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Abstract: This paper is about the alethic aspect of epistemic rationality. The most
common approaches to this aspect are either normative (what a reasoner ought to/may
believe?) or evaluative (how rational is a reasoner?), where the evaluative approaches are
usually comparative (one reasoner is assessed compared to another). These approaches
often present problems with blindspots. For example, ought a reasoner to believe a
currently true blindspot? Is she permitted to? Consequently, these approaches often
fail in describing a situation of alethic maximality, where a reasoner fulfills all the alethic
norms and could be used as a standard of rationality (as they are, in fact, used in some
of these approaches). I propose a function α, which accepts a set of beliefs as input
and returns a numeric alethic value. Then I use this function to define a notion of alethic
maximality that is satisfiable by finite reasoners (reasoners with cognitive limitations) and
does not present problems with blindspots. Function α may also be used in alethic norms
and evaluation methods (comparative and non-comparative) that may be applied to finite
reasoners and do not present problems with blindspots. A result of this investigation is
that the project of providing purely alethic norms is defective. The use of function α
also sheds light on important epistemological issues, such as the lottery and the preface
paradoxes, and the principles of clutter avoidance and reflection. Keywords: Epistemic
Utility Theory; Blindspots; Bounded Rationality; Computational Epistemology.

1 Introduction

Practical rationality is related to the maximization of practical value, which is often asso-
ciated with the fulfillment of the subject’s preferences (e.g. in Decision Theory, see Steele
and Stefansson, 2016). Accordingly, epistemic rationality (in the following, ‘rationality’)
is often related to the maximization of some epistemic value (e.g. in Epistemic Utility
Theory, see Pettigrew, 2019a). Different features (e.g. of sets of beliefs) are regarded as
sources of epistemic value: closure, coherence, amount of evidential support, computa-
tional efficiency (see Dantas, 2017), etc. In recent decades, epistemologists have argued
that the fundamental source of epistemic value is the fulfillment of the truth-goal, the
goal of believing truths rather than falsehoods:
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[T]he fundamental source of epistemic value for a doxastic state is the extent to
which it represents the world correctly: that is, its fundamental epistemic value is
determined entirely by its truth or falsity. ...[A]ny further source of value for a belief
is derivative, not fundamental: that is, it is valuable because of the extent to which
it promotes or otherwise serves the fundamental source (Pettigrew, 2019b, p. 761).

This paper is about this alethic aspect of rationality: the aspect of rationality related
to the fulfillment of the truth-goal. The existing approaches to this aspect of rational-
ity are either normative (what a reasoner ought to/may believe?) or evaluative (how
rational is a reasoner?), where the evaluative approaches are usually comparative (one
reasoner is evaluated compared to another). These approaches often present problems
with blindspots, which are possible but inaccessible propositions (e.g. propositions that
are possibly true but impossible to be true when believed by a reasoner, see Sorensen,
1988). For example, ought a reasoner to believe a currently true blindspot? Is she per-
mitted to? Consequently, these approaches often fail in describing a situation of alethic
maximality (α-maximality), where a reasoner somehow fulfills the truth-goal ‘completely’.
An α-maximal reasoner, a reasoner who fulfills all the alethic norms, is used as a standard
of rationality in some evaluative frameworks. Nevertheless, these approaches often fail in
making sense of such a reasoner. For example, does this reasoner believe a currently true
blindspot? Ought she to?

Instead of using alethic norms or evaluation methods to define a notion of α-maximality,
I intend to pursue the opposite direction. I will define a function α, which accepts a set
of beliefs as input and returns a numeric value, and then use this function to define a
notion of α-maximality that does not present problems with blindspots. Finally, I will
use this notion to define alethic norms and evaluation methods (comparative and non-
comparative) that do not present problems with blindspots. It is usually accepted that
rationality has a subjective character, e.g. related to what a reasoner finds epistemically
possible (Wedgwood, 2015, p. 221). For this reason, rationality is usually related to the
maximization of expected epistemic value or, at least, to the maximization of epistemic
value for all epistemic possibilities (e.g. in Epistemic Utility Theory). The evaluation
methods proposed in this paper (see sec. 4.2) use actual epistemic value. The evaluation
of (sets of beliefs of) reasoners from their actual epistemic value would be an objective
form of evaluation because the truth-value of beliefs is often not transparent for reasoners
(see fn. 7). This form of evaluation should be used with caution in order to take into
account the subjective character of rationality (see sec. 4.2). Measures of actual epis-
temic value are currently used, for example, in Computational Epistemology (e.g. Douven,
2013), where epistemologists have full access to the truth-values of their agents’ beliefs1.

1 Douven (2013) uses computer simulations to resist the conclusion that Bayesian conditionalization
should be regarded as the rational rule for updating credences on the grounds that if a reasoner uses a rule
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I am interested in investigating which approach to the alethic aspect of rationality
can be used for describing a notion of α-maximality that is satisfiable by finite reasoners,
i.e. reasoners with cognitive limitations (e.g. humans)2. My focus on finite reasoners is
due to the fact that, although (human) Epistemology is (or should be) mostly concerned
with human rationality, epistemologists often propose standards of rationality that are
only satisfiable by reasoners without cognitive limitations3. I take issue with this state of
affairs because standards of rationality for finite reasoners may differ substantially from
standards of rationality for reasoners without cognitive limitations4. However, even if we
leave to one side these concerns about finite reasoning, the following objections to the
existing approaches to the alethic aspect of rationality are independent of these cognitive
limitations. Also, my alethic norms and evaluation methods are equally applicable to
both finite reasoners and reasoners without cognitive limitations. However, I do find it
to be an advantage of my proposal that it generates a notion of α-maximality that is
satisfiable by finite reasoners and allows for alethic norms and evaluation methods that
can be used to assess finite reasoners.

In Section 2, I show that most normative and comparative evaluative approaches to the
alethic aspect of rationality present problems with blindspots. Normative approaches ei-
ther make α-maximality impossible or leave this notion undefined; comparative evaluative

at odds with conditionalization, then the reasoner himself would find that conditionalization minimizes
expected inaccuracy (in relation to her own rule) given her own credences (Leitgeb and Pettigrew, 2010b).
He constructs simulations where two reasoners, a Bayesian and an “explanationist”, who updates credences
using a version of the inference to the best explanation, watch sequences of coin tosses and must estimate
the extent of the coin’s bias. The Bayesian minimizes expected inaccuracy of every update, but the
eplanationist minimizes actual inaccuracy at the end of the sequence (in most trials). Douven (2013,
p. 438) remarks that “it would seem absurd to claim that it is epistemically more important to have an
update rule that minimises expected inaccuracy than to have one that actually minimises inaccuracy”.

2 Informally, a finite reasoner has cognitive limitations such as finite input (perception, etc transmits
only a finite amount of information), finite memory (memory can store only a finite amount of infor-
mation), and finite computational power (reasoning can execute only finitely many operations, such as
inferential steps, in a finite time interval). I discuss the notion of a finite reasoner in Section 3.3.

3 For example, although Leitgeb (2014, fn. 3) recognizes that “ultimately, we should be concerned
with real-world agents”, his “perfectly rational reasoner” (p. 137) is logically omniscient. Finite reasoners
cannot, even in principle, (explicitly?) believe all the infinitely many logical consequences of their beliefs
because of their finite memory.

4 For this reason, I partially disagree with the remark in Leitgeb (2014, fn. 3) that it is (always) a
good methodological strategy to describe ideal agents (without cognitive limitations), “whom we should
strive to approximate”. For example, I do not believe that we should strive to be logically omniscient. In
other words, I do not believe that we should strive to clutter our (limited) memory with (infinitely) many
logical truths and logical consequences (see Harman, 1986, p. 12). This attempt would lead to a form
of cognitive paralysis since we would spend all of our cognitive resources in deriving logical truths and
consequences, which would prevent us from fulfilling our (epistemic or practical) goals. Also, attempting
to believe all the logical consequences of our beliefs is not truth-conducive in general because believing the
logical consequences of a false belief may result in an amplification of the initial mistake. My concerns
with finite reasoning are also related to the fact that reasoners without cognitive limitations are not
fully implementable in a computer simulation. It is an advantage of my framework that it enables the
investigation of α-maximal (but finte) reasoners using the tools of Computational Epistemology.
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approaches often make ‘rationality’ ambiguous between several incommensurable notions.
Consequently, these evaluative approaches often fail in making sense of an α-maximal
reasoner, who they often treat as a standard of rationality for all reasoners. Section 3 dis-
cusses the properties of an adequate non-comparative evaluation function for measuring
the alethic value of a set of beliefs. I use this function in a notion of α-maximality that is
satisfiable in the face of blindspots and by finite reasoners. In Section 4, I use function α
to generate alethic norms and evaluative methods (comparative and non-comparative) to
assess rationality, which do not present problems with blindspots and which can be ap-
plied to finite reasoners. It is a finding of this Section that the whole project of providing
purely alethic norms would be defective. In this same section, I also discuss how the use
of function α sheds light on important epistemological issues, such as the lottery and the
preface paradoxes, and the principles of clutter avoidance and reflection.

2 Blindspots

Broadly speaking, a blindspot is a possible but inaccessible proposition, where the relevant
accessibility relation is determined by a propositional attitude (Sorensen, 1988). In this
context, a proposition φ is a true-belief blindspot (in the following, ‘blindspot’) for a
reasoner R iff φ is possibly true but is not truly-believable by R5. For example, the
proposition that I do not exist is a blindspot for me because it is possible that I do not
exist (e.g. I could have died as a kid), but it is not possible that I do not exist while I
believe that I do not exist. You, on the other hand, can believe (truly) that I do not exist
(e.g. after I die). Consider the following two more abstract blindspots for an arbitrary
reasoner R:

(bs1) R does not believe that bs1.

(bs2) φ ∧ ψ, where φ is a mundane truth6 and ψ states that R does not believe that φ.

Sentence bs1 is the core example of a blindspot because it has the property that
bs1 is true iff R does not believe that bs1. Whether bs2 is a blindspot depends on
some presuppositions. It seems reasonable to presuppose that a rational reasoner believes
the ‘easy’ logical consequences of her beliefs resulting from conjunction introduction or
conjunction elimination. In this case, bs2 would be a blindspot for a rational R because
if R believes that bs2, then R believes its conjunct φ, but then the second conjunct of

5 In general, a blindspot for a propositional attitude A and a reasoner R is a proposition that is
possibly true but cannot have attitude A taken towards it by R. I am dealing only with the case of A =
true-belief. A proposition φ is truly-believable by R iff it is possible that φ is true while believed by R.

