reductions in §§53-54 of Word and Object ([Quine 1960]). Quine’s view is that such reductions

constitute major epistemic and theoretical achievements, in that they rendered more intelligible various

notions which are extremely useful but which were previously unclear. Indeed, he takes the reduction of

the ordered pair to be exemplary of the best way to solve a certain kind of philosophical problem, and

he holds the reduction of arithmetic in similarly high esteem. (This discussion is the source of Quine’s

famous dictum “explication is elimination”.)

Although Quine rarely uses the language of explanation explicitly, his arguments can nevertheless

be taken to pose a challenge to the thesis I’ve been defending. For, as I noted above, rendering a given

type of entity more intelligible can be viewed as a sort of objectual explanation. And Quine certainly

thinks that set theory plays this clarifying role.

I’ll start by focusing on Quine’s discussion of the ordered pair in §53, since it’s in this section

that he lays out his view most clearly. Briefly, Quine’s argument is that the ordinary conception of

the ordered pair is “defective”, “perplexing”, “inadequately formulated”, and “problematic”, whereas

the set-theoretic conception is “clear and couched in terms to our liking”.37 The argument for this

weighty claim, unfortunately, is brief and unconvincing. As evidence for the defectiveness of the pre-

set-theoretic conception, Quine cites Peirce’s definition of the ordered pair (or “Dyad”), which Quine

considers confused and obscure. I won’t go into the details of Peirce’s account here. Even granting the

unsatisfactoriness of the Peircean definition, however, it’s not clear how Quine’s conclusion is supposed

to follow. For we’re given no reason to think that Peirce’s remarks are representative of the ordinary

conception in any way, or that his account is the best sense we can hope to make of the ordered pair

without the help of set theory.

On the contrary, understanding the ordered pair from the pre-set-theoretic viewpoint presents no

particular problem. The characteristic property of pairs, (x1, y1) = (x2, y2) ↔ x1 = y1 ∧ x2 = y2, is

perfectly clear, and it makes no mention of sets. (Quine himself seems to agree; he praises the ordered
37[Quine 1960], 258-260.
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pair postulate as “preternaturally succinct and explicit”38.) Moreover, the postulate was formulated

already by Schröder in 1895 ([Schröder 1895]), some twenty years before the first set-theoretic definition

due to Wiener ([Wiener 1914] ).39 It’s not at all obvious what’s supposed to be so problematic about

conceiving of an ordered pair as a sui generis object satisfying this axiom. Mathematicians like Schröder

apparently did so without suffering any unease or confusion. So Quine’s complaints about the epistemic

inadequacies of the pre-set-theoretic conception aren’t very compelling.

What about the supposed epistemic advantages of identifying pairs with sets? Even if the ordinary

conception is clear enough on its own, after all, it’s possible that the set-theoretic conception is better

yet in some interesting way. But this is also doubtful. Although the naïve notion of set may have had

some claim to special clarity, simplicity, and the like, modern axiomatized set theories are far more

complex, and the nature of the sets they describe remains mysterious in many ways. It’s hard to see

what gains are to be made by trading the sui generis ordered pair for a construction that carries so

much epistemological baggage. Indeed, I’m inclined to agree with Dipert’s opinion that

the pre-Wiener, primitive notion of ordered pair in Peirce and Schröder is actually clearer

than its alleged set-theoretic representations... since the notion of set is itself so cumbersome

and obscure. And a New Foundations set is still more obscure.40

Michael Hallett notes likewise that

‘set’ (unlike ‘aggregate’ perhaps) is not an ancient, well-understood concept which can easily

be taken as an axiomatic primitive in the knowledge that it can be supported by extra-

axiomatic explanation. (Unlike the case of natural number, this is largely why set theory is

axiomatized, because we do not understand the set concept well.)41

There seems to be little reason, then, to accept either component of Quine’s view. The pre-set-theoretic

conception of the ordered pair isn’t unclear or mysterious, except perhaps to the extent that one finds it

hard to wrap one’s mind around ordered pairs as sui generis objects. But the set-theoretic conception is

hardly an improvement on this score. If anything, the sets postulated by ZFC, NF and similar systems

are more problematic and harder to understand than ordered pairs. So, contra Quine, there’s no obvious

epistemic advantage to viewing pairs as sets.

