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ABSTRACT

This dissertation is concerned with two of the largest questions that we can ask about

the nature of physical reality: first, whether physical reality begin to exist and, second,

what criteria would physical reality have to fulfill in order to have had a beginning?

Philosophers of religion and theologians have previously addressed whether physical

reality began to exist in the context of defending the Kalám Cosmological Argument (KCA)

for theism, that is, (P1) everything that begins to exist has a cause for its beginning to exist,

(P2) physical reality began to exist, and, therefore, (C) physical reality has a cause for its

beginning to exist. While the KCA has traditionally been used to argue for God’s existence,

the KCA does not mention God, has been rejected by historically significant Christian

theologians such as Thomas Aquinas, and raises perennial philosophical questions –

about the nature and history of physical reality, the nature of time, the nature of causation,

and so on – that should be of interest to all philosophers and, perhaps, all humans.

While I am not a religious person, I am interested in the questions raised by the KCA.

In this dissertation, I articulate three necessary conditions that physical reality would

need to fulfill in order to have had a beginning and argue that, given the current state of

philosophical and scientific inquiry, we cannot determine whether physical reality began

to exist.

Friends of the KCA have sought to defend their view that physical reality began to

exist in two distinct ways. As I discuss in chapter  2 , the first way in which friends of

the KCA have sought to defend their view that physical reality began to exist involves a

family of a priori arguments meant to show that, as a matter of metaphysical necessity, the

past must be finite. If the past is necessarily finite, then the past history of physical reality

is necessarily finite. And if having a finite past suffices for having a beginning, then, since

the past history of physical reality is necessarily finite, physical reality necessarily began

to exist. I show that the arguments which have been offered thus far for the view that the

past is necessarily finite do not succeed. Moreover, as I elaborate on in chapter  5 , having

a finite past does not suffice for having a beginning.

12



As I discuss in chapter  3 , the second way in which friends of the KCA have sought

to defend their view that physical reality began to exist involves a family of a posteriori

arguments meant to show that we have empirical evidence that physical reality has a

finite past history. For example, the big bang is sometimes claimed to have been the

beginning of physical reality and, since we have excellent empirical evidence for the big

bang, we have excellent empirical evidence for the beginning of physical reality. The big

bang can be understood in two ways. On the one hand, the big bang can be understood

as a theory about the history and development of the observable universe. Understood

in that sense, then I agree that the big bang is supported by excellent empirical evidence

and by a scientific consensus. On the other hand, some authors (particularly science

popularizers, science journalists, and religious apologists) have wrongly interpreted big

bang theory as a theory about the beginning of the whole of physical reality. As I argue,

while a beginning of physical reality may be consistent with classical big bang theory,

classical big bang theory does not provide good reason for thinking that physical reality

began to exist.

In part  II , I turn to discussing three necessary, but not necessarily sufficient, conditions

for physical reality to have a beginning. Before discussing the three conditions, in chapter

 4 , I introduce three metaphysical accounts of the nature of time (A-theory, B-theory, and

C-theory) as well as some formal machinery that will subsequently become useful in

the dissertation. I introduce the first of the three conditions in chapter  5 . According

to the Modal Condition, physical reality began to exist only if, at the closest possible

worlds without time, physical reality does not exist. I show that this condition helps us

to make sense of various views in both theology and philosophy of physics. In chapter

 6 , I introduce the second of my three conditions, the Direction Condition, according to

which, roughly, physical reality began to exist only if all space-time points agree about the

direction of time, so that all space-time points can agree that physical reality’s putative

beginning took place in their objective past. In chapter  7 , I discuss the third condition,

the Boundary Condition, according to which physical reality began to exist only if there

is a past temporal boundary such that physical reality did not exist before the boundary.

I show that there are two senses in which physical reality could be said to have had a past

13



temporal boundary. Lastly, in chapter  8 , I show that there is a relationship between my

three conditions and classical big bang theory, even though the relationship is not the one

usually identified in the literature.

In part  III , I present four arguments for the view that, at the present stage of philo-

sophical and scientific inquiry, we cannot know whether physical reality satisfies the three

necessary conditions to have had a beginning and, consequently, we cannot know whether

physical reality had a beginning. As I will prove in chapter  9 , no set of observations that

we currently have, when conjoined with General Relativity, entails that physical reality

satisfies the Direction or Boundary Conditions. As I show in chapter  10 , considerations in

the philosophical foundations of statistical mechanics entail either that the Cosmos vio-

lates the Modal Condition or else that there is a transcendental condition on the possibility

of our knowledge of the past that prevents our access to data we would need to gather

to determine whether physical reality satisfies the Boundary Condition. In chapter  11 , I

show that there are a number of live cosmological models according to which physical

reality does not satisfy the Boundary Condition. As long as we don’t know whether

any of those cosmological models are correct, we do not know whether physical reality

satisfies the Boundary Condition. Lastly, I turn to confirmation theory and show that, at

our present stage of inquiry, ampliative inferences for the conclusion that physical reality

satisfies the Modal, Direction, and Boundary Conditions are not successful.
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1. INTRODUCTION

The Cosmos is all that is or ever was or ever will be.

Our feeblest contemplations of the Cosmos stir us

— there is a tingling in the spine, a catch in the

voice, a faint sensation of a distant memory, as if we

were falling from a great height. We know we are

approaching the greatest of mysteries.
— Carl Sagan, Cosmos

Following Sagan, I will understand Cosmos to mean the totality of physical reality and to

exclude any supernatural or abstract entities should they exist.  

1
 According to the Kalám

Cosmological Argument (KCA),

1. Everything that begins to exist has a cause for its existence.

2. The Cosmos began to exist. 

2
 

3. Therefore, the Cosmos has a cause for its existence.

An investigation into the soundness of the KCA sets a research agenda.  

3
 In order to

determine whether the KCA is sound, we need to answer two questions. First, whether

we have reason to think that anything that begins to exist has a cause for its existence;

to answer that question, we would need to interrogate the concept of causation and

determine the contexts in which we ought to invoke causes. There are reasons to doubt

the KCA’s first premise that I have taken up elsewhere (Linford,  2020 ), but here I set the

1
 ↑ By ‘Cosmos’, I mean to non-rigidly designate the collection of whatever physical objects exist. The Cosmos

exists just in case any physical entity exist.
2

 ↑ The KCA is often written in terms of the universe and not in terms of the Cosmos. However, the meaning of
the term ‘universe’ widely varies. For example, physicists have developed so-called “multiverse theories”
which are said to entail that there are universes other than our own. On the most popular versions of
multiverse theories, for example, the inflationary multiverse, the other universes are proper parts of the
same space-time manifold that our universe is part of. For that reason, the various universes are proper
parts of one overall physical reality. To avoid confusion, I have stipulatively defined the term ‘Cosmos’ to
mean the totality of physical reality.
3

 ↑ The KCA is a deductive argument. Deductive arguments are said to be sound just in case the argument
satisfies two conditions. First, the premises of the argument are true. Second, the argument is valid, that is,
there is no possible situation in which the argument’s premises are true and the conclusion is false. Since
the KCA is a valid argument, we have left to investigate whether the KCA is sound.
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first premise aside. The second question concerns whether we have reason to think that

the Cosmos began to exist. This dissertation investigates the empirical case for the view

that the Cosmos began to exist.

The research agenda set by the KCA is open to everyone regardless of whether they

endorse God’s existence. I am not a theist, myself, but my research agenda has been

set by investigating the KCA. Certainly, the foremost proponents of the KCA, either in

the present or historically, have been Christian or Muslim apologists or theologians –

e.g., John Philopponus, Al-Kindi, Al-Ghazali, Bonaventure, William Lane Craig, Robert

Koons, J.P. Moreland – and they have argued that the cause of the Cosmos must be

God. In fact, the Arabic word kalám originates in Islamic theology. Nonetheless, God

appears nowhere in the KCA, itself; theists, atheists, and agnostics alike are free to affirm

the KCA. Moreover, while the conclusion of the KCA is officially endorsed by all three

Abrahamic religions (Judaism, Christianity, Islam), theists can reject the KCA either by

rejecting one of the KCA’s premises, e.g., perhaps God caused the Cosmos but the Cosmos

did not begin, or by rejecting the conception of God as Creator. In fact, some historically

important Christian theologians, such as Thomas Aquinas, did reject the KCA. Thus,

theists, atheists, and agnostics alike can reject the KCA. The mystery as to the ultimate

origins of the totality of physical reality motivates a family of perennial philosophical

questions that should interest nearly all philosophers and possibly nearly all members of

our species. Consequently, whether the KCA is sound is of broad philosophical interest

and should not be relegated to a narrow discussion among philosophers of religion and

theologians.

This dissertation includes thirteen chapters and is divided into three parts. Part  I 

discusses the KCA. Chapters  2 and  3 cover the a priori and a posteriori defenses of the

KCA respectively. The a priori defense has been (in my view) adequately and convincingly

addressed elsewhere; the best responses to the a priori defense have been provided by

Wes Morriston (  2000 ,  2003 ,  2010 ,  2013 ,  2022 ), Alex Malpass, e.g., ( 2021 ,  unpublished ),

and in co-authored work by the two of them together ( 2020 ). I discuss some of the best

arguments against the a priori defense of the KCA in chapter one. My discussion of

previous responses to the a priori defense is meant to motivate the rest of the dissertation,
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where I turn to the a posteriori defense. In chapter two, I turn to the a posteriori defense

of the KCA, that is, attempts to utilize resources from physical cosmology – particularly

from Big Bang cosmology – to support the premise that the Cosmos began to exist.

In part  II , I turn to clarifying the concept that the Cosmos had a beginning. Note that

since I’ve stipulatively defined the Cosmos as the totality of physical reality, the existence

of any physical entities at all suffices for the existence of the Cosmos. Consequently,

another way to understand my goal in part  II is to articulate a set of general conditions

for all physical entities to have had a beginning. Instead of developing a full set of

necessary and sufficient conditions for the Cosmos to have had a beginning, I develop

three conditions that are at least necessary for the Cosmos to have had a beginning; in

order for those conditions to be adequate, the conditions should be useful in determining

whether the Cosmos had a beginning and should help to elucidate the concept of a

beginning. Moreover, while an explication of the notion that the Cosmos had a beginning

should be of intrinsic philosophical interest, I am focused on a sense of ‘beginning’ that

renders the conjunction of the KCA’s two premises as plausible as possible. In developing

the notion that the Cosmos had a beginning, we face a trade-off. On the one hand, to help

the second premise – that the Cosmos began to exist – ‘beginning’ should be understood

as broadly as possible. On the other hand, to help the first premise – that anything that

begins to exist has a cause for its beginning – ‘beginning’ should be understood narrowly

as possible so as to avoid making the first premise obviously false.

Part  II includes chapters  4 through  8 . Chapter  4 discusses conceptions of the beginning

of the Cosmos that require a specific metaphysical theory of time. Since my aim is to

develop a conception of the beginning of the Cosmos that does not require a specific

metaphysical theory of the nature of time, I set aside those conceptions that do require

a specific metaphysical theory of the nature of time. In chapter  5 , I develop my first

necessary criterion for the Cosmos to have had a beginning by turning to a problem that

can be posed in both analytic theology and in philosophy of physics. As I discuss, some

analytic theologians have argued that God is in time, time is finite to the past, and God

did not begin to exist. If God is in time and time is finite to the past, then God’s past

is finite. And if God did not begin to exist, then some entities with a finite past are
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beginningless. This leaves us with a question: what criteria distinguishes entities with a

finite past but that are beginninglesss from entities with a finite past that have a beginning?

Likewise, according to a burgeoning literature in philosophy of physics, time might not be

fundamental to physical reality. Timeless entities are beginningless. So, if physical reality

is fundamentally timeless, then physical reality is fundamentally beginningless. Ergo,

philosophers of physics, like philosophers of religion and theologians, have discussed

entities whose past might be finite but that are beginningless. Using the Lewis-Stalnaker

semantics for counterfactual conditionals, I develop a condition – that I call the Modal

Condition – that distinguishes beginningless entities with a finite past from entities with

both a finite past and a beginning. As I will argue, the Cosmos began to exist only if

there is nothing that suffices for the Cosmos’s existence and which would have existed if

time had not existed. Moreover, the Modal Condition provides us with another reason

for thinking that the a priori case for the beginning of the Cosmos fails, namely, that all

of the a priori arguments have attempted to show only that, as a matter of metaphysical

necessity, past time is finite. Even if the Cosmos’s past is finite, the Cosmos could still fail

to satisfy the Modal Condition and so could still be beginningless.

In chapter  6 , I discuss a second necessary condition – the Direction Condition – for

the Cosmos to have a beginning. If the Cosmos did have a beginning, then the beginning

must be to the collective past of the rest of the Cosmos. As Geoffrey Matthews ( 1979 ) and

Mario Castagnino, Olimpia Lombardi, and Luis Lara ( 2003 ) have shown, the Cosmos has

a global direction of time – roughly, a “shared” direction of time throughout all of space-

time – only if specific chronogeometric criteria are satisfied. The Direction Condition is

the conjunction of their chronogeometric criteria for a global direction of time.

Chapter  7 discusses the final criterion for the Cosmos to have had a beginning, viz, that

there is a boundary to the Cosmos’s history. For example, one intuitive sense in which

the Cosmos could have a beginning is just that there is a finite interval of time such that

no physical entities exist before that interval. However, there are other ways in which

the Cosmos could include a boundary; for example, the Cosmos’s history might include

a Cosmos-wide closed boundary infinitely far to our past. I summarize all of the relevant

ways in which the Cosmos could have a past boundary through a disjunctive condition,
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that is, either the Cosmos includes a past closed boundary (the topological conception) or

else the Cosmos includes a finite initial segment (the metrical conception).

In chapter  8 , I turn to the relationship between classical Big Bang models and the

Direction/Boundary Conditions. According to science popularizations, religious apolo-

gists, and some philosophers, Big Bang cosmology is a theory about the origins of the

Cosmos. While I disagree, Big Bang cosmology is not altogether irrelevant to our notion

that the Cosmos had a beginning. As I discuss, a variety of classical Big Bang models

satisfy a technical condition for being singular, i.e., b-incompleteness. I prove a theorem

that connects the Direction and Boundary Conditions to b-incompleteness, namely, that all

classical space-times that satisfy the Direction and Boundary Conditions are b-incomplete.

While space-time is likely not classical, and so the theorem does not necessarily have di-

rect physical or metaphysical implications, the theorem clarifies why some authors have

thought the Big Bang was the beginning of the Cosmos. Since the Modal Condition is one

of the novel contributions made to the literature by this dissertation, past authors have

only had access to the Direction and Boundary Conditions. If the Direction and Boundary

Conditions were the only criteria needed for the Cosmos to have had a beginning and

we assume (incorrectly) that General Relativity is a final theory of space-time, then the

Cosmos having a beginning would turn out to entail b-incompleteness. If we added the

additional assumptions that the Cosmos is spatially homogeneous and isotropic, then we

would be able to derive classical, singular Big Bang models.

Part  III turns to discussing Cosmic Skepticism, the view that the provinciality of our

current knowledge of the physical facts with respect to scale, spatio-temporal location,

or energy prevents us from having empirical access to whether the Cosmos satisfies the

Modal, Direction, and Boundary Conditions. I develop four arguments that, collectively,

mount a case for Cosmic Skepticism.

In chapter  9 , I show that classical space-times satisfying the Direction and Bound-

ary Conditions are observationally indistinguishable from classical space-times that do

not satisfy the Direction and Boundary Conditions. Despite the fact that space-time in-

distinguishability has enjoyed a multi-decade long discussion in philosophy of physics

and may threaten to undermine many of the results on which the a posteriori defense
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of the KCA depends, space-time indistinguishability has only twice, to my knowledge,

been discussed in relationship with the KCA: first, in one of my own recent publications,

i.e., Linford,  2021 , and, second, in relation to Kant’s first antinomy, i.e., Beisbart,  2022 .

Moreover, while some friends of the KCA have discussed specific cosmological models

proposed by physicists at length, e.g., Craig and Sinclair,  2009 ,  2012 , we should not think

that any specific cosmological is probable. There are a large number of mutually incom-

patible cosmological models in the current literature that are compatible with all of the

observational data gathered thus far. Many of those models were developed as toy models

or to explore physical possibilities and so were not intended as probable descriptions of

the Cosmos as a whole. Moreover, many of the best models appear to be equally well

supported by the data. Assuming that the model with the greatest epistemic probability

is not significantly more probable than at least one other model, since the probabilities of

the models must add to 1, the epistemic probability of the most probable hypothesis is

no greater than approximately 0.5. 

4
 Moreover, even if we do suppose that one cosmolog-

ical model is significantly more probable than other cosmological models, which seems

unlikely, there can be no more than one hypothesis with an epistemic probability greater

than 0.5; thus, even if some live cosmological model is probable, the majority of live cos-

mological models are improbable. Since the majority, or perhaps all, of live cosmological

models are improbable, we should not be surprised if friends of the KCA are able to show

that a wide selection of cosmological models that lack a beginning are improbable.

Instead of investigating whether any particular cosmological model is probable, philoso-

phers interested in how physical cosmology might be brought to bear on the KCA should

instead discuss what we can say about the global structure of space-time given the obser-

vational data available to us or that might become available in the future. That question –

what can we say about the global structure of space-time on the basis of our observations?

– is the central question that has been investigated in the literature on observationally

4
 ↑ This result is trivial to prove. Suppose that there are three hypotheses A, B, and C, where A is the most

probable hypothesis and B is the second most probable hypothesis. Also, assume that the difference in the
probabilities of A and B are small, so that Pr(A) ≈ Pr(B). Since their epistemic probabilities must sum to 1,
we have that Pr(A) + Pr(B) + Pr(C) = 1. Consequently, Pr(A) + Pr(B) < 1. Since Pr(A) ≈ Pr(B), we have that
2Pr(A) ⪅ 1, which entails that Pr(A) ⪅ 0.5. Since the most probable hypothesis has a probability less than
approximately 0.5, we know that the other hypotheses have a probability no greater then 0.5.
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indistinguishable space-times. Therefore, one of my goals is to bring the literature on

observationally indistinguishable space-times to the attention of philosophers interested

in using physical cosmology to either support or reject the KCA.

In chapter  10 , I discuss a set of conditions that constrain our knowledge of the Cosmos’s

past, including a transcendental condition on the possibility of our knowledge of the past.

Chapter  11 shows that, despite claims made by two of the KCA’s proponents, a variety

of contemporary cosmological models do not satisfy the Boundary Condition. We don’t

know whether one of those models is correct and so we don’t know whether the Cosmos

does satisfy the Boundary Condition. Lastly, chapter  12 completes my case for Cosmic

Skepticism by turning to confirmation theory. I discuss two kinds of inductive arguments

that might be used to establish that the Cosmos has a beginning or features relevant for

determining whether the Cosmos has a beginning. First, there are part-to-part inferences,

which involve inferring from a portion of the Cosmos to which we have empirical access

to a portion of the Cosmos to which we do not have empirical access and whose features

might relevantly bear on whether the Cosmos satisfies the Modal, Direction, or Boundary

Conditions. Second, there are part-to-whole inferences, which involve inferring from an

empirically accessible portion of the Cosmos to the Cosmos as a whole. I argue that, at

least at the present stage of philosophical and scientific inquiry, part-to-part inferences

and part-to-whole inferences do not succeed. As a consequence of the fact that we cannot

determine, at the present stage of physical inquiry, whether the Cosmos satisfies the

Modal, Direction, or Boundary Conditions, a wholly empirical case for the KCA’s second

premise, i.e., that the Cosmos began to exist, does not succeed.
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Part I

THE KALÁM COSMOLOGICAL

ARGUMENT
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2. THE A PRIORI DEFENSE OF THE KCA

In order to motivate the project for the rest of this dissertation, this chapter summarizes

some of the reasons that I regard the a priori defense of the KCA’s second premise as weak.

There are three ways of building the a priori defense of the view that the Cosmos began

to exist: first, one can argue that there are no actually infinite collections, second, one

can argue that beginningless series are not metaphysically possible, and, third, one can

argue that no actually infinite collection can be formed by successive addition. I turn to

discussing all three in turn.

2.1 Actually infinite collections and beginningless series

In this section, I will consider two of the three families of arguments against an infinite

past; first, the argument that the Cosmos’s past must be finite because actually infinite

collections are metaphysically impossible and, second, the argument that beginningless

series are not metaphysically possible. I will discuss the two arguments together because

there is a powerful objection – the unsatisfiable pairs diagnosis – that applies to both.

Let’s begin by considering arguments whose aim is to establish that the Cosmos had a

beginning on the grounds that there are no actually infinite collections. A collection of

objects is said to be actually infinite just in case the collection has more than any finite

number of members and all of the members of the collection collectively exist together,

whereas a collection is said to be potentially infinite just in case the collection has a finite

number of members but grows without bound. In order to defend the claim that the

Cosmos began to exist, proponents of the KCA have offered the following argument:

1. If past time is infinite, then there is an actually infinite collection.

2. There are no actually infinite collections.

3. Therefore, the past is not infinite (modus tollens from  1 ,  2 ).

4. If the past is not infinite, then the Cosmos has only existed for a finite period of time.
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5. If the Cosmos has only existed for a finite period of time, then the Cosmos began to

exist.

6. Therefore, the Cosmos began to exist (modus ponens from  3 ,  4 ,  5 ).

This is a valid argument and so we have left to determine whether the argument is sound.

In subsequent chapters (particularly chapter  7 ), I will challenge the notion that if the

Cosmos has only existed for a finite period of time, then the Cosmos began to exist. For

now, let’s consider how proponents of the KCA have defended the first subargument, that

is, step  3 . Since  3 deductively follows from premises  1 and  2 , we should examine how KCA

proponents defend premises  1 and  2 . According to KCA proponents, premise  1 follows

from the observation that if past time is infinite, then there is an actually infinite collection

of past events, and so an actually infinite collection. One can challenge this premise on the

grounds that on some metaphysical accounts of time, e.g., presentism, the past does not

exist and so there is no collection of past events. Perhaps this objection can be overcome;

at any rate, let’s turn to premise  2 . In support of premise  2 , supporters of the KCA attempt

to show that actually infinite collections are metaphysically impossible. There are at least

two strategies for showing that actually infinite collections are impossible and I turn to

each, in turn, below; I reply to the argument that beginningless series are metaphysically

impossible in my discussion of the first strategy.

2.1.1 The first strategy for showing that actually infinite collections are impossible

On the first strategy, one constructs a scenario that would be metaphysically possible

if actually infinite collections were metaphysically possible. One then shows the con-

structed scenario leads to an absurd consequence. If there are independent reasons for

thinking that the absurd consequence is metaphysically impossible, then we have reason

to think that the scenario, itself, is metaphysically impossible. And if the scenario, itself,

is metaphysically impossible, then actually infinite collections are metaphysically impos-

sible. Throughout this section, I will assume that having a finite past and beginning to

exist are co-extensive; nonetheless, this conception will be revised in part  II . For example,
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in chapter  5 , I will argue that even if the Cosmos’s past history were finite, the Cosmos

might still be beginningless.

One popular choice for a thought experiment is Hilbert’s Hotel (HH). HH is a hotel

with an actually infinite number of rooms, e.g., a room for every positive integer. A

variety of counterintuitive consequences follow from HH. For example, supposing that

HH is full, one can accommodate any number – including an infinitude – of additional

guests. To accommodate one more guest, have the guest in room 1 move to room 2, the

guest in room 2 move to room 3, and so on, up the chain of rooms. To accommodate an

infinitude of additional guests, have the guest in room n move to room 2n. Since there

is a one-to-one mapping from the positive integers to the even integers, all of the current

guests can be moved into an even numbered room, and a countable infinity of new guests

can be moved into the odd numbered rooms.

Proponents of the KCA claim that HH is absurd because HH violates intuitively

plausible principles. According to a prima facie intuitively plausible principle, if a hotel

is full, then the hotel cannot accommodate additional guests. HH can accommodate new

guests even when full. One can object that this analysis relies on a systematic ambiguity

in the concept of fullness. One way in which a hotel can be full is if no additional guests

can be added to the hotel. Another way that a hotel can be full is if every room in the

hotel is occupied. For hotels with a finite number of rooms, the two senses of ‘fullness’

are coextensive. But in the case of a hotel with an infinitude of rooms, the two senses

are not coextensive. In contexts where the two senses of ‘fullness’ fail to be coextensive,

there are two senses of the principle that a full hotel cannot accommodate new guests. In

one sense, ‘full’ means that the hotel cannot accommodate additional guests. Clearly, HH

is not full in that sense, so that the principle that a full hotel cannot accommodate new

guests is inapplicable. Alternatively, ‘full’ can mean that all of the rooms are occupied.

Taken in that sense, while HH is full, the principle that a full hotel cannot accommodate

new guests turns out to be false. 

1
 

1
 ↑ There is a second systematic ambiguity in the presentation of the HH. Two consequences of the light

cone structure of relativistic space-times are that (i) there is no absolute simultaneity and that (ii) there is an
absolute maximum speed for the propagation of any signal. For those of us who are realists with respect to
relativity, light cone structure is a good candidate for a metaphysically necessary feature of space-time since,
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Let’s set this ambiguity aside; I think that there is a deeper objection to arguments

that utilize HH in attempting to show that actually infinite collections are impossible.

At most, HH shows that actually infinite collections have counterintuitive consequences.

While the counterintuitive features of the HH might provide us reason to be surprised to

empirically discover an infinitely large hotel drifting somewhere out in space, the mere

fact that a scenario is counterintuitive does not, in itself, provide us reason for thinking

that the scenario is not metaphysically possible. While we might note that contemporary

physics has provided us with reason to endorse a variety of counterintuitive scenarios

as actual, the barrier to entry for metaphysical possibilia is quite low. For example, a

galaxy-sized elephant that recites the Star Spangled Banner in perpetuity is presumably

metaphysically possible, but is not a serious candidate as an empirical hypothesis.

Given the low barrier for inclusion as a metaphysically possible scenario, KCA propo-

nents need to provide us a scenario whose consequences are more than counterintuitive.

For example, KCA proponents might provide us with a scenario that results in a contradic-

tion. Proponents of the argument that beginningless series are metaphysically impossible

have offered scenarios, such as the Grim Reaper scenario (e.g., Koons,  2014 ,  2017 ), 

2
 that

do result in a contradiction.

I offer two comments before describing a version of the Grim Reaper scenario. First,

authors who utilize the Grim Reaper, and other related, scenarios, in defense of the

KCA have a narrower aim than showing that all infinite collections are metaphysically

impossible; their aim has been to show either that all temporal or all causal series have finite

past extension. Nonetheless, their argument is qualitatively similar to the Hilbert Hotel

for example, light cone structure determines the objective ordering of events and the distinction between
space and time. If light cone structure is a metaphysically necessary feature of space-time, then the guests
couldn’t switch rooms all at once for doing so requires the guests to switch rooms simultaneously. Moreover,
since signals can propagate only at finite speed, the “wave” of guests transferring rooms must travel through
the hotel at finite speed. To accommodate even one additional guest would require infinite time. In chapter

 7 , I will consider the possibility that the Cosmos includes two events between which an infinite amount of
time elapses. Provided that such a scenario is not metaphysically possible, while each guest in the hotel
will eventually move, there will never be a time, from any reference frame, from the perspective of which
all of the guests will have moved. If accommodating one additional guest means that there will be a time
when the process of accommodating the new guest has completed, then a full HH might not be able to
accommodate a new guest after all.
2

 ↑ Koons, and others, were inspired by discussion in José Benardete’s ( 1964 ) book.
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argument that I previously considered in this section, namely, that, given the consequences

of some specific scenario(s) that we construct, we are supposed to infer that infinite past

series are metaphysically impossible.

Second, although the thought experiment, as presented by Koons and others, involves

grim reapers and other fantastical details, I will present the thought experiment in terms

of a mechanical device that I will refer to as Pam. Pam has existed for every time that there

has been. If time began in the Big Bang, then Pam began to exist at the Big Bang. And

if past time is infinite, then Pam’s past history is infinite. Pam contains a clock, a digital

camera, a computer, a stylus, and a piece of paper. At the end of every hour as recorded

by Pam’s clock, the camera takes a photo of the paper, the computer checks the photo to

see if the stylus has previously written on the piece of paper, and, if the stylus has not

written on the piece of paper, the stylus writes on the piece of paper. Otherwise, Pam

does nothing. And now we ask – at the present day, has the stylus written on the piece of

paper? Suppose time never began, so that Pam is presently infinitely old. The stylus must

have written on the piece of paper, for if there ever was a time when the stylus had not

written, then the stylus would write. When did that happen? Suppose the stylus wrote

on the piece of paper at 1pm today. In that case, at noon, Pam checked to see if Pam had

previously written on the piece of paper. Finding that Pam had not written on the piece

of paper, Pam would have written on the piece of paper at noon. That’s a contradiction;

surely, if Pam had written on the piece of paper at noon, then Pam would not have written

on the paper at 1pm. No contradiction results if our original assumption – that time never

began – is false, for in that case, there would be a first hour.

The scenario involving Pam is not metaphysically possible because the scenario en-

tails a contradiction. Proponents of the KCA say that there are scenarios involving be-

ginningless series that entail contradictions for a more fundamental reason, namely, that

beginningless series are metaphysically impossible. To the contrary, consider that sce-

narios in which actually infinite collections or beginningless series entail a contradiction

are described by a conjunction of several propositions, e.g., P&Q&R. Supposing P&Q&R

entails a contradiction, we can conclude that ¬ ⋄ (P&Q&R). If we push the negation past

the ⋄-operator, we can infer □(¬P∨¬Q∨¬S), but we cannot infer that (for example) □¬P.
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Thus, the fact that various scenarios involving beginningless series or actually infinite

collections are metaphysically impossible does not, in itself, show that beginningless se-

ries or actually infinite collections are metaphysically impossible; 

3
 we can construct other

scenarios involving beginningless series or actually infinite collections that do not entail

contradictions. Moreover, there is a simpler, unifying explanation as to why scenarios like

the one I’ve constructed are not possible, viz, simply that such scenarios are contradictory.

This is the basis for a convincing reply to scenarios meant to show that beginningless past

series are metaphysically impossible called the unsatisfiable pairs diagnosis (UPD).

As Shackel ( 2005 ) and Malpass ( unpublished ) unpack the UPD, all of the scenarios

meant to show that beginningless series are metaphysically impossible involve the fol-

lowing two principles:

P: The set S has no first member.

Q: For all x in S, E at x iff E nowhere before x.

P applies to beginningless series because beginningless series have no first member, e.g.,

beginningless temporal series have no first moment. Q applies to beginningless series

because for all of the moments in the series, e.g., Pam writes at that moment only if Pam

has not written at a previous moment. As Shackel and Malpass have proven, the two

principles cannot be jointly satisfied, that is,¬⋄(P&Q). According to UPD, the fact that the

two principles cannot be jointly satisfied explains why the scenario involving Pam, as well

as a variety of similar scenarios, are not possible; but, given the UPD, we are left without a

reason for thinking that beginningless series, themselves, are metaphysically impossible.

While we can infer □(¬P ∨ ¬Q), we cannot infer □¬P. A similar diagnosis can be offered

for the scenarios involving actually infinite collections that entail either absurdities or

contradictions; supposing that some infinite collections (e.g., infinitely large hotels) are

impossible, we do not thereby have a reason to think that other infinite collections, whose

existence does not entail an absurdity or a contradiction, are impossible. On my view,

the UPD comes close to a demonstration that there is little hope for the first strategy for

3
 ↑ Landon Hedrick ( 2022 ) has recently published a similar argument.
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denying the existence of a beginningless series or of an actually infinite collection. By

way of analogy, after learning Euler’s proof that there is no circuit that traverses the seven

bridges of Königsberg without doubling back, no one is surprised that there is no possible

world that includes such a circuit. Nothing of metaphysical significance follows for the

nature of bridges, paths traversing bridges, or the like. Likewise, why do we require any

more explanation as to why the scenario involving Pam is metaphysically impossible than

that the scenario fails to be self-consistent?

Nonetheless, I will offer one additional objection to the first strategy. Proponents of

the first strategy, such as Robert Koons, utilize a modal recombination principle – of the

sort famously defended by David Lewis – in order to construct the Grim Reaper scenario.

According to the recombination principle Koons utilizes, given a space-time region and its

contents s1 from some possible world w1 and a distinct space-time region s2 with distinct

contents from some other possible world w2, another possible world w3 can be constructed

that includes duplicates of s1, s2, and their contents. The modal recombination principle

can be used to construct a kind of inverse Grim Reaper scenario. Consider that for any

negative integer, there is a possible world where an angel says that integer. (If one would

prefer, one can instead consider a mechanical device that prints out a negative integer.)

Using the modal recombination principle, we can string together events in which angels

state distinct integers in order to construct a possible world W that includes a series of

angels counting down through all of the negative integers; W includes a beginningless

series since there is no first negative integer. If proponents of the first strategy are correct

in endorsing the modal recombination principle to construct their thought experiments,

there is nothing – so far as I can tell – that bars us from constructing W. And if W is a

legitimate metaphysical possibility – andW is a legitimate metaphysical possibility so long

as the modal recombination principle is true – beginningless series are not metaphysically

impossible.
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2.1.2 The second strategy for showing that actually infinite collections are impossible

Whereas the first strategy utilizes the consequences of thought experiments, the second

strategy utilizes general principles in an effort to provide us reason to think actually

infinite collections or beginningless series are metaphysically impossible. Since the second

strategy does not utilize thought experiments, the second strategy is not susceptible to

the objections discussed in the previous section. Consider the following triple of jointly

incompatible principles:

Hume’s Principle: Any two collections have the same size just in case their members

can be put into 1-to-1 correspondence.

Euclid’s Principle: The whole of any collection is larger in size than any proper

sub-collection.

Actually Infinite: There is an actually infinite collection, that is, there is a collection C

such that there is a 1-to-1 map between C and a proper sub-collection of C.

Since the three principles are mutually incompatible, we must deny at least one principle;

since the three principles are not logically exhaustive, there is at least logical space to deny

all three. Since all three principles are intuitively plausible but mutually incompatible,

they jointly generate a paradox, sometimes called Galileo’s Paradox, e.g., Parker,  2009 .

Proponents of the second strategy claim that we should endorse both Hume’s Principle

and Euclid’s Principle. If Hume’s Principle and Euclid’s Principle are each metaphysically

necessary, then Actually Infinite is not metaphysically possible. Thus, advocates of the

second strategy argue that we should resolve Galileo’s Paradox by rejecting Actually

Infinite. The trouble is that one could endorse other combinations of principles in order

to solve Galileo’s Paradox and there is, as far as I can tell, little reason – other than one’s

private intuitions – for favoring the choice made by friends of the second strategy over

the available alternatives. For example, consider the following principle:

The Cardinality Principle: The size of any collection is the cardinality of that collection.
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If one denies the Cardinality Principle, then one should deny Hume’s Principle. Moreover,

consider that although the segment of the real line from 0 to 1 has the same cardinality

as the segment of the real line from 0 to 2, the latter has twice the Lebesgue measure as

the former. Since the Lebesgue measure of a point set captures one notion of the size of

that point set, there is a well-defined sense of ‘size’ in which the size of a point set is not

determined by the cardinality of that point set. And given that sense of ‘size’, we have

reason to deny the Cardinality Principle and, consequently, Hume’s Principle. In that

case, we can consistently endorse Euclid’s Principle and Actually Infinite.

Relatedly, Paul Draper ( 2008 , p. 49) points out that there are at least two distinct senses

of ‘larger than’. 

4
 First, there is a sense of ‘larger than’ consistent with Hume’s Principle,

viz, collection A might be said to be larger than collection B just in case (i) there is no 1-to-1

correspondence between A and B and (ii) there is a 1-to-1 correspondence between B and a

proper sub-collection of A. Second, there is a sense of ‘larger than’ that is inconsistent with

Hume’s Principle, namely, the “all-and-then-some” sense. For example, all of the integers

are contained in the rationals, but the rationals include elements that are not included in

the integers. In fact, a number of authors (e.g., Bellomo and Massas,  2021 ; Benci et al.,

 2006 ,  2007 ; Mancosu,  2009 ; Nasso and Forti,  2010 ; Trlifajová,  2018 ; VieriBenci and Nasso,

 2003 ) have developed conceptions of set size that differ from the notion recommended

by the Cardinality Principle in the case of infinite sets. I will refer to these alternatives

as Euclidean conceptions. According to Euclidean conceptions, the set of rationals has a

larger size than the set of integers, because the rationals include the integers as a subset,

even though both sets have the same cardinality. Likewise, Euclidean conceptions entail

an alternative conception of ‘smaller than’ that is not tied to cardinality in the case of

infinitely large sets. Given that there are two analyses of ‘larger than’ and ‘smaller than’,

there are two analyses of ‘equal size’; only one analysis of ‘equal size’ is consistent with

Hume’s Principle. As Draper points out, the analysis of ‘equal size’ that is inconsistent

with Hume’s Principle is consistent with Euclid’s Principle. Thus, if we endorse Euclid’s

Principle, affirm a Euclidean conception, and thereby deny that cardinality successfully

4
 ↑ As Richard Sorabji ( 1983 , pp. 217–218) has shown, the distinction between the two senses of ‘larger than’

has been known since at least the medieval period.
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captures the notion of the size of a collection, then we ought to reject Hume’s Principle.

In that case, we are left without a reason to reject Actually Infinite.

We could instead deny Euclid’s Principle and endorse Hume’s Principle and Actually

Infinite. As I’ve discussed, various authors have developed Euclidean conceptions of

the size of infinite sets. For example, Matthew Parker ( 2013 ) has argued that there are a

series of problems that plague Euclidean conceptions of the size of infinite sets. While

Parker admits that the problems he identifies are not necessarily insurmountable, one

person’s modus ponens is another person’s modus tollens. So, while one philosopher

might take Hume’s Principle and Euclid’s Principle to jointly show that Actually Infinite

is false, another philosopher might take Hume’s Principle and Actually Infinite to jointly

show that Euclid’s Principle is false. In that case, one could consistently endorse Actually

Infinite.

Lastly, consider the following alternative to Euclid’s Principle:

The Modified Euclid’s Principle: The whole of any finite collection is larger in size than

any proper sub-collection.

The Modified Euclid’s Principle is consistent with both Euclid’s Principle and its denial, so

that accepting the Modified Euclid’s Principle need not involve rejecting Euclid’s Principle.

However, Euclid’s Principle is a logically stronger principle than the Modified Euclid’s

Principle in the sense that the former entails the latter but the latter does not entail the

former. When we can make do with a logically weaker principle without a logically

stronger principle, all else being equal, we should endorse the logically weaker principle

without endorsing the logically stronger principle. Both principles are consistent with

all of the same evidence, since all of the cases that confirm Euclid’s Principle involve

finite collections. Thus, accepting Euclid’s Principle involves taking an additional and

(apparently) unnecessary step; friends of the second strategy need to tell us why we

should take that step. They have thus far failed to convincingly do so.

So far, we’ve seen that one can respond to Galileo’s Paradox by denying either Hume’s

Principle or Euclid’s Principle instead of denying Actually Infinite and that friends of the

second strategy have yet to successfully defend their view that we should adopt both
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principles. While there is no clear reason why we should endorse both principles, there

are at least two reasons in favor of denying at least one of the principles. First, consider

that the physically possible worlds are those worlds which are consistent with the laws

of physics and are typically understood to be a subset of the metaphysically possible

worlds. Thus, if there is a model M that is both (i) self-consistent and (ii) consistent with

the known laws of physics, we have defeasible reason for thinking that M represents a

metaphysically possible state of affairs. There are models – such as de Sitter space-time –

that are self-consistent, consistent with known physical laws, and include actually infinite

collections. 

5
 Thus, since we have defeasible reason for thinking that actually infinite

collections are physically possible, we have defeasible reason for thinking that actually

infinite collections are metaphysically possible.

Second, as previously mentioned, friends of the second strategy endorse potentially

infinite collections while denying that there are any actually infinite collections. But as

Cantor argued, the potentially infinite depends on the actually infinite. For example,

we can rigorously define the convergence of an infinite sequence without defining the

value of the sequence at infinity. For example, in introductory calculus, we might express

the convergence of some sequence {S1,S2, ....} to some value S as limn→∞ Sn = S. In that

context, we customarily tell students that S is the value that Sn has when n = ∞. Put

that way, the convergence of a sequence seems to require that the sequence has a specific

value at infinity, i.e., S∞ = S. But, (in)famously, defining the value of a limit at infinity is a

conceptual error. Mathematicians prefer to say that Sn approaches, but never reaches, S.

When students return to convergent series in a subsequent Real Analysis class, they learn

that the convergence of a sequence can be rigorously defined without defining the value of

the sequence at infinity. We can say that any sequence {S1,S2, ....} converges to a value S just

in case, for any ϵ > 0, there exists a positive integer N such that, for all n > N, |Sn − S| < ϵ.

The rigorous definition of the convergence of a sequence makes use of the potentially

infinite because the definition describes a sequence that perpetually grows closer to a

5
 ↑ To see that de Sitter space-time does include an actually infinite collection in the relevant sense, consider

any complete time-like geodesic in de Sitter space-time. From the perspective of an observer located at any
point on that geodesic, there are an infinite number of hours (for example) to their past.
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limit. To make the point clearer, for increasing values of n, the function f (n) = |Sn − S|−1

grows without bound and therefore models potential infinity; that is, the value of f (n)

is potentially infinite. Nonetheless, as Cantor would remind us, the sequence’s index

ranges over an actually infinite set, i.e., n is defined as a positive integer. For that reason,

the rigorous definition of the convergence of a sequence presupposes the existence of an

actually infinite collection. This feature of the rigorous definition of the convergence of a

sequence can be generalized: potential infinities presuppose actual infinities.

Cantor’s notion that the potential infinite presupposes the actual infinite is echoed in

the reply that Swinburne offers to Craig’s arguments against actually infinite collections.

As Swinburne ( 2004 , p. 139) points out, Craig’s arguments rely on the premise that if the

past is beginningless then the collection of past events is an actually infinite collection.

The collection of past events is an actually infinite collection only if there is some sense

in which past events have reality. Swinburne goes on to point out that if the collection

of past events has reality at least in some sense, then the collection of events within the

past hour equally has reality in the same sense. There were an infinite series of periods of

unequal length in the past hour, e.g., the past 1/2 hour, the past 1/4 hour, etc. Craig argues

that the entire interval of the past hour is more fundamental than any subdivision of the

past hour; we can subdivide the past hour only as a potential infinite. Nonetheless, Craig

endorses the view that the past hour can be arbitrarily subdivided in whichever way one

would like; 

6
 for that reason, Craig must presuppose that the past hour already includes

an actual infinitude of subdivisions. (Cantor offered a similar argument involving the

bisection of a line; see, e.g., Shapiro,  2011 , p. 105.) Likewise, the “gunky” view of time

endorsed by Craig entails that every subinterval of time includes proper subintervals;

6
 ↑ Despite Craig’s presentism, Craig has long argued that instants do not exist. As I’ve described, Craig

denies that any physical collection could be infinite while also denying the view that time is discrete. If
time is continuous, one might have thought that any finitely long interval of time includes an infinitude of
instants. In order to avoid the consequence that any interval of time includes an infinitude of instants, Craig
adopts the Aristotelian position that intervals of time are fundamental and instants are a kind of mental
fiction we arrive at as the boundary points of any given interval. Craig writes that “only intervals of time
are real or present and that the present interval (of arbitrarily designated length) may be such that there
is no such time as ‘the present’ simpliciter; it is always ‘the present hour’, ‘the present second’, etc. The
process of division is potentially infinite and never arrives at instants” (Craig,  1993a , p. 260; also see Craig,

 2000 , pp. 179–180, Craig and Sinclair,  2009 , pp. 112–113). For discussion, see Dumsday,  2016 ; Loke,  2016 ;
Puryear,  2014 ,  2016 ; Zarepour,  2021 .
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every subinterval includes proper subintervals only if an actual infinitude of subintervals

already exist in the original interval.  

7
 Unless friends of the second strategy are willing to

deny the potentially infinite – which they are not usually willing to do – friends of the

second strategy ought to accept the actually infinite.

2.2 Forming actually infinite collections by successive addition

I’ve discussed two strategies for showing that there are no actually infinite collections

(or for showing that beginningless series are not metaphysically possible) and why those

two strategies do not suffice for showing that the Cosmos has a finite past. In this section,

I turn to a strategy which attempts to establish that the Cosmos has a finite past and

that involves the thesis that an actually infinite collection cannot be formed by successive

addition. A collection is formed by successive addition just in case one element is added

to the collection at a time. On some metaphysical views about the nature of time – as

discussed below – the past is formed by successive addition since the past forms by present

moments passing away one at a time. And since no infinite collection can be formed by

successive addition – or so the argument goes – the past, being a collection formed by

successive addition, cannot be infinite. Call this the Successive Addition Argument.

There are two reasons as to why this argument is not convincing. First, as proponents

of the Successive Addition Argument recognize, e.g., Craig,  2013 , p. 13, the argument

assumes a controversial view about the metaphysics of time, namely, the A-theory of

time, according to which time objectively passes. If, instead of time passing, there is an

eternal space-time block, then moments are not added to the past and so our past did not

form by successive addition. I will have more to say about the A-theory in chapter  4 ; here,

7
 ↑ Craig could reply that “cutting” the past hour into subintervals introduces divisions that were not already

present. I don’t see how a reply of that sort could work. The past hour isn’t a spatial extension that we
can subdivide; there isn’t a physical process that can cut up intervals of time and produce something new,
i.e., an instant, at the point at which the cut is made. Similarly, the notion that one could cut up a temporal
interval in order to make an instant present is surely a category mistake. Instead, for each time, the totality
of past events is a completed collection, and whatever subdivisions can be made of a past temporal interval,
even if the subdivisions are not fundamental, must already have reality, at least in some sense, before the
subdivisions are mentally made by the human intellect. For example, consider a particle that travels from
point A, at time tA, to point B, at time tB, such that tA < tB. At any moment during the particle’s journey,
we can consider how much time has elapsed thus far; so long as the particle’s motion is continuous, the
particle’s motion continuously marks out subdivisions of time.
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I will note simply that the A-theory of time is at least controversial and does not enjoy

popularity among (for example) philosophers of physics. Note the following four facts

about the Successive Addition Argument: (i) the Successive Addition Argument requires

a controversial premise, (ii) given that the premise is controversial, whether the premise

enjoys a high probability is at least unclear, (iii) the conclusion of an argument, all else

being equal, is as probable as the conjunction of the argument’s premises, and (iv) the

probability of a conjunction is no more probable than the least probable conjunct. 

8
 Given

(i)-(iv), the Successive Addition Argument is not a persuasive reason to think that the past

is finite.

Second, regardless of whether the A-theory of time is true, the Successive Addition

Argument is question begging. While proponents of the Successive Addition Argument

are on safe ground when they argue that an infinite collection cannot form from a finite

collection by successive addition, they are on shakier ground when they argue that there

cannot be an infinite collection each of whose members were added by successive addition.

As I will argue in chapter  7 , one way for the Cosmos to lack a beginning is that infinite time

precedes every past moment. But, in that case, the Cosmos’s past did not form, at least

in the sense that a finite collection forms, since the Cosmos’s past was always infinite. 

9
 

Since the Cosmos’s past did not obviously form in the relevant sense, the Cosmos’s past

did not obviously form by successive addition. And if the past did not form by successive

addition, even if actually infinite collections could not form by successive additions, the

Cosmos could still have an infinite past.

One could object that although the past was always infinite, each moment was added

to the past by successive addition. Since the past is comprised by nothing other than

moments, all parts of the past were added by successive addition. And if all parts of the

past were added by successive addition, the past was formed by successive addition.

Two replies can be offered. First, consider an analogous inference: since each feather

in a pile is light, the entire pile of feathers is light; we know this inference is not valid

8
 ↑ The fact that the probability of a conjunction is no more probable than the least probable conjunct follows

from the conjunction rule, i.e., Pr(A&B) = Pr(A|B)Pr(B). The conjunction rule entails that Pr(A&B) ≤ Pr(B).
Note, also, that Pr(A&B) = Pr(B) only if Pr(A|B) = 1.
9

 ↑ Sorabji ( 1983 , p. 220) makes a similar objection to the successive addition argument.
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because some piles of light feathers are heavy. Similarly, the inference from each moment

having been added by successive addition to the conclusion that the entire series formed

by successive addition may be fallacious. Nonetheless, I’m not sure if the inference is

fallacious because we know that some inferences from parts to wholes are not fallacious.

For that reason, set this reply to one side. Second, consider an analogy commonly used

by proponents of the Successive Addition Argument. The claim goes that one cannot

count to infinity (Craig and Sinclair,  2012 , p. 116). The reason that one cannot count

to infinity is that no matter how many numbers one has counted, there is an infinitude

of numbers left to count. Likewise, no matter how many individual elements one has

added by successive addition, a finite collection cannot be made into an infinite collection.

Nonetheless, if the collection that one is adding to is already infinite, then there is no need

to turn a finite collection into an infinite collection. On one version of the previously

mentioned hypothesis that the past was always infinite, for any past moment, there was

only a finite span of time to the present. 

10
 Thus, unlike attempting to count from zero to

infinity, there need be no problem in reaching the present from any past moment. 

11
 

Let’s consider another analogy to bolster the intuition that if the past is infinite, then

the past did not form, and so did not form by successive addition. On a metaphysical view

about the nature of time called growing block theory, the past and present exist but not the

future. The past is a block that “grows” by moments coming into being at the present and

passing into the past. The Successive Addition Argument has an easy interpretation in

terms of the growing block theory, namely, that the block of the past grows by successive

addition. In the case of a finite past, there was a first moment to which successive

moments were added via successive addition. No matter how many moments are added

to the block of the past, the block of the past will never be transformed from being finite

to being infinite. No progress can be made in gathering together an infinite collection

when gathering together one element at a time, just as no progress is made in counting

to infinity by counting one integer at a time. Proponents of the Successive Addition

10
 ↑ An alternative version of the hypothesis includes moments that are infinitely far to the past, as discussed

in chapter  7 .
11

 ↑ Wes Morriston ( 2022 ) and Paul Draper ( 2008 , p. 47) have previously made similar arguments.
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Argument want to generalize this conclusion; they would tell us that since no collection

formed by successive addition can be actually infinite, the block of the past cannot be

extended infinitely far to the past.

Contrast growing block theory with another metaphysical view about the nature of

time called shrinking block theory, namely, the view that the present and future exist but

not the past. There is a nearly complete symmetry between the growing block theory and

the shrinking block theory; where the growing block theory says that the past grows by

successive addition, the shrinking block theory says that the future shrinks by successive

subtraction. If the future is finite, then, as each moment passes, the future shrinks;

eventually, the last moment will pass. Nothing will follow. The situation is different with

respect to an infinite future. In the case of an infinite future, the future block never truly

shrinks, in the sense of decreasing in cardinality. Just as one cannot make progress in

constructing an infinite series when gathering one element at a time, one cannot make

progress in removing elements, one by one, from an infinite collection. No matter how

many elements have been removed, an infinitude remains. Since the future block never

truly shrinks in cardinality and no progress is made in unmaking the future block, the

future is not unmade by successive subtraction. If, in the case of shrinking block theory,

the future cannot be unmade by successive subtraction, then, in the case of growing block

theory, the past was not made through successive addition. Adding moments to an infinite

past no more grows the past, in the cardinal sense, than taking away moments reduces an

infinite future, in the cardinal sense.

In correspondence, Alex Malpass considered Andrew Loke’s ( 2014 ) thought exper-

iment in which a Hilbert Hotel is constructed over an infinitude of past time, by, for

example, constructing one room per year. Rooms are added to Loke’s HH by successive

addition since one room is added per year. Let’s suppose that infinite past time precedes

every past year and that there is finite time between any past year and the present. In

that case, supposing that rooms stop being built this year, there would be a hotel with

an infinitude of rooms, and so a completed HH. But suppose instead that rooms stopped

being made five years ago. In that case, there would likewise be an infinitude of rooms

and so a completed HH. In fact, if rooms stop being built in any past year whatsoever, the
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HH would already have been completed. Thus, supposing that infinite past time precedes

every past year and that there is finite time between any past year and the present, the HH

is already complete prior to any year that there has ever been. The addition of any room

to the HH during any past year fails to make any progress in expanding the size of the

hotel. Since (i) the HH is already complete prior to any year that there has ever been and

(ii) the addition of a room during any past year fails to expand the size of the hotel, the

process of constructing rooms did not make the hotel; instead, the hotel always already

existed. 

12
 Likewise, if the Cosmos’s history includes an infinitude of past time prior to

every moment, then the Cosmos has always already existed.

As I will discuss in chapter  5 , all of the a priori arguments for a beginning of the Cosmos

fail for a reason that I haven’t discussed thus far. Proponents of the KCA typically endorse

the views that God is in time, past time is finite, and so the view that God has existed

only for finite time, while also endorsing the view that God is beginningless. Thus, KCA

proponents typically endorse the view that some entities that have existed only for finite

time are beginningless. The a priori arguments for the beginning of the Cosmos show, at

most, that the Cosmos’s past is finite; thus, the a priori arguments are incomplete because

the a priori arguments do not address whether the Cosmos is a beginningless entity with

a finite past. In chapter  5 , I argue that there is a specific condition – the Modal Condition

– that can be used to distinguish entities whose pasts are finite but are beginningless from

entities whose pasts are finite and have a beginning. Thus, supposing my argument for the

Modal Condition is successful, KCA proponents will need to conjoin their arguments for

the finitude of the past with an argument that the Cosmos satisfies the Modal Condition.

Since KCA proponents haven’t even attempted to show that the Cosmos satisfies the

Modal Condition, their a priori argument for the beginning of the Cosmos remains at best

incomplete.

12
 ↑ Loke’e HH bears some resemblance to a conception of divine eternity put forward by Brian Leftow. As

I will discuss in chapter  5 , for Leftow ( 2005 , p. 58), a proposition is already true at any given time t just in
case the proposition is true at t and would have been true had time never reached t. On Leftow’s view, God
already exists at the first moment of time because God would have existed even if time had not. Similarly,
there is a sense in which Loke’s HH precedes time altogether because, for any given time t, Loke’s HH
already exists at t.
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2.3 Summary

In this chapter, I summarized three families of a priori arguments for the beginning of

the Cosmos, viz, that either actually infinite collections are metaphysically impossible, that

beginningless series are metaphysically impossible, or that, as a matter of metaphysical

necessity, no actually infinite series can be formed by successive addition. I went on to

summarize a variety of reasons for rejecting all three a priori arguments. Having rejected

all three families of a priori arguments, in the next chapter, I summarize the a posteriori

defense of the KCA’s second premise together with some standard reasons for thinking

that classical Big Bang cosmology, though not altogether irrelevant for the KCA’s second

premise, does not adequately support the KCA’s second premise.
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3. THE A POSTERIORI DEFENSE OF THE KCA

While I maintain little hope for the a priori defense of the KCA, the KCA can be defended

on a posteriori grounds. KCA proponents have appealed to various results from physical

cosmology, which they claim succeed in showing that the Cosmos began to exist. Some

proponents of the KCA, e.g., Andrew Loke (  2017 ), argue that the KCA should primarily

be defended on a priori grounds and have sought only to show that results from physical

cosmology are consistent with the Cosmos having a beginning. Nonetheless, a number

of the KCA’s foremost proponents have argued that the KCA can be defended on a pos-

teriori grounds; moreover, as someone who is skeptical of our ability to reach subsantive

metaphysical conclusions without consulting the sciences, I view the a posteriori defense

as more worthy of our time and reflection than the a priori defense.

Consider Craig’s ( 2007a ) comments with respect to Swinburne’s rejection of the a priori

defense of the KCA. As Craig summarizes, Swinburne makes the claim that the KCA’s

first premise, viz, that whatever begins to exist has a cause, enjoys only inductive support.

Craig writes that he is “more than happy to accept the truth of [the first premise] on purely

inductive grounds. While the kalam [sic] argument itself is a deductive argument, that

does not imply that its premisses are not to be supported by inductive evidence”. As Craig

continues to explain, he has “made extensive appeal to the inductive evidence supplied

by science as justification for both premisses of the kalam argument”. Craig notes that he

agrees with Swinburne in that the “present state of science” supports “the conclusion that

the universe came into existence at some time in the finite past”. Thus, as Craig interprets

Swinburne, Swinburne endorses a wholly empirical defense of the KCA. Moreover, Craig

signals that he would be happy with a wholly empirical defense of the KCA. Indeed,

Swinburne has defended a cosmological argument on wholly empirical premises in two

books; see Swinburne’s ( 2004 ) and his ( 2010 ).

The Craig/Swinburne view that the beginning of the Cosmos can be provided a wholly

a posteriori defense appears to many to be supported on excellent grounds. Science

popularizations, no less than religious apologists, often report that twentieth century

physical cosmology established the physical world – and so the Cosmos – had a beginning.
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According to the story we are often told, Big Bang cosmology tells us that the universe

– taken by the public to mean the totality of physical reality – began in a cataclysmic

event fourteen billion years ago. Although science popularizers and religious apologists

overstate their case, Big Bang cosmology is not irrelevant for thinking about the beginning

of the Cosmos. In this chapter, in order to summarize the a posteriori defense of the KCA’s

second premise, I review Big Bang cosmology, introduce the notion of a cosmological

singularity (which I make rigorous in chapter  8 ), and describe the relevance that both

have for the a posteriori defense of the second premise of the KCA. Although Big Bang

cosmology is not altogether irrelevant for the KCA’s second premise, Big Bang cosmology

does not adequately support the KCA’s second premise. I also present a set of standard

arguments as for why most physicists do not seriously endorse the Big Bang as the

beginning of the Cosmos.

3.1 The Historical Narrative

Prior to the twentieth century, few authors expected that a case for the beginning of

the Cosmos could be constructed utilizing wholly empirical premises. For example, ar-

guments meant to establish that God created our world depended either on establishing

that actually infinite collections were impossible (e.g., Al-Kindi, Al-Ghazali, Bonaventur,

John Philoponus), that an infinite regress of essentially ordered elements was impossible

(Thomas Aquinas), or that a sufficient reason is required for explaining the existence of

the totality of contingent entities (e.g., Samuel Clarke and Gottfried Wilhelm Leibniz). 

1
 

The relative absence of pre-twentieth century empirical arguments for the view that God

created our world is easy to explain. On the one hand, if time were arbitrarily truncated

– e.g., if we arbitrarily postulate that time began a few seconds ago with everything, in-

cluding our memories and this dissertation, in their current state – then a radical skeptical

catastrophe results in which we cannot trust the evidence we have for the past Earman,

 1977 , pp. 119–122. On the other hand, the general expectation had been that moments

1
 ↑ Helge Kragh ( 2008 ) describes a notable exception, i.e., a community of nineteenth century German

theologians who utilized thermodynamics to construct a quasi-empirical case for the Cosmos’s beginning.
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of time, or perhaps the contents of moments of time, are sufficiently homogeneous that

nothing empirically distinguishes some specific moment as the moment of Creation.

This situation changed dramatically in the early twentieth century with the advent of

General Relativity. In General Relativity, space-time is a dynamical entity coupled to the

matter-energy distribution. Historically, that the Cosmos began was taken to be more or

less synonymous with the notion that the Cosmos had an initial finitely long period in

its life. Whether the Cosmos had an initial finitely long period is a bit of unobservable

chronogeometric structure. For scientific realists, we are justified in endorsing the unob-

servables entailed by a given physical theory provided we have sufficient independent

evidence for that theory. Thus, for scientific realists, given the dynamical coupling be-

tween matter-energy and chronogeometry, unobservable chronogeometric structure can

be inferred by examining the matter-energy distribution. Scientific realists might hope

that empirical data, in conjunction with physical theory, may be able to tell us that the

Cosmos began. We will see in subsequent chapters that this hope is dashed in various

ways, even for the scientific realist. For now, set that aside and retain hope.

In the early twentieth century, Edwin Hubble discovered that galaxies are, on average,

receding from one another. On the assumption – now confirmed to high precision for

the observable universe – that galaxies are distributed homogeneously and isotropically

throughout space, the Einstein Field Equations simplify to a pair of ordinary differen-

tial equations called the Friedmann-Lemaître-Robertson-Walker (FLRW) equations. The

FLRW equations predict that unless the matter-energy density populating space-time has

a specific critical value, space-time will either expand or contract. Given Hubble’s ob-

servation of galactic recession, together with other data (e.g., elemental abundances, the

Cosmic Microwave Background Radiation, etc), physicists reached the conclusion that

the observable universe must have been in a radically different state in the distant past.

The Einstein Field Equations, interpreted literally, suggest that space-time has an open

boundary at a finite time in the past beyond which space-time cannot be extended. Ac-

cording to the Einstein Field Equations, to ask what was before that open boundary would

be analogous to asking what is north of the north pole. This at least superficially seems
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like what many intuitively mean by the beginning of the universe, i.e., a first finitely long

period in the history of the universe.

And this point is worth pausing over for three reasons. First, the popular misconcep-

tion that science has told us the Cosmos had a beginning is based on efforts to explain the

consequences of General Relativity to a mathematically unsophisticated general public.

Second, General Relativity is the first mathematically sophisticated theory of chronogeom-

etry to explicitly deal with the notion that space-time could have had a beginning. Even if

General Relativity is not a final theory of space-time, General Relativity – by the theory’s

own lights – purports to be a fundamental theory of space-time. For that reason, one

desideratum for an account of the beginning of the Cosmos is that the account should at

least be consistent with General Relativity and should allow us to either make sense of or

to refine the intuition that singular Big Bang models include a beginning; I will take up

that project in chapter  8 . Third, as I will also unpack below, proponents of the a posteriori

defense of the KCA have understood Big Bang cosmology to provide evidence for the

KCA’s second premise.

3.1.1 The Big Bang and the KCA

Having summarized some of the relevant history of Big Bang cosmology, I turn to

unpacking how Big Bang cosmology has featured into the a posteriori defense of the

KCA. The reader should also note that this section helps to support one of the points I’ve

already made, namely, that some of the foremost defenders of the KCA have held that the

KCA’s second premise can be supported on a posteriori grounds alone. Let’s begin by

considering how, in 1992, Craig described the role of Big Bang cosmology in supporting

the KCA’s second premise:

The discovery during this century that the universe is in a state of isotropic

expansion has led, via a time-reversed extrapolation of the expansion, to the

startling conclusion that at a point in the finite past the entire universe was

contracted down to a state of infinite density, prior to which it did not exist.

The standard Big Bang model, which has become the controlling paradigm
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for contemporary cosmology, thus drops into the theologian’s lap just that

crucial premiss which, according to Aquinas, makes God’s existence practically

undeniable (Craig,  1992 , pp. 238–9).

In this context, when Craig uses the term ‘universe’, he means what I have called the

Cosmos. As Craig interprets Aquinas, Aquinas rejected the KCA in part because Aquinas

could not foresee that empirical evidence for a beginning of the Cosmos would one day

become available;  

2
 nonetheless, Craig claims that, given Big Bang cosmology, we ought

to support the second premise of the KCA. The following year, Craig wrote, “What a

literal application of the Big Bang model requires, therefore, is creatio ex nihilo. A literal

interpretation of the Big Bang model in which the universe originates in an explosion

from a state of infinite density, that is, from nothing, provides a simple, consistent, and

empirically sound construction of how the universe began” Craig,  1993c , p. 44. That is,

at least as Craig understood the matter in the early 1990s, classical Big Bang cosmology

conclusively establishes the second premise of the KCA.