6 A mundane truth is a contingent truth that is not about (the beliefs of) the reasoner (e.g. the
proposition that snow is white).
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bs2 (i.e. ψ) is false and bs2 itself is false. Sentence bs2 would not be truly-believable
by a rational R. If bs2 is a blindspot, then it is a complex blindspot, i.e. a blindspot
with components that are not blindspots. Complex blindspots are interesting because
they often have components that are harmless truths (e.g. φ in bs2), which only form a
blindspot when they are in a conjunction with the other components. Any harmless truth
can be a component of a complex blindspot.

2.1 Blindspots and norms

The goal of a normative approach to the alethic aspect of rationality is to provide the cor-
rect and complete set of alethic norms about what a rational reasoner ought to believe and
may believe7. A set of norms does not automatically generate a notion of α-maximality,
but it seems reasonable to presuppose that an α-maximal reasoner believes all and only
that which she ought to believe and only that which she may believe. This is the case
because alethic norms are supposed to model the fulfillment of the truth-goal, which an
α-maximal reasoner does completely. The crudest norm of this kind is the following:

(n1) R ought to believe that φ iff φ is true.

The problem with n1 is that it makes α-maximality impossible because of blindspots
(Bykvist and Hattiangadi, 2007). Let R be α-maximal. Then R believes that bs1 iff R
ought to believe that bs1 (α-maximality), but also R ought to believe that bs1 iff bs1

is true (n1) and bs1 is true iff R does not believe that bs1 (bs1). Then R believes that
bs1 iff R does not believe that bs1, which is a contradiction. Carr (2020) investigates a
similar problem for n1 (and related norms) using propositions that are closely related to
blindspots. She shows that the problem persists in different modal interpretations of n1.

Modified versions of n1 were proposed in order to avoid this general problem of
blindspots. Boghossian (2003) avoids the problem by rejecting one direction of n1. He
accepts

(n2) If R ought to believe that φ, then φ is true,

but rejects:

(n2’) If φ is true, then R ought to believe that φ.
7 Philosophers often distinguish between subjective and objective norms (e.g. Carr, 2020), where the

subjective but not the objective norms are sensitive to the information that is available to the reasoner (e.g.
what is epistemically possible for the reasoner). For this reason, subjective norms are often deliberative,
in the sense of being action-guiding. Alethic norms are objective because the truth-value of beliefs is often
not transparent for reasoners. Consequently, these norms are often not deliberative, except in some cases
when the relevant truth-values are transparent (e.g. contradictions and blindspots). The same holds for
evaluation methods.
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The retraction from n1 to n2 avoids the general problem of blindspots. It does not
follow from n2 that R ought to believe a blindspot. But n2 is too weak in the sense that,
regardless of φ being true or false, it does not entail an obligation (Raleigh, 2013, p. 248).
If φ is true, n2 does not entail anything. If φ is false, n2 entails that R does not ought
to believe that φ, but not that R ought not to believe that φ. As a consequence, n2
underdetermines the description of α-maximality: n2 states what α-maximal reasoners
do not (ought to) believe, but it states nothing about what they (ought to) believe, which
defeats the purpose of defining a notion of α-maximality. This problem is revealed, for
example, by the fact that n2 is fulfilled when reasoners do not have beliefs. In other
words, norm n2 does not model the positive part of the truth-goal: ‘believe the truths’.

Raleigh (2013, p. 249) and Whiting (2010) propose a different norm:

(n3) R may believe that φ iff φ is true.

This formulation also avoids the general problem of blindspots. It does not follow from
n3 that R ought to believe a blindspot. But n3 has a different problem with blindspots:
it is a consequence of n3 that a reasoner is permitted to believe a currently true blindspot,
and yet if the reasoner were to believe that blindspot, n3 itself would forbid that belief.
Raleigh argues that this is a good feature of his proposal:

It seems to me that as much as we may have an intuition that attempting to believe
a blindspot that happens to be true should be discouraged, we also have a conflicting
intuition that we would like to believe such a true proposition... A feature of my
proposal is that there is no truth-norm forbidding belief in a currently [true] non-
believed blindspot, but there is a norm that kicks in the moment that one ventures
to believe the blindspot. I think this ‘may’ be seen as a virtue rather than a vice, in
that it does justice, as far as possible, to both of these conflicting intuitions (Raleigh,
2013, p. 252).

I do not believe that appealing to our conflicting intuitions about blindspots helps
here because the instantiation of n3 for a blindspot contradicts the very definition of the
epistemic ‘may’8. Suppose that R does not believe that bs1. Then bs1 is true and n3
states that R may believe that bs1. If R may believe that bs1, then there must exist a
permissible epistemic situation in whichR believes that bs1. However, no such permissible
epistemic situation exists according to n3 itself: in all situations in which R believes that
bs1, bs1 is false, and n3 forbids R to believe that bs1. Another problem is, again, that n3
is fulfilled by not having beliefs.

Another strategy to deal with the initial problem consists of adding conditions to n19:
8 In deontic logic, ‘may’ is usually modeled as diamond-like (as requiring truth in a permissible situ-

ation, where a permissible situation is one in which nobody does what is not permitted by the norms).
The diamond does not aggregate over conjunctions in the standard modal logics.

9 There exist interesting versions of n4 and n5 without the clause ‘φ is true’ (let those be n4’ and n5’),
but similar problems hold for n4 and n5 and to n4’ and n5’. About norms n4’ and n5’, see footnote 40.
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(n4) R ought to believe that φ iff (φ is true and truly-believable by R).

(n5) R ought to believe that φ iff (φ is true and would be true were R to believe that φ).

Norm n4 avoids the general problem of blindspots. Since bs1 is not truly-believable by
R, it does not follow from n4 alone that R ought to believe that bs1. However, it follows
from n4 and some reasonable assumptions that R ought to believe a complex blindspot
(Bykvist and Hattiangadi, 2013, p. 110). Let this be the problem of complex blindspots.
Suppose that R does not believe that φ. Then ψ is true and truly-believable by R, and it
follows from n4 that R ought to believe that ψ. Also, φ is true and truly-believable by R
and it follows from n4 that R ought to believe that φ. Given this, R ought to believe that
φ and R ought to believe that ψ. If ‘ought’ aggregates over conjunctions, then R ought
to (believe that φ and believe that ψ). Since φ∧ψ is an easy logical consequence of φ and
ψ, then a rational R ought to believe that φ∧ψ, which is bs2. It is usually accepted that
‘ought’ aggregates over conjunctions10. In this case, it follows from n4 that a rational R
ought to believe that bs2, which contradicts n4 itself because bs2 is not truly-believable
by R. The same holds for n5 and related norms (n4’ and n5’, see fn. 9).

Both the general and the problem of complex blindspots are avoided by n6 and n7:

(n6) R may believe that φ iff (φ is true and truly-believable by R).

(n7) R may believe that φ iff (φ is true and would be true were R to believe that φ).

According to n6, it is not the case that R may either believe that bs1 or believe that
bs2 because both bs1 and bs2 are not truly-believable by R. Also, we cannot reinstate the
argument for the problem of complex blindspots from n4-n5 to n6-n7 because it is usually
not accepted that ‘may’ aggregates over conjunctions (see fn. 8). The problem with n6
and n7 is the underdetermination of the description of α-maximality: these norms state
what α-maximal reasoners may believe, but it does not say anything about what they
(ought to) believe. This defeats the purpose of defining a notion of α-maximality. This
problem is, again, revealed by the fact that n6 and n7 are fulfilled when reasoners do not
have beliefs. Again, these norms do not model the positive part of the truth-goal.

2.2 Blindspots and evaluations

The goal of an evaluative approach to the alethic aspect of rationality is to assess the
rationality of reasoners using some measure related to the fulfillment of the truth-goal.
In a comparative evaluative approach, a reasoner is evaluated in comparison to another

10 In deontic logic, the ‘ought’ is often modeled as box-like and the box aggregates over conjunctions in
the standard modal logics.
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reasoner. A comparative evaluation of rationality may state, for example, that a reasoner
R is at least as rational as a reasoner R′ (in the following, R � R′). It seems reasonable
to presuppose that comparisons of rationality should form a transitive and connex relation
(i.e. a total preorder). This is the supposition that, for all reasoners R, R′ and R′′, if
R � R′ and R′ � R′′, then R � R′′ and either R � R′ or R′ � R. Most comparative
evaluation methods fail in forming a total preorder of rationality because of blindspots.

A very crude comparative evaluation method could be based on set inclusion11:

(m1) R � R′ iff t(R′) ⊆ t(R) and f(R) ⊆ f(R′),

where t(R) is the set of R’s true beliefs and f(R) is the set of R’s false beliefs. Method
m1 has some plausibility because false beliefs can render a reasoner irrational, but this
method fails in forming a transitive and connex notion of rationality because of blindspots.
According to m1, R � R′ is false when R′ holds some true belief that R does not hold
or R holds some false belief that R′ does not hold. Then R � R′ and R′ � R are both
false when R′ believes some truth that R does not believe and R believes some truth
that R′ does not believe. There are as many versions of bs1 as there are reasoners. For
example, if bs1 is a blindspot for R, then bs1′ is a blindspot for R′, etc. Suppose that
the bs1s are the only existing blindspots. Further, suppose that both R and R′ believe
all and only the truths except for those that are blindspots for them. Then R believes all
and only the truths except for bs1 and R′ believes all and only the truths except for bs1′.
In this case, R should be at least as rational as R′ and vice versa (R � R′ and R′ � R).
However, according to m1, it is false that R � R′ or R′ � R because bs1 6∈ t(R) and
bs1 ∈ t(R′), but bs1′ ∈ t(R) and bs1′ 6∈ t(R′). Method m1 generates incommensurable
partial orderings of rationality, where ‘rational’ is ambiguous between incommensurable
notions (one for each ordering).