So much for ordered pairs—what about the reduction of arithmetic to set theory? Quine gives

essentially the same arguments here as in the previous case, and he draws a similar conclusion. (“But for
38[Quine 1960], 259.
39See [Dipert 1982], fn. 23 for more on the early history of the ordered pair in modern logic.
40[Dipert 1982], 367-8. New Foundations is Quine’s system of set theory, which admits non-well-founded sets and has

various other unusual features.
41[Hallett 1984], 300. Emphasis in original.
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its greater antiquity and its concern with a more venerable notion,” he says, “the philosophical question

‘What is a number?’ is on a par with the corresponding question about ordered pairs.”42) Quine’s charge

is that the reductions of Zermelo and von Neumann brought clarity to the pre-set-theoretic conception

of the natural numbers, which on its own was muddled and inadequate. In response, we can take

essentially the previous line—exchange the ordered-pair postulate for the second-order PA axioms, and

as before we have a satisfactory characterization of the relevant domain which doesn’t involve viewing

numbers as sets, and which set-theoretic reduction does nothing to improve on. Hence there are some

plausible epistemic disadvantages, but no apparent advantages, to treating numbers as sets.

Although Quine was wrong to take set-theoretic reductions as his main examples of epistemically

salutary explications, I’m inclined to think there are better ones. Consider, for instance, the replacement

of the classical notion (or notions) of infinitesimals with the modern construction due to Robinson.43

Unlike the ordinary conception of ordered pairs or numbers, the old notion of infinitesimals really was

defective, perplexing, and inadequately formulated. In certain circumstances, for instance, the classical

analysts had to “neglect” infinitesimal quantities by treating them as equal to zero, while at other times

infinitesimals were assumed positive in order to function as divisors. These practices were decried by

Berkeley and other critics, and only uneasily tolerated by many working mathematicians. Even Newton

and Leibniz themselves made various (unsuccessful) attempts to remove infinitesimals from the calculus,

or at least to explain them away as mere heuristic devices with no official standing. Later, the 19th-

century “arithmetization of analysis” replaced infinitesimals with the now-standard epsilons and deltas.

But Abraham Robinson’s work on nonstandard analysis in the 1960s44 led to a sort of redemption.

Robinson identified infinitesimals with certain elements of ∗R, the non-Archimedean field of hyperreal

numbers, and showed how to do analysis rigorously on the basis of this construction.

The history of the infinitesimal concept furnishes what I take to be a more plausible case of epistemic

progress through Quinean explication. The story seems to comfortably fit the Quinean mold: it involves

the replacement of a useful but problematic concept with a relatively clear and concrete alternative.

The alternative—Robinson’s nonstandard reals—may not exactly match what the early analysts had in

mind, and it may not have any special claim to being the “one true notion of infinitesimal”. But this

is no objection, for Quine. What matters is just that the Robinsonian infinitesimals can do the useful

work done by the original notion without partaking in its defects. (“We do not claim synonymy. We do

not expose hidden meanings... we supply lacks.”45)
42[Quine 1960], 262.
43Quine can’t be faulted for overlooking this example; Word and Object was published in 1960, while Robinson’s work

on nonstandard analysis didn’t appear until later in the decade.
44See [Robinson 1974].
45[Quine 1960], 258.
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Importantly, the Robinsonian explication of the infinitesimal concept is more than just a technical

fix. It also represents an epistemic advance over earlier ways of thinking, in that it renders the notion

of infinitesimal more intelligible and paves the way for new explanatory proofs in analysis. As F.A.