As I discuss throughout this dissertation, the reason that classical Big Bang models are

thought to include a beginning – as opposed to merely depicting the observable universe’s

transition from some previous physical state – involves the fact that Big Bang models are

singular, that is, that the models depict space-time as having an open boundary to the

past beyond which, as a matter of physical and mathematical necessity, space-time cannot

be extended. In this section, I offer a rough, intuitive conception of singularities as they

2
 ↑ Thomas Aquinas famously rejected the KCA on the grounds that there are no purely philosophical (or non-

theological) arguments which establish that Creation is finitely old (Aquinas,  n.d. , IQ46A1; Aquinas,  1965 ).
In Thomas’s view, that Creation is finitely old is a doctrine which, like the doctrine of the Trinity, is available
only through divine revelation (Aquinas,  n.d. , IQ46A2). Aquinas did offer cosmological arguments for
God’s existence, but Aquinas’s cosmological arguments do not rely on the finitude of the past. For example,
Aquinas’s prime mover argument is based on the Aristotelian principle that any object which is not purely
actual cannot move from potentiality to actuality by itself; instead, non-purely actual objects require a
purely actual being (i.e., God) for their existence. While Aquinas thought that a purely actual prime mover
is needed to explain the existence of the Cosmos, Aquinas denied that the coming into being of non-purely
actual objects is an event that needs to have happened at some particular point in the finite past (Aquinas,

 n.d. , IQ46A1). And while Aquinas argued that, based on the principle that there cannot be an infinite chain
of efficient causes, there must be a first efficient cause, Aquinas did not argue that the first efficient cause
must precede Creation either in time or in the order of explanation; in fact, Aquinas argued that the efficient
cause of Creation can co-exist with Creation for each time that Creation exists (Aquinas,  1965 ); for this
reason, Aquinas argued, Creation could be co-eternal with God in the sense that there was no first moment
in time at which Creation began to exist.
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appear in classical Big Bang models, with the parenthetical remark that many other kinds

of singularities appear in mathematical physics. In chapter  8 , I provide a more rigorous

description of what makes a space-time singular after I’ve had a chance to introduce and

define some technical machinery.

As I’ve said, General Relativity provided us with the first scientific theory in which

space-time, itself, plays a dynamical role within the theory; moreover, the classical Big

Bang models are General Relativistic models. General Relativity tells us that there is a

class of space-times said to be singular. For the sake of intuition, consider the function

f (x) = 1/x. Because there is no value of f (x) at x = 0, there is a well-defined sense in which

x = 0 represents an open boundary between the positive and negative real numbers.

Likewise, a specific class of singular space-times – those containing so-called curvature

singularities – include open boundaries where space-time comes to an end. There are non-

singular solutions to the FLRW equations. However, for singular FLRW models, when

we trace time backwards, we find that the energy density grows without bound and, in

consequence, the Ricci scalar curvature grows without bound. FLRW space-times become

ill-defined when the scalar curvature diverges. For that reason, one encounters an open

boundary beyond which space-time cannot be extended. As I will discuss in chapter  7 , a

past boundary to the Cosmos is a necessary (but not sufficient) condition for the Cosmos

to have had a beginning. Traditionally, authors have often focused on the boundary to the

exclusion of all other criteria that might be thought necessary for the Cosmos to have had

a beginning and so the fact that (some) classical Big Bang models include a past boundary

has often been taken to indicate that the Cosmos likely had a beginning.

A decade after Craig’s previously quoted remarks, Craig and his co-author James

Sinclair discuss, but do not endorse, the following argument for the view that the universe

began to exist:

P1. If space-time is singular, the universe began to exist.

P2. Space-time is singular.

C. Therefore, the universe began to exist (Craig and Sinclair,  2012 , p. 98).
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Here, Craig and Sinclair mean that if the Cosmos includes a space-time with a past singular

boundary, then the Cosmos began to exist. Call this the Singularity Argument. Craig and

Sinclair do not endorse the Singularity Argument because, as they acknowledge, there are

non-singular cosmological models and singularities will likely be replaced by some other

structure in a successor theory to General Relativity. Although Craig and Sinclair do not

endorse the Singularity Argument, they do maintain that singular cosmological models

provide strong evidence for a beginning of the Cosmos because they argue that there

will be features in a future quantum gravity theory that correspond to the cosmological

singularities in FLRW models. As Craig and Sinclair write, “There may be no such things

as singularities per se in a future quantum gravity formalism, but the phenomena that

[General Relativity] incompletely strives to describe must nonetheless be handled by the

refined formalism, if that formalism has the ambition of describing our universe” (Craig

and Sinclair,  2012 , p. 106). That is, even if cosmological singularities are not real features

of the universe, they are approximations of real physical features of the universe, and

the way in which cosmological singularities approximate the universe suggests that our

universe had a beginning. I don’t find this argument convincing. While scientific realists

would argue that presently well supported physical theories approximate their successor

theories, no scientific realist claims that all of the entailments of current scientific theories

approximate features that will appear in future scientific theories. What reason do we

have for thinking that the structure which replaces singularities in a successor theory will

have any relevant relationship to a beginning of the Cosmos? I cannot see any such reason

and Craig and Sinclair have certainly not attempted to provide one. I will return to this

issue in chapter  12 .

Nonetheless, on Craig and Sinclair’s interpretation, twentieth century cosmology was

largely motivated by attempts to overcome or “evade” mathematical results concerning

singularities in classical space-times, i.e., the singularity theorems, and perhaps motivated

by a prejudice against theistic hypotheses. I do not endorse Craig and Sinclair’s historical

narrative. As we will see, there are good reasons for thinking that the appearance of

singularities in a physical theory is an indication that the theory will be replaced by a

successor theory; insofar as we have good reason for thinking that a current theory will be
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replaced, we have reason to look for the successor theory – importantly, reasons that have

nothing at all to do with a prejudice against theistic hypotheses. Thus, cosmologists were

unlikely to have been motivated by a prejudice against theistic hypotheses since there are

other and better explanations for their actions. 

3
 In any case, Craig and Sinclair have offered

various reasons why attempts to evade the singularity theorems have ended in failure. In

the early 1990s, Craig argued that non-singular cosmologies are overly speculative and

are implausible compared to singular cosmologies (Craig,  1993b ). By 2009, Craig had

conceded that non-singular cosmologies have been successfully produced. Nonetheless,

Craig and Sinclair argue that such attempts have (typically) failed to produce cosmologies

without beginnings or have otherwise been empirically ruled out (Craig and Sinclair,

 2009 , p. 180). Craig and Sinclair have gone on to provide the argument discussed above,

namely, that while cosmological singularities might not survive future physical inquiry,

the feature of the world picked out by the singularity theorems – apparently, that there

is a boundary to the Cosmos’s temporal existence – should survive into future physical

inquiry (Craig and Sinclair,  2012 , pp. 105–6).

An important point should be made here that is often lost in the literature on the KCA

and that helps to explain one of the ways my dissertation contributes to the literature on

the KCA. Supposing that Craig and Sinclair are right that all of the cosmological models

developed thus far have been either singular, include a non-singular beginning, or have

already been empirically ruled out, we cannot then infer that the Cosmos likely had a

beginning. The collection of possible space-times is not exhausted by the collection of

cosmological models thus far developed. Supposing that all of the cosmological models

developed thus far on which the Cosmos is beginningless are implausible, cosmological

models on which the Cosmos has a beginning may likewise be implausible. 

4
 The family

of cosmological models thus far developed might not even be a representative subset of

3
 ↑ One can also check this conclusion against the history of the discipline. For example, as John Earman

( 1995 , pp. 11–21) has described, Einstein’s reasons for rejecting singularities had nothing to do with a
prejudice against theism.
4

 ↑ By way of analogy, consider the hypothesis h1:= ‘my bedroom floor is covered with dust in the shape of
Mickey Mouse’ and h2:= ‘my bedroom floor is not covered in dust but is covered with mud in the shape
of Mickey Mouse’. Obviously, h1 and h2 cannot both be true. Nonetheless, the two hypotheses are both
improbable. Thus, we cannot infer that h1 is probable by showing that h2 is improbable.
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the collection of all possible space-times, including all of the space-times consistent with

our empirical data. Authors who have previously written on the KCA have neglected

important mathematical results about the global properties of space-time that are inde-

pendent of specific cosmological models; I consider some results about the global features

of space-time in chapter  9 .

3.2 Four Reasons Not to Take Curvature Singularities Seriously

As I’ve summarized, proponents of the KCA – such as Craig and Sinclair – now

acknowledge that physical cosmology has moved on from an understanding of singular-

ities as actually physically realized within nature. Nonetheless, friends of the a posteriori

case for the KCA’s second premise continue to argue that various results concerning sin-

gularities – particularly the singularity theorems developed by Roger Penrose, Stephen

Hawking, Arvind Borde, Alan Guth, and Alexander Vilenkin – do have relevance for

addressing whether the Cosmos began to exist.

In contrast, physicists usually interpret divergences, such as curvature singularities,

in physical theories as an indication that the theory will be supplanted in future inquiry

by a non-divergent theory. There are already excellent independent reasons for thinking

that General Relativity will be supplanted by a non-singular theory. As Enrico Cinti and

Vincenzo Fano ( 2021 , p. 112) write, “most approaches to Quantum Gravity point in the

direction of singularities, including that connected to the big bang, not being a genuine

feature of spacetime at the quantum level”. As Sean Carroll ( 2010 , pp. 50–51) describes,

since physicists do not yet know what physical theory will replace singularities, physicists

do not yet know whether the universe includes a past boundary: “if someone asks you

what really happened at the moment of the purported Big Bang, the only honest answer

would be: ‘I don’t know.’ Once we have a reliable theoretical framework in which we can

ask questions about what happens in the extreme conditions characteristic of the early

universe, we should be able to figure out the answer, but we don’t yet have such a theory.”

As Carroll goes on to describe, “It might be that the universe didn’t exist before the Big

Bang, just as conventional general relativity seems to imply. Or it might very well be
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[...] that space and time did exist before the Big Bang; what we call the Bang is a kind of

transition from one phase to another.” There are other possibilities; for example, space-

time might have somehow “emerged” from a primordial non-spatio-temporal state. In

any case, the point is that physicists generally think that results concerning singularities

are spurious and do not represent good reasons for thinking that the Cosmos includes a

beginning of its existence.

Briefly, we can identify at least three reasons for denying that we should think the

singularities that sometimes appear in FLRW models have physical significance. I will

add a fourth reason that should appeal to authors who endorse the a priori case for the

KCA’s second premise.

The History of Physical Inquiry. Other theories that have appeared in the history

of physical inquiry have included singularities. When those theories were supplanted

by a successor theory, the singularities vanished. Thus, the history of physical inquiry

provides us with some inductive support for the conclusion that the singularities which

appear in General Relativity will vanish when General Relativity is supplanted by a

successor theory.

For example, as Steinhart and Turok ( 2007 , pp. 37–38) point out, there are singularities

that appear in the equations describing fluid flow (the Navier Stokes equations) because

the equations assume that fluids are continuous and do not adequately take into account

their atomic composition. When the Navier Stokes equations are replaced by a more

accurate description in terms of molecular dynamics, the singularities vanish. As Erik

Curiel describes,

This attitude [that singularities represent defects in physical theories and not

genuine physical phenomena] is widely adopted with regard to many impor-

tant cases, e.g., the divergence of the Newtonian gravitational potential for

point particles, the singularities in the equations of motion of classical electro-

magnetism for point electrons, the singular caustics in geometrical optics, and

so on. No one seriously believes that singular behavior in such models in those

classical theories represents truly singular behavior in the physical world. We
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should, the thought goes, treat singularities in general relativity in the same

way (Curiel,  2021 ).

While we do not currently possess an accepted quantum gravity theory, a quantum gravity

theory is generally expected to replace curvature singularities by some other structure,

just as other divergent physical theories have been replaced by non-divergent theories.

Indeed, the most popular candidates for a quantum gravity theory, such as string theory

and loop quantum gravity, replace curvature singularities and allow for the development

of cosmological models without a past boundary.

Mass-energy density considerations. For a second reason for denying that the singu-

larities that sometimes appear in FLRW models have physical significance, consider that

Quantum Field Theory and General Relativity are mutually incompatible theories. For

that reason, physicists expect General Relativity to be supplanted by a successor theory in

future physical inquiry. General Relativity is more likely to be supplanted because Quan-

tum Field Theory deals with the “building blocks” of nature and has been confirmed in a

wider domain.

Given that General Relativity is generally expected to be supplanted by another phys-

ical theory, we can ask in which domains General Relativity provides a good approxima-

tion. General Relativity is typically thought to provide a good approximation for small

curvature and low energy. For example, dimensional analysis supports the notion that

quantum gravity effects are important when the De Broglie wavelength approaches the

Planck length. De Broglie wavelengths on the order of the Planck length are associated

with an energy of approximately 1028 electronvolts. In the vicinity of the curvature sin-

gularities appearing in FLRW models, the curvature and mass-energy density become

unboundedly large. Consequently, as one approaches a curvature singularity, one en-

counters energies arbitrarily larger than 1028 electronvolts (or, indeed, larger than any

finite energy). Thus, in order to know what might have happened at earlier times, we

would need to have in hand a description of whatever exotic physical theory should

replace General Relativity at energies greater than 1028 electronvolts.
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General Relativity should not be trusted at energies beyond 1028 electronvolts; in

particular, the prediction that space-time has a past temporal boundary cannot be trusted.

We do not yet possess a successful theory for energies beyond 1028 electronvolts, or at

least there is no consensus as to what theory should supplant General Relativity in that

domain, and so we do yet know what sort of exotic physics there might be for energies

that exceed 1028 electronvolts.

Finite domain. There are another set of considerations closely related to the concerns

about curvature and mass-energy density and that provide another reason for denying

that the singularities that sometimes appear in FLRW models have physical significance.

No matter how we think about the domain of validity of General Relativity, the domain

of validity of physical theories is generally understood to be finite. No physicist should

expect to be able to accurately extrapolate a physical theory over an actually infinitely

large domain. General Relativity predicts that as we approach a curvature singularity, the

mass-energy density and curvature become arbitrarily large. Thus, no matter where the

boundaries on the domain of validity of General Relativity might be, General Relativity

predicts that there is some location closer to the curvature singularity where the energy-

density and curvature are larger. For that reason, we should not be realists with respect

to the curvature singularities appearing in FLRW models and have no good reason for

accepting the prediction that space-time has a past temporal boundary.

Counting down from infinity. The last reason for rejecting the physical significance

of cosmological singularities is one that does not enjoy wide support – and certainly is

not well-supported by physicists – but which should be taken seriously by friends of

the a priori case for the KCA’s second premise. Recall that, according to one of the a

priori arguments, we cannot count up to infinity and cannot count down from infinity.

However, curvature singularities – if they were real – would provide a physical realization

of counting down from infinity. Let’s recall again the function f (x) = 1/x that I used to

explain the notion of a curvature singularity. Imagine placing ourselves on the x axis at

x = 1 and moving slowly towards x = 0. Pick any number you want larger than 1; call

that number N. No matter what number you pick, as we move towards x = 0, we will

eventually encounter a value of x such that f (x) is larger than N. For example, if you
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choose N = 5, then, when x is equal to or smaller than 1/5, f (x) is equal to or greater

than 5. One consequence is that all of the positive integers can be mapped to values of

x between 0 and 1. In classical Big Bang models, the Ricci curvature, the matter-energy

density, and the temperature grow without bound as we move backwards in time. Just

as f (x) maps all of the positive integers to values of x between 0 and 1, so, too, all of the

positive integers appear as values of the Ricci curvature, the matter-energy density, and

the temperature as we approach the Big Bang singularity. If counting down from infinity

– as in counting down through all of the negative integers – cannot be physically realized,

then there must be a finite maximum value for the Ricci curvature, matter-energy density,

and temperature. But if there are finite maximum values for the Ricci curvature, matter-

energy density, and temperature, then there is no Big Bang singularity. For example, our

current universe might have emerged from a prior universe bouncing through a highly

(but not infinitely) compressed state – as I discuss in chapter  11 – instead of having a

singular boundary. Ergo, defenders of the a priori case for the KCA’s second premise

themselves have reason not to endorse the reality of curvature singularities.

3.2.1 Responses by Philosophers

No physicist that I have met is surprised by the three reasons I’ve offered for not

endorsing a realistic interpretation of space-time singularities. For physicists, the three

reasons that I have offered are obvious, well-known, and are not tremendously interesting

or novel. However, I have encountered philosophers who, in casual conversation or

correspondence, express surprise that physicists do not endorse a realistic interpretation

of space-time singularities. Reactions expressed by philosophers, in correspondence or

casual conversation, have tended to be of three sorts. First, some philosophers are simply

unaware that physicists mean the term singularity in a technical sense and do not merely

mean that the Big Bang was initiated by a special point. For example, some philosophers

I have spoken to appear to think that the Big Bang singularity was a point, and so a

part of space-time, having infinite matter-energy density instead of an open boundary to

space-time. I’m not entirely sure why they would think that space-time including a point
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with infinite mass-energy density would have some sort of relationship to whether the

Cosmos had a beginning. In any case, the mistaken view that the Big Bang singularity

was some sort of special point is not an argument and so there is nothing to respond

to, other than to say that, hopefully, this chapter provides enough of an introduction to

the issues involved to dissuade philosophers from thinking that a singularity is merely a

special point of some kind.

Second, some philosophers have heard that there are curvature singularities within

black holes and they have read that we now possess excellent evidence that black holes

exist, e.g., images captured by the Event Horizon telescope, gravitational wave data from

LIGO, and the like. In reply, the three arguments I have provided for not taking curvature

singularities seriously in FLRW models do apply equally to the curvature singularities

General Relativity predicts for black holes. However, we should be careful when we say

that physicists have excellent evidence for black holes. Physicists have evidence that there

are astrophysical systems which obtain sufficiently high mass-energy densities that they

develop horizons. For readers unfamiliar with the notion of a horizon, roughly, a horizon

is a surface beyond which we cannot receive signals. If we were to approach a black hole,

we would find that the velocity we would need to escape the black hole increases as we

approach the black hole’s center. At some point, we would find that the velocity we would

need to escape the black hole is the speed of light; at that moment, we would be crossing

the black hole’s horizon. At points still closer to the black hole’s center, the velocity needed

to escape the black hole is greater than the speed of light. Thus, a signal that originates

from within the horizon of a black hole would need to move faster than the speed of

light to reach outside observers; since no signal can move faster than light, no signal can

be transmitted from points within the horizon to points outside the horizon. If a black

hole includes a curvature singularity, the singularity is clothed within the horizon. We

do not have compelling observational evidence that any black hole includes a curvature

singularity clothed within that black hole’s horizon and, given that no signal can exceed

the speed of light, we likely could not have compelling observational evidence that any

given black hole includes a curvature singularity. Physicists generally think that while

black holes exist – that is, while there exist compact objects with sufficient mass-energy
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density to have developed a horizon – physicists do not generally think that the interior

of those objects is accurately described by General Relativity. While black holes exist, they

likely do not contain singularities. Thus, the arguments that I’ve provided here do not

provide reason to deny that there are astrophysical black holes, at least when that claim

is correctly interpreted.

Let’s move to a third response I’ve sometimes heard philosophers express. Science

journalists will sometimes say that singularities are points to which physical laws do not

apply. In casual conversation or correspondence, philosophers sometimes repeat that

statement and are surprised to learn that, according to General Relativity, curvature sin-

gularities are open boundaries and not parts of space-time. Charitably, science journalists

are expressing the notion that our knowledge of physical law is thought to run out as we

approach the locations where General Relativity predicts the occurrence of a curvature

singularity and not that fundamental physical law somehow stops applying. General

Relativity does not have the power to literally predict points beyond the reach of physical

law – how could a physical theory possibly do that? – but suppose that, somehow, General

Relativity did predict that there are points where physical law no longer applies. One (per-

haps defeasible) desideratum for a final physical theory is that the theory has unlimited

scope. If General Relativity predicted the existence of points beyond the scope of physical

law, wouldn’t we understand such a prediction as a defect of General Relativity? And

if we did understand such a prediction as a defect of General Relativity, wouldn’t this

provide us with another reason to deny that we should endorse a realistic interpretation

of curvature singularities?

3.3 Some other philosophical responses

In this section, I briefly turn to some philosophical arguments which attempt to show

that the Big Bang is relevant for whether the Cosmos began to exist but which do not

draw upon results about singularities. 

5
 To begin, let’s compare the situation in which

present physical cosmologists find themselves with the situation that nineteenth century

5
 ↑ The arguments in this section were suggested by Paul Draper in correspondence.
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geologists found themselves in with respect to the debate between catastrophism and

uniformitarianism. Suppose that Greg is a nineteenth century geologist who thinks that

there is some minimal evidence for catastrophism and that Greg wants to know whether

there is some evidence that the Earth began in the finite past. Greg might point out that

if the Earth did begin to exist in the finite past, then there was a castrophe in the Earth’s

history before which we cannot trace the history of the Earth.

Throughout this dissertation, I will assume the relevance theory of evidence, according

to which some datum e is evidence for hypothesis h relative to background knowledge

K just in case the datum raises the probability of h, i.e., Pr(h|e&K) > Pr(h|K). Data that

raises the probability that the Earth hasn’t always existed in the Earth’s present state

raises the probability that the Earth began and so is evidence for the Earth’s beginning.

Likewise, I would concede that Big Bang cosmology provides us with some evidence that

the universe has not always existed in the universe’s present state and so some evidence

for the conclusion that the universe began. Moreover, as I will discuss in chapter  7 , one

necessary condition for the Cosmos to have had a beginning is that the Cosmos includes

a past boundary. While the universe is a proper part of the Cosmos, the Cosmos could

not have a past boundary unless the universe has a past boundary. For that reason, that

the universe includes a past boundary raises the probability that the Cosmos includes a

past boundary. Thus, all else being equal, since Big Bang cosmology provides us with

evidence that the universe has undergone change over time, we have some evidence that

the Cosmos includes a past boundary and so some evidence that the Cosmos includes a

beginning.

A few things can be said in reply. First, the relevance theory of evidence provides a

very minimal threshold for data to count as evidence for a hypothesis. Consider LEP-

RECHAUN, that is, the hypothesis that the grass outside my apartment was made green

by invisible leprechauns casting a green-making spell over the grass. In ordinary lan-

guage, we might say that there is no evidence for LEPRECHAUN. But, according to the

relevance theory of evidence, the fact that the grass outside my apartment is green is

evidence for LEPRECHAUN. The trouble is just that the evidence is not strong enough

to render LEPRECHAUN more epistemically probable than its negation. Likewise, while
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the fact that the universe has changed over time might provide some evidence that the

Cosmos began, the evidence is not so strong as to render the Cosmos having a beginning

more probable than the Cosmos not having a beginning. Second, whether we endorse a

specific hypothesis ought to be decided by the total evidence and not merely in virtue of

the fact that there is some data supporting the hypothesis.

I turn to considering a second philosophical argument. Gottfried Leibniz ( 1956 , pp. 26–

27) considers (and rejects) a view according to which the Cosmos was preceded by empty

time. Since Leibniz endorses the Principle of Sufficient Reason, Leibniz asks for a sufficient

reason for the Cosmos beginning at the specific time at which the Cosmos began and not

at some other. Suppose that we trace the expanding universe backwards and suppose

that there is some maximal matter-energy density to the universe. (For example, loop

quantum gravity implies that there is a maximum physically possible matter-energy

density.) Since the matter-energy density cannot be higher than the maximum and, as we

trace the expansion backwards, the matter-energy density increases, there must be some

time when the universe began to expand.

Consider two possibilities: first, that the universe existed in that maximally dense

state for a past eternity or, second, that the maximally dense state corresponds to the

first moment of time. If the maximally dense state existed for a past eternity, then we

face Leibniz’s problem; why did that maximally dense state begin expanding at some

particular time instead of some other? But if the maximally dense state corresponds to the

first moment of time, then we avoid Leibniz’s problem because, in that case, the universe

was not preceded by time. If there was a first moment of time, then the Cosmos must

have a past boundary, and we have at least some evidence that the Cosmos began to exist.

There are at least three problems with this argument. First, the argument requires the

adoption of a philosophically controversial premise, i.e., the Principle of Sufficient Reason.

Second, provided that we accept the Principle of Sufficient Reason, as with the previous

philosophical argument, the argument provides only weak evidence for the conclusion

that the Cosmos began to exist. Third, the argument involves a false dichotomy. The

maximally dense state could have been preceded by a contracting universe, as I consider

in chapter  11 .
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3.4 Summary

In this chapter, I’ve summarized the a posteriori case for the KCA’s second premise. At

first glance, Big Bang cosmology offered to physicists what many authors from previous

centuries considered infeasible, viz, an empirically well supported physical theory one

of whose consequences is that there is a finite interval of time to our past prior to which

the observable universe did not exist. Empirically oriented defenders of the KCA, such

as Craig, Sinclair, and Swinburne, have argued that Big Bang cosmology lends strong

empirical support to the KCA’s second premise. However, the view that Big Bang cos-

mology lends strong empirical support to the KCA’s second premise depends on various

mathematical results in General Relativity. Physicists have a standard set of reasons for

rejecting those mathematical results. General Relativity is likely to be supplanted in a

future physical theory. Whether or not the universe, let alone the Cosmos, should be

said to have a beginning according to whatever theory supplants General Relativity is not

currently known.

I’ve rehearsed some standard reasons for doubting that curvature singularities are

physically realized. However, as I have already discussed, friends of the KCA’s second

premise have argued that the KCA’s second premise can be defended without appealing

to curvature singularities. Thus, I have not yet shown that the KCA is without merit. In

order to examine whether we can determine that the Cosmos had a beginning, we should

articulate and clarify the concept of the Cosmos having a beginning. Unfortunately, most

philosophers, physicists, and theologians who have previously discussed the beginning

of the Cosmos have failed to articulate a conception of the beginning of the Cosmos and,

so far as I know, no author has previously articulated a fully adequate conception. In the

next section, I develop three necessary (though not necessarily sufficient) conditions for

the Cosmos to have had a beginning. While I make no claim about the sufficiency of the

three conditions, the three conditions do push the investigation of the beginning of the

Cosmos substantially forward.
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Part II

GETTING CLEAR ON THE

BEGINNING OF THE COSMOS
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4. THE BEGINNING OF THE COSMOS AND THE METAPHYSICS

OF TIME

4.1 Introduction

In part  II of this dissertation, I address how we should understand the notion that

the Cosmos began to exist. One might have thought that the concept of the beginning

of the Cosmos could be analyzed from the armchair. As a first pass, the Cosmos began

to exist if there is a moment of time such that the Cosmos exists at that moment and

the Cosmos does not exist at any prior moment. As we will see, this definition will not

do and, unfortunately, a full suite of necessary and sufficient conditions for the Cosmos

to have a beginning are surprisingly difficult to come by. Instead of developing a full

suite of necessary and sufficient conditions, I will sketch and defend a set of conditions

that meet the following three desiderata: (i) the conditions should be necessary for the

Cosmos to have a beginning, (ii) the conditions should be useful in determining whether

the Cosmos had a beginning, and (iii) the conditions should help to elucidate the concept

of a beginning. The three conditions that I will sketch and defend are:

1. The Modal Condition: At all of the closest possible worlds where time does not

exist, the Cosmos does not exist.

2. The Direction Condition: The Cosmos has a global direction of time.

3. The Boundary Condition: Either there is a closed boundary to the past of every

non-initial space-time point (the topological conception) or there is an initial objectively

finite portion of the Cosmos’s history (the metrical conception).

I do not claim that these three conditions are logically independent. In this dissertation,

I remain neutral on their logical interrelationships and my discussion of each the three

conditions will be relatively self-enclosed.

Throughout, I will frequently discuss how these three conditions can be understood

in the context of classical space-times, that is, relativistic and pre-relativistic space-times.

As I’ve already explained, the majority of physicists and philosophers of physics agree
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that General Relativity will be supplanted in future physical inquiry by a quantum theory

of gravity. We do not yet possess a universally agreed upon quantum theory of gravity.

In some places, particularly in discussion of the Modal Condition, I will discuss some of

the proposals for quantum gravity theories. However, in other places, I discuss only how

my account applies to classical space-times. 

1
 For that reason, my comments in part II

should be regarded as provisional and subject to revision in light of future physical (and

philosophical) inquiry.

In this chapter, I begin a discussion of what ‘beginning to exist’ means by discussing

whether beginning to exist requires a specific metaphysical theory about the nature of

time to be true. In their sophisticated defenses of the KCA, William Lane Craig and

James Sinclair have argued that beginning to exist is an irreducibly tensed notion, so

that the Cosmos could have begun to exist only if the A-theory of time – that is, the

view that there are objectively and irreducibly tensed facts – is true (Craig and Sinclair,

 2009 , pp. 183–184; Craig,  1990 , pp. 337–338; Craig,  2007b ); this conclusion is shared by

many other philosophers, including William Godfrey-Smith ( 1977 ), Bradley Monton ( 2009 ,

p. 94), David Oderberg ( 2003 , p. 146), Ryan Mullins ( 2016 , pp. 135–136, 143, 147;  2011 ,

p. 43), and Felipe Leon ( 2019 , p. 62). Other authors, e.g., Hans Reichenbach ( 1971 , p. 11),

have maintained that B-theory entails that nothing objectively begins or changes and so

are implicitly committed to the view that if anything does objectively begin or change,

A-theory is true.

Although some authors have claimed that beginning to exist is a kind of change and

that change requires the truth of A-theory, B-theorists have developed an alternative

account of change that does not require A-theory. The most popular B-theoretic account

of change is the at-at theory, that is, the theory that a change occurs just in case (i) some

state of affairs α obtains at time t1, (ii) some state of affairs β mutually incompatible with

α obtains at time t2, and (iii) t1 , t2. In order to use the at-at theory in a conception of the

beginning of the Cosmos, there would need to be a time before the Cosmos exists and a

1
 ↑ Quantum gravity may provide further obstacles to a clear notion that the Cosmos began that I do not

discuss in this chapter. For example, if the Cosmos can be in a superposition of having a beginning and not
having a beginning, there may not be a determinate fact about whether the Cosmos began.
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subsequent time when the Cosmos does exist. Some authors (e.g., Richard Swinburne)

maintain that the Cosmos’s beginning was preceded by empty time and so they can

accommodate an at-at conception of the Cosmos’s beginning. However, other authors

maintain that time is a physical phenomenon; if they are right, time could not have

preceded the Cosmos. In order to accommodate the intuitive notion that the Cosmos

and time could have begun together, we need an alternative to the at-at conception. An

alternative can be developed according to which, roughly speaking, a change occurs just

in case either the three conditions from the at-at conception obtain or some state of affairs

α obtains during some period of time and there is no prior period of time in which α

obtains. In that case, the Cosmos could have begun if there was once a finite period of

time before which the Cosmos did not exist. This notion will need to be made rigorous,

and consistent with relativity, in subsequent chapters.

The present chapter sets the stage for the rest of part  II . In order for my account of the

notion that the Cosmos had a beginning to accommodate as many metaphysical views

about the nature of time as possible, the present chapter leaves us with three desiderata:

(i) the account should be consistent with both A- and B-theory, (ii) the account should

be consistent with our best physical theories concerning the nature of time, including

Special and General Relativity, and (iii) the account should be consistent with, but should

not require, the view that there was time before the Cosmos’s existence. While I will not

assume in this dissertation that beginning to exist is an objectively tensed notion, some

readers may find that view attractive. If they do, they can take solace in the fact that the

necessary conditions for the Cosmos to have had a beginning that I defend throughout

part  II (the Modal, Direction, and Boundary Conditions) are not assumed to be sufficient

conditions; the reader may, if they choose, add a Tensed Condition. Additionally, this

chapter has the aim of introducing the various metaphysical accounts of time that I will

make use of throughout the rest of this dissertation.
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4.2 Metaphysical Accounts of Time

In this section, I will describe three families of metaphysical accounts of time – A-

theories of time, B-theories of time, and C-theories of time – that will be useful both in

this chapter and throughout the rest of this dissertation. According to the A-theories

of time, time objectively “passes” or “flows” and grammatical tenses express objective

and irreducible truths. Objective passage is usually understood to involve an absolute

distinction between the past, the present, and the future; events are either absolutely

past, absolutely present, or absolutely future. The passage of time involves future events

becoming present and present events becoming past. The objective relations that past,

present, and future bear to each other are termed the A-relations and, according to A-

theorists, the tenses appearing in natural languages express the A-relations. The series of

events arranged according to the A-relation is called the A-series.

B-theories of time conjoin two theses. First, B-theories of time deny that time passes

or flows and that there are any irreducibly tensed truths. Second, B-theories of time

endorse the view that there are absolute relations of before and after. B-theory is sometimes

said to include the relation simultaneous-with. The orthodox Minkowskian interpretation

of relativity precludes the possibility that any two spatio-temporally non-overlapping

events are absolutely simultaneous. While the absolute simultaneity of spatio-temporally

overlapping events is trivial, relativity is typically understood to preclude any absolute

and non-trivial simultaneity relation. For that reason, I will leave absolute simultaneity

out of the definition of B-theory.  

2
 Since B-theorists deny that time passes or flows and

deny that there are any irreducibly tensed truths, B-theorists are typically understood to

deny that there is an objective (or non-indexical) distinction between the past, present, or

2
 ↑ One may wonder how there could be absolute before/after relations if, according to relativity, there are

no non-trivial absolute simultaneity relations. Pre-relativistic conceptions of time mandate that any two
numerically distinct space-times points p1 and p2 are such that p1 is either before, after, or simultaneous
with p2. Readers unfamiliar with relativity may therefore think that if p1 and p2 fail to be simultaneous,
then p1 must be either before, after, or else not absolutely temporally related to p2. Relativistic space-times
escape this intuition by introducing a distinction between space-like and time-like separated points absent
from pre-relativistic space-times. In relativistic space-times, any two numerically distinct space-time points
p1 and p2 are such that either p1 and p2 are time-like related – in which case either p1 is either absolutely
before or after p2 – or p1 and p2 are space-like related, in which case p1 is not absolutely simultaneous-with,
before, or after p2.
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future. B-theorists can accommodate an indexical distinction between the past, present,

and future similar to the spatial relations of here and there, but B-theorists cannot hold

that there is an objective “passage” of time from future to present to past. As I’ve said,

B-theorists do endorse objective relations of before and after; in turn, before and after are

termed the B-relations. The series of events arranged according to the B-relation is called

the B-series.

The claim is often made that relativity supports the B-theory of time. While there are

non-traditional versions of B-theory that drop the notion that any two non-overlapping

events can be absolutely simultaneous, the B-series, as originally formulated by John

McTaggart (  1908 ) and as often presented in introductory metaphysics textbooks, pos-

tulates a distinct formal structure for space-time than does the standard Minkowskian

interpretation of relativity. Consider that Michael Loux ( 1998 , p. 213), in his introductory

metaphysics textbook, describes B-theory as entailing that “time is a dimension along

with the three spatial dimensions; [time] is just another dimension in which things are

spread out.” Since the time dimension and the three spatial dimensions are independent,

we might think of each instant of time – or each point along the temporal dimension – as

corresponding to an arrangement of objects in space, so that any two events are simulta-

neous just in case they exist together in the same three-dimensional space. Philosophers of

physics will recognize that the view described by Loux most closely matches Newtonian

space-time, that is, the view that space-time consists of a series of three dimensional spaces

located at successive times, and does not match the Minkowskian view in two important

respects. First, on B−theory as described by Loux, time is an additional dimension to

our familiar three spatial dimensions. As Minkowski ( 1952 , p. 75) argued, in relativity,

both space and time disappear as independent existences, so that we are left with a kind

of union of the two that is neither spatial nor temporal. To be sure, space-time, as un-

derstood by Minkowski, is a four-dimensional manifold, but, since the division between

space and time cannot be formulated without adopting a reference frame, the dimensions

are themselves neutral between space and time. Second, to the extent that a time param-

eter appears in orthodox relativity, time is measured along trajectories (i.e., the so-called
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proper time) traversing space-time and not as an additional dimension to the three spatial

dimensions.

Lastly, there are the C-theories. Like B-theories, C-theories deny that time passes or

flows and that there are any irreducibly tensed truths. But C-theories additionally deny

that that there are absolute or objective relations of before and after. That is, C-theories

deny that time has any absolute or objective direction. C-theories endorse the view

that there is an objective betweeen-ness relation called the C-relation. The series of events

arranged according to the C-relation is called the C-series.

A-, B-, and C-theories can be distinguished by the arity of the objective relations

postulated by each theory. A-theories postulate three monadic predicates (past, present,

and future). For example, let β represent the time of my birth and let P be the predicate

representing past-ness. In that case, A-theorists will agree that P(β) is now true, though

P(β) was once false (or, on the view that there are no determinate truths about the future,

that P(β) once had no truth value). The passage of time is reflected in the fact that there

is some collection of non-indexical sentences, e.g., P(β), whose truth value changes. B-

theory postulates two binary relations (before and after). For example, let < represent

the before relation and let Π represent the time at which I am writing this sentence. In

that case, B-theorists will agree that β < Π. The fact that, according to B-theory, time

does not objectively pass is reflected in the fact that there is no collection of non-indexical

sentences whose truth value changes, e.g., β < Π is timelessly true. 

3
 C-theory postulates

one trinary relation (between-ness). Let Γ represent Lincoln’s delivery of the Gettysburg

address, Ω represent the 2024 American presidential election, and let B represent the

between-ness relation. C-theorists will agree that B(Γ,Π,Ω). But, due to the symmetry

of B, C-theorists will also agree that B(Ω,Π,Γ). The fact that, for C-theorists, time does

not objectively pass is reflected by the fact that, for the C-theorist, there is no set of non-

indexical sentences whose truth value changes. And the fact that, for C-theorists, there is

3
 ↑ B-theorists allow that the truth values of indexical sentences can change. For example, the indexical

sentence ‘I graduated from the University of Rochester thirteen years ago’ is true when stated in 2022 but
false when stated in any other year. Nonetheless, according to B-theory, the truth of that sentence can be
exhaustively explained by a set of non-indexical sentences whose truth value does not change. Compare:
the sentence ‘I am in Indiana’ is true when uttered in Indiana, false when uttered outside of Indiana, and
entirely explicable without positing some special metaphysical status to Indiana’s border.
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no direction to time is reflected by the symmetry of the between-ness relation, e.g., that

B(Γ,Π,Ω)⇐⇒ B(Ω,Π,Γ) is timelessly true.

4.3 Beginning of Existence and Metaphysical Accounts of Time

Having laid out the various metaphysical theories concerning the nature of time, in

this section, I turn to considering whether the notion that the Cosmos began to exist

requires a specific metaphysical account of the nature of time. As I will show, the notion

that the Cosmos began to exist is incompatible with C-theory. And while some authors,

whose views I will summarize, have thought that the beginning of the Cosmos requires

the A-theory of time, I will argue that we should develop a notion of the beginning of

time that is consistent with both A-theory and B-theory.

4.3.1 C-Theory and Beginning to Exist

Let’s first turn to showing that the notion that the Cosmos had a beginning is incom-

patible with C-theory. Intuitively, beginning to exist is an asymmetric notion; if I began

to exist at my birth and endure or perdure for some time, then I did not also cease to exist

at my birth. 

4
 Consequently, if one of the C-theories is true, nothing begins to exist.

Whether we should say that C-theories of time are theories of time is at least somewhat

controversial. When McTaggart first introduced and defended the view that our world

is ordered according to a C-series and not the A- or B-series, he thought that he had

abolished time altogether by showing that time is “unreal”. In chapter  5 , I will consider

views according to which the Cosmos is fundamentally timeless. Most of the theories

that I will consider are more radical than C-theory. Nonetheless, in chapter  10 , I will

4
 ↑ Jeffrey Brower raised the objection that, intuitively, an object O which exists for a single instant (and

satisfies the other conditions for beginning to exist that I discuss in chapters  5 ,  6 , and  7 ) begins to exist. Fair
enough, though, in that case, time asymmetry is still important for distinguishing the notion that O began
from the notion that O ceased to exist. We can say that O began for several reasons, each tied to a temporal
asymmetry, e.g., there is a time before O’s existence, there is a time t such that O did not exist before t, etc.
Likewise, the destruction of O is tied to temporal asymmetry, e.g., there is a time after O’s existence, there is
a time t such that O does not exist after t, etc. Consequently, if O exists only for one instant T, then T can be
understood as both the “birth” and “death” of O, where birth and death are tied to distinct ways in which
T bears an asymmetric relation to other (real or unreal) times.
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assume that if C-theory is correct, then the Cosmos is fundamentally timeless, or at least

not fundamentally temporal in any sense that is relevant for whether the Cosmos began.

For present purposes, let’s set aside the C-theories of time.

4.3.2 A-theoretic Accounts of Beginning

Some authors have argued that beginning to exist requires an A-theory of time. Con-

sider that most A-theorists understand the passage of time to involve states of affairs

coming into being. For example, growing block theorists maintain that only the present

and the past exist. Future events do not yet exist, but come into being by becoming

present. On B-theory, all moments of time exist simpliciter and so do not come into be-

ing by becoming present. Consequently, if ‘my apartment began to exist’ expresses the

proposition that my apartment came into being by becoming present, then my apartment

beginning to exist is inconsistent with B-theory. Nothing begins, in this sense, unless the

A-theory is true. Likewise, Craig and Sinclair ( 2009 , pp. 183–184) have argued that if there

are no tensed facts, then there is no fact about the universe beginning to exist and the quest

to find a cause of the universe is confused. Monton ( 2009 , p. 94) puts the point in terms

of four-dimensionalism. If space-time is a timeless four-dimensional block, in which time

is another direction of space, then a boundary of time is not a beginning in the relevant

sense. However, as I’ve discussed, relativistic four dimensionalism should not be under-

stood as the view that time is another dimension of space. In any case, Monton’s point

can be made without geometrizing time. Monton’s point can be re-phrased as follows:

B-theory is sometimes interpreted to imply that space-time is an eternal and changeless

four-dimensional block; if the four-dimensional block is eternal and changeless, then

nothing ever changes. If nothing ever changes, then nothing begins to exist. Thus, on at

least some conceptions of beginning to exist, beginning to exist requires A-theory. In the

next section, I turn to examining an alternative B-theoretic account of beginning to exist.
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4.3.3 B-theoretic Accounts of Beginning

The At-At Conception

If beginning to exist requires the A-theory of time, then there may be good reason

to deny the view that the Cosmos began to exist. For example, there are a variety of

arguments against the A-theory of time, including the fact that the A-theory of time is at

least difficult to render compatible with relativity (Putnam,  1967 ; Rietdijk,  1966 ; Penrose,

 1989 , pp. 201, 303–304; Petkov,  2006 ; Romero and Pérez,  2014 ). Insofar as we have reason

to be realists about relativity, and so to think that space-time has the formal structure

postulated by relativity, we would have reason to deny that the Cosmos began to exist.

Likewise, insofar as there are philosophical arguments against tensed theories of time,

we would have reason to deny that the Cosmos began to exist. Nonetheless, despite

the claims made by A-theorists, there are B-theoretic accounts of change that allow B-

theorists to accommodate a different sense of beginning to exist. The fewer controversial

assumptions that an account requires, the better off the account is. If an account of

beginning to exist can be formulated that remains neutral between A- and B-theory, that

account of beginning to exist would be superior to an account that requires either A- or

B-theory.

For that reason, let’s turn to considering one standard B-theoretic account of change.

According to the at-at theory, for change to occur requires only that there (tenselessly)

exists a time t1 at which state of affairs s1 obtains and a numerically distinct time t2 at

which state of affairs s2 obtains such that s1 and s2 are incompatible states of affairs. 

5
 

Perhaps we can say that x began to exist only if there exists a time t1 at which x did not

exist, a numerically distinct time t2 at which x exists, and t1 is absolutely before t2. On this

interpretation, for my apartment to begin to exist requires only that there is a time when

my apartment does not exist that occurs absolutely before another numerically distinct

time at which my apartment does exist. Call this account the at-at account of beginning.

5
 ↑ The at-at theory was originally developed as a theory of motion in reply to one of Zeno’s Paradoxes

(Russell,  1918 , pp. 83–84; Arntzenius,  2000 ; Huggett,  2019 ; Salmon,  1980 ). However, motion is a kind of
change (i.e., change in position over time) and, as pointed out in, e.g., Salmon,  1977 , p. 222 the at-at theory
is easily generalized into a theory of change.
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The at-at account of beginning requires that there was a moment of time before the

Cosmos existed. Swinburne has offered a substantivalist account of time in which time

precedes what Swinburne calls the “Universe” – roughly equivalent to my “Cosmos” –

and in which time has no beginning even though the Universe had a beginning. And

Swinburne ( 1996 ) has argued that the Universe began just in case there was a time pre-

ceding the Universe. Alan Padgett ( 2000 ;  2001a , p. 109;  1989 ,  1991 ,  2010 ,  2013 ), Ryan

Mullins ( 2014 ,  2016 ,  2020 ), Garrett DeWeese ( 2016 ), and other members of the so-called

“Oxford School” have likewise defended views on which there was amorphous time prior

to Creation. Members of the Oxford School can endorse the at-at account of the Cosmos’s

beginning because, on their view, there is a time that precedes the Cosmos. 

6
 While I think

the Oxford School’s view that time is non-physical is implausible, I do not argue against

the Oxford School in this dissertation. For that reason, one desideratum for the necessary

conditions for the Cosmos to have had a beginning that I develop in this dissertation is

that the conception be consistent with the Oxford School’s conception of time.

While some authors, such as the members of the Oxford School, maintain that time is

non-physical and so could have preceded the Cosmos’s existence, other authors maintain

that time is a physical phenomenon that could not have preceded the Cosmos’s existence.

Contemporary physical theory appears to suggest that time is a physical phenomenon,

so that time could not have preceded the Cosmos. For example, we can distinguish two

ways of understanding the standard Minkowskian interpretation of relativity. Substantival

Minkowskians understand space-time as a physical object (or substance). If Substantival

Minkowskianism is true, then there is no time before the existence of physical objects and

so no time before the Cosmos exists. As I’ve said, the at-at account of beginning requires

two times, e.g., one time at which the Cosmos does not exist and a subsequent time at

which the Cosmos does exist. Thus, if both Substantival Minkowskianism and the at-at

account of beginning are correct, then the Cosmos did not begin to exist. On the other

hand, Relational Minkowskians deny that space-time is a physical object. For the Relational

6
 ↑ To be clear, most, perhaps all, members of the Oxford School endorse the A-theory of time. Nonetheless,

their view that time is not a physical phenomenon and precedes the Cosmos is compatible with both
A-theory and B-theory.
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Minkowskian, space-time should be understood in terms of the relations between material

bodies or in terms of the properties (or attributes) of a single material body. Note that if

space-time should be understood in terms of the relations between material bodies, then

there is no time before the existence of material bodies. For that reason, if both Relational

Minkowskianism and the at-at account of beginning are correct, then the Cosmos did not

begin to exist. Therefore, if the at-at account of beginning to exist is correct and either

version of Minkowskianism is correct, then the Cosmos did not begin to exist. Prima facie,

this appears to rule out a beginning of the Cosmos, since one is hard pressed to imagine

a better alternative interpretation of relativistic physics that avoids the view that time is a

physical phenomenon.

The trouble is that even if time is a physical phenomenon, we should still be able to say

that the Cosmos began. For example, supposing that time is a physical phenomenon, we

should be able to say that the Cosmos and time began together. The at-at conception of the

beginning of the Cosmos is inadequate because the at-at conception would inappropriately

rule out such a possibility.

There is an additional reason to rule out the at-at conception of the beginning of the

Cosmos. We can say that an entity E has a beginning-in-time just in case E has a beginning

and, during all of the times in which E exists, E is a content of moments of time and so is

distinct from time itself. In contrast, let’s use beginning-of-time to refer to the beginning of

time, itself. The at-at conception should be thought of as a conception of beginning-in-time

as opposed to a conception of the beginning-of-time (Draper,  2008 ). Supposing that time

is a physical phenomenon, so that time begins when the Cosmos begins, the beginning of

the Cosmos is the beginning of time, itself. Thus, in order to be consistent with the view

that time is a physical phenomenon, an analysis of the beginning of the Cosmos should

accommodate the view that the beginning of the Cosmos was the beginning-of-time. For

that reason, we need an alternative to the at-at conception for discussing the Cosmos’s

beginning.

Consider, again, the aforementioned desideratum that our conception of the Cosmos’s

beginning should be consistent with the Oxford School’s conception of time. This desider-

atum reflects a more general thought about what sort of criteria a good conceptual analysis
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of the Cosmos’s beginning should involve. In the introduction to this dissertation, I stated

that I am interested in a conception of the beginning of the Cosmos that fulfills two desider-

ata. First, to help the second premise of the KCA -– that the Cosmos began to exist -–

‘beginning’ should be understood as broadly as possible. Second, to help the first premise

— that anything that begins to exist has a cause for beginning – ‘beginning’ should be

understood as narrowly as possible so as to avoid making the first premise obviously

false. We can refine our intuitions, in light of sophisticated philosophical, scientific, and

mathematical inquiry, about which epistemically possible worlds include a beginning of

the Cosmos. For example, above, I showed that both Substantival Minkowskianism and

Relational Minkowskianism, when conjoined with the at-at conception of the beginning

of the Cosmos, led to the intuitively wrong conclusion about whether the Cosmos began

to exist. While this dissertation does not take up whether Substantival Minkowskianism

or Relational Minkowskianism are true, one of my goals for developing a conceptual

analysis of the beginning of the Cosmos is that the concept be neutral with respect to as

many metaphysical theories as possible.

Other B-theoretic Conceptions

The at-at account of the Cosmos’s beginning leads to counterintuitive consequences

about which possible worlds include a beginning of the Cosmos. Thankfully, there is an

alternative analysis of the Cosmos’s beginning that does not lead to the same counter-

intuitive consequences. The trouble with the at-at conception was the invocation of two

times, including a time before the Cosmos’s existence. In order to retain consistency with

the Oxford School, we shouldn’t rule out the possibility that there are times before the

Cosmos. But to avoid the problems posed by the at-at conception, we need an account

that does not make explicit reference to times before the Cosmos’s beginning. We are

thereby led to the following proposal:

If the Cosmos began to exist, then there was a time (or perhaps a finite interval of time) such

that there were no prior times (or prior intervals of time) at which the Cosmos existed.
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This proposal requires only one time (or one finite interval of time) and so escapes the

worries that were introduced by the at-at account. Nonetheless, this proposal remains

consistent with the Oxford School by allowing for the possibility that there were prior

times at which the Cosmos did not yet exist.

Nonetheless, this account is not fully satisfactory. Recall that, on the standard Minkowskian

interpretation of relativistic space-times, we should not understand temporal series as a

sequence of three dimensional spaces; instead, time is measured along trajectories that

pass through space-time so that every temporal series is indexed to a specific trajectory

through space-time. For that reason, in relativistic space-times, there is no such thing

as a moment or interval of time simpliciter. Since the account we’ve developed thus

far requires a moment, or interval, of time simpliciter, we will need to develop a more

sophisticated conception in subsequent chapters. We will return to this issue in chapters

 6 and  7 .

4.4 Summary

The present chapter sets the stage for the rest of part  II . I identified three desiderata

that will need to be fulfilled in order for an analysis of the notion that the Cosmos

had a beginning to be consistent with as many metaphysical views about the nature of

time as possible: (i) the account should be consistent with both A- and B-theory, (ii) the

account should be consistent with our best physical theories concerning the nature of

time, including Special and General Relativity, and (iii) the account should be consistent

with, but should not require, the view that there was time before the Cosmos’s existence.

In addition, this chapter allowed me to introduce the various metaphysical accounts of

the nature of time that I will make use of throughout the rest of this dissertation.

As I’ve discussed, a variety of A-theorists have argued that nothing begins to exist if

B-theory is true. However, B-theorists have developed an alternative account of change,

the at-at theory, according to which change involves the existence of two mutually incom-

patible states of affairs at two distinct times. While some authors maintain that time is

not a physical phenomenon and so may have preceded the Cosmos, contemporary phys-
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ical theory suggests that time is a physical phenomenon and so could not have existed

before the Cosmos. In order to accommodate the intuitive notion that the Cosmos and

time could have begun together, B-theorists need an alternative to the at-at conception

for articulating the notion that the Cosmos began to exist. I developed an alternative

conception according to which the Cosmos could have begun if there was once a finite

period of time before which the Cosmos did not exist. This notion will need to be made

rigorous, and consistent with relativity, in subsequent chapters.

In the next chapter, I will further develop my analysis of the notion that the Cosmos

began in a different way, i.e., by, first, turning to a debate in philosophy of religion

concerning God’s relationship to the beginning of time and, second, considering a similar

issue in the literature on the philosophical foundations of relativity, quantum gravity, and

quantum interpretations.
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5. THE MODAL CONDITION

5.1 Introduction

At first glance, theologians and philosophers of physics are unlikely bedfellows.

Nonetheless, both theologians and philosophers of physics are interested in understand-

ing the claim that the whole of physical reality – the Cosmos – began to exist. For

theologians, the claim that the Cosmos began to exist should be contrasted with the claim

that God did not begin to exist. Some analytic theologians and philosophers of religion

have defended the view that while there is a first finitely long period of time in God’s

life, God’s life was beginningless (Craig,  2001b ; Erasmus,  2021 ; Loke,  2017 ). This view

is conceptually problematic because, prima facie, to begin to exist just means that one’s

life included a finitely long initial period of time. On the other hand, as discussed below,

a variety of contemporary physical theories and research programs are committed to the

claim that the Cosmos is not fundamentally spatiotemporal (Barbour,  1994 ,  1999 ; Bihan,

 2017a ,  2017b ,  2019 ,  2020 ; Butterfield and Isham,  2006 ; S. Carroll,  2019 ,  2022 ; S. Carroll and

Singh,  2019 ; Earman,  2002a ; Healey,  2002 ,  2021 ; Huggett,  2022 ; Huggett and Wüthrich,

 2013 ,  2018 ; Oriti,  2014 ,  2020 ,  2021 ; Rovelli,  2020 ; Wilson,  2021 ). 

1
 If the Cosmos is not

fundamentally spatiotemporal, then, even if there were an initial finitely long period of

1
 ↑ Throughout this chapter, I make use of the notion of fundamentality. For example, I will examine theological

theories according to which there is a fundamental aspect of God that is non-temporal and I will examine
speculative physical theories according to which there is a fundamental aspect of physical reality that is
non-spatio-temporal, or at least non-temporal. I do not provide an account of fundamentality here – in part
because providing a conceptual analysis of fundamentality turns out to be non-trivial – but I will provide
the reader with some intuition pumps for thinking about what I mean when I say that A is a fundamental
aspect of some entity E. To say that A is a fundamental aspect of some entity E means that, at the level
of metaphysical explanation, A is a non-derivative aspect of E; while there are other aspects of E whose
explanation is in terms of A, A does not have a further and more basic explanation in terms of other aspects
of E. We can identify a set of formal properties obeyed by the fundamentality relation. The fundamentality
relation is transitive, i.e., if x is fundamental to y and y is fundamental to z, then x is fundamental to z.
Fundamantality is irreflexive, i.e., nothing is fundamental to itself. And fundamentality is asymmetric, i.e.,
if x is fundamental to y, then y is not fundamental to x.

One way that A could be fundamental to E would be if A is the reductive base for E. For example,
H2O molecules are fundamental to water. However, fundamentality is more general than the relation of
being-a-reductive-base-for since (for example) God is not reducible to God’s fundamental aspect(s), but God’s
less fundamental aspects are explained in terms of God’s more fundamental aspects. As another example,
the relation of being-functionally-realized-by is another example of fundamentality, so that (for example) if
mental states are functionally realized by, but not reducible to, neuronal states, then neuronal states are
fundamental to mental states.
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time in the life of the Cosmos, the Cosmos would be fundamentally beginningless. Thus,

both theologians and philosophers of physics are interested in theories according to which

there was an initial, finitely long period of time in the life of some x, even though x is

beginningless.

Consequently, both theologians and philosophers of physics should be interested in

developing necessary criteria for beginning to exist that distinguish beginningless entities

whose lives include an initial finite period from entities that did begin to exist. In this

chapter, I defend a necessary, but not sufficient, condition for beginning to exist that

distinguishes the two classes of entities. According to the Modal Condition, the Cosmos

had a beginning only if at all of the closest possible (or counterpossible) worlds where

time does not exist, the Cosmos does not exist. To articulate the Modal Condition, I begin

by discussing a theological debate concerning God’s relationship to time and I develop

the Modal Condition using the Lewis-Stalnaker semantics for counterfactual conditionals.

Although I am not myself a theist, the theological reflections contained in this chapter were

useful for thinking through a novel necessary condition for the beginning of existence;

for that reason, I invite naturalists to read through the theological sections of this chapter

with an open mind. After developing the Modal Condition in the theological context, I

turn to a discussion of the Modal Condition in philosophy of physics. One upshot of this

chapter is that, despite frequent claims to the contrary, establishing that physical reality

has a finite past is not sufficient for establishing that physical reality had a beginning.

5.2 The Theological Problem

5.2.1 A survey of views on God’s relationship to time

As I explained in the introduction, this chapter is concerned with two problems that

have a common solution: one problem in philosophy of religion and another problem

in philosophy of physics. In order to explicate the problem in philosophy of religion, I

need to first explicate how, assuming that God exists, God might be thought to relate to

time. There are three views about how God might be related to time (Deng,  2018 ; Ganssle,

 n.d. Leftow,  2005 ; Padgett,  2013 ). First, as defended by most classical theologians, God
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might be absolutely timeless, in the sense that God’s life does not begin or end and God is

not subject to temporal succession. Proponents of the absolutely timeless God sometimes

say that God inhabits a timeless present that never passes into or out of either being or

God’s experience. This is contrasted with temporal entities, which experience successive

presents. Second, God might be temporal but everlasting (or sempiternal), in which

case God’s life is subject to temporal succession but extends infinitely into the past and

infinitely into the future. 

2
 Third, there is a family of hybrid views according to which God

is in some sense timeless and in some sense temporal. I will refer to theories maintaining

that God is in some sense timeless and in some sense temporal as hybrid views.

The family of hybrid views can be further subdivided in at least two ways. First, there

there is the so-called Oxford School (DeWeese,  2016 ; Mullins,  2014 ,  2016 ,  2020 ; Padgett,

 1989 ,  1991 ,  2000 ,  2001a ,  2010 ,  2013 ; Swinburne,  1996 ). According to the Oxford School,

time did not begin with the Cosmos. However, the Oxford School distinguishes between

two distinct kinds of time: physical time and metaphysical time. Physical time is time as

described by and measured within the physical sciences. Since physical time is time as

described by and measured within the physical sciences, physical time could not exist

without physical entities. According to the Oxford School, absent the laws of physics,

there would be no fact about the ratio in duration between two non-overlapping intervals

of time, so that, without the Cosmos, there would be no fact about the duration of any

given temporal interval. That is, according to the Oxford School, without the physical

universe, time is amorphous. Later in this chapter, I will discuss the views of one member

of the Oxford School – Alan Padgett – at some length. Padgett refers to physical time as

Measured Time and refers to metaphysical time as “eternity” (Padgett,  1989 ,  1991 ,  2000 ,

 2001a ,  2010 ); for Padgett, metaphysical time is time as experienced by God independent

of physical reality.

The Oxford School can, itself, be subdivided into two groups: first, a group I will

call the Oxford Identificationists, who maintain that time is numerically identical with an

attribute of God, and a group I will call the Oxford Creationists, who maintain that time is

2
 ↑ A history of the first two views in ancient and medieval philosophy, and their relationship to contemporary

philosophy, is provided in Kukkonen,  2015 .
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Figure 5.1. The most popular proposals in analytic theology concerning how
God might be related to time.
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not numerically identical with God but was created by God. Oxford Creationists argue

that God transcends time because, on their view, God serves as the ground of time, God

is unchanged by time, God has full control over the course of history, and God’s aseity

demands that God be understood as prior in the order of being to the existence of time.

As Padgett describes the view, God is “relatively timeless”, in that, while God is subject

to change in God’s non-essential characteristics, God’s life is not measured by time and is

not affected or contained by time (Padgett,  2000 , p. 126).

Recall that I said there were two versions of the hybrid view. So far, we’ve discussed

one version of the hybrid view – the Oxford School – as well as two subgroups within the

Oxford School – i.e., the Oxford Identificationists and the Oxford Creationists. The second

version of the hybrid view is a perspective championed by William Lane Craig according

to which God is timeless sans Creation and temporal with Creation (see, for example,

Craig,  2001b , pp. 270–275, Erasmus,  2021 , and chapter 6 in Loke,  2017 ). 

3
 In this chapter, I

adopt Jacobus Erasmus’s name for that perspective, i.e., Craig’s Creation Hypothesis or CCH

(Erasmus,  2021 , p. 197). Unlike the Oxford School, CCH involves the claim that time did

begin with Creation. But, like the Oxford Creationists, CCH proponents affirm that God

is prior in the order of being to time, that God transcends time, and that God is causally

responsible for time. Importantly, according to CCH proponents, God somehow became

temporal in virtue of having created time. As CCH proponents ordinarily explicate their

view, the actual world includes a state of affairs in which God, alone, exists and, in that

state of affairs, God is timeless. On the view of time endorsed by CCH proponents,

change suffices for the existence of time. In the timeless state of affairs, God initiated

the first change and, in doing so, brought time into being. The timeless state of affairs,

qua timeless, cannot temporally precede the Cosmos; nonetheless, according to CCH

3
 ↑ Another hybrid view has sometimes been suggested that draws on the distinction Gregory Palamas drew

between the divine essence (or nature) and the divine energies. A Palamite theologian might say that while
the divine essence (or nature) is timeless, the divine energies are temporal. See, for example, Dumsday,

 2021 , p. 37. I will set this view aside for the purposes of this chapter, in part because the resulting hybrid
view has not – as far as I have been able to find – been well developed in the analytic theology literature
and in part because I am not sufficiently familiar with the view to competently comment on it. Readers
who think that the Palamite view resolves the theological problems that I raise better than the views that
I consider can interpret this chapter as articulating the destination of theological views alternative to their
own.
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proponents, the timeless state of affairs causally preceded both time and the Cosmos.

Moreover, by initiating the first change, God initiated the beginning of time. One of my

goals in this chapter is to offer a better articulation of CCH than has previously been

offered; to do so, I will, in some places, make use of arguments presented by the Oxford

School and particularly by Oxford Creationists.

I will ultimately argue that the version of CCH previously offered is incoherent. In

particular, as I will argue, the view that the actual world contains a state of affairs in

which God is timeless as well as a state of affairs in which God is temporal is problematic.

However, my aims are not completely destructive; I want to offer CCH proponents an

alternative version of CCH that I think is coherent. To that end, I will offer an alternative

version of CCH that does not include the thesis that the actual world includes a state of

affairs in which God is timeless. For my purposes, I will consider any view to be a version

of CCH if, according to that view, (i) God is atemporal sans Creation and temporal with

Creation and (ii) God is prior in the order of being to time, that God transcends time, and

that God is causally responsible for time.

5.2.2 Theological accounts of the beginning of the Cosmos

Having surveyed the various ways that God has been proposed to relate to time, I

turn next to how CCH proponents have thought about the notion that the Cosmos had

a beginning. The Oxford School and CCH proponents differ in a variety of ways. For

example, Oxford School proponents say that a duration of beginningless, amorphous time

temporally preceded God’s creation of the Cosmos whereas CCH proponents say that a

state of affairs in which God, alone, exists and exists timelessly causally, but not temporally,

precedes the Cosmos. Nonetheless, both the Oxford School and CCH proponents agree

on three theses: (i) God is actually temporal, (ii) time is wholly explicable in terms of God,

and (iii) while God did not begin to exist, the Cosmos did begin to exist. While the Oxford

School and CCH proponents do disagree about why time is wholly explicable in terms

of God, 

4
 let’s put that difference to one side. I am interested in how the Oxford School

4
 ↑ The Oxford School is committed to the view that time is wholly explicable in terms of God either because

time is an aspect of God (the Oxford Identificationists) or because God created time (the Oxford Creationists),
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and CCH proponents might explicate the notion that while God did not begin to exist, the

Cosmos did begin to exist. One is tempted to say that:

Beginning-to-exist-1 :=de f x began to exist just in case x is temporal and there was

some finite period of time such that there were no previous finitely long periods of

time during which x existed.

If so, then:

1. The Cosmos began to exist just in case the Cosmos is temporal and there was a

finitely long period of time T such that the Cosmos did not exist before T and

2. If God is actually temporal, then, since God did not begin to exist, there is no initial

finitely long period of time in God’s life.