Following Joyce (1998), epistemologists have proposed frameworks that use principles
of Decision Theory to motivate norms of rationality (see Pettigrew, 2019a, for a survey).
The resulting field is the Epistemic Utility Theory (EUT), which has developed the best
evaluation methods available in the literature. Some frameworks in EUT follow three
steps (see Fitelson and Easwaran, 2015, p. 73). The first step is to define the ideal set of
beliefs, which is usually taken as unproblematic:

11 An anonymous reviewer has proposed method m1, which is very crude indeed. I have introduced
m1 as a dialectical tool for discussing problems of evaluation methods in general. Another anonymous
reviewer has pointed out that m1 would be inadequate independently of blindspots. If the objects of
beliefs are centered propositions, then a reasoner cannot believe the propositions centered in another
reasoner, which results in incommensurable partial orderings of rationality independently of blindspots.
This result is expected due to the nature of centered propositions and de se beliefs. However, I want
to maintain my arguments independent of whether the objects of beliefs are sentences, uncentered, or
centered propositions.
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Step 1 is straightforward. It is clear what it means for a set B of this type to be
perfectly accurate/vindicated in a world w. The vindicated set B∗w is given by: B∗w
contains B(p) (D(p)) just in case p is true (false) at w (Fitelson and Easwaran, 2015,
p. 75),

where B(p)means ‘believe that p’ (belief-value 1) and D(p)means ‘disbelieve that p’ (belief-
value 0)12. The second step is to define a measure of epistemic disutility (inaccuracy),
as the ‘distance’ between the set of beliefs of a reasoner and the ideal set of beliefs. An
adequate measure of inaccuracy should fulfill some properties, which are often fulfilled by a
Brier score (see Pettigrew, 2016, ch. 4 and my fn. 16). The third step is to use the measure
of inaccuracy and some principle of Decision Theory (e.g. dominance) in an argument
for some norm of rationality. Joyce (1998), for example, argues for Probabilism, i.e. the
norm that rational reasoners ought to have credence functions that are coherent with the
axioms of Probability (see Kolmogorov, 1950). His argument exploits the fact that if a
reasoner’s credence function does not fulfill Probabilism, then there is another function
that is less inaccurate than hers in all situations that she finds possible (dominance)13.

Fitelson and Easwaran (2015) and Pettigrew (2016), among others, follow these three
steps. Consequently, they use the (supposedly, α-maximal) ideal set of beliefs as a stan-
dard of rationality14, where the rationality of regular reasoners is evaluated by comparing
their sets of beliefs with that standard. This procedure presupposes the existence of the
ideal set of beliefs, but this may not be the case in situations of blindspots. If the ideal
set of beliefs contains a belief of value 1 for all and only the truths and a belief of value 0
for all and only the falsehoods, then the value of the belief that bs1∗ (the proposition that
the ideal set of beliefs does not contain a belief of value 1 for bs1∗) is not defined. This
problem resembles that of n1. A ‘solution’ could be simply stipulating that the ideal set
of beliefs has a belief of value 0 for bs1∗, but then regular reasoners would be evaluated
incorrectly for having a true belief that bs1∗. Another solution would be restricting the
framework to partial orderings, where an ideal set of beliefs would be a standard of ratio-
nality only for some reasoners. For example, R would be a standard of rationality only
for reasoners who do not believe that bs1, R′ only for reasoners who do not believe that
bs1′, etc. In this case, ‘rational’ would be ambiguous between incommensurable notions.

12 A similar definition is found in Pettigrew (2016, p. 3): “My proposal is that the accuracy of a credence
function for a particular agent in a particular situation is given by its proximity to the credence function
that is ideal or perfect or vindicated in that situation. If a proposition is true in a situation, the ideal
credence for an agent in that situation is the maximal credence, which is represented as 1. On the other
hand, if a proposition is false, the ideal credence in it is the minimal credence, which is represented as 0”.

13 For another example, Leitgeb and Pettigrew (2010b, sec. 6.2) argues for Conditionalization, i.e. the
norm that a rational reasoner ought to update her credences after learning some new evidence using
Bayesian conditionalization (see fn. 1).

14 The ideal set of beliefs would be treated as a standard of rationality because it would always be
favorably compared to any other reasoner. Not all frameworks in EUT use the ideal set of beliefs as a
standard of rationality. For two exceptions, see Leitgeb and Pettigrew (2010a) and Easwaran (2013).
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Suppose that two regular reasoners r and r’ are equally rational: they have the same
beliefs with the exception that, while r believes that bs1′ (but not that bs1), r’ believes
that bs1 (but not that bs1′). Then it would be the case that R � r and r � r’, but not
that R � r’. The rationality of R and R′ would also be incommensurable: it would not
be the case that either R � R′ or R′ � R. This problem resembles that of m115.

3 α-Model

In this Section, I propose a non-comparative evaluative function α, which measures the
alethic value (α-value) of a set of beliefs. Function α accepts a set of beliefs B as input
and returns a numerical value x (α(B) = x). The value of α(B) depends on the amount
of truth and falsehood in the set of beliefs B (t and f , respectively). The computation of
the values of t and f is straightforward for the case of binary truth- and belief-values (full
beliefs). In this case, t and f are, respectively, the number of true and false beliefs in B:

t =
∑
φ∈B

1− |v(φ)− b(φ)| (1)

f =
∑
φ∈B

|v(φ)− b(φ)|, (2)

where v(φ) returns the truth-value of φ (0 when φ is false and 1 when φ is true) and
b(φ) returns the belief-value of φ (0 when the reasoner disbelieves that φ and 1 when
the reasoner believes that φ). I focus on the case of binary truth and full beliefs, but
equations 1 and 2 may also be used for cases involving gradational truth or belief16.

To avoid the value of f (inaccuracy) collapsing to infinity, proponents of EUT often
restrict their frameworks to finite agendas (the set of objects that can be believed), re-
garding which reasoners are opinionated (e.g. Leitgeb and Pettigrew, 2010a; Fitelson and
Easwaran, 2015; Pettigrew, 2016). The reasoners of EUT have a fixed number of beliefs

15 Caie (2013) attacks Joyce’s argument for Probabilism using an “obvious truth” that is related to
bs1. He argues that a rational reasoner is guaranteed to be probabilistically incoherent given that she
is moderately sensitive to her credences and has high credence on that obvious truth. Fitelson and
Easwaran (2015, p. 86) discusses some solutions to this problem, which depend on presuppositions about
the objects of beliefs. Pettigrew (2016, p. 4) restricts his framework to situations without blindspots.

16 In a gradational notion of truth, v(φ) has continuously many values between 0 and 1: 0 when φ is
absolutely false, 1 when φ is absolutely true, and the values between 0 and 1 meaning different degrees
of truth. In a gradational notion of belief (credences), b(φ) has continuously many values between 0 and
1: 0 for absolute certainty that φ is false, 1 for absolute certainty that φ is true, and the values between
0 and 1 for other degrees of certainty. Epistemologists (e.g. Pettigrew, 2016, ch. 4) sometimes argue
that the measures of t and f should have the form of a Brier score for cases involving credences. If you
accept these arguments, the following equations (Brier scores) could be used for measuring t and f in the
α-model for the cases involving credences: t =

∑
φ∈B 1− (v(φ)− b(φ))2 and f =

∑
φ∈B(v(φ)− b(φ))2.
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about the same (all) items in the agenda and the evaluation methods developed in this
field can only be used to compare reasoners with the same number of beliefs17. I do not
restrict my framework to finite agendas. On the contrary, I assume that the agenda is
infinite18. In order to avoid that t (comprehensiveness) or f collapse to infinity, I will
simply require B to be a finite set of beliefs (see sec. 3.3). Consequently, my reasoners are
not opinionated and may have a varying number of beliefs. Also, function α can be used
to compare reasoners with different numbers of beliefs19. I do not presuppose that B has
much structure. My reasoners can suspend judgment about some φ (φ 6∈ B and ¬φ 6∈ B).
They can (but they shouldn’t, see sec. 4.2) believe contradictions (b(φ ∧ ¬φ) = 1) and
they can have inconsistent beliefs (b(φ) = b(¬φ) = 1). They can also fail to believe the
logical consequences of their beliefs (φ ∧ ψ ∈ B but φ 6∈ B). In general, the measures of t
and f used here consider the belief-value of each belief independently of the other beliefs
(e.g. the belief-value of φ ∧ ψ ∈ B is independent of that of φ, ψ ∈ B).

3.1 α-Value

Intuitively, the α-value of a set of beliefs should be higher the greater the amount of truth
in the set and lower the greater the amount of falsehood in the set. Also, if function α
is to be used in a notion of α-maximality, then it should be possible for a reasoner to
somehow ‘maximize’ her α-value. In this context, function α must fulfill the following
requirements, where α(t, f) is α(B) with t and f being computed using equations 1 and 2
or some other measure. e.g. Brier scores (t, f ≥ 0):

(r1) α(t, f) strictly increases with respect to t;

(r2) α(t, f) strictly decreases with respect to f ;

(r3) α has an upper bound.
17 An opinionated reasoner has an opinion (a belief-value) for every member of the agenda. If the

agenda is fixed, then all reasoners that are opinionated for that agenda hold credences for the same
objects. Consequently, they hold the same number of beliefs. For an exception, Easwaran (2013) works
with infinite agendas, but only with local measures of inaccuracy (i.e. that is, measures of the inaccuracy
of individual credences). Local measures of inaccuracy could ground a notion of rationality for the holding
of particular credences, but not for reasoners in general.

18 The agenda is always maximal in this sense. If the objects of beliefs are propositions, then no
assumption is needed because there are infinitely many propositions. If the objects of beliefs are sentences,
then I assume that the relevant languages have enough expressive power (e.g. recursion) for expressing
infinitely many truths/falsehoods (see sec. 3.2).

19 For this reason, I need two equations: t measures the comprehensiveness of the set of beliefs and
f measures its inaccuracy. In comparing reasoners who are opinionated regarding a fixed agenda (and,
consequently, have the same number of beliefs), only one (either one) of these two equations is needed
(e.g. EUT only uses the measure of f). This feature has to do with a difference in the interpretation of
the fulfillment of the truth-goal (see sec. 4.2).
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See Table 1 for functions α1-α5, which are either straightforward functions or functions
that have been used in the literature. These functions are rather arbitrary, but studying
their properties is a good way to understand the desirable properties of function α.