Medvedev says,

Nonstandard analysis makes it possible to answer a delicate question bound up with ear-

lier approaches to the history of classical analysis. If infinitely small and infinitely large

magnitudes are regarded as inconsistent notions, how could they serve as a basis for the con-

struction of so grandiose an edifice of one of the most important mathematical disciplines?46

Similarly, according to the historian of analysis Henk Bos, “A preliminary explanation of why the calculus

could develop on the insecure foundation of [infinitesimals] is provided by the recently developed non-

standard analysis, which shows that it is possible to remove the inconsistencies without removing the

infinitesimals themselves.”47

To sum up, the problem with Quine’s discussion of explication isn’t that it describes a nonexistent

phenomenon. In the history of mathematics, at least, epistemic progress does sometimes happen in

much the way Quine describes. Only his examples are off the mark. Contrary to Quine’s claims,

arithmetic and the ordered pair were never in need of set-theoretic explication, for two reasons. First,

the relevant concepts aren’t unclear or defective in the way Quine suggests. Second, set theory is in no

position to offer help at any rate, since the sets of modern axiomatized systems like ZFC are if anything

more obscure than numbers and ordered pairs. The contrast with the case of infinitesimals—a genuine

example of better understanding achieved through explication—makes these points especially clear.

2.7 If not explanation, then what?

A final question is worth addressing before this section ends. If the reduction of arithmetic to set theory

has no explanatory value (or other epistemic benefits), as I’ve argued, then what sort of value does it

have? Why bother reducing numbers to sets at all?

One possible answer is that the reduction has no (or very little) value. Someone might think this,

perhaps, because they’re convinced that a legitimate foundation for mathematics must be a sort of

Cartesian-style epistemic foundation—i.e., that it should offer greater certainty, clarity, insight, expla-

nation, understanding, or whatever package of epistemic goods one takes to be necessary. This type

of view is a recurring theme, for instance, in Hallett’s Cantorian Set Theory and Limitation of Size. I

quote a particularly forceful passage at length:
46[Medvedev 1998], 664.
47[Bos 1974], 13.
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Because of the reductionist ambition, we demand that set theory genuinely explain all other

mathematical concepts. When I say ‘we demand’, I mean that is what we should demand.

Useful reductionism (philosophically speaking) cannot be just successful theoretical transla-

tion, though of course this would suffice in a relative consistency exercise, or as an original

part of Hilbert’s programme, say. Rather reduction must (in the best instance) be accompa-

nied by a gain in conceptual clarity. Where set theory suffers as a foundation framework is

that in general it does not bring this conceptual clarity with it. It is no good, philosophically

speaking, reducing to set theory something so basic to human thought as the elementary

theory of natural number if you cannot also explain why numbers are sets, and why the

set concept is even more fundamental. But the set concept is too unclear for any such

explanation to be given.48

As should be clear by now, I largely agree with Hallett’s pessimistic assessment of the epistemology

of set theory, and of the reduction of numbers to sets. And Hallett may even be right that an ideal

foundation for mathematics would be epistemically illuminating and metaphysically revealing in the

ways that set theory often fails to be. If so, we may be justified in continuing to look for an alternative

framework—one based on categories or homotopy types49 rather than sets, maybe.

Still, I want to resist the conclusion that set-theoretic foundations are “no good” or not “use-

ful”—either “philosophically speaking”, whatever exactly that means, or otherwise. There are plenty

of ways for a foundational theory to earn its keep, and a failure along the dimensions Hallett mentions

needn’t be a failure across the board. Hence we don’t have to put ourselves in the awkward posi-

tion of claiming, pace long-standing mathematical practice, that set-theoretic reductions are a useless

boondoggle.

