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The Intersect Point Theorem

Abstract
In this paper titled 'The Intersect Point Theorem' I had performed many mathematical operations on a figure formed by three non-collinear points called a triangle. In this paper 
a concept, when two lines intersect at a common point on one of the segments of the triangle, then their cause is defined. I had tried to keep my work in the ordinary language 
of Geometry. All these principles keep me on researching various geometrical concepts throughout the year.
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Introduction

The theorem is based on basic geometrical concepts. I had performed many 
mathematical operations on a triangle which would further introduce the world 
new theorem which is proved logically in mathematical sciences. 

Statement of the Theorem 

In a triangle, when two lines intersect at a point and touch the one segment 
of the triangle, then that segment is twice the length of one of the intersecting 
lines. 

Theorem

In a triangle, when two lines intersect at a point and touch the one segment 
of the triangle, then that segment is twice the length of one of the intersecting 
lines. 

Figure 1. ABC.

Construction

Draw segment AP  BC (i.e B-P-C).

I assumed in Figure 1, triangle ABC, angle ABC=angle ACB.

Segment QR // segment BC, segment QP // segment Ac (by mid-point 
statement) [1-3]

And segment QR is a bisector of angle AQP (i.e angle AQP=angle PQO).

Likewise, segment QP is a bisector of angle BPA (i.e angle QPB=angle QPO).

To prove:  segment AB=½ QP.

Proof: If segment PO  QR and segment AO  QR then, Angle AOQ ≅ angle 
POQ=90 [4]                             (1)

Angle AQO ≅ angle PQO ------------- (given)                                                  (2)

Now in triangle AQO and triangle PQO, Angle AOQ ≅ Angle POQ (from 1)

Angle AQO ≅ Angle PQO (from 2)

Triangle AQO~Triangle PQO  (AA Test) [5]

Angle QAO ≅ Angle QPO------- (c.a.s.t)                                                      (3)

Now in triangle AQO and triangle PQO, Angle QAO ≅ Angle QPO (from 3)

Angle QAO ≅ Angle QOP (each 90° )

Segment QO ≅ Segment OQ (common side)

Triangle AQO ≅ Triangle PQO (AAS Test) [6]

Segment AQ ≅ Segment QP ---------- (c.s.c.t)                                  (4)

Now angle ABC ≅ angle ACB ----- (Given)                                                  (5)

Segment QP // segment AC and BC is a transversal, Angle QPB ≅ Angle 
BCR (corresponding angles) [7]

i.e angle QPB=angle ACB                                                                    (6)

i.e Angle QPB=Angle ABC     (from 5)

Segment QP ≅ Segment BQ ---- (converse of isosceles triangle theorem) [8]                      
                     (7) 

Now,

Segment AQ ≅ Segment QP (from 4)                                                         (8)

And segment BQ ≅ segment QP (from 7)

Now, if AQ+BQ=AB

QP+QP=AB  (from 8)

2QP=AB 
i.e QP=1/2 AB

∴ HENCE PROVED
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Results

Firstly-in a triangle, when two lines intersect at a point and touch the one 
segment of the triangle, then that segment is twice the length of one of the 
intersecting lines. This Statement is proved above by giving the notions of 
Euclidean Geometry. Secondly, we may find the length of QP=½ AB by 
certain Measurements mentioned in Figure 1. 

Conclusion

By these theorems, the world may introduce to the new way of finding the length 
of the side of a triangle, the segment joining the two mid-points of a triangle 
and we might get a complete solution by proving the theorem mentioned in 
methodology. 
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