Requirement r1 models the positive part of the truth-goal: the more truth the better.
When I say that function α strictly increases wrt t, I mean that if t′ > t, then α(t′, f) >
α(t, f). Therefore, this requirement states that having more truth in the set of beliefs
always increases its α-value. Function α1(t, f) = t/(t+f), which measures the proportion
of truth in the set of beliefs, does not fulfill r1. If f = 0, then α1(t, f) = 1 for all
t > 0. Therefore, it would be false that α(t′ > t > 0, 0) > α(t > 0, 0). Function
α2(t, f) = (t−f)/(t+f), which measures the difference between the proportions of truth
and falsehood, also does not fulfill r1. Function α2 is undefined for t = 0 and f = 0

and, consequently, it is undefined whether α2(t′ > 0, 0) > α2(0, 0). (This last criticism
also holds for α1.) Requirement r2 models the negative part of the truth-goal: the less
falsehood the better. When I say that α(t, f) strictly decreases wrt f , I mean that if
f ′ > f , then α(t, f ′) < α(t, f). Therefore, this requirement states that having more
falsehood in the set of beliefs always decreases its α-value. Functions α1 and α2 also do
not fulfill r2 (e.g. they are undefined for t = 0 and f = 0). Function α3(t, f) = t−f (used
in Trpin and Pellert, 2019), which measures the difference between truth and falsehood
in a set of beliefs, fulfills requirements r1 and r2.

It follows from r1 and r2 that function α must be defined for all values of t and
f . If α(t, f) was undefined for a given value of t, then it would be undefined whether
α(t′ > t, f) > α(t, f) and the function would not strictly increase wrt t. The same holds
for f , α(t, f ′ > f) < α(t, f), and function α not strictly decreasing wrt f . Then, for all
values of t and f , there must exist an x such that α(t, f) = x. This fact has an important
consequence: since, for all (real) numbers x and y, either x ≥ y or y ≥ x, then, for
all values of t, t′, f , and f ′, either α(t, f) ≥ α(t′, f ′) or α(t′, f ′) ≥ α(t, f). Consequently,
function α can be used to measure and compare the α-values for all (finite) sets of beliefs20.

Requirement r3 is related to the existence of α-maximal reasoners. An α-maximal
reasoner should somehow fulfill the truth-goal ‘completely’, which is related to her some-
how reaching the upper bound of function α. If an α-maximal reasoner must somehow
reach the upper bound of α, then function α must have an upper bound. Requirement
r1 entails that if t is unbounded (i.e. if there are infinitely many truths in the agenda,
which I am assuming), then the upper bound of α cannot be a maximum21. Then the

20 Independently of whether t and f have continuous values, it would be interesting to require that α
is differentiable at every point (and, consequently, that it is a continuous function). In this case, the first
derivative of α could measure some sort of ‘alethic potential’ (more in the last paragraph of sec. 3.3).

21 The maximum of a function is the largest member in its image. Suppose that α(t, f) = max(α).
Requirement r1 entails that α(t+1, f) > α(t, f) and that α(t+1, f) > max(α), which is a contradiction.
The idea is that a reasoner can always hold an extra true belief and that function α must react to it.
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Function r1 r2 r3
α1(t, f) = t/(t+ f) × × ×
α2(t, f) = (t− f)/(t+ f) × × ×
α3(t, f) = t− f X X ×
α4(t, f) = (t+ d)/(t+ f + c) X X X
α5(t, f) = (t− f)/(t+ f + c) X X X

Tab. 1: The behavior of some functions regarding requirements r1-r3, where c, d > 0 are
constants. The checks indicate the requirements that the functions fulfill.

upper bound of α must be a supremum (but not a maximum)22. Functions α1 and α2 do
have an upper bound, but it is a maximum (1). The function α3 does not have an upper
bound. In sum, functions α1 and α2 do not fulfill r1-r3; function α3 fulfills r1 and r2, but
not r3. Requirement r3 also prevents the value of α(t, f) collapsing to positive infinity23.

Functions α1 and α2 can be fixed for requirements r1-r3 by adding constants c, d > 0 to
their numerators or denominators (see functions α4 and α5 in Table 1)24. Both functions
α4 and α5 fulfill requirements r1-r3. For example, function α5 fulfills requirement r1
because if t′ > t, then (t′ − f)/(t′ + f + c) > (t − f)(t + f + c)25; function α5 fulfills
requirement r2 because if f ′ > f , then (t − f ′)(t + f ′ + c) < (t − f)(t + f + c) (the
proof is similar to that in fn. 25); function α5 fulfills requirement r3: it has a supremum
that is not a maximum (1)26. The choice of a specific function α that yields the optimal
results is a difficult and, maybe, an empirical question27. For now, I prefer function α5,

22 The supremum of a function α is the least upper bound of the image of α, defined as a quantity s
such that no member in the image of α exceeds s, but if ε is any positive quantity, then there is a member
in the image of α that exceeds s− ε. All maxima are suprema, but some suprema are not maxima.

23 To prevent function α collapsing to −∞, we could require it to have an infimum (but not a minimum).
The infimum of a function α is the greatest lower bound of the image of α and the minimum of a function
is the smallest member in its image. I do not want to discuss this requirement here because it is marginal
to the investigation of the notion of α-maximality. Nevertheless, functions α4 and α5 have infima that
are not minima (0 and -1 respectively). I refer to the infimum of function α in Section 4.2.

24 Constant c defines the ‘sensitivity’ of the function: the smaller the c, the greater the benefit for
having more truth in the set of beliefs and the greater the penalty for having more falsehood in the set
of beliefs. A similar notion may be applied to d. An anonymous referee has called my attention to the
fact that Laplace’s rule of succession has the form of α4, where d = 1 and c = 2 (let’s call this αL).

25 Suppose that t′ > t. Multiplying both sides by (f + c+ f), it follows that t′(f + c+ f) > t(f + c+ f).
Distributing, it follows that t′f + t′c + t′f > tf + tc + tf . Adding (−t′f − tf) to both sides, it follows
that t′f + t′c − tf > tf + tc − t′f . Since tf = ft and t′f = ft′ (commutativity), this is equivalent
to t′f + t′c − ft > tf + tc − ft′. Adding (tt′ − ff − fc) to both sides, it follows that tt′ + t′f +
t′c − ft − ff − fc > tt′ + ft + tc − ft′ − ff − fc. Since t′t = tt′ and ft = tf , this is equivalent to
t′t+ t′f + t′c− ft− ff − fc > tt′+ tf + tc− ft′− ff − fc (commutativity). From distribution, it follows
that (t′ − f)(t+ f + c) > (t− f)(t′ + f + c). Dividing both sides by (t+ f + c)(t′ + f + c), it follows that
(t′ − f)/(t′ + f + c) > (t− f)/(t+ f + c).

26 The value of (t− f)/(t+ f + c) decreases only wrt f and strictly increases wrt t. Then limt→∞(t−
0)/(t+0+c) = 1 is the function’s upper bound because the value of t dominates that of c. Since the value
of (t− f)/(t+ f + c) strictly increases wrt t and t is unbounded, this upper bound is not a maximum.

27 There is much work to be done in order to shrink the class of admissible functions α, but I do not think
that the outcome of this will be the selection of one admissible function (the function α). For example, I
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partially for aesthetic reasons: I like the fact that this function naturally indicates the
relative α-values for accuracy (close to 1), inaccuracy (close to -1), and suspension of belief
(close to 0, although sets of beliefs can have α-value close to 0 by balancing accuracy and
inaccuracy). Function α5 can have different values of c. For simplicity, I will choose a c
that is very close to 0. Finally, function α5 is such that true and false beliefs have the
same weights. I cannot think of principled reasons for using different weights, but there
are adequate functions α with different weightings (e.g. α5′(t, f) = (2t− f)/(2t+ f + c)).
In the following, ‘function α’ refers to α5 with c very close to 0, but the arguments should
hold for all functions that fulfill r1-r3 (e.g. α4).

3.2 α-Maximality

In this Section, I use function α in a model of α-maximality that is satisfiable by finite
reasoners and does not present problems with blindspots. An α-maximal reasoner must
somehow fulfill the truth-goal ‘completely’, which is modeled by the upper bound of α.
There are two issues with this idea. The first is that since the upper bound of α is a
supremum (but not a maximum), this function does not return its upper bound for any
set of beliefs. The second is that function α measures the α-value of a set of beliefs,
but there are different notions of belief. I think that these issues are often overlooked
because the discussion (especially the discussion about alethic norms) is often built upon
informal notions about what it is for a reasoner to hold a belief. To avoid this problem, I
will introduce a formal model of a reasoner, which enables formal definitions of different
notions of belief.

Definition 1 (Reasoner). A reasoner R = 〈L, B, π〉 is a triple, where L is a formal
language, B is a set of sentences in L, and π is a function π : 2L × 2L × Z+ → 2L.

A reasoner is composed of a formal language (L) that models the concepts available for
the reasoner, a ‘belief-set’ (B) that models the reasoner’s memory, and an update function
(π) that models the reasoner’s pattern of inference. A fact about patterns of inference
is that reasoners can execute different inferences from the same premises. This fact is
expressed in the model using a function π that accepts as input the current set of beliefs
(B), an ‘evidential’ input (INPUT) that models the evidence available for the reasoner, and
a numeric input (positive integer): π(INPUT, B, 1) models inference 1 from INPUT and B,
π(INPUT, B, 2) models inference 2, etc. This model has three components that have not
appeared in our discussion: L, π, and INPUT. The language L will be used to delimit

cannot think of a principled way of specifying the ‘correct’ relative importance between believing the truth
and not believing the falsehood, so as to distinguish, for example, α5 and α5′(t, f) = (2t−f)/(2t+f+c).
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the reasoner’s agenda, which I assume to be denumerable28. The other two components,
which are important in the definition of a notion of α-maximality that does not present
problems with blindspots, will be discussed in the following.