Many people have written about set theory and its role in foundations, but I find Maddy’s recent

work on this issue particularly enlightening.50 [Maddy 2011] and [Maddy 2017] take up more or less

the question just raised—given that set theory can’t serve as a Hallett-style epistemic and metaphysical

basis for the rest of mathematics, in what way can it serve as a legitimate foundational theory?51 In

Maddy’s view, set theory succeeds in playing a number of distinctively foundational roles, including the

following:
48[Hallett 1984], 300-301.
49See [Linnebo & Pettigrew 2011] and [Ladyman & Presnell 2014], respectively, for discussion of these frameworks as

possible foundations for mathematics.
50See also [Shapiro 2000], which defends a view similar to Maddy’s. For a contrary picture, see [Mayberry 1994].
51Maddy’s early work, including the 1981 paper discussed above, espoused “set-theoretic realism”—a sort of reduction-

ist view according to which numbers are properties of sets. Maddy has since abandoned set-theoretic realism and its
metaphysical commitments, which explains why the recent papers mentioned here strike a quite different tone.
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• Meta-mathematical Corral: By translating all of mathematics into set theory, it becomes

possible, or at least much easier, to obtain general results about consistency and provability for

mathematics as a whole. (Cf. Hilbert’s program and Gödel’s theorems.)

• Elucidation: Some set-theoretic realizations of classical mathematical notions introduce a degree

of clarity and precision that was lacking in the original concepts (e.g., Dedekind’s construction of

the real numbers as cuts of the rationals).52

• Risk Assessment: A proof that a given theory is consistent relative to ZFC (or a lack of such a

proof) provides an important measure of the theory’s logical “safety” or “riskiness”.

• Shared Standard: The ZFC axioms function as a shared standard of existence and provability

for mathematicians working in diverse specialty areas.

• Generous Arena: The set-theoretic universe serves as a single forum in which “all the various

structures studied in all the various branches [of mathematics] can co-exist side-by-side, where

their interrelations can be studied, shared fundamentals isolated and exploited, effective methods

exported and imported from one to another, and so on.”53

Clearly these functions are important ones, and each of them plausibly pertains to foundations. More-

over, nothing requires that sets be metaphysically or epistemically fundamental in order to play these

roles well. So we have a good start on an answer to the question posed at the beginning of this part.

Even if the reduction of arithmetic to set theory has no explanatory benefits, this doesn’t entail that it

and other such reductions are without value. Translating arithmetic and other theories into the language

of sets contributes in an important way to a worthwhile end, namely the orderliness, systematicity and

communality of mathematics generally.
52Maddy’s “elucidation” is apparently much the same sort of thing as Quine’s “explication”. For the record, I have some

reservations about the extent to which Dedekind’s construction of the continuum is a good example of this phenomenon.
One reason to be careful here is because, as Solomon Feferman has argued, there may in fact be several different, and
equally worthwhile, conceptions of the continuum. So it’s not even obvious what would count as a successful explanation
(or explication or elucidation) of continuity and its properties. Moreover, the device of Dedekind cuts does a poor job
capturing at least one such conception, namely the one that’s operative in Euclidean geometry. As Feferman writes:

The main thing to be emphasized about the conception of the continuum as it appears in Euclidean geometry
is that the general concept of set is not part of the basic picture, and that Dedekind style continuity consid-
erations... are at odds with that picture. It does not make sense, for example, to think of deleting a point
from a line, or to remove the end point of a line segment. Given two line segments L and L′, we can form
a right triangle with legs L1 and L′

1 congruent to the given segments, respectively; but these share a vertex
as a common point, each an end point. Thought of as a set, L is transformed into L′ by a rigid motion, and
the same for L1 and L′

1. Thought of in that way, the vertex of the right triangle has displaced one of the end
points, but which one? There are many similar thought experiments which dictate that lines, line segments
and other figures in Euclidean geometry are not to be identified with their sets of points. ([Feferman 2009],
174-5)

Of course, “Dedekind’s continuum” was quite useful for the foundations of analysis and for other purposes. In any case,
the issue is complex, and I can’t pretend to do it full justice here. (Thanks to the two anonymous referees from Synthese
for prompting me to say more about this example.)

53[Maddy 2017], 305.
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3 Implications and further questions

The contention of the previous section, if correct, raises a number of interesting issues for philosophy of

science and philosophy of mathematics. I won’t try to discuss these issues in detail here—that’s a task

for future work– but a few are at least worth pointing out and briefly commenting on.

