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ABSTRACT. The Generalized Quantifiers Theory, I will argue, in the 

second half of last Century has led to an important rapprochement, 

relevant both in logic and in linguistics, between logical quantifica-

tion theories and the semantic analysis of quantification in natural 

languages. In this paper I concisely illustrate the formal aspects and 

the theoretical implications of this rapprochement. 

 

 

1.  From “natural” to “formal” quantification 

 
Aristotle, when invented the very idea of logic, was concerned with natural 
quantification. He focused on the meaning of some natural language deter-
miners: all, some, no, not all, whose reciprocal logical relations are graphical-
ly expressed in the well-known square of opposition:  
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    
 

      
 

   
 

The Aristotelian logic can be considered a segment of the logic of natural 

quantification, since it formally characterizes quantifiers expressible as Noun 
Phrases of a natural language.  

When Frege invented the very idea of formal logic, he introduced two arti-
ficial quantifiers, as variable-binding operators, structurally very different 
from natural language quantifiers: and . It was the “divorce” between logic 
and natural language in the Twentieth Century. The following is the so-called 

square of duality relations between the two fregean quantifiers, showing their 
interdefinability by means of inner and outer negation: 

 
 
 
 

 
 
 
 
 
 

The main reason of this divorce is that the quantifiers of first order logic are 
inadequate to deal with quantified sentences of natural languages in at least 
two respects: (1) The syntactic structure of quantified sentences in predicate 
calculus is totally different from the syntactic structure of natural language 
phrases expressing quantification (the “interface” problem); (2) There are 
quantifiers in natural language (expressed by some Noun Phrases) which 

simply cannot be represented in a logic which is restricted to the standard 
first-order quantifiers (the “expressiveness” problem). 
Now, the Generalized Quantifier theory, based on the seminal works of 
Mostowski (1957) and Lindström (1966), has led to new insights into the na-
ture of quantifiers, insights which permit logical syntax to correspond more 
closely to natural language syntax. Moreover, Generalized Quantifier Theory 

shows an increased expressive power than the standard first-order quantifica-
tion. 

 
 

2.  Introducing Generalized Quantifiers 

 

After having briefly introduced the Generalized Quantifiers (GQ, hereafter) 
theory, I’ll proceed addressing the two mentioned problems.  
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Let E be a non-empty set, the universe, of a model M and QE any set of 

subsets of E (QE  power(E)). Then QE is a type 1 GQ whose meaning is 
given by: 

QE(A)  A  QE 
 

The same quantifier can be written as variable-binding operator (where M |= 
is the usual satisfaction relation between a model and a formula, and [[(x)]]M 

is the “extension” of (x) in M): 
 

M |= Qx(x) iff [[(x)]]M  QE 
 
This notation suggests that standard quantifiers are conceivable as type 1 
quantifiers and, consequently, that you can provide a compositional account 

for first order formulas with quantifiers. It is well-known that standard univer-
sal and existential quantifiers do not have a denotation as such in the formulas 
in which they occur, and that, as a consequence, that it is not possible to com-
positionally interpret these formulas. But, as type 1 quantifiers, standard 
quantifiers denote sets of sets: 

E = E 

E = A  E: A   
 
Now, we can compositionally express the meaning of a formula such as 
x(x) as follows: 
 

M |= x(x)  [[(x)]]M  [[E]]  [[(x)]]M = E 

 
The denotation of x(x) is constructed out by applying the denotation of the 
quantifier to the denotation of the open formula. 

The definition of type 1,1 quantifiers is a natural extension of that of type 
1 quantifiers. Let E be the universe of a model M and QE any (second order) 
binary relation on subsets of E (QE  power(E)  power(E)). Then QE is a 

type 1,1 GQ whose meaning is given by: 
 

QE(A, B)  A, B  QE 
 
Now, we can address the two problems: For the interface problem, I shall try 
to show the advantages of the approach based on GQ theory in designing a 

syntactic structure of quantification that is very similar to the syntax of quanti-
fication in natural languages. Then, I’ll show that there are some generalized 



D’ALFONSO DUILIO 
 

 

88 

quantifiers that can capture the meaning of some natural language determin-

ers, meaning that seems otherwise intractable (if we limit ourselves to the 
standard quantification). 
 