The model of a reasoner can be used to define several notions of belief. For exam-
ple, informally, a reasoner explicitly believes the propositions represented or ‘stored’ in
memory. In the model, a reasoner explicitly believes the sentences in her belief-set29.
Reasoners cannot reach the upper bound of α given their momentary sets of beliefs (ex-
plicit, implicit, or accessible beliefs, see fn. 29). We could try to avoid this problem by
adding artificial conditions to α, such as, for example, ‘if t is infinite and f is finite, then
α(B) = max(α) = 1’30. This would partially fix the problem, but, in addition to its ad
hoc flavor, it is unclear what to do when t and f are both infinite. We may choose an
arbitrary value (e.g. α(B) = 0), but any choice would be inadequate. Suppose that two
reasoners R and R′ hold infinitely many true and infinitely many false beliefs, that they
hold the same false beliefs but that, for each true belief that R′ holds, R holds that same
belief and another (independent) true belief. The result that α(B) = α(B′) seems to be
wrong because R seems to be in a better epistemic position than R′ (m1 gets it right).

The procedural component in the model of a reasoner (the pattern of inference, π)
is used for dealing with this problem. Reasoners cannot reach the upper bound of α
given their momentary sets of beliefs, but they can try to always enhance their α-value,
continuously approaching the upper bound of α. For example, if a reasoner with an initial
belief-set B0 receives a sequence of inputs INPUT1, INPUT2, . . . , INPUTi, . . ., she could try
to update her initial belief-set from the available evidence generating a sequence of belief-
sets B0, B1, . . . , Bi, . . . such that the value of α(Bi) approaches the upper bound of α in the
limit of this sequence. Reasoners can execute different inferences from each possible pair
of INPUTi and Bi, but there is the inference that a given reasoner would ‘in fact’ execute
from each given pair of INPUTi and Bi. Let a reasoner’s reasoning sequence be the sequence
of belief-sets B0, B1, . . . , Bi, . . . that results from those inferences that the reasoner would
‘in fact’ execute from the available information if her cognitive resources were sufficient
(memory and time)31. In this context, I propose the following notion of α-maximality:

28 The use of sentences in this model should not be seen as a commitment to specific objects of beliefs
(see fn. 11), but as modeling the objects of beliefs (e.g. propositions). The assumption that agendas are
denumerable is substantive because sets of propositions can have higher cardinalities, but it is weaker
than the restriction to finite agendas. I will talk informally of propositions as the objects of beliefs.

29 Informally, reasoners implicitly believe the logical consequences of their explicit beliefs. In the model,
reasoners implicitly believe the logical consequence of their belief-set. Informally, reasoners have the
accessible belief that φ iff they explicitly believe that φ after some amount of reasoning (Konolige, 1986,
p. 19). In the model, the accessible beliefs of a reasoner are the sentences in π(INPUT, B, i) for some i.

30 In this case, the supremum of α would be a maximum. However, with some mathematical juggling,
one could argue that the new function fulfills r1-r3 (e.g. that “∞+ 1 =∞”, or something similar).

31 Function π determines a sequence B0, B1, . . . , Bi, . . ., where B0 = B is the reasoner’s initial belief-set and
Bi+1 = π(INPUTi+1, Bi, i+1). This sequence could be used to represent the reasoner’s reasoning sequence,
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Definition 2 (α-maximality). A reasoner R with reasoning sequence B0, B1, . . . , Bi, . . .
is α-maximal iff limi→∞ α(Bi) = sup(α).

An α-maximal reasoner is a reasoner who approaches the upper bound of function α
in the limit of her reasoning sequence. Broadly speaking, function α in this notion of α-
maximality can be seen as measuring the α-value of the (explicit) beliefs that a reasoner
adopts at some stage of her reasoning sequence and are not withdrawn subsequently.
Let those be stable beliefs (‘stable’ in the sense that, once adopted, these beliefs are not
withdrawn)32. The notion of stable belief is related to that of psychological certainty, i.e.
the property of a belief that is incorrigible (e.g. even in the face of additional reasoning
or evidence)33. In this case, the set of stable beliefs (i.e. Bω) may be interpreted as the
set of all the (explicit) beliefs that a reasoner is psychologically certain of at some stage
or other of her reasoning sequence. In the following, ‘belief’ refers to explicit beliefs and
‘beliefω’ to stable beliefs.

To show that definition 2 is satisfiable in the face of blindspots, I will construct a rea-
soner R∗ who approaches α-maximality without believingω any of her blindspots. This
construction relies on a sequence of INPUTs, which is related to a posteriori reasoning.
Neither the notion of α-maximality nor the problems of blindspots are necessarily re-
lated to a posteriori reasoning. In addition, there are a priori reasoners who approach
α-maximality without believingω their blindspots34. I have chosen this particular con-
struction for two reasons. The first is that the sequence of INPUTs provides an ordering in
which propositions are considered, which is relevant in dealing with complex blindspots.
This ordering could also be provided by the numeric parameter of π, but the exposition
is more natural using INPUTs. The second is that R∗ is used in Section 4, where I use the
α-model in alethic norms and evaluation methods. The construction of R∗ highlights the

although nothing in the following depends on this choice. The condition ‘if her cognitive resources were
sufficient’ is necessary (for finite reasoners) because reasoning sequences are infinite sequences.

32 The notion of stable belief is related to that of P-stability in Leitgeb (2014, p. 140), where a belief is
P-stable when it is sufficiently probable given any compatible proposition that is available for the reasoner
(e.g. as evidence). There are two differences, though. The first is that P-stability is concerned with the
relation between full beliefs and credences. The second is that the notion of stable beliefs considers
the order in which these other propositions are considered (which is crucial in dealing with complex
blindspots). In the model, the stable beliefs of a reasoner R with reasoning sequence B0, B1, . . . , Bi, . . .
are in the set Bω =

⋃
i

⋂
j≥i Bj . If Bω is infinite, α(Bω) is undefined. That’s why stable beliefs provide

only a “very rough” interpretation of the measure limi→∞ α(Bi), which is not the same as α(Bω).
33 This is the notion of psychological certainty: “A belief is psychologically certain when the subject

who has it is supremely convinced of its truth. Certainty in this sense is similar to incorrigibility, which
is the property a belief has of being such that the subject is incapable of giving it up” (Reed, 2011, p.
2). A reasoner is incapable of giving up her beliefsω in the sense that these are the beliefs that she ‘in
fact’ does not give them up even in the face of all available evidence.

34 For example, a reasoner who completely ignores her INPUTs and has reasoning sequence B0 = ∅, B1 =
{φ ∨ ¬φ}, B2 = {φ ∨ ¬φ, (φ ∨ ¬φ) ∨ ¬(φ ∨ ¬φ)}, etc is α-maximal without believingω her blindspots, but
this strategy for approaching α-maximality is problematic with regard to finite reasoners (see sec. 3.3).
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epistemic conditions in which a rational reasoner does not believeω her blindspots despite
having evidence that they (or their components) are currently true.

Let R∗ be a reasoner such that: (i) R∗ is in a perfect epistemic situation (i.e. has
access to all and only the true evidence)35; (ii) R∗ forms beliefs according to the evidence;
(iii) R∗ has an adequate access to her beliefs (see Egan and Elga, 2005, p. 83); and (iv)
R∗ minimally revises her beliefs. Let L be composed of the sentences φ1, φ2, . . . , φi, . . .

and let #φi = i be the index of φi. That (i) is modeled as INPUTi+1 = {φi+1} if φi+1

is true and INPUTi+1 = ∅ otherwise. That (ii) is modeled as function π being such that
if φ ∈ INPUTi+1, then φ ∈ Bi+1. That (iii) is modeled as R∗ being able to decide the
truth-value of beliefs when it depends only on her holding some belief or not. That (iv)
is modeled as function π being such that if she can decide that φ ∈ Bi is false, then there
is a j > i such that φ 6∈ Bj. For simplicity, I assume that j = i + 1, but ‘minimum
revision’ in (iv) means that she could perform the revision as gradually as she wants (i.e.
at any subsequent stage of the reasoning sequence). Let B∗0 = ∅. Informally, R∗ does as
follows at each stage i+ 1 of her reasoning sequence: R∗ inspects every φ ∈ Bi; if she can
decide that φ is false, then she withdraws the belief that φ from Bi+1; then R∗ considers
INPUTi+1; if some φ ∈ INPUTi+1, then she adds φ to Bi+1.
R∗ does not believeω her blindspots. Suppose that #bs1 = i. Sentence bs1 is true in

stage i and bs1 added to B∗i . But bs1 is false in stage i + 1 and bs1 is withdrawn from
B∗i+1. Since bs1 is not considered during subsequent stages, R∗ does not believeω that bs1.
The situation is similar to other blindspots. I am not presupposing that R∗ believesω the
‘easy’ logical consequences of her beliefsω. However, even if this was the case, she would
not believeω that bs2 as a logical consequence of her believingω that φ and that ψ because
she never believesω both that φ and that ψ. Suppose that #φ = i and #ψ = j. Either
i < j or i > j. If i < j, then φ is true at stage i and φ is added to B∗i , but ψ is false at
stage j and ψ is not added to B∗j . If i > j, then ψ is true at stage j and ψ added to B∗j ;
φ is also true at stage i and φ is added to B∗i . But R∗ can decide that ψ is false at stage
i+1 and ψ is withdrawn from B∗i+1. The situation is similar for other complex blindspots.
R∗ approaches α-maximality. It is the case that limi→∞ t = ∞ because R∗ is in a

perfect epistemic situation and forms beliefs according to the evidence. It would be the
case that limi→∞ α(Bi) 6= sup(α) only if limi→∞ f =∞. But the value of f is only higher
than 0 when the number of blindspots with all of their components in B∗i is higher than
0, but, whenever this happens at stage i, one of these components is withdrawn at stage
i+ 1, such that limi→∞ f = 0 (i.e. R∗ does not believeω her blindspots).

35 I am assuming that it is possible for R∗ to form infinitely many true beliefsω (and, consequently,
to approach α-maximality) from the available evidence in such a perfect epistemic situation. That
assumption would not hold if, for example, the situation were entirely composed of (true) blindspots for
R∗. However, such would be a case of skeptical rather than of a perfect epistemic situation (see fn. 38).
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3.3 Finite reasoners

Informally, a finite reasoner has cognitive limitations such as finite input (perception, etc
transmits only a finite amount of information), finite memory (memory can store only a
finite amount of information), and finite computational power (reasoning can execute only
finitely many operations, such as performing an inferential step, in a finite time interval).
In the model of a reasoner, a finite reasoner is as follows:

Definition 3 (Finite reasoner). A reasoner R = 〈L, B0, π〉 is finite iff L is recursively
enumerable, B0 contains finitely many sentences, and π is a recursive function, whose
inputs (INPUTi and Bi) can contain only finitely many sentences.