However, this account is incompatible with CCH. CCH proponents are committed to the

claims that:

3.God is actually, but not necessarily, temporal,

4.There was a first finitely long period of time, and

5.God did not begin to exist.

If there is a first finitely long period of time and God is temporal, then, contrary to  2 , there

must have been a first finitely long period of time in God’s life. Therefore, one may argue

that  3 - 5 are collectively inconsistent with Beginning-to-exist-1. 

5
 The Oxford School avoids

this problem because the Oxford School rejects  4 ; for the Oxford School, the Cosmos was

whereas, for CCH proponents, God initiated the first change and the existence of change suffices for the
existence of time.
5

 ↑ When this chapter was submitted as an article for publication with Erkenntnis, an anonymous reviewer
asked whether this problem can be resolved by compartmentalizing the first finitely long period of time in
God’s life to God’s temporal life. Note that the problem under discussion concerns whether having a first
finitely long period of time in the life of x suffices for showing that x began to exist; if the reviewer is correct
that God did not begin to exist because we can compartmentalize the first finitely long period of time in
God’s life to God’s temporal life, then that x has a first finitely long period of time in its life does not suffice
for showing that x began to exist. That is, if the reviewer’s suggestion is correct, then beginning-to-exist-1
is incorrect.
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preceded by amorphous time, so that time lacks a first finitely long period. Thus, one

tempting way to resolve this difficulty would be to simply affirm the Oxford School – or

perhaps some other view of God – and reject CCH as incoherent. Let’s forego the option

of rejecting CCH in order to further investigate CCH.

To reiterate the incompatibility between CCH and Beginning-to-exist-1, suppose that

Beginning-to-exist-1 is true. In that case, if God entered time in virtue of God’s creation of

time, as CCH proponents allege, then God’s life includes a first finitely long period of time.

If God’s life did include a first finitely long period of time, then Beginning-to-exist-1 entails

that God began to exist. CCH proponents want to avoid the conclusion that God began to

exist; therefore, they need to identify a plausible alternative to Beginning-to-exist-1. Here

is one alternative Craig has considered:

Beginning-to-exist-2 :=de f x begins to exist at t just in case “x exists at t; there is no

time immediately prior to t at which x exists; and the actual world contains no state

of affairs involving x’s timeless existence” (as quoted in Morriston,  2000 , p. 155).

Beginning-to-exist-2 does not seem to be adequate for Craig’s purposes and Craig has since

abandoned it (Craig,  2002 ). 

6
 Though Craig has abandoned Beginning-to-exist-2, Christo-

pher Bobier’s arguments against Beginning-to-exist-2 are instructive for articulating an

adequate notion of beginning to exist.

Beginning-to-exist-2 consists of three conditions. Let’s focus on the third condition,

that is, that there is no actual state of affairs involving x’s timeless existence. According

to Bobier, the notion that there is no actual state of affairs involving x’s timeless existence

can be analyzed two ways. On the first analysis, the notion that there is no actual state

of affairs involving x’s timeless existence means that “[t]he actual world contains no

possible state of affairs involving x’s timeless existence” (emphasis is Bobier’s; see his  2013 ,

p. 597). Bobier argues that Craig cannot mean that x began to exist only if the actual world

contains no possible state of affairs involving x’s timeless existence. Bobier thinks that a

timeless basketball is metaphysically possible. If a timeless basketball is metaphysically

possible, then there is a possible state of affairs involving a basketball’s timeless existence.

6
 ↑ Bobier ( 2013 ) argues persuasively that Craig’s latest criteria will not work either.
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So, the first option would entail that basketballs do not begin to exist and surely Craig

does not think that basketballs are beginningless. I do not agree with Bobier that timeless

basketballs are possible, though I grant Bobier’s point; the mere possibility that x timelessly

exists does not entail that x did not actually begin.

On the second analysis, the notion that there is no actual state of affairs involving x’s

timeless existence means that a state of affairs involving x’s timeless existence does not

obtain in the actual world Bobier,  2013 , p. 597. This analysis will not fit Craig’s purposes

either. As I’ve discussed, on Craig’s view, God did not begin to exist. Suppose that

beginning-to-exist-2 did provide the correct analysis of beginning to exist. On Craig’s

view, God satisfies the first two conditions in Beginning-to-exist-2. That is, since Craig

endorses a first moment (or interval) of time t, God exists at t and there is no time prior to

t at which God exists. Thus, in order for God to be beginningless, God must violate the

third condition, that is, there must obtain a state of affairs in the actual world in which

God exists timelessly. Bobier argues that there cannot be such a state of affairs. As Bobier

argues, no state of affairs obtains in which God exists timelessly prior to Creation because,

according to Craig, time began with Creation and there are no states of affairs temporally

prior to Creation. Moreover, no state of affairs obtains in which God exists timelessly after

Creation because, on CCH, God is in time after Creation. Therefore, according to Bobier,

the second option entails that there are no actual states of affairs involving God existing

timelessly. If so, then, on the conception of beginning to exist we are considering, God

began to exist.

One might object that Bobier has moved too quickly in concluding that no state of

affairs obtains in which God exists timelessly. While Bobier has argued that no state of

affairs obtains in which God exists timelessly before, simultaneous with, or after Creation,

one might argue that if a state of affairs in which God exists timelessly did obtain, then,

in virtue of being timeless, that state of affairs cannot be before, simultaneous with, or

after Creation. Why couldn’t a state of affairs obtain in the actual world that simply did

not enter into before, after, or simultaneous-with relations? Thus, instead of showing that

such a state of affairs does not obtain, perhaps Bobier has merely drawn out an implication

of such a state of affairs. In the next section, I elaborate on why we should not commit
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ourselves to the view that the actual world includes both a state of affairs in which God is

timeless sans Creation and a state of affairs in which God is temporal with Creation.

Does God’s Life Have Two Portions?

I am addressing the notion that there obtain two states of affairs in the actual world:

one state of affairs in which, sans Creation, God exists timelessly and another state of

affairs in which, with Creation, God exists temporally. The question becomes in virtue of

what the two states of affairs hang together in such a way that both states of affairs include

numerically one deity. One could propose that the two states of affairs are two portions

of God’s life, that is, the portion of God’s life in which God is timeless and the portion of

God’s life in which God is in time. 

7
 As I argue in this section, I have difficulty seeing how

God’s life could include both portions; without an adequate conception of how the two

states of affairs could hang together, an alternative version of CCH – one that involves

only the state of affairs in which God is in time – is preferable. Subsequently, I develop

that alternative version of CCH and show the Modal Condition can be utilized in defense

of that alternative.

Supposing that God’s life includes both temporal and non-temporal portions, we

should not say that the atemporal portion of God’s life precedes the temporal portion

since the atemporal portion cannot enter into temporal relations such as before or after

(Craig,  2001b , pp. 267–268, Helm,  2001a , p. 49, Leftow,  2009 , pp. 290–291). Friends of

CCH, such as Craig, Erasmus, and Loke, have themselves argued that the atemporal

portion of God’s life is not before the temporal portion. On an A-theory of time, when

one says that an event is past, one means just that the event has already passed. So, if the

atemporal portion of God’s life has passed away when God became temporal, then we

7
 ↑ Some theologians will object that, given the doctrine of divine simplicity, God’s life cannot be divided into

portions. Craig, and other friends of CCH, reject the doctrine of divine simplicity. Moreover, since friends
of CCH think that there is a state of affairs in which God is in time, and that God is subject to temporal
succession, friends of CCH are already committed to the view that God’s temporal life can be divided into
successive moments. But to say that God’s temporal life can be divided into successive moments is just
to say that God’s temporal life can be divided into portions. If God’s temporal life can be divided into
portions, then I have difficulty seeing why friends of CCH wouldn’t simply say that the two states of affairs
are portions of God’s life simpliciter.
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would have the logically impossible conclusion that the atemporal portion of God’s life is

past. 

8
 Thus, if there is an atemporal portion of God’s life, then, however that portion may

be related to the temporal portion of God’s life, the atemporal portion, qua atemporal,

cannot pass away. (Similar remarks were made in Kabay,  2009 , p. 128 and Helm,  2001b ,

p. 163.) So, instead, the suggestion might be that the portion of God’s life that is in time

is present while the timeless portion is not present but, nonetheless, exists simpliciter.

This interpretation faces apparently insurmountable problems. For example, the iden-

tity conditions between the two portions of God’s life are utterly mysterious. God cannot

perdure or endure – let alone retain psychological continuity or maintain God’s personal

identity in some other way – between the two portions of God’s life because one portion

is not in time. One might instead suggest that there is a kind of continuity between the

two portions of God’s life because the atemporal portion timelessly causes the temporal

portion. Setting aside difficult philosophical issues about whether an atemporal entity can

cause a temporal entity, a mere causal relation does not suffice for establishing continuity

between the two portions of a life. Without perduring or enduring, I have difficulty seeing

how the two portions could be understood as two portions of the life of numerically one

entity as opposed to the lives of two deities.

Craig and other friends of CCH are monotheists and so will want to avoid the con-

clusion that there is more than one deity. However, at the level of logical consistency,

there is no tension that I can see between polytheism and CCH. Happily, there is a second

difficulty for the view that God’s life includes both temporal and non-temporal portions.

To reiterate, we have been considering a view according to which God did not begin to

8
 ↑ According to one popular argument for the view that God is timeless, there is a tragedy in our own

temporal existence because, for those of us in time, parts of life fall away from us and can never be
recovered. We might look back on our loved ones who are no longer with us, but, so long as we are limited
to the present life, we cannot experience, once more, the loved ones who are no longer with us. Proponents
of the timeless God point out that God, as a perfect being, must not experience the tragedy of time passing
and so no part of God’s life falls away from God’s experience. This implies that no part of God’s life has
passed away and that no part of God’s life is before any other part, so that God’s life is not subject to A−
or B−relations (or so the argument goes). If God is not subject to A− or B−relations, then God is timeless.
When Craig ( 2001a , pp. 132–136) replies to this argument on behalf of the view that God has a temporal
portion of God’s life, Craig does not object to the notion that, for a timeless God, no part of God’s life passes
away. This seems to be an implicit admission that timeless entities cannot pass away so that the timeless
portion of God’s life, qua timelessness, could not pass away. Elsewhere, Craig ( 2001a , p. 159) explicitly tells
us that for the atemporal portion of God’s life, there is no before or after and time does not pass.
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exist because a state of affairs in which God timelessly exists obtains and a state of affairs

in which God is temporal obtains as well as the possibility that the atemporal portion

of God’s life timelessly causes the temporal portion of God’s life. The portion of God’s

life that is in time is in time essentially; the temporal portion of God’s life, qua temporal,

cannot exist in any possible world from which time is absent. Beginning-to-exist-2 entails

that x began to exist only if there obtains no state of affairs in which x timelessly exists.

Therefore, since there couldn’t be a state of affairs in which the temporal portion of God’s

life timelessly exists, even if God can be said not to have a beginning, the portion of

God’s life that is in time would have a beginning. Craig is committed to the principle

that anything that begins to exist requires a cause for its existence (S. Carroll and Craig,

 2016 ; Craig,  1979 ; Craig and Sinclair,  2009 ,  2012 ; Craig and Smith,  1995 ). If anything that

begins to exist does require a cause for its existence, then the portion of God’s life that is

in time requires a cause for its existence. The only plausible candidate for the cause of the

temporal portion of God’s life is the atemporal portion of God’s life. Craig has argued

that any cause of a temporal entity must itself be temporal and that God is temporally

related to – in fact, simultaneous with – the Cosmos when God causes the Cosmos to begin

Craig,  2001b , p. 276. Thus, the cause of the temporal portion of God’s life must likewise be

temporally related to – in fact, simultaneous with – the beginning of the temporal portion

of God’s life. Nonetheless, the timeless portion of God’s life cannot be temporally related

to, let alone simultaneous with, anything, so that the timeless portion of God’s life cannot

be the cause of the temporal portion of God’s life. 

9
 Consequently, unless we give up CCH,

Beginning-to-exist-2 fails and we need a different analysis for beginning to exist.

There is a third difficulty for proponents of CCH who maintain that God’s life includes

both a temporal and an atemporal phase. Consider one argument that both the Oxford

School (e.g., Mullins,  2016 ; Padgett,  2000 ) and CCH proponents (e.g., Craig,  1998 ) have

offered against the view that God is absolutely timeless. Some proponents of divine

timelessness have argued that if the A-theory of time is true, then, even though God

cannot undergo intrinsic change in virtue of being timeless, God does undergo changes

in God’s extrinsic relations (i.e., Cambridge changes) in virtue of God’s relationship to

9
 ↑ Similar points were previously made in Mullins,  2020 , p. 225 and Helm,  2011 , p. 222.
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a changing temporal reality. To the contrary, friends of the Oxford School and of CCH

have argued that the A-theory of time is incompatible with the existence of a timeless

entity that is either extrinsically or intrinsically related to temporal entities. For example,

suppose that God exists, God was the Creator of some temporal entity E, and that the

A-theory of time is true. In that case, even if God does not undergo any changes in God’s

intrinsic characteristics, as time passes and E ages, God undergoes Cambridge changes

with respect to E. As Craig ( 1998 , pp. 222–223;  2001a , pp. 140–141) puts the point, when

God created the Cosmos, God was not timeless in virtue of the fact that God acquired a

new characteristic. But, on Craig’s view, any entity that acquires a new characteristic –

even if that new characteristic solely involves entering into a new extrinsic relation – is

temporal. 

10
 Therefore, even if God is immutable in God’s intrinsic characteristics, Craig

concludes that God is subject to temporal passage. Notice that a parallel argument can

be provided for the atemporal portion of God’s life. If the atemporal portion of God’s life

is either intrinsically or extrinsically related to the temporal portion of God’s life – as is

presumably required for the two phases to be portions of numerically one life – and the

A−theory of time is true, then the timeless portion would acquire a new extrinsic relation

when the temporal portion begins to exist. In that case, the timeless portion would not

actually be timeless.

Erasmus (  2021 ) and Craig ( 2001b , pp. 272–273) have each attempted to explain how

the atemporal portion of God’s life might be related to the temporal portion of God’s life.

Erasmus draws upon a distinction between an instant and an event. As Erasmus describes

the distinction, an instant is an indivisible temporal point while an event is a change from

one instant to another. On a discrete view of time, time can be understood as a series of

instants, i.e., t1, t2, t3, ..., tn, and as a series of events, i.e., e(11, t2), e(t2, t3), ..., e(tn−1, tn), where

e(ti, ti+1) is the event of changing from instant ti to ti+1. Erasmus then asks us to consider

10
 ↑ For example, suppose that God bears an extrinsic relation R to Adam-at-time-t1 and bears extrinsic

relation ¬R to Adam-at-time-t2. Let’s also suppose that Craig’s preferred version of A−theory, presentism,
is true so that only the present moment exists. When t1 is present, God bears extrinsic relation R to Adam-
at-time-t1 but, since t2 does not yet exist when t1 is present, God does not yet bear ¬R to Adam-at-time-t2.
Subsequently, t1 passes out of existence and t2 passes into existence. Since God bears¬R to Adam-at-time-t2,
we know that God must take on the extrinsic relation ¬R to Adam by t2 and that God must no longer bear
R to Adam. But that’s just to say that there is succession in God’s life and so that God is temporal.
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God at t1. On a relational conception of time, there is time only if there is change, that is,

transition from one instant to another. Therefore, the state of affairs, involving God, at t1

is the same state of affairs, involving God, as there is at the closest possible world without

time. For Erasmus, the distinction between the closest possible world without time and

the actual world consists just in the fact that God actualizes the change from t1 to t2, that

is, e(t1, t2). Since the state of affairs, involving God, at t1 is the same state of affairs as there

is at the closest possible world without time, Erasmus understands the state of affairs,

involving God, at t1 as a timeless state of affairs.

Erasmus’s response does not adequately address the objection that I have raised. On

Erasmus’s view, t1 is before t2 and passes into t2. Therefore, t1 is temporally related to t2.

If the state of affairs, including God, at t1 were a timeless state of affairs, then that state

of affairs, in virtue of being timeless, could not pass away or into t2 and could not occur

before t2. Furthermore, I doubt that all friends of the CCH can take up Erasmus’s response;

for example, Craig has denied both that instants exist and that time is discrete. 

11
 

Although Erasmus intends for his discussion to be a loose summary of Craig’s re-

sponse, Craig’s response is distinct from the response that Erasmus has described. In

fact, while Craig agrees with Erasmus that, in the closest possible world without time,

the state of affairs involving God at t1 would have obtained, Craig denies that t1 obtains

in such a world (Craig,  2001b , p. 272). Craig’s response draws upon two analogies with

physical cosmology. In one analogy, Craig ( 2001b , p. 272,  2001a , p. 160) compares God’s

relationship to time to relativistic cosmological models featuring an initial singularity. As

Craig rightly points out, according to General Relativity, the initial singularity is not a part

of the space-time manifold but should instead be understood as an open boundary to the

11
 ↑ The reader might be perplexed that Craig denies the existence of instants, given Craig’s presentism, but

Craig has long argued that instants do not exist. Craig denies that any physical collection could be infinite
while also denying the view that time is discrete. If time is continuous, one might have thought that any
finitely long interval of time includes an infinitude of instants. In order to avoid the consequence that any
interval of time includes an infinitude of instants, Craig adopts the Aristotelian position that intervals of
time are fundamental and instants are a kind of mental fiction we arrive at as the boundary points of any
given interval. Craig writes that “only intervals of time are real or present and that the present interval (of
arbitrarily designated length) may be such that there is no such time as ‘the present’ simpliciter; it is always
‘the present hour’, ‘the present second’, etc. The process of division is potentially infinite and never arrives
at instants” (Craig,  1993a , p. 260; also see Craig,  2000 , pp. 179–180; Craig and Sinclair,  2009 , pp. 112–113).
For discussion, see Dumsday,  2016 ; Loke,  2016 ; Puryear,  2014 ,  2016 ; Zarepour,  2021 .
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space-time manifold. Since the open boundary is not part of the space-time manifold, the

boundary cannot be said to temporally precede any of the space-time points within the

manifold. Craig claims that while the singularity is not temporally prior to space-time,

the singularity is causally prior to space-time.

However, this cannot be a good analogy because the reason that the open boundary

does not temporally precede any space-time point is that the open boundary does not

exist, that is, the open boundary is an absence. Presumably, Craig does not want to

commit himself to the view that God lacks being in any portion of God’s life, regardless

of whether that portion is temporal or atemporal. Moreover, it’s at least not obvious to

me that the singularity causally precedes space-time. While the nature of causation is

philosophically controversial, a variety of theories of causation deny that absences can be

causes; if an absence cannot be a cause, then, since an open boundary is an absence, an

open boundary cannot be a cause either. Even if we should accept an analysis of causation

on which absences can be causes, Craig and other friends of the CCH would be unlikely

to accept the view that the Cosmos could have been caused by sheer nothingness; thus,

while they might admit absences as causes, they would not admit an absence as the cause

of the Cosmos.

In a second analogy, Craig ( 2001b , pp. 272–273) compares God’s relationship to time

to the Hartle-Hawking model ( 1983 ). As Quentin Smith (e.g.,  1997 ) interprets that model,

the initial singularity is replaced by a region featuring “imaginary time”. Within that

region, the space-time metric has Euclidean signature, with the consequence that there is

no metrical distinction between space and time. On Smith’s interpretation, that region

features four dimensions of space instead of featuring one dimension of time and three

dimensions of space. Smith argues that the timeless four-space region is topologically, but

not temporally, connected to space-time. Craig ( 2001b , p. 273) speculates that perhaps the

atemporal portion of God’s life is (somehow) topologically, but not temporally, connected

to the temporal portion of God’s life. I’m not convinced that Smith correctly interpreted

the Hartle-Hawking model, 

12
 but set that aside. If there is an atemporal portion of God’s

12
 ↑ For example, Smith’s interpretation involves the view that what distinguishes space from time is the

distinction between Lorentzian and Euclidean signature. While the signature does provide a distinction
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life that is (somehow) topologically but not temporally related to the temporal portion of

God’s life, then, once more, that atemporal portion can neither pass away nor into nor

be placed before the temporal portion of God’s life. Moreover, unless Craig can provide

adequate reason to think that the topological joint between the two portions of God’s

life can support perdurance or endurance between the two portions of God’s life, much

less psychological continuity or other ways in which personal identity persists, I do not

see how the topological joint suffices for showing the portions are the life of numerically

one deity. Furthermore, the supposition that there is a topological joint between the two

portions of God’s life would not suffice for showing that the timeless portion could be

related to the temporal portion without the timeless portion undergoing extrinsic change.

Loke ( 2017 , p. 172) defends the coherency of the view that there is a causally prior

timeless portion of God’s life in a different way than either Erasmus or Craig. Recall that,

according to the way in which CCH proponents have previously described their view, the

actual world includes a state of affairs in which God exists alone, exists timelessly, and, in

that timeless state of affairs, begins time by initiating the first change. CCH proponents

often argue that only an entity with libertarian freedom could have the power to initiate

the first change from a timeless state. According to the objection that Loke considers,

an entity E, with libertarian freedom, cannot freely initiate change from a timeless state.

According to Loke’s imagined objector, for some entity E to change is just for E to have

property p at some time t1 and property ¬p at some time t2, such that t1 , t2. If E changes

from a timeless state, then E did not change from one time to another. Loke replies that

friends of the CCH can provide a disjunctive definition of change: for some entity E to

change is just for E to have property p at some time t1 and property ¬p at some time

t2, such that t1 , t2, or for E to have property p in a timeless state and property ¬p at

some time t. Loke’s reply does not appear to be adequate for defending the coherency of

changing from a timeless state. If E is in a timeless state, then E cannot pass from that

between space and time, the signature is an implausible candidate for providing a complete explanation of
the distinction between space from time for at least two reasons: (i) the signature cannot explain any sort of
past/future asymmetry and so cannot explain A- or B-relations and (ii) we can construct (anachronistically)
a model of Newtonian or Galilean space-time that include a space/time distinction while also featuring a
metric with Euclidean signature.
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timeless state and into a temporal state since a timeless state cannot, qua timeless, pass

away. For that reason, Loke is incorrect when he writes, “there is nothing absurd about

a personal timeless being deciding to leave His state of timelessness and enter into time”

( 2017 , p. 175). Moreover, Loke has not provided a way for an entity to perdure, endure,

or to persist in personal identity from a timeless state to a temporal state. 

13
 

The preceding problems evaporate if we suppose that God does not timelessly coexist

with the temporal portion of God’s life in possible worlds where God is temporal. On the

condition for ‘beginning to exist’ that I propose in this section, in the actual world, God

could be beginningless and yet only have a temporal portion of God’s life. That is, on my

proposal, an entity can have a finite past and yet, even though the actual world includes

no atemporal portion of that entity’s life, the entity may still be beginningless. Thus, even

though God’s life may include a first period of time, God could still be said not to have

begun to exist. Like Craig, Padgett ( 2001a , p. 106) denies the view that if God is temporal,

God could exist only if time exists. According to Padgett ( 2000 , pp. 122–123), God could

“live” in a timeless world and has freely and timelessly chosen to live in a temporal world.

Since God timelessly chooses for our world to be one that includes time, there is no time

at which God makes our world a temporal world and consequently no transition in God’s

life from an atemporal phase to a temporal phase. On Padgett’s view, there is only one

phase of God’s life. Despite having only one phase in God’s life, God includes atemporal

aspects alongside temporal aspects, and the atemporal aspects of God are responsible for

the existence of time.

One of the objections previously considered to the view that God’s life includes both

an atemporal portion and a temporal portion was that if A-theory is true, then, once the

temporal portion begins, the atemporal portion acquires a new relation. This led to the

13
 ↑ Loke (  2017 , pp. 172–173) goes on to consider whether the First Cause of the Cosmos could be a physical

state and argues that the First Cause must be able to prevent itself from “initially changing”. According to
Loke, only a timeless person with libertarian freedom, and not a timeless physical state, could prevent itself
from initially changing and therefore could not be a physical state. Set aside the fact that a timeless entity
should not be described in temporal terms, e.g., as initially anything. The real trouble seems to be opposite to
the problem that Loke discusses. As a matter of logical consistency, a timeless entity cannot literally become
anything else and therefore lacks the capacity to change from one state into some other. Consequently, a
timeless physical state, qua timeless, would have no more difficulty “preventing” itself from coming to
occupy some non-initial state than would a timeless person with libertarian freedom.
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contradiction that the atemporal portion is both atemporal and temporal. The reader

might worry that a similar objection can be provided for the view that God includes both

atemporal and temporal aspects. If the atemporal aspect is related to the temporal aspect

and we suppose that A-theory is true, why wouldn’t the atemporal aspect acquire new

relations as the temporal aspect changes?  

14
 In reply, the CCH proponent could say that

God includes an atemporal aspect just in case there is an aspect of God that suffices for

God’s existence and that would have existed even if time did not. (As we will see, this

is just to say that the CCH proponent could adopt the Modal Condition.) In that case,

all aspects of God are undergoing relational changes throughout the entirety of God’s life

– the entirety of which is temporal – even though some of those aspects – importantly,

aspects that suffice for God’s existence – would have existed even if time had not existed.

For proponents of the CCH and unlike the Oxford School, past time is finite, so that

the life of any temporal entity includes an initial finitely long period. In that case, there is

an initial finitely long period of God’s life. If God’s life only includes the temporal phase,

how could God’s life be beginningless? Let’s turn back to Bobier. Bobier comes close

to suggesting the correct solution when he recognizes that what we require is a “modal

fact”. According to CCH, in the actual world, ‘God is timeless sans Creation’ is true.

Bobier wonders what fact in our world could make ‘God is timeless sans Creation’ true.

One candidate answer is a modal fact, that is, that had God not created the Cosmos, God

would have existed timelessly (Bobier,  2013 , p. 598).

Padgett similarly offers a modal analysis as part of his study of God’s relationship to

time. Consider how Padgett argues for his view that while God is in time, God is not

necessarily in time. Padgett considers a possible world from which time is absent, but in

which God is the Creator of all things other than Godself. As the Creator of all things other

than Godself, all things other than God in the timeless world ontologically depend upon

God. Padgett grants that such a world is logically possible and, since Padgett believes

14
 ↑ Padgett has made a similar criticism of Whitehead’s “dipolar” conception of God, wherein God is

conceived as having an absolutely timeless aspect (which Whitehead identifies as God’s “primordial nature”)
and a temporal but everlasting aspect (which Whitehead identifies as God’s “consequent nature”). Padgett
( 2000 , p. 140) states, “It is hard to see how one ‘actual entity’ can exist in two antithetical modes of being,
without destroying the unity of that entity. Since timelessness as Whitehead and most thinkers have
understood it is the antithesis of time, no one being can be both timeless (in this sense) and temporal”.
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God can do any logically possible task, Padgett concludes that God could have actualized

the timeless world but freely chose to actualize a temporal world instead (Padgett,  2001a ,

p. 106; Padgett,  2001b , pp. 106–107).

Padgett ( 2001a , p. 106) goes on to say that we have two possibilities for relating God

to time, i.e., that either “God’s time is a necessary precondition to God’s Being” or “that

God’s Being is a necessary precondition to God’s time (eternity)”. Padgett ( 2001a , p. 107)

rejects the possibility that time is a necessary precondition to God’s Being. When Padgett

proceeds to tells us that “God is not contained within time”, Padgett clearly does not

mean that God is atemporal. As I’ve discussed, Padgett is an Oxford Creationist and so

agrees with Craig that God is temporal. Instead, Padgett means that God’s being is prior

in the order of ontological dependence to the existence of time, so that the existence of

time should be understood in terms of God’s existence and not vice versa. Craig ( 2001b ,

pp. 271–272;  2001a , p. 138) similarly offers a thought experiment that he uses to affirms

that, had God not initiated time, our world, including God, would have been timeless.

Craig and Padgett agree that God is prior in the order of being to the existence of time; on

their view, that God is prior to time explains why, even if time began and God is temporal,

God lacks a beginning. In light of Bobier’s, Padgett’s, and Craig’s comments, I propose

that the relation of ontological priority between God and time can be understood in terms

of a modal fact. I turn to characterizing that modal fact in the next section.

5.2.3 Theology and the Modal Condition

What modal fact would be adequate for Padgett’s or Craig’s views? Let T = ‘time

exists’. Using the standard Lewis-Stalnaker semantics for counterfactual conditionals, 

15
 

let � represent the would-counterfactual conditional. That is, if, in all of the closest

possible worlds where A is true, B is also true, then A� B. Moreover, let� represent

the might-counterfactual conditional. That is, if, in at least one of the closest possible

worlds where A is true, B is also true, then A � B. On Craig’s or Padgett’s accounts,

time only exists in virtue of God’s contingent and freely-willed act of creation, that is, time

15
 ↑ Nothing crucial hangs on the Lewis-Stalnaker semantics. Therefore, the reader can, if they would like,

substitute their favorite theory of counterfactual conditionals.
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is asymmetrically explained by God. Assuming that God necessarily exists, as endorsed

by most Christian philosophers and theologians, God exists at all of the nearest possible

worlds without time. 

16
 Without time, God would have existed anyway. Consequently, we

have that ¬T � ∃x.x = God. Using the modal condition, we can articulate an argument

for the CCH proponent’s view that, even though God’s life may have included an initial

finitely long segment, God is nonetheless beginningless:

P1) If any entity is non-temporal, then that entity did not begin to exist.

P2) God is fundamentally non-temporal.

C1) So, God fundamentally did not begin to exist.

P3) Any entity that fundamentally did not begin to exist did not begin to exist simpliciter.

C2) Therefore, God did not begin to exist simpliciter.

(P1) is true because any entity that is timeless is beginning. (P2) is true because God

is metaphysically prior to the existence of time and, for that reason, satisfies the Modal

Condition. That is, there is an aspect of God that suffices for God’s existence and which

would have existed even if time had not. (C1) follows from (P1) and (P2) by modus ponens.

(P3) is true because for any entity E, if there is an an aspect of E that suffices for the existence

of E but which did not begin to exist, then E did not begin to exist. Lastly, (C2) follows

from (C1) and (P3) by universal instantiation. Notice that this argument is independent

of whether God’s life includes an initial finitely long segment and so establishes the CCH

proponent’s view that God is beginningless even if God’s life includes an initial finitely

long segment.

Brian Leftow ( 2005 , p. 58) comes close to articulating the Modal Condition in a dis-

cussion of Boethius’s conception of divine eternity. According to Leftow, “For all t, a

16
 ↑ Padgett ( 2000 , p. 123) agrees that God necessarily exists, but argues that God freely chose to create the

Cosmos. According to Padgett ( 2000 , p. 122), Duns Scotus showed that a timeless world is metaphysically
possible and that God could have “lived” in such a world. For that reason, even though God necessarily
exists, “the actual world could have been timeless”. There was no time prior to God’s free choice to create
a temporal world and so God eternally and contingently wills that our world be temporal. For that reason,
Padgett ( 2000 , p. 123) writes, “God’s choice [...] to live a certain kind of life – to be dynamic, active, changing
– is the ground of the temporality of the universe”.
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proposition is already true at t just in case it is true at t and would have been true had

time never reached t”. As Leftow explains, a proposition can then be said to already be

true at the first moment of time just in case that proposition would have been true had

time not existed. For that reason, at the first moment of time, we can say that God already

exists because God would have existed even if time had not. And since, at every time,

we should say that God already exists, we should say that God did not begin to exist.

Boethius (of course) differs from either proponents of the Oxford School or of the CCH

in that, for Boethius, God is not temporal. Nonetheless, if God includes both temporal

and atemporal aspects, then, supposing that God’s atemporal aspects suffice for God’s

existence, the Modal Condition arrives at more or less the same analysis of the claim that

God did not begin to exist as Leftow’s Boethius. 

17
 

Recall that Erasmus’s and Craig’s proposals for relating the atemporal portion of God’s

life to the temporal portion of God’s life involved the notion that the atemporal portion is

(somehow) a boundary to the temporal portion. There is another important reason that

the CCH proponent should not describe the atemporal portion as a boundary. According

to CCH proponents, God created the Cosmos. If the life of the Cosmos included a finite

initial period of time, then that finite initial period, itself, has a boundary. If the Cosmos has

a past boundary, why shouldn’t we conclude that the Cosmos, like the CCH proponent’s

God, has an atemporal portion of the Cosmos’s life and was therefore beginningless?

Consider, again, Erasmus’s construction. We can imagine a sequence of instants t1, t2, ...,

tn comprising the history of the Cosmos. If the state of affairs involving the Cosmos at t1

had never changed to the state of affairs involving the Cosmos at t2, then, on a relational

theory of time, the Cosmos would have been atemporal. Thus, through reasoning parallel

to that which Erasmus provides in the case of God, we should conclude that the Cosmos’s

initial state of affairs was a timeless state of affairs. Consequently, if Erasmus’s argument

had been successful, we should say that the Cosmos is beginningless.

17
 ↑ Likewise, Gregory Ganssle ( 2001 , p. 11) writes, “Now I have to admit that it is strange to say that God

was timeless. It sounds as if I am claiming that there was a point in time at which he was timeless. What I
mean to stress here is it is possible for God to exist without time. If past time is finite, and if God brought
time into being, he is independent of time in this way”.
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Likewise, suppose Craig’s analogy between God and singular relativistic space-times

was successful. Craig has elsewhere taken Big Bang cosmology to show that the Cosmos

had a beginning. But if the singular boundary is an atemporal portion of the Cosmos’s

life – as Craig’s analogy seems to suggest – then the Cosmos was beginningless. (Similar

points were previously made in Mullins,  2020 , p. 226 and Kabay,  2009 , p. 121.) Moreover,

consider that having a temporal boundary is likely to itself be a necessary condition for

beginning to exist. Therefore, the claim that either God’s life or the Cosmos did not begin

to exist because God’s life or the Cosmos has a temporal boundary should strike us as

intuitively absurd and implausible. I think there is a clear reason that CCH proponents

say that God was beginningless and that the Cosmos had a beginning. Importantly,

according to CCH proponents, while God is prior to time in the order of being, CCH

proponents deny that the Cosmos is prior to time in the order of being. On their view,

God necessarily exists, so that God would have existed even if time did not, whereas the

Cosmos does not exist at the closest possible worlds without time. 

18
 In other words, CCH

proponents appear to already implicitly endorse the Modal Condition.

Let’s turn to three possible objections. First, note that friends of the CCH typically

endorse the view that the span of past time is finite. If only the temporal phase of God’s

life is actual – so that God has only a temporal life and no atemporal phase – what explains

the fact that time began a finite temporal interval to the past? Here, I think a variety of

proposals can be offered. Suppose, as many friends of the CCH think, the series of past

events grows by successive addition and successive addition cannot produce an actually

infinite collection of past events. In that case, there is no need to postulate some state

that God has prior to time; instead, we need only to postulate that God created an initial

state while existing simultaneous to that initial state and then ensured the initial state was

added to by successive addition. Since CCH proponents believe an infinitude of past time

is metaphysically impossible, CCH proponents should say there is no special explanation

required for the fact that, in worlds that include time, past time is finite. (This is not to deny

18
 ↑ Paul Kabay ( 2009 ) has argued that if God exists at all actual times (that is, God is omnitemporal) and time

began, then God began to exist ex nihilo. However, Kabay assumes that God has no atemporal mode of
being in the actual world. (See Kabay,  2009 , pp. 122–123.) On the view under consideration in this chapter,
God does have an atemporal aspect.
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the CCH proponent’s claim that the beginning of the Cosmos does require explanation.)

Alternatively, if B− or C−theory are true, the entire space-time block exists simpliciter and

our place a finite distance from one boundary in the block is a purely indexical fact. No

particular need for explanation of that indexical fact arises. Thus, whatever metaphysical

view of time turns out to be correct, I don’t see why a finite past would require God to

occupy a timeless state prior to the beginning of time.

The second and third objection are resolved by one solution. For that reason, I will

first discuss the two objections and then discuss their common solution. For the second

objection, suppose that, perhaps for reasons beyond our ken, the world is better if time

exists than if time does not exist. In that case, at any metaphysically possible world w, God

knows w is better if time exists, and so God creates time. Time would necessarily exist,

even though time would ontologically depend upon God. In other words, the Modal

Condition would not be satisfied, even though God would be prior in the order of being

to time.

For the third objection, consider that some members of the Oxford School, e.g., Swin-

burne, depart from the traditional view that God necessarily exists. In that case, we can

either suppose that God does not create time in all possible worlds where God exists or

that God does create time in all possible worlds where God exists. In the former case, the

Modal Condition is satisfied. In the latter case, God would exist at all of the metaphysi-

cally possible worlds where time exists. Once more, the Modal Condition would not be

satisfied, even though God would be prior in the order of being to time.

As I previously said, both the second and third objections can be handled by a common

solution, namely, by generalizing the Modal Condition from including only counterfactual

possibilities to including counterpossibilia. In the case that God necessarily exists and

necessarily creates time, the closest world without time would be a counterpossible world

where God exists but fails to create time. On the other hand, if God contingently exists

but creates time in every world in which God exists, then the closest world without time

would again be a counterpossible world where God exists but fails to create time. In

any case, on the counterpossible version of the Modal Condition, we should still say that,

without time, God would have existed anyway.
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5.3 The Disappearance of Time in Physical Cosmology

The proper conception of the Cosmos’s beginning is likewise an important question for

philosophers of physics. Naturalists are unlikely to find theological arguments appealing,

but, as I argue in this section, naturalists can take away an important lesson and thereby

derive the Modal Condition for their own non-theological purposes. There are live physi-

cal theories, or at least interpretations of physical theories, according to which space-time

is reducible to, functionally realized by, emergent from, or otherwise wholly explicable

in terms of, some more fundamental non-spatiotemporal physical substructure. If so,

whether a given proper part of the Cosmos is spatiotemporal will depend upon whether

that part’s substructure has the appropriate configuration, just as whether some body of

water occupies a gaseous, liquid, or solid state depends upon the configuration of that

body’s molecular constituents (Oriti,  2021 , p. 27). In that case, a spatio-temporal proper

part of the Cosmos might include the Cosmos’s first period of time. Since the Cosmos’s

existence would be prior in the order of being to the existence of time, there is a deeply

intuitive sense in which the Cosmos would lack a beginning – just as a temporal God lacks

a beginning if God is prior to time in the order of being – even if there is a first period of

time in a non-fundamental proper part of the Cosmos. Thus, just as the theologian can

offer an argument for the view that God is beginningless even if God’s life includes an

initial finitely long segment, so, too, the naturalist can say that the Cosmos is beginningless

even if the Cosmos’s history includes an initial, finitely long segment:

P1) If any entity is non-temporal, then that entity did not begin to exist.

P2*) The Cosmos is fundamentally non-temporal.

C1*) So, the Cosmos fundamentally did not begin to exist.

P3) Any entity that fundamentally did not begin to exist did not begin to exist simpliciter.

C2*) Therefore, the Cosmos did not begin to exist simpliciter.

As in the theological case, since this argument is independent of whether the Cosmos’s

history includes an initial, finitely long segment, this argument demonstrates that the
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Cosmos would be beginningless so long as (P2*) is true, that is, so long as the Cosmos is

fundamentally non-temporal.

Why think that (P3) is true? If there is a part (or aspect) p that suffices for the existence

of some entity E and p is beginningless, then E is beginningless. For example, consider

the Cosmos. If there is a part (or aspect) of the Cosmos that suffices for the Cosmos’s

existence, then the Cosmos is beginningless. Recall that I’ve stipulatively defined the

term ‘Cosmos’ to mean the totality of physical reality so that the existence of anything

physical at all suffices for the Cosmos’s existence. For that reason, if any physical entity

at all lacks a beginning, then the Cosmos lacks a beginning.

While the view that physical entities are essentially, and so fundamentally, spatio-

temporal has been a long held dogma, there are several distinct ways in which the view

has been put into doubt by developments in both philosophy of physics and theoretical

physics. Space prohibits me from offering more than a brief survey. Moreover, I do

not claim that a decisive case has been made for the view that space and time are non-

fundamental. 

19
 Several of the arguments that I describe remain controversial and, at

least in this chapter, I do not hope to settle live disputes concerning how to interpret the

physical theories that I discuss. Nonetheless, an analysis of beginning to exist should at

least be consistent with possible future directions of physical inquiry. As such, my aim

in this section is to describe several possible avenues of future inquiry with which an

analysis of beginning to exist should be consistent.

5.3.1 An Analogy for the Non-Fundamentality of Space-time

To ease our way into a discussion of the notion that space-time is not fundamental

to the physical world, let’s begin with an intuitive analogy. Suppose that something

like the scenario depicted in The Matrix were actual, so that what we ordinarily take

to be the external world is, in fact, a computer simulation. Let’s call the people who are

plugged into the Matrix victims. The setS of spatial relationships within the simulation are

19
 ↑ Neither quantum gravity nor quantum foundations are areas in which we have reached the end of

inquiry. Moreover, given the provinciality of the energy scales that are available to us, we might not be able
to probe quantum gravity in sufficient detail to know which quantum gravity theory is correct.
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functionally realized by computers. The set S of spatial relationships between, and within,

the physical components comprising the computers might have nothing at all to do with

S. Consider, too, the set of temporal relationships T between the events experienced by

the victims plugged into the Matrix. Let’s suppose that the computers control the length of

the specious present experienced by the victims, so that the duration between two events

within the Matrix might have little to do with the temporal durations between events as

witnessed by those who have been liberated from the Matrix. In that case, the Matrix

functionally realizes T , even though there is a distinct set of temporal relations T outside

the Matrix. In other words, by functionally realizing S and T , the Matrix functionally

realizes all of the spatio-temporal relations available to the victims. However, we have not

yet envisioned a scenario in which physical reality is fundamentally non-spatio-temporal

because the computers running the Matrix are themselves immersed in space-time.

Let’s take this thought experiment one step further by considering George Berkeley’s

God. In Berkeley’s metaphysics, all of the objects in our ordinary experience exist, but they

are realized within God’s mind. Presumably, Berkeley’s God would have no difficulty

realizing the code running on the computers in the aforementioned thought experiment.

But, unlike the computers in the aforementioned thought experiment, God is not, herself,

immersed in a spatio-temporal world. Instead of altering how the people within God’s

mind experience time by modifying their specious present, we can suppose that God is

metaphysically responsible for time itself. In that case, God functionally realizes all of

the spatio-temporal relations within God’s mind and so functionally realizes space and

time. For David Spurrett and David Papineau ( 1999 ) as well as Barbara Montero ( 2005 ), x

is physical just in case x is not irreducibly mental; thus, if fundamental reality were not a

person, did not instantiate folk psychological predicates, and did not otherwise instantiate

irreducibly mental predicates, then fundamental reality would be purely physical. There-

fore, to construct a view on which physical reality is not fundamentally spatio-temporal,

we need take only one more step beyond Berkeley’s God and suppose that, unlike Berke-

ley’s God, fundamental reality is not a person, does not instantiate folk psychological

predicates, and does not otherwise instantiate irreducibly mental predicates.
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In the following subsection, I will survey how the view that the Cosmos is not funda-

mentally spatio-temporal arises in three contexts: first, in the interpretation of relativistic

space-times; second, in the interpretation of quantum gravity theories; and, third, in the

interpretation of quantum mechanics.

5.3.2 Non-Fundamental Space-time in Three Contexts

Relativistic Space-times

Relativistic space-times have been interpreted as not being fundamentally temporal.

For example, contrary to how General Relativity is often presented today, Einstein offered

an interpretation in which space-time is functionally realized by the gravitational field

(“Space-time does not claim existence on its own, but only as a structural quality of the

field”,  1961 , p. 176). Moreover, on the standard Minkowskian interpretation of relativity,

space and time each disappear and we are left with a kind of union of the two (Minkowski,

 1952 , p. 75). The demand for general covariance in General Relativity is standardly

interpreted to mean that the division of space-time into space and time depends upon

the adoption of a specific reference frame, with an associated set of coordinates, with

the consequence that the division of space-time into space and time lacks metaphysical

significance (Oriti,  2021 , p. 21). If the division of space-time into space and time lacks

metaphysical significance, then we should not interpret space-time points as either spatial

or temporal points; instead, we should interpret space-time points as belonging to a

new category of entities neutral between space and time. And if space-time points are

neutral with respect to either space or time, relativistic space-times are not fundamentally

temporal.

On the view that space-time points are themselves neutral with respect to space or

time, fundamental physical reality would satisfy the Modal Condition. In order to show

that fundamental physical reality would satisfy the modal condition, one needs to show

that in the closest possible worlds without time, the temporally neutral space-time points

would still exist. Since the points are not fundamentally temporal, the points could have
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existed without exemplifying A− or B−relations and so would have existed even if time

had not.

Quantum Gravity

While the view that relativistic space-times are not fundamentally temporal is contro-

versial, live proposals for quantum gravity theories provide still more reason to suspect

that physical reality is not fundamentally temporal. For example, if one applies the

canonical quantization procedure to the Hamiltonian formulation of General Relativity,

one can write down an analogue of the Schrödinger Equation for the universe, called the

Wheeler-DeWitt Equation, whose solution is the wavefunction (or the wavefunctional) of

the universe. In the Wheeler-DeWitt equation, the Hamiltonian annihilates the universal

wavefunction, in turn implying that the universal wavefunction has no time dependence

(Barbour,  1994 ,  1999 ; Butterfield and Isham,  2006 ; Earman,  2002a ; Healey,  2002 ). Con-

sequently, according to the Wheeler-DeWitt equation, the universe occupies a timeless

quantum state. The result is the so-called Problem of Time (e.g., Thébault,  2022 ), wherein

physicists ask whether one can recover time in the appropriate limit from a timeless quan-

tum state or if one should give up the approach leading to the Wheeler-DeWitt Equation

altogether. While the Wheeler-DeWitt equation remains controversial, one accepted solu-

tion is to say that time should be replaced by a parameter internal to the Cosmos and that

can play time’s functional role (Barbour,  1994 ; Butterfield and Isham,  2006 ; Healey,  2002 ;

Thébault,  2022 ; Oriti,  2021 , p. 22). As Carlo Rovelli describes, “An accepted interpretation

of [the disappearance of time] is that physical time has to be identified with one of the

internal degrees of freedom of the theory itself (internal time)” ( 1991 , p. 442). If time should

be recovered as a parameter internal to the Cosmos, then the Cosmos is not fundamentally

temporal.

A number of approaches to quantum gravity exacerbate the problem still further (Bi-

han,  2017a ,  2017b ,  2019 ,  2020 ; Butterfield and Isham,  2006 ; Healey,  2002 ,  2021 ; Huggett,

 2022 ; Huggett and Wüthrich,  2013 ,  2018 ; Oriti,  2014 ,  2020 ,  2021 ; Rovelli,  2020 ; Wilson,

 2021 ). For example, some approaches to quantum gravity replace the continua (space-time

101



and fields) available in either classical General Relativity or in a quantized gravitational

field with new fundamental degrees of freedom that are not spatio-temporal in any tra-

ditional sense (Oriti,  2021 , pp. 23–27). As Oriti writes, “The main point should be clear:

in quantum gravity, the fundamental degrees of freedom are not continuum fields and

spacetime dissolves into pre-geometric, non-spatiotemporal entities, from which space,

time, and geometry have to emerge in some approximation” (Oriti,  2021 , p. 23).

As an example, consider Loop Quantum Gravity (LQG). LQG roughly tells us that

space-time structure is underwritten by a discrete network of spins. An initial temptation

is to think that LQG merely tells us that space-time has a discrete structure instead of

the continuous structure postulated by General Relativity. If so, LQG does not deny that

physical reality is fundamentally spatio-temporal. This initial temptation is at least not

obviously correct for two reasons, to which I now turn.

First, I turn to disordered locality, as originally discussed in Markopoulou and Smolin,

 2007 . Suppose that the discrete structure found in LQG is a discrete space-time struc-

ture. In that case, the spatio-temporal relationships found in General Relativity might

be expected to correspond to network structure in a straightforward way. For example,

two objects that are contiguous in the General Relativistic description might be expected

to sit at adjacent nodes in the underlying network structure or, at the very least, would

be “closer” together in the network than objects that are spatio-temporally separated.

However, LQG postulates no systematic correspondence between the spatio-temporal

ordering of events and the adjacency relations in the underlying spin network. Some

adjacent nodes correspond to space-time points separated by large spatio-temporal dis-

tances. For that reason, Le Bihan ( 2020 , p. 12) has argued that LQG leads to a new form of

eternalism (“atemporal eternalism”), on which the structure underlying space-time lacks

the formal properties of the space-time block and, consequently, should not be understood

as a space-time block. 

20
 This argument is not decisive; consider that, in the Matrix example

I previously gave, the physical world outside the Matrix’s structure might not straightfor-

wardly correspondence to the spatio-temporal structure of the Matrix, even though the

20
 ↑ Nick Huggett ( 2022 ) has similarly argued that Group Field Theory postulates a structure underlying

space-time with an altogether different formal structure from that of space-time.
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external world might still be spatio-temporal. However, the argument is suggestive in

that if the Cosmos lacked spatio-temporal structure, we would expect the fundamental

formal structure of the world to substantially differ from that of the effective space-time

available to ordinary empirical observations.

In addition to the fact that we might have expected disordered locality (or something

close to it) if the Cosmos fundamentally lacked spatio-temporal structure, if disordered

locality did turn out to be correct, then we would lose much of the justification we would

otherwise have had for thinking that the Cosmos is irreducibly ordered according to

either an A-series or a B-series and so much of the justification we would have otherwise

had for thinking that the Cosmos is fundamentally temporal. Consider how A-theory is

typically defended. A-theory is typically defended by appealing to our phenomenological

experience of time. If loop quantum gravity is true, and so disordered locality is true,

then the Cosmos is not fundamentally structured according to the A-series found in our

phenomenological experience. While the possibility might remain that the Cosmos is

fundamentally structured according to some other A-series, I have difficulty seeing how

one could justify the view that the Cosmos is fundamentally structured according to an

A-series. Likewise, consider how B-theory is typically understood, e.g., as a series of

moments related one to another by B-relations. If what we ordinarily take to be moments

ordered by B-relations turn out not to be reflected in the Cosmos’s fundamental structure,

as would turn out to be the case if disordered locality turns out to be correct, then we lose

much of the justification we might have otherwise had for thinking that the Cosmos is

fundamentally organized according to a B-series. We would be left with a view according

to which the B-series we are familiar with is a derivative feature of our world and an open

question as to whether fundamental reality is structured according to some other B-series.

I now turn to one last reason one might think loop quantum gravity is not funda-

mentally spatio-temporal. This last reason draws on the fact that loop quantum gravity

is a quantum mechanical theory. In virtue of being a quantum mechanical theory, the

spin network exists in a superposition state, so that, unlike classical space-time, the spin

network does not have a definite or unique structure. Nonetheless, even though the

network doesn’t have a definite or unique structure in virtue of being in a superposi-
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tion state, the wavefunction describing the superposition state does have a definite and

unique structure. This suggests (again without definitively establishing) that the wave-

function is the fundamental object and not the spin network. Given that a variety of

authors (as discussed below) have argued that we should understand the wavefunction

as a non-spatio-temporal object, the object fundamental to loop quantum gravity might

be understood as non-spatio-temporal. Whether this is the correct way to interpret the

wavefunction remains a live dispute.

In quantum gravity theories where space-time is not fundamental, space-time can be

recovered only by considering a sufficiently large collection of nodes, that is, by consid-

ering the network’s hydrodynamic limit. Since space-time appears in the hydrodynamic

limit only when the fundamental non-spatiotemporal degrees of freedom are arranged

in an appropriate configuration, there may have been a physical process, termed geomet-

rogenesis (Oriti,  2021 , pp. 29–32; also see Oriti,  2014 ), whereby the early universe (or the

Cosmos) “transformed” from a non-spatiotemporal phase into a spatiotemporal phase.

Nonetheless, such a process is conceptually problematic because the non-spatiotemporal

phase, qua non-spatiotemporal, cannot stand in the ‘before’ relation to the spatiotemporal

phase. However, we may be able to replace our usual notion of time with a kind of

“proto-time” and thereby allow “proto-temporal” evolution from the non-spatiotemporal

phase into the spatiotemporal phase (Oriti,  2021 , p. 31).

Consider the following toy model for geometrogenesis. Suppose that a cosmological

model can be parametrized by some parameter T such that, for values of T ≥ T0, T can be

interpreted as time, but, for values of T < T0, T should not be thought of as time, since the

sub-spatiotemporal degrees of freedom do not “coalesce” in the way required for space-

time to emerge in the hydrodynamic limit. Candidates for such a parameter include the

universe’s volume or the scale factor (Oriti,  2021 , p. 32). T should not be thought of as time

because T cannot be globally interpreted as time. There is a domain, i.e., T ≥ T0, where T

plays the functional role of time in our physical theories. Moreover, if one is committed

to B-theory, one could postulate that, for T ≥ T0, event A is before event B just in case

T(A) < T(B). However, when we trace T “backwards” beyond T0, we encounter a non-

spatiotemporal domain where the ordering of the values of T should not be interpreted
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to correspond to B-relations, but can perhaps be interpreted as proto-B-relations, that is,

as ordering relations that are (somehow) more fundamental than B-relations. In some

sense, this is analogous to the theologian’s thought that there is a kind of conceptual or

explanatory priority in God’s mind prior to Creation, even though there might not be time

prior to Creation. In any case, even though T0 would be the beginning of time, there is a

clear intuition according to which T0 would not be the beginning of the Cosmos. 

21
 

One might object at this point that I’ve previously rejected a similar model of God.

I rejected the possibility that there is both an atemporal phase and a temporal phase of

God’s life on the basis that the continuity conditions between the two phases of God’s

life are utterly mysterious. God cannot perdure or endure from the atemporal phase to

the temporal phase, the atemporal phase cannot pass away or into the temporal phase,

and the atemporal phase cannot be before the temporal phase. Why shouldn’t we reject

the possibility that the Cosmos has two phases in its life for the same reasons? First,

note that many (perhaps most or all) of the proponents of the CCH are committed to the

A-theory of time. The view that space-time is not fundamental sits uncomfortably with

A-theory so that proponents of the view that space-time is not fundamental are much

more likely to be B- or C-theorists. On B- and C-theory, there is no temporal passage and

so nothing passes away or into anything else. Thus, for B- and C-theorists, there is no

problem for the view that the non-spatio-temporal phase does not pass away or into the

spatio-temporal phase. 

22
 Moreover, while we might metaphorically speak about the life

of the Cosmos, the Cosmos does not have a life in the sense that God would have a life.

For that reason, the Cosmos’s life does not need to be unified in the sense that God’s life
21

 ↑ When this chapter was submitted as an article to Erkenntnis, an anonymous reviewer objected to my
toy model of geometrogenesis. As the reviewer notes, one reason that one might think that T cannot be
interpreted as a time parameter for T < T0 is that the state of affairs such that T < T0 does not satisfy the
Einstein Field Equations. However, T < T0 might still be interpretable as, for example, a B−series and so
is interpretable as a time parameter after all. Supposing that the reviewer’s objection suffices for showing
that T < T0 can be interpreted as a temporal series, the reviewer’s objection does not suffice for showing
that T < T0 should be interpreted as a temporal series. For my purposes in this chapter, I need only to show
that the emergence of time from metaphysically prior, but not temporally prior, non-temporal phenomenon
is a live option that would be premature to rule out from the arm chair; again, I am not attempting to show
which interpretation of loop quantum gravity is the correct interpretation. Instead, I am summarizing a live
option that has been discussed in the literature.
22

 ↑ See the related set of remarks Craig makes in his ( 1998 , pp. 246–248).
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needs to be unified in order to be the life of numerically one deity. Furthermore, consider

that, in Galilean and relativistic space-times, space-time points do not perdure or endure. 

23
 

There seems to be a category mistake in supposing that space-time, itself, either endures

or perdures. If there is a category mistake involved in the view that space-time, itself,

either endures or perdures, then there is a category mistake involved in the view that the

Cosmos endures or perdures. If there is a category mistake involved in the view that the

Cosmos endures or perdures, there is no demand for the Cosmos to endure or perdure

through geometrogenesis.

When this chapter was submitted as an article to Erkenntnis, an anonymous reviewer

raised an objection to my use of the quantum gravity proposals that I considered in

this section. According to the reviewer, the quantum gravity literature considers space-

time non-fundamental because the fundamental entities postulated by quantum gravity

theories (e.g., strings, causal sets, or whatever) do not satisfy the Einstein Field Equations.

For example, when the claim is made that space-time is recovered only as part of a

hydrodynamic limit, part of what is being claimed is that the Einstein Field Equations

are recovered only as part of a hydrodynamic limit. However, in a discussion of the

metaphysics of time, one might argue that we should allow that time has wider application

than the Einstein Field Equations. For example, couldn’t the A− or B−theory of time be

true even if the Einstein Field Equations do not apply? At least two replies can be offered

to the reviewer’s objection.

First, I do not claim that any specific quantum gravity theory is true or that any specific

interpretation of any particular quantum gravity theory is the correct interpretation. There

may be quantum gravity theories, e.g., causal set theory, that should be interpreted in A-

theoretic terms. For my purposes in this chapter, I claim only that the non-fundamentality

of time remains a live option that should not be ruled out from the arm chair. So long

as philosophers of physics are seriously considering the possibility that physical reality

is not fundamentally temporal, we need an analysis of the notion that the Cosmos had a

23
 ↑ If a space-time point did endure or perdure, then an object could be at absolute rest by occupying the

same space-time point at successive times. Objects cannot be at absolute rest in Galilean or relativistic
space-times. Therefore, space-time points do not endure or perdure in Galilean or relativistic space-times.
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beginning consistent with the possibility that the Cosmos is not fundamentally temporal.

Second, while the reviewer might be correct to say that the reason for thinking the entities

fundamental to some specific quantum gravity theory are not spatio-temporal involves

the failure of the Einstein Field Equations, there are quantum gravity theories whose

fundamental entities should plausibly be thought of as non-temporal for other reasons.

For example, the failure of the Einstein Field Equations does not appear among the

reasons Baptiste Le Bihan (  2020 ) surveyed for thinking that the entities fundamental to

loop quantum gravity or string theory are non-temporal.

Quantum Interpretations

In addition to relativity and quantum gravity, quantum mechanics has sometimes been

claimed to show that space and time are not fundamental. Some of the revolutionaries

who first developed quantum mechanics, e.g., Pascual Jordan and Max Born, thought

that quantum mechanics had revealed that microphysical entities are not spatiotemporal

(Capellmann,  2021 ; Kragh,  1996 , p. 47; Luminet,  2011 , pp. 2915–2918). In turn, the

notion that microphysical entities are not spatiotemporal inspired Georges Lemaître in

the development of an early version of the big bang theory in which the universe originated

in a timeless entity (the primordial “atom”) (Lemaître,  1931 ; Kragh,  1996 , p. 47; Luminet,

 2011 ).

Several contemporary approaches to the foundations of quantum mechanics likewise

suggest that space and time are not fundamental. For example, wavefunction monism is the

view that all that ultimately exists is the universal wavefunction. (Some wavefunction

monists are additionally committed to a “marvelous point” guided by the universal

wavefunction or to the “space” inhabited by the wavefunction, though that space should

not be thought of as space-time). We can distinguish at least three versions of the view. In

one version of the view, defended by David Albert ( 1996 ,  2013 ,  2015 ,  2019a ,  2019b ), Barry

Loewer ( 1996 ), Alyssa Ney ( 2012 ,  2013 ,  2020 ,  2021 ), and Jill North ( 2013 ), the universal

wavefunction is a field either defined on configuration space or on some more exotic state

space (Ney,  2020 ; also see chapter 4 in Ney,  2021 ). On this view, the wavefunction is
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typically thought of as fundamentally temporal and to occupy some kind of space, even

if not the space of our ordinary experience. However, other versions of wavefunction

monism entail that the universal wavefunction is not temporal. For David Bohm ( 1980 ,

p. 211), the universal wavefunction is again a field defined on some high dimensional state

space but time results as a consequence of projecting to a lower dimensional space. For

Julian Barbour (  1999 ), the universal wavefunction is a field defined on superspace, that is,

the space of possible configurations of space-time, and with a distribution and amplitude

defined by the Wheeler DeWitt Equation. For Sean Carroll ( 2019 ,  2022 ) and co-author

Ashmeet Singh (  2019 ), the universal wavefunction is a state vector in Hilbert Space. For

Bohm, Barbour, Carroll, and Singh, the universal wavefunction is not a temporal object.

If all that ultimately exists is the universal wavefunction, and the universal wavefunction

is not temporal, then space-time is reducible to, functionally realized by, emergent from,

or otherwise wholly and asymmetrically explained by the universal wavefunction.

Thus, there are a variety of live research programs according to which space-time

is not fundamental to the Cosmos and is instead asymmetrically explicable in terms of

some non-spatiotemporal structure. The non-spatiotemporal structure would be timeless,

just as the molecules that comprise liquids lack the property of liquidity. Just as God is

beginningless if God stands prior to time in the order of being, so, too, the Cosmos is

beginningless if the Cosmos stands prior to time in the order of being.

5.3.3 Physical Cosmology and the Modal Condition

Recall the lesson that the naturalist can take from the theological discussion in section

 5.2 . Timeless entities are beginningless. So, fundamentally timeless entities are funda-

mentally beginningless. To reiterate, consider an entity A that is fundamentally timeless.

In that case, there is an aspect of A – that is, the fundamental aspect – that is timeless. There

could be another aspect of A – that is, a non-fundamental aspect – that is not timeless.

Moreover, suppose that the existence of the fundamental aspect suffices for the existence

of A but A could have existed without the non-fundamental aspect. Supposing that the

non-fundamental aspect of A is in time in the actual world, A would still exist at one or
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more of the closest possible worlds lacking time. Because the fundamental aspect of A is

beginningless, and the existence of the fundamental aspect suffices for A’s existence, A is

beginningless, even if the non-fundamental aspect of A existed for an initial finitely long

period of time. Note that the non-fundamental aspect could have had a beginning, but a

beginning of the non-fundamental aspect of A is not the beginning of A simpliciter.

Recall that for God to be beginningless required ¬T � ∃x.x = God. So, for A to

lack a beginning even though A has an initial finitely long period of time requires that

¬T � ∃x.x = A, that is, had time not existed, A might have existed. Let C represent

the statement that the Cosmos exists. Thus, the statement that had time not existed, the

Cosmos might have existed anyway, is represented as¬T� C. We want a necessary (but

not sufficient) condition for the Cosmos to have a beginning. To derive such a condition,

we should negate ¬T� C. The negation of ¬T� C is equivalent to ¬T� ¬C. So, the

Cosmos had a beginning only if

At all of the closest possible worlds where time does not exist, the Cosmos does not

exist.

Unfortunately, this criterion has not been given serious enough attention in philosophical

arguments for the beginning of the Cosmos, such as those that I discussed in chapter  2 ,

where authors swiftly move from the proposition that the Cosmos has a finite past to the

conclusion that the Cosmos began to exist. Likewise, the arguments that I considered in

chapter  3 swiftly moved from the view that the past history of the universe has a singular

boundary and is therefore finite to the conclusion that the Cosmos began to exist. Or

consider that, as Norman Kretzmann ( 1985 ), William E. Carroll ( 2007 ), and Jon McGinnis

( 2015 ) point out, Scholastic philosophers assumed a conception of beginning to exist that

resembled beginning-to-exist-1. The Scholastic debate concerned whether God’s creation

of the Cosmos was consistent with the Aristotelian view that the Cosmos had an infinite

(and so, on their view, beginningless) past. Scholastics assumed that either the Cosmos

had a beginning – in which case they assumed the past must be finite – or else the Cosmos

was beginningless – in which case they assumed the past must be infinite. A moment’s

reflection shows that both friends of the CCH and the Scholastics are incorrect. Supposing
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that one could show merely that the Cosmos had a finite past, one could not infer that the

Cosmos had a beginning; one must also show (among other criteria) that the Cosmos is

fundamentally temporal and therefore show that the Cosmos satisfies the aforementioned

Modal Condition. We have then a general reason for rejecting all of the versions of the

KCA that have thus far been offered in the literature. If proponents of the KCA want to

establish that the Cosmos began to exist, they will have to do much more than they have

done thus far.