One obvious question to ask is whether or not all reductions in mathematics follow the arithmetic-set

theory case in being unexplanatory. In my view, the answer is almost certainly no. On the contrary,

there are pairs of mathematical theories such that one is plausibly reducible to the other, and also such

that the reducing theory sheds significant explanatory light on the reduced theory.54

To take one example, consider the advances in algebraic geometry made possible by Alexander

Grothendieck’s theory of schemes. (Roughly speaking, Grothendieck’s idea was to view the varieties

studied by classical algebraic geometry as a species of scheme, a superficially quite different-looking

type of object consisting of a topological space with a commutative ring paired to each open set.) It’s

not hard to see that, given suitably formalized versions of both theories, classical algebraic geometry

should come out reducible to scheme theory. Moreover, there’s broad agreement among mathematicians

that the scheme-theoretic viewpoint provides important insights about various classical phenomena.

Indeed, according to Vakil, “the wonderful machine of modern algebraic geometry [i.e., scheme theory

and related ideas] was created to understand basic and naive questions about geometry.”55 (To take a

particular example of Perrin’s, “In the plane... we can always find lines which are not tangent to a given

curve. The notion of a scheme is indispensable for understanding these phenomena”.56) Eisenbud and

Harris’s textbook on schemes makes the broad scope of Grothendieck’s achievements clear:

The theory of schemes... is the basis for a grand unification of number theory and alge-

braic geometry, dreamt of by number theorists and geometers for over a century. It has

strengthened classical algebraic geometry by allowing flexible geometric arguments about

infinitesimals and limits in a way that the classic theory could not handle. In both these

ways it has made possible astonishing solutions of many concrete problems.57

54In light of the infinitesimal example from §2.6 and the other cases considered so far, one might wonder, as an anonymous
referee did, whether the difference between explanatory and non-explanatory reductions is just the difference between cases
where the relevant concepts weren’t or were originally “in good working order”. It seems to me that the example given
below challenges this idea. We seem to have an explanatory reduction of algebraic varieties to schemes, but there was
nothing unclear or contradictory about the notion of variety before Grothendieck came along. And I don’t think anyone
would suggest that the notion of a scheme—which involves a lot of complex technical machinery with no immediately
obvious geometric meaning—is simpler, clearer, more intuitive, or otherwise more epistemically or logically adequate than
the notion of a variety. What’s going on in this case seems to be, rather, that schemes are richer in structure and that
they carry more data than varieties, and this means that the scheme-theoretic viewpoint allows one to see further into
the phenomena than the classical approach allows.

55[Vakil 2015], 12.
56[Perrin 2008], 213.
57[Eisenbud & Harris 2000], 1.
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(This case deserves a much more detailed examination, which I hope to give it in future work.) Other

examples of explanatory mathematical reductions include, perhaps, the application of Galois theory

to questions about the solvability of polynomial equations, and of matroid theory to the notion of

“independence”.

Supposing this is right, reducibility relations in mathematics evidently come in two different fla-

vors—those that are substantially explanatory and those that aren’t (by virtue, perhaps, of being in

some sense merely “conventional”). A second question is then how to account for this difference. Is it,

for instance, a matter of metaphysics? On this type of view, explanatory reductions are explanatory

because the objects in the domain of the reduced theory are metaphysically related to those in the

domain of the reducing theory in some appropriate way. This relation could simply be identity, for

example. (One might think that the reduction of arithmetic fails to be explanatory precisely because

numbers aren’t identical to sets.) Or the relation could be something weaker—parthood, maybe, or even

metaphysical dependence of a sort peculiar to mathematical objects.58 This last idea, incidentally, sug-

gests the need for a closer look at the relationship between mathematical explanation and the currently

popular notion of metaphysical grounding.59

Alternatively, the difference between explanatory and unexplanatory reductions might lie in the

logical or epistemological features of the theories themselves, rather than the properties of the objects

they describe. On this type of view, explanatory reductions are explanatory because the reducing theory

is logically stronger or conceptually richer than the reduced theory, or because it yields new knowledge of

an appropriate kind about the reduced theory’s subject matter. (I happen to think the second approach

has the brighter prospects. But defending that claim is a task for another time.)