That L is recursively enumerable (r.e.) is a requirement for L being learned by a
finite reasoner36. If L is r.e., then L is finitary, i.e. all sentences in L have a finite length
(which is related to finite memory). The Bi being finite models finite memory. The INPUTi
being finite models finite incoming of information. Function π being recursive is related
to finite computational power. If π is recursive, then every belief that the reasoner holds
is associated with the execution of at most finitely many inferential steps, which models
the reasoner being able to execute only finitely many operations in a finite time interval.

Finite reasoners can approach α-maximality without believingω their blindspots. For
example, R∗ is a finite reasoner if we presuppose that L is r.e., which I will presuppose37.
This result is somewhat unsatisfactory because most often finite reasoners (e.g. humans)
are not in perfect epistemic situations. However, a finite reasoner R, who is in an imper-
fect epistemic situation (but has the features ii-iv), can approach α-maximality without
believingω her blindspots as well if: (i’)R is in a very good epistemic situation where a very
good epistemic situation is one in which it is possible to believeω infinitely many truths
from the evidence but at most finitely many falsehoods38. In this case, limi→∞ t =∞ and
limi→∞ f = x, where x is finite, which entails that limi→∞ α(Bi) = sup(α). Considerations
about the blindspots of R∗ also hold for R because those rely only on features ii-iv.

36 Davidson (1965, p. 387) argues that a finite reasoner can only learn a language if it is constructive,
in the sense of having compositional syntax and semantics. Davidson himself requires those languages to
contain finitely many semantic primitives, but we only need to require that it is r.e. (see Haack, 1978).

37 The INPUTi of R∗ are composed of at most one sentence. R∗’s initial belief-set is empty and all her
other B∗i , which are such that max(|Bi+1|) = |Bi|+ 1, are also finite. R∗’s function π is recursive because
it executes only finitely many basic operations at each stage i + 1: R∗ reviews finitely many beliefs in
B∗i , withdraws finitely many beliefs from B∗i+1, then considers at most one input in INPUTi+1 and adds at
most one belief to B∗i+1.

38 We could talk about a regular epistemic situation, where R can form infinitely many true and
infinitely many false beliefsω from the evidence, and of a skeptical situation, where it is possible for R
to form infinitely many false, but at most finitely many true beliefsω from the evidence. It is possible to
approach α-maximality in a regular epistemic situation, but there is no infallible way to do so (from the
evidence). It is impossible to approach α-maximality (from the evidence) in a skeptical situation.
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Finite reasoners can approach α-maximality only deriving logical truths at every stage
of their reasoning sequence (see fn. 34 for an example), but I think that there is something
epistemically defective about this pattern of inference. Here is a sketch of an argument
to be developed in another paper. Function α is such that every new true belief adds an
α-value lower than the previous one (e.g. α(t+2, f)−α(t+1, f) < α(t+1, f)−α(t, f)).
Finite reasoners would be in tension between increasing their α-value and decreasing their
alethic potential (the first derivative of α, see fn. 20). A consequence of this tension is
that they would be required to delay adopting true beliefs when they can adopt them
later. Supposedly, reasoners can always delay the derivation of logical truths (and logical
consequences of beliefs), but not the adoption of empirical beliefs because the relevant
INPUTi may not be available later. In this case, finite reasoners would be required to
delay indefinitely the derivation of logical truths (and logical consequences of beliefs)
unless there is non-alethic (e.g. practical) value attached to it. When developed, this
would be a veritistic argument for the principle of clutter avoidance (Harman, 1986, p.
12). See Section 4.1 and footnote 4 for more about memory cluttering and finite reasoners.

4 Discussion

Function α may be used to generate norms and evaluation methods that can be applied
to finite reasoners and that do not exhibit the problems discussed so far.

4.1 α and norms

In Section 2.1, I have surveyed several alethic norms, which exhibit problems with blindspots
and, consequently, are unsatisfactory for our purposes of defining the notion of α-maximality.
While the ‘may’ norms underdetermine this notion, the ‘ought’ norms yield contradictions
when confronted with blindspots. I will focus on ‘ought’ norms because the ‘may’ norms
inevitably underdetermine the notion of α-maximality. Norms n1-n3 exhibit the general
problem of blindspots. This problem is avoided by norms n4-n5 (n4’-n5’), but these norms
still have the problem of complex blindspots (see fn. 40). The ‘ought’ norms also have
the problem of finite reasoning : they require those reasoners to hold infinitely many (ex-
plicit?) beliefs, which they cannot do. The approaching of the upper bound of function
α in the limit of a reasoning sequence (i.e. limi→∞ α(Bi) = sup(α)) is a property of (the
reasoning sequence of) a reasoner, which is not reducible to changes in the momentary
sets of beliefs of that reasoner. Consequently, the epistemic value of having a pattern
of inference such that limi→∞ α(Bi) = sup(α) does not directly ground norms regarding
the holding or not of specific beliefs. Nevertheless, the use of function α provides some
insights into this normative project. For example, consider the following norms:
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(n8) R ought to believe that φ iff α(B+ φ) > α(B− φ),

(n9) R ought to believeω that φ iff α(B+ φ) > α(B− φ).

where B+ φ means B ∪ {φ}, and B− φ means Br {φ}.
The left-right direction of n8 states that a reasoner ought to hold a belief only if it

increases the α-value of her set of beliefs. Since the value of α strictly increases wrt t
and strictly decreases wrt f , this direction states that a reasoner only ought to believe
propositions that are true when believed by her. The right-left direction of n8 exhibits
the problem of finite reasoning because there are infinitely many φ such that α(B+ φ) >

α(B − φ). This problem is avoided by n9. The left-right direction of n9 states that a
reasoner ought to be certain only of propositions that increase the α-value of her set of
beliefs. The right-left direction of n9 avoids the problem of finite reasoning because a
finite reasoner can hold infinitely many beliefsω (e.g. R∗). However, n9 has a residual
problem of finite reasoning because there are infinitely many uninteresting truths such
that α(B + φ) > α(B− φ). This is the problem of memory cluttering (see Harman, 1986,
p. 12 and my fn, 4).

Norm n9 does not exhibit the general problem of blindspots. The blindspot bs1, for
example, is true iff R does not believe that bs1, which means that bs1 is true iff bs1 6∈ B.
Therefore, it is false that α(B + bs1) > α(B − bs1) and R does not ought to believe that
bs1, independently of whether R currently believes that bs1 or not. The same holds for
any other blindspot. Norm n9 also does not have the problem of complex blindspots: for
example, a reasoner does not ought to believe that bs2 as a logical consequence of her
beliefs that φ and that ψ because it is not the case that she ought to believe that φ while
believing that ψ and vice versa39. If R believes that φ, then ψ is false and R does not
ought to believe that ψ (it is false that α(B+ ψ) > α(B− ψ)). If R believes that ψ, then
φ is still true, but believing that φ turns the belief that ψ false and α(B+φ) > α(B−φ) is
false40. However, norm n9 has a residual problem of complex blindspots. The avoidance of
the problem of complex blindspots involves a norm prescribing beliefs for some (but not
all) components of a complex blindspot41. Such a prescription should have a principled

39 In order to satisfy some ‘ought’, a (finite) reasoner must adopt or withdraw beliefs (one at a time), but
each change in her set of beliefs generates a new set of ‘oughts’ that are ‘active’ for her. This dynamical
character of n8-n9 circumvents the problem of complex blindspots (compare with that of n3).

40 Suppose that B has an amount t of truth (including ψ), an amount f of falsehood, and that the
truth-value of the other beliefs remain fixed. Since B+ φ has the same amount t+ x− x = t of truth as
B − φ (+x for φ, −x for ψ) and an amount f + y > f of falsehood larger than B − φ (+y for ψ), it is
false that α(B+ φ) > α(B− φ). Then R does not ought to believe φ. Norms n4, n4’, n5, and n5’ (see fn.
9) are correct when R starts with φ, but if R starts with ψ, then φ would still be truly-believable/true
were R to believe that φ.

41 A norm cannot prescribe belief for all components of complex blindspots because it would be pre-
scribing belief for the blindspot as an easy logical consequence of its components. The norm cannot
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way for distinguishing which components are to be believed and which are not, but n9
distinguishes those cases based only on relative order (maintain what you believed first).

Norm n10 does not have any of the problems discussed so far (residual included):

(n10) R ought to believeω that φ iff φ ∈ B∗ω.

Norm n10 may be interpreted as stating that a reasoner ought to be certain of a belief
at some stage of her reasoning sequence iff it is ideally warranted42. This norm does not
have the problem of finite reasoning for the same reason as n9. Norm n10 also does not
exhibit either the general problem or the problem of complex blindspots because B∗ω does
not contain a blindspot or all components of a complex blindspot, although it may contain
some such components (see sec. 3.2). Norm n10 partially avoids the problem of memory
cluttering. There are infinitely many beliefs in B∗ω, but these beliefs are not uninteresting
in at least one sense: these are beliefs that are based on the total (true) evidence. Since
n10 does not require reasoners to believe all the elements of B∗ω (but only to believeω
them), in some sense, this norm only requires a reasoner to adopt beliefs when urged by
the evidence. Norm n10 also does not have the residual problem of blindspots because the
components of complex blindspots that are left out from B∗ω are always the self-referential
ones. This is a principled way for distinguishing which components of blindspots are to
be believed and which are not.

Norm n10 is arguably not purely alethic because the construction of R∗ depends on
non-alethic considerations, such as ‘R∗ forms beliefs according to the evidence’. Since this
is the only norm I know that avoids the problems of blindspots and finite reasoning, I am
skeptical about the project of providing (purely) alethic norms because of blindspots. Carr
(2020) draws similar conclusions from propositions that are closely related to blindspots.
Despite relying on non-alethic considerations, n10 is still an objective norm (see fn. 7).
The idealization that R∗ is in a perfect epistemic situation is indispensable for an alethic
norm based on her beliefsω because it is this idealization that provides alethic import
to the norm43. Regular reasoners most often are not in a perfect epistemic situation

prescribe the absence of belief for all components because it would fail to prescribe belief for harmless
truths.