5.4 Summary

In section II, we started with the tensed conception of beginning to exist. I rejected

the tensed conception because it was desirable to identify a conception of beginning

consistent with B-theory. We then turned to the at-at conception of beginning, which I

rejected because the at-at conception requires a time before the Cosmos’s existence. On the

assumption that time is a physical phenomenon, time began with the Cosmos, whereas

if, as the Oxford School supposes, time is non-physical, then there is at least a moment

(or interval) before which the Cosmos did not exist. In this section, we embarked on

developing a more sophisticated conception of the Cosmos’s beginning. By examining a

debate concerning God’s relationship to time, I developed the intuition that the Cosmos

had a beginning only if a specific modal condition were fulfilled. This intuition turns

out to be useful in understanding a debate concerning the philosophical foundations

of various physical theories that claim that time is (somehow) not fundamental to the

Cosmos. Finally, the Modal Condition was articulated by using the standard Lewis-

Stalnaker semantics for counterfactuals.
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6. THE DIRECTION CONDITION

Having established the Modal Condition, i.e., that the Cosmos has a beginning only if, at

all of the closest possible worlds where time does not exist, the Cosmos does not exist,

I turn to the Direction Condition, i.e., that the Cosmos began to exist only if the Cosmos

has a global direction of time. As a first, rough pass, the Cosmos has a global direction of

time just in case the entire Cosmos “shares” a direction of time. In this chapter, I borrow

the chronogeometric conditions for a global direction of time previously defended by

Geoffrey Matthews ( 1979 , p. 84) and Mario Castagnino, Olimpia Lombardi, and Luis Lara

( 2003 ). As they explain – and as I will unpack below – spacetime S has a global direction

of time just in case (i) a unique temporal orientation – or, e.g., past-to-future direction –

can be defined at each point of S, that is, S is temporally orientable, (ii) for any point p in S,

there is a locally defined direction of time at p, and (iii) for all pairs of points p and q in S,

the future (past) direction defined at p agrees with the future (past) direction defined at q.

Some readers may be perplexed by the idea that time could lack a global direction. For

that reason, I will spend some time unpacking a few senses in which time could lack a

global direction. If our Cosmos began, then the beginning of the Cosmos must be prior to

all non-initial space-time points that the Cosmos includes. In order for the beginning to be

prior to all non-initial space-time points, all non-initial space-time points must agree that

the putative beginning is located to their past. And in order for all non-initial space-time

points to agree that the putative beginning is located to their past, all non-initial space-

time points must agree on the direction of time. There are two ways for space-time to

lack a global direction of time. First, space-time could fail to have a global direction of

time by failing to be temporally orientable. Second, given that space-time is temporally

orientable, space-time could fail to have a global direction of time if the direction of time

varied from one space-time region to another. I will consider each of these conditions

in turn. However, in order to discuss either notion, I need to first put a bit of formal

machinery on to the table.

There are three relations defined between any two points p and q in a relativistic space-

time and that should be thought of in terms of the line, or the closest analogue to a line,
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connecting the two points. 

1
 If light can travel from p to q or vice versa, we say that p and q

are light-like related. If an object, traveling slower than light, can travel from p to q, we say

that p and q are time-like related. And if p and q are neither time-like nor light-like related,

we say that p and q are space-like related. Points that are time-like or light-like related

to p can be divided into two classes. As light falls in on a point, the light forms a sphere

whose radius contracts with time. A cross section of a given sphere is a circle, so that

the process of light falling in on a point forms a cone when represented using successive

cross-sections. On the standard Minkowskian interpretation of relativity, the points that

are p’s past are the points that can transmit a signal to p; thus, the points that in p’s past

are said to be in p’s past light cone. Likewise, the light originating at p forms concentric

circles and forms a cone when represented using successive cross-sections. Thus, since the

points that are in p’s future are the points to which p can transmit a signal, the points that

fall in p’s future are said to be in p’s future light cone. The points that are space-like related

to p are said to be in p’s absolute elsewhere and, at least on the standard Minkowskian

interpretation, are not absolutely to the future of, to the past of, or simultaneous with p.

For that reason, we can say that there are no absolute temporal relations between p and

any points that are space-like related to p, that is, there are no temporal relations between

p and any of the points that do no fall into p’s past or future light cones. At p, we can

define future pointing, past pointing, and space-like pointing vectors. For example, a

future pointing vector at p points into the future light cone of p.

For readers who may not be familiar with relativistic space-times, I will stress that two

points being space-like related is disanalogous with two points being spatially related to

each other in space in a pre-relativistic conception of space-time. For example, at one

point of time in my life, all of the moments in the entire life of some other person, all 95

years from birth to death, could be space-like related to me.  

2
 Moreover, at a given point

of time in my life, in the reference frame that I occupy, the space-time points that are

simultaneous relative to my reference frame – and so might be said to be co-exist with me

1
 ↑ In Euclidean geometry, we can sensibly define a line as the shortest path between two points. In a

relativistic space-time, the closest analogue to a line – that is, a geodesic – turns out to be the longest path
between the two points.
2

 ↑ This example previously appears in Gilmore et al.,  2016 , p. 108.
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in space – are only a subset of the points that are space-like related to me. This is another

reason for thinking that, as I discussed in chapter  4 , relativistic four-dimensionalism is

not the four-dimensionalism from metaphysics textbooks.

The future direction of time at a given space-time point p can be represented by a

vector that points into p’s future light cone. In order to compare the direction of time at

one space-time point with the direction of time at another space-time point, we need a way

to “move” a future-pointing vector (for example) from one space-time point to another.

Mathematicians originally developed the notion that a vector could be assigned to the

points of a space for flat, Euclidean spaces. In order to generalize the notion to spaces

with arbitrary curvature, mathematicians imagine that we assign a flat space tangent to

each point, called the tangent space. For example, ancient peoples thought that the Earth

was flat. Upon discovering that the Earth is round, we can still construct a plane – the

tangent plane – that approximates the Earth’s surface at any given point on the Earth’s

surface.

The trouble is now that vectors at distinct points occupy distinct tangent spaces. In

order to compare the vectors at one point with the vectors at another point, we need a

mathematical operation that translates from one tangent space to another. The translation

is easier to perform when the two tangent spaces correspond to points that are located

closer together. Thus, to translate between the tangent spaces at two arbitrary points,

mathematicians imagine a continuous series of translations, from one tangent space to the

next, along a path. This operation – called parallel transport – can be thought of as moving

a vector through a space, while keeping the vector’s orientation fixed, so that the vector

can be compared to a vector at some other point.

Having put some of the requisite technical machinery on to the table, I now proceed

to a discussion of the two conditions for a space-time to have a global direction of time.

6.1 Temporally Orientable Space-times

As I’ve said, the first way that a space-time may lack a global direction of time would be

if the space-time failed to be temporally orientable. Orientable surfaces have the feature
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that we can objectively distinguish the perpendicular direction from the surface. For

example, the plane is an orientable surface. Given a piece of paper lying flat on a desk,

we can objectively distinguish the direction from the paper’s surface to the ceiling and the

direction from the paper’s surface to the floor. To see this, imagine parallel transporting

a vector pointing towards the ceiling around the paper’s surface. Without crossing the

paper’s edge – an operation that is not mathematically allowed – parallel transport cannot

be used to turn a vector pointing towards the ceiling into a vector pointing towards the

floor.

Suppose that we take a one foot long piece of ribbon and connect both ends of the

ribbon without twisting the ribbon. The resulting surface – a cylinder without top or

bottom – is another orientable surface. Construct a vector v⃗ pointing perpendicular from

the ribbon’s outer surface. Parallel transport v⃗ around the ribbon without crossing the

ribbon’s edge and we eventually return v⃗ to v⃗’s starting location. Upon returning, v⃗ will be

restored to v⃗’s original orientation. Without crossing the ribbon’s edge, there is no way to

turn an outward pointing vector into an inward pointing vector. To put the point another

way, a surface is orientable just in case parallel transport around a closed loop will never

reverse the orientation of the vector.

Now consider the surface formed if, instead of gluing the two ends of the ribbon

together in order to form a cylinder, we first rotate one end by π radians (180◦) before

connecting the two ends. The resulting geometrical object is a non-orientable surface

mathematicians call a Möbius Strip. Notice that the π radians twist connected the ribbon’s

outside surface to the ribbon’s inner surface. When we move an outward pointing vector

around the ribbon, we will find that the vector eventually points inward, despite the fact

that the vector was never made to move over an edge. In fact, if an outward pointing

vector is made to “orbit” the surface of the ribbon in a fixed direction, we would find that

the first time the vector returns to its starting location, the vector is inward pointing. By

parallel transporting a vector around a closed loop, we were able to reverse the vector’s
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orientation. For that reason, we cannot identify an objective orientation for the surface of

a Möbius Strip, that is, Möbius Strips are non-orientable surfaces. 

3
 

We can ask an analogous question about the temporal orientability of relativistic space-

times. Suppose that when we parallel transport a future directed vector around a closed

loop in four-dimensions and return the vector to the point at which the vector started, the

vector becomes past directed. In that case, we would not be able to objectively identify

the past-to-future direction at a given point just as we cannot objectively distinguish the

orientation of a Möbius Strip. Some solutions to the Einstein Field Equations are not

temporally orientable. Although I am not sure how to metaphysically interpret non-

temporally orientable space-times, I think that any space-time with a beginning must be

temporally orientable.

That a space-time S is temporally orientable implies only that S is logically consistent

with defining an absolute past-to-future direction at every point of the space-time. But

logical consistency is not sufficient for showing that there is an objective past-to-future

direction at every point. If we knew which light cone was the past light cone and which

was the future light cone at any given space-time point p in S, then we would know

the past-to-future direction at p. Given the past-to-future direction at p, we could then

project the past-to-future direction to all other space-time points in S via parallel transport.

However, the chronogeometry specified by General Relativity is symmetric with respect

to the direction of time, so that the relativistic description does not suffice for telling us

which light cone we should label as past and which light cone we should label as future.

3
 ↑ There are some additional clarifications that can be made to distinguish the examples that I’ve offered

and relativistic space-times. We can distinguish between two distinct kinds of curvature, i.e., intrinsic and
extrinsic curvature. Even though the ribbon is a two-dimensional object, we can “bend” the ribbon in
three-dimensional space because we’ve embedded the ribbon into a three-dimensional space. This sort
of curvature – which requires a higher dimensional embedding space – is extrinsic curvature. In the
absence of intrinsic curvature, extrinsic curvature never deforms the contents of a surface. For example,
if a pattern is printed on the ribbon but the ribbon is made of, e.g., cardboard, then bending the ribbon
into a cylinder or a Möbius Strip leaves the pattern unaltered. On the other hand, intrinsic curvature does
deform the contents of a surface. For example, if the ribbon were made of rubber, then we could deform a
pattern printed on the ribbon’s surface by stretching the ribbon. While extrinsic curvature requires a higher
dimensional embedding space, intrinsic curvature can be defined without a higher dimensional embedding
space. In General Relativity, the curvature responsible for gravitation is intrinsic curvature. Likewise,
parallel transport can be defined without reference to a higher dimensional embedding space.
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In order to describe an objective direction of time, we need to add additional structure to

the relativistic description.

Suppose that we do add whatever additional structure suffices for specifying the past-

to-future direction at p. And now suppose that q is a space-time point space-like related to

p. If the past-to-future direction at p agrees with the past-to-future direction at q, then, to

find the past-to-future direction at q, we need only to parallel transport a future directed

time-like vector from p to q. However, as we will see in the next section, nothing I’ve

said so far guarantees that the past-to-future direction at p agrees with the past-to-future

direction at q. Although temporal orientability guarantees that parallel transport around

a closed loop would never turn a future directed time-like vector into a past directed time-

like vector, temporal orientability is not sufficient for the future direction at p to agree with

the future direction at q. In order to guarantee that p and q – and all other points in the

space-time – agree on the absolute direction of time, we need to fix the temporal direction

over the entire space-time.

6.2 Fixed Temporal Direction

If the Cosmos began, then the Cosmos’s beginning is prior to all non-initial events

in our Cosmos’s history. A number of authors have argued that fundamental physics

does not provide the distinction between past and future directions found in the macro-

physical world (Albert,  2000 ,  2017 ; S. Carroll,  2010 ; Farr,  2020 ; Farr and Reutlinger,  2013 ;

Loewer,  2012a ,  2012b ,  2020 ; Price,  1997 ). If past and future directions are not fundamen-

tally distinguished, then no event is fundamentally prior to all other events. Moreover,

many physicists and philosophers of physics have argued that, even though there is no

microphysical (or fundamental) direction of time, we can recover a macrophysical (or

non-fundamental) direction of time. Macrophysical processes that happen only in one

direction, e.g., the diffusion of gases into a room, involve an increase in entropy. Given

two times at which the entropy differs, we can define an entropy gradient between the

two times. Perhaps a local macrophysical direction of time should be understood in terms

of or should share a reductive explanation with the local entropy gradient. But, if so, since
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the entropy gradient can change from one region of the Cosmos to another, perhaps there

is no globally definable direction of time. Without a globally definable direction of time,

no event can be macrophysically (or non-fundamentally) prior to all other events. In the

nineteenth century, Ludwig Boltzmann imagined that the entropy has fluctuated up and

down over time and fluctuates from one region of space to another:

There must then be in the universe, which is in thermal equilibrium as a whole

and therefore dead, here and there relatively small regions of the size of our

galaxy (which we call worlds), which during the relatively short time of eons

deviate significantly from thermal equilibrium. [...] For the universe as a

whole the two directions of time are indistinguishable, just as in space there is

no up or down. However, just as at a certain place on the earth’s surface we

can call “down” the direction toward the centre of the earth, so a living being

that finds itself in such a world at a certain period of time can define the time

direction as going from less probable to more probable states (the former will

be the “past” and the latter the “future”) and by virtue of this definition he will

find that this small region, isolated from the rest of the universe, is “initially”

always in an improbable state (Boltzmann,  2003 , p. 416).

According to Boltzmann, we distinguish past/future directions in our region of space and

during the time interval that we inhabit only because our region of space, over the relevant

time interval, includes a consistent entropy gradient. For Boltzmann, we identify a specific

direction as the past only because the entropy is low in that direction. This suggests that

there is a temporal direction (the past) in which the entropy is a minimum. Creatures

who live on the other side of the entropy minimum may regard our past direction as their

future direction. Although there is a loose sense in which we might regard the minimum

as the Cosmos’s “beginning”, the entropy minimum would not fundamentally be to the

past of any other time and would not have a distinguished status. In that case, we should

not say that the Cosmos truly began.

By way of illustration, consider a two-dimensional space-time. We can represent a two

dimensional space-time with a piece of graph paper. Suppose, moreover, that there are
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local features of the space-time such that (for whatever reason) time could consistently

point in the direction up the page. That is, one possible configuration of the space-time,

and the matter-energy populating space-time, is such that future directed vectors can be

drawn pointing from each point on the paper to the top of the page. Since all of the

vectors can be drawn pointing to the top of the page, our two-dimensional space-time

is temporally orientable and admits of a globally definable direction of time. However,

merely admitting a global direction of time – that is, mere consistency with a global direction

of time – is no guarantee that there is a global direction of time. If the direction of time

varies from one region to another – as in Boltzmann’s cosmology – then the direction in

which the vectors point will smoothly vary from one point on the graph paper to another.

To ensure that all points in the space-time agree on the direction of time, consider any

arbitrary future (past) directed vector u⃗ at p, whose direction is defined by the absolute

direction of time p, parallel transport u⃗ to some point q, and compare u⃗ to v⃗, a future (past)

directed vector at q whose direction is determined by the absolute direction of time at q.

If u⃗ and v⃗ agree on temporal orientation for all future (past) directed vectors for all pairs

of points in the space-time, then the space-time has a global direction of time.

6.3 Summary

In this section, I articulated the Direction Condition, i.e., that the Cosmos began only if

the Cosmos has a global direction of time. A beginning requires a global direction of time

because, intuitively, the Cosmos’s beginning should be to the past of all non-initial space-

time points. In turn, a space-time S has a global direction of time if and only if S satisfies

three conditions (Matthews,  1979 , p. 84, Castagnino et al.,  2003 ). First, S is temporally

orientable. Second, for any space-time point p, there is a locally defined direction of time

at p. Third, for all pairs of points p and q in the space-time, the future (past) direction

defined at p agrees with the future (past) direction defined at q.
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7. THE BOUNDARY CONDITION

I turn to the third of the conditions for the Cosmos to have a beginning, i.e., the Boundary

Condition. Intuitively, for the Cosmos to have a beginning, the Cosmos must have a past

temporal boundary, such that the Cosmos did not exist before the boundary. There are

two ways in which the Cosmos could be said to have a past boundary and so the Bound-

ary Condition is defined disjunctively: either there is a closed boundary to the past of

non-initial space-time points (the topological conception) or there is an initial objectively

finite portion of the Cosmos’s history (the metrical conception). Although the distinc-

tion between the topological conception and the metrical conception of a past temporal

boundary was introduced by J. Brian Pitts ( 2008 ), I will argue that Pitts’s distinction is

not completely adequate. In this chapter, I develop a more sophisticated conception that

improves upon Pitts’s. Let’s turn to examining the two conceptions, beginning with the

topological conception.

7.1 The Topological Conception

Before motivating the topological conception, I need to first develop the notions of

closed, open, and clopen sets. Here, I will forego providing a formal definition of the three

notions in favor of providing some general intuitions. Consider a segment of the real line

from −1 to 1. The segment is closed just in case the segment includes the points −1 and

1. The segment is open just in case the segment does not include −1 and 1. Lastly, the

segment is clopen just in case the segment includes one of the end points but not the other.

The complement of any open set is closed. The union of a collection of open sets is open.

Now consider a point p in an n-dimensional space S. If there is some finite distance from p

we can move in any direction while remaining within S, then p is not a point on a closed

boundary. For example, consider a point on the left edge of a piece of paper. We say that

the point is on the boundary of the piece of paper because we cannot move any distance

further left while remaining on the piece of paper. Contrast the point on the left edge with

a point q a distance ε to the right; no matter how small ε might be, so long as ε > 0, we
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can move ε to the right or the left of q and remain within the piece of paper.  

1
 Moreover,

the notion of closed and open sets, and the related notions of closed and open boundaries,

can be rigorously developed without appealing to any metrical notions, so that we can

define the notion of a closed boundary without referring to the length of any curve.

In order to motivate the topological conception of a beginning of the Cosmos, let’s

turn to a consideration of a view in the metaphysical foundations of space-time theories

called metrical conventionalism. 

2
 According to metrical conventionalism, there are no

non-conventional facts concerning the space-time metric. The standard interpretation of

relativity relativizes durations of time to reference frames. In this sense, relativity tells us

that there is no fact about the duration of the temporal interval between two numerically

distinct events independent of a choice of reference frame. The space-time conventionalist

goes one step further; for the conventionalist, the length of a given temporal interval

cannot be specified even after we’ve specified a particular reference frame. For the

conventionalist, after we’ve picked out a reference frame, we can determine the temporal

duration between numerically distinct events (or space-time points) only after selecting a

specific convention for measuring temporal durations. If metrical conventionalism is true,

there is no fact of the matter, independent of the adoption of a specific convention, as to the

temporal duration that has passed so far in the Cosmos’s history, including any fact about

whether the temporal duration of the Cosmos’s past history has been finite or infinite.

Since, at the level of metaphysics, there are no conventional facts, metrical conventionalists

say that there is no fact at all as to whether the Cosmos has a finite or an infinite past. As

I discussed in chapter  5 , some conceptions of the beginning of the Cosmos entail that the

Cosmos had a beginning only if the Cosmos’s past is finite. On that conception, metrical

conventionalists would say that the Cosmos did not have a beginning, or at least did not

have a beginning in any sense that has relevance for metaphysics.

However, there is a conception of the beginning of the Cosmos consistent with metrical

conventionalism: the topological conception of the beginning of the Cosmos. In order to

explicate the topological conception of a beginning, let’s begin by considering the clopen

1
 ↑ I am assuming that the piece of paper is at least 2ε units wide.

2
 ↑ For defenses of metrical conventionalism, see Grünbaum,  1968 ; Poincaré,  2001a ; Reichenbach,  1958 ,  1971 .

120



interval (0, 1]. Using the standard Lebesgue measure defined over the real line, the interval

(0, 1] has a length of 1. But notice that (0, 1] has the same set theoretic and topological

features as (−∞, 1], that is, both intervals are continous, clopen intervals containing an

uncountable infinity of points. If we set aside the Lebesgue measure – that is, if we set

aside the metrical features of the interval – then there is no fact that distinguishes (0, 1]

from (−∞, 1] and so no fact distinguishing infinite from finite intervals. Likewise, suppose

that the Cosmos has an open boundary to the past. In that case, the Cosmos’s past history

has the same topological features as a past eternal Cosmos. 

3
 If metrical conventionalism

is true and the Cosmos has an open boundary to the past, then the Cosmos did not have

a beginning.

Now consider the closed interval [0, 1]. The interval [0, 1] differs topologically from

(−∞, 1] in virtue of having a closed boundary at 0. Importantly, if we set aside all of the

metrical features of the interval, we can still say that [0, 1] has a closed boundary to the

left at the point we’ve labeled ‘0’. For analogous reasons, if space-time conventionalism is

true and the Cosmos has a closed boundary to the past of every observer, we can still say

that the Cosmos has a past boundary, even though there is no fact concerning the temporal

interval between the boundary and ourselves. To put this point into intuitive terms, if

the Cosmos includes a first instant of time (and satisfies the other necessary conditions

for having a beginning) then we should say that the Cosmos began to exist. Whether that

first instant is finitely far, infinitely far, or indeterminately far into the past is irrelevant.

There is another closely related reason to prefer the topological conception over a

conception that appeals to metrical information. Relativistic space-times are defined by

a manifold M and a metric g. M is a collection of space-time points equipped with

topological structure. The spatio-temporal distance between any two points in M can

be defined in terms of g. There is no logical or mathematical inconsistency involved

in defining a second distinct metric g’ over the same members of M, in terms of which

3
 ↑ To show that there is a topological distinction between an open and a closed boundary, consider that the

topological properties of a surface (or space or whatever) are obtained by considering the full set of features
of that surface (or whatever) invariant under continuous transformations. One can prove that compact
(closed and bounded) sets can be mapped by continuous functions only to compact sets. Consequently,
there is no continuous function mapping the compact set [0, 1] to the non-compact set (0, 1]; hence, the two
intervals are not topologically equivalent (Wapner,  2005 , p. 121).

121



we can define a second set of spatio-temporal distance relations. Theories that postulate

two metrics on a given manifold are called bimetric theories. 

4
 And, of course, nothing at

the level of logical or mathematical consistency forbids us from defining more than two

metrics on the members of M; theories that postulate n metrics on a given manifold can

be called n-metric theories.

For an intuitive grasp of the notion of a bimetric theory, consider once more the clopen

interval (0, 1]. Consider two points in that interval, for example, the points labeled by 0.5

and 0.7. On one way of defining the distance between the two points, the distance is the

absolute value of the difference between their respective labels, i.e., |0.7 − 0.5| = 0.2. We

can define another metric according to which the distance between any two points is the

absolute value of the difference in the squares of the two labels, i.e., |0.72
− 0.52

| = 0.24.

We ordinarily think that the distance between two points has a unique value. But on a

bimetric theory, there are two distances between any two points. In our example, the

distance between the points labeled by 0.5 and 0.7 is both 0.2 and 0.24.

In theoretical physics, there are a variety of motivations for bimetric theories. Consider

the following as a motivation that significantly problematizes the metrical conception of

a beginning of the Cosmos. As Henri Poincaré ( 2001a , pp. 55–57) and Hans Reichenbach

(e.g.,  1958 , pp. 30–34, 118–119) famously pointed out, any determination of chronogeom-

etry will be systematically underdetermined. We can always save the hypothesis that

space-time has some specific chronogeometry by introducing forces that universally act

on measuring instruments and distort all measurements taken by rulers or clocks. Poincaré

and Reichenbach argued that, given our inability to determine which effects are legiti-

mately chronogeometrical, there is no fact of the matter as to which effects are due to forces

and which are due to chronogeometry. Philosophers of science have since given up on

verificationism and are less prone to infer from systematic underdetermination between

two hypotheses h1 and h2 that there is no fact of the matter as to which of h1 or h2 are cor-

4
 ↑ Bimetric theories indistinguishable from standard General Relativity have been considered in Feynman

et al.,  2003 ; Pitts,  2019 ; Pitts and Schieve,  2003 ,  2004 ,  2007 ; Lockwood,  2007 , pp. 335–336. A similar –
though in principle observationally distinguishable – theory was considered in Pitts and Schieve,  2007 and
Pitts,  2019 ; that theory approximates standard General Relativity arbitrarily well given a sufficiently small
graviton mass.
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rect. For that reason, we can rethink Poincaré’s and Reichenbach’s point; perhaps we can

distinguish between the effective metric handed to us by our observations and whatever

metric legitimately describes our space-time despite our observations. In that case, the

true duration of past time could be systematically hidden from us precisely because the

true metric would be epistemically inaccessible. In that case, we would have no right to

infer from the Cosmos appearing to have a finite age that the Cosmos really does have a

finite age. (Note that I am merely discussing this case as an epistemic possibility for the

course of future inquiry and not endorsing it. There may be other extra-empirical theoret-

ical virtues that would help us to distinguish hypotheses about physical chronogeometry,

e.g., parsimony and the like.)

According to General Relativity, the distribution of matter-energy across space-time

determines g. For that reason, insofar as g can be determined from observations, g is

determined from the observed matter-energy distribution. (There is reason to think that

g cannot be generically determined from the observations that would be available to

any observer embedded within space-time, but set that aside until chapter  9 .) But if a

bimetric (or n-metric) theory turns out to be true, then the metric that can be constructed

from observations may not have any fundamental significance for the duration of past

time. Moreover, in the case that a bimetric theory does turn out to be true, perhaps we

would be able to determine both metrics. However, suppose that one metric is useful for

describing some class of phenomena and another metric for another class of phenomena.

For example, in the previously discussed example, the distance between the points labeled

by 0.5 and 0.7 is 0.2 with respect to one metric and 0.24 with respect to another. If both

metrics are required by fundamental physical theory, where one metric is required to

describe one set of physical phenomena and the other metric is required to describe

another set of physical phenomena, then we should say that the points labeled by 0.5 and

0.7 are 0.2 distance units apart in one respect and 0.24 units apart in another respect.

Just as two points can be two distinct distances apart if fundamental physical theory

includes two metrics, so, too, the Cosmos may be finitely old with respect to one metric

and infinitely old with respect to another metric. In that case, even supposing that both

metrics could be empirically determined, if a beginning of the Cosmos requires a finite
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past, there may not be a determinate fact as to whether the Cosmos began (see, for example,

Swinburne and Bird,  1966 , p. 128; Halvorson and Kragh,  2019 ; Milne,  1948 ; Misner,  1969 ;

Roser,  2016 ; Roser and Valentini,  2017 ).

If we set aside the metric and focus only on M, then we have set aside all facts about the

duration of past time. M is a point set that has set theoretic properties, such as cardinality,

and topological properties, but not metrical properties. Since M does not come equipped

with metrical properties in itself, we cannot, by focusing only on M, mathematically

distinguish between whether M is a space-time with an open boundary in the finite past

and a space-time with an open boundary in the infinite past. However, M is equipped,

by construction, with topological structure. The distinction between an open and a closed

boundary is a topological feature. Therefore, without appealing to any metrical facts, we

can mathematically distinguish a space-time with a closed boundary – that is, a space-time

with a topological beginning – from a space-time without a closed boundary – that is, a

space-time without a topological beginning.

To complete my discussion of the topological conception, I turn to unpacking three

distinct families of ways for the Cosmos to have a topological beginning. As we will

see, two such ways are counterintuitive and surprising. The first family has a topological

beginning in the most intuitive sense; that is, all members of the first family are such

that there is a single closed boundary to the past of all non-initial space-time points.

Consider, for example, flat (Minkowski) space-time. Let’s define a system of coordinates

with respect to a reference frame F and let’s excise the portion of the space-time below the

line t = 0. The resulting space-time has a closed boundary at t = 0 and so features a shared

closed boundary to the past of all non-initial space-time points. If the space-time also

satisfies the first two conditions for having a beginning, then, intuitively, the space-time’s

initial closed bounding surface is the space-time’s beginning.

We can now turn to the second family. Let’s first remind ourselves of the three

conditions that are necessary for a topological beginning, i.e., that (i) at all of the closest

possible worlds where time does not exist, the Cosmos does not exist; (ii) the Cosmos has a

global direction of time; and (iii) there is a closed boundary to the past of every non-initial

space-time point. A three-dimensional cross-section of the four-dimensional space-time
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block such that every pair of points in the cross-section are space-like related is said to

be a space-like surface. Consider a space-time with space-like surface Σ and such that,

in some specific reference frame F, Σ is a particular instant of time.  

5
 Let’s suppose that

the space-time is populated only by particles whose worldlines (or space-time worms)

intersect Σ and that do not undergo any non-gravitational forces. (That is, space-time is

populated only by particles traversing a time-like geodesic congruence.) Let’s define the

age of a particle according to F as the time that has elapsed since the particle’s beginning

in reference frame F. Suppose that for every particle whose age, in F, is a at Σ, there exists

another particle whose age, in F, is a + ε, where ε ∈ R and 0 < ε < ∞. In this case, even

though every particle in the space-time had a beginning at some time in the finite past,

so that every particle’s worldline has a closed boundary to the past, there is no closed

boundary shared by all worldlines in the entire space-time. Importantly, we can always

trace the history of the space-time further back – according to time as measured in F – so

that there is no specific time at which the Cosmos began. That is, there are examples of

space-times where every object in the space-time began to exist, but there is no one time

(or one space-like surface) at which the space-time, itself, began.

According to a now famous theorem due to philosopher David Malament ( 1977b ), for

temporally orientable space-times that possess a local past/future distinction, the space-

time’s topological, differential, and conformal structure can be completely determined by

specifying a class of continuous time-like curves. Since all classical space-times with a

topological beginning satisfy the Direction Condition and so have a global direction of

time, Malament’s theorem is applicable to all of the classical space-times we are consider-

ing. This suggests that we can construct all of the classical space-times with a topological

beginning, up to but not including their metrical structure, by specifying a class of time-

like curves. In the thought experiment in the previous paragraph, we considered the

worldlines of particles piercing Σ. We can construct a space-time using the class of time-

like curves that pierce Σ and, given Malament’s theorem, that class of curves will suffice

5
 ↑ One consequence of the relativity of simultaneity is that different reference frames will disagree about

which space-like surfaces correspond to instants of time, so Cosmos-wide instants can only be specified
relative to a particular reference frame.
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for determining the non-metrical structure of one family of classical space-times with a

topological beginning. And this suggests a class of space-times with a “jagged” closed

boundary, so that, in some sense, one’s distance from the beginning of the Cosmos de-

pends upon where one resides within the Cosmos. However old the Cosmos is in one’s

own “neck of the woods”, there may be some other space-time point inΣwhere, according

to F, the Cosmos is older. 

6
 

Let’s turn to a third family of classical space-times with a topological beginning. Once

again, consider a classical space-time with a space-like surface Σ that corresponds to a

particular instant of time according to the coordinates defined by reference frame F. And

let’s also suppose that the space-time is populated only by particles with worldlines that

intersect Σ. This time, let’s assign each particle the index ε, where ε is a real number

between 0 and ∞ and such that there is a particle for each value of ε. Let’s say that aF(ε)

is the “age” of particle ε according to reference frame F at Σ. Now define the particles

respective ages as a function of ε:

aF(ε) =
1

1 + e−ε
(7.1)

Notice that in the limit that ε increases without bound, aF(ε) approaches 1. That is,

according to the coordinates defined by F, no particle has an age greater than 1, even

though there is no oldest particle. In this case, there is no closed boundary shared by all

particles, since each particle began at a distinct instant (relative to F), but the space-time

is still bounded to the past because no part of the space-time is older (again, relative to

6
 ↑ A simple example of one such space-time can be explicitly constructed by modifying Minkowski space-

time using the following procedure. Select some reference frame F. Consider the space-like surface t = 0
in frame F. Keep the portion of Minkowski space-time above t = 0 and throw away the portion below
t = 0. The space-like surface t = 0 now forms a boundary to the space-time; let’s call that boundary B. Now
perform a Lorentz boost into a frame F′ in motion relative to F.

For simplicity sake, suppose that we performed the aforementioned operations on a two-dimensional
space-time, where the t-axis runs up the page and the x-axis runs horizontally. In frame F, the boundary B
is a horizontal line corresponding to the x-axis. In F′, B is a diagonal line. Consider an observer, let’s name
them Albert, in frame F′. From Albert’s perspective, Albert is a finite proper time – let’s say T – from the
closest point on B to Albert. T can be used to specify a simultaneity slice relative to F′. There is another point
A on the T simultaneity slice some distance ∆x′ away from Albert such that the shortest distance between
B and A is T + ε. Since, relative to F′, B is a diagonal line, we can always find a value of ∆x′ such that ε is as
large as we’d like. And since we can make ε arbitrarily large, there is no maximal value to the time, relative
to F′, between B and the corresponding closest point on T.
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F) than 1. Malament’s theorem suggests that we can define a class of time-like curves,

all of which have a closed boundary in their respective pasts, even though there is no

closed boundary shared by any two time-like curves. One may have the intuition that this

family of space-times has a beginning in a stronger sense than the first family of classical

space-times with a topological beginning that we examined. Indeed, this is so, because, in

the sense to be explained below, this family of classical space-times has both a topological

and a metrical beginning. But, contrary to our intutitions, the shared metrical beginning

is an open boundary – since there is no time-like curve such that aF(ε) = 1 – while the local

and unshared “beginnings”, i.e., the start of each time-like curve, is closed.

Unfortunately, although we can mathematically distinguish space-times with a topo-

logical beginning from space-times without a topological beginning, we cannot, in general,

empirically distinguish the two. Again, the only features of space-time that can be em-

pirically discovered are those related to the distribution of the matter-energy populating

space-time. In the case of classical space-times, General Relativity ties a specific kind

of boundary to space-time, i.e., curvature singularities, to the matter-energy distribu-

tion. However, curvature singularities are open boundaries. Thus, the only boundaries

to classical space-times that are tied to the matter-energy distribution do not represent

topological beginnings. Recall the criteria that I stated at the outset, i.e., that the three

conditions I identify for the Cosmos to have a beginning be necessary for the Cosmos to

have a beginning, that the criteria should be useful in determining whether the Cosmos

had a beginning, and that the criteria should help to elucidate the concept of a beginning.

Given that a topological beginning would not be tied to the matter-energy distribution

and would, for that reason, not be empirically discoverable, and that there is little hope

for discovering the Cosmos’s beginning through non-empirical means, the topological

conception of the Cosmos’s beginning is not helpful in determining whether the Cosmos

had a beginning. Nonetheless, there is another sense in which the Cosmos could have a

past boundary, to which I now turn.
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7.2 The Metrical Conception

Suppose that time is absolute and has an open boundary to the finite past such that

there is no time before the boundary at which the Cosmos exists. Since the boundary

is open, the topological conception would say that the Cosmos did not begin to exist.

Nonetheless, there is a strong intuition that one way for the Cosmos to begin to exist

would involve time having an open boundary in the finite past (or, if one endorses the

Oxford School, there is a time interval with an open boundary such that the Cosmos does

not exist before the boundary). And there is a strong intuition that if the Cosmos had

another kind of open boundary – namely, an open boundary infinitely far to the past of all

space-time points – then the Cosmos did not begin to exist. Since this intuition concerns

the lapse (or total duration) of past time, following Pitts ( 2008 ), we can call the resulting

conception of the Cosmos’s beginning the metrical conception. Craig and Sinclair, following

Smith ( 1985 ), endorse a metrical conception of the beginning of time:

[...] we can say plausibly that time begins to exist if for any arbitrarily des-

ignated, non-zero, finite interval of time, there are only a finite number of

isochronous intervals earlier than it; or, alternatively, time begins to exist if for

some non-zero, finite temporal interval there is no isochronous interval earlier

than it (Craig and Sinclair,  2012 , p. 99).

Note that Craig and Sinclair’s metrical conception is expressed disjunctively; while Craig

and Sinclair mean for the second disjunct to be equivalent to the first, as I will show,

the two disjuncts are not equivalent. Swinburne has endorsed a similar condition for

a beginning of the Universe in the finite past, where, by ‘Universe’, Swinburne means

roughly what I mean by ‘Cosmos’:

[...] to say that the Universe began a finite time ago is to say that all physical

objects spatially related to ourselves began to exist after a certain date, a finite

time ago. To claim that the Universe is eternal is to deny that there is any

date of which the last statement is true. [...] what does it mean to say that

something had a beginning a finite time ago? [...] If the Universe can be shown
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to have begun n units of [a time scale defined by an ideal clock] ago, where n is

a finite number, then the Universe can be said to have begun a finite time ago

(Swinburne and Bird,  1966 , pp. 127–128).

Elswhere, Swinburne ( 2004 , p. 138) writes, “The interesting question about whether the

universe is of finite age, or of infinite age, is the question about whether there has been a

universe only for no more than a finite number of periods of equal length (for example, a

finite number of years) or whether it has existed for an infinite number of such periods.”

Swinburne’s account of a finitely old Universe differs from Craig and Sinclair’s account

of the Universe’s beginning for three reasons. First, Swinburne denies that the beginning

of time is metaphysically possible and so claims that time existed before the Cosmos.

For that reason, Swinburne’s account differs from accounts on which time began when

the Cosmos began. Second, Craig and Sinclair’s first disjunct stipulates that when we

pick out any arbitrarily specified finite interval of time, there are only a finite number

of isochronous earlier intervals and Craig and Sinclair’s second disjunct stipulates that

there exists some finite interval with a finite number of preceding isochronous intervals.

In comparison, Swinburne’s conception demands that we pick out a particular instant

as the present and that there are only a finite number of isochronous intervals earlier

than the present. Third, while Swinburne offers a sufficient condition for the Cosmos

(or the Universe) to have a beginning, Swinburne has elsewhere, e.g., (  1996 ), argued that

beginning a finite time ago is not necessary for the Cosmos to have begun.

In this section, I construct a new metrical conception of the beginning of the Cosmos.

Swinburne ( 1996 ) offers a thought experiment from which he concludes that the Cosmos

having an infinite past would not entail that the Cosmos is beginningless. Instead of

reiterating Swinburne’s thought experiment, I offer three new thought experiments. The

new metrical conception will fulfill three desiderata. First, the metrical conception should

be consistent with the sufficiency of a finite past for establishing that the Cosmos had a

beginning. Second, the new metrical conception should be consistent with the Cosmos,

as described in the three thought experiments, having a beginning. Third, there should be

cases where the new metrical conception agrees with our intuition that the Cosmos had
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no beginning. As we will see, the new metrical conception, in certain respects, resembles

the second disjunct in Craig and Sinclair’s conception.

7.2.1 Three Thought Experiments

I now turn to a consideration of the three thought experiments. Before explicating

the three thought experiments, I briefly describe a collection of preliminary mathematical

notions. Given two sets, e.g., S1 = {a1, b1, ...} and S2 = {a2, b2, ...}, the Cartesian product

of the two sets, denoted, e.g., S1 × S2, is the set of all pairs taken from the two sets, e.g.,

S1×S2 = {(a1, a2), (a1, b2), ..., (b1, a2), ...}. That is, S1×S2 ≡ {(x, y)|x ∈ S1&y ∈ S2}. We can label

all of the points in a given space by considering Cartesian products of the appropriate

sets. For example, there is an isomorphism between a two-dimensional plane and the

Cartesian product of the real line with itself, so that the set of points in the plane can

be represented by R × R = R2. We can represent the points in an n-dimensional space

recursively, e.g., Rn
≡ R × ...(n-2 times)... × R. Describing a space’s manifold in terms of

Cartesian products of subsets of R allows us then to define the space’s metrical properties

in terms of functions over R. Note that the collections of real numbers used to label the

points in a given manifold do not carry any information about how far apart the two

points are; to define the distance between two points in M, we need to define one or

more metrical relations on M as well as the “lengths” of some appropriate set of curves

connecting the two points. 

7
 

As I’ve said, relativistic space-times are a pair of objects, i.e., first, a set of points

(the manifold) M and, second, the metric tensor g. We can provide an analogous, albeit

anachronistic, description for pre-relativistic space-times. Newtonian and Galilean space-

times are described by the manifold R4, a temporal metric t, describing the duration

between any two instants of time, and a spatial metric h, describing the spatial distance

between any two points in space. Newtonian/Galilean space-times can be subdivided into

7
 ↑ For example, in relativistic space-times, g is a rank 2 tensor, with components gµν, from which we can

compute the “distance” (that is, the interval) between points p and q by maximizing
∫ q

p

√
gµνdxµdxν, where

the integral is computed along a path from p to q. For philosophical discussion and elaboration, see Bricker,
 1993 .
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three-dimensional spaces, where each three-dimensional space has a unique value of t –

representing the space-time at a given value of absolute time – and in which h defines the

standard Euclidean distance between any two points. In Newtonian space-time, points of

space persist over time – which can be represented by re-identifying the same space-time

points at successive times – whereas, in Galilean space-time, points do not persist over

time.

Before continuing on to a discussion of the three thought experiments, I need to

introduce a general principle that I will use to reach the lessons that I take from each of the

thought experiments. Given any two observers A and B, if the Cosmos began for A then

the Cosmos began for B and vice versa. If a version of the Boundary Condition entails

that the Cosmos began relative to some observer and did not begin relative to some other

observer, then that version of the Boundary Condition is inadequate.

Having laid out some mathematical foundations and stated a general principle, I

continue on to a discussion of the three thought experiments.

The Partially Amorphous Cosmos

Some cosmological models include a space-time region where there are no metrical

facts and another space-time region where there are metrical facts. Consider Bradford

Skow’s ( 2010 ) argument that an objective space-time metric might not be either an intrinsic

feature of space-time or wholly the result of features intrinsic to space-time. Instead, Skow

argues, space-time might have an objective, but extrinsic, temporal metric just in case there

is some x that plays the functional role, in the physical laws, of determining the ratios

between any two non-overlapping spatio-temporal intervals. 

8
 If metrical facts require a

specific functional role to be fulfilled, then, in space-time regions where that functional

role is not fulfilled, there might not be any metrical facts, even though metrical facts do

obtain in other space-time regions.

For example, in Roger Penrose’s ( 2012 ) Conformal Cyclic Cosmology, there are no facts

about spatio-temporal scale, that is, no metrical facts, at early or late times in the history

8
 ↑ Skow cashes out his view in terms of absolute time, but indicates that he intends for his view to be

generalizable to relativistic space-times.
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of the observable universe. 

9
 A temporal (or spatio-temporal) interval for which there is

no fact concerning the length of the interval – that is, an interval to which metrical facts

are inapplicable – is said to be amorphous. To put the view another way, if space-time is

metrically amorphous within some region, then there is no objective fact about the ratio

of the durations of two non-overlapping intervals within that region. In relativistic space-

times, lengths and temporal intervals depend upon the adoption of a specific reference

frame. Amorphous time goes one step further in that if time is amorphous then, even

within a given reference frame, there are no facts about how long a given temporal

interval is. One example of amorphous time is time for which metrical facts are purely

conventional, as already discussed, though amorphous time can also be such that one

cannot even adopt a conventional metric. For the sake of simplicity, let’s suppose that

Newton and Galileo were correct that time is absolute. 

10
 Let’s also suppose that there

is a finitely long interval of non-amorphous time labeled A, followed by an interval of

amorphous time labeled B, and then followed again by an interval of non-amorphous

9
 ↑ On some quantum gravity theories – such as causal set theory (Bombelli et al.,  1987 ; Brightwell and

Gregory,  1991 ; Dowker,  2006 ,  2013 ,  2017 ,  2020 ) – the space-time metric appears only in the theory’s
continuum limit, thereby allowing for the possibility that there are regions of the Cosmos where the
space-time metric is inapplicable. However, we should not necessarily think of those regions as amorphous
in the sense discussed in this section. Consider, for example, consider Brightwell and Gregory’s ( 1991 )
construction of the continuum limit for a space-time interval spanned by a number of space-time atoms
“linked” together in a chain. When the chain is sufficiently long, the space-time interval is proportional to
the number of links in the chain. As causal set theorists like to say, in causal set theory, metrical facts are
determined by counting. For that reason, supposing that there are only a small number of space-time atoms
in some region, so that the continuum limit does not apply in the region, we need only consider a larger
region to recover relevant metrical facts. In any case, recall that the Boundary Condition for the Cosmos
to have a beginning is disjunctive. If the initial portion of the Cosmos is correctly described by causal set
theory, then, since causal sets always have closed boundaries, the Cosmos would satisfy the first disjunct –
by having a topological beginning – and so would have a beginning.
10

 ↑ Nothing crucial in this example hangs on whether time is absolute. The example can be reconstructed
for relativistic space-times. To construct a relativistic space-time without metrical structure, first consider
a space-time S with metric gµν. And now consider the metric g̃µν produced from g̃µν by the conformal
transformation g̃µν = Ω2gµν where Ω is a positive and smooth but otherwise arbitrary scalar function. For
relativistic space-times, multiplication byΩ2 leaves the space-time’s light cone structure unaltered. Call the
resulting space-time S̃. Two space-times that are related by such a transformation, e.g., S and S̃, are said to
be conformally equivalent. A space-time without metrical structure can then be constructed by identifying all
of the members of a given class of conformally equivalent space-times. Let’s call the space-time that results
from identifying all of the members of a given class of conformally equivalent space-times SC. Since the
conformal transformation left the light cone structure unaltered, SC is equipped with light cone structure
but not metrical structure and so SC is an example of a relativistic amorphous space-time. For related
technical details, see chapter  11 and references therein. To construct a relativistic space-time analogous
to the space-time inhabited by Pam and Jim, one can “glue” a metrically amorphous space-time region R
between two regions that are not metrically amorphous.
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time labeled C. Formally, we are supposing that A is a Newtonian or Galilean space-time

region with an objective temporal metric, that B has the topology of a Newtonian or

Galilean space-time region without an objective metric, and that C is another Newtonian

or Galilean space-time region. Suppose, further, that the Cosmos does not exist prior to

A. Call this construction the Partially Amorphous Cosmos.

Suppose that Pam is an arbitrarily chosen observer in A. Pam should say that the

Cosmos began in her finite past. Suppose that Jim is an observer in C. For Jim, since

there is an interval of amorphous time between himself and the beginning identified by

Pam, there is no fact concerning how far in the past the Cosmos began. Consequently,

even though, intuitively, Jim should agree that time began, there is no fact about how

many isochronous intervals can be placed into Jim’s past. Since there is no fact about

how many isochronous intervals can be placed into Jim’s past, Craig and Sinclair’s first

disjunct entails the intuitively wrong conclusion that the Partially Amorphous Cosmos

did not begin to exist. Swinburne’s metrical conception entails the intuitively wrong

conclusion that the Partially Amorphous Cosmos began to exist for Pam but not for Jim.

A Newtonian or Galilean Cosmos with a beginnining can have a non-initial segment in

which there is no objective temporal metric. Instead of articulating the metrical conception

in terms of there being a determinate number of isochronous intervals to the past of every

temporal interval, as in Craig and Sinclair’s first disjunct, or as indexed to some observer’s

present, as with Swinburne, the metrical conception should entail that, for space-times

with a metrical beginning, time is not metrically amorphous in the initial segment of the

Cosmos’s history. 

11
 

11
 ↑ A similar point has been previously made in various places, but, in particular, see Earman,  1977 , pp. 125–

126, 131. For example, Hermann Weyl ( 1997 ) maintained that the choice of time scale is, is to a certain
degree, conventional. In more technical terms, Weyl argued that there is gauge freedom in one’s choice
of metric tensor so that the metric tensor is determined only up to a conformal factor, as in footnote  10 .
Additional technical details for Weyl’s theory can be found in Bell and Korté,  2016 . The result, if Weyl were
correct, is that there is gauge freedom in the proper time along any given trajectory. Weyl postulated that
the gauge could be fixed for each trajectory, but only in such a way that the rate at which a given clock
ticks depends the clock’s specific trajectory. Someone who returns to Earth after having traveled at close
to the speed of light would discover not only that their twin’s clock read differently than their own – as in
Einstein’s relativity – but that their twin’s clock ticks at a different rate.

In any case, were Weyl’s theory correct, time scale would not correspond to any objective physical
fact (Penrose,  2004 , p. 451). Einstein objected that frequency and mass can be related through quantum
mechanics (i.e., E = h f ) and relativity (i.e., E = mc2). Provided a frequency, one can construct a clock. So,
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The Fractal Cosmos

There are a number of fractal curves whose arc length is infinite (von Koch,  2004 , p. 38;

Mandelbrot,  2004 ), even though they occupy a finite region of the plane. Consider, then,

a fractal curve with infinite arc length that occupies a region of the x − y plane with an

end point at the left at x = −1 and an end point at the right at x = 1. We can “glue” finitely

long line segments, parallel to the x-axis, to the curve’s left end point and another to the

curve’s right end point. Call the line segment on the left L, the fractal curve C, and the

line segment on the right R. Restricting ourselves to the resulting L − C − R compound

geometric object, notice that:

1. There is a finite distance between any two points in L.

2. There is a finite distance between any two points in R.

given that any observer with mass effectively carries a clock, there is an objective way for any observer
with mass to fix a time-scale (Bell and Korté,  2016 ; Penrose,  2004 , p. 453). Conversely, if Weyl’s theory
had been correct, then the masses of particles wouldn’t be fixed and would vary with the history of a
given particle. This would have violated the quantum mechanical principle that identical particles have
identical masses. Thus, on Einstein’s proposal, whether there are facts that distinguish finite and infinite
temporal durations depends upon the local matter-energy distribution, i.e., in the absence of mass, there is
no objective distinction between finite and infinite temporal intervals. One can adopt Einstein’s proposal
that the masses of objects determine the frequencies for locally fixing time scales without adopting Weyl’s
theory. If Einstein’s proposal is correct and objective time scales depend on the local presence of mass
then, if there were no masses in the initial segment of the Cosmos’s history, there would be no objective
distinction between the Cosmos having an infinitely or finitely long initial segment. In that case, unless the
initial segment of the Cosmos has a closed boundary to the past of all other space-time points not on the
boundary, the Cosmos would lack a beginning.

One set of authors has argued along independent and fairly different lines that in classic models of
the Big Bang, which are often said to include a beginning, our universe’s past should not be understood
as objectively finite. Standard cosmological (i.e., Friedmann-Lemaître-Robertson-Walker or FLRW) space-
times can be sliced into space-like hypersurfaces such that the mean extrinsic curvature is constant on each
hypersurface. This is known as the Constant Mean (extrinsic) Curvature (CMC) foliation. We can label
the hypersurfaces in the CMC foliation with the cosmic time, that is, time as recorded by observers who
are locally at rest with respect to the universe’s expansion. When cosmologists say that the universe has a
finite age according to a given cosmological model, they typically mean that there is finite cosmic time to
the past. Nonetheless, the hypersurfaces in the CMC foliation can be relabeled in such a way that the order
of the hypersurfaces is preserved. For example, one can relabel the CMC hypersurfaces by the scale factor,
a measure of a length-scale characteristic of the universe’s expansion, or by various monotonic functions of
the scale factor. Importantly, one can relabel the CMC hypersurfaces with parameters, e.g., the York time
(York,  1972 ; Roser,  2016 , p. 49), that map the singular surface bounding FLRW space-times to the infinite
past. Various authors (Milne,  1948 ; Misner,  1969 ; Roser,  2016 ; Roser and Valentini,  2017 ) have argued that
labelings that do map the singularity to the infinite past are more physically significant than the cosmic time.
Consequently, showing that one inhabited an FLRW space-time bounded by a past singularity might not
be sufficient for showing that the Cosmos had a beginning; one must also show that past time is objectively
finite.
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3. There is an infinite distance between any point in L and any point in R.

Once more, for the sake of simplicity, suppose that Newton and Galileo had been right

that time is absolute. 

12
 Moreover, suppose that absolute time had the metrical structure of

L − C − R. Suppose that Pam is an arbitrarily chosen observer in the L segment of history.

By construction, L is a finitely long line segment; for that reason, there is only a finite

period of absolute time to Pam’s past (or, for the Oxford School, only a finite period of

absolute time to Pam’s past during which the Cosmos exists). Intuitively, supposing that

the Modal Condition is satisfied, the metrical conception, when conjoined with the fact

that there is only a finite period of absolute time to Pam’s past, should strongly suggest that

there was a beginning of absolute time. (Alternatively, so long as the Modal Condition is

satisfied, the metrical conception and the fact that the Cosmos has only finite past temporal

extension should strongly suggest that there was a beginning of the Cosmos.) However,

for any arbitrarily chosen observer – call them Jim – in the C or R segments of history, the

beginning suggested by Pam is located infinitely far in the past. For that reason, Craig and

Sinclair’s first disjunct clashes with intuition by entailing that the Fractal Cosmos has no

beginning while Swinburne’s version clashes with intuition by entailing that the Cosmos

has a beginning for Pam but not for Jim. Again, we need a conception on which whether

the Cosmos has a beginning is not observer relative.

The Partial Sum Cosmos

In this section, I’ll consider two different mathematical constructions as thought ex-

periments: first, a more “pedestrian” version and, second, a more technical version that

draws upon the way in which partial sums relate to infinite convergent series. I offer the

pedestrian version so that readers who cannot follow the technical version can at least

draw the core points from the pedestrian version. In the pedestrian version, let’s begin by

considering the series of positive integers in increasing order: 1, 2, 3, ... Mathematicians

say that the sequence has order type ω. Sequences of order type ω do not have a last

member, but we can add in a last member z by defining z such that z comes after every

12
 ↑ An analogous construction can be produced using relativistic physics.
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member in the sequence. We can then use z to define a new sequence: 1, 2, 3, ..., z. We

can also consider the series of negative integers in increasing order: ..., −3, −2, −1. This

sequence has order type ω∗. Sequences with order type ω∗ have no first member – since

the sequence of negative numbers has no start – but we can add in a first member a by

defining a such that a comes before every member in the sequence. We can then use a

to define a new sequence: a, ..., −3, −2, −1. Lastly, we can “glue” together the ω and ω∗

sequences by identifying z with a: 1, 2, 3, ..., z, ..., −3, −2, −1. Call this the ω−ω∗ sequence.

Given a countably infinite set of points, we can identify each point in the set with one

member of the ω − ω∗ sequence and we can define topological relations such that points

labeled by sequential values in the ω − ω∗ sequence are neighbors, e.g., the point labeled

1 is to the right of the point labeled 2 and all of the points labeled by negative integers are

to the right of the positive integers.

We can define a metric over the point set labeled by the ω − ω∗ sequence with the

following properties: (i) the distance between any two points in the portion labeled by the

positive integers is given by the absolute value of the difference between the corresponding

two integers, (ii) the distance between any two points in the portion labeled by the negative

integers is given by the absolute value of the difference between the corresponding two

integers, (iii) the distance between z and any other point is infinite, and (iv) the distance

between any of the points labeled by a positive integer and any point labeled by a negative

integer is infinite. We’ve succeeded in defining a point set equipped with topological

structure, that is, a manifold, and a metric. If time had the corresponding structure – so

that −1 is used to label the present – then, even though there might be infinite time to our

past, we should still intuitively say that time has a beginning. Time would have a first

instant, namely, the point labeled by 1.

For the more technical version, let’s begin by considering the infinite sum:

6
π2

∞∑
1

1
n2 = 1 (7.2)

As with any convergent infinite series, the value of  7.2 is defined in terms of the limit of

the corresponding partial sum:
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qN =
6
π2

N∑
1

1
n2

In turn, since the generalized harmonic numbers H(r)
N are defined as H(r)

N ≡
∑N

1 1/nr, we

can re-write the partial sum qN in terms of H(2)
N :

qN =
6
π2 H(2)

N

Given the properties of the generalized harmonic numbers, the variable qN can assume

any one of the values in a set that is bounded from below by 6/π2 and from above by

1, i.e., qN ∈ {
6
π2 H(2)

1 ,
6
π2 H(2)

2 , ...}. Furthermore, define S1 such that S1 ≡ {q1, q2, ...} ∪ {1}.

Define a function d(xN, yM) = |M −N| such that xN and yM are both possible values of qN.

d(xN, yM) maps a pair of values in S1 to the set of positive integers. Furthermore, define

d(xN, 1) = d(1, yM) ≡ ∞. We can then think of d(xN, yM) as a metric defining the distance

between points labeled by xN and yM; moreover, we’ve defined the metric such that any

one of the points labeled by values of qN < 1 are infinitely far from 1.

Let’s now “paste” a mirror image copy of this collection on to the points along the real

line labeled by numbers between 1 and 2 − 6/π2, i.e., points labeled by numbers in the set

{..., 2 − 6/π2H(2)
2 , 2 − 6/π2H(2)

1 }. We can do this by considering the sum

2 −
6
π2

∞∑
1

1
n2 = 1

As well as the partial sum

q′N = 2 −
6
π2

N∑
1

1
n2

Define S2 ≡ {..., 2 − 6/π2H(2)
2 , 2 − 6/π2H(2)

1 } ∪ {1}. For the points labeled by values in S2, we

can define a corresponding metric as before, i.e., d′(x′N, y
′

M) = |M − N|. Using this metric,

points labeled by values between 1 and 2 − 6/π2 are infinitely far from the point labeled

by 1. We can now define a combined metric for the collection of points labeled by values

between 6/π2 and 2 − 6/π2:
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D(xN, yM) ≡



|M −N| xN < 1 & yM < 1

∞ xN < 1 & yM ≥ 1

∞ xN ≥ 1 & yM < 1

|M −N| xN > 1 & yM > 1

Using D(xN, yM), we can construct a space-time, featuring discrete time, in the following

way; let’s call this space-time the Partial Sum Cosmos. Suppose that time is discrete

and, for simplicity, suppose, again, that time is absolute. Further, let us suppose that

the whole of history consists of a set of temporal atoms labeled by values (as described

in the construction above) between 6/π2 and 2 − 6/π2 with a temporal metric given by

D(xN, yM). Arbitrarily pick an observer situated at one of the temporal atoms aP after the

atom labeled 6/π2 and before the atom labeled 1. Once again, call this observer Pam.

Because the temporal atom labeled 6/π2 is the first temporal atom, there is a boundary to

absolute time located in Pam’s past. Intuitively, since, according to the temporal metric

D(xN, yM), Pam is a finite distance from that boundary, i.e., D(aP, 6/π2) < ∞, Pam should

conclude that time had a beginning in the finite past. However, for any of the observers

located at one of the temporal atoms to the future of the temporal atom labeled by 1, the

beginning identified by Pam is infinitely far to their past. This is analogous to the result

we found for the Fractal Cosmos, where, for some set of observers, past time is infinite,

even though we should intuitively say that time had a beginning.

Craig and Sinclair’s first disjunct reaches conclusions for the Partial Sum Cosmos that

clash with our intuitions for reasons parallel to those we identified for the Fractal and

Partially Amorphous Cosmoses. That is, Craig and Sinclair’s first disjunct would say that

the Partial Sum Cosmos is beginningless. Swinburne’s metrical conception also reaches

conclusions for the Partial Sum Cosmos that clash with intuitions for reasons parallel

to those we identified for the Fractal and Partially Amorphous Cosmoses. Swinburne’s

metrical conception would say that there is one set of observers in the Partial Sum Cosmos

for whom the Cosmos began and another set of observers for whom the Cosmos did not

begin. According to the new metrical conception that I develop below, supposing the
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Partial Sum Cosmos satisfies the other conditions necessary for having a beginning, the

Partial Sum Cosmos’s beginning is not relative to any set of observers.

Drawing lessons from the three thought experiments

In the cases of the Fractal Cosmos and the Partial Sum Cosmos, one may object that

infinity is not a number, in which case distances and temporal intervals cannot be infinite.

Four replies can be offered. First, that there are space-time points between which the

temporal interval is not well-defined would suffice for my purposes. For that reason,

if we understand the temporal intervals involved not as infinite but as divergent – and

so as not well-defined – similar conclusions follow. Second, while infinity is not a real

number, there are well known geometrical constructions in which points are included

that are at an infinite distance from other points. One family of constructions are the

fractal curves already discussed. For another example, consider the projection of the

Riemann sphere on to the complex plane, which allows one to identify complex infinity

with the sphere’s north pole. There is no recognized mathematical difficulty involved in

including “points at infinity” in a given construction. As I’ve shown in chapter  2 , whether

there are metaphysical problems involved in such constructions has yet to be successfully

shown. Third, there are solutions to the Einstein Field Equations – such as Malament-

Hogarth space-times – that include observers who, in finite time, can observe the results

of a computation that takes infinite time to perform (Earman and Norton,  1993 ; Etesi

and Németi,  2002 ; Hogarth,  1966 ; Manchak and Roberts,  2016 ). (On a more technical

level, what’s crucial about Malament-Hogarth space-times is the feature that a time-like

half-curve, along which there is infinite proper time, can “fit” inside some observer’s

past light cone, where the observer is not located at time-like infinity.) If we accept

some standard solutions to the Einstein Field Equations, e.g., Kerr black holes or anti-De

Sitter space-time, as legitimately metaphysically possible, then we need to allow for the

metaphysical possibility of infinite arc lengths. Fourth, supposing that one considers the

Fractal Cosmos and the Partial Sum Cosmos as metaphysically impossible, one is still left

with the Partially Amorphous Cosmos as a viable epistemic possibility.
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According to Craig and Sinclair’s account, the Cosmos began only if the Cosmos’s

history includes no more than a finite number of isochronous intervals earlier than any

arbitrarily chosen interval. In the three thought experiments, so long as the Cosmos

satisfies the Modal Condition and the Direction Condition, there is a strong suggestion

that the Cosmos began; nonetheless, in the three thought experiments, there are some

temporal intervals such that there is no finite or determinate number of isochronous

intervals to that interval’s past. According to Swinburne’s account, the Cosmos began

just in case there are a finite number of isochronous intervals earlier than the present.

But in the three thought experiments, there could be observers situated such that there

there is no finite (or determinate) number of isochronous intervals before their present.

Moreover, since Swinburne’s version of the metrical conception is indexed to the present

of a given observer, Swinburne’s version yields inconsistent conclusions about whether a

given Cosmos had a beginning. Craig, Sinclair, and Swinburne’s accounts – like my three

thought experiments – assume that time is absolute. In the case of absolute time, the new

metrical account should (roughly) say that (i) there is a (closed or open) boundary B to

the past of all space-time points and (ii) there exists some time T such that, according to

the objective metric of absolute time, the span of time between B and T is finite.

A good conception of the beginning of the Cosmos should not depend on whether

time is absolute and should at least be consistent with relativistic physics. (Ideally, the

account should also be consistent with a future quantum gravity theory, but, given that

we do not yet possess a successful quantum gravity theory, the account that I offer here

will need to be provisional.) For that reason, a metrical conception of the beginning of the

Cosmos that did not assume absolute time is desirable. In order to construct a new version

of the metrical conception that does not assume absolute time, I need to first explicate the

generalized affine parameter. But in order to motivate the generalized affine parameter,

we need to take a brief detour through relativity. Readers already sufficiently familiar

with relativity to know what the generalized affine parameter is can skip the detour.
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7.2.2 A brief detour through relativity

In pre-relativistic physics, one could imagine releasing synchronized and properly

functioning clocks, each of which has some arbitrary velocity, from numerically one

point. (Nevermind worries about whether two clocks can occupy one point.) We could

then synthesize all of the subsequent clock readings together to form an absolute time,

where disparate parts of the Cosmos would be said to be located at objectively the same

time T just in case they coincide with a clock that reads T. And then one could imagine

checking that the clock readings were properly synthesized together by re-collecting the

clocks at numerically one point and noting that they all remained synchronized. In

relativistic physics, we cannot successfully perform this synthesis. After the clocks are

released, the hypersurface on which all of the clocks record the same time should not be

understood as a moment of time for, in that context, simultaneity becomes relativized to

one’s trajectory through space-time. Moreover, when the clocks are collected together at

numerically one point, we would find that their readings were no longer synchronized;

instead, their readings depend on the path that each clock has taken.