At any rate, answering this second question ought to help with a third, related one: why are reduc-

tions in empirical science—at least in natural, interesting, and relatively uncontroversial cases—apparently

always explanatory, if the same isn’t true in mathematics? In addition to the ideas sketched above, one

might think that the difference is due to the relatively “empiricist” standards of theory acceptance in

force in the natural sciences. Consider string theory, for instance. Contemporary versions of string

theory (and its siblings, like M-theory) promise a sweeping reduction-cum-unification of classical par-

ticle physics, spacetime theory, and perhaps more besides. As its proponents have pointed out, such a

string-theoretic foundation for physics would be formally elegant, conceptually neat, and institutionally

convenient—that is, it would provide many of the same benefits that set-theoretic foundations do for

mathematics. Unlike set theory, however, string theory has so far failed to win general acceptance.
58See [Pincock 2015] for a defense of a dependence-style account.
59[Correia & Schnieder 2012] collects some recent work on the subject.
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And the proffered reduction of elementary particles to strings is still viewed with skepticism by many

physicists.

As is well-known, a major reason for this hesitation is the lack of independent experimental evidence

in support of the theory.60 Without such evidence in its corner, it seems, even the most attractive

empirical theory rarely if ever gets itself accepted by the scientific community—and one can’t have a

proper reduction without a widely accepted reducing theory. On the other hand, if and when we do

have good independent evidence of the existence of strings, it seems we’ll ipso facto have evidence for

an explanatory connection between string theory and the theories it reduces. (Since we’ll then have

good reason to think, for instance, that classical particles are really strings, and that the laws governing

the former are just a special case of the laws governing the latter. And such “interlevel” facts—about

cross-theoretic identities, composition relations, and the like—are seemingly always explanatory.) So we

seem to have the following situation. If an empirical theory is a candidate for involvement in a “purely

conventional” reduction—because it has no suitably direct evidential support, but only considerations

of formal niceness and unificatory power in its favor—then the theory and the associated reduction

won’t command general assent. On the other hand, if an empirical theory amasses enough experimental

support to be widely endorsed, then this very evidence will underwrite acceptance of the entities and laws

the theory describes. And the “interlevel” information typically derivable on this basis is explanatorily

valuable by nature.

As we’ve seen, things are otherwise in pure mathematics. A mathematical theory, and the reduction

relations in which it’s involved, can win institutional acceptance on the grounds of elegance, neatness

and convenience alone; there’s no counterpart to the demand for (relatively) direct empirical evidence.

Hence unexplanatory, merely “conventional” reductions are possible in mathematics, but typically not

in the sciences. (Or so this line of thought would have it. I think the story has some plausibility, but

I’m not certain it’s entirely or uniquely the right one.)

This essay has covered a lot of ground; let me briefly summarize where we’ve been. My main goal

has been to show that the reduction of arithmetic to set theory is unexplanatory. I’ve argued that

there are both positive and negative reasons to accept this conclusion. On the positive side, I suggested

that the reduction of arithmetic is similar in relevant ways to other paradigmatically unexplanatory

set-theoretic reductions, and moreover that number theorists don’t regard the reduction as a source of

insight or understanding. On the negative side, I considered four arguments purporting to show that

the reduction of arithmetic is explanatory after all—the first claiming that numbers are identical to

sets as a matter of metaphysics, the second claiming that there are explanatory set-theoretic proofs
60For an extended critique of this sort, see [Woit 2006].
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of arithmetical facts, the third claiming that the reductionist viewpoint explains high-level features of

the natural numbers, and the fourth claiming that reductionism renders arithmetical concepts more

intelligible. I’ve tried to show that none of these arguments are successful. This outcome needn’t lead

to a pessimistic view of set-theoretic foundations, though, since there remain a number of ways in which

an unexplanatory reduction to a foundational theory might still be valuable. Finally, as I hope the last

section has shown, accepting these conclusions raises a number of provocative questions for philosophers

of science and mathematics interested in the epistemology and metaphysics of intertheory relations.
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