42 Consider Pollock’s notion of ideal warrant: “Ideal warrant has to do with what a reasoner should
believe if it could produce all possible relevant arguments and then survey them” (Pollock, 1995, p. 133).
In some sense, R∗ produces all the relevant conclusions because she has access to all and only the true
evidence and forms beliefs accordingly. In this sense, B∗ω is the set of true beliefs that are warranted
in a perfect epistemic situation (which is closely related to ideal warranty). The reasoner R∗ can be
seen as an ‘epistemic counterpart’ of a given rational regular reasoner R. Then B∗ω can also be seen as
a counterfactual expansion of R’s pattern of inference: these are the beliefs R would hold if she had
sufficient cognitive resources, was in a perfect epistemic situation, and fulfilled the conditions ii-iv in
Section 3.2.

43 Consider the Bω of a reasoner R who differs from R∗ only because R is in an imperfect epistemic
situation (e.g. R in Section 3.3). Norms defined in terms of Bω simply lack alethic import. Since we don’t
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and usually do not have control over this, but n10 is insensitive to the actual epistemic
situation of the reasoner. Consequently, n10 is usually not deliberative, except for cases
where the truth-value of propositions is transparent for the reasoners.

4.2 α and evaluations

In Section 2.2, I have surveyed two comparative evaluation methods, both of which present
problems with blindspots. The main problem was that they fail in generating a notion
of rationality that is a transitive and connex relation, where, for all reasoners R, R′ and
R′′, if R � R′ and R′ � R′′, then R � R′′ and either R � R′ or R′ � R. This failure
results in ‘rationality’ being ambiguous between incommensurable notions. The α model
can be used to measure the α-value in two ways. The first is to measure the α-value of
momentary sets of beliefs. The comparison between the α-values of momentary sets of
beliefs may, in some cases, generate deliberative evaluations of the rationality of holding
or not some beliefs. The second is to measure the α-value associated with a reasoner as
the limit of the α-value of her momentary sets of beliefs as she advances her reasoning
sequence. With some qualifications, this second form of measurement can generate (non-
comparative and comparative) methods for evaluating the rationality of reasoners that
avoid the problem of incommensurable notions of rationality.

The α-value of a momentary set of beliefs should not be interpreted as a measure
of the rationality of a reasoner for two reasons. The first reason is that the α-value of
a momentary set of beliefs varies depending on specific functions α44. In this context,
it is not clear whether α(B) = x means anything in particular (a real quantity). On
the other hand, comparisons between the α-values of sets of beliefs are more robust:
for example, they are invariant up to positive linear transformations (if α(B) > α(B′),
α′(t, f) = α(a ∗ t+ b, c ∗ f + d), and a, b, c, d > 0, then α′(B) > α′(B′)). The second reason
is that the α-value of a momentary set of beliefs is simply a poor indicator of a reasoner’s
overall rationality. For example, a reasoner with mostly false initial beliefs (low α-value)
can approach α-maximality by using the available evidence for correcting her beliefs. This
reasoner should be regarded as at least as rational as a reasoner who was lucky enough to
have mostly true initial beliefs (high α-value), but who was incompetent in approaching
α-maximality using the available (and, possibly, mostly veridical) evidence.

The comparison between the α-values of momentary sets of beliefs may, in some cases,
generate deliberative evaluations of the rationality of holding some beliefs, but this only
happens when the result of the comparison is transparent for the reasoners. This is the

know much about R’s epistemic situation, any belief can be in Bω (excluding those related to blindspots
and contradictions).

44 For example, if t = 2 and f = 1, α4(t, f) ≈ .6667 and α5(t, f) ≈ .3333 (where c, d are close to 0).
See footnote 27.
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case, for example, for blindspots. A rational reasoner should not believe that bs1 because,
for any B, α(B+ bs1) < α(B− bs1). A rational reasoner should also not believe that ¬bs1
because, for any B of a rational reasoner, α(B + ¬bs1) < α(B− ¬bs1)45. Consequently, a
rational reasoner should suspend judgment about bs1. Kroon (1993) argues that this is the
correct prescription for this case because both bs1 and ¬bs1 fail both the evidential and
the coherence conditions for rational belief46. How could a rational reasoner be permitted
to withhold judgment about a proposition that she is in the position to know to be true?
The answer is related to my results in Sections 2.1 and 4.1 and in Carr (2020): it is not
reasonable to require a reasoner to believe all true propositions because, in the case of
bs1, she is in the position to know that believing bs1 or ¬bs1 results in decreasing her
α-value.

Momentary evaluations can also be deliberative in the case of inconsistent sets of
propositions. Since function α strictly decreases wrt f , a rational reasoner should never
believe (they should disbelieve) a contradiction because α(B+ φ ∧ ¬φ) < α(B− φ ∧ ¬φ).
Now, a contradiction is a unitary inconsistent set. The situation is not so straightforward
for larger inconsistent sets, where the result depends on factors that usually are not
transparent for reasoners47. This problem may be avoided, in some cases, using a different
strategy. Consider a lottery composed of n tickets, where exactly one is the winner.
Consider the inconsistent set composed of ‘ticket 1 is not the winner’, ..., ‘ticket n is not
the winner’, and ‘exactly one ticket is the winner’. Independently of the other beliefs of
a reasoner, as n grows, the α-value of believing all the propositions in this inconsistent
set dominates that of suspending judgment or disbelieving them because, for all t and f ,
limn→∞ α(t + n, f + 1) > α(t, f) > α(t + 1, f + n). In this case, if n is large enough, a
rational reasoner should believe all the propositions in this inconsistent set48. However,

45 A rational reasoner R should not believe that bs1 for the reasons stated above. The proposition ¬bs1
is equivalent to the proposition that R believes that bs1. Then, for a rational reasoner, ¬bs1 should be
false and α(B+¬bs1) < α(B−¬bs1). In general, if bs1 6∈ B and ¬bs1 6∈ B, then α(B+bs1) = α(B+¬bs1) <
α(B+ bs1,¬bs1) < α(B).

46 This is the problem of bs1 with the “coherence condition”: “The agent doesn’t accept p [bs1] because
he recognises that if he does accept p, and continues to be a good reasoner, then he is in a position to run
a modus ponens argument to not-p and thereby come to recognise unconditionally that the proposition
he accepts is in fact false” (Kroon, 1993, p. 383). The other three arguments in Kroon (1993) are on
page 382 and in his footnote 8.

47 For some factors, the more true beliefs a reasoner holds, the less attractive it is for her to believe the
propositions in an inconsistent set; the larger the proportion of truth in the set, the more attractive it
is for her to believe the propositions in the set; etc. For example, consider the inconsistent set {φ,¬φ},
function α5 with c close to 0 and a B that does not contain φ or ¬φ. If B is such that t = 1 and f = 0,
then α(B ∪ {φ,¬φ}) < α(Br {φ,¬φ}); but if t = 0 and f = 1, then α(B ∪ {φ,¬φ}) > α(Br {φ,¬φ}).

48 This result also supports our intuition that it is epistemically less defective to hold a large body
of beliefs that turns out to be inconsistent than a small inconsistent set of beliefs (e.g. an outright
contradiction). For example, we blame Frege much less for subscribing to the inconsistent system in The
Foundations of Arithmetic than a reasoner who believes an outright contradiction. My argument here
appeals, not to the greater difficulty of spotting the inconsistency, but to alethic considerations alone.
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a rational reasoner should not believe the conjunction of these propositions, which is a
contradiction. This result is in line with the solution to the lottery paradox proposed in
Kyburg (1970, p. 56), which relies on probabilistic considerations. Similar considerations
apply to the preface paradox (see Makinson, 1965), where Kyburg’s probabilistic solution
is not directly available. This strategy needs to be further developed in another paper.

The rationality of a reasoner should be related to how much her pattern of inference is
truth-conducive. This feature, in turn, is related to how the α-value of her momentary sets
of beliefs changes as she advances her reasoning sequence. In definition 2, I propose that
a reasoner R with reasoning sequence B0, B1, . . . , Bi, . . . is α-maximal iff limi→∞ α(Bi) =

sup(α). Then it could be thought that limi→∞ α(Bi) is a measure of rationality. I do not
think that this is correct. The first problem with this measure is that it is not defined for
all reasoners. Consider an undecided reasoner, who starts with no beliefs and, at every
other stage of her reasoning sequence, adopts and withdraws the same belief. Her value of
limi→∞ α(Bi) is undefined because the α-value of her beliefs oscillates as she advances her
reasoning sequence. The second problem is that this measure seems to return incorrect
diagnoses sometimes. Consider a detached reasoner, who starts with no beliefs and, at
each stage of her reasoning sequence, adopts two new true beliefs and withdraws her oldest
belief. The α-value of her beliefs grows strictly monotonically and limi→∞ α(Bi) = sup(α),
but I do not think that this reasoner should be seen as rational.

These problems are avoided using the following measure:

~α(R) = lim
i→∞

α(Bi ∩ Bω) (3)

If φ ∈ Bi∩Bω, then φ ∈ Bi+j ∩Bω for every j ≥ 0. Then α(Bi∩Bω) grows monotonically
and function ~α always returns a value. Consequently, function ~α can be used to evaluate
any reasonerR. The value of ~α(R) is defined when both t and f approach a finite number.
In this case, the result is obtained by simply substituting these values in function α.
Specific results depend on specific functions α (e.g. if both t and f approaches the same
x, then ~α5(R) = 0), but comparisons are more robust. The value of ~α(R) is also defined
when the value of t or f (but not both) approaches infinity. These results are general: if
t approaches infinity while f approaches a finite x, then ~α(R) = sup(α); if f approaches
infinity while t approaches a finite x, then ~α(R) = inf(α), the infimum of α. Regular
reasoners are most often in regular epistemic situations (see fn. 38), where often both
t and f approach infinity. Function ~α is able to discriminate those cases, depending on
how t and f grow relatively to each other. Specific results depend on specific functions α,
but comparisons are more robust: if t and f grow at the same rate, then ~α5(R) = 0; if t
grows twice as fast as f , ~α5(R) ≈ .3333; if f grows twice as fast as t, ~α5(R) ≈ −.333349.