Instead of defining an absolute time for the whole of the Cosmos, relativistic physics

introduces the notion of proper time. Proper time is analogous to the distance recorded by a

car’s odometer; in some sense, proper time records the distance that an object moves along

a given path through space-time. Famously, a young person who shoots off in a rocket ship

at close to the speed of light, turns around, and returns to Earth may find the twin they left

behind in a nursing home. The difference in the twins’ respective ages is explained by the

fact that the twins traversed distinct paths through space-time. The twin who remained

on Earth traversed an objectively longer trajectory than the twin who went away and came

back; the fact that their trajectory is longer explains the fact that they experienced a longer

duration of time. If time is a parameter marked off along the trajectory of an object then we

should not think of time as a parameter describing the global chronogeometric structure

of space-time. Instead, space-time is a collection of points, none of which should be

considered specifically spatial or temporal. On Minkowski’s metaphysics, there is a four

dimensional space-time block, but the fourth dimension is not time. For this reason, the
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popular notion that time is the fourth dimension is either mistaken or at least misleading.

Instead of thinking of time as a dimension spanning the block, from one end to the other,

we should think of time as marked out along trajectories, just as odometers mark out

distances along the trajectories traversed by cars in three dimensional space.

Consider a right triangle on a Euclidean plane, whose base has length a and whose

height is b. According to the Pythagorean theorem, the hypotenuse h of the triangle is given

by a2+b2 = h2. By specifying two orthogonal axes, we can use the Pythagorean theorem to

express any length in terms of distances along the two axes. The Pythagorean theorem has

a natural generalization for expressing intervals in four dimensional space-time. For the

sake of simplicity, I will consider Minkowski space-time, that is, a relativistic space-time

from which gravity and curvature are absent. In Minkowski space-time, the length of any

four-dimensional interval I can be written in terms of the coordinates defined by a given

reference frame F. Projecting the interval on three perpendicular spatial directions x, y, z

and the temporal axis t, all defined by F, we have:

−c2t2 + x2 + y2 + z2 = I2

The parameter c is the speed of light and can be thought of as the conversion factor

between space and time. Notice that, unlike the Pythagorean theorem, there is a negative

sign on the first term. The negative sign introduces the possibility that I can be zero even

though t, x, y, and z are non-zero.

To understand the situation in which I = 0, let’s consider the distance r, in three

dimensional space, that a beam of light traverses in a time t. Assuming that the light

starts its journey at x = 0, y = 0, and z = 0, we can use the Pythagorean theorem for three

dimensional space to find the distance the light has traveled when the light reaches the

point (x, y, z):

r =
√

x2 + y2 + z2
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We know that the distance traversed by an object is given by the speed of the object

multiplied by the time over which the object travels. Since light moves at the speed c, we

have that r = ct, or, in other words,

√
x2 + y2 + z2 = ct

Squaring both sides and re-arranging, we have:

x2 + y2 + z2
− c2t2 = 0

In other words, along the trajectory traveled by a beam of light, I = 0. What is the

significance of the fact that I = 0 along the trajectories that light travels? Even though

t, x, y, and z individually vary between coordinate systems, I does not vary between

coordinate systems. So, consider an interval marked out by t, x, y, and z in one coordinate

system and t′, x′, y′, and z′ in a second coordinate system. Since I does not vary between

coordinate systems, we have that:

−ct′2 + x′2 + y′2 + z′2 = −ct2 + x2 + y2 + z2

Since the variables on the left hand side come equipped with primes, we say that the

observer whose coordinates are used on the left hand side is the primed observer. Suppose

that I represents the interval along the primed observer’s trajectory. Relative to oneself,

one never moves, since one never becomes (for example) further away from oneself. Thus,

relative to the primed observer’s own coordinates, the primed observer does not move

through space. For that reason, x′ = y′ = z′ = 0. But any given observer will measure that,

according to a clock that they carry, time passes, so that t′ , 0. Consequently,

−ct′2 = −ct2 + x2 + y2 + z2

Thus, the interval, when placed along one’s own trajectory, measures one’s own proper

time. However, along the trajectories that light travels, I = 0. Thus, relative to light, time

143



does not pass. More rigorously, we can say that, along the trajectories that light traverses,

no proper time elapses.

This is a deeply counterintuitive result. Light traverses numerically distinct points

and yet never records that time passes. One may argue that we made an error, though, if

we did, the error is still more counterintuitive. We assumed that there is some reference

frame relative to which light is at rest. If there were such a reference frame, then we

could accelerate an object up to light speed, so that light was at rest relative to that object.

Relativity forbids the existence of any reference frame from the perspective of which light

is at rest. If so, light has no rest frame.

Recall the proposal that we started with, namely, that the Cosmos could be said to

have a finite past just in case, according to any trajectory that an object could traverse,

only finite proper time has transpired. We found that there is some sense in which time

does not pass for light. If we take that result literally, then, even if for all observers

moving slower than light, the Cosmos is eternal to the past, there is a sense in which,

for light, zero time has passed in the Cosmos’s history. What we need is a suitable

alternative λ to proper time with two features. First, for bodies moving slower than light,

λ should distinguish infinitely from finitely long trajectories. That is, for trajectories along

which there is (in)finite proper time should be assigned (in)finite values of λ. Second, λ

should parametrize the points along the trajectories followed by light in such a way that

numerically distinct points are afforded distinct labels. There are a variety of parameters

with these features that one could choose, but one standard choice is the generalized affine

parameter, to be discussed below. If we accept the generalized affine parameter as the

right choice for the job, we can say that two space-like surfaces are finitely separated one

from another just in case all of the time-like and light-like curves between the two surfaces

have finite generalized affine length. And then, to say that the Cosmos has a finite initial

segment is just to say that there is a Cosmos-wide space-like surface Σ such that all of

the time-like and light-like trajectories that can be traced backwards from Σ encounter a

boundary at a finite value of the generalized affine parameter. In the next subsection, I will

complete my articulation of the new metrical conception by articulating the generalized

affine parameter.
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7.2.3 The New Metrical Conception

Let’s recall the problem that we are trying to resolve with the generalized affine

parameter. We want to be able to distinguish finite from infinite space-time intervals

in both time-like and light-like directions, but, due to the combination of positive and

negative signs in the space-time interval, the proper time to any point whatsoever along

light-like directions is zero. The combination of positive and negative signs in the space-

time interval is a reflection of the fact that relativistic space-times are hyperbolic and

not Euclidean. In a four dimensional Euclidean space, there is no negative sign, e.g.,

I2 = t2 + x2 + y2 + z2. If we could map from hyperbolic space-time into a Euclidean space

in a way that preserved finite time-like intervals as finite and infinite time-like intervals

as infinite and that, along light-like directions, labeled numerically distinct points with

distinct values, we would have constructed a parameter that satisfied the desiderata

identified at the end of the last section. The generalized affine parameter makes use of

precisely this trick.

I now turn to unpacking the technical details involved in constructing the generalized

affine parameter. Readers unfamiliar with relativity may find the following exposition

difficult to follow; my hope is that they will gather the general “gist”. A half-curve is usually

defined as a curve that starts somewhere in space-time and is inextendable. A classical

space-time model S is said to be extendable just in case there is another larger space-time

model S′ into which S can be isometrically embedded; moreover, S is inextendable just in

case S is not extendable. A typical assumption in relativistic physics is that space-times

are “as large as they can be”; that is, that space-time is inextendable. A curve γ in S is

inextendable just in case there is no larger space-time S′ into which S can be isometrically

embedded and in which γ is longer than γ was in S. Intuitively, an inextendable curve is

a curve that encounters an impassible boundary to space-time. For the sake of complete

generality in explicating the concept of the beginning of the Cosmos, I will not assume

that the Cosmos is inexteendable and, for that reason, I will offer a modified definition

of half-curves. For my purposes, a half-curve in a space-time S is a curve that begins
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somewhere in S and that has no further extension in S. Intuitively, if a half-curve γ in S

has finite length, then γ encounters a boundary of S.

Consider a classical space-time (M,g). Without loss of generality, and utilizing the

notation from Earman,  1995 , p. 35, consider a time-like half curve γ(v) defined on [0, v+)→

M, where v is a parametrization of γ and such that v+ ≤ +∞. For each of the tangent spaces

at each point in M, we can choose a set of four orthonormal basis vectors; this is the so-

called “frame field”. In particular, let’s denote the basis vectors defined at each of the

tangent spaces at each point along γ(v) as ea
i (v), so that at v = 0, the basis vectors are given

by ea
i (0). Given ea

i (0), we can define the other basis vectors in the tangent spaces at the

other points along γ(v) via parallel transport.

Now that we have defined orthonormal basis vectors for each of the tangent spaces

along γ(v), we can write the components of a tangent vector V in terms of the ea
i (v) as:

Va =

4∑
i=1

Xi(v)ea
i (v)

The Euclidean length of Va is given by:

|V| =

√√
4∑

i=1

(Xi(v))2

And, thus, we have succeeded in expressing the tangent vectors along γ(v) using the

Euclidean signature. Given the components of this tangent vector, we can write the

generalized affine parameter λ(v) as

λ(v) =
∫ v

0

√√
4∑

i=1

(Xi(v∗))2dv∗

Where v∗ is a dummy variable replacing v inside the integral. Since the summation under

the square root within this integral is defined using a positive definite signature, the

generalized affine parameter can be thought of as the arc length of a curve in a four-

dimensional space instead of a four-dimensional space-time. Using the generalized affine
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parameter, we can define a notion of generalized affine length. The generalized affine length

g.a.l. is the total length of γ(v), that is,

g.a.l. =
∫ v+

0

√√
4∑

i=1

(Xi(v∗))2dv∗

As Earman notes, the choice of a different set of basis vectors ea
i (v) for each tangent space

leads to a different generalized affine parameter defined on γ(v). (Of course, once a choice

of basis has been made at v = 0, that choice is propagated to every other point along γ(v)

by parallel transport.) But if one choice of basis vectors leads to a finite generalized affine

length, then any other choice of basis vectors will lead to a finite generalized affine length;

likewise, if any choice of basis vectors leads to infinite generalized affine length, then any

other choice will lead to infinite generalized affine length. For that reason, whether the

generalized affine length is finite or infinite is independent of our choice of orthonormal

basis vectors and satisfies the desiderata identified at the end of the previous section.

Recall the intuition that motivated this section. We can say that two space-like surfaces

are finitely separated from each other just in case all of the time-like and light-like curves

between the two surfaces have finite generalized affine length. Likewise, for the sake of

intuition, imagine a closed or open boundary B where B is prior to all space-time points

not included in B and a space-like surface Σ. Suppose, further, that the Cosmos satisfies

the Modal Condition and the Direction Condition. If no other conditions are required for

the Cosmos to have a beginning and if all of the time-like and light-like curves between

B and Σ have finite generalized affine length, then, intuitively, B should count as the

space-time’s beginning. Therefore, the Cosmos has a finite initial segment just in case there is a

Cosmos-wide space-like surface Σ such that all of the time-like and light-like trajectories that can

be traced backwards from Σ have finite generalized affine length.

One may worry that I have made two implicit assumptions in explicating what it

would mean for the initial segment of the Cosmos’s history to be finite. First, one might

worry that I have assumed that the time-like and light-like curves in the initial segment

of the Cosmos’s history are objectively comparable. Readers harboring this sort of worry

are right to do so; if, for whatever reason, the generalized affine lengths of curves are
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incommensurate, then the fact that all of the curves have finite generalized affine length

might not be meaningful. Second, one might worry that I have assumed that there is

a meaningful distinction between finite and infinite space-time regions. For example,

if the lengths of temporal durations are conventional or if time is amorphous in the

initial segment, then there is no objective distinction between finite and infinite initial

segments. But this worry is mistaken. On the one hand, if there is no objective finite/infinite

distinction in the initial segment and the initial segment has a closed boundary, then the

initial segment has a topological beginning. Since the third criterion for the Cosmos to

have a beginning is disjunctive, we would be able to say that the Cosmos has a beginning.

On the other hand, if there is no objective finite/infinite distinction in the initial segment

and the initial segment has an open boundary, then the initial segment cannot be said

to be finite in virtue of the generalized affine length; the generalized affine length, itself,

wouldn’t be either finite or infinite for any of the time-like or light-like curves in the

segment. In that case, the Cosmos would not have a beginning.

7.3 Objections

In this section, I turn to two important objections to the view that I’ve presented in this

chapter. According to the first objection, while the Boundary Condition, as I’ve stated it,

captures two of the ways in which space-time could have a boundary, I haven’t shown

that there are no other ways in which space-time could have a boundary. According

to the second objection, the metrical conception may be able to subsume the topological

conception, in which case I wouldn’t have to define the Boundary Condition disjunctively.

In the following, I show that both objections are incorrect.

7.3.1 The First Objection: Uniqueness?

On my view, the Boundary Condition is a necessary condition for the Cosmos to have a

beginning. While the reader might share my intuition that the Cosmos having a beginning

requires that the Cosmos include a past boundary of some kind, the Boundary Condition

– at least as I stated the condition – can be a necessary condition for the Cosmos to have
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a beginning only if the topological conception and the metrical conception exhaust all of

the ways for the Cosmos to have a beginning. Why think that the topological conception

and the metrical conception are the only two ways for the Cosmos to include a beginning?

According to a standard mathematical procedure for constructing a space or space-time,

we begin with a set of simples (or “points”) which we can then endow with additional

structure, e.g., Norton,  1999 ; Isham,  1994 , pp. 10–11; Maudlin,  2010 , Maudlin,  2012 , pp. 5–

8; DeLanda,  2013 , pp. 14–18; North,  2021 , pp. 40–51. The additional structure forms a

hierarchy, that is,

1. The set theoretic structure describes the properties the point set has in virtue of being

a set, e.g., the cardinality of the point set or whether a given entity is a member of

the point set.

2. The topological structure describes the continuity or discontinuity of the space or

space-time as well as whether the space or space-time has closed, open, or clopen

boundaries.

3. The affine structure describes the primitive distinction between curves and straight

lines.

4. The metrical structure describes the distance (or interval) between any two points.

5. The differentiable structure allows us to distinguish smooth curves from curves with

sharp or broken edges.

Additional structure can be defined on any given point set as well. For example, A-

theories of time define primitive temporal structure in terms of the monadic predicates

of pastness, presentness, and futurity. Consequently, A-theories endow space-time with

what I will call monadic structure. On B-theories of time, a binary relation – the B-relation –

is defined between any two numerically distinct time-like related events α and β, in virtue

of which we can say either that α is before β or β is before α. Likewise, on some – albeit

outdated – metaphysical accounts of the nature of space (or of the nature of place), we

should supplement space with additional structure. For example, Aristotle’s view of the
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nature of place denies the homogeneity of space and defines the center of the Earth as the

center of the Cosmos. For that reason, Aristotle’s view includes fundamental relations of

up and down. Let’s call the additional structure added in the case of either B-theory or the

Aristotelian conception of place ordinal structure, since, in either case, we are imposing an

ordering relation on a given point set.

Plausibly, the Boundary Condition should be definable in terms of the formal structure

out of which we can construct models of space-time. Intuitively, given the various formal

structures described above, only two kinds of formal structure – that is, topological

structure and metrical structure – are capable of capturing the notion of a boundary. For

example, when we say that an ordinary object, e.g., a table, has a boundary, we might

mean that, e.g., the table has an edge, that is, a topological boundary, or we might mean

that the table has finite spatial extension, that is, a metrical boundary. We don’t mean that

the table has a boundary in virtue of our ability to define straight lines on the table, or our

ability to distinguish smooth curves from curves with sharp edges, or in terms of some

ordinal or monadic structure that we can define on the parts of the table. 

13
 Since there

are only two ways of capturing the notion of a boundary in terms of the formal structure

out of which we can construct models of space-time, I’ve defined the Boundary Condition

disjunctively in terms of those two notions.

7.3.2 The Second Objection: Disjunctive or Atomic?

According to the second objection, the metrical conception is a broader family that

includes all of the cases captured by the topological conception, in which case there is

no need to define the Boundary Condition disjunctively. I’ll begin by describing why

someone might think that the metrical conception could subsume the topological concep-

tion. Consider a space-time S with a closed boundary ζ to the past of every non-initial

point. Note that S satisfies the topological conception because there is a closed boundary

to the past every non-initial space-time point. Suppose that ζ is a space-like surface.

13
 ↑ Perhaps the reader will object that one way that a series can have a boundary involves the series having

a first member and having a first member has to do with the ordinal structure of the series. Nonetheless,
having a first member is better described in terms of topological structure. Likewise, one might object that
firstness is a monadic predicate; but, again, firstness is better understood in terms of topological structure.
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Now consider any past directed half-curve originating on ζ. Since there are no points to

the past of any point on ζ, the generalized affine length of any past directed half-curve

originating on ζ is trivially zero. Consequently, ζ is a space-like surface such that all past

directed half-curves have finite generalized affine length. Thus, S satisfies the metrical

conception. If every space-time satisfying the topological conception is bounded by a

space-like surface, then every space-time satisfying the topological conception also satis-

fies the metrical conception. (Note that the converse is not true, since a space-time could

satisfy the metrical conception by including the appropriate kind of open boundary.)

One way to re-state the objection being considered in this section is as a challenge

to produce a space-time that satisfies the topological conception but does not satisfy the

metrical conception. As I’ve shown, every space-time that satisfies the topological con-

ception by being bounded by a space-like surface will trivially satisfy both the topological

conception and the metrical conception. Thus, any space-time that satisfies the topologi-

cal conception without satisfying the metrical conception must be bounded by something

other than a space-like surface. Recall the space-times with “jagged” boundaries con-

sidered earlier; for example, the space-time constructed from a congruence of time-like

curves whose respective ages are given by the function aF(ε) in section  7.1 . Call that space-

time the aF space-time. Space-times with a “jagged” boundary need not be bounded by

a space-like surface. Nonetheless, the aF space-time still satisfies the metrical conception;

we need an additional criterion in order to identify space-times that satisfy the topological

conception without satisfying the metrical conception.

The reason that the aF space-time satisfies the metrical conception is that the aF space-

time includes an initial finite segment. Thus, any space-time satisfying the topologi-

cal conception without satisfying the metrical conception must have a non-space-like

“jagged” closed boundary without including an initial finite segment. There are at least

two ways of constructing a space-time of that kind. First, consider a space-time S∗ with a

non-space-like “jagged” closed boundary that satisfies the metrical conception. Construct

a new space-time by making the initial finite segment of S∗ metrically amorphous. Since

the initial segment of S∗ is metrically amorphous, the initial segment of S∗ is neither finite

nor infinite. Given both that there is no finite initial segment of S∗ and that the points on
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the boundary of S∗ do not comprise a space-like surface, S∗ does not satisfy the metrical

conception. Nonetheless, S∗ satisfies the topological conception, since S∗ includes a closed

boundary.

Here is a second way to construct a space-time satisfying the topological conception

and not the metrical conception. Consider a space-time S∗∗ that fails to satisfy the metrical

conception by having infinite extension to the past of every space-time point. We can

now construct a new space-time by “adding in” a non-space-like “jagged” boundary to

the infinite past, analogous to the way in which the extended real line is constructed by

adding points at positive and negative infinity to the standard real line. I’m not sure

whether such a construction is reasonable, but such a construction at least seems logically

possible. Given the logical possibility of such a construction, the Boundary Condition

should be stated in such a way that allows for the construction’s possibility.

7.4 Summary

In this chapter, I defended the last of my three necessary conditions for the Cosmos

to have had a beginning. Intuitively, an entity begins to exist just in case there is a

temporal boundary before which the entity did not exist. This intuition needs to be made

more precise; as I argued, previous attempts to precisify the notion of a boundary to

the Cosmos’s history – as provided by Craig, Sinclair, and Swinburne – do not succeed.

While Pitts (  2008 ) previously offered a useful distinction between the topological and

metrical senses of a beginning, I have shown that his version of the metrical conception is

inadequate. The novel proposal that I offered in this chapter borrows Pitts’s distinction,

improves on the metrical conception, and, contrary to Pitts’s rejection of the metrical

conception, is defined in terms of a disjunction between the two. According to my

proposal, the Cosmos had a beginning only if either the topological conception or the

metrical conception are satisfied. According to the topological conception, there is a

closed boundary to the past of non-initial space-time points. According to the metrical

conception, there is an initial objectively finite portion of the Cosmos’s history. In turn,

there is an initial finite portion of the Cosmos’s history just in case there is a Cosmos-wide
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space-like surface Σ such that all of the time-like and light-like trajectories that can be

traced backwards from Σ have finite generalized affine length.
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8. CLASSICAL BIG BANG MODELS AND THE

DIRECTION/BOUNDARY CONDITIONS

8.1 Introduction

A variety of authors have expressed the intuitive idea that if classical Big Bang models

were correct, then the Cosmos would have a beginning. I disagree; for example, even if

classical Big Bang models were correct, and we (somehow) didn’t need a quantum gravity

theory, one would still need to show that the Cosmos satisfies the Modal Condition.

However, the Modal Condition is one of the novel contributions made to the literature

by this dissertation. For that reason, past authors have only had access to the Direction

and Boundary Conditions. Consequently, we should interpret the claim that classical Big

Bang models involve a beginning as a claim about classical Big Bang models satisfying

the Direction and Boundary Conditions. As I prove in this chapter, if the Direction

and Boundary Conditions were the only criteria needed for the Cosmos to have had

a beginning, we assume (incorrectly) that General Relativity is a final theory of space-

time, and we assume that space-time is maximally extended, then the Cosmos having a

beginning would turn out to entail a technical criterion for a space-time to be singular, i.e.,

b-incompleteness. If we added the additional assumptions that the Cosmos is spatially

homogeneous and isotropic, that is, the cosmological principle, then we would be able to

derive classical, singular Big Bang models. The short theorem that I prove in this chapter

precisifies the intuition that classical, singular Big Bang models include a beginning and,

in doing so, provides evidence that I have provided the correct criteria for the Cosmos to

have a beginning. The theorem also shows that the Direction and Boundary Conditions

are more fundamental than the sort of “beginning” involved in classical Big Bang models.

I will first describe one way to more rigorously characterize space-time singularities

than I have previously offered. Unfortunately, physicists, philosophers of physics, and

mathematicians have yet to develop a fully satisfactory set of conditions for distinguishing

singular from non-singular space-times. Given the deeply technical nature of this problem,

the solution is beyond my current abilities and I will not attempt to resolve the problem

here. Instead, I will summarize some of the relevant literature in order to offer one
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standard, if not fully satisfactory, conception of how singular and non-singular space-

times differ. Having provided a more rigorous characterization of singular space-times –

in terms of b-incompleteness, as described below – I will prove a theorem that states the

precise relationship between singular space-times and my three conditions for a beginning

of the Cosmos, namely, that all classical space-times satisfying the Direction and Boundary

Conditions are b-incomplete and show how that result can figure into a derivation of the

Big Bang singularity.

8.2 B-Incompleteness and Singular Space-times

Although singular FLRW space-times include a divergent Ricci scalar, divergences in

the various curvature parameters are neither necessary nor sufficient for a classical space-

time to be singular (Curiel,  1999 ,  2021 ; Earman,  1995 ; Joshi,  2014 ). For my purposes,

we can utilize what John Earman ( 1995 , p. 36) calls the “semi-official definition” and

what elsewhere has been called the “most widely accepted solution” for defining singular

space-times (Curiel,  2021 ). A classical space-time is said to be b-complete just in case every

time-like and light-like half-curve has infinite generalized affine length. According to

Earman’s semi-official definition, a classical space-time is then said to be singular just in

case the space-time is not b-complete. Arguably, one should add the condition that space-

time is maximally extended (Lam,  2007 , p. 715). Since this definition is not completely

satisfactory, 

1
 I will not take up the position here that all and only singular space-times

are b-incomplete. Moreover, I will not take up the debate, e.g., Earman,  1995 , p. 32;

Manchak,  2021 , as to whether the space-time we inhabit is maximally extended. Instead,

I will assume that space-time is maximally extended. In any case, b-incompleteness will

allow us to see the precise sense in which my three conditions for the Cosmos to have a

beginning relate to singular space-times. That is, as I prove in the next section, all classical

space-times that are maximally extended and that satisfy the Direction and Boundary

Conditions are b-incomplete. Consequently, if the Cosmos satisfies the Modal Condition

1
 ↑ For some of the problems involved with utilizing b-incompleteness as the definitive feature of singular

space-times, see chapter 2 in Earman,  1995 ; also see Curiel,  2021 .
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and includes a classical space-time satisfying the Direction and Boundary Conditions –

and so has a beginning – then space-time is b-incomplete.

8.3 All classical space-times satisfying the Direction and Boundary Conditions are
b-incomplete

Before beginning the proof, two cautionary notes are in order. First, the converse of

the result to be proved in this section does not hold, i.e., if the Cosmos is b-incomplete,

it would not follow that the Cosmos satisfies the Direction and Boundary Conditions.

By this point in the dissertation, the reason should be obvious. If the Cosmos were b-

incomplete, this would tell us, at most, that the Cosmos satisfies the Boundary Condition,

but would not tell us whether the Cosmos satisfies the Modal or Direction Conditions.

Even if space-time were finite to the past, with no extension to the past of the Big Bang,

the Cosmos might still fail to satisfy the Modal Condition and so fail to have a beginning.

Claim. All maximally extended classical space-times that satisfy the Direction and

Boundary Conditions are b-incomplete.

Proof. To begin the proof, let’s assume that the Cosmos includes a maximally extended

classical space-time satisfying the Direction and Boundary Conditions. Recall that, ac-

cording to the Boundary Condition, the Cosmos began to exist just in case either there is

a Cosmos-wide closed boundary to the past of every non-initial space-time point or there

is an initial objectively finite portion of the Cosmos’s history. We can proceed to prove by

cases.

Let’s first suppose that space-time has a closed boundary B to the past of every non-

initial space-time point. The proof for this case is trivial. Consider any time-like or

light-like half-curve γ that originates at some point p ∈ B. Any such curve will have zero

extension backwards through the space-time. 

2
 Since the curve has zero backwards exten-

sion, the space-time is b-incomplete. Having established the first case, let’s move to the

second. Suppose that there is an initial objectively finite portion of the Cosmos’s history.

2
 ↑ This result will not necessarily follow for any curve that is not located in B. For example, suppose

that space-time has a closed boundary but that the initial portion of the Cosmos has the “fractal” metrical
properties discussed above. In that case, any time-like or light-like curve not located in Bwill have infinite
backwards extension.
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Now consider an arbitrary time-like or light-like half-curve originating on some space-

like surface Σ in the initial objectively finite portion and that extends backwards through

the Cosmos. By the definition of an objectively finite portion of the Cosmos’s history

established above, this half-curve must have finite generalized affine length. Therefore, if

the Cosmos includes a classical space-time satisfying either of the two disjuncts – and so

satisfying the Boundary Condition – the Cosmos is b-incomplete. Therefore, we have the

desired result, i.e., if the Cosmos includes a classical space-time satisfying the Direction

and Boundary Conditions, then space-time is b-incomplete.

Having proven the desired result, let’s turn to considering how the result relates my

three conditions for the beginning of the Cosmos to classical Big Bang cosmology. Classical

Big Bang cosmology is modeled using FLRW space-times. The FLRW space-times that

are sometimes claimed to be a model of the beginning of the universe include a curvature

singularity and are b-incomplete. According to a result that has been proven elsewhere,

all FLRW models (excluding those that have pathological features such as closed time-

like curves) satisfy the Direction Condition (Castagnino et al.,  2003 ; Matthews,  1979 ); as

a consequence of the result that I’ve proven here, the non-pathological FLRW models

satisfying the Boundary Condition are b-incomplete. In the case of maximally extended

FLRW models, the converse holds as well, that is, all b-incomplete maximally extended

FLRW models satisfy both the Direction Condition and the Boundary Condition.

Arguably, the Direction and Boundary Conditions are more fundamental than the Big

Bang singularity because the Direction and Boundary Conditions figure into a derivation

of the Big Bang singularity. Suppose (i) General Relativity is true, (ii) the cosmological

principle is true, (iii) space-time is maximally extended, (iv) space-time satisfies the Direc-

tion Condition, and (v) space-time satisfies the Boundary Condition. The combination of

those five deductively entails space-time is correctly modeled by one of the FLRW metrics

with a Big Bang singularity. The assumption that General Relativity is true entails the

Einstein Field Equations. The Einstein Field Equations together with the assumption that

the cosmological principle is true – that is, that space-time can be “cut up” (or foliated) into

space-like surfaces on which the matter-energy distribution is homogeneous and isotropic

– entails that space-time is one of the FLRW models. Since we’ve assumed that space-time
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is maximally extended, we can make the further restriction to maximally extended FLRW

models. Maximally extended FLRW models can be subdivided into two families: those

that include a Big Bang type singularity and those that do not. Using the fact that the

Direction and Boundary Conditions together entail that space-time is b-incomplete, we

can eliminate the FLRW models that do not include a Big Bang type singularity. Thus, in

the context of General Relativity, the Direction and Boundary Conditions, together with

some additional assumptions about the global structure of space-time, can be used to

derive the Big Bang singularity.

This result – that the Direction and Boundary Conditions can figure into a derivation of

the Big Bang singularity – helps to show one sense in which the Direction and Boundary

Conditions are more fundamental than Big Bang theory. The result also helps to clarify

why, on the assumption that General Relativity is true, one still cannot infer that the

Cosmos began to exist. I will argue in chapter  12 that we have no good reason for thinking

that the cosmological principle is unrestricted in scope. The unrestricted cosmological

principle is required for the derivation. Second, as I have mentioned, Manchak has

challenged the notion that we can know space-time to be maximally extended, so that the

assumption that space-time is maximally extended is at least controversial. Third, I will

argue in chapter  9 that the conjunction of General Relativity and any set of observations

that we are likely to have will not entail that the Cosmos satisfies the Direction or Boundary

Conditions and I will argue in chapter  12 that inductive arguments for the view that the

Direction or Boundary Conditions are satisfied do not succeed either. In order to know

whether the Direction and Boundary Conditions are satisfied, we would need to know

substantive details about the global distribution of matter-energy that we are not in an

epistemic position to know.

8.4 Summary

In this chapter, I’ve completed two tasks. First, I provided a more rigorous charac-

terization of what space-time singularities are in terms of b-incompleteness. Second, I

showed what the relationship is between classical, singular Big Bang models and the
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Direction and Boundary Conditions. I thereby proved a theorem explaining the intuition

that classical, singular Big Bang models involve a beginning. According to the theorem,

if the Cosmos satisfies the Direction and Boundary Conditions and space-time is maxi-

mally extended, then space-time is b-incomplete. I sketched a second theorem according

to which if we add the cosmological principle, then singular FLRW models follow as a

deductive consequence. Consequently, the Direction and Boundary Conditions are more

fundamental than the Big Bang singularity.

Having established three necessary conditions for the Cosmos to have had a beginning

and explicated how those three necessary conditions are connected to the mathematics

of (classical) singular space-times, we have left to determine whether the Cosmos in fact

satisfies the three conditions. That is the project that I take up in part  III of this dissertation;

as we will see, the current state of inquiry in physical cosmology provides us with strong

reason to doubt that we know, or possibly even could know, whether the Cosmos satisfies

the Modal, Direction, and Boundary Conditions.
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Part III

COSMIC SKEPTICISM DEFENDED
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9. OBSERVATIONALLY INDISTINGUISHABLE SPACE-TIMES AND

THE BEGINNING OF THE COSMOS

Nature loves to hide.

— Heraclitus

Somewhere, something incredible is waiting to be

known...
— Carl Sagan

9.1 Introduction to Part III

Cosmic Skepticism is the provisional thesis that the provinciality of our knowledge of

the physical facts with respect to scale, spatio-temporal location, or energy prevents us

from having empirical access to whether the Cosmos satisfies the Modal, Direction, and

Boundary Conditions. If Cosmic Skepticism is true, then we do not have empirical access

to either the formation of the Cosmos or whether there was such an event or process as

the formation of the Cosmos. Cosmic Skepticism is a skeptical thesis not in the sense that

we have an a priori in principle reason for thinking that we cannot know whether the

Cosmos had a beginning but instead in the sense that as empirical inquiry currently stands

we have reason to think that we cannot know whether the Cosmos had a beginning.

Future inquiry may change our epistemic situation in radical ways that are impossible

for us to foresee. My strategy for defending Cosmic Skepticism involves defending the

following argument:

1. We know the Cosmos began to exist only if we know the Cosmos satisfies the three

conditions introduced in part II, i.e., the Modal Condition, the Direction Condition,

and the Boundary Condition.

2. We do not know whether the Cosmos satisfies the three conditions.
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3. Therefore, we do not know whether the Cosmos began to exist.

In part  II of this dissertation, I defended the view that the Cosmos began to exist only

if the Cosmos satisfies the Modal, Direction, and Boundary Conditions. Thus, we can

know that the Cosmos began to exist only if we know that the Cosmos satisfies the Modal,

Direction, and Boundary Conditions. In the third part of this dissertation, I consider four

arguments for the second premise.

First, whether the Cosmos satisfies the Boundary Condition is a bit of unobservable

chronogeometric structure. According to a standard view in philosophy of science, we

have reason to believe in an unobservable entity provided we have reason to believe a

broader theory which entails that entity’s existence. While we should expect General

Relativity to be replaced in subsequent physical inquiry by a quantum gravity theory,

General Relativity remains our best theory of chronogeometric structure. In the context of

General Relativity, whether two space-times are observationally indistinguishable turns

out to be a tractable and precise mathematical problem. As I will prove, no set of obser-

vations that we currently have, when conjoined with General Relativity, entails that the

Cosmos satisfies the Direction or Boundary Conditions. That is, because of the provin-

ciality of our knowledge of the Cosmos due to the relative scale of the Cosmos and our

spatio-temporal location within the Cosmos, General Relativity suggests that our Cosmos

is observationally indistinguishable from another very different space-time that fails to

satisfy the Direction or Boundary Conditions.

Second, considerations in the philosophical foundations of statistical mechanics entail

either that the Cosmos violates the Modal Condition or else that there is a transcendental

condition on the possibility of our knowledge of the past that prevents us from having

knowledge of states of affairs prior to a specific past boundary. Here we meet a warning

from the nineteenth century: the fact that there is some past boundary beyond which we

cannot make reliable inferences does not entail that the Cosmos satisfies the Boundary

Condition. Instead, the existence of a past boundary beyond which we cannot make

reliable inferences suggests that the provinciality of our knowledge of the physical facts
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with respect to spatio-temporal location prevents us from knowing whether the Cosmos

satisfies the Boundary Condition.

Third, if a variety of live cosmological models are true, then the Cosmos does not

satisfy the Boundary Condition. Due to the provinciality of our knowledge with respect

to scale, time, space, and energy, we do not know whether any of those cosmological

models are true, or at least true in sufficient detail to suggest on their basis whether the

Cosmos satisfies the Boundary Condition. Nonetheless, we cannot rule the models out

and so cannot rule out the possibility that the Cosmos was beginningless.

Fourth, I complete the case for Cosmic Skepticism by turning to confirmation theory.

There are two families of inferences that could be used in arguing for the conclusion that the

Cosmos satisfies the Modal, Direction, and Boundary Conditions: part-to-part inferences

and part-to-whole inferences. Part-to-part inferences involve projecting an empirical

regularity from an observable portion of the Cosmos into an unobservable portion of the

Cosmos. Once the empirical regularity has been projected into the unobservable portion,

the empirical regularity can be used to argue either that the Cosmos began to exist or

that the unobservable portion includes features relevant to whether the Cosmos began to

exist. I will show that part-to-part inferences fail because they rely upon a weak analogy

between observable and unobservable portions of the Cosmos and because we have no

good reason to think that the known physical facts are representative of all of the physical

facts that there are.

Next, I turn to part-to-whole inferences. Part-to-whole inferences project an empirical

regularity from an observable portion of the Cosmos to the whole Cosmos. I will show

that part-to-whole inferences are poor inferences because, as with part-to-part inferences,

we have no good reason for thinking that the known physical facts are representative of

all of the physical facts that there are. However, part-to-whole inferences are also poor

inferences for a more profound reason. Assuming that Paul Draper’s account of intrinsic

probability is correct, the intrinsic probability of a hypothesis is determined by the modesty

of the hypothesis, that is, how much the hypothesis tells us about the world, the coherence

of the hypothesis, that is, the degree to which the parts of the hypothesis are mutually

supportive, and nothing else. I show that on the assumptions that Draper’s account of
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intrinsic probability is correct and that induction is reliable, there is an as yet unresolved

tension between the modesty and the coherence of hypotheses that is particularly acute

for hypotheses about the totality of physical reality. As long as that tension remains

unresolved, we are unable to judge the intrinsic probability of hypotheses about the entire

Cosmos and thus ill-equipped to make part-to-whole inferences.

The four arguments collectively provide a strong case for the conclusion that we cannot

know whether the Cosmos satisfies the Modal, Direction, or Boundary Conditions and so

cannot know whether the Cosmos began to exist. And since we cannot know whether the

Cosmos began to exist, we cannot know whether the second premise of the KCA is true.

Ergo, the wholly a posteriori defense of the KCA fails.

9.2 Introduction to Chapter 8

Whether the Cosmos has a beginning – and so whether the Cosmos satisfies the Modal,

Direction, and Boundary Conditions – is not directly observable. Nonetheless, according

to a standard view in philosophy of science, we have reason to endorse the truth of an

unobservable claim just in case a well supported scientific theory, in conjunction with

some body of observations, entails the truth of the unobservable claim. In this chapter, I

address whether some collection of observations, in conjunction with General Relativity,

entails that physical reality includes a space-time satisfying the Direction and Boundary

Conditions. General Relativity is not likely to be a final or complete theory of space-time,

but, until we have a well supported quantum gravity successor theory, General Relativity

is the best scientific theory of space-time that we have. For that reason, the conclusions

that I reach in this chapter should be understood as only provisionally held. Moreover,

even if no body of observations, in conjunction with General Relativity, entails that space-

time satisfies the Direction and Boundary Conditions, there may be other reasons – such

as extra-empirical theoretical virtues (simplicity, parsimony, fecundity, and the like) – that

would support the view that space-time satisfies the Direction and Boundary Conditions.

Whether or not we should think the Cosmos has a beginning ultimately depends on the a

posteriori epistemic probability of the hypothesis that the Cosmos has a beginning; thus,
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a full discussion as to whether the Cosmos has a beginning will need to wait until we’ve

discussed confirmation theory in chapter  12 .

Fallowing Malament,  1977a , a given space-time S is said to be observationally indistin-

guishable from a distinct space-time S′ just in case no collection of observations that a given

observer in S or S′ could make would allow them to determine whether they inhabited

S or S′. S is said to be weakly observationally indistinguishable from a distinct space-time

S′ just in case no collection of observations that a given observer in S could make would

allow them to distinguish the space-time they inhabit from S′. Lastly, I will say that S

is super weakly observationally indistinguishable from S′ just in case observers in a specific

region (more precisely and rigorously specified below) cannot determine whether they

inhabit S as opposed to S′. The Cosmos has a beginning only if the Cosmos includes a

space-time satisfying both the Direction and Boundary Conditions. Let’s call space-times

that satisfy the Direction and Boundary Conditions DB space-times. Since observational

indistinguishability (of whatever sort) as well as the Direction and Boundary Conditions

are precisely specifiable mathematical conditions, whether an observer in a relativistic

space-time could deduce that they inhabit a DB space-time turns out to be a precisely

specifiable mathematical question. As I will prove, a variety of DB space-times are at least

weakly or super weakly observationally indistinguishable from non-DB space-times. Sup-

posing that we inhabit a DB space-time, no collection of observations that humans will

ever be capable of making could be used to determine whether the Cosmos began to exist.

Philosophy of physics has long featured a niche literature devoted to space-time in-

distinguishability. As Enrico Cinti and Vincenzo Fano ( 2021 ) describe, philosophers of

physics have generally understood a series of mathematical results established by J.B.

Manchak ( 2009 ,  2011 ) to be the “the last word” and to have definitively established that

cosmology is restricted “to the study of the so-called visible universe”. Manchak’s results,

Cinti and Fano say, are generally taken (by philosophers of physics) to forbid cosmologists

from successfully formulating “hypotheses regarding the universe as a whole”, by which

they mean space-time as a whole. Cinti and Fano are themselves critical of Manchak’s

results, but their quoted comments do accurately reflect the way in which philosophers

of physics have generally received Manchak’s results. For example, Jenann Ismael, e.g.,
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( 2018 ), and Claus Beisbart, e.g., ( 2022 ), signal that they take Manchak to have offered the

final word when they put Manchak’s results to work without raising or answering objec-

tions. Despite the fact that friends of the a posteriori defense of the KCA have paid some

attention to models in physical cosmology, e.g., Craig and Sinclair,  2009 ,  2012 , space-time

indistinguishability has yet to catch their attention. 

1
 Many of the cosmological models

developed by physicists were intended as toy models and were not necessarily intended

to be realistic descriptions of the universe we inhabit. Thus, friends of the a posteriori

defense of the KCA are better off addressing what might be taken to have much more

significance, namely, what, if anything, we can justifiably say about global space-time

structure on the basis of observations. This chapter advances the literature on the KCA

by addressing whether DB space-times, and so space-times that might have a beginning,

are observationally indistinguishable from non-DB space-times, and so space-times that

certainly do not have a beginning.

I will first discuss results concerning the observational indistinguishability of rela-

tivistic space-times, beginning with the Malament-Manchak theorem and related results.

Afterwards, I will introduce a new notion of observational indistinguishability – which I

call super weak observational indistinguishability – and I will show that if our space-time is

a DB space-time then, plausibly, our space-time is super weakly observationally indistin-

guishable from a non-DB space-time. In that case, unless our understanding of space-time

is massively overturned in future inquiry, no set of observations that humans will ever

make will allow us to decisively distinguish our space-time from a non-DB space-time.

Lastly, I discuss how observational indistinguishability relates to the Borde-Guth-Vilenkin

theorem, which has sometimes been claimed to provide strong support for the conclusion

that the Cosmos began to exist.

1
 ↑ I know of only two instances in which space-time indistinguishability has previously been discussed with

some connection to the KCA. The first, i.e., Linford,  2021 , is one of my own recent papers. The other, i.e.,
Beisbart,  2022 , discusses space-time indistinguishability in connection with Kant’s first antinomy, which
has itself been interpreted as offering a version of the KCA.
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9.3 Definitions

In this section, I define a number of technical terms that I will deploy in subsequent

sections. In subsequent sections, I will offer both non-technical (“English” language)

explanations of the results that I discuss or prove as well as technical versions. Readers

who are only interested in the English language version, and not in the mathematical

details, can skip or skim this section and then refer back to this section in cases where they

might need a specific definition. Readers who are only interested in the mathematical

results should read the definitions that I offer in this section and can feel free to skip or

skim the English language explanations of the results that I subsequently offer.

A relativistic space-time is a pair (M, gµν), where M is a set of points equipped with, e.g.,

topological structure, 

2
 and gµν is a metric tensor defined on M with Lorentzian signature

(−,+, ...,+) and with indices µ and ν ranging over {0, 1, 2, 3}. In order for (M, gµν) to be

consistent with General Relativity, (M, gµν) needs to satisfy a set of non-linear coupled

partial differential equations called the Einstein Field Equations (EFE), i.e., Gµν = 8πGTµν,

where Gµν is the Einstein tensor, encoding the curvature of space-time, G is Newton’s

gravitational constant, and Tµν is the energy-momentum tensor, encoding the distribution

of mass, energy, and momentum throughout space-time. As Misner, Thorne, and Wheeler

famously quipped, in virtue of the EFE, matter-energy tells space-time how to curve and

space-time tells matter-energy how to move.

For the Cosmos to have a beginning requires that the Cosmos satisfies the Modal,

Direction, and Boundary Conditions. In this chapter, I am focused on how results from

General Relativity bear on whether we can know that the Cosmos had a beginning. Since

General Relativity is a theory about space-time, I set aside the Modal Condition and focus

on the Direction and Boundary Conditions. To review, (M, gµν) satisfies the Direction

Condition just in case (M, gµν) satisfies the criteria discussed in chapter  6 and previously

discussed in Matthews,  1979 , p. 84 and Castagnino et al.,  2003 . That is, (M, gµν) satisfies

the Direction Condition just in case (i) (M, gµν), is temporally orientable, (ii) for any point

p in (M, gµν), there is a locally defined direction of time at p, and (iii) for all pairs of points

2
 ↑ More precisely, M is a C∞, connected, Hausdorff, and paracompact manifold.

167



p and q in (M, gµν), the future (past) direction defined at p agrees with the future (past)

direction defined at q. (M, gµν) satisfies the Boundary Condition just in case either there is

a closed boundary to the absolute past of all non-initial points in M or (M, gµν) includes a

finite initial segment, that is, there is a space-time-wide space-like surface Σ such that all

of the time-like and light-like trajectories that can be traced backwards from Σ have finite

generalized affine length. Σ is space-time-wide just in case one of three conditions is met:

1. Σ is not a boundary of space-time and Σ cuts space-time into three parts: those that

are before Σ, those that are located on Σ, and those that are located after Σ.

2. Σ is a boundary of space-time and all of the space-time points that are not in Σ are

to the absolute future of Σ.

3. Σ is a boundary of space-time and all of the space-time points that are in Σ are to

the past of Σ.

As I’ve said, the current chapter deals with whether some collection of data obtainable by

observers embedded in a relativistic space-time, in conjunction with General Relativity,

entails that the space-time the observers inhabit satisfies the Direction and Boundary

Conditions. To answer that question, we need two pieces of formal machinery: first, we

need to be able to describe the data available to a given observer in some mathematically

tractable way and, second, we need to be able to say when two space-times (M, gµν) and

(M′, g′µν) are either distinct or the same as one another.

First, how can we describe the data available to a given observer? Consider a point p in

M. Denote p’s past light cone I−(p), so that I−(p) is the set of points from which information

can reach p without exceeding the speed of light. Likewise, let’s denote p’s future light

cone I+(p), so that I+(p) is the set of points to which information can travel from p without

exceeding the speed of light. I will assume that the data available to an observer at p is

exhausted by the points in I−(p) as well as the distribution of properties in I−(p). I am

excluding the possibility that, e.g., observers can acquire information either from events

to which they are space-like related or that are in their absolute future.
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Second, what is the appropriate formalism for describing when (M, gµν) and (M′, g′µν)

are either distinct or the same as one another? I will say that (M, gµν) and (M′, g′µν)

are isometric if there exists a function that smoothly maps every point in (M, gµν) into a

suitable counterpart in (M′, g′µν). A counterpart is suitable just in case the smooth function

mapping (M, gµν) into (M′, g′µν) preserves the lengths of space-time intervals. A function

of that kind can be rigorously defined and is called a diffeomorphism; thus, (M, gµν) and

(M′, g′µν) are said to be isometric just in case there exists a diffeomorphism ϕ : M → M′

such that ϕ(gµν) = g′µν (Manchak,  2020 , pp. 9–10). We now possess a suitable notion

of “distinct” space-times, that is, two space-times are distinct just in case they are not

isometric. An open neighborhood around a space-time point p is a spatio-temporal region,

with an open boundary, containing p. (M, gµν) and (M′, g′µν) are locally isometric just in

case for each point p in M there is an open neighborhood O ⊂ M containing p and an

open neighborhood O′ ⊂ M′ such that (O, gµν) and (O′, g′µν) are isometric and vice versa

(Manchak,  2020 , p. 11).

Time-like curves are the trajectories traced by particles moving through space-time at

less than the speed of light. Consider a time-like curve γ with the following properties.

An observer traversing γ always – as far as they are concerned – moves into the future;

nonetheless, the observer eventually comes to a space-time point numerically identical to

the point at which they began. This is a case of time travel. For any observer traversing

such a trajectory, there is a space-time point in their future numerically identical to a

space-time point to their past. γ is said to be a closed time-like curve. A physical system

traversing a closed time-like curve must, for self-consistency, return to a physical state

numerically identical to the physical state with which the system began; otherwise, a

“grandfather paradox” takes place.  

3
 Whether closed time-like curves are metaphysically

3
 ↑ In the film Groundhog Day, Phil Connors (played by Bill Murray) repeatedly relives the same day. Although

beginning each day in the same bed, Phil does not traverse a closed time-like curve because Phil does not
return to the same physical state; Phil retains memories of the “previous” days and performs distinct actions
“each” day. There are at least two possible interpretations of the film’s events. Supposing that Phil relives
numerically the same day over again, the film’s events are contradictory. Since all solutions to the Einstein
Field Equations are self-consistent, no solution to the Einstein Field Equations includes a trajectory like
Phil’s. On a second possible interpretation, Phil does not relive numerically the same day. Instead, there is
some process that resets Phil’s environment at the end of each day to a state qualitatively indistinguishable,
but numerically distinct, from the state at the start of the day. In that case, Phil inhabits linear time instead
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possible remains controversial, but there are self-consistent solutions to the Einstein Field

Equations that contain closed time-like curves. A space-time S is said to be causally bizarre

just in case S includes at least one closed time-like curve.

The limit of a time-like curve extended infinitely far into the future is said to be future

time-like infinity. The limit of a light-like curve extended to infinite affine parameter is

likewise said to be future light-like infinity. The union of the set of points in future time-like

infinity and future light-like infinity is called the future conformal boundary. A pair of

space-times (M, gµν) and (M′, g′µν) is said to be observationally indistinguishable just in case

(M, gµν) and (M′, g′µν) satisfy the following two properties:

1. For every point pi ∈ M with past light cone I−(pi) and that is not on the future

conformal boundary of M, there exists a point qi ∈M′ with past light cone I−(qi) such

that I−(pi) and I−(qi) are isometric.

2. For every point qi ∈ M′ with past light cone I−(qi) and that is not on the future

conformal boundary of M, there exists a point pi ∈M with past light cone I−(pi) such

that I−(pi) and I−(qi) are isometric.

While this is the definition of observational indistinguishability originally offered in Mala-

ment,  1977a , a weaker condition suffices for my purposes. We need only to require that any

observer in (M, gµν) cannot determine whether they inhabit (M, gµν) or (M′, g′µν). (M, gµν)

is said to be weakly observationally indistinguishable from (M′, g′µν) just in case, for every

point pi ∈ M with past light cone I−(pi) and that is not on the future conformal boundary

of M, there exists a point qi ∈ M′ with past light cone I−(qi) such that I−(pi) and I−(qi) are

isometric. As defined, the weak observational indistinguishability relation is asymmet-

ric. The statement that (M, gµν) is weakly observationally indistinguishable from (M′, g′µν)

does not entail that (M′, g′µν) is weakly observationally indistinguishable from (M, gµν).

This should make intuitive sense. Consider that a function mapping from students to

seats in a non-full classroom is injective, i.e., for every student there is a unique seat, but

not surjective, i.e., there are some seats for which there are no students. Likewise, the fact

of a temporal loop. In that case, the film is self-consistent. And while a process that resets in the way that
Phil experiences is improbable, such a process is not impossible.

170



that every past light cone in (M, gµν) has an isometric counterpart in (M′, g′µν) does not

entail that every past light in (M′, g′µν) has an isometric counterpart in (M, gµν).

Lastly, I need to define some global properties of space-time that might vary between

a space-time and its (weakly) observationally indistinguishable counterpart. (M, gµν)

is extendible just in case there exists a space-time (M′, g′µν) and an isometric embedding

ϕ : M → M′ such that ϕ(M) ⊂ M′ (Manchak,  2016 , p. 268). Note that since ϕ maps M to

a proper subset of M′, this definition captures the intuitive idea that M′ is an extension of

M only if M′ is “larger” than M.

A space-time is inextendible only if the space-time has no extensions. That is, space-time

is said to be inextendable just in case, relative to some background collection of models

of space-time, space-time is as large as space-time can be. Of course, this condition has

physical relevance only if the background collection coincides with the full collection of

physically reasonable space-times (Manchak,  2020 , pp. 41–42).

A space-time is isotropic just in case the space-time realizes the same properties in every

direction from any space-time point. A space-time is spatially isotropic just in case, on

each of a series of space-like surfaces that exhaust all of space-time, space-time realizes

the same properties in every direction from a given point. A space-time is homogenous just

in case space-time realizes the same properties at every point. A space-time is spatially

homogenous just in case, on each of a series of space-like surfaces that exhaust all of space-

time, the same properties are realized at every point. Friedman-Lemaître-Robertson-Walker

(FLRW) space-times are those space-times that are both spatially homogenous and spatially

isotropic and are the space-times used to traditionally model Big Bang cosmology, at least

in the context of General Relativity.

Given some set A, a set of open sets {Oi} is an open cover of A if and only if the union of

all of the sets in {Oi} contains A (Manchak,  2020 , p. 57; Garrity,  2001 , p. 64). Any subset of

{Oi} that also covers A is said to be a subcover Manchak,  2020 , p. 57. A set A is compact just

in case every open cover of A has a finite subcover (Garrity,  2001 , p. 64). In the case that

M = Rn, for some integer n, A is compact just in case A is closed and bounded (Garrity,

 2001 , p. 69). A is said to be non-compact just in case A is not compact. A space-time is

causally compact if for all p, q ∈M, the region J−(p)∩ J+(q) is compact (Manchak,  2009 , p. 18).
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A space-time is globally hyperbolic just in case the space-time is not causally bizarre and is

causally compact (Manchak,  2020 , p. 18). Alternatively, we can say that a space-time is

globally hyperbolic just in case the space-time includes a Cauchy surface.

9.4 The Malament-Manchak Theorem and Related Results

Here is how Manchak states the Malament-Manchak Theorem (MMT):

MMT := “Let (M, gab) be any spacetime which is not causally bizarre [and is

temporally orientable]. There exists another spacetime (M′, g′ab) (one that is

not isometric to (M, gab)) such that (M, gab) is [weakly] observationally indistin-

guishable from (M′, g′ab)” (Manchak,  2009 , p. 54).

Since I will need the chronogeometric construction involved in Manchak’s proof of the

MMT for proving a result in a subsequent section, I turn to sketching Manchak’s proof.

I will first summarize how the proof works in quasi-ordinary English before providing a

more rigorous description of the proof.

9.4.1 The “English” Version

Suppose that Pam is trying to determine what space-time she inhabits. The observa-

tional data available to Pam is contained entirely within Pam’s past light cone. Pam’s

space-time S contains her past light cone. Suppose that another quite different space-time

S′ includes a space-time region qualitatively indistinguishable from Pam’s past light cone.

In that case, Pam will not be able to use the data that is observationally available to her,

in conjunction with General Relativity, to determine whether she inhabits S or S′. More

generally, all of the observational data available to any collection of observers within S

are exhausted by the collection of their respective past light cones. If we can construct

another quite different space-time S′ that contains regions isometric to all of the past light

cones in S, then no observer in S can determine whether they inhabit S or S′.

The MMT states that given any space-time S that is not causally bizarre and which is

temporally orientable, there exists another space-time S′, distinct from S, that is weakly
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observationally indistinguishable from S. In order to show that result, Manchak begins

with a space-time S, which he assumes to be not causally bizarre and temporally orientable,

and then explicitly constructs S′ from S. To do so, Manchak considers a sequence of light

cones in S; let’s denote that sequence of light cones C = {c1, c2, ...}. For each light cone ci

in C, construct a space-time containing a region isometric to ci; the result is a countably

infinite collection of distinct space-times that we can denote {S1,S2, ...}. Now take one of

those space-times Si and place the mouth of a wormhole in that space-time outside of the

region isometric to ci. Since the wormhole is placed outside of the region isometric to

ci, the resulting space-time, which includes the wormhole mouth, still includes a region

isometric to ci. Connect that wormhole to another space-time – which we can call S̃i – which

can have any collection of properties that we’d like. Now, construct another wormhole

mouth in S̃i that connects to a wormhole in Si+1, while ensuring that the wormhole in Si+1

is outside of the region isometric to ci+1. Let’s refer to each of the S̃i as “filler” space-times.

Since we can iterate through the entire sequence of space-times {S1,S2, ...}, placing a

filler space-time “between” each of them, we’ve effectively constructed one giant space-

time; the procedure used for constructing that giant space-time is referred to as the

clothesline construction, since the space-times are analogous to clothes and the wormwholes

between all of the space-times are analogous to a clothesline. Since the giant space-time

that results from the clothesline construction includes all of the light cones from the

original space-time, the original space-time is observationally indistinguishable from the

giant space-time. And since the filler space-times can have nearly any set of properties

that we’d like, the giant space-time can be almost arbitrarily different from the original

space-time.

Supposing that the characters on the television show Star Trek inhabited a giant space-

time resulting from a clothesline construction, we can imagine the following scenario.

Suppose that the space-time region inhabited by the Milky Way galaxy has a finite past

with a temporal boundary at the Big Bang. Since the Enterprise inhabits one of the

giant space-times resulting from the clothesline construction, the Enterprise can be piloted

through one of the wormholes. Exiting the wormhole, the Enterprise crew encounter a

space-time region without a past temporal boundary. But from that space-time region,
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they can again encounter a wormhole. Piloting the Enterprise through that wormhole,

they emerge to find a space-time region that closely resembles the space-time region

they started in, but which is numerically distinct from their original space-time region.

That space-time region has a finite past, originating in its own big bang. Again, the

Enterprise can encounter a wormhole. Traversing the wormhole, the Enterprise crew could

find a space-time region with radically different properties from any region they have

encountered before. And so on; the Enterprise could continue traversing wormholes and

encountering space-time regions with almost any set of characteristics that we could care

to specify interleaved with space-times that are qualitatively similar to the space-time they

originally inhabited.

One might worry that this construction will result in space-times that do not satisfy the

laws of physics. For example, relativistic space-times satisfy the Einstein Field Equations.

When we cut up space-times and then reconnect them, as in the clothesline construction,

are we guaranteed that the resulting space-time satisfies the Einstein Field Equations? As

I discuss in section  9.4.3 , Manchak has previously proved that the space-times constructed

using the clothesline construction will satisfy any set of local conditions, including the

Einstein Field Equations. Moreover, while the MMT may be an interesting piece of

mathematics, I am ultimately interested in the philosophical and scientific lessons that may

be drawn from the MMT. As I discuss in section  9.4.4 , Cinti and Fano have objected that

the space-time resulting from the clothesline construction is unphysical, so that perhaps

we can rule out clothesline-type space-times as live possibilities for the global structure

of our space-time. While I concede that the clothesline construction might itself be an

implausible candidate for the global structure of space-time, I suggest that qualitatively

similar space-times may be constructed that are more realistic candidates for the global

structure of our space-time.

9.4.2 The Technical Version

I now turn to a more technical sketch of Manchak’s proof. Following Manchak ( 2009 ),

suppose that (M, gµν) is a non-causally bizarre space-time. Let {pi} be a countable series
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of points in M such that i is a positive integer and ∪iI−(pi) =M. Since (M, gµν) is assumed

to not be causally bizarre, we know that, for all i, I−(pi) , M. For each point pi, identify

some other point qi ∈ M. Denote the neighborhood of qi as Oi and choose Oi such that

Oi∩ I−(pi) = ∅. Since, by definition, M satisfies the Hausdorff condition, 

4
 we can choose Oi

and Oi+1 such that Oi ∩Oi+1 = ∅. Let K+i ⊂ Oi and K−i ⊂ Oi be three dimensional space-like

surfaces such that K+i ∩ K−i = ∅. For example, K+i might be the interior and surface of a

three-dimensional sphere.

We can now use the so-called “clothesline” construction to construct a space-time

(M′, g′µν) that is weakly observationally indistinguishable from (M, gµν). This construction

involves a countably infinite collection of space-time manifolds – each denoted either

(M(i, α), gµν) or (M(i, β), gµν) – strung together by an intricate series of “wormholes”. Define

(M(i, α), gµν) and (M(i, β), gµν) such that:

M(i, j) =


M − K+1 i = 1 j = α

M − (K+i ∪ K−i ) i > 1 j = α

M − (K+i ∪ K−i+1) i = 1, 2, 3, ... j = β

Now let’s string together the M(i, j). On a two-dimensional space-time diagram where

time is represented by a vertical axis and we retain one dimension of space running along

the horizontal, K+i and K−i appear as line segments. For that reason, on the two-dimensional

diagram, we can distinguish the lower edge and the upper edge of K+i (for example), where

the lower and upper edges correspond to the three dimensional interior volume of K+i .

Trajectories entering the lower edge of K+i are entering the interior of K+i from the past

while trajectories leaving the upper edge of K+i are going from the interior of K+i into

the future. For all values of i, make the following identifications, where we exclude the

boundary points:

4
 ↑ A space-time S is said to satisfy the Hausdorff condition just in case S satisfies the following condition.

Given any two points p and q in S, there exists an open set P centered on p and an open set Q centered on q
such that P and Q are disjoint.
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upper edge of K+i in (M(i, α), gµν) ⇐⇒ lower edge of K+i in (M(i, β), gµν)

lower edge of K+i in (M(i, α), gµν) ⇐⇒ upper edge of K+i in (M(i, β), gµν)

upper edge of K+i+1 in (M(i, β), gµν) ⇐⇒ lower edge of K+i in (M(i + 1, α), gµν)

lower edge of K+i+1 in (M(i, β), gµν) ⇐⇒ upper edge of K+i in (M(i + 1, α), gµν)

We’ve now successfully strung together all of the (M(i, j), gµν); that is, (M(1, α), gµν) is

connected to (M(1, β), gµν), which is connected to (M(2, α), gµν), which is connected to

(M(2, β), gµν), and so on. The strung together series of space-times itself forms a space-

time; denote that space-time (M′, g′µν). Since each of the (M(i, α), gµν) contains a copy

of I−(pi), (M′, g′µν) contains all of the I−(pi)’s. Thus, (M, gµν) is weakly observationally

indistinguishable from (M′, g′µν). Since (M, gµν) and (M′, g′µν) are not isometric, we have

that all non-causally bizarre space-times are weakly observationally indistinguishable

from some other space-times. (For a more rigorous statement, see Manchak,  2009 .)

Manchak has provided a logically stronger variant of the MMT. Recall the definition

of ‘locally isometric’, i.e., space-times (M, gµν) and (M′, g′µν) are locally isometric just in

case for each point p in M there is an open neighborhood O ⊂ M containing p and an

open neighborhood O′ ⊂ M′ such that (O, gµν) and (O′, g′µν) are isometric and vice versa.

Using the definition of ‘locally isometric’, we can define the notion of a local property. A

space-time property ρ is local if, given any pair of locally isometric space-times S and S′,

S has ρ if and only if S′ has ρ (Manchak,  2020 , p. 11). A property ρ is global if and only

if ρ is not local (Manchak,  2020 , p. 11). One implication of the MMT is that we cannot

use the data in any collection of past light cones in (M, gµν) to infer the global properties

of (M, gµν); but what are the global properties that we are unable to infer? Manchak

( 2011 ) describes four: inextendibility, isotropy, global hyperbolicity, and hole-freeness. 

5
 

Thus, a logically stronger version of the MMT can be stated in terms of these four global

properties. Let (M, gµν) be any spacetime which is not causally bizarre and is temporally

5
 ↑ For a definition and discussion of the property of “hole-freeness”, see Manchak,  2016 .
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orientable; moreover, let GP be the set of properties { inextendibility, isotropy, globally

hyperbolicity, hole-freeness }. Then the logically stronger version of the MMT states:

MMT-GP := If (M, gµν) has all of the properties in the set GP then there exists

another space-time (M′, g′µν) such that (i) (M′, g′µν) is not isometric to (M′, g′µν),

(ii) (M′, g′µν) does not satisfy all of the properties in GP, and (iii) (M, gµν) is

weakly observationally indistinguishable from (M′, g′µν).