 

2.  The “interface” problem 

 

We presuppose a type-logical framework for the semantic component of the 
linguistic theory. The role of this component is to derive a semantic represen-
tation for a well-formed sentence of a natural language, starting from the 
meaning of the lexical units occurring in the sentence, according to its syntac-
tic structure. Thus, the problem of the interface between logical syntax and 
natural language syntax turns into the problem of syntax/semantics interface, 

a mere linguistic “affair”, according to the following table: 
 

syntax linguistics 

semantics 

logical relations logic 

 
But without generalized quantifiers we have to insert logical representations 
during the process of meaning derivation. Consider the meaning derivation for 
the sentence “some boy runs”: 
 

 
 
 
 
 
As you can see, you are forced to conventionally stipulate that the meaning of 

“some” corresponds to a whole sentence of first order logic, with two “slot”, 
corresponding to the to variables bounded by the lambda operator.  does not 
matches any words in the sentence. This is because  is an unrestricted gener-
alized quantifier of type 1 and, simply, in natural languages there aren’t de-
terminers directly matching unrestricted GQs of type 1. The syntax of quan-
tification in natural languages exhibits some typical, idiosyncratic, properties. 

In many natural languages, quantified sentences normally show the following 
“tripartite” structure: 
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where the Quantifier usually is a pronoun or an adjective expressing a quanti-

ficational relation, the Restrictor is a predicate constraining the domain of 
quantification (the set of entities concerning the quantification), the Nuclear 
Scope expresses the set with which the restrictor is confronted in order to de-
termining if the quantificational relation is satisfied (briefly, the scope of 
quantification). For instance, for a quantified noun phrase in subject position, 
we have something like the following syntactic structure: 

 
 
 
 
 
 

 
 
 
 
 
It is worth noting that Restrictor and Nuclear Scope are clearly distinct since 

they belong to different syntactic categories and have different positions and 
role in the phrase structure of the sentence.  

This structural diversification completely vanishes in the syntax of quanti-
fied first order formulas. Neither a Restrictor nor a Nuclear Scope can be iso-
lated. Conversely, they are indistinguishable, insofar as they are generally ex-
pressed by atomic clauses within the scope of the quantifier: 

 
 
 
 
 
 

 
 

quantifier                     restrictor                 nuclear scope 

S 

NP             VP 

DET                N 

quantifier           restrictor 

nuclear scope 

quantifier                              x                    nuclear scope 

atomic clauses 
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Now, thanks to Lindström generalization of Mostowski theory of generalized 

quantifiers, we can restore a closer correspondence between logical syntax 
and natural language syntax. Generalized quantifiers allow us to keep the lin-
guistic job free from intrusion of logical representations, as you can easily see 
in the following meaning derivation of the sentence “some boy runs”, in 
which the determiner “some” perfectly matches the meaning of the general-
ized quantifier some(A ,B) = A  B  : 

 
 
 
 
 
 

 
As already mentioned, the type 1,1 GQ some(A ,B) matches the meaning of 
the word “some”, while the type 1 GQ some(A ,B) matches the meaning of 
the noun phrase “some boy”, and the meaning of the whole sentence is 
straightforwardly rewritten into a set-theoretical representation to be interpret-
ed in a model: 

 
 
 
 
 
Hence, adopting the generalized quantifiers, the one-to-one correspondence 

between syntax and semantics is re-established (the so-called syn-
tax/semantics isomorphism), at least for the meaning of quantified noun 
phrases.  

Indeed, the following tree illustrates a quite general pattern of the semantic 
structure of nuclear sen-
tences, in many natu-

ral lan- guages: 
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Noun phrases can be uniformly interpreted as type 1 quantifiers, while de-
terminers can be uniformly interpreted as type 1, 1 quantifiers. Moreover, 
proper names can be treat as type 1 quantifiers as well. This result is ob-
tained performing the so-called “type-raising” of the meaning of proper 
names, from the semantic type of e (entities) to the semantic type (et)t (func-

tions mapping sets onto truth-values). The following derivation is then li-
censed, for a sentence like “John drinks”: 
 
 
 
 

 
 
 
 

1.  The expressive power of GQ 

 

Addressing the expressiveness problem, it is easy to show the expressive 
power of GQ theory by examples. Let me start presenting the generalized 
quantifiers corresponding to the four determiners of the classical square of 
opposition: 

all(A, B)  A  B 
no(A, B)  A  B =  

some(A, B)  A  B   
not all (A, B)  A  B   

 
Just to give an idea of the expressive power of GQ theory in representing the 
meaning of natural language quantifiers, some definite and indefinite deter-
miners are translated as generalized quantifiers: 

 
the(A, B)  A  B  |A| = 1 
the ten(A, B)  |A| = 10  A  B 
John’s(Apl, B)  A  b: owner(j,b)  B 

 | A  b: owner(j,b)|  1 
John’s(Asg, B)  A  b: owner(j,b)  B 

 | A  b: owner(j,b)| =1 
every but John (A, B)  A  B = john 

 
drinkjohn

AjohnEAdrink

drinkjohn

drink

drinks

PjohnP

john



 :