49 There are cases in which, when both t and f approach infinity, function ~α returns its upper bound.
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What does Bi ∩ Bω mean? Should function ~α be seen as a measure of rationality?
The members of Bi ∩ Bω are the beliefs that the reasoner is certain of at the stage i
of her reasoning sequence. In this case, the function ~α would tie up rationality and
psychological certainty in a way that is related to the reflection principle (Goldstein,
1983)50. In this interpretation, oscillation (as in the undecided reasoner) has the same
α-value as suspension of judgment, which may be correct. However, the function ~α falls
short of being a measure of rationality because a reasoner may maximize function ~α

by mere luck. For example, a stubborn conspirator, who forms certainties ignoring the
evidence and happens to be in an epistemic situation where all of his conspiracies are true,
may maximize function ~α, but were he in any other situation, his ill-formed certainties
would be significantly mistaken. I do not think that this reasoner should be seen as
rational. This problem is avoided if we average the results of ~α(R) over a large number of
situations. This would be an interesting objective evaluation method for rationality (see
fn. 7).

This form of measurement is feasible, for example, in Computational Epistemology,
where epistemologists have full access to the truth-values of their agents’ beliefs. Ex-
amples of investigations in this field are Douven (2013), Trpin and Pellert (2019), and
Olsson (2011). In a typical investigation, computational epistemologists design a com-
puter simulation, where artificial agents (designed to exhibit the epistemic strategy to be
evaluated) update their beliefs interacting with an environment (maybe, including other
agents) that is randomly generated from fixed parameters. The goal is to investigate the
impact of the epistemic strategy (e.g. Bayesian conditionalization) on the alethic value
of the agents’ beliefs. Computational epistemologists usually average the alethic impact
of an epistemic strategy over many trials in the way stated above51, although their mea-
surements of alethic value often amount to functions other than α or ~α. For example,
Trpin and Pellert (2019) use α3 with t and f measured using Brier scores. These other
measures are only suitable for the task because epistemologists usually investigate agents
who are opinionated regarding fixed and finite (often, unitary) agendas. Functions α and
~α are more adequate measures of alethic value for the investigation of non-opinionated

For example, consider a reasoner R with a reasoning sequence such that, at stage 1, the value of f is 1
and the value of t is such that ~α(Bi∩Bω) ≈ sup(α)−1/2. In the subsequent stage, the value of f increases
by 1 and the value of t is such that ~α(Bi ∩ Bω) is approximately sup(α)− 1/4, ~α(α)− 1/8, etc.

50 The reflection principle states that you should defer your beliefs to those beliefs that you expect to
hold in the future. The measure in equation 3 is related to the reflection principle in the sense that all the
beliefs that are relevant to your rationality are beliefs that you have in the later stages of your reasoning
sequence. In some sense, you only have rational beliefs that you hold in the later stages of your reasoning
sequence. There are arguments in favor of the reflection principle in EUT (e.g. Easwaran, 2013).

51 Computational epistemologists most often consider the mean alethic value (e.g. Trpin and Pellert,
2019; Olsson, 2011), but it may be interesting to consider other statistical averages, such as the mode
(e.g. the “in most trials” of Douven, 2013, see fn. 1), the median, etc.
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agents, agents with varying numbers of beliefs or with infinite agendas52.
The measure of rationality using function ~α does not directly generate a comparative

evaluation method, but an obvious way of generating such a method would be as follows:

(m2) R � R′ iff ~α(R) ≥ ~α(R′),

where ~α(R) would be averaged as stated above. Method m2 generates a notion of ra-
tionality that is a transitive and connex relation. The measure of ~α(R) always returns
a real number. For all real numbers x, y, and z, if x ≥ y and y ≥ z, then x ≥ z. Con-
sequently, for all reasoners R, R′ and R′′, if R � R′ and R′ � R′′, then R � R′′. For
all real numbers x and y, either x ≥ y or y ≥ x. Consequently, for all reasoners R and
R′, either ~α(R) ≥ ~α(R′) or ~α(R′) ≥ ~α(R). Therefore, method m2 avoids the problem
of incommensurable notions of rationality. Most methods of evaluation fail in evaluating
and comparing the rationality of reasoners with infinite sets of beliefs (see Treanor, 2013,
p. 580)53. Function ~α and method m2 are able to evaluate and compare the rationality
of reasoners with infinitely many beliefsω. In fact, they are able to discriminate different
levels of rationality for reasoners with infinitely many true or false beliefsω (or both).

5 Conclusions

A conclusion of Section 4.1 was that the project of providing purely alethic norms for
(finite) reasoners is defective because of blindspots. Nevertheless, the fulfillment of the
truth-goal is still a source of epistemic value, whose measurement can be used in evalu-
ations of rationality. The existence of blindspots also has consequences for this project,
such as, for example, the difficulty in making sense of α-maximality (e.g. the ideal set of
beliefs). There are two strategies for avoiding this problem. The first strategy is to adopt
a weaker notion of α-maximality, where two reasoners who disagree in doxastic states
regarding blindspots can be both α-maximal (e.g. the notion in def. 2). The second
strategy is to forget about α-maximality and settle for purely comparative evaluations.
The frameworks in EUT that do not rely on the ideal set of beliefs (e.g. Leitgeb and Pet-
tigrew, 2010a; Easwaran, 2013) can follow this second strategy, provided that they offer
a solution to the problem of incommensurable notions of rationality, either by restricting

52 Trpin and Pellert’s measure can be used to deal with non-opinionated agents with a varying number
of beliefs because function α3 fulfills most requirements in Section 3.1 (more specifically, r1 and r2), but
their measure may collapse to ±∞ when dealing with infinite agendas because α3 does not fulfill r3.

53 For example, some frameworks in EUT measure the (in)accuracy of a regular set of beliefs as its
distance to the ideal set of beliefs (Fitelson and Easwaran, 2015; Pettigrew, 2016). This distance may
collapse to +∞ when dealing with infinite agendas. For this reason, these frameworks are often restricted
to finite agendas (e.g. Leitgeb and Pettigrew, 2010a; Fitelson and Easwaran, 2015; Pettigrew, 2016),
where Easwaran (2013) is an exception. Method m1, on the other hand, does not exhibit this problem.
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the framework to situations without blindspots (e.g. Pettigrew, 2016), by subscribing to
a specific theory about the objects of belief (e.g. Fitelson and Easwaran, 2015, p. 86), or
something else.

The frameworks in EUT highlight the subjective character of reasoning by considering
all situations that the reasoner finds possible (e.g. in measures of expected inaccuracy);
the α-model highlights the procedural character of reasoning by considering how beliefs
are adopted and withdrawn (e.g. in limiting evaluations). This difference in focus en-
dows these approaches with different affinities. EUT seems to be better equipped to
support deliberative norms from analytical arguments. The α-model, on the other hand,
is more easily conjoined with procedural investigations that use measures of actual epis-
temic value (e.g. Computational Epistemology). Analytical arguments for deliberative
norms may use synchronic or diachronic evaluations. The synchronic evaluations of EUT
produce, for example, arguments for Probabilism (e.g. Joyce, 1998). The synchronic form
of evaluation is hampered in the α-model by the existence of different functions α. The
diachronic evaluations in EUT produce, for example, arguments in favor of Bayesian con-
ditionalization (e.g. Leitgeb and Pettigrew, 2010b). The diachronic form of evaluation in
the α-model may be used in arguments for deliberative norms, but only in specific cases,
such as, for example, in the analysis of the lottery paradox in Section 4.2. This form of
argumentation needs to be further investigated. There is also the possibility of using the
α-model ‘instantaneous’ measures in arguments, as in the sketch of the argument for the
principle of clutter avoidance in Section 3.3. This form of argumentation also needs to be
further investigated. The limiting evaluations of the α-model are difficult to implement
in analytical arguments. For example, the choice of an ‘actual situation’ would be rather
ungrounded in an analytical argument.

The analytical strategy is much less applicable to the evaluation of complex epistemic
strategies and situations. This is an example from Social Epistemology, where the goal is
to investigate how the adoption of epistemic practices affects the aggregated alethic value
of groups of agents: which practice is epistemically more defective, lying and bullshit-
ting? Frankfurt (2005, p. 61) claims that “bullshit is a greater enemy of the truth than
lies are”, but I do not think that there are analytical arguments for either conclusion. The
computational approach is more fruitful in those cases. Olsson (2011), for example, con-
structs computer simulations where agents update their credences from the interaction
with other agents and compare the alethic values of practices averaged over randomly
generated social networks. In Olsson’s framework, alethic value is measured using the
V-value (Goldman, 1999, sec. 3.4). This measure, which is related to t alone, is only
suitable for the task because the framework only deals with agents who are opinionated
regarding a fixed (unitary) agenda. The limiting evaluations of the α-model would be
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more adequate measures of alethic value for the investigation of non-opinionated agents,
agents with a varying number of beliefs, or agents with infinite agendas. The limiting
aspect of these measures can be estimated by simulating the target process with inputs of
increasing sizes and by extrapolating analytically the behavior of the resulting function.

Some differences between the α-model and the frameworks in EUT result from how
these frameworks interpret the fulfillment of the truth-goal. For example, the truth-goal
may be interpreted as requiring every belief update to minimize (expected) inaccuracy
(e.g. Leitgeb and Pettigrew, 2010b), but it also may be interpreted as demanding a pattern
of inference to be part of the long-term achievement of having the most comprehensive
and accurate set of beliefs about the world (i.e. maximizing actual α-value)54. There
is another difference in this regard, which, I think, favors the α-model. The truth-goal
has two parts: believe the truths (comprehensiveness) and do not believe the falsehoods
(accuracy). The α-model considers both sub-goals: comprehensiveness is measured by t,
accuracy is measured by f , their results being integrated by the function α. The Brier
score alone, as used in EUT, is a measure of (in)accuracy, but not comprehensiveness;
the V-value is a measure of comprehensiveness, but not of accuracy. These sub-goals
are redundant when we are dealing with reasoners who are opinionated regarding a fixed
agenda (and have the same number of beliefs), but this is not the case when, for example,
we are dealing with agents who explore the environment and form beliefs about new
propositions. As Easwaran (2013, p. 122) puts it: “Situations in which the agent comes
to have credences in new propositions seem very different from the standard examples
where an agent just learns that some proposition is true. ...Bayesians already know that
these cases are difficult ones to account for”. The α-model provides a way of dealing
precisely with these cases.
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