By de Morgan’s law, MMT-GP entails that if (M, gµν) satisfies the four properties in GP,

then (M, gµν) has a weakly observationally indistinguishable counterpart that is either

not inextendable, not isotropic, not globally hyperbolic, or not hole-free. We can ask the

further question as to whether, e.g., any isotropic space-time has a non-isotropic weakly

observationally indistinguishable counterpart (and likewise for the other three global

properties). While, as far as I know, no general set of theorems exists for all four global

properties, Malament ( 1977a ) defends the following conclusion. Following Malament

( 1977a , pp. 70–71), given a space-time S, a property Π of S is invariant under weak

observational indistinguishability (WOI) just in case (i) there exists another space-time S′

such that S and S′ are non-isometric, (ii) S is weakly observationally indistinguishable

from S′, and (iii) S hasΠ only if S′ hasΠ. Let GP∗ be the set of global properties { temporal

orientability, spatially orientability, orientability, non-compactness, having a global time

function, having a Cauchy surface }. As Malament argues, none of the properties in GP∗

are invariant under WOI. Consequently, that a space-time satisfies one of the properties in

GP∗ is consistent with that space-time having a weakly observationally indistinguishable

counterpart that does not satisfy that property. We will return to this result below when

we consider whether the Direction Condition is invariant under WOI.

9.4.3 Laws and the MMT

One might worry that two observationally indistinguishable space-times may be such

that only one of them solves the EFE. If only one of the two solves the EFE, then, given that

we have grounds to think that the EFE describe laws of nature that can be projected into

unobservable regions, we have reason to prefer the space-time that solves the EFE over
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the one that does not. In that case, the epistemological predicament would have been con-

siderably weakened. However, Manchak is able to prove a stronger result that guarantees

that, beginning with a space-time satisfying the EFE, one can construct an observationally

indistinguishable space-time that also satisfies the EFE. To consider Manchak’s stronger

version of the MMT, I first need to offer some definitions.

Recall that two space-times (M, gµν) and (M′, g′µν) are said to be locally isometric if, for

every point p in (M, gµν), there exists an open neighborhood around p isometric to an open

neighborhood around a corresponding point p′ in (M′, g′µν). Recall, too, that the notion

of a local property was defined in terms of local isometry. Analogous to the notion of a

local property, we can define the notion of a collection of local conditions. A collection

of conditions C is considered local if, given any two locally isometric space-times (M, gµν)

and (M′, g′µν), (M, gµν) satisfies C if and only if (M′, g′µν) satisfies C. Manchak proves the

following theorem:

MMT-Laws := “Let (M, gab) be any [temporally orientable] spacetime which is

not causally bizarre satisfying any setCof local conditions. There exists another

spacetime (M′, g′ab) (one that is not isometric to (M, gab)) such that (i) (M′, g′ab)

satisfies the set C of local conditions and (ii) (M, gab) is [weakly] observationally

indistinguishable from (M′, g′ab)” (Manchak,  2009 , p. 55).

There is, again, another more precise statement of this theorem in terms of four important

global properties, i.e., inextendibility, isotropy, global hyperbolicity, and hole-freeness.

The set C of local conditions can include the EFE, so that, given that (M, gab) satisfies

the EFE, a corresponding (M′, g′ab) can be constructed that likewise solves the EFE. This

stronger theorem takes care of an additional worry. Philosophers of science have long

recognized that one reason we may have for being committed to the existence of un-

observable entities is that we are more generally committed to a realistic interpretation

of a scientific theory entailing the existence of those unobservable entities. The global

properties of space-time might not be observable, but, if we are already committed, on

independent grounds, to a broader theory that entails that space-time has specific global

properties, then we have reason to be committed to the view that space-time has those
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specific global properties. But, given MMT-Laws, our commitment to a more general

theory of space-time – for example, our commitment to General Relativity – in conjunc-

tion with any collection of observations that could be made by an observer within a

non-causally bizarre space-time does not entail that their space-time has a specific set of

global properties. We can always identify another space-time, weakly observationally

indistinguishable from our own, that satisfies the same (local) physical laws.

Recall that the MMT is proved using the clothesline construction. As shown in Man-

chak,  2009 , given that the EFE are a set of local conditions, the clothes-line construction can

be done in such a way that, beginning with a space-time satisfying the EFE, the resultant

space-time also satisfies the EFE. One may worry that there are other constraints – such

as those due to the matter-energy content in space-time – that could delimit the collection

of possible space-times that one might inhabit. But, as Malament has argued, the clothes-

line construction can be modified in such a way that beginning with a space-time with

a particular matter-energy content, the newly constructed space-time will also have an

appropriate matter-energy content (Malament,  1977a , pp. 75–76).

9.4.4 Cinti and Fano’s Objection

Before moving on to a discussion of whether DB space-times are weakly observa-

tionally indistinguishable from non-DB space-times, I briefly turn to an important recent

objection made by Enrico Cinti and Vincenzo Fano (  2021 ). Let’s call the space-times that

result from the clothesline construction clothesline space-times. While Cinti and Fano ad-

mit that clothesline space-times are solutions to the Einstein Field Equations, they claim

that clothesline space-times are physically unreasonable. As Cinti and Fano point out,

clothesline space-times include naked singularities that do not result from any antecedent

physical process. Since the naked singularities do not result from any antecedent physical

process, the claim goes that clothesline space-times are physically unreasonable.

If clothesline space-times are physically unreasonable, then we can rule clothesline

space-times out as live possibilities for the structure of the space-time we inhabit. In that
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case, Cinti and Fano argue, the MMT is not relevant for whether we can discern the global

structure of our space-time. Several replies can be offered.

As a possible first response, one may wonder whether the criteria that Cinti and Fano

pick out for determining whether a space-time is physically reasonable are good criteria.

There is a live dispute concerning what features a space-time needs to have in order to be

considered physically reasonable (Manchak,  2011 ,  2021 ). However, I’m inclined to agree

with the criteria that Cinti and Fano pick out. For that reason, let’s put this first reply to

one side. If we accept Cinti and Fano’s criteria, we are left with a question as to whether

the MMT and allied results need to be constructed using the clothesline construction.

For example, if an alternative, but qualitatively similar, construction can be provided,

then Cinti and Fano’s objection will turn out to rely on features that are idiosyncratic

to a specific version of the clothesline construction. There are at least two ways that a

qualitatively similar construction might be carried out.

First, the clothesline construction depends upon connecting a series of space-times

via wormholes. The naked singularities appear because of the specific way in which

the clothesline construction’s wormholes are mathematically constructed. Instead of

connecting a series of space-times via wormholes, the series of space-times could be

isometrically embedded in a higher dimensional space-time. In that case, there will still

be one large space-time with subregions from each of a series of space-times, as in the

clothesline construction. But, instead of being connected by wormholes, the space-times

will be connected to each other by being space-like related to one another in a higher

dimension.

Second, while the cut-and-paste methodology standardly used in the clothesline con-

struction results in wormholes featuring inexplicable naked singularities, wormholes can

be constructed without naked singularities. For example, there could be a physical pro-

cess in some distant region space-like connected to us that does result in a wormhole that

bridges our space-time to another space-time. In that case, a series of space-time regions

can, again, be strung together in a manner qualitatively similar to the clothesline construc-

tion. In fact, if the ER=EPR conjecture – that is, that every entangled pair of particles is
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connected by a wormhole – turns out to be correct, the Cosmos might be filled with vast

numbers of wormholes.

So far, we’ve reviewed three important theorems (MMT, MMT-GP, and MMT-Laws)

concerning the weak observational indistinguishability of non-isometric space-times and

their consequences for making inferences about the global or cosmological properties

of space-time. I’ve also responded to an important recent objection to the clothesline

construction used in the three theorems. Next, I turn to discussing whether DB space-

times can be observationally distinguished from non-DB space-times.

9.5 DB Space-Times and Observational Indistinguishability

The question as to whether DB space-times are weakly observationally indistinguish-

able from non-DB space-times can be answered by addressing whether the Direction and

Boundary Conditions are invariant under WOI. A number of important results are already

known that help to elucidate this question.

Here is a quasi-“English” language summary of the results that I prove in the subse-

quent subsections. In section  9.5.1 , I discuss a series of results from Malament suggesting

that space-times satisfying the Direction Condition – that is, D space-times – are weakly

observationally indistinguishable from non-D space-times. However, I note that insofar

as we have evidence for the A-theory of time, we have local evidence that would delimit

the space of possible space-times to those that satisfy the Direction Condition. Whether

we do have good local evidence for the A theory of time remains controversial.

In section  9.5.2 , I discuss a series of results suggesting that space-times satisfying the

Boundary Condition are weakly observationally indistinguishable from space-times that

do not satisfy the Boundary Condition. With the exception of the subsection titled ‘Open

boundary finitely far to the past’, I do not rely upon the clothesline construction for the

results that I prove in this section. This is important, since, even if the objection offered

by Cinti and Fano were successful, their objection applies only to results that make use of

the clothesline construction. First, I discuss the hypothesis that our space-time could be

embedded in a higher dimensional space. Compare the following two hypotheses: first,
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the Cosmos is such that our space-time is not embedded in a higher dimensional space,

or, second, the Cosmos is such that our space-time is embedded in a higher dimensional

space. Supposing that the Boundary Condition is satisfied in the former case does not

entail that the Boundary Condition is satisfied in the latter case, even though the two

cases are not observationally distinguishable. I introduce a new kind of observational

indistinguishability that I call super weak observational indistinguishability. I then prove

a series of results showing that space-times that include various kinds of past boundaries

are at least super weakly observationally indistinguishable from space-times that do not

include those past boundaries.

9.5.1 The Direction Condition

Consider three global properties: (i) temporal orientability, (ii) the existence of a global

time function, and (iii) the existence of a Cauchy surface. We’ve already discussed tem-

poral orientability in chapter  6 , so I won’t define that concept again here. A space-time is

said to have a global time function (roughly) just in case there is at least one way to carve

the entire space-time up into simultaneity slices that can be labeled with a time. 

6
 Lastly,

a Cauchy surface is a space-like surface that is intersected no more than once by every

(inextendable and differentiable) time-like curve. That a space-time includes a Cauchy

surface turns out to be equivalent to the statement that the space-time is globally hyper-

bolic. In turn, the initial value problem is well-defined for the Einstein Field Equations

only if space-time is globally hyperbolic. Thus, (i)-(iii) are closely related to the notion

that space-time can be thought of as having a global development from past to future; in

fact, violation of any one of (i)-(iii) would suffice for violating the Direction Condition. As

previously discussed, Malament (  1977a ) argued that (i)-(iii) are not invariant under WOI.

Consequently, the Direction Condition is not invariant under WOI. Therefore, DB space-

times are weakly observationally indistinguishable from non-DB space-times. Taken at

face value, this result suggests that observers living in DB space-times can never amass

sufficient data to determine that they inhabit a DB space-time.

6
 ↑ More rigorously, a space-time is said to have a global time function just in case there exists a smooth map

t : M→ R and ∀x∀y ∈M, (x is before y and x , y) =⇒ (t(x) < t(y)).
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There is reason not to take this conclusion at face value. There may be reason to restrict

the space of solutions to the EFE to those space-times that are in some sense physically

reasonable. For example, let’s call space-times that satisfy the Direction Condition D

space-times. While there is, as yet, no agreement among philosophers or physicists as

to which conditions physically reasonable space-times satisfy, if the A-theory of time is

true, then, plausibly, the A-theory of time is necessarily true (or true in all possible worlds

where time exists). In that case, since the A-theory of time plausibly requires temporal

orientability, the existence of a global time function, and the existence of a Cauchy surface,

the A-theory of time plausibly requires that the space-time we inhabit is a D space-time.

Thus, if the A-theory of time is true, then, plausibly, non-D space-times are metaphysically

impossible. Moreover, the most popular arguments for the A-theory of time are based

on our phenomenological experience of temporal passage. Since experience is a local

phenomenon – in that conscious observers have specific spatio-temporal locations – A-

theorists endorse a view according to which we can know that we inhabit a D space-time

on the basis of local evidence. Such arguments are deeply controversial and B- and

C-theorists would likely not accept, at least on that basis, such a restriction to D space-

times. This is a significant result: whether we have sufficient grounds for inferring from

local evidence that our Cosmos includes a D space-time turns out to depend on how the

metaphysical debate concerning the fundamental nature of time is ultimately decided.

Nonetheless, there is more to be said; let’s set aside the Direction Condition and focus on

whether the Boundary Condition is invariant under WOI.

9.5.2 The Boundary Condition

There are several senses in which DB space-times might be weakly observationally

indistinguishable from non-DB space-times. First, as proved by CJS Clarke ( 1970 ), any

non-compact space-time can be globally embedded in a higher dimensional flat 89 di-

mensionsional space with arbitrarily high differentiability conditions. As George Ellis

( 1971 , p. 9) notes, this entails that “the original concept of a manifold as a subspace of

a flat space extends to the space-time manifold (M, g) of every reasonable cosmological
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model”. Subsequently, Marc Lachièze-Rey (  2000 ) showed that any FLRW space-time can

be isometrically embedded in a flat five dimensional space-time. 

7
 This suggests the pos-

sibility that our space-time is embedded in a higher dimensional space. Supposing that

our space-time is embedded in a higher dimensional space, could we observationally

determine whether the higher dimensional space-time satisfies the Boundary Condition?

A similar question arises if, as some authors (e.g., Alyssa Ney, David Albert, Jill North,

Barry Loewer) have suggested, the space-time of our ordinary experience is functionally

realized by the distribution of the universal wavefunction in a higher dimensional, funda-

mental space, e.g., configuration space or perhaps something more exotic, or if, as string

theorists have suggested, our space-time is a brane in a higher dimensional space-time.

Let’s call these scenarios Higher Dimensional Scenarios.

Assuming that one of the Higher Dimensional Scenarios is correct, the Boundary

Condition is plausibly not invariant under WOI. Let’s denote our space-time S, the higher

dimensional space-time Shd, and suppose that Shd satisfies the Boundary Condition. Let’s

use {pi} to denote the set of space-time points in S so that ∪iI−(pi) is the union of all of the

past light cones of all possible observers in S. I see no reason to block the construction of

another space-time S′hd with the following properties: (i) S′hd has the same dimensionality as

Shd, (ii) S is embedded in S′hd or else S is functionally realized by some entities in S′hd, and (iii)

S′hd does not satisfy the Boundary Condition. Consequently, if we allow for the possibility

of Higher Dimensional Scenarios, then, plausibly, the Direction Condition is not invariant

under WOI. Nonetheless, Higher Dimensional Scenarios are at least controversial, so let’s

set aside Higher Dimensional Scenarios for the remainder of this chapter. Supposing that

space-time is restricted to four dimensions, could we have grounds for inferring that the

space-time we inhabit satisfies the Boundary Condition?

For my purposes, I do not need a statement as strong as the MMT. Recall that a space-

time (M, gµν) is weakly observationally indistinguishable (to use Malament’s terminology;

see, e.g., Malament,  1977a , p. 68) from (M′, g′µν) just in case for every point p in (M, gµν)

there exists a point p′ in (M′, g′µν) such that I−(p) and I−(p′) are isometric. This condition

would guarantee that there are no observers, at any location in (M, gµν), who could make

7
 ↑ A short historical review is provided in Wesson,  2010 .
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an observation that would justify their saying that they are not in (M′, g′µν). We do not

need the condition that our space-time is indistinguishable from another for any possible

observer in our space-time no matter where they are situated. All the space-time points

that could ever be observed by members of our species, and any observer with whom

humans will ever have two-way communication, presumably occupies a finite space-time

hypervolume. Therefore, for members of our species to be unable to distinguish our

space-time from another very different space-time is entailed by, but does not require,

weak observational indistinguishability. In the next section, I develop an even weaker

form of observational indistinguishability than those that were previously developed by

Malament or by Manchak.

Super Weak Observational Indistinguishability

Let’s define another form of observational indistinguishability that I call super weak

observational indistinguishability. First, I need to offer some additional definitions. A space-

time region is said to be space-like just in case all of the points in that region are space-like

related to one another. A congruence is a “bundle” of curves through space-time; if the

congruence includes only time-like curves (for example) then the congruence is said to

be time-like. Intuitively, we can think of a time-like congruence as analogous to a bundle

of uncooked spaghetti, where each uncooked spaghetti noodle is analogous to a time-like

curve. Consider two space-like regions R1 and R2 in a space-time S such that there exists

a time-like and light-like congruence C consisting of all of the time-like and light-like

curves passing through both R1 and R2. Let U denote the space-time region formed by

the set of events that can reach, without exceeding the speed of light, any point pi on any

curve in C, that is, U = ∪iI−(pi). Moreover, let’s suppose that C is large enough that a

collection of observers within C will never come into contact with observers whose past

light cones include points outside of U. For example, C might be the observable universe.

If there exists another space-time S′ such that there is a region isometric to U in S′, then S is

said to be super weakly observationally indistinguishable from S′. The MMT guarantees

that any temporally orientable and non-causally bizarre space-time will be super weakly
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observationally indistinguishable from some other very different space-time. But super

weakly observationablly indistinguishable space-times are a larger collection because,

unlike the MMT, there is no demand that observational indistinguishability hold for all

points in space-time.

Are DB space-times super weakly observationally indistinguishable from non-DB

space-times? To start, consider a non-causally bizarre DB space-time S. Since all DB space-

times are temporally orientable, S is temporally orientable. Given the MMT, S is weakly

observationally indistinguishable from some other distinct (i.e., non-isometric) space-

time. And since weak observational indistinguishability is logically stronger than super

weak observational indistingishuability, the conclusion follows that S is super weakly

observationally indistinguishable from some distinct space-time.

So far, I have shown only that all non-causally bizarre DB space-times are super weakly

observationally indistinguishable from some distinct space-time; this does not suffice for

the stronger conclusion that all non-causally bizarre DB space-times are super weakly

observationally indistinguishable from some non-DB space-time. For this section, I’ve

set aside the question as to whether the Direction Condition is invariant under WOI or

SWOI in order to investigate whether the Boundary Condition is invariant under WOI or

SWOI. There are two ways that S can satisfy the Boundary Condition: either there is a

past topological boundary to space-time or else there is a finite initial segment, as defined

in chapter  7 . Therefore, we can re-phrase our question as the following: are either a past

topological boundary or a finite initial segment invariant under SWOI? I will investigate

the invariance of the topological boundary and of a finite initial segment under SWOI in

turn.

Past Topological Boundary

Suppose that S satisfies the Direction Condition and satisfies the Boundary Condition

by including a closed boundary ζ to the past of every time-like and light-like curve. 

8
 Let

S be denoted (M, gµν). In this case, ζ is a topological boundary. To show that (M, gµν)

8
 ↑ To be more precise, ζ is the collection of all of the points bounding time-like and light-like curves in the

past.
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is super weakly observationally indistiguishable from some distinct non-DB space-time,

our job will involve constructing a corresponding non-DB space-time (M′, g′µν) that does

not satisfy the Boundary Condition. Since we are considering the case that ζ is a closed

boundary, I will allow for the possibility that ζ is infinitely far to the past (e.g., there is a

point of ζ at past time-like infinity for every observer); I will say more about constructing

this case below. I will also allow for the possibility that ζ is succeeded by a space-time

wide metrically amorphous region so that there is no determinate fact about the space-

time interval between ζ and any given observer not located on ζ; I will have more to say

about how to construct this possibility below. There are then three sub-cases: first, ζmight

be located finitely far to the past of any given observer, second, ζ is located infinitely far

to the past, and, third, ζ is located indeterminately far to the past.

ζ is at finite proper time to the past

Suppose that ζ is located at some finite proper time to the past of any possible observer.

Recall the notion of an extendable space-time previously defined, where the intuition is

that an extendable space-time (M, gµν) can be made “larger” because there is a proper

part of (M′, g′µν) isometric to (M, gµν). Moreover, I will refer to (M′, g′µν) as the extension

of (M, gµν). If (M, gµν) is inextendable, then we say that (M, gµν) is maximally extended.

Moreover, recall that ϕ : M → M′ is the diffeomorphism mapping points in M to their

counterparts in M′. Any relativistic space-time with a closed boundary ζ0 has an exten-

sion in which ϕζ0 is not a boundary; in particular, given that both (M, gµν) and (M′, g′µν)

satisfy the Direction Condition, the extension will include points to the past ofϕζ0. We can

therefore say that any relativistic space-time with a past space-time wide closed boundary

ζ0 has an extension to the past of ζ0. Since any relativistic space-time with a specific

closed boundary has an extension to the past of that boundary, S is weakly observation-

ally indistinguishable from a space-time without S’s closed boundary. And since weak

observational indistinguishability is a logically stronger condition than super weak ob-

servational indistinguishability, S is super weakly observationally indistinguishable from

a space-time without S’s closed boundary.
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This does not suffice for showing that a DB space-time with a closed boundary at finite

proper time to the past is super weakly observationally indistinguishable from a non-DB

space-time; for example, all of the extensions of S could themselves be DB space-times. For

example, even if the closed boundary of S does not map to a closed boundary in S′, S′ could

still include a space-time wide closed boundary to the past of all non-initial points in S′.

If S, together with all of S’s super weakly observationally indsitinguishable counterparts,

have space-time wide closed boundaries, then observers in S could (in principle) use their

data to infer that their space-time has a space-time wide closed boundary even if they

couldn’t infer how distant the boundary is to their past. Fortunately for my purposes,

every space-time that includes closed boundary in the finite past has an extension without

a closed boundary in the finite past. 

9
 This leaves us with the possibility that the space-

time includes a closed boundary is located infinitely far to the past; I will consider that

possibility below.

Perhaps the argument I’ve presented in this subsection has gone too fast. Whether

(M, gµν) has an extension is always relative to whatever class of space-times are under-

stood to be possible. There is an on-going philosophical debate concerning which features

a space-time must possess in order to be considered physically reasonable, but we can

likewise ask which features a space-time must possess in order to be considered meta-

physically reasonable. By way of example, suppose that the A-theory of time is true. If the

A-theory of time is true, then the A-theory of time likely describes some essential features

of time, so that the A-theory of time is true in all metaphysically possible worlds where

time exists. The A-theory of time – at least as traditionally understood – likely requires

that space-time is globally hyperbolic. Let’s say that (M, gµν) is maximally GH-extended just

in case (M, gµν) has no globally hyperbolic extensions. If global hyperbolicity is a meta-

physically necessary feature of space-time, then any space-time without a GH-extension

has no metaphysically possible extensions.

9
 ↑ This follows from a clothesline construction similar to the one that I use below for showing that all space-

times with a past Cosmos-wide singular boundary are observationally indistinguishable from a space-time
without a past Cosmos-wide singular boundary.
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Consider an illustrative example from Manchak (  2021 ). There is a specific solution to

the Einstein Field Equations, called Misner space-time, with the feature that in one region

of the space-time, a closed time-like curve passes through every point and, in another

region, there are no closed time-like curves. The specific details as to how one might

mathematically construct Misner space-time are not important for my purposes; for my

purposes, what is relevant is that Misner space-time is not globally hyperbolic because

Misner space-time includes a region that includes closed time-like curves. So, supposing

that only globally hyperbolic space-times are metaphysically possible, Misner space-time

is not metaphysically possible. Nonetheless, Misner space-time includes a hyperbolic

region – that is, the region in Misner space-time that does not include closed time-like

curves. Consider a truncated Misner space-time that includes only the hyperbolic region.

The resulting space-time is globally hyperbolic; thus, nothing I’ve said so far rules out

that truncated Misner space-time as a legitimate metaphysical possibility. Moreover,

the truncated Misner space-time is maximally GH-extended because, as Manchak has

argued, the truncated Misner space-time has no GH-extensions. Similar conclusions

follow given other restrictions on the space of possible space-times. Thus, whether a

space-time with a closed boundary a finite proper time to the past of any possible observer

has a metaphysically possible extension will depend on what sort of restrictions are

implemented with respect to the space of metaphysically possible space-times.

There is then perhaps one way to infer that the Cosmos has a closed boundary in the

finite past. If one could show that the Cosmos is one member of a collection of space-times

with closed boundaries located in the finite past and that do not have metaphysically

possible extensions without closed boundaries in the finite past, then we would have

reason for thinking that the space-time we inhabit has a closed boundary in the finite past.

Nonetheless, this strategy has, to my knowledge, never been pursued. Since I cannot see

how to formulate such an argument and since the debate about what features a space-time

must have in order to be metaphysically (or physically) reasonable is still on-going, I do

not think this strategy has much merit.
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ζ is infinitely far to the past

Suppose instead that ζ is a closed boundary located infinitely far to the past. In this

section, I will assume that ζ is not succeeded by a finite initial segment and will postpone

discussion of that possibility until a subsequent section. An immediate first objection

is that relativistic space-times, as they are ordinarily considered, do not include points

at past time-like or light-like infinity. However, as I have previously discussed in this

dissertation, there are a number of mathematical procedures for “adding in” points at

infinity, as in, e.g., the extended complex plane. A similar procedure can be carried out

for relativistic space-times. Suppose that (M, gµν) is a standard inextendable and non-

singular relativistic space-time that does not include points at infinity. Let’s suppose that

the pair (ζ, hµν) is a space-like surface that includes the point set A, equipped with, e.g.,

topological structure, and that hab is a spatial metric defined on A. We can now define a

new space-time (M ∪ ζ, g′µν) such that:

1. Every point in ζ is to the absolute past of some point in M.

2. g′µν is defined in such a way that the spatial metric on ζ is hab and all points in ζ are

infinite affine parameter from any given point in M.

Adding ζ to M amounts to including points infinitely far to the past of any point within

M. One natural choice for ζ is for ζ to simply “fill in” the past conformal boundary of

(M, gµν).

Without loss of generality, consider any given observer within the portion of space-

time not included in ζ. Let’s say that the observer is situated at point p so that their

past light cone is I−(p). There are two possibilities. Either I−(p) includes all of ζ or not.

There are at least two ways for I−(p) to include all of ζ. First, space-time might be, e.g.,

Minkowski space. However, the only observers in Minkowski space whose past light

cones include all of ζ are those sitting on the future conformal boundary. Second, space-

time might undergo some kind of sufficiently rapid superluminal contraction. Space-

times that undergo sufficiently rapid superluminal contraction develop an observational

horizon. The observational horizons prevent any observer, even those on the future
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conformal boundary, from gathering data from the entire space-time, that is, I−(p) , M.

Nonetheless, observers could conceivably gather data from the entirety of ζ, that is,

ζ ⊂ I−(p).

Suppose, instead, that, for any observer not located on ζ, I−(p) does not include all

of ζ. In some sense, this is a more physically realistic scenario, since we know that

the space-time we inhabit includes a cosmological horizon and may have undergone a

period of inflationary expansion in the past that approximated de Sitter space. A simple

construction can be used to show that the closed boundary is not invariant under SWOI.

Denote space-time as S = (M, gµν) where M includes ζ. Recall that my definition of super

weak observational indistinguishability involved U, the union of the past light cones of

all of the points pi on the portion of the congruence bounded between R1 and R2. Let’s

define V as the intersection between U and ζ, that is, V = U ∩ ζ. Now construct another

space-time S′ such that S′ = ((M \ ζ) ∪ V, gµν). In this case, there is a closed boundary to

the past of any point in C between R1 and R2 – namely V – but there is no past boundary

to the points that are not to the future of V. In less technical language, there is a class

of observers (namely, those on time-like curves between R1 and R2) for whom there is a

closed boundary to their past even though there is no Cosmos-wide past boundary. Ergo,

ζ is not invariant under SWOI.

Thus, we have mixed results: ζ is invariant under SWOI only if there are points whose

past light cones do not include all of ζ. However, even if we set aside the fact that the

space-time we inhabit includes an observational horizon, this is hardly a concession to

those who hope that we can infer, from observations, whether we inhabit an MDB space-

time. For example, suppose that S = (M, gµν) is a space-time where light cones do include

all of ζ. In this case, we can construct another space-time S′ = (M \ ζ, gµν) that does not

include a closed boundary infinitely far to the past. Since the two space-times are near

duplicates – differing only in whether they include a set of boundary points infinitely far

to the past – there is no observation that any observer could make that would distinguish

the two.

We can easily prove that this is so. Let’s begin by noting that any observer only “sees”

the local distribution of matter-energy within their vicinity. Both S and S′ are described
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by the same metric gµν. The matter-energy distribution is described by the stress-energy

tensor Tµν. According to the Einstein Field Equations, Tµν is proportional to the Einstein

Tensor Gµν. In turn, Gµν can be computed from derivatives of gµν. Thus, if two space-time

regions are described by the same metric, then they have the same Einstein Tensor and,

consequently, the same stress-energy tensor. Setting aside points on the boundary of S,

for which there are no counterparts in S′, S and S′ are described by the same metric and

thus the same stress-energy tensor. For that reason, observers in S encounter the same

matter-energy distribution as their counterparts in S′; no observer in S could distinguish

their space-time from S′.

ζ is indeterminately far to the past

In this section, I consider the possibility that ζ is indeterminately far to the past. That is,

ζ is succeeded by a space-time wide region in which the space-time metric is amorphous.

More rigorously, we can construct a space-time region with an amorphous metric through

the following procedure. Consider a space-time (M, gµν) with a subregion (R, gµν). Note

that (R, gµν) is, itself, a space-time, since (R, gµν) is a pair consisting of a manifold R and

a metric tensor gµν defined on that manifold. We say that two space-times (R, gµν) and

(R, g′µν) are conformally equivalent just in case there exists a smooth and everywhere positive

scalar fieldΩ : R→ R – called the Conformal Factor – such that g′µν = Ω2gµν (Manchak,  2020 ,

p. 13). To construct a metrically amorphous space-time region, take the full collection of

space-times conformally equivalent to (R, gµν) and identify all members of that collection.

The resulting space-time retains information about how points are connected together

(for example, whether p is in the past light cone of q) but “forgets” all of the information

about, e.g., the lengths of curves encoded in gµν. Now that we’ve constructed a metrically

amorphous space-time region, we can replace R in (M, gµν) with the metrically amorphous

region.

Suppose that S is a space-time that satisfies the Direction Condition, includes a space-

time wide past topological boundary ζ, and that S includes a space-time wide amorphous

regionR. Recall that super weak observational indistinguishability is defined in terms of a
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set U such that U = ∪iI−(pi), where pi are points within the congruence bounded by R1 and

R2. Suppose that ζ 1 U. We can then construct another space-time S′without a topological

boundary and that is super weakly observationally indistinguishable from S′. Let A =

ζ ∩ U. Then we can define another space-time by retaining A but removing the other

points in ζ. The resulting space-time is super weakly observationally indistinguishable

from the space-time with which we started.

Suppose, instead, that there is no delimited region of points pi such that, for all i,

ζ 1 I−(pi). That is, for any point p in S, ζ ⊂ I−(p). In this case, since the entirety of ζ is

located in the past light cone of every possible observer, that the space-time has a topo-

logical boundary is neither weakly nor super weakly observationally indistinguishable.

Nonetheless, this is a Pyrrhic victory for those hoping to infer whether our space-time

has a topological boundary to the past, for similar reasons as those previously expressed

when ζ is located infinitely far to the past. That is, the mass-energy distribution is unal-

tered between S and one of S’s observationally distinguishable counterparts so that local

observations are unable to distinguish the two.

Finite Initial Segment

I turn now to the possibility that the Cosmos has a finite initial segment. There are

four possibilities to consider. First, I postponed discussion of the possibility that a closed

boundary located infinitely far to the past is succeeded by a finite initial segment; I will

take up that possibility in this section. Second, there is the possibility that there is a finite

initial segment located infinitely far to the past with an open boundary. Third, there

is the possibility that the finite initial segment is located finitely far to the past with an

open boundary. Fourth, there is the possibility that there is a finite initial segment located

finitely far to the past with a closed boundary. I do not need to discuss the fourth possibility

in this section because I have already discussed the fourth possibility in my discussion

of a past topological boundary. Note that I do not need to discuss space-times with an

initial metrically amorphous region with an open boundary because such space-times do
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not satisfy the Boundary Condition. This leaves us with the original three possibilities,

which I will take up in turn.

Closed boundary infinitely far to the past

In this section, I consider the possibility that there is a closed boundary, again denoted

ζ, located infinitely far to the past, that is succeeded by a finite initial segment of space-

time. Recall that there is a finite initial segment just in case there is a space-time-wide

space-like surface Σ such that all of the time-like and light-like trajectories that can be

traced backwards from Σ have finite generalized affine length. Thus, in this section, the

initial space-time segment is sandwiched by two space-like surfaces, ζ and Σ. Since the

generalized affine length along all of the time-like and light-like curves between ζ and Σ

is finite and we’ve assumed ζ to be located infinitely far to the past, Σ must be located

infinitely far to the past.

There are two classes of observers that we should consider: first, observers who are

located finitely far from ζ and, second, observers who are located infinitely far from ζ.

Let’s consider, first, observers who are located finitely far from ζ. Their epistemic situation

is the same as the one that we previously considered in the section on the topological

boundary when we considered a closed boundary finitely far to the past. Since I’ve

already considered that case, let’s move on to the second group, that is, the observers who

are located infinitely far from ζ. There are two possibilities for this set of observers in that

either the entirety of ζ is in their past light cone or not.

Consider the possibility that the entirety of ζ is in the past light cone of all possible

observers located infinitely far to the future from ζ. Since ζ is a closed boundary, we

again encounter the difficulty as to whether DB space-times with closed boundaries have

non-DB extensions; in turn, as I previously argued, resolution of this issue depends on a

philosophical controversy that has yet to be resolved, i.e., how to properly think about

the class of metaphysically or physically reasonable space-times. But, even if we suppose

that all space-times with closed boundaries have extensions with closed boundaries, there

is little prospect for observers in any cosmologically realistic space-time to receive signals
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from infinitely far to their past. So, even if ζ turns out not to be invariant under weak

observational indistinguishability, there would remain little hope of being able to detect

significant information about the ζ-Σ region; thus, observers located infinitely far to the

future of the ζ-Σ region are unlikely to be able to determine that the space-time they

inhabit includes a finite initial portion.

Now consider the possibility that the entirety of ζ is not in the past light cone of all

possible observers located infinitely far to the future from ζ. In some sense, this is a

more physically realistic scenario, since (again) we know that the space-time we inhabit

includes a cosmological horizon and that there may have been a period of inflationary

expansion in the past that approximated de Sitter space. Here, we can modify the simple

construction previously offered in the subsection titled ‘ζ is infinitely far to the past’ in

order to show that ζ is not invariant under SWOI.

Let’s begin as before. Denote the space-time of interest as S = (M, gµν), where M

includes ζ. Recall, once more, that U = ∪iI−(pi), where pi are points within the congruence

bounded by R1 and R2 and where R1 and R2 are understood to be infinitely far from ζ. Let’s

use ∆ to denote the finite initial segment that succeeds ζ. Recall how we constructed a

space-time with an infinite past that includes a finite initial segment. We took a space-time

with an infinite past and then joined on a finite segment in the infinite past. Therefore, if

we remove the initial segment, then we are left with a space-time with an open boundary

infinitely far to the past, which is just to say that if we remove the finite initial segment

we are left with a non-DB space-time. In fact, there is no need to remove all of ∆ to

construct a non-DB space-time; removing all of the points in ∆ that are in the past light

cone of some point q would suffice for turning S into a non-DB space-time. This is the

feature that we will exploit in this construction; we will construct a space-time retaining

the points in ∆ that are included in U while excluding all other points in ∆. Define V∗

such that V∗ = (U ∩ ζ) ∪ (U ∩ ∆). We now construct another space-time S′ such that

S′ = ((M\ (ζ∪∆))∪V∗, gµν). Clearly, S′ is not a DB space-time, since there are points space-

like related to all of the points in the set {pi} such that there is no topological boundary or

finite initial segment to their past. Thus, ζ is not invariant under super weak observational

indistinguishability.
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Open boundary infinitely far to the past

There are two possibilities. Either the open boundary is succeeded by a finite initial

segment or not. If the boundary is not succeeded by a finite initial segment, then space-

time is not a DB space-time – since all points in the space-time are located infinitely far to

the future of the open boundary – and so lacks a beginning. Thus, in this section, I am

concerned only with an open boundary located infinitely far to the past that is succeeded

by a finite initial segment.

There is once more the difficulty that standard relativistic space-times do not include

regions located infinitely far to the past. Nonetheless, we can utilize a similar procedure

as the one previously discussed for adding in points at past time-like infinity, except that,

in this case, we add a space-time region with some temporal “thickness” instead of a

single space-like surface. Once we’ve constructed such a space-time, we can again divide

the class of all possible observers into two sets. First, there is the set of possible observers

who are located finitely far from the open boundary. Below, I consider the possibility that

there is an open boundary finitely far to the past, and the considerations that I apply in

that section apply to the group of possible observers located finitely far from the open

boundary. Second, there is the group of possible observers who are located infinitely

far from the open boundary. Here, we can use an argument nearly identical to the one

presented at the end of the subsection titled ‘Closed boundary infinitely far to the past’.

That is, we can construct a non-DB space-time by retaining only those points in the finite

initial segment that are in U. (In this case, there are no points in the boundary, so there

are no points to retain from ζ.) The result is that, once again, the Boundary Condition is

not invariant under SWOI.

Open boundary finitely far to the past

If there is an open boundary located in the finite past of all space-time points, then

there are two possibilities. First, space-time might be truncated by an open boundary.

This first possibility is similar to the situation considered in the subsection titled ‘ζ is at

finite proper time to the past’. If a space-time S is truncated by an open boundaryB, then
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S is not maximally extended, in the sense that there exists another space-time S′ with a

proper part isometric to S and without B. But, in that case, S is weakly observationally

indistinguishable from S′. 

10
 Again, we can ask whether the extensions of S are all DB

space-times and, again, whether we could determine, from some set of data, that we are

inhabiting a DB space-time would be determined by whether all of the space-times weakly

or super weakly observationally indistinguishable from our own are DB space-times.

The second possibility is that space-time is maximally extended but includes an open

boundary in the finite past. This could be the case if, for example, space-time includes a

curvature singularity to the past of every space-time point, as in many of the classic FLRW

models of the Big Bang. For the sake of rigor, let’s say a space-time S is everywhere past

b-incomplete just in case there exists a Cosmos-wide space-like surface Σ such that every

past-directed time-like and light-like half-curve originating on Σ has finite generalized

affine length. In the case that the space-time is maximally extended and everywhere past

b-incomplete, there is a curvature singularity that, in some sense, is to the past of every

non-initial space-time point. (For example, every maximally extended geodesic would

be past-incomplete.) Here, I will prove that any non-causally bizarre spacetime which

is everywhere past b-incomplete is weakly observationally indistinguishable from some

spacetime that fails to be everywhere past b-incomplete. 

11
 

To prove that any non-causally bizarre spacetime which is everywhere past b-incomplete

is weakly observationally indistinguishable from some spacetime that fails to be every-

where past b-incomplete, consider some non-causally bizarre space-time (M, gµν). Using

the clothesline construction previously discussed to prove the MMT, construct a space-

time (M′, g′µν) such that (M, gµν) is weakly observationally indistinguishable from (M′, g′µν).

In order to endow (M′, g′µν) with various global properties distinct from those possessed

by (M, gµν), we can make modifications to the (M(i, β), gµν)’s; doing so will not affect the

10
 ↑ The reader may worry that this conclusion was reached too fast. As discussed in the aforementioned

subsection, there may be metaphysical reasons to delimit the space of possible space-times. And if so, we
wouldn’t be able to draw the general conclusion that S has extensions withoutB. In any case, I do not have
anything more to say on this issue than I already said in the subsection titled ‘ζ is at finite proper time to
the past’.
11

 ↑ Thanks to JB Manchak for his help in constructing this proof.
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weak observational indistinguishability between (M, gµν) and (M′, g′µν) because all of the

I−(pi)’s are in the (M(i, α), gµν)’s.

Consider an open neighborhood O in the (M(1, β)) portion of (M’, g′µν). By lemma 1

from Manchak ( 2016 , p. 1055), 

12
 there is an open neighborhood Ô in O with the following

property. We can construct another space-time (M′, g′′µν) that is an exact copy of (M(1, β))

outside of O but which is such that g′′µν is flat inside Ô. Moreover, let’s re-define (M′, g′µν)

such that (M′, g′′µν) replaces (M(1, β)). Now consider Minkowski space-time, which I will

denote (N, hµν). Let σ be a three dimensional space-like surface in Ô in (M′, g′′µν) and let σ′

be a three dimensional space-like surface in (N, hµν). Excluding boundary points, make

the following identifications:

upper edge of σ ⇐⇒ lower edge of σ′

lower edge of σ ⇐⇒ upper edge of σ′

By combining (M′, g′µν) and (N, hµν), we arrive at a new space-time. Let’s denote our

new space-time (M′′, g′′µν). Note that (M′′, g′′µν) is not everywhere past b-incomplete. To

show that this is so, consider any maximally extended time-like geodesic γ in the N

portion of (M′′, g′′µν) which does not intersect σ′ or the boundary of σ′. Since all time-

like geodesics are past-complete in Minkowski space-time, γ is likewise past-complete.

(M, gµν) is weakly observationally indistinguishable from (M′′, g′′µν) for the same reasons

that (M, gµν) is weakly observationally indistinguishable from (M′, g′µν), that is, (M′′, g′′µν)

contains a copy of each of the I−(pi)’s. Therefore, any non-causally bizarre space-time

which is everywhere past b-incomplete is weakly observationally indistinguishable from

some space-time that fails to be everywhere past b-incomplete.

One may worry that the construction I’ve provided in the preceding proof is somewhat

artificial. One may also worry – as Manchak expressed to me in correspondence – about

whether the O− Ô region of (M′, gµν) satisfies a variety of local conditions. I will take two

steps to at least somewhat alleviate that worry. First, I’ve shown that everywhere past sin-

12
 ↑ Lemma 1 from Manchak ( 2016 , p. 1055) tells us: “Let (M, gab) be any space-time and let O be any [open

neighborhood] in M. There is an [open neighborhood] Ô in O and a space-time (M, g′ab) such that g′ab is flat
on Ô and g′ab = gab on M −O.”
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gular space-times are weakly observationally indistingiuishable from space-times that are

not everywhere past singular. Since weak observational indistinguishability is a logically

stronger condition than super weak observational indistinguishability, a trivial conse-

quence is that everywhere past singular space-times are super weakly observationally

indistingiuishable from space-times that are not everywhere past singular. However, we

can easily construct a space-time that is super weakly observationally indistinguishable

from a cosmologically relevant space-time but which is not as artificial as the space-time

considered in the proof above. For example, recall the region U from the definition of

super weak observational indistinguishability. Interpret U as the union of the past light

cones of all the points inside the Milky Way galaxy throughout some vast but finite cosmo-

logical epoch. Now we can suppose that there exists a wormhole to a space-time without

a past boundary located outside of U. In that case, even if there is a boundary to the past

of U, there wouldn’t be a boundary to the past of every space-time point.

Second, I turn to surveying a variety of results concerning how a region from a space-

time with a finite initial segment can be “glued” together with another space-time region

to construct a new space-time without a finite initial segment. One can isometrically

embed a spatio-temporal region from an FLRW space-time in a space-time without a open

boundary to the past of every space-time point. In Newtonian gravitation, the field of

a point mass is given by the familiar inverse square relationship. Due to Gauss’s Law,

outside the surface of the Earth, the Earth’s gravitational field is likewise given by the

familiar inverse square relationship, as if the field were concentrated at the Earth’s center

of mass. The General Relativistic equivalent – the space-time of a point mass – is given

by the space-time of a black hole. For example, if the point mass has no electric charge,

magnetic field, or angular momentum, then the point mass’s space-time is described by the

Schwarzschild metric. Likewise, supposing that a mass-energy distribution is surrounded

by vacuum, the space-time far from the mass-energy distribution is well approximated by

the space-time of a black hole. This suggests one way to embed a spatio-temporal region

from an FLRW space-time into a vacuum space-time would involve “gluing” the FLRW

region’s boundaries to the interior of a black hole’s event horizon. That is, the interior of

the event horizon would look like an FLRW space-time while the exterior would look like
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a Schwarzschild black hole. The black hole’s space-time does not have a past boundary.

Consequently, a space-time without a past boundary with an FLRW region might be

constructed by gluing the FLRW region to the inside of a black hole’s event horizon.

In the 1960s, Oskar Klein ( 1961 ), Igor Novikov ( 1963 ), and Yakov Zel’dovich (  1963 )

showed how to isometrically embed a patch from a closed FLRW space-time within a

black hole’s event horizon. Werner Israel ( 1966 ) subsequently provided a general set of

conditions – the Israel Junction Conditions – for when one can “glue” together space-time

patches, each satisfying the Einstein Field Equations and with distinct metrics, so that

the newly constructed space-time also satisfied the Einstein Field Equations. (Also see

the discussion in Poisson,  2004 , pp. 84–86.) Using the Israel Junction Conditions, one can

isometrically embed a patch from either a flat or open FLRW space-time within a black

hole event horizon (Geller et al.,  2018 ). Klein, Novikov, and Zel’dovich’s results led several

Soviet physicists to speculate that the observable universe might be the interior of a black

hole; in turn, black holes containing entire universes could appear to outside observers

as subatomic particles called friedmons (Barashenkov,  1983 ; Markov,  1974 ; Markov and

Frolov,  1971 ). More recently, friedmons have been proposed as a possible dark matter

candidate (Dokuchaev and Eroshenko,  2014 ; Polishchuk,  2012 ,  2017 ). Other physicists

have taken seriously the proposal that universes are born from astrophysical (and not

subatomic) black holes (Oshita and Yokoyama,  2018 ; Popławski,  2010 ,  2016 ; Smolin,

 1992 ,  2006 ). In inflationary cosmology, an embedding of a patch of FLRW space-time

in a background Schwarzschild space-time has been considered as a model of a false

vacuum bubble in flat space (Ansoldi and Guendelman,  2006 ; Blau et al.,  1987 ; Farhi and

Guth,  1987 ; Farhi et al.,  1990 ; Haque and Underwood,  2017 ). Inflationary cosmologies

also routinely involve gluing together multiple FLRW or approximately FLRW regions

with distinct scale factors (e.g., Clough,  2018 ; Haque and Underwood,  2017 ). As is well

known, one can glue together approximately FLRW regions within a background de Sitter

space-time where the background de Sitter space-time is nowhere past singular.

Various results are known about space-times that include regions approximating FLRW

space-times. FLRW space-times are spatially isotropic and spatially homogeneous. The

space-time we inhabit is neither spatially homogeneous nor spatially isotropic. The
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matter-energy distribution varies locally; for example, the density of matter rises from

points outside the Earth’s surface to points inside the Earth’s surface. Cosmologists uti-

lize FLRW models because space-time approximates spatial isotropy and spatial homo-

geneity on the largest observable length-scales. However, cosmologists generally expect

spatial homogeneity and spatial isotropy to fail on length-scales significantly larger than

our observational horizon. For example, in inflationary cosmology, the inflationary epoch

produced spatially isotropic and spatially homogeneous regions without producing global

spatial isotropy or global spatial homogeneity.

A space-time is said to undergo intermediate isotropisation just in case the space-time

features some epoch during which the space-time is well-approximated as spatially

isotropic despite beginning or ending with epochs that are not well-approximated by

spatial isotropy. One family of nearly FLRW space-times are the Bianchi space-times,

which are spatially homogeneous but not spatially isotropic. George Ellis has offered an

important result he calls the Bianchi Evolution Theorem. Consider a Bianchi space-time

that undergoes intermediate isotropisation. We can define a state space to represent the

solutions to the EFE. In that state space, define an ϵ-neighborhood of an FLRW space-time

as a region in which all of the quantities characterizing space-times are closer than ϵ to

their values in the FLRW space-time. As Ellis and van Elst describe the theorem, “Choose

a time scale L. Then no matter how small ϵ and how large L, there is an open set of

Bianchi models in the state space such that each model spends longer than L within the

corresponding ϵ-neighbourhood of the FLRW model” (G. F. R. Ellis and van Elst,  1999 ,

p. 51).

The Bianchi Evolution Theorem follows as a consequence of the fact that the FLRW

space-times are saddle points in state space and that the saddle points are fixed points

of the phase flow. In other words, the theorem follows because FLRW space-times are

attractors in the state space for solutions of the EFE. While a variety of Bianchi space-times

have been known to be singular since at least the 1970s (see the results summarized in

Collins and Ellis,  1979 ), that FLRW space-times are an attractor in the space of solutions to

the EFE suggests that there are non-singular nearly FLRW space-times with epochs that

approximate a variety of singular FLRW space-times arbitrarily well. In fact, a variety
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of non-singular spatially anisotropic and inhomogeneous that approximate FLRW space-

times have been known for several decades (Senovilla,  1996 ).

In sum, we have three reasons for thinking that cosmologically relevant and every-

where past singular space-times are weakly or super weakly observational indistinguish-

able from space-times that are not everywhere past singular. First, I’ve proven a general

theorem according to which any non-causally bizarre spacetime which is everywhere past

b-incomplete is weakly observationally indistinguishable from some spacetime that fails

to be everywhere past b-incomplete. Second, various results have been known for several

decades according to which one can isometrically embed a spatio-temporal region from

an FLRW space-time into a larger spacetime that fails to be everywhere past b-incomplete.

Third, there are results, such as the intermediate isotropisation theorems, about space-

times that approximate FLRW space-times arbitrarily well over arbitrarily long periods of

time; while such space-times are not observationally indistinguishable from FLRW space-

times in the sense that I defined at the outset of this chapter, they are observationally

indistinguishable from FLRW space-times in the weaker sense that observers embed-

ded within space-times cannot determine whether they inhabit an FLRW space-time or

some space-time that approximates FLRW space-time arbitrarily well. Since singular

FLRW space-times are approximated arbitrarily well by non-singular FLRW space-times,

observers cannot determine whether they inhabit a space-time that includes a past singu-

larity. 

13
 

9.6 The Borde-Guth Vilenkin Theorem and Observational Indistinguishability

According to the Borde-Guth-Vilenkin (BVG) theorem, any congruence of time-like

geodesics along which a certain generalization of the Hubble parameter, denoted H, has a

positive average value is not geodesically complete to the past. That is, the BVG theorem

shows that a space-time consisting only of a time-like geodesic congruence along which

the generalization of the Hubble parameter is positive is everywhere past singular. Craig

13
 ↑ Of course, we can determine that our space-time only approximates FLRW space-time because we can

measure local inhomogeneities in the matter-energy distribution. However, the point is that the solution
space of the Einstein Field Equations includes space-times that closely approximate our own space-time but
which are not past b-incomplete.
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and Sinclair have argued that the BVG theorem, together with the evidence that the

BVG theorem applies to the space-time we inhabit, provides compelling evidence for the

conclusion that the Cosmos began to exist. As they interpret the BVG theorem, the BVG

theorem shows that space-time could not have been expanding forever and must have

begun in the finite past.

Nonetheless, our observational data at most allows us to deduce that space-time has

been expanding in our past – or within our observational horizon – and not that the entirety

of space-time has been expanding. And, as we’ve already seen, any space-time that is

everywhere past singular is weakly and super weakly observationally indistinguishable

from a space-time that is not everywhere past singular. Space-times to which the BVG

theorem applies are no different. Consider a DB space-time S such that, as a consequence

of the BVG theorem, S is everywhere past singular. We can again let U represent the

space-time region formed by taking the union of all of the past light cones of any point

in a time-like geodesic congruence bounded between two space-like regions R1 and R2.

Once again, we can construct another very different space-time S′ with a region isometric

to U and we have enough freedom in constructing S′ to ensure that there exists at least

one time-like curve in S′ that is not bounded to the past by Σ. We have enough freedom

because we can isometrically embed U into a space-time that includes another time-like

congruence along which the average of H is not positive. Consequently, there could be

time-like geodesics in regions beyond our cosmological horizon that can be extended

infinitely far into the past regardless of whatever data we might gather.

There is another reason related to observational indistinguishability for objecting to

Craig and Sinclair’s treatment of the BVG theorem. The BVG theorem tells us that a

time-like geodesic congruence along which space-time, on average, expands cannot be

continued indefinitely far into the past. Thus, at most, the BVG theorem tells us that any

cosmological process during which space-time expands lasts for finite time. For example,

as Delia Perlov and Alexander Vilenkin (  2017 , p. 331) have noted, while the theorem tells

us the period of cosmic inflation must have only finite temporal extension, the theorem

does not tell us anything about whether the Cosmos has a history prior to the period of
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cosmic inflation, let alone whether the Cosmos satisfies the Boundary Condition or has a

beginning. For all that the theorem tells us, the beginning of the Cosmos is left mysterious.

Supposing that we did somehow know that space-time regions beyond our cosmo-

logical horizon are, on average, expanding, Guth has noted that the BGV theorem does

not require the existence of a “unique beginning”. For example, two time-like curves,

along which space-time is, on average, expanding at all points on both curves, must either

terminate in the past or else exit classical space-time. 

14
 However, they do not need to ter-

minate at either a shared event or on a shared space-like surface. Furthermore, the BGV

theorem provides no upper bound to the lengths of time-like or null geodesics (Guth,

 2007 , p. 6623). Relatedly, Andre Linde notes that if one picks some time-like geodesic

on which inflation lasts for a proper time given by T, then one can always find another

geodesic on which inflation lasts for a proper time ti, such that ti > T. That there is no

upper bound to the past length of time-like or null curves in space-times to which the

BGV theorem applies has led Andre Linde to argue that the universe can be past eternal.

Linde ( 2008 , p. 16) writes that, “If this upper bound [to the past length of geodesics] does

not exist, then eternal inflation is eternal not only in the future but also in the past. [...]

at present we do not have any reason to believe that there was a single beginning of the

evolution of the whole universe at some moment t = 0, which was traditionally associated

with the Big Bang”.

We should be careful in evaluating the points made by Guth and Linde. The singular

boundary associated with the BVG theorem is an open boundary. For that reason, the

BVG theorem is relevant for whether the Cosmos satisfies the Boundary Condition only

if the BVG theorem tells us that the Cosmos includes a finite initial segment. Recall that

the Cosmos includes a finite initial segment just in case there exists a space-like surface

Σ such that all past directed time-light and light-like half-curves starting at Σ have a

finite generalized affine length. Supposing that there is a finite initial segment, there may

nonetheless be no upper bound to the past lengths of time-like geodesics. That is, for any

given time-like geodesic γ passing through Σ, there may be another geodesic γ′ such that

14
 ↑ There is also the possibility that the expansion begins at some point on each of the time-like curves. In

that case, space-time is not, on average, expanding everywhere along the curve.
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the past of γ′, atΣ, is longer than the past of γ, atΣ, so long as no geodesic passing through

Σ has infinite past length. Nonetheless, what Guth and Linde have pointed out is that the

BVG theorem does not, in itself, mandate that the Cosmos has a boundary located finitely

far to the past.

Craig and Sinclair discuss the point made by Guth and Linde but wrongly interpret

the point as an objection to the BGV theorem (see footnote 41 in Craig and Sinclair,  2009 ,

p. 142). Guth and Linde are not arguing against the BGV theorem. After all, theorems are

statements proved in mathematics and, if proved, cannot be false. However, theorems

can fail to apply if their application conditions are not met and they can have different

implications than those we at first expect them to have. Guth and Linde are pointing out

an important collection of insights about what the BGV theorem entails, provided that

we inhabit a space-time to which the theorem applies, namely, that the theorem does not

entail that any space-time to which the theorem applies had a beginning located finitely

far to the past.

In any case, there is a more substantive reason for doubting that the BVG theorem is

relevant for thinking about whether space-time satisfies the Boundary Condition. Both

Guth and Linde assume that the regions outside of the observable past are populated either

by inflating regions or by regions that have left inflation. However, one of the lessons that

we should learn from the literature on observationally indistinguishable space-times is that

we can take any finite number of geodesic congruences along which inflation occurs and

embed them into an observationally indistinguishable space-time that contains regions

that were never inflating – that is, regions to which the BVG theorem simply does not

apply. For that reason, even if we suppose that the BVG theorem tells us that any given

inflating region must be bounded in the finite past, we cannot take this to entail that all

parts of the Cosmos include a past boundary. A space-time that includes only an inflating

region bounded to the past is weakly observationally indistinguishable from another

space-time that includes regions that were never inflating; thus, space-times to which the

BVG theorem has global application are weakly observationally indistinguishable from

space-times to which the BVG theorem does not have global application. Hence, the BVG

theorem is incapable of telling us whether the Cosmos satisfies the Boundary Condition.
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9.7 Summary

As I have emphasized throughout, whether the Cosmos satisfies the Direction and

Boundary Conditions is a bit of unobservable chronogeometric structure. As such, any

wholly empirical argument for the conclusion that the Cosmos does satisfy the Direction or

Boundary Conditions must show that an independently well-supported scientific theory,

when conjoined with observational data, entails that the Cosmos satisfies the Direction

and Boundary Conditions. A scientific theory, when conjoined with observational data,

can entail that the Cosmos satisfies the Direction and Boundary Conditions only if the

observational data allows us to distinguish whether space-time satisfies the Direction and

Boundary Conditions.

General Relativity is our best theory of space-time. As I proved in this chapter, a broad

class of relativistic space-times satisfying the Direction and Boundary Conditions are ob-

servationally indistinguishable from space-times that fail to satisfy either the Direction or

Boundary Conditions. While General Relativity will likely be replaced in future physical

inquiry, we do not yet know what the correct successor theory to General Relativity will

turn out to be. Thus, this chapter leaves us with a disjunction. We can either look to

General Relativity or to a future physical theory. Insofar as we look to General Relativity

as our theory of space-time, the conjunction of theory and observational data do not entail

that the Cosmos satisfies the Direction and Boundary Conditions. On the other hand,

insofar as we look to a future physical theory as our theory of space-time, we do not know

whether the conjunction of theory and observational data entails that the Cosmos satisfies

the Direction and Boundary Conditions. More generally, no set of observations that we

currently have, when conjoined with General Relativity, entails that the Cosmos satisfies

the Modal, Direction, or Boundary Conditions.

We have one part of a case for Cosmic Skepticism. Due to the provinciality of our

knowledge of the Cosmos due to the relative scale of the Cosmos and our spatio-temporal

location within the Cosmos, General Relativity suggests that even if the Cosmos began

to exist, the Cosmos is observationally indistinguishable from a beginningless Cosmos.

Nonetheless, the case for Cosmic Skepticism is not yet complete. While we might not have
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a scientific theory, which, when conjoined with observational data, entails the conclusion

that the Cosmos began to exist, there may be other theoretical virtues which narrow

the range of possible space-times to those that do satisfy the Direction and Boundary

Conditions. For example, if the epistemic probability that the Cosmos satisfies the Modal,

Direction, and Boundary Conditions is higher than the epistemic probability that the

Cosmos fails to satisfy at least one condition, we would have good reason to believe that

the Cosmos began to exist. Thus, a full defense of Cosmic Skepticism will have to await a

discussion of confirmation theory in chapter  12 .
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10. THE MENTACULUS, WILLIAM CLIFFORD, AND EPISTEMIC

HORIZONS

10.1 Introduction

This chapter continues my defense of Cosmic Skepticism by turning to a number

of epistemic constraints that may be imposed on our knowledge of cosmological history

given contemporary physical cosmology. David Albert and Barry Loewer have developed

a reductive account of the direction of time called the Mentaculus. One of the principles

in the Mentaculus – the Past Hypothesis – provides a low entropy boundary condition for

the universe. In defense of the Past Hypothesis, Albert offers a transcendental condition

for the possibility of our knowledge of the past, including our knowledge of the history

of the Cosmos. As I argue in this chapter, either (a) the direction of time is reducible, in

which case the Cosmos does not satisfy the Modal Condition and so lacks a beginning,

or else (b) the direction of time is not reducible. I argue that if the direction of time is

not reducible, then the Past Hypothesis still provides a transcendental condition on the

possibility of our past knowledge. Nonetheless, if the direction of time is not reducible, the

possibility opens that there are physical states to which Albert’s transcendental condition

is inapplicable. If there are any such states, they are not empirically accessible to us. The

upshot will be that either the Cosmos lacks a beginning, because the Cosmos does not

satisfy the Modal Condition, or else we cannot know whether the Cosmos satisfies the

Boundary Condition because there may be past states that are inaccessible to us.

After discussing Albert’s transcendental argument, I discuss a related argument de-

veloped by William Clifford. According to various cosmological models, cosmological

history can be traced back to some sui generis state of affairs and no further. The sui

generis state of affairs may have been prepared by exogenous factors epistemically lost

to us, so that we cannot fully determine the Cosmos’s history. Here, the upshot is that

the inability to trace the Cosmos beyond a specific period in the Cosmos’s history does

not entail that the Cosmos had no history prior to that period. The provinciality of our

knowledge of the physical facts with respect to spatio-temporal location may prevent us

from knowing whether the Cosmos satisfies the Boundary Condition. I briefly discuss
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how concerns like Clifford’s apply to inflationary cosmology and to the Emergent Uni-

verse scenario and then use this chapter’s arguments to reply to an objection to Cosmic

Skepticism.

10.2 Cosmological Horizons

This chapter adds to our understanding of the epistemic limitations of cosmologically

relevant horizons. Horizons – roughly, space-time regions through which information

cannot be successfully transmitted – are a ubiquitous feature of relativistic space-times.

For example, if a star reaches a sufficient mass-energy density, the escape velocity reaches

or exceeds the speed of light. The resulting object is called a black hole. Given the pro-

hibition on signals traveling faster than light, no signal can be transmitted from within

a specific radius R0 to observers located at radii greater than R0. R0 is then called the

black hole’s event horizon. Some cosmological models – e.g., inflationary cosmologies

– involve a period of superluminal expansion, so that degrees of freedom important for

describing space-time’s global structure are located outside of the past light cones of

subsequent observers. Horizons can also develop due to processes that systematically

“scramble” or “erase” information. For example, in the early universe, electromagnetic

radiation was absorbed almost immediately after having been released. The early uni-

verse underwent a transition – electromagnetic decoupling – after which electromagnetic

radiation could, in principle, travel indefinitely far. (In technical verbiage, we say that,

before electromagnetic decoupling, photons had a finite mean free path, whereas, after

electromagnetic decoupling, photons had an infinite mean free path.) We cannot receive

electromagnetic signals from before electromagnetic decoupling. There is a similar story

concerning neutrino decoupling or gravitational wave decoupling, so that there are peri-

ods in the universe’s early history from which we cannot receive neutrino or gravitational

wave signals. Additionally, there is a so-called physics horizon in the early universe. Before

the physics horizon – assuming the notion of ’before’ continues to be a sensible notion –

we have no agreed upon or well-confirmed physical theories.
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All of the aforementioned horizons have been described in detail elsewhere and I have

nothing novel to add to their description here. This chapter relates to traditional discus-

sions concerning cosmologically relevant horizons in several ways. I argue below that one

popular research program in the foundations of statistical mechanics – the Mentaculus

project – introduces a cosmologically relevant horizon that threatens our ability to know

whether a boundary is included in our past and so threatens our ability to know whether

the Cosmos satisfies the Boundary Condition. Moreover, I discuss an argument due to

Clifford that takes on new relevance in the context of cosmologically relevant horizons.

Due to cosmologically relevant horizons, unless physical theory changes substantially, we

will never be able to gather sufficient data to determine whether the Cosmos satisfies the

Boundary Condition. And since, given present physical theory, we will never be able to

gather sufficient data to determine whether the Cosmos satisfies the Boundary Condition,

we will never be able to gather sufficient data to determine whether the Cosmos began

to exist. Lastly, I will discuss how cosmologically relevant horizons provide me with

a response to an important objection to the view that, given our current understanding

of contemporary physical cosmology, we cannot know whether the Cosmos satisfies the

Boundary Condition.

10.3 The Mentaculus

The first of my two philosophical arguments concerning the possibility of past knowl-

edge was originally developed within the context of the Mentaculus project. The Men-

taculus project is a research program devoted to providing a reductive explanation of the

direction of time. In this section, my aim is to provide a brief discussion introducing

the Mentaculus project, so that I can make reference to that project in this chapter and

in the next. While I describe some arguments offered by proponents of the Mentaculus

project, my aim is to familiarize readers with the project and not to convince readers who

may be skeptical that the direction of time is reducible. According to proponents of the

Mentaculus project, if there were a direction of time fundamental to the Cosmos then that

direction should appear in fundamental physical theory; for friends of the Mentaculus, the
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purported fact that there is no time asymmetry in fundamental physics provides reason

to think that the time asymmetry in our ordinary lives is, in some way, reducible to time

symmetric phenomena.