)(

)(.
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n(A, B)  A  B = n 

at most n(A, B)  A  B  n 
at least n(A, B)  A  B  n 
n out of m(A, B)  m  | A  B | = n  |A| 
not one in ten(A, B)  10  |A  B|  |A| 
all but n(A, B)  |A  B| = n 
all but a tenth(A, B)  10  |A  B|  |A| 

all but finitely many(A, B)  |A  B| is finite 
most(A, B)  |A  B|  |A  B| 

 
We can now suggest two reasonable hypotheses. Given that the number of 
type 1, 1 GQs, not difficult to guess, is huge (only for a domain with two in-
dividual is 2

16
 = 65536), the set of determiners of natural languages is a proper 

subset of the set of GQs, and the set of first-order definable determiners (de-
terminers definable by means of a formula of first order logic) is, in turn, a 
proper subset of that of natural language determiners. We do not provide a 
formal proof of these hypotheses, but some considerations may suffice to 
show their plausibility.  

That not all GQs are natural language determiners is a consequence of the 

formulation of some (hypothetical) semantic universals. A natural language 
determiner Q of type 1, 1 denotes a “quantirelation” if it is characterized by 
the property of “isomorphism” (ISOM). A type 1, 1 satisfies ISOM iff for 
any pair of universes E and E and any sets A, B  E and A, B  E:  
 

if |A  B| = |A  B| and |A  B| = |A  B| then QE(A, B)  QE(A, B) 

 
ISOM lexical determiners have one of the following properties (supposing 
Q(A, B) is the quantifier denoted): 
 

 Extension (EXT): only |A  B| is relevant - a typical example is 
some(A, B)  |A  B| = ; 

 co-Extension (co-EXT): only |A  B| is relevant - a typical example is 
all(A, B)  |A  B| = ; 

 proportionality (PRO): both |A  B| and |A  B| are relevant - a typical 
example is most(A, B)  |A  B|  |A  B|. 

 
This implies that all natural language determiners have the Conservativity 

(CONS) property: |B  A| does not matter. We can add that Extension means 
that |E  (A  B)| does not matter. Considering that also not-ISOM determin-
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ers like the definite articles or bare plurals are EXT, and that the so-called 

“cardinal determiners” belong to one of the mentioned categories, we can call 
the class of CONS quantifiers fallen into the union of EXT, co-EXT and PRO 
the “natural quantifiers”. The class of natural quantifiers is closed under Bool-
ean operations. If these general properties of determiners are to be taken as 
universally valid, the number of generalized quantifiers that can represent the 
denotation of natural language determiners is significantly restricted, i.e., the 

set of natural quantifiers is a proper subset of the set of GQs.  
That not all natural language determiners are first-order definable is a re-

sult of some proofs in literature. Let Q(A, B) be a type 1, 1 quantifier and  a 
first-order sentence whose non-logical constants are just the two unary predi-
cates A and B. Q(A, B) is first-order definable iff  is true in every model M 
for which Q([[A]]M, [[B]]M) is true. For example, at least two(A, B) is defina-

ble by xy(x  y  A(x)  B(x)  A(y)  B(y)) and at least n(A, B) is defined 
analogously. Hence, they are first-order definable. 

In general, the so-called “intersective” GQ (for which only |A  B| mat-
ters) and the so-called “co-intersective” GQ (for which only |A  B|  matters) 
are first-order definable (for finite domains), while the “proportional” GQ (for 
which both |A  B| and |A  B|  matter) are not first-order definable. Barwise 

and Cooper (1981) proved that proportional natural language determiners like 
most(A, B) are not first-order definable and, successively, stronger results has 
been found.  

Summarizing, GQ theory, with its set-theoretical framework, represents a 
formal tool particularly suitable for characterizing natural language quantifi-
cation in a more “naturalistic” fashion. I suggest that, in some sense, this theo-

ry marks a switch from a normativist to a descriptivist approach to quantifica-
tion. Moreover, we have seen how the adoption of the set-theory machinery 
allows us to obtain a more flexible codification of the meaning of natural 
quantifiers.  

As we have seen, the two main features of GQ theory, that are: 
 the restored correspondence between logical and natural syntax of 

quantification, and 
 the increased expressive power of the theory of quantification, 

imply the possibility to get some insight into the structure of natural language 
quantification and to formulate generalizations that may represent as many 
hypotheses about universal features of the semantics of quantificational 
phrases of natural languages. 
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