I turn to summarizing two important arguments for the conclusion that the direction

of time is reducible. First, our best theories of fundamental physics do not distinguish

the way in which past states depend on future states from the way in which future states

depend on past states. As a simple example, consider a ball shot out of a cannon at

time t = 0 and that hits the ground at time t = 1. Given the initial state with which

the ball is shot out of the cannon, we can calculate the ball’s entire trajectory up to the

moment when the ball impacts the ground. Assuming that there is no air resistance, we

can instead use the ball’s final state to calculate the ball’s prior trajectory down to the

time when the ball exited the cannon. The claim is not merely that the ball’s final state

mathematically depends on the ball’s initial state in the same way that the ball’s initial

state mathematically depends on the ball’s final state. Instead, the claim is that, insofar

as physical theory encodes information about nomological dependence at all, the ball’s

initial state nomologically depends on the ball’s final state in the same way that the ball’s

final state nomologically depends on the ball’s initial state.

So, either our physical theories inadequately describe fundamental nomological de-

pendence or else fundamental nomological dependence is time symmetric. There are two

reasons for thinking that the latter – that fundamental nomological dependence is time

symmetric – is more plausible. First, all else being equal, we should prefer more mod-

est theories. The greater the number of metaphysical principles we add to our physical

theories, the more immodest our theories become. Since our best fundamental physical

theories do not postulate a time asymmetric dependencce relation, all else being equal, we

should prefer a metaphysical interpretation of our best fundamental physical theories that

avoids adding a time asymmetric dependence relation. Second, one might have indepen-

dent reasons for accepting a naturalistic approach to metaphysical theorizing on which

we should avoid, when possible, conjoining extra-empirical metaphysical postulates to

our scientific theories. Thus, insofar as we have independent reason to endorse that kind
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of naturalism, we should avoid conjoining our best theories of fundamental physics with

a time asymmetric nomological dependence relation.

I turn to a second argument for the view that the direction of time is reducible. The

second argument makes use of the fact that the fundamental laws of physics are time

reversal invariant. Consider a ball traveling at a fixed speed on a frictionless surface in a

vacuum. Suppose that the ball rebounds off of a wall. Supposing that the wall is mounted

atop frictionless rollers, in order to conserve momentum, when the ball collides with the

wall, the wall will begin moving. We can break this process down into three stages: (i)

the ball is moving while the wall is at rest, (ii) the ball hits the wall, and (iii) the ball

and the wall are traveling in opposite directions. We can now consider the time reverse

process, wherein (i*) the ball and the wall are traveling in opposite directions, (ii*) the

ball and the wall collide, (iii*) the wall is at rest while the ball continues moving in the

opposite direction. Newtonian mechanics is said to be time reversal invariant because, for

all forward (reverse) sequences in Newtonian mechanics, the reverse (forward) sequence

is nomologically permissible.

Newtonian mechanics has since been succeeded by other physical theories. There is a

subtle issue about what, exactly, time reversal invariance comes to in electromagnetism,

non-relativistic quantum mechanics, or in quantum field theory. Suppose that we are

provided a list of sentences describing temporally sequential physics states, i.e., S ≡

{S1,S2, ...,SN}. In our best fundamental physical theories, we can define an operation

which, when fed S, will output S∗ ≡ {S∗N,S
∗

N−1, ...,S
∗

1}, where S∗ is said to be the time

reversal of S. And then to say that the fundamental dynamical laws are time reversal

invariant is to say that S is nomologically permissible just in case S∗ is nomologically

permissible and vice versa. For example, in the standard model of particle physics, S∗ is

obtained by replacing every charge with the opposite charge, every system with its mirror

image, and every instance of t with −t, that is, the standard model respects CPT symmetry

and not T symmetry (Christenson et al.,  1964 ; Kobayashi and Maskawa,  1973 ). Whether

the fundamental dynamical laws involved in classical electromagnetism are time reversal

invariant has been controversial because, to obtain the time reverse sequence, one must

replace the magnetic field B⃗ with −B⃗ (Albert,  2000 , p. 21; Earman,  2002b ).
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Moreover, whether quantum mechanics is truly time reversal invariant is difficult to

address, both because there is a first order time derivative in the Schrödinger Equation

and because there are specific interpretations of quantum mechanics (such as objective

collapse theories) that are explicitly not time reversal invariant. I do not take up a position

here as to whether the fundamental laws should actually be said to be time reversal

invariant. Instead, I note merely that friends of the Mentaculus have been motivated by

the notion that even if there are time asymmetries in the fundamental dynamical laws,

those time asymmetries likely cannot explain the macrophysical time asymmetry in our

ordinary experience; the explanation for the time asymmetry in our ordinary experience

must be sought elsewhere.

Although the fundamental laws might be time reversal invariant, macrophysical phe-

nomena are obviously not time reversal invariant. Eggs fry, but never unfry. Radiation

is emitted from, but does not fall onto, stars. Temperature differences spontaneously

decrease and do not spontaneously increase. In order to explain how fundamentally time

symmetric dynamical laws can ultimately explain the world of our ordinary experience,

I turn to introducing phase space. Phase space is the space of all of the microphysical

configurations that a given physical system could have. Each point of phase space repre-

sents a specific microphysical configuration. Sets of macrophysical measurements carve

up phase space into disjoint regions corresponding to distinct macrophysical states.

Suppose that we would like for a crowd of people to move a boulder and that no one

person in the crowd is powerful enough to move the boulder themselves. If we command

the crowd to charge the boulder, but do not command the members of the crowd to

coordinate their efforts, then the boulder will, at best, “quiver” when, by chance, a larger

number of people charge the boulder from one side than from other sides. The most

effective way for the crowd to move the boulder would be for the members of the crowd to

coordinate their efforts so that they, e.g., charge the boulder at a common angle. Assuming

that we can approximate each person in the crowd as a point particle moving in a two-

dimensional plane, each person has a position, e.g., for the ith person, q⃗i = (xi, yi), and each

person has a momentum, e.g., p⃗i = (pi,x, pi,y). Suppose that there are N people in the crowd.

Then we can specify the “microphysical state” of the crowd by combining all of their
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positions and momenta, i.e., ms = (x1, y1, x2, y2, ..., xN, yN, p1,x, p1,y, ..., pN,x, pN,y). The crowd’s

phase space is a 4N dimensional space, where ms labels a specific point. Since there are a

larger number of uncoordinated configurations of the crowd than there are coordinated

configurations of the crowd, the largest regions in the crowd’s phase space correspond to

states that will not move the boulder. Suppose that we begin with a coordinated crowd

but that the crowd is subject to randomized “reshufflings”. While the crowd could be

reshuffled into another coordinated configuration, since the number of uncoordinated

configurations vastly outnumber the number of coordinated configurations, the crowd

will most likely be reshuffled into increasingly less coordinated configurations.

The phase space of a gas can be constructed analogously. Supposing that the gas

is composed of point particles satisfying Newton’s laws, the ith particle has position

q⃗i = (xi, yi, zi) and momentum p⃗i = (pi,x, pi,y, pi,z). The gas’s phase space is a 6N di-

mensional space where each point corresponds to a specific microphysical state, e.g.,

(x1, y1, z1, x2, y2, z2, ..., xN, yN, p1,x, p1,y, p1,z, ..., pN,x, pN,y, pN,z). Just as there are far fewer con-

figurations of a crowd that cannot move a boulder than those that can move a boulder,

there are far fewer configurations of a gas that can do work in pushing a piston than there

are configurations of the gas that cannot move the piston.

Assuming a uniform measure over phase space, the entropy associated with a given

macrophysical state measures the size of the corresponding phase space region. A co-

ordinated system – which is to say a system in a low entropy macrophysical state – can

perform work. In the phase space of a gas in a cylinder, there are a vastly greater number

of trajectories from low entropy regions to high entropy regions than from low entropy

regions to regions with even lower entropy. Thus, given that a system begins in a state of

low entropy, the most probable evolution of the system is to states with greater entropy.

As the entropy of the system increases, the amount of energy available to do work de-

creases, and the system approaches an equilibrium state where no macrophysical work

can be accomplished.

Suppose that we begin with a coordinated gas but that the particles in the gas are

subject to randomized “reshufflings”. While the gas could be reshuffled into another

coordinated configuration, since the number of uncoordinated configurations vastly out-
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number the number of coordinated configurations, the gas will most likely be reshuffled

into increasingly less coordinated configurations. The chance collisions between gas par-

ticles act to effectively reshuffle the gas’s microphysical state. Since the particles are

subject to time symmetric fundamental dynamical laws, we’ve managed to recover time

asymmetric macrophysics from time symmetric microphysics.

Supposing that the observable universe once occupied an improbable and “coordi-

nated” state – that is, a low entropy state – energy would have been available for doing

macrophysical work. The subsequent history of the observable universe would be one

according to which the observable universe followed some trajectory through phase space

from less probable states, i.e., lower entropy macrostates, and to more probable states, i.e.,

higher entropy macrostates. During the nineteenth century, this observation led Ludwig

Boltzmann to propose that the direction of time is reducible to the entropy gradient. On

Boltzmann’s view, the temporal direction we call “the past” is reduced to the direction

in which the entropy of our cosmic environment is lower and the temporal direction we

recognize as “the future” is the direction in which the entropy of our cosmic environment

is greater. The Mentaculus project – as developed by David Albert ( 2000 ,  2015 ) and Barry

Loewer ( 2007 ,  2013 ,  2020 ) – is a sophisticated descendent of Boltzmann’s project. The

Mentaculus is the conjunction of three postulates:

1. The Fundamental Dynamical Laws, whatever they ultimately turn out to be.

2. The Statistical Postulate. This is the principle that “the right probability-distribution

to use for making inferences about the past and the future is the one that’s uniform,

on the standard measure, over those regions of phase space which are compatible

with whatever other information – either in the form of laws or in the form of

contingent empirical facts – we happen to have” (Albert,  2000 , p. 96).

3. The Past Hypothesis. This is the cosmological hypothesis that “[...] the world first

came into being in whatever particular low-entropy highly condensed big-bang sort

of macrocondition it is that the normal inferential procedures of cosmology will

eventually present to us” (Albert,  2000 , p. 96).
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For my purposes, we need to revise the statement of the Past Hypothesis. As Albert states

the Past Hypothesis, the Mentaculus entails that the Cosmos began to exist. However, I

doubt that Albert would endorse the view that the Mentaculus entails the Cosmos satisfies

the Modal, Direction, or Boundary Conditions and so I doubt that Albert means for the

Past Hypothesis to entail that the Cosmos began to exist in the sense I have defended

in this dissertation. Moreover, if the direction of time is reducible, then what makes

the “low-entropy highly condensed big-bang sort of macrocondition” a part of our past

is just that the macrocondition lies at one end of the entropy gradient we find in our

cosmological environment. Instead of understanding the Past Hypothesis as stipulating

a low entropy state for the entire Cosmos, I will understand the Past Hypothesis as

providing a low entropy boundary condition for a sufficiently large space-time region, of

which the observable universe is a part. Stated that way, the Mentaculus does not, itself,

entail whether (i) the Cosmos began to exist or (ii) the low entropy state postulated by

the Past Hypothesis is to the past of all events in the Cosmos. For that reason, even if

the low entropy state is a boundary, the low entropy state is not necessarily the sort of

space-time-wide boundary required for satisfying the Boundary Condition.

According to friends of the Mentaculus, the direction of time is not reducible to the

entropy gradient. Instead, their view is that the direction of time shares a reductive expla-

nation with the entropy gradient. They argue that the Mentaculus provides a “probability

map of the world” (e.g., Loewer,  2020 ), i.e., every formalizable proposition concerning the

state of the physical world – and so nearly every statement that could ever be made in the

sciences – is assigned an objective chance through conditionalization on the Mentaculus.

The conditionalization of statements on the Mentaculus explains why, e.g., ice, left to its

own devices, is vastly more probable to melt in one temporal direction – the direction we

label as “the future” – than the other – the direction that we label as “the past”. 

1
 

1
 ↑ For the sake of completeness, I include a brief discussion of the Mentaculus’s relationship to a Neo-

Humean approach to laws, chance, and causation originally developed by David Lewis. As I will explain,
the Mentaculus project is compatible with Neo-Humeanism, but does not entail Neo-Humeanism. On
Lewis’s view, our world ultimately consists of a space-time manifold and a distribution of properties
sprinkled across that manifold. The distribution of properties is called the Humean Moasic. All else – and,
in particular, laws, chance, and causation – supervene on the Humean Mosaic. For example, laws are
understood as theorems of whatever description of patterns in the Humean Mosaic provides the best trade-
off between simplicity and generality. Counterfactuals are understood in terms of how the Humean Mosaic
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10.3.1 A Transcendental Condition on Past Knowledge

Having completed a discussion of the Mentaculus, I turn to discussing a transcendental

argument concerning the possibility of past knowledge, including the possibility of our

having knowledge of cosmological history, that has been offered in defense of the Past

Hypothesis. To examine that argument, I need to introduce the distinction between

retrodictions and records. First, I turn to examining the notion of retrodiction. Retrodictions

are the time reverse of predictions. For example, given the current state of a cup of

water containing a single ice cube, we can predict subsequent states of the ice cube or

retrodict prior states of the ice cube. In an experimental arrangement, only a specific set

of macrophysical parameters characterizing the ice cube, e.g., ambient pressure, volume,

temperature, etc, are epistemically available to us. Since we do not know the ice cube’s

specific microphysical state, we can at best say which macrophysical state the ice cube

is most likely to evolve into. Likewise, in performing a retrodiction, we can at best say

which macrophysical state the ice cube is most likely to have evolved from. In order

differs between possible worlds and causation is then analyzed in terms of counterfactuals. Lewis’s view is
Neo-Humean because there is an intuitive sense in which the view captures Hume’s intuition that there are no
necessary connexions between distinct existences. Albert and Loewer endorse their own versions of Lewis’s
original program; for example, on their view, the three statements in the Mentaculus are laws because they
are theorems of the system providing the best trade-off between simplicity and generality. Moreover, there
is a sense in which the Mentaculus and the Lewisian program are kindred spirits; the statistical reduction
of thermodynamics and the reduction of nearly everything to patterns in the Humean Mosaic seem natural
companions, even if neither entails the other.

Nonetheless, the Mentaculus is consistent with the denial of Lewis’s project. There is no inconsistency
between the view that there are necessary connexions between distinct existences and the view that time is
fundamentally directionless. For example, consider that, for Lewis, the notion that there are no necessary
connexions between distinct existences entails a modal recombination principle, according to which a
possible world can be constructed from two others by “stitching” together a patch from either in a novel
way. As I discussed in chapter  9 , whether two space-time regions, both of which satisfy the Einstein
Field Equations, can be patched together in such a way that their combination satisfies the Einstein Field
Equations depends on whether their combination satisfies the Israel Junction Conditions. According to an
oft-told story, when scientists discovered the chemical composition of water, they discovered an a posteriori
necessity, that is, they discovered the essence of water. A similar story might one day be told about space-
time, where some set of a posteriori claims reveals to us the essence of space-time. That story is likely to
be told in terms of some future successor to General Relativity, but suppose – for the sake of the thought
experiment – that we accept, as a necessary consequence of the essence of space-time, itself, that space-time is
consistent with the Einstein Field Equations. In that case, as a matter of metaphysical necessity, two patches
of space-time can be stitched together only if their combination satisfies the Israel Junction Conditions.
Since the Israel Junction Conditions are time symmetric, one can endorse the view that there are necessary
connexions between distinct existences, thereby denying Lewis’s modal recombination principle, while
accepting that physics is fundamentally time symmetric. We would then need a way to explain how the
world of our ordinary experience could be time asymmetric; the Mentaculus could be invoked to do so.
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to calculate the probabilities involved, both predictions and retrodictions make use of a

suitably coarse grained measure over trajectories through phase space.

Consider a cup of water containing an ice cube. Let’s call the combined cup, water,

and ice cube system C. Suppose that C occupies a low entropy state at time t0. At time

t1, where t1 > t0, we measure C’s macrophysical state. At t1, C has not yet reached

thermodynamic equilibrium; for example, perhaps the ice cube is only half-melted. At t1,

C’s entropy is higher than C’s entropy at t0. Suppose, further, that we are interested in

making a prediction to C’s macrophysical state at time t2, such that t2 > t1. Since C has not

yet reached thermodynamic equilibrium, we can predict that, at t2, C will have a higher

entropy macrophysical state. For example, perhaps we calculate that, with exceedingly

high probability, the ice cube will be completely melted at t2.

Given C’s macrophysical state at t1 and without any exogenous interactions to disturb

the state of C from the outside, we can reliably predict C’s future evolution, without

conditionalizing on the Past Hypothesis, with such exceedingly high reliability that a

counterexample to our prediction will not be observed on time scales longer than the

history of the observable universe. However, we cannot reliably retrodict C’s initial state

at t0 using C’s macrophysical state at t1 without conditionalizing on the Past Hypothesis.

Suppose that we try to retrodict C’s macrophysical state at t0 from C’s macrophysical state

at t1 without conditionalization on the Past Hypothesis and without any measurements

from t0. Supposing that we conditionalize on the Statistical Postulate and the fundamental

dynamical laws but not on the Past Hypothesis, the suitably coarse grained measure of

microphysical trajectories exiting some phase-space region R and entering some higher

entropy region R∗ is equal to the measure of microphysical trajectories entering R from R∗.

Contrary to C’s actual evolution from t0 to t1, a half melted ice cube is more likely to have

been generated spontaneously from a cup of water, sans ice cube, than from a less melted

ice cube.

Records provide us with better access to the past than do retrodictions because records

utilize a fundamentally different mechanism for accessing the past than do retrodictions.

A retrodiction is a relation between two times (a past time and the present) expressed in

virtue of the fundamental dynamical laws of temporal evolution. In contrast, a record of
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an event requires a three-part relation between a moment before the record was created,

the event, itself, and the present. To guarantee that some record we possess did not merely

fluctuate into existence by chance from a higher entropy state, we must ensure that the

corresponding recording device, in the moment before the creation of the record, occupied

the appropriate state. Drawing on vocabulary from the quantum foundations literature,

Albert ( 2000 , p. 118) refers to that state as the device’s ready state. For example, for an

analogue camera to take a photograph, unexposed film must be properly loaded into the

camera, the camera’s shutter must be properly cocked, and so on. To ensure that the device

was prepared in the ready state requires that we have a record of the device having been

prepared in the ready state. We’re off to the races on a regress of ready states, each one

further to the past, until we reach the ultimate ready state, viz, a low entropy constraint

for the entire observable universe. We cannot have a record of the ultimate ready state. If

we did have a record of the ultimate ready state, then the ultimate ready state would not

successfully halt the regress. Thus, just as the cause that halts the regress that appears in

some cosmological arguments for theism must be uncaused, the ultimate ready state must

be unrecorded. Consequently, unlike all of the other ready states appearing in the regress,

the ultimate ready state cannot itself be available to ordinary empirical procedures.

Without conditionalizing on the Past Hypothesis, we would retrodict all sorts of anti-

thermodynamic phenomena, e.g., that the ice cubes we observe were mostly likely spon-

taneously formed out of liquid water via the chance collisions of atoms. Likewise, without

conditionalization on the Past Hypothesis, the records we believe ourselves to possess are

vastly more likely to have fluctuated into existence by the chance collisions of atoms than

to have been generated by a recording process. Friends of the Mentaculus defend the Past

Hypothesis not on the grounds that there are empirical observations supporting the Past

Hypothesis but instead because, without the Past Hypothesis, our knowledge of the past

would not be possible. Without reliable records of the past, my memory of the beginning

of this sentence is no longer reliable by the time I finish writing this sentence. The kind

of wholesale global skepticism concerning past knowledge that results without the Past

Hypothesis would undermine all of our scientific knowledge. Thus, insofar as scientific

knowledge is possible at all, we must presuppose the Past Hypothesis. There can be no
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empirical cosmology without the Past Hypothesis. In other words, Albert has offered us

a transcendental argument for the Past Hypothesis. 

2
 

What about events that are prior to the ultimate ready state? Recall that friends of

the Mentaculus are pursuing a reductive explanation of the macrophysical direction of

time. According to friends of the Mentaculus, there is a sense in which there can be

no state prior to the ultimate ready state because friends of the Mentaculus endorse a

view on which the direction of time shares a reductive explanation with the entropy

gradient. Wherever the global entropy gradient begins must be considered the start

of a macrophysical temporal series.  

3
 However, there are two reasons for thinking that

the reducibility of the direction of time is incompatible with the Modal Condition. For

the first reason, note that, if the direction of time is reducible, then the Cosmos has no

fundamental temporal direction. Without a fundamental temporal direction, the Cosmos

is fundamentally timeless. Perhaps one could object on the grounds that a macrophysical

direction of time suffices for the existence of time. In that case, I turn to a second reason

for thinking that the reducibility of the direction of time is incompatible with the Modal

Condition. On a view according to which the direction of time is reducible, B-relations are

reducible. Suppose that all numerically distinct time-like related macrophysical events

could be placed into before or after relations with respect to one another. Given how

the macrophysical B-relations are explained in terms of the mass-energy distribution

throughout the Cosmos, plausibly, there is a nearby possible world w where macrophysical

B-relations do not obtain between all time-like related macrophysical events. Without the

macrophysical B-relations between all time-like related macrophysical events, w lacks a

2
 ↑ Albert ( 2000 , p. 94) tells us that we know the Past Hypothesis in a different way from how we know

“of straightforward everyday particular empirical facts”. Subsequently, Albert ( 2000 , p. 96) tells us that the
Mentaculus consists of “three laws and one contingent empirical fact”, where the “contingent empirical fact”
is the present state of the world that we need to input to the Statistical Postulate. The low entropy condition
of the early universe – and so the Past Hypothesis – is (apparently) not a matter of contingent empirical fact.
Albert states that we know the Past Hypothesis more like how we know laws, that is, as a postulate that
is enormously helpful in formulating predictions. But the situation seems to be a bit different from how
we ordinarily infer laws as well. Prototypically, we infer laws by inductive generalization. Instead of an
inductive generalization, Albert establishes the Past Hypothesis by way of a transcendental argument. In
the case of the Past Hypothesis, once we know the fundamental laws and the statistical postulate, we must
assume the Past Hypothesis in order to secure the possibility of various forms of knowledge.
3

 ↑ I say the “start” of a macrophysical temporal series – as opposed to the “beginning” of a macrophysical
temporal series – in order to avoid confusion with a beginning in the sense that I defended in part  II .
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macrophysical direction of time. Thus, even if we supposed that a macrophysical direction

of time sufficed for the existence of time, there would be a nearby possible world where

the Cosmos exists but time does not. In that case, by definition, the Cosmos would not

fulfill the Modal Condition.

Nonetheless, suppose that the direction of time is not reducible. For example, perhaps

the direction of time is not a physical phenomenon and needs to be added, as a meta-

physical postulate, to any complete description of our world. In that case, the fact would

remain that time asymmetric macrophysical phenomena need to be understood in terms

of time symmetric microphysics. And since most or all of the records we have of the

past are physical objects, Albert’s transcendental argument would still apply to whatever

records we possess of the past. Since the direction of time would not be reducible, one

could sensibly ask about states absolutely prior to the ultimate ready state. The con-

sequence of Albert’s transcendental argument is that all of the physical states of affairs

of which we can have records must be located somewhere between our present state of

affairs and the ultimate ready state. If the direction of time is irreducible, then there may

be states of affairs temporally prior to the ultimate ready state. Nonetheless, there can

be no records of any such state of affairs. Since there can be no records of any such state

of affairs and, plausibly, reliable empirical access to the past is provided only by records,

we cannot have reliable empirical access to whatever states there might have been prior

to the ultimate ready state. Consequently, the ultimate ready state provides an epistemic

horizon for our knowledge of cosmological history. Given an epistemic horizon for our

knowledge of cosmological history, we would not be able to determine whether there is

a boundary to our past and thus could not determine whether the Cosmos satisfies the

Boundary Condition.

10.4 Clifford’s Argument

In the nineteenth century, William Clifford offered a distinct, though related, set of

arguments for the conclusion that there is a horizon for our knowledge of cosmological

history. Physicists knew, by the latter nineteenth century, that thermodynamic processes
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are time asymmetric. The fact that the observable universe has yet to reach equilibrium

was suggested as a reason for thinking that the Cosmos had a beginning (Kragh,  2008 ).

William Clifford responded in an article published in The Fortnightly Review in 1875. By

way of analogy, Clifford considers an iron poker that has been heated red hot by a fire:

Suppose you put the end of a poker in the fire and make it red hot, that end

is much hot than the other end, and if you take it out and let it cool, you will

find that heat is traveling from the hot end to the cool end, and the amount of

this travelling, and the temperature at either end of the poker can be calculated

with great accuracy. That comes out of Fourier’s theory. Now, suppose you

try to go backwards, in time, and take the poker at any instant when it is about

half cool, and say this equation,– does it give me the means of finding out what

was happening to it before this time, in so far as that state had been produced

by cooling? You will find that the equation will give you an account of the state

of the poker before the time when it came into your hands, with great accuracy

up to a certain point, but beyond that point it refuses to give you any more

information, and it begins to talk nonsense. It is in the nature of the problem

of the conduction of heat that, that it allows you to trace the forward history

of it to any extent that you like; but it will not allow you to trace the history of

it backward, beyond a certain point [...] you will find that the point where the

equation begins to talk nonsense is the point where you took it out of the fire

(Clifford,  1875 , pp. 478–479).

Clifford considers how analogous results obtain for the mixing of two fluids; the mixture

can be traced back to the unmixed state, but not beyond the unmixed state. In the case

of the preparation of the hot poker or the preparation of two unmixed fluids, the trouble

is that the equations of heat conduction or of diffusion do not provide information about

the process in virtue of which the poker or mixture were prepared. But a similar problem

arises if the poker became hot or the fluids unmixed through a statistical fluctuation in

the motions of the atoms comprising the poker or the fluids. Applied to a portion of the

Cosmos, one could at most trace that portion back to a specific state but not beyond. As
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if to presage the big bang cosmology that would develop in the next century, Clifford

( 1875 , p. 482) argues that if we trace the history of the world backwards, we come to a

“catastrophe” beyond “which we cannot make any further calculation”.

We may have reason to endorse the view that our location in cosmic history hides from

us a representative sample of all of the physical facts that there are and in such a way so as

to prevent us from knowing physical facts pertinent for addressing whether the Cosmos

began to exist. Information about the matter-energy contents important for reconstructing

a full cosmological history may have been hopelessly and irretrievably lost. Importantly,

the fact that we can identify a state of affairs beyond which we are unable to determine

the Cosmos’s history does not entail that the Cosmos satisfies the Boundary Condition.

Scenarios resembling the one envisioned by Clifford appear throughout contemporary

physical cosmology. According to inflationary cosmological models, there was a primor-

dial period during which the space-time underwent an exponential expansion driven by

the so-called “inflaton” field. (Variations of cosmic inflation assume different behavior

for or properties of the inflaton field, but the variations do not matter for my purposes.)

According to inflation’s proponents, the exponential expansion is supposed to account

for the observed universe’s flatness and homogeneity as well as the spectrum of fluctu-

ations in the cosmic microwave background. In chapter  9 , I discussed how Delia Perlov

and Alexander Vilenkin (correctly) interpret the BVG theorem, that is, that any period of

cosmic expansion – including inflation – has no more than finite temporal extension. As

Perlov and Vilenkin argue, the BVG theorem leaves the origin of the Cosmos mysterious.

Likewise, in a previous chapter, I argued that Craig and Sinclair misinterpret the BVG

theorem to suggest that if inflationary cosmology is correct, then the Cosmos must have

had a boundary in the finite past. As I’ve argued, the BVG theorem does not imply a

boundary in the finite past both because the inflationary period could have been preceded

by space-time regions that fail to satisfy the Direction or Boundary Conditions and because

an inflating region can be isometrically embedded in a space-time that includes regions

that were never inflating. Moreover, an inflating space-time could be joined on to or exist

within a non-spatio-temporal structure and, therefore, violate the Modal Condition. Thus,

inflationary cosmology provides no indication that the Cosmos began to exist.
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A closely related issue arises for the Emergent Universe scenario, as pioneered by George

Ellis and co-authors (G. F. R. Ellis et al.,  2004 ; G. Ellis and Maartens,  2004 ). The Einstein

Static State (ESS) is a space-time region that has a finite size, but no boundary. Observers

with sufficiently long lives who set off at some finite velocity will eventually find them-

selves coming back to their starting point, despite never having changed their direction

of motion. This is analogous to an ant who, walking in a fixed direction on the surface of

a ball, eventually makes their way back to their starting point. The observer – like the ant

– never encounters a boundary, even though the space within which they live is finite in

size.

The Emergent Universe scenario includes an inflationary phase, but the inflationary

phase is preceded by an ESS. The physicists who developed the Emergent Universe

scenario had initially hoped that the ESS could have persisted since eternity past. Their

hopes seem to have been dashed in virtue of the fact that the ESS is unstable to quantum

fluctuations. As David Mulryne ( 2005 ), and co-authors, note, “the instability of the

[Einstein Static State] makes it extremely difficult to maintain such a state for an infinitely

long time in the presence of such fluctuations, such as quantum fluctuations, that will

inevitably arise”.

In quantum mechanics, systems cannot typically be static in the way that they can

be in the classical context. The Einstein Static State is balanced precariously. Quantum

fluctuations would result in the universe losing its “grip” and transitioning away from

the Einstein Static State. Though the universe could fluctuate back into the Einstein Static

State, transitions to states even further away are exponentially more likely. Quantum

systems which can be fixed in a single state without fluctuating away from that state do

so because they cannot transition from that state, i.e., eigenstates of the Hamiltonian. But,

if the universe were in a state like that, then the universe would never have exited into

the inflationary epoch. As Anthony Aguirre and John Kehayias ( 2013 ) describe, “it is

very difficult to devise a system – especially a quantum one – that does nothing ‘forever,’

then evolves. A truly stationary or periodic quantum state, which would last forever,

would never evolve, whereas one with any instability will not endure for an indefinite

time”. Craig and Sinclair (Craig and Sinclair,  2009 , p. 150) take the failure of the Emergent
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Universe scenario to offer an infinite past history as a win for their view that the Cosmos

began to exist at a finite time in the past. They are careful enough to admit, “Metastable

states leave unexplained how they came to exist.” But then they immediately follow

with, “Universes with a metastable initial state must therefore have a beginning”. Two

points can be made here. First, to suppose that the metastable state was the initial state

is question begging. Second, if we instead consider the statement that universes with a

metastable state must therefore have a beginning, then we can see that this statement does

not follow from the previous statement that metastable states leave unexplained how they

came to exist. If some hypothesis leaves the origins of a particular cosmological epoch

unexplained or postulates that some cosmic epoch probably existed only for finite time,

that hypothesis does not entail that the Cosmos began to exist or even that the Cosmos

satisfies any of my three conditions for the Cosmos to have had a beginning.

Craig and Sinclair ( 2009 ) argue that the conclusion they reach for the Emergent Uni-

verse scenario applies “across a wide array of model classes” that include a primordial

meta-stable state. As a second example, the inflaton field might once have occupied a

meta-stable state, in which the inflaton field’s energy, i.e., the vacuum expectation value,

was significantly higher than the field’s subsequent value. The field may have decayed

into some lower energy state, in which the vacuum expectation value is close to zero,

and (perhaps) corresponds to dark energy in our current cosmological epoch. Like the

meta-stable state in the Emergent Universe scenario, the higher energy state of the inflaton

field would have been unstable and is unlikely to have existed for an infinite length of

time. While Craig and Sinclair are right that a meta-stable state would probably not have

persisted for an infinite length of time, all that we can conclude is that the meta-stable state

probably had a finite lifetime. The inflaton field (for example) could have transitioned

between any number of meta-stable states for some indefinite period of time – with no

upper bound to the length of time – before exiting. Moreover, there may be a vast number

of trajectories that pass through the meta-stable state, so that noting that the system was

once in the meta-stable state is insufficent for determining how the system came to be in

that state.
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We can again recall Clifford’s argument. We can use the heat conduction equation to

trace the poker’s temperature back to the time that the poker was inserted in the fire or the

diffusion equation to trace the history of mixed fluids back to an unmixed state, but the

inability to trace the poker or the fluids further back in time does not entail a beginning

of either the poker or the fluids. Likewise, our inability to determine a prior history for

some specific epoch in cosmological history does not indicate the Cosmos had a boundary

that would satisfy the Boundary Condition. We may have simply reached a catastrophe

beyond which our calculations cannot be successfully extended.

10.5 An Important Objection

So far, I’ve argued that our current understanding of physical cosmology prevents us

from knowing whether the Cosmos satisfies the Boundary Condition. Unless physical

cosmology changes substantially in specific ways in future physical inquiry, we are un-

likely to be able to infer whether the Cosmos satisfies the Boundary Condition. In this

section, I will highlight a potential objection to my dissertation’s project and will show

how the arguments that I’ve presented in this chapter overcome that objection.

Despite what I’ve argued in previous chapters, friends of the KCA’s second premise

might hope that, in future inquiry, physicists will determine that there is a boundary in

our past. The question would remain open as to whether there is a boundary to the

past of all space-time points. For example, one way to violate the Boundary Condition

would involve the existence of points that are space-like separated from us but which are

such that there is no boundary to their past. However, if one discovered that there is a

boundary to one’s past, perhaps one should use induction to project the feature of having

a past boundary to all space-time points. In that case, while the presence of a boundary in

one’s past would not demonstrate that the Cosmos satisfies the Boundary Condition, the

presence of a boundary in one’s past would provide evidence that the Cosmos satisfies

the Boundary Condition.

The considerations in this chapter cast doubt on such a possibility. To see why, let me

grant that if one did know that there were a boundary to one’s past, then one would have
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some evidence that the Cosmos satisfies the Boundary Condition. Nonetheless, given the

epistemic horizons that I’ve considered in this chapter, we wouldn’t know whether any

candidate boundary really is a boundary. For that reason, one wouldn’t be able to infer

that one’s past did include a boundary. Without being able to infer that one’s past did

include a boundary, one would not be able to employ an inductive generalization from

the fact that one’s own past includes a boundary.

10.6 Summary

This chapter adds to our understanding of the epistemic limitations of cosmologically

relevant horizons and how those epistemic limitations might prohibit us knowing from

whether the Cosmos satisfies the Modal or Boundary Conditions.

First, I have argued that the Mentaculus project provides us with reason to endorse

a specific cosmologically relevant horizon. Either – as friends of the Mentaculus have

argued – the direction of time is reducible, in which case the Cosmos does not satisfy the

Modal Condition, or else the direction of time is not reducible. Albert’s transcendental

argument for the Past Hypothesis is consistent with the irreducibility of the direction of

time. The consequence of Albert’s transcendental argument is that all of the physical

states of affairs of which we can have records must be located somewhere between our

present state of affairs and the ultimate ready state. If the direction of time is irreducible,

then there may be states of affairs prior in time to the ultimate ready state. Nonetheless,

there can be no records of any such state of affairs. Since empirical access to the past is

plausibly available only by way of records, we cannot have empirical access to whatever

states of affairs there might have been before the ultimate ready state. For that reason, the

ultimate ready state is an epistemic horizon to our knowledge of cosmological history.

Second, I discussed a related argument originally offered by William Clifford in the

nineteenth century. According to various cosmological models, cosmological history can

be traced back to some sui generis state of affairs and no further. The factors which

prepared that sui generis state of affairs may be completely lost to present observers so

that the sui generis state of affairs provides an epistemic horizon to our knowledge of
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cosmological history. The inability to trace the Cosmos’s history beyond a specific sui

generis state of affairs does not entail that the Cosmos had no prior history. As the Cosmic

Skeptic claims, the provinciality of our knowledge of the physical facts with respect to

spatio-temporal location may prevent us from knowing whether the Cosmos satisfies the

Boundary Condition.

Lastly, I turned to considering how a primordial sui generis state of affairs appears

in standard inflationary cosmology and in the Emergent Universe scenario and used

the arguments developed in this chapter to reply to an important objection to Cosmic

Skepticism.
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11. BIG BOUNCE OR DOUBLE BANG?

11.1 Introduction

In this chapter, I turn to considering cosmological models on which some dynamical

mechanism prepares the primordial observable universe in a low entropy macrophysical

state and I will show that, even if we had strong evidence for one of those models,

we would have no reason for thinking that the Cosmos began to exist. According to

the standard big bang model, the observable universe began in a catastrophic event

approximately fourteen billion years ago. Nonetheless, since the beginning of physical

cosmology as a science in the first half of the twentieth century, physicists have explored

“bounce” cosmologies (Kragh,  2009 ,  2018 ). According to the usual interpretation of

bounce cosmologies, the observable universe originated when a pre-existing universe

“bounced” through a highly compressed state; this could have happened in a variety of

ways. Space-time, of which our present universe is one proper part, might cycle through

multiple generations of universes, each reaching a maximum size before contracting and

eventually giving birth to a subsequent universe (as in, e.g., Ijjas and Steinhardt,  2017 ,

 2018 ,  2019 ; P. Steinhardt and Turok,  2007 ; P. J. Steinhardt and Turok,  2002 ). Or there could

have been a single previous universe that “bounced” through a maximally dense state to

give birth to our universe, which will expand indefinitely into the future. (For reviews of

models in the former two families, see Battefeld and Peter,  2015 ; Brandenberger and Peter,

 2017 ; Lilley and Peter,  2015 ; Novello and Bergliaffa,  2008 .) Alternatively, each universe

might give birth to offspring universes through the highly compressed state found within

black holes (Popławski,  2010 ,  2016 ; Smolin,  1992 ,  2006 ).

Bounce cosmologies, if true, do not necessarily preclude the possibility that the Cosmos

satisfies the Boundary Condition. For example, a chain of universes, each “bouncing” into

the next, might be initiated with a finite initial segment, in which case the entire chain

might be a DB-spacetime. Nonetheless, many bounce cosmologies, under the traditional

interpretation and as they are traditionally discussed, explicitly violate the Boundary

Condition. We do not currently know if any bounce cosmology is correct, but, so long as

229



bounce cosmologies remain live hypotheses, we do not know whether the second premise

of the KCA is true.

As part of their defense of the second premise of the KCA, William Lane Craig and

James Sinclair ( 2009 ,  2012 ) disagree with the traditional interpretations of bounce cos-

mologies. Craig and Sinclair (  2012 , pp. 125–127) re-interpret the interface between the

two universes to represent the ex nihilo birth of both universes – a “double big bang” .

Setting aside questions about bounce cosmology’s plausibility or about the compatibility

of bounce cosmology with Albert’s transcendental argument, I will show that bounce cos-

mologies have features which Craig and Sinclair’s interpretation cannot plausibly explain.

There are bounce cosmologies in which the features of one universe explain features of

the other, which seems inconsistent with the interpretation that both universes were born

simultaneously, and there are bounce cosmologies in which the thermodynamic arrow of

time is continuous from one universe to the next. Thus, if various bounce cosmologies

are correct, then the Cosmos does not satisfy the Boundary Condition. Due to the provin-

ciality of our knowledge with respect to scale, time, space, and energy, we do not know

whether any of the bounce cosmologies are correct, or at least correct in sufficient detail to

suggest on their basis whether the Cosmos satisfies the Boundary Condition. We cannot

rule bounce cosmologies out and so cannot rule out the possibility that the Cosmos was

beginningless.

11.2 The BVG Theorem and Bounce Cosmologies

As I’ve discussed in chapter  9 , according to the BVG theorem, in any classical space-

time, any geodesic congruence of time-like and null curves along which the average of

a specific generalization of the Hubble parameter is positive must be finite in temporal

extension. While Borde, Guth, and Vilenkin interpret the result to indicate that our under-

standing of cosmological history is incomplete, Craig and Sinclair interpret the singular

behavior as evidence that the Cosmos had a beginning in the finite past. Nonetheless, a va-

riety of non-singular cosmologies – including bounce cosmologies – have been proposed.

Bounce cosmologies avoid a past boundary to space-time because instead of postulating
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that the generalized Hubble parameter is always greater than zero, bounce cosmologies

postulate that space-time can be smoothly continued – that is, without becoming singular

– from our expanding phase into a past contracting phase, where the generalized Hub-

ble parameter is negative. The interface at which the expanding and contracting phases

smoothly join on to one another is termed the “bounce”.

Recall that, for Craig and Sinclair, the Cosmos had a beginning just in case the Cosmos’s

past is finite. I’ve argued that a finite past does not suffice for the Cosmos to have had

a beginning. Nonetheless, since Craig and Sinclair utilize a conception on which a finite

past does suffice for a beginning, Craig and Sinclair have endeavored to show that the

Cosmos has a finite history. Bounce cosmologies might be thought to avoid a finite history

because, at least at first glance, they postulate that space-time has an infinite history.

For my purposes in this chapter, the question will be whether the truth of a bounce

cosmological model would entail that the Cosmos includes a space-time satisfying the

Boundary Condition. There are two possibilities for the temporal location of the boundary

required for the Boundary Condition, namely, that the boundary is located in the finite

past or else the boundary is located in the infinite past. No current proposal for a bounce

cosmology entails a boundary located infinitely far to the past; so, the question is whether

bounce cosmologies should be interpreted to include a boundary located finitely far to

the past.

To continue their defense of the Kalam argument in the light of non-singular cosmolo-

gies, Craig and Sinclair have sought to provide a typology of cosmological models that

“evade” the Hawking-Penrose or Borde-Guth-Vilenkin singularity theorems ( 2009 , p. 143;

 2012 , p. 111) and to show that either non-singular cosmological models suggest the uni-

verse did have a past boundary or that non-singular cosmologies are implausible. In their

typology, Craig and Sinclair discuss bounce cosmologies in which the entropic arrow of

time reverses at the interface between universes; Craig returns to this point in his ( 2016 )

debate with Sean Carroll and in discussion of Penrose’s Conformal Cyclic Cosmology

(Craig and Sinclair,  2012 , p. 127; Craig,  2016 ). I turn to Craig and Sinclair’s interpretation

of bounce cosmologies in the next section.
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11.3 The Interface and the Arrow of Time

I will refer to the space-like surface joining the two universes as the interface. On

the orthodox interpretation of bounce cosmologies, from the perspective of the current

universe – which I will call the expanding universe – the other universe – which I call the

contracting universe – is located to our past. This interpretation can be defended from

within the view that the direction of time shares a reductive explanation with the entropy

gradient. To see that this is so, we need to distinguish bounce cosmologies in which there

is an entropy minimum at the bounce from bounce cosmologies in which the bounce is

not an entropy minimum.

First, let’s turn to bounce cosmologies in which there is no entropy minimum at the

bounce and, consequently, no reversal of the entropic arrow of time. I will have more

to say about models of that type below, but note that, on the view that the direction of

time is reducible, the interface is not a past boundary; according to the local direction of

time, as indicated by the entropy gradient, there are states of affairs located before the

interface. Thus, the interface is not the Cosmos’s beginning. Second, let’s consider bounce

cosmologies in which there is an entropy minimum at the bounce. In that case, the entropic

arrow of time reverses at the interface between the two universes. Since we’ve assumed

that the direction of time shares a reductive explanation with the entropic arrow of time,

observers located in our current universe would correctly regard the entropy minimum

as being located to their past. For example, suppose that José is an observer in our present

universe. We can trace a time-like geodesic through José’s past light cone, to the entropy

minimum, and beyond to another observer, located in the contracting universe, who I

will call Mariana. José would correctly say that Mariana is located in his past light cone

and in the direction that he regards to be past based on the entropy gradient that he

observes in his surroundings. But equally so, Mariana can say that José is located in the

direction that she regards to be past based on the entropy gradient that she observes in her

surroundings. Since the entropic arrow of time and the direction of time share a reductive

explanation, José and Mariana are equally correct to claim that the other is to their past.

Their disagreement reflects the fact that if the direction of time is reducible, the Cosmos
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does not satisfy the Modal Condition and lacks a beginning. Thus, friends of the view

that the direction of time shares a reductive explanation with the entropic arrow of time

can endorse the orthodox interpretation of bounce cosmologies.

Craig and Sinclair disagree with the orthodox interpretation. Craig and Sinclair neglect

the important fact that there are bounce cosmologies in which the interface is not an

entropy minimum; I will object to their interpretation of bounce cosmologies on that basis

below, but, for now, set it aside. As far as Craig and Sinclair are concerned, the entropic

arrow of time reverses at the interface. Given the correlation between the direction

of time and the entropic arrow of time, and that the entropic arrow points away from

the interface in either direction, Craig and Sinclair argue that the interface should be

understood as the birth of two universes (a “double Big Bang”). As Craig and Sinclair

describe, “The boundary that formerly represented the ‘bounce’ will now [be interpreted

to] bisect two symmetric, expanding universes on either side” (Craig and Sinclair,  2012 ,

p. 122). Elsewhere, Craig and Sinclair write that, “The last gambit [in trying to avoid an

absolute beginning], that of claiming that time reverses its arrow prior to the Big Bang,

fails because the other side of the Big Bang is not the past of our universe” (Craig and

Sinclair,  2009 , p. 158). As Craig and Sinclair conclude, “Thus, the [universe on the other

side of the interface] is not our past. This is just a case of a double Big Bang. Hence,

the universe still has an origin” (Craig and Sinclair,  2009 , pp. 180–181; also see Craig and

Sinclair,  2012 , pp. 125–127). 

1
 

In some sense, Craig and Sinclair’s choice to analyze bounce cosmologies in terms of

an entropy minimum is an odd one. There is a peculiarity involved in all of Craig and

Sinclair’s analyses of live cosmological models. All of the cosmological models Craig and

Sinclair analyze are speculative. In many cases, the physicists who developed the model

understood the model to demonstrate a specific principle as opposed to understanding

the model as a live candidate for the global structure of space-time. For that reason, if

Craig and Sinclair base their analysis on model features that are not necessary ingredients,

1
 ↑ Though much of the argumentation that Craig and Sinclair offer in their ( 2009 ,  2012 ) concerns the Aguirre-

Gratton model ( 2002 ,  2003 ), Craig and Sinclair draw conclusions which Craig and Sinclair take to apply to
any cosmological model in which there is an interface at which the entropic arrow of time reverses direction,
e.g., Craig and Sinclair,  2009 , p. 158.
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their analysis might be provincial. We should instead be interested in developing general

principles that are necessary, or at least highly probable, features of a broad variety of

models.

Even if we set aside models in which the interface is not an entropy minimum, there is

no entailment relation between including a bounce and including an entropy minimum.

In fact, we can define cosmological models that include a bounce, e.g., de Sitter space,

without including an entropy function at all. Recall that Craig and Sinclair understand

bounce cosmologies as attempts to “evade” the BVG theorem. Since the relationship

between a bounce and an entropy minimum is not a necessary feature, there is no general

reason for thinking that models that “evade” the BVG theorem by including a bounce

will also include an entropy minimum. For all that Craig and Sinclair have argued,

their interpretation might only be a provincial interpretation of a specific collection of toy

models.

Craig and Sinclair’s interpretation is perplexing for another reason. On the one hand,

if the direction of time does share a reductive explanation with the entropic arrow of time,

there would be reason to think that the entropy gradient indicates the local direction of

time. Setting aside the interpretations I’ve already offered on behalf of friends of the view

that the direction of time is reducible, if the direction of time is locally indicated by the

entropy gradient, there is at least some reason to think the interface initiates the histories

of both universes. Nonetheless, the Cosmos would still fail to satisfy the Modal Condition.

On the other hand, Craig and Sinclair deny that the direction of time is reducible and so

deny that the direction of time can share a reductive explanation with the entropic arrow

of time. Craig writes:

From a theistic perspective [...] all such attempts [to reduce the direction of

time] seem misconceived. For one can easily conceive of a possible world

in which God creates a universe lacking any of the typical thermodynamic,

cosmological or other arrows of time, and yet He experiences the successive

states of the universe in accord with the lapse of His absolute time (Craig,

 2001c , p. 162).
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One can likewise imagine God experiencing the lapse of absolute time while the entropy

of the universe decreases. In fact, one way that the universe could lack the typical thermo-

dynamic arrow of time would be if the entropic arrow of time and the direction of absolute

time were not consistently aligned. None of this requires God’s creation; as Henri Poincaré

wrote, “the atheists [can imagine] put[ting] themselves in the place where God would be

if he existed” (Poincaré,  2001b , p. 217). Craig has argued that if the entropic arrow and

the direction of time do not align then this entails “a non-reductionistic view of time [...]

where the direction of entropy increase doesn’t define the direction of time”. Craig may

object that the misalignment between the entropic arrrow and the direction of time “is

physically impossible” because this would contradict the second law of thermodynamics

(S. Carroll and Craig,  2016 , p. 78). That is, that the alignment of the two is nomologically

necessary. But Craig doesn’t provide us with an account of why the alignment would be

nomologically necessary.

Importantly, the second law of thermodynamics is already known to be a statistical

regularity that admits of exceptions. As Craig has described, on his view, “the physical

arrows [of time] are neither necessary nor sufficient for time’s having a direction and/or

anisotropy” (Craig,  1999 , p. 352). One advantage that the non-reductive view has is

that time consistently flows in a fixed direction even when, e.g., through a statistical

fluke, the entropic arrow reverses. Craig agrees and has considered a thought experiment

in which the universe is a vast equilibrium gas with small, localized fluctuations from

equilibrium. As Craig notes, for his reductionist interlocutors, there may be no sense in

which a fluctuation at one time is either before or after a fluctuation at another distinct

time. Craig thinks that an advantage of his anti-reductionism is that there would be a fact

about which fluctuation is first regardless of how the universe’s entropy changes in the

interim (Craig,  1999 , p. 354). As Craig writes, “The fact that entropy states of a process

range in value between higher and lower numbers tells us nothing about which values

exist later” (Craig,  1999 , p. 355).

Thus, on the anti-reductionist view, the alignment between the entropic arrow and the

direction of time is not nomologically, metaphysically, or logically necessary. If Craig is

right that the direction of time and the entropic arrow need not be aligned, then there is
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no reason to think the reversal of the entropic arrow of time, in those models where the

entropic arrow of time reverses, suggests a double big bang. I think that this is a strong

objection to Craig and Sinclair and I pursue a longer defense of this objection elsewhere

(Linford,  2020 ). Nonetheless, I will set this worry aside so that I can pursue a different (and

complementary) objection to Craig and Sinclair’s interpretation of bounce cosmologies.

11.4 A Double Big Bang?

I can now turn to showing that Craig and Sinclair’s interpretations of bounce cos-

mologies are implausible. If the interface were the ex nihilo origin of two universes, then

features of the universe on one side of the bounce, particularly those features that develop

out of late time evolution, cannot provide an explanation for features of the universe on the

other side of the bounce. But, as I will show, features of one universe do explain features

of the other universe. Moreover, I will show that there are models in which the entropy

is “reset” without reversing the entropic arrow. For both reasons, authors who accept an

anti-reductive view of the direction of time should not interpret bounce cosmologies in a

way that entails the Cosmos includes a space-time satisfying the Boundary Condition.

11.4.1 Anti-Inflationary Bounce Cosmologies

The BGV theorem applies only to space-times with a positive average expansion rate.

If space-time undergoes a contraction, space-time’s average expansion rate might not be

positive. For one example, we can consider Anna Ijjas and Paul Steinhardt’s pedagogical

introduction to their favored family of bounce cosmologies (  2018 ). In the models that Ijjas

and Steinhardt describe, a bounce between two universes is postulated in order to explain

the features of our universe that inflationary cosmology had previously been meant to

explain (e.g., the horizon, flatness, and smoothness problems); I will refer to these models

as the anti-inflationary models. Consider the horizon problem. According to the horizon

problem, in order for two regions, R1 and R2, of the Cosmic Microwave Background (CMB)

to have reached a uniform temperature, signals traveling no faster than the speed of light

would have had to have traveled from R1 to R2. But there are regions of the CMB that
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are further apart than signals could have traveled in the early universe according to the

Standard Big Bang (SBB) model.

Let’s recall some formal machinery. For a given point p in a relativistic space-time, the

causal future of p is the set of points that a particle could reach from p without exceeding

the speed of light. The causal past of p is the set of points that could reach p without having

exceeded the speed of light. And the absolute elsewhere of p are all of those points which

cannot be reached from, and cannot reach, p without exceeding the speed of light. Let’s

say that the patch for p at T is the set of all the points at some time T that are either in the

causal future or causal past of p, where p can be located at some time other than T. So, for

example, there is a patch that consists of all of those points five minutes in my past from

which particles can reach me now without exceeding the speed of light; included among

those points are all of the points occupied by my computer five minutes ago, the entirety

of the apartment that I am writing in five minutes ago, and so on.

We’ve said that, on the SBB model, when a present day observer, at time t1, looks

back to the early universe at t0 ≪ t1, she can measure regions of the CMB between which

signals could not have propagated without exceeding the speed of light. In other words,

on the SBB model, when a present day observer, at time t1, looks back to the early universe

at t0 ≪ t1, her patch at t0 exceeds the horizon size at t0. Nonetheless, she would observe

her patch to be uniform in temperature, suggesting that the parts of the patch at t0 must

somehow have come into contact with one another. Inflation proposed a modification to

the SBB model in which the early universe underwent a period of exponential expansion.

If the universe underwent a period of exponential expansion, then the exponentially fast

expansion of space could have pushed space-time regions that are initially in contact

outside of one another’s horizons. The anti-inflationary bounce cosmologies resolve the

horizon problem in a different way. For anti-inflationary bounce cosmologies, the horizon

of a previous universe was significantly larger than our patch in that universe. This would

allow regions of the patch to come into thermal equilibrium before our universe, so that the

causally disconnected regions that produced the CMB would have uniform temperatures.

The anti-inflationary bounce cosmologies provide a natural explanation for the reduc-

tion in the entropy in the previous universe that allows a consistent arrow of time through
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the bounce. As Ijjas and Steinhardt describe, “the patch corresponding to our observ-

able universe today was only an infinitesimal fraction of the horizon size long before the

bounce. That means only the limited entropy in the pre-bounce phase that is contained

within [the patch] contributes to what is in the observable universe at the beginning of

the expanding phase” (Ijjas and Steinhardt,  2018 ). Elsewhere, in describing ekpyrotic

cosmological models 

2
 – one kind of anti-inflationary bounce cosmology – Steinhardt and

Turok write, “Globally, the total entropy in the Universe grows from cycle to cycle [...].

However, the entropy density, which is all any real observer would actually see, has per-

fect cyclic behavior with entropy density being created at each bounce, and subsequently

being diluted to negligible levels before the next bounce” (P. J. Steinhardt and Turok,  2002 ,

p. 1; also see P. Steinhardt and Turok,  2007 , pp. 192–193). In stating that the “global”

entropy grows from cycle to cycle, Steinhardt and Turok mean that the entropy generated

within a given cosmological horizon during the previous cycle is not destroyed, but the

entropy density is decreased exponentially, with an associated reduction of the degrees

of freedom per horizon to nearly zero (P. J. Steinhardt and Turok,  2002 , p. 17). Thus, the

entropy reversal through the bounce is not contrary to the entropic arrow of time; instead,

the entropy simply left our causal horizon, rapidly becoming too distant for signals to

successfully propagate to us. 

3
 

Anti-inflationary bounce cosmologies are inconsistent with Craig and Sinclair’s inter-

pretation for two reasons. First, anti-inflationary bounce cosmologies resolve the horizon,

smoothness, and flatness problems by invoking features of the late time evolution of an-

2
 ↑ Craig and Sinclair ( 2009 , pp. 167–169) have objected that the ekpyrotic model is geodesically incomplete

and, therefore, not past eternal. However, Ijjas and Steinhardt have recently proposed a new version of the
ekpyrotic model (Ijjas and Steinhardt,  2017 ,  2019 ). Steinhardt confirmed via correspondence that the new
model can be made geodesically complete (per. corr. June 24, 2019).
3

 ↑ In an argument that Steinhardt and Turok attribute to Richard Tolman the universe could not cycle through
an eternity of contractions and expansions because entropy would build up in each cycle (P. Steinhardt and
Turok,  2007 , pp. 180–182). As Helge Kragh ( 2009 , p. 606) has pointed out, “Tolman did not actually conclude
that there had been only a finite number of earlier cycles” and did not think thermodynamic considerations
made a good case for the universe having begun at some finite time in the past. In fact, Tolman ( 1934 ,
p. 486) argued the universe might well extend infinitely far into the past and infinitely far into the future.
Nonetheless, as Steinhardt and Turok point out, the objection does not depend upon an increase in the total
entropy; instead, the objection depends upon an increase in the entropy density in each cycle. For this
reason, Tolman’s argument is inapplicable to models in which the entropy becomes dilute ( 2007 , pp. 192–
193) or becomes hidden behind a horizon.
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other universe, which would be difficult to explain if one universe did not precede the

other in time. As Steinhardt and Turok ( 2007 , p. xiv) describe, “The events that occured

before the big bang shaped the large scale structure of the universe observed today, and

the events that are occuring today will determine the structure of the universe in the

cycle to come”. Second, the anti-inflationary bounce cosmologies explain the low entropy

of the early universe in a way that consistently maintains the entropic arrow of time

through the bounce. As anti-inflationary bounce cosmologies have (arguably) become the

most popular bounce cosmologies, and Craig and Sinclair’s interpretation is inconsistent

with the anti-inflationary bounce cosmologies, we may already have reason to reject their

interpretation altogether. But let’s push forward.

11.4.2 Bouncing Through Black Holes

The BGV theorem applies only to classical space-times. Models that modify the Ein-

stein Field Equations to produce a non-classical space-time can produce a non-singular

“bounce” (Corda and Cuesta,  2011 ; Edholm,  2018 ; Ijjas and Steinhardt,  2017 ; Kehagias

et al.,  2014 ; Lilley and Peter,  2015 ; Popławski,  2010 ,  2016 ; Sotiriou and Faraoni,  2010 ;

Starobinsky,  1980 ). In this section, I consider two models – Lee Smolin’s evolving uni-

verse scenario ( 1992 ,  2006 ) and Nikodem Poplawski’s model (  2010 ,  2016 ) – in which

Einstein’s gravity is modified in ways that allow the interior of a black hole to “bounce”

and produce a baby universe. 

4
 In Smolin and Poplawski’s models, the thermodynamic

arrow of time is continuous along geodesics that pass through the interface even though

the entropy is “reset” at the interface.

Smolin’s evolving universe hypothesis was developed to explain the so-called anthropic

coincidences. That is, that the free parameters appearing in our best theories of fundamental

physics (e.g., the cosmological constant, the coupling constants, and so on) are consistent

with the existence of life – or large scale structures generally – only if the parameters

assume values from a narrow range compared to the range of values that the parameters

4
 ↑ Quentin Smith (  1990 ,  2000 ) has offered a different, but related, cosmology in which universes are born from

black holes. I do not consider Smith’s model in this chapter because his model is not a bounce cosmology
and the parent/child universes do not bear a temporal relationship to each other.
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could have had. That is, if the parameters are understood to be selected from a prior

distribution uniform over all possible values of the parameters, then life is improbable.

This problem can be resolved if one can provide a non ad hoc and plausible hypothesis

according to which the probability distribution over the space of possible parameter values

is not uniform. In other words, while the uniform distribution would poorly predict the

existence of life, the existence of life is a prediction of the new distribution induced by the

theory. Smolin’s ( 1992 , pp. 173–174) model is an attempt to provide one such explanation.

If the density of matter or energy within some volume is sufficiently large and the

matter-energy density outside the region sufficiently low, the result is a black hole. As

in many classical Big Bang models, General Relativistic models entail that black holes

contain a curvature singularity. And just as with the Big Bang, physicists suspect that

black hole curvature singularities will be replaced in a quantum mechanical description.

Smolin’s evolving universe hypothesis consists of two postulates:

1. The curvature singularities General Relativity predicts to reside inside black holes

will be replaced by the beginning of a child universe within a complete quantum

gravity theory.

2. In the creation of a child universe, the values of the free parameters in fundamental

physical theories will slightly change (Smolin,  1992 , p. 175;  2006 , p. 6).

From these two postulates, given that large universes produce large numbers of black

holes, large universes will have many more offspring than small universes. But the uni-

verses cannot be too large, or otherwise matter can never clump together to form black

holes. The size of a given universe is determined by the rate at which the universe ex-

pands. Thus, the two postulates entail that space-time will come to be dominated by

universes selected from a fixed range of expansion rates. In turn, the expansion rate is

determined by the cosmological constant. So, a restriction on the range of expansion rates

entails a restriction on the range of cosmological constants. The consequence will be that

universes with values of the cosmological constant no larger than some maximum value

would come to dominate space-time. Smolin has argued that his hypothesis affords an
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explanation of most of the other anthropic coincidences. For example, the hypothesis

explains the difference in mass between the proton and neutron and provides an expla-

nation for the gauge hierarchy problem (Smolin,  1992 ). Moreover, Smolin’s hypothesis

makes a falsifiable prediction that could be used, in principle, to rule out the hypothesis.

Because universes with values of the free parameters that maximize the number of black

holes would dominate space-time, we should predict that variations of the parameters

characterizing our universe would result in universes with fewer black holes (Smolin,

 1992 , p. 176).

Smolin’s model requires that at least two features of the offspring universes be ex-

plained in terms of features of the parent universes. First, the model’s ability to deliver on

the desideratum that the hypothesis provide a non ad hoc reason for thinking that the dis-

tribution on the range of possible parameter values is not uniform. The evolving universe

hypothesis satisfies this desideratum by entailing that the majority of the distribution’s

mass is located within the range conducive to black hole production. If we begin with

some population of n universes, such that n ≥ 1, selected from a distribution uniform over

the space of possible free parameter values – or, indeed, a variety of other distributions

– this distribution will generically evolve to a situation in which most of the probability

mass is located within the range of life-conducive values. 

5
 

Second, Smolin’s model involves dynamics that maximize the number of black holes

a given universe produces. Therefore, Smolin’s model predicts that, if we vary the

measured values of the free parameters characterizing our current universe, we should

find that variations would result in hypothetical universes that would produce fewer

black holes (Smolin,  1992 , p. 176). This prediction is explained by a selection history of

prior universes. Consequently, if the interface between parent and child universes is not

5
 ↑ Two caveats are in order. First, the reader should not take the language of “beginning” too seriously.

Smolin’s model is consistent with a space-time with an indefinitely long history and does not require that
space-time ever began to exist. Second, if we begin the model with n = 1 universes and the cosmological
constant selected for the initial universe is too large, the one universe could accelerate apart without
producing any black holes. Therefore, in order for Smolin’s model to work, either the initial universe
must be sufficiently improbable so to produce some population of black holes or else we should consider a
situation in which we begin with multiple universes. Presumably, the most sensible possibility would be
that space-time is eternal into the past so that there has always been some network of universes connected
by black holes.
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understood as the birth of a child universe out of a parent universe, then Smolin’s model

cannot do the explanatory work the model sets out to do.

Given that at least two features of the offspring universes must be explained in terms of

features of the parent universes, one should not interpret the interfaces between universes

that appear in Smolin’s model as the birth of two universes. Instead, one should favor

Smolin’s interpretation, in which parent universes give rise to offspring universes.

I now turn to discussing Poplawski’s cosmology. Poplawski’s cosmology is produced

within the Einstein-Cartan framework. Einstein-Cartan is a modification to the Einstein

Field Equations that results from coupling spin – an intrinsic property of some fundamen-

tal particles – to torsion – a geometric property of space-time. Coupling spin-to-torsion

prevents the formation of singularities in black holes. Instead of forming a singularity,

the black hole creates a child universe. The entropic arrow of time is continuous from

the parent universe, through the black hole, and into the child universe (Popławski,  2010 ,

 2016 ). 

6
 One might worry that bounce cosmologies in which the arrow of time is contin-

uous through the interface do not avoid a beginning because the entropy could not have

been increasing from eternity past. Consider, for example, counting backwards from ten.

If one counts one number per second, then, after ten seconds, one must reach zero. So, if

the entropy decreases into the past, shouldn’t we hit some absolute zero on the entropy

scale at some finite time in the past?

Here, the answer is no, and for two reasons Poplawski offers in his ( 2010 ). First,

while the field equations for Einstein-Cartan gravity are time symmetric, the boundary

conditions of black holes are not time symmetric. That is, objects can travel through

the black hole’s event horizon but cannot travel back out. For this reason, the boundary

condition for the child universe would be temporally asymmetric. Second, while observers

6
 ↑ Poplawski’s model has an advantage over some other bounce cosmologies, because Poplawski’s model

avoids one of the criticisms Craig and Sinclair leverage against bounce cosmologies. As Craig and Sinclair
argue, models in which a previous universe collapses to some minimum size before expanding into our
universe needs to be carefully fine-tuned from eternity past in order to successful collapse to the minimum
size (Craig and Sinclair,  2012 , pp. 111–2). But, like Smolin’s model, Poplawski’s model involves the
creation of offspring universes from black holes. For this reason, neither Smolin’s nor Poplawski’s models
require such fine-tuning. Between the two, Poplawski’s model is more convincing because, unlike Smolin,
Poplawski provides a mathematical model and a physical mechanism for the dynamical evolution of black
holes within one universe into subsequent offspring universes.
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outside the black hole will observe the horizon of the black hole maximizing the entropy,

the entropy will not have been maximized for observers inside the black hole – that is, in

the offspring universe – for whom the entropy can be increased still further. An entropy

gradient requires only that the entropy on the interface be smaller than the present entropy,

but not that the entropy has never been lower than the entropy on the interface. Indeed,

there exist monotonically increasing functions f (t) such that, for any time T0, there will

exist some T−1 < T0, such that f (T−1) ≤ f (T0). For this reason, an entropy gradient can be

established without postulating a beginning. 

7
 

11.4.3 Conformal Cyclic Cosmology

Roger Penrose has proposed a different modification to General Relativity that, again,

avoids the BGV theorem by proposing a non-classical space-time. 

8
 Though the CCC is

not typically considered a bounce cosmology, I will include the CCC in this chapter for

two reasons. First, Craig and Sinclair offer an interpretation of the CCC that parallels

their interpretation of bounce cosmologies. Importantly, Craig and Sinclair argue that

the interface between universes that appears in the CCC should be interpreted as the

birth of two universes because the interface is an entropy minimum (Craig and Sinclair,

 2012 , p. 127; also see Craig’s blogpost ( 2016 )). Second, several features of the CCC bear a

significant resemblance to features of models traditionally considered bounce cosmologies

(e.g., cyclic generations of universes, an entropy minimum on the interface between

universes, one universe that results in a highly compressed state in order to produce a

subsequent universe).

Penrose postulated the CCC to explain the low entropy of the early universe (Penrose,

 2012 , p. 144). As Penrose notes, the most probable way for a universe to evolve into a

7
 ↑ For a reply to a related argument originally offered by Tolman, see footnote  3 . As in Steinhardt and

Turok’s model, in the offspring universe, the total entropy of the parent universe has become hidden behind
a horizon and is not accessible to the offspring universe.
8

 ↑ According to Craig and Sinclair, Penrose’s model is consistent with the BGV theorem because the average
expansion rate of a cyclic universe is zero (Craig and Sinclair,  2012 , p. 111). This is incorrect. In the CCC,
the expansion or contraction of the universe is not a well-defined notion for every period of the universe’s
evolution. But, during those periods in which expansion/contraction are well-defined, the universe only
expands and never contracts. The CCC is not singular because the CCC utilizes a space-time to which the
BGV theorem cannot be applied.
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cosmologically-relevant curvature singularity results in a highly disordered state because

the evolution generically involves an amplification of any anisotropies or inhomogeneities.

The anisotropries and inhomogeneities are amplified into black holes and then the black

holes successively fuse. Penrose argues that this complex singularity structure attributes

high entropy to the gravitational degrees of freedom. General Relativity is a time reversal

invariant theory, so that the most probably way to evolve into a cosmological singularity

should be the time reverse of the most probable way to have evolved from a cosmological

singularity. Consequently, the most probable way to evolve from a cosmological singu-

larity would again involve a complex singularity structure which attributes high entropy

to the gravitational degrees of freedom (Penrose,  2012 , pp. 124–125). 

9
 If a low entropy

singularity is an improbable beginning on General Relativistic models, and we know that

the universe began in a low entropy state, then some revision to the General Relativistic

models is required in which the universe’s beginning is not improbable. To produce a

model like that, Penrose proposes a mechanism by which preceding physical states could

dynamically produce the low entropy condition of the early universe.

As Penrose interprets current fundamental physical theories, length and time scales

are determined by the presence of mass in the universe. 

10
 Penrose argues that length and

temporal scales ultimately depend upon the existence of mass, so that in a universe in

which there are no masses, length and temporal duration lose meaning. If length has lost

its meaning, then an infinitely compressed point – that is, the low entropy initial singularity

– cannot be distinguished from an infinitely large universe. 

11
 According to Penrose, mass

9
 ↑ This can be put more carefully. As I noted earlier in this chapter, curvature singularities are not points

that General Relativity includes in the space-time manifold. Therefore, one should not say that, in General
Relativistic models, the universe began with a low entropy singularity. However, one can accurately say
that, when the universe is reversed in time in General Relativistic models, space-time tends towards a low
entropy singularity. If one chooses any arbitrarily small value ε > 0 then there will exist some time t such
that the scale factor a(t) < ε. The low entropy singularity corresponds to the limit in which ε→ 0.
10

 ↑ Penrose favorably cites Rugh and Zinkernagel,  2009 for their relationist view of space and time scales.
Also see Rugh and Zinkernagel,  2017 .
11

 ↑ I’m speaking loosely. In the absence of length and time scales, a single point and three dimensional
space do differ, for example, in topological structure. A single point has the topology of R0 while a three
dimensional space has the topology of R3. But note the qualifications that I made in footnote  9 . For any
a(t) > 0, three dimensional slices of space-time have the topology of R3. Penrose should be interpreted
as arguing that when length loses its meaning, space-time loses length and time scales. For that reason,
we can identify an arbitrarily “compressed” three dimensional space with an arbitrarily “expanded” three
dimensional space.
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can be expected to exit our universe for three reasons. First, the universe that we inhabit

will expand indefinitely into the future. As our universe expands indefinitely into the

future, the density of the universe will decrease and mass will leave our cosmological

horizon. Second, some proportion of the mass will be swallowed by black holes and those

black holes will decay. Third, Penrose postulates that all of the remaining massive particles

will eventually decay into massless products (Penrose,  2012 , p. 153). The mass-free

homogeneous and isotropic universe towards which our universe tends in the infinitely

far future will then be the smooth Big Bang of a subsequent universe. The beginning of a

universe would involve a low entropy state because some of the processes that eliminate

the masses within a given universe reduce the entropy of the universe. 

12
 

In CCC, events in the universe on one side of the interface explain events on the

other side of the interface but not vice versa. First, like the anti-inflationary cyclic model

discussed in section  11.4.1 , CCC postulates that features of the Cosmic Microwave Back-

ground often solved through an inflationary phase in the present universe (e.g., the

horizon problem) are instead solved by exponential expansion in a previous universe

(Penrose,  2012 , p. 210). Second, in addition to reproducing several of the predictions of

inflationary cosmology, Penrose (and collaborators) have argued that the universe prior

to ours should leave a signature in the Cosmic Microwave Background not predicted by

inflation (Penrose,  2012 , pp. 211–219; An et al.,  2018 ; Gurzadyan and Penrose,  2010 ,  2013 ).

12
 ↑ For example, one of the processes Penrose discusses for eliminating masses from the universe involves

massive particles being swallowed by black holes and then the black holes undergoing a non-unitary decay
process (Penrose,  2012 , pp. 186–188). The non-unitary decay process reduces entropy. Craig and Sinclair
reply to this feature of CCC with the complaint that the late time evolution of the universe will be dominated
by the entropy associated with the universe’s horizon. This entropy is far larger than the entropy reduced
through the decay of black holes (Craig and Sinclair,  2012 , pp. 120–121). While Penrose preempts this
objection, Craig and Sinclair (wrongly) complain that Penrose only offers an instrumentalist interpretation
of the entropy associated with the universe’s horizon. Importantly, Penrose provides a reply both to the
realist and instrumentalist interpretations of the universe’s horizon entropy; on Penrose’s view, even if the
entropy of the universe’s horizon is real, that entropy can be ignored because it plays no role in the universe’s
dynamics (Penrose,  2012 , p. 202). Moreover, Craig and Sinclair are inconsistent in their interpretation of
the entropy associated with the universe’s horizon. As Craig and Sinclair write in their  2009 , p. 155, the
universe’s horizon differs from the horizon of a black hole because the former should not (in their view)
be understood as objectively real. But if the universe’s horizon is not objectively real, in what sense can
the entropy associated with that horizon be understood as objectively real? In any case, the resolution of
this debate is irrelevant for my purposes here because I am only concerned with how we ought to interpret
CCC.
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Photons and gravitons do not possess mass, so the elimination of all mass within a

given universe would not result in the elimination of all particles. Because photons and

gravitons do not have mass, photons and gravitons do not experience temporal duration.

Consequently, the trajectory of a photon or a graviton can extend from the present universe

to the birth of another universe in the infinitely far future. For example, Penrose argues that

collisions between black holes in a previous universe should have left a signal detectable

by us (Penrose,  2012 , p. 215).

Philosophers of physics distinguish the entropic arrow of time from a variety of other

arrows of time – for example, the temporal asymmetry of causation is referred to as the

“causal arrow of time”. The causal arrow of time has often been understood to align with

the entropic arrow of time because both arrows can be afforded a reductive explanation

within statistical mechanics (Albert,  2000 ,  2015 ; Loewer,  2007 ,  2012a ,  2020 ; Papineau,

 2013 ). However, the causal and entropic arrows of time come apart in Penrose’s model,

provided that what he, and co-authors, claim about the model is correct. That is, the

causal arrow of time does not reverse at the interface, even though the entropic arrow of

time does reverse. 

13
 Instead, the causal arrow of time is continuous through the interface

– features of a prior universe explain features of a subsequent universe but not vice versa

– and this can be taken to suggest that the direction of time is continuous through the

interface.

Craig and Sinclair have provided another reason to think that, in CCC, the interface

between universes is the beginning of our universe. As Craig and Sinclair point out, in

Penrose’s model, some of the mathematical structure usually attributed to time disappears

at the interface between universes. For example, in the orthodox interpretation, time scales

lose meaning in both the early and late universe. Craig and Sinclair interpret this aspect

of the model to mean that the two universes cannot stand in relations of before and after

13
 ↑ Penrose has been careful to argue that while the total entropy of the universe is reduced prior to the

bounce through non-unitary processes (see footnote  12 ), a thermodynamic arrow of time is nonetheless
preserved and never reverses direction (Penrose,  2012 , pp. 175–190). For this reason, Penrose argues that
the entropy reduction in CCC is not a violation of the second law of thermodynamics and, thus, CCC might
not contradict the Mentaculus. Be this as it may, if we understand the entropic arrow solely in terms of the
entropy gradient, then, according to CCC, there is an epoch in which the entropy gradient points contrary
to the causal arrow of time.
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because to say that one universe preceded the other, when time has lost its meaning at

the interface between the two, is incoherent. Instead, Craig and Sinclair claim that there

are only topological relations – and not temporal relations – between the two universes

(Craig and Sinclair,  2012 , pp. 127–128). Here, Craig and Sinclair move too quickly.

In Penrose’s model, there are null geodesics that connect the present universe to

events in the past universe. Craig and Sinclair agree that the geodesics extend through

both universes. But the existence of geodesics traversing the two universes entails that my

causal past includes a patch in a previous universe. (For example, photons and gravitons

traverse null geodesics between the two universes, e.g., Penrose,  2012 , pp. 157–159.) This

is precisely the sort of thing that needs to be invoked in order to explain the features that

CCC predicts appear in the CMB. The order of events into the causal past, the causal

future, and the absolute elsewhere are maintained even when length and time scales

are lost because, as Penrose points out, the light cone structure is maintained through

the interface (Penrose,  2012 , pp. 139–147). So, the relations that exist between universes

in Penrose’s model allow one to make sense of the claim that one of the two universes

temporally succeeds the other.

The fact that Craig and Sinclair have misconstrued the consequences of the breakdown

of metrical structure is somewhat perplexing, for, elsewhere, Craig has offered a series

of objections to the Oxford School. As discussed in chapter  4 , according to the Oxford

School, prior to creating the Cosmos, God existed in metrically amorphous time, that is,

that although God’s successive mental events (for example) were ordered into relations

of before and after, there was no objective fact as to the ratio in the lengths of the non-

overlapping temporal intervals occupied by God’s distinct mental events (see chapter 9

in Craig,  2001b ). Meanwhile, Penrose describes how Weyl maintained a view similar to

metrically amorphous time, in which the choice of time scale is a choice of gauge (Penrose,

 2004 , p. 451). Because the choice of gauge is conventional and does not correspond to any

physical fact, Weyl maintained that there are no facts about time scale. Einstein objected

that the conjunction of quantum mechanics and relativity – by equating energy to both

mass and frequency – suggests time scale is fixed for the rest frame of a given mass. For

that reason, Einstein argued that time scale cannot be purely conventional (Penrose,  2004 ,
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p. 453). Hence, Penrose’s CCC endorses Einstein’s notion that mass fixes the time scale

while simultaneously endorsing the view that, without mass to fix the time scale, time

would be metrically amorphous. Though Craig argues against the Oxford School, Craig

admits that, unlike a timeless state, a metrically amorphous state can stand in the before

relation with respect to the universe: “this [metrically amorphous] state exists literally

before God’s creation of the world and the inception of metric time” (Craig,  2001b , p. 270).

So, just as a deity who is metrically amorphous prior to creation can stand in the before

relation with respect to that deity’s creation, so, too, can a metrically amorphous physical

state stand in the before (or after) relation with respect to metric time.

This point is worth unpacking in some more technical detail. Readers who are satisfied

with the qualitative description already given can safely skip to the next section. Any

metric tensor gµν can be decomposed into a volume element (i.e, |det(gµν)|1/4) and a

conformal metric density (i.e., g̃µν) (as first worked out in detail in Thomas,  1925 ,  1932a ,

 1932b ; also see Anderson,  1967 , pp. 63–64; Anderson and Finkelstein,  1971 ). That is,

gµν = g̃µν|det(gµν)|1/4. Penrose maintains the Weyl Curvature Hypothesis (WCH), according

to which the Weyl curvature tensor exactly vanishes in the low entropy condition of the

early universe (Penrose,  2012 , pp. 132–135). If the Weyl curvature vanishes everywhere

on a region of space-time, then that region is conformally flat, that is, there exists a

conformal transformation to a diagonal (flat) metric (Anderson,  1967 , p. 63; Penrose,  2004 ,

p. 464). This follows as a consequence of the fact that the Weyl curvature tensor can be

expressed entirely in terms of the conformal metric density and its inverse and is equal

to the Riemann curvature tensor formed by substituting gµν with g̃µν (Anderson,  1967 ,

pp. 63–64). For example, the Weyl curvature tensor vanishes in FLRW space-times and,

as a result, there exists a conformal transformation from FLRW space-time to Minkowski

space-time. Thus, if the WCH is true, then there exists a conformal transformation from

the early universe to a flat space-time (Penrose,  2004 , p. 464). According to CCC, in the

far future, when all mass in the universe vanishes, the universe will again be conformally

flat. Thus, the early universe, the late universe, and a corresponding region of flat space-

time are all conformally equivalent; that there is no mass present at early or late times
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entails that all three are physically equivalent. So, Penrose concludes, conformal structure

remains at early and late times even though the full metrical structure is lost.

At early times, the volume element vanishes – reflecting the singularity in classical

models of the Big Bang – but the conformal metric density is perfectly well-behaved. Since

CCC attributes physical significance only to those features invariant under conformal

transformations in the early or late universe, the volume element – and so the associated

singularity – has no physical significance. In turn, the conformal metric density can be

used to smoothly continue time-like curves from one universe into the next. As is well

known, conformal transformations are precisely those that leave the light cone structure

invariant; importantly, this has the implication that, under the conformal transformation,

future (past) directed tangent vectors are mapped to future (past) directed tangent vectors.

Thus, the light cones along any given time-like curve encodes a conformally invariant

temporal ordering of events. Because the conformal metric density allows one to continue

time-like curves through the interface between universes, the two universes can be placed

into before and after relations, as expected.

11.5 Summary

I’ve argued that Craig and Sinclair’s interpretation of bounce cosmologies does not sit

well with a number of features of bounce cosmologies. On the one hand, there are cyclic

models, like those endorsed by Ijjas, Steinhardt, Turok, and Penrose, or models in which

universes are born out of black holes, like Smolin’s or Poplawski’s, in which features

of one universe explain features of a subsequent universe. We’ve also seen that there

are a number of bounce cosmologies in which the entropy is “reset” at the interface even

though the thermodynamic arrow of time is continuous along time-like and null geodesics

piercing the interface. Whether any of the cosmological models I’ve discussed in this

chapter are plausible continues to be discussed by physicists. Due to the provinciality of

our knowledge with respect to scale, time, space, and energy, we do not know whether

any of the cosmological models discussed in this chapter, or models appropriately similar,

are correct, or at least correct in sufficient detail to suggest on their basis whether the
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Cosmos satisfies the Boundary Condition. However, the models remain live possibilities

that should be up for empirical investigation. Since the models remain live possibilities

up for empirical investigation and, if correct, would entail that the Cosmos violates the

Boundary Condition, we do not know whether the Cosmos began to exist. That is, live

cosmological models provide us with additional reason for endorsing Cosmic Skepticism.

In the next chapter, I turn to completing the case for Cosmic Skepticism. The possibility

remains that one could – somehow – either project locally available empirical regularities

to unobserved portions of the Cosmos or to the Cosmos as a whole and so infer that the

Cosmos satisfies the Modal, Direction, and Boundary Conditions or conditions relevant

to whether the Cosmos satisfies the Modal, Direction, and Boundary Conditions. As I

will show, both inferences are unsuccessful, at least at the present stage of scientific and

philosophical inquiry, and we are left unable to infer whether the Cosmos began to exist.
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12. COSMIC SKEPTICISM AND CONFIRMATION THEORY

12.1 Introduction

As Hume (or Philo) reminds his readers in Dialogues Concerning Natural Religion, only

a small fragment of the Cosmos, during a very short time, has been very imperfectly

discovered to us. For all we know, space-time is indefinitely larger than the portion

available to us; the Cosmos may be larger still. Cosmic Skepticism is the thesis that the

provinciality of our knowledge of the physical facts with respect to scale, spatio-temporal

location, or energy prevents us from having empirical access to whether the Cosmos

satisfies the Modal, Direction, and Boundary Conditions. If Cosmic Skepticism is true,

then we cannot – at least in our present stage of philosophical and scientific inquiry –

determine that the Cosmos began to exist.

So far, I’ve gathered a number of results which might suggest that we should adopt

Cosmic Skepticism, but the case has been incomplete because I haven’t paid adequate

attention to confirmation theory. For example, I’ve shown that no set of observations

that we currently have, when conjoined with General Relativity, entails that the Cosmos

satisfies the Modal, Direction, or Boundary Conditions. I’ve shown that considerations in

the philosophical foundations of statistical mechanics entail either that the Cosmos violates

the Modal Condition or else that there is a transcendental condition on the possibility of

our knowledge of the past that prevents us from having knowledge of states of affairs prior

to a specific past boundary. I’ve taken note of a warning from the nineteenth century – the

fact that there is some past boundary beyond which we cannot make reliable inferences

does not entail that the Cosmos satisfies the Boundary Condition – and I’ve shown that

if a variety of live cosmological models are true, then the Cosmos does not satisfy the

Boundary Condition. While we do not have a physical theory which, when conjoined

with any data we currently have, deductively entails that the Cosmos satisfies the Modal,

Direction, or Boundary Conditions, why can’t we use an inductive argument to somehow

infer from conditions in our local cosmological environment whether the Cosmos satisfies

the Modal, Direction, and Boundary Conditions?
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In this chapter I complete the case for Cosmic Skepticism by turning to Confirmation

Theory. I consider two distinct kinds of inductive arguments, that I call part-to-part in-

ferences and part-to-whole inferences, that might be used in inferring that the Cosmos

satisfies either the Modal, Direction, or Boundary Conditions. First, I consider part-to-

part inferences, according to which we project some set of empirical regularities gathered

from the portion of the Cosmos empirically accessible to us into a portion of the Cosmos

that is not accessible to us. We then use the empirical regularities that we’ve projected

into that domain to infer whether the Cosmos satisfies the Modal, Direction, or Boundary

Conditions. I will show that, at least in our present stage of scientific and philosophi-

cal inquiry, part-to-part inferences fail because the portions of the Cosmos relevant for

whether the Cosmos satisfies the Modal, Direction, and Boundary Conditions bare only

a weak analogy to the portions that are empirically accessible to us and because we have

no good reason to believe that the portion of the Cosmos empirically accessible to us is

representative of the entire Cosmos.

Second, I consider part-to-whole inferences. Part-to-whole inferences project an em-

pirical regularity from the portion of the Cosmos accessible to us to the Cosmos as a

whole in order to infer whether the Cosmos satisfies the Modal, Direction, or Boundary

Conditions. Part-to-whole inferences require an inductive generalization. I will argue

that, at the present stage of philosophical and scientific inquiry, there is an unresolved

tension between how to adjudicate the tension between the modesty and the coherency

of a hypothesis. The tension between the modesty and the coherency of a hypothesis

is particularly acute for large scale inductive generalizations; a fortiori for the inductive

generalization involved in part-to-whole inferences, which requires an inductive general-

ization over the whole of physical reality.

After discussing the two kinds of inductive arguments that might be involved in

inferring that the Cosmos satisfies the Modal, Direction, and Boundary Conditions, I

briefly discuss a puzzle about whether any sort of inductive inference could tell us whether

the Cosmos satisfies the Modal Condition. Conceivably, depending upon how future

physical inquiry proceeds, there may be no way, even in principle, to tell whether the
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Cosmos satisfies the Modal Condition and so no way to determine whether the Cosmos

began to exist.

Lastly, I reply to four objections. First, I consider an objection according to which we

should reason about cosmological hypotheses in terms of inference to the best explanation

and not in terms of inductive arguments. On one hand, there are philosophers who have

maintained that inference to the best explanation is reducible to induction. On the other

hand, as I show, there are good reasons for thinking that inference to the best explanation

over sufficiently large domains are beset by the tension between modesty and coherence.

Second, I discuss an objection according to which our best scientific theories require

laws of nature with global scope. I reply that the laws appearing in our best scientific

theories should not be understood as having global scope. Third, I discuss an objection

according to which there are successful inductive generalizations over infinite domains in

mathematics. I discuss an explicit example and show that the example does not include an

inductive generalization over an infinite domain. Fourth, I discuss an objection according

to which natural theologians are able to make an inductive generalization over an infinite

domain when they infer that God is omnipotent. I show that it’s far from clear whether

the inductive generalization utilized by natural theologians succeeds.

12.2 Part-to-Part Inferences

Long before the development of astronomy as a mature scientific discipline, our ances-

tors could infer that the Sun will rise on the following day. Our ancestors had observed

that there is a strong correlation between mornings and Sun rises and they could project

that correlation to the following day; that is, since the following day also includes a morn-

ing, the following day would also include a Sun rise. A structurally similar inference plays

a central role in David Hume’s Dialogues Concerning Natural Religion. Hume’s character

Cleanthes observes that there is a correlation between systems that exhibit a specific kind

of order and systems that were designed. Since, according to Cleanthes, the universe

also exhibits that kind of order, the universe was also the product of design. Both argu-
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ments are members of a family of arguments that have the following form (as described

in Draper,  1991 , p. 136):

P1) There is an empirical correlation between class A and class B.

P2) k is a member of A.

C) Therefore, k is a member of B.

Hume calls arguments with this form “arguments from experience”; since there are other

kinds of arguments that likewise have their basis in experience, I will refer to arguments

of this kind as analogical arguments from experience. The argument is said to be analogical

because the argument is based on an analogy between As that were observed in the past

and the new instance of an A. In Cleanthes’s design argument, for example, there is

an analogy between previous ordered entities that were observed to be designed, e.g.,

houses, and the new entity, e.g., the universe.

One family of arguments that might be used in arguing for the view that the Cosmos

has a beginning, that I will call part-to-part inferences, involve an analogical argument from

experience that projects empirical regularities from the observable portion of the Cosmos

into a portion of the Cosmos to which we do not have direct observational access. Part-

to-part inferences then use those empirical regularities to draw the conclusion that the

portion of the Cosmos into which those empirical regularities have been projected either

involves the Cosmos’s beginning or features important for establishing the Cosmos’s

beginning. For illustrative purposes, set aside the fact that General Relativity is likely

to be supplanted by a quantum gravity theory in future physical inquiry. How would

physicists infer that some particular epoch in the history of the observable universe –

for example, the portion of the observable universe approximately 14 or so billion years

into our past – includes a temporal boundary before which nothing at all existed? Since

we’ve observed other contexts in which the Einstein Field Equations are confirmed by

our observations, we might project the Einstein Field Equations approximately 14 billion

years into our past and conclude that there was a boundary before which nothing at all
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existed. In a subsequent section, I will discuss more sophisticated examples of part-to-part

inferences.

In general, we can think about how we would evaluate any particular portion of the

Cosmos as a candidate for including the Cosmos’s beginning. The inference that any

portion of the Cosmos’s history includes the Cosmos’s beginning would involve two

stages. At the first stage, we project previously confirmed laws into a new domain. At

this stage, we use an analogical argument from experience to project some set of empirical

regularities into a new domain. At the second stage, we evaluate the probability that the

set of empirical regularities confer on to the hypothesis that that portion of the Cosmos

includes the Cosmos’s beginning or features relevant for inferring whether the Cosmos

has a beginning. I will argue that we have good reason for thinking that, given our current

stage of physical inquiry, there is no way for us to produce a successful first stage of a

part-to-part inference.

An argument is said to be deductively valid just in case there is no possible world where

the argument’s premises are true but the argument’s conclusion is false. Analogical

arguments from experience are not deductively valid; there are possible worlds where

there is an empirical correlation between As and Bs, but the next observed instance of an

A is not a B. For example, if powerful aliens destroy the Sun tonight, then the Sun will not

rise tomorrow. Nonetheless, analogical arguments from experience confer a probability

on their conclusions. If the probability an analogical argument from experience confers

on the conclusion is high, then the analogical is strong; if the probability an analogical

argument from experience confers on the conclusion is low, then the argument is weak.

An analogical argument from experience is said to be midling just in case the argument

is neither strong nor weak. In order to establish that we should be skeptical of part-to-

part inferences, I will argue that the analogical argument from experience involved is at

least not strong. And to do that, I need to first identify the criteria in virtue of which

analogical arguments from experience can be said to be strong. In the next section, I turn

to discussing the relationship that evidence generally bears to hypotheses.
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12.2.1 The Strength of Analogical Arguments from Experience

In his Treatise ( 2005 ), Hume discusses two ways in which an analogical argument from

experience might be weakened. 

1
 There are two corresponding ways that an analogical

argument from experience can be strengthened. Recall that analogical arguments from

experience depend upon an observed correlation between A and B. For example, in

his design argument, Cleanthes appeals to the correlation between entities exhibiting a

specific kind of order (A) and entities that were designed (B). Good analogical arguments

from experience are based on a strong correlation. A correlation’s strength is determined

by how many confirming instances have been observed (that is, how many As have been

observed to be Bs) and by how many disconfirming instances have been observed (that

is, how many As have been observed to be non-Bs) (Hume,  2005 , p. 90). For example,

there is a strong correlation between periods of time that included mornings and periods

of time that were observed to include Sun rises because no morning has been observed

that did not include a Sun rise. The second way in which an analogical argument from

experience might be strengthened is in terms of the analogy involved in the argument

(Hume,  2005 , p. 97). There is a strong analogy between previous periods of time that

included mornings and tomorrow because we have no reason to think that tomorrow will

differ in any relevant way from past mornings.

Hume’s criteria do not exhaust all of the criteria that make for strong analogical

arguments from experience (Draper,  1991 ). For example, arguments that use a sample to

make an inference about unobserved members of the population confer a high probability

on to their conclusion only if we have good reason to think that the sample is representative

of the entire population. For example, an analogical argument from experience that draws

its conclusion solely based on a biased sample cannot strongly support its conclusion. For

that reason, the strength of an analogical argument from experience depends on whether

we have good reason to believe that our past sample of As is representative of all the

As that there are. Let’s say that a confirming instance is an A that is observed to be a B

and a disconfirming instance is an A that is observed to not be an A. Likewise, a positive

1
 ↑ My interpretation of Hume in this chapter is based largely upon Paul Draper’s ( 1991 ).
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instance is an A that is a B, regardless of whatever we’ve observed, and a negative instance

is an A that is not a B, again regardless of what we’ve observed. In that case, a sample is

said to be representative just in case the number of disconfirming instances d divided by

the number of confirming instances c is approximately equal to the number of negative

instances n divided by the number of positive instances p, i.e., d/c ≈ n/p. We have good

reason to think that a sample is representative just in case have good reason to think that

d/c ≈ n/p.

The strength of the correlation, the degree of analogy, whether we have good reason

to think the sample is representative, and possibly other criteria determine the degree to

which the premises in an analogical argument from experience raise the probability of the

conclusion. According to the perspective that I assume in this chapter, as inquirers gather

data about their world, they update the epistemic probabilities that they assign to various

hypotheses. Bayes’s Theorem 

2
 can be used to express the probability of a hypothesis h in

terms of the evidence e and background knowledge K:

Pr(h|e&K) =
Pr(h|K)Pr(e|h&K)

Pr(e|K)
(12.1)

Using Bayes’s Theorem, we can partition Pr(h|e&K) into two parts. First, there is the ratio

Pr(e|h&K)/Pr(e|K), which we can think of as the contribution that our evidence makes to

Pr(h|e&K). Second, there is the prior probability Pr(h|K), which expresses the probability of h

solely in light of our background knowledge and independent of our evidence. According

to a (perhaps overly) simplified model, as we learn about the world we inhabit, successive

propositions are conjoined to our background knowledge. We can roughly think of the

prior probability as the probability that a hypothesis has before we update the hypothesis

in light of new evidence. Let’s define the intrinsic probability of h as the probability that

2
 ↑ Bayes’s Rule should be distinguished from Bayes’s Theorem. Bayes’s Theorem is a deductive consequence

of the axioms describing orthodox probability theory (i.e., the Kolmogorov axioms). Bayes’s Theorem states
that, for any three sentences A, B, and C, Pr(A|B) = Pr(A)Pr(B|A)/Pr(B). In contrast, Bayes’s Rule is a
statement about how we ought to update our epistemic probability in light of evidence relative to our
background knowledge. Bayes’s Rule tells us that the epistemic probability of h after we have gathered
evidence e, Pr f (h), can be found from the initial probability of h, given e and K, i.e., Pri(h|e&K), using
Bayes’s Theorem, i.e., Pr f (h) = Pri(h|e&K). I make use of the relevance criterion of confirmation and Bayes’s
Theorem in modeling scientific reasoning, and both principles are consistent with Bayes’s Rule, but neither
principle requires Bayes’s Rule.
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h has relative only to tautologous information. In that case, the intrinsic probability

can roughly be thought of as the probability with which h begins prior to any empirical

investigation whatsoever.

There are two additional criteria that determine whether we have good reason to

believe the conclusion of an analogical argument from experience. First, since Pr(h|e&K)

is determined, in part, by Pr(h|K), Pr(h|e&K) will be high if either Pr(h|K) is not too low

or else the evidence is sufficiently surprising relative to our background knowledge. 

3
 

Since the value of Pr(h|K) is determined by the degree to which h comports with our

background knowledge, Pr(h|e&K) is high only if h either comports with our background

knowledge or the evidence for h is sufficiently strong so as to overcome the tension

between h and K. Moreover, since Pr(h|K) is determined, at least in part, by the intrinsic

probability of h, Pr(h|e&K) will be high only if the intrinsic probability of h is not too low.

Moreover, as I will discuss in a subsequent section, according to Draper’s theory of intrinsic

probability, the intrinsic probability of a hypothesis is determined by the modesty of the

hypothesis, roughly, how much the hypothesis claims about the world, and the coherence

of the hypothesis, roughly, the degree to which the parts of the hypothesis are mutually

supportive.

Let’s call the conjunction of the criteria that determine the strength of an analogical

argument from experience the Strength Criteria. In sum, the Strength Criteria conjoin the

strength of the correlation, the degree of analogy, whether we have good reason to think

the sample is representative, how well the hypothesis comports with our background

knowledge, how surprising the evidence is relative to our background knowledge, the

modesty of the hypothesis, the coherence of the hypothesis, and possibly other criteria.

I do not claim that any one criterion in the Strength Criteria is logically independent of

the others. Instead, I claim only that we should think about the strength of analogical

arguments from experience in terms of the Strength Criteria.

3
 ↑ According to Bayes’s Theorem, Pr(h|e&K) = Pr(h|K)Pr(e|h&K)/Pr(e|K). If Pr(h|K) is low, then, in order

for Pr(h|e&K) to be large, Pr(e|h&K)/Pr(e|K) must be large, which requires that Pr(e|K) be low. Thus, if e is
sufficiently surprising relative to our background knowledge, then, despite h having a low prior probability,
h might have a large posterior probability.
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12.2.2 What are Part-to-Part Inferences?

As I’ve said, a part-to-part inference involves two stages. The first stage involves

projecting an empirical regularity into a novel domain using an analogical argument

from experience. Recall my previous illustrative example involving classical relativistic

cosmology. We might project the Einstein Field Equations into a portion R of the Cosmos’s

history. The second stage involves inferring from that empirical regularity that the novel

domain includes the Cosmos’s beginning. For example, we might use the Einstein Field

Equations to deduce that R includes the Cosmos’s temporal boundary.

Any given state of a physical system can be characterized by some number of param-

eters. Call the space of all of the possible states of a physical system a parameter space. For

example, the state of an ideal gas can be completely specified by the pressure, the volume,

and the temperature of the gas. If we construct a three-dimensional space where the

three axes represent the pressure, the volume, and the pressure, then any ideal gas can be

represented by a point in that space. When we project an empirical regularity into a novel

domain, we are projecting that regularity from parts of a parameter space that we have

previously studied into a portion of that parameter space that has not been previously

studied; for example, in the case of an ideal gas, we might project a feature of the gas, e.g.,

the temperature, at one value of the pressure to another value of the pressure. In order

to formalize the argument from the first stage in a part-to-part inference, suppose that we

have a correlation between being a proper part of a parameter space and being such that

some empirical regularity L applies. Call that correlation the Principle Correlation. Let

h represent the statement that L applies in some novel domain F. Let e be the statement

that F is a proper part of the parameter space. Let K be our background knowledge,

which includes the Principle Correlation. Consequently, the first stage of any part-to-part

inference can be represented as the following analogical argument from experience:

P1) There is an empirical correlation between being a proper part of a parameter space

P and being such that L applies.

P2) F is a proper part of P.
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C) Therefore, L applies in F.

Whether any argument of this form is strong will depend upon the probability conferred by

the premises on the conclusion, that is, Pr(h|e&K). In turn, Pr(h|e&K) will depend, among

other criteria, upon whether the Strength Criteria are satisfied. In the next subsection, I

will argue that we have good reason to think that the Strength Criteria are not satisfied

for the first stage of Part-to-Part Inferences.

12.2.3 The Problem for Part-to-Part Inferences

In order to present an argument that, at the present stage of scientific and philosophical

inquiry, no part-to-part inference succeeds, let’s begin by considering a passage from

Philo’s response to Cleanthes’s design argument. Philo states,

Nature, we find, even from our limited experience, possesses an infinite num-

ber of springs and principles which incessantly discover themselves on every

change of her position and situation. And what new and unknown principles

would actuate her in so new and unknown a situation as that of the formation

of a universe, we cannot, without the utmost temerity pretend to determine.

[A very small part of this great system, during a very short time, is very

imperfectly discovered to us: And do we then pronounce decisively concerning

the origin of the whole?] (Hume,  2008 , pp. 50–51)

In this passage, Philo is responding to an analogical argument from experience that

Philo implicitly attributes to Cleanthes. The argument that Philo implicitly attributes to

Cleanthes begins with some set of empirical regularities, i.e., principles, and then projects

those principles into a situation involving the formation of the universe.

What does Philo mean by a situation? Philo seems to allow that the universe occupies

a specific region in space and time; for example, as part of a parody of Cleanthes’s

design argument, Philo imagines that comets are analogous to seeds and can sprout in the

“unformed elements” that “everywhere surround this universe” (Hume,  2008 , p. 79). 

4
 So,

4
 ↑ Unlike contemporary authors who may be influenced by relativistic cosmology, a variety of early modern

authors distinguished between the universe (or the material world) and the totality of space and time.
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let’s suppose that a situation is a space-time region where a universe might form. In that

case, the argument that Philo implicitly attributes to Cleanthes is based on a correlation

between being a situation such that principle P applies (A) and being a space-time region

(B). Let’s call this correlation the Principle Correlation. Moreover, the argument attempts

to establish the hypothesis that P applies in situation S, uses the evidence that S is a

space-time region, and assumes that our background knowledge includes the Principle

Correlation.

Since the argument that Philo implicitly attributes to Cleanthes is an analogical argu-

ment from experience, we can evaluate the argument that Philo implicitly attributes to

Cleanthes in light of the Strength Criteria. Since Hume recognized only two of the criteria

– that is, the strength of the correlation and the degree of analogy – Philo’s counterargu-

ment must be in terms of those two criteria. When Hume discusses principles, Hume is

roughly referring to what we might call laws of nature. 

5
 And as Hume notes in his essay

on miracles, i.e., Hume,  1992 , pp. 107–131, our past experience consistently and strongly

According to Edward Harrison ( 1986 ) and Edward Grant ( 1969 ), at the start of the seventeenth century,
there were three live cosmological models: (i) an Aristotelian model, according to which there is a set of
geocentric celestial spheres bounded by the fixed stars, (ii) a stoic model, according to which there are a
finite collection of stars in one portion of an infinitely large space, and (iii) an Epicurean model, according
to which there is infinite matter strewn throughout infinite space.

While the Aristotelian model collapsed during the seventeenth century, the notion of an infinitely large
space or time beyond the material universe continued to be discussed into the eighteenth century (Grant,

 1969 ). Immanuel Kant, Gottfried Leibniz, and Samuel Clarke explicitly discuss the possibility that there is
infinite space or time beyond the material universe. In the antinomies, Kant ( 2009 , p. 471) considers (and
rejects) an argument that the “world” could not be finitely old or finite in size. As part of that argument,
Kant assumes that if the world were finitely old and of finite size, then the world would be proceeded by
empty time, that is, time without a material universe, and surrounded by empty space. In the Leibniz/Clarke
correspondence, Leibniz ( 1956 , p. 25) criticizes absolute space on the grounds that, while the material world
was created by God, absolute space is co-eternal with God and uncreateable. Clarke (S. Clarke,  1956 , p. 31)
replies that absolute space is not an eternal being but instead an eternal consequence of God being infinite
and eternal. That is, Clarke concedes that while the material world has a finite past, absolute space does
not have a finite past. Leibniz ( 1956 , p. 26) also criticizes absolute space on the grounds that if space were
absolute then God couldn’t have had a sufficient reason for creating the material world at a specific location
in space. Likewise, Leibniz ( 1956 , pp. 26–27) criticizes absolute time on the grounds that if time were
absolute then God couldn’t have had a sufficient reason for creating the material world at a specific moment
in infinite time. Clarke ( 1956 , p. 32) disagrees, but continues to insist that God created the material world at
a specific location in space and at a specific moment in time.
5

 ↑ For example, Hume states that the “secret springs and principles” that explain the functioning of the mind
are analogous to the “laws and forces” that Newton discovered to govern and direct the “revolutions of the
planets” (Hume,  1992 , p. 14). Elsewhere, Hume tells us that elasticity, gravity, the cohesion of parts, and
the communication of motion by impulse are likely the most “ultimate” principles humans will discover
(Hume,  1992 , p. 30).
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confirms the laws of nature and includes no exceptions to the laws of nature: “[...] as a

firm and unalterable experience has established these laws, the proof against a miracle

[that is, against a violation of a law of nature], from the very nature of the fact, is as

entire as any argument from experience can possibly be imagined” (Hume,  1992 , p. 114).

Thus, the Principle Correlation includes a large number of confirming instances and no

disconfirming instances. However, Philo rejects the argument that he implicitly attributes

to Cleanthes. Since Hume judges the strength of analogical arguments from experience

solely in terms of the strength of the correlation and the degree of analogy, Philo should

be understood as rejecting the argument either for involving a poor correlation, or for in-

volving a weak analogy, or for both reasons. Since the correlation is strong, Philo should

be interpreted as rejecting the argument for including a poor analogy.

In the quoted passage, Philo points out that as we investigate nature, we find that new

principles apply to domains that are further removed from our prior investigations, i.e.,

nature “possesses an infinite number of springs and principles which incessantly discover

themselves on every change of her position and situation”. Philo encourages us to look

back on the history of physical inquiry. Suppose we look back to a time t hundreds of

years into the past. In the intervening centuries, our ancestors investigated then new

domains that had not yet been investigated and found that those then new domains

were correctly described by principles that were unknown at t. Thus, according to Philo,

when we investigate new domains, we should expect to discover phenomena described

by principles that were previously unknown and that are consequently disanalogous to

our previous confirming instances. Since a situation that involves the formation of the

universe is so far removed from our prior experience, Philo argues that we have reason to

think that situations involving the formation of a universe are disanalogous to situations

with which we have prior experience. In that case, we have reason to doubt the projection

of previously discovered principles into situations involving the formation of a universe.

We can strengthen Philo’s argument. First, Philo presents a kind of meta-inductive

argument over the course of past physical inquiry in order to establish that we should

expect new principles in situations that are sufficiently far removed from the situations

we’ve previously investigated. Philo’s meta-inductive argument is philosophically con-
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tentious. For that reason, if Philo can construct his argument without the meta-inductive

argument, then Philo’s argument can do without a philosophically controversial premise.

Happily, Philo doesn’t need the meta-inductive argument in order to argue that situations

involving the formation of a universe are far removed from previous situations that we’ve

investigated. Instead, all that Philo needs to reach his conclusion is that situations in-

volving the formation of a universe are disanalogous from previous situations that we’ve

investigated in virtue of involving the formation of a universe. Since the strength of

analogical arguments from experience is determined by the degree of analogy between

the previous confirming instances and the new instance, Philo merely needs the fact that

situations involving the formation of the universe are not analogous to any of the instances

that previously confirmed the empirical regularities to which we have access.

Second, without the meta-inductive argument, Philo can point out that we have no

good reason to think that situations involving the formation of a universe only involve

the principles that have been previously discovered. In addition, we have no good reason

for thinking our old principles are applicable to situations involving the formation of a

universe.

Third, Philo is considering an argument according to which our old principles would

apply to a situation involving the formation of a universe. However, we might ask how

one would establish that the situation involves the formation of a universe in the first

place. Presumably, whatever features of a situation would bring us to infer that a given

situation involves the formation of a universe would have to be fairly exotic features that

are not shared by other situations. Suppose that the old principles do apply to a situation

that might involve the formation of a universe and suppose that the old principles, when

applied to the situation in question, imply that the situation likely involved the formation

of a universe. As I’ve discussed, there may be also be new principles in that situation.

While the old principles, taken in isolation, might imply that the situation in question likely

includes the formation of a universe, the old principles, when conjoined with a set of new

principles, might render that situation unlikely to include the formation of a universe.

Thus, any argument that establishes that a given situation includes the formation of a

universe would need to establish both that old principles would apply to that situation
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and that there won’t be new principles in that situation which, when in combination

with the old principles, would render the formation of a universe unlikely. If we lack

justification for saying that the old principles apply to the new situation and we lack

justification for saying that there wouldn’t be new principles, that in combination with

the old principles, render the formation of a universe unlikely, we would lack justification

for concluding that the situation does include the formation of a universe. Likewise, the

old principles might not apply at all to the situation in question and, instead, an altogether

different set of principles might apply. In that case, the new set of principles might, unlike

the old set of principles, entail that the situation does not likely include the formation of

a universe. Thus, not only should Philo be doubtful of the claim that we know which

principles apply to a situation that includes the formation of a universe, but Philo should

also be doubtful of the claim that any given situation likely does include the formation of

a universe.

Fourth, recall that, in addition to the strength of the analogy, the Strength Criteria

require that we have good reason for thinking that our sample of As is representative of

all the As that there are. Philo has no good reason to think that the situations that were

previously investigated are a representative sample of all of the situations that there are.

For all that Philo knows, the principles that he has access to represent a provincial portion

of the universe that would have no relevance for situations that include the formation of

a universe.

So far, we’ve been discussing the issue in fairly abstract terms. In Hume’s time,

relativistic cosmology had not yet been discovered and few, if any, people could have

imagined that a set of empirical regularities could themselves entail, or even make prob-

able, that a given situation involves the formation of a universe. Moreover, while Philo

seems to take the universe to be a proper part of physical reality – since Philo speculates

that comets, like seeds, might somehow germinate into universes in the chaos between

universes – I am interested in whether the totality of physical reality had a beginning.

As I stated at the outset of this chapter, I endorse a view that I call Cosmic Skepticism,

according to which the provinciality of our knowledge of the physical facts with respect

to scale, spatio-temporal location, or energy prevents us from having empirical access to
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whether the Cosmos satisfies the Modal, Direction, and Boundary Conditions. If Cosmic

Skepticism is true, then, since our knowledge of the physical world is provincial with

respect to scale, spatio-temporal location, and energy, and the best candidates for portions

of the Cosmos that (for example) include a space-time-wide temporal boundary – such as

the hot, dense period in the history of the observable universe located approximately 14

billion years to our past – are exotic with respect to scale, spatio-temporal location, and

energy, our best candidates are not analogous to the situations in which our strongest em-

pirical regularities have been confirmed. In addition, since our knowledge of the physical

facts is provincial with respect to scale, spatio-temporal location, and energy, we have no

good reason for thinking that the domains in which we’ve previously investigated the

physical facts are representative of all of the physical facts that there are. For example,

physicists widely suspect that at sufficiently high energies, General Relativity needs to be

replaced by a quantum gravity theory. In that case, we should not project General Relativ-

ity 14 billion or so years into our past and draw the inference that the observable universe

includes a past temporal boundary. In the following two subsections, I consider in more

detail why, at our present stage of philosophical and scientific inquiry, we should doubt

the analogical argument from experience that features in specific part-to-part inferences.

Projections involving distant energy scales and densities

In this subsection, I examine a part-to-part inference that projects physical principles

from observable energy scales or matter-energy densities to energy scales or matter-energy

densities that vastly exceed the observable scales or matter-energy densities.

In order to have a beginning, the Cosmos must satisfy the Boundary Condition. As

I’ve said, the only scientifically respectable candidate for the Cosmos’s past boundary is

the Big Bang, that is, the hot, dense epoch in the history of the observable universe located

approximately 14 billion years in our past. When we turn back the clock and approach the

boundary postulated in classical models of the Big Bang, we find that the matter-energy

density within the observable portion of the universe grows without bound. Physicists

strongly suspect that at sufficiently high energies, General Relativity will be supplanted
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by a still as yet undeveloped quantum gravity successor theory. For that reason, we

should not project General Relativity to arbitrarily high energy scales or arbitrarily high

matter-energy densities. But set that aside; there are three independent reasons why

we should not project General Relativity to arbitrarily high energy scales or arbitrarily

high matter-energy densities. In fact, the three independent reasons help to explain why

physicists sometimes claim that General Relativity predicts its own demise (Burger et

al.,  2018 ; Cuttell,  2019 , pp. 2, 14; Israel,  2018 , p. 115) and specifically predicts its own

inapplicability to the Big Bang.

First, the degree of analogy between observed matter-energy densities and unobserved

matter-energy densities decreases with the difference between the two. As we approach

the Big Bang, according to General Relativity, the matter-energy density grows without

upper bound. Thus, as we approach the Big Bang, the degree of analogy approaches zero;

for that reason, General Relativity, itself, provides us reason to doubt General Relativity’s

application to the Big Bang. Second, we have no reason to think that the physics that we

know of is representative, with respect to the matter-energy density, of all of the physics

that there is. Our sample of known physics is biased because we have only been able to

sample the finite range of matter-energy densities available in terrestrial experiments or

in astrophysical observations. If the matter-energy can grow without bound, then there is

an infinite range of physical phenomena that we have not been able to sample; moreover,

in order to understand the Big Bang, we require physics from the portion that we have

not yet sampled. Thus, the only scientifically respectable candidate for the portion of the

Cosmos that might include the Cosmos’s boundary is shrouded in just those conditions

for which we should exercise the greatest degree of skepticism.

Projections into future physical theories

In this subsection, I examine a family of part-to-part inferences that project features

of past physical theories into future physical theories in the attempt to establish that the

Cosmos satisfies the Modal Condition. In chapter  5 , we saw that there were several distinct

reasons for considering the possibility that the Cosmos violates the Modal Condition. For
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example, several current proposals for quantum gravity theories postulate that space-time

is not fundamental. If space-time is not fundamental, then the Cosmos might turn out to

be fundamentally timeless. If the Cosmos is fundamentally timeless then the Cosmos did

not begin to exist. As I discussed, there are live candidates for quantum gravity theories

that have been argued to have the consequence that the Cosmos is fundamentally timeless.

In other words, if some specific candidates for quantum gravity theories, together with

some specific interpretations of those theories, turn out to be correct, then the Cosmos

violates the Modal Condition and is therefore beginningless.

Therefore, in order to evaluate whether the Cosmos is fundamentally timeless, we

would need to know which features of our current scientific theories will survive into

those theories that will supplant our current theories. We don’t yet know what those

features will be. Perhaps one could propose an analogical argument from experience

using the features of past and current theories to the features of future theories, but any

such projection seems doubtful. Alternatively, one could attempt to argue that all physical

entities are fundamentally spatio-temporal by projecting from the collection of physical

entities that have been subsumed under past and current theories to the class of physical

entities that will be subsumed by our final theory at the end of physical inquiry. Recall

again that analogical arguments from experience require, among other criteria, a strong

degree of analogy and good reason for thinking that our sample is representative. We

have no good reason to think that future physical theories will have a high degree of

analogy, in relevant respects, to past and current physical theories nor do we have reason

to think that our collection of past and current physical theories are representative of all

of the physical theories that will ever be developed.

There is good reason to think that quantum gravitational effects become relevant at

high energies. For that reason, there are quantum gravity theories which, if true, would

entail that a spatio-temporal description of physical phenomena no longer applies at a

some sufficiently large mass-energy density, e.g., the Plank energy. Friends of the view

that the Cosmos had a beginning may try to use an analogical argument from experience

to rule out the possibility of a mass-energy density at which a spatio-temporal description

no longer applies. I’m not entirely sure how such an argument would work in detail,
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but, at our present stage of philosophical and scientific inquiry, we should be doubtful

of any analogical argument from experience that attempts to rule out the possibility of

a mass-energy density at which a spatio-temporal description no longer applies. There

is no good reason to think that there is a high degree of analogy between previously

observed physical phenomena and phenomena at the Planck energy. For example, the

most energetic particle ever observed – the Oh-My-God particle – was a cosmic ray whose

energy was approximately 109 times smaller than the Planck energy (Bird et al.,  1995 ).

Second, we have no reason to think that the physics we know of is representative of all of

the physics that there is. Even if we supposed that the spatio-temporal description was

applicable up through the Planck energy, there may be a larger energy scale at which the

spatio-temporal description is no longer applicable.

Moreover, as I will subsequently argue, there is a tension between the coherence and the

modesty of a hypothesis. While I will argue that the coherence of a hypothesis depends

on the degree of objective uniformity the hypothesis attributes to the world, modesty

depends upon the scope of a hypothesis. Thus, there is a tension between modesty and

coherence because hypotheses that attribute uniformity over a large portion of the world

have a large scope. The inference that a spatio-temporal description applies at a large

range of energy scales attributes objective uniformity to the world but is also immodest.

Since we currently lack a theory that would allow us to adjudicate the tension between

modesty and coherence, we are not in a position to judge whether the inference that the

spatio-temporal description applies at a large range of energy scales has a high or a low

intrinsic probability.

One might try to project results into a future physical theory by appealing to the fact

that our current physical theories will be approximations to future physical theories. For

example, recall that, in chapter  3 , I described Craig and Sinclair’s view that, “There may

be no such things as singularities per se in a future quantum gravity formalism, but the

phenomena that [General Relativity] incompletely strives to describe must nonetheless

be handled by the refined formalism, if that formalism has the ambition of describing

our universe” (Craig and Sinclair,  2012 , p. 106). Craig and Sinclair go on to assert that

the singularities which appear in relativistic cosmology will be replaced by a suitable
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equivalent in a quantum gravity formalism, so that quantum gravity will continue to

entail that space-time includes a past boundary.

However, as Jeffrey Barrett ( 2003 ,  2008 ) points out, if we grant that empirically success-

ful scientific theories are approximations to their successors, then, at any given point in

scientific inquiry, we don’t know what the sense is in which our current scientific theories

will approximate their successors. This is so for three reasons. First, as Barrett ( 2003 )

argues, we cannot identify the bridge principles that link current scientific theories to

their successors until after the successors have been successfully identified. Barrett ( 2003 )

uses the example of Newtonian gravity NG and the general theory of relativity GTR; the

theory that best captures the bridge principles between NG and GTR is another theory,

namely, geometrized Newtonian gravity GNG. But GNG is constructible only in retro-

spect after having found GTR. Since GNG is available only in retrospect, while GNG now

allows us to say, in precise terms, what is preserved from NG to GTR, no one prior to the

development of GTR could have said what would be preserved in NG’s successor theory.

Second, as Barrett ( 2008 ) argues using the Dirac/von Neumann formulation of quantum

mechanics, before the successor theory to a current theory is established, there may be a

variety of known mutually incompatible possible successor theories. Each of the mutu-

ally incompatible possible successor theories might retain different features of the original

theory, so that, even if we accept that one of the known possible successor theories will

eventually be established as the correct successor theory, the space of mutually incompat-

ible possible successor theories might not provide any guidance as to which features will

be retained in the successor theory. For example, some proposed successors to General

Relativity, such as loop quantum gravity and string theory, have been interpreted to entail

that the Cosmos is not fundamentally temporal, while other proposed successor theories,

such as causal set theory (Dowker,  2020 ), have been interpreted as better accommodating

temporal becoming, at the fundamental level, than General Relativity. Thus, whether the

successor to General Relativity will entail that the Cosmos is fundamentally timeless will

depend upon which quantum gravity theory is successful. As a second example, there a

large number of proposed cosmological models utilizing quantum gravity theories; some

proposals include a past boundary and others do not. Thus, whether a model that in-
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cludes a past boundary comes to be adopted in a successor theory will depend, among

other details, upon which successor theory is adopted.

Third, if we knew how to replace a current theory with a successor theory, then we

would have done so; the fact that we have not yet done so at any given stage of scientific

inquiry reflects the fact that we do not then know how to replace a current theory with a

successor. In turn, we don’t know which features of a current theory will be retained in

successors. We don’t know whether the feature of having, e.g., a temporal boundary or

being fundamentally temporal (assuming that those are features of current theories) will

be retained in successor theories.

12.3 Part-to-Whole Inferences

I said that there are two families of inferences that might be used to argue that the

Cosmos has a beginning. The second family are part-to-whole inferences. In order

to discuss part-to-whole inferences, I again begin by drawing inspiration from Hume’s

Dialogues. While responding to Cleanthes’s design argument, Philo rhetorically asks,

“But is a part of nature a rule for another part very wide of the former?” (Hume,  2008 ,

p. 51) That is, can we project a principle from one part of nature to another distant part?

Someone who answers yes and offers the corresponding inference is making the sort

of inference I considered at the outset of section  12.2.3 . Philo continues by rhetorically

asking whether the principle is a “a rule for the whole? Is a very small part a rule for the

universe?” 

6
 That is, can we use a portion of the universe to project an inference to the

entire universe? Elsewhere, Philo states, “Our experience, so imperfect in itself, and so

limited in extent and duration, can afford us no probable conjecture concerning the whole

of things” (Hume,  2008 , p. 79). Whereas the argument with which I began the section

on part-to-part inferences concerned whether we can project from observable portions of

the universe into a novel situation that involves the formation of the universe, Philo now

makes a case that we cannot make a generalization from a part of the universe to the

whole of the universe.
6

 ↑ Whether Hume recognized a distinction between the two kinds of arguments is unclear to me. Philo asks
his rhetorical questions as if they were variations on a single point instead of two wholly distinct points.
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Part-to-whole inferences project an empirical regularity from a portion of the Cosmos

to which we have empirical access to the Cosmos as a whole. Instead of using an analogical

argument from experience, the first stage of a part-to-whole inference utilizes an inductive

generalization. Inductive generalizations have the following form:

P1*) All observed members of class A have property Q.

C*) Therefore, all members of class A have property Q.

The first stage of a part-to-whole inference states:

P1**) All observed parts of the Cosmos are described by a set of natural laws L1,L2, ....

C**) Therefore, all parts of the Cosmos are described by a set of natural laws L1,L2, ....

In the second stage of a part-to-whole inference, the set of natural laws that are projected

to the entire Cosmos are used to draw the inference that the Cosmos satisfies either the

Modal, Direction, or Boundary Conditions and so as part of an argument that the Cosmos

has a beginning.

For illustrative purposes, let’s again set aside the fact that General Relativity will likely

be replaced by a quantum gravity successor theory in future physical inquiry. We have

observed that, on large scales, the observable universe is, to within a close approximation,

described by the Friedmann-Lemaître-Robertson-Walker (FLRW) equations. If we could

project the FLRW equations to the entirety of space-time, then we might be able to deduce

from the FLRW equations that the Cosmos satisfies the Boundary Condition. Moreover,

if we knew that there was a consistent direction of time throughout the entire observable

universe and if we could project that consistent direction of time throughout the entirety of

space-time, then we could know that the entire Cosmos satisfies the Direction Condition.

Good inductive generalizations confer a high probability on to their conclusions. In

order for an inductive generalization to confer a high probability on some hypothesis h,

we must have good reason for thinking that our sample of As is representative and our

sample of As must be sufficiently large. For reasons similar to those already discussed

in connection with analogical arguments from experience, we have no good reason for
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thinking that the portion of the physical world that has been investigated thus far is a

representative sample of the totality of physical reality nor do we have good reason for

thinking that our sample of physical reality is large relative to the totality of physical

reality. 

7
 Moreover, there are two conditions on the probability of h imposed by the prior

probability of h. First, h must either comport well with our background knowledge or else

the evidence for h must be sufficiently surprisingly, relative to our background knowledge,

so as to overcome the tension between our background knowledge and h. Second, since

the prior probability of h depends, in part, on the intrinsic probability of h, h must not be

too immodest or too incoherent. I will argue that we should be skeptical concerning the

part-to-whole inferences that one might try to use as part of an argument for the Cosmos’s

beginning because of an unresolved tension between the modesty and the coherence of

a sufficiently large scale hypothesis.  

8
 In the next subsection, I turn to further explicating

the notion of intrinsic probability.

12.3.1 Intrinsic Probability

As a simple model, we can understand the prior probability as resulting from updating

the intrinsic probability with respect to our background knowledge. Whether there are

objective prior probabilities remains a matter of philosophical debate. A fortiori for

objective intrinsic probabilities. We can strike a compromise by conceding that although

numerical objective probabilities may be rare, hypotheses without numerical objective

probabilities have objective comparative rankings that respect the probability calculus.

In the following, I will use “intrinsic probabilities” as shorthand for referring to intrinsic

comparative probabilities. If we accept that there are objective intrinsic probabilities, how

do we assess those intrinsic probabilities? Draper’s (e.g.,  2015 ,  2017 ) theory of intrinsic

probabilities is the conjunction of three principles:

1. The intrinsic probability of a hypothesis depends on the modesty of the hypothesis.

7
 ↑ By ‘portion’, I do not merely mean a spatio-temporal portion. Instead, I mean the portion of the Cosmos’s

parameter space.
8

 ↑ Draper ( 2015 , pp. 61–63) has previously noted that what sort of conclusions one reaches in natural theology
will depend upon how one thinks about the balance between modesty and coherence.
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2. The intrinsic probability of a hypothesis depends on the coherence of the hypothesis.

3. The intrinsic probability of a hypothesis depends on nothing else.

In other words, in terms of intrinsic comparative probability, all else being equal, a less

modest hypothesis has a lower ranking than a more modest hypothesis, and, again all

else being equal, a less coherent hypothesis has a lower ranking than a more coherent

hypothesis.

Why think that a hypothesis’s intrinsic probability should depend only upon the

modesty and coherence of the hypothesis? Draper (  2017 , p. 73) tells us that he has

difficulty imagining what else the intrinsic probability of a hypothesis could depend

upon: “If we abstract from all factors that are extrinsic to a hypothesis (e.g., all confirming

and disconfirming data, arguments, perceptions, etc.), focusing only on what is intrinsic

to the hypothesis, then what else could its probability depend on other than how little it

says and how well what it says fits together?”

Of course, there are other philosophers who have other accounts of intrinsic probability,

or at least notions close to intrinsic probability. For example, Richard Swinburne ( 2001 ,

pp. 80–83;  1997 , pp. 24–26) has argued that the intrinsic probability of a hypothesis depends

upon the scope (i.e., the modesty) and the simplicity of the hypothesis. In reply, Draper

( 2015 ) points out that simplicity, as characterized by Swinburne, is a complex, multifaceted

notion that should be reduced to coherence. Likewise, Sean Carroll ( 2005 ) has argued that

simplicity should be understood in terms of a simpler notion than Swinburne’s, i.e., the

Kolmogorov complexity. But the Kolmogorov complexity is capable of addressing only

the syntactic features of a hypothesis. As I will show in subsection  12.3.2 , two hypotheses

that differ with respect to whether they postulate objective uniformity or objective variety

can be stated in ways that are equally syntactically complex. Thus, modesty and coherence

are better conceptions of how a given hypothesis should be evaluated independent of our

evidence or background knowledge. In the next two subsections, I turn to explicating

modesty and coherence.
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Modesty

Roughly, the modesty of a hypothesis tells us how much the hypothesis asserts about

the world beyond what we know by rational intuition alone (Draper,  2017 , p. 70). For ex-

ample, hypotheses with a narrower scope are more modest than hypotheses with broader

scope. Intuitively, the more that a given hypothesis claims about the world, the greater

the number of ways there are for the hypothesis to be false. For example, all else being

equal, the hypothesis that all bank tellers are red haired men is more immodest than the

claim that all bank tellers are men. This is so because the claim that all bank tellers are

red haired men is more specific than the claim that all bank tellers are men. All else being

equal, more immodest hypotheses are less intrinsically probable.

Coherence

The coherence of a hypothesis is how well the parts of the hypothesis intrinsically fit

with one another (Draper,  2015 , p. 53, Draper,  2017 , pp. 70–71). The greater the degree

to which the parts of a hypothesis support each other, relative to rational intuition, the

greater the coherence of the hypothesis. For example, if h is the hypothesis that A&B,

where, purely by rational intuition, we can see that A entails B and that B entails A, then

no modification to h, short of removing a conjunct, would render h more coherent. In the

case that A does not entail B and B does not entail A, the coherence of A&B depends on the

degree to which, relative to rational intuition alone, B predicts A and A predicts B. Thus,

the coherence of A&B is determined by the degree to which, relative to rational intuition

alone, A would provide evidence for B – that is, the degree to which A would raise the

probability of B – and vice versa.

12.3.2 The Tension Between Modesty and Coherence

In this section, I introduce the problem that intrinsic probability poses for part-to-

whole inferences. Recall that the coherence of a hypothesis is determined by the degree

to which the parts of the hypothesis support each other. When the fact that one part of
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nature has some feature F raises the probability that another part of nature also has feature

F, I will say that there is an inductive support relation between the two parts. If there is

an inductive support relation between two parts of nature, then the hypothesis that both

parts have that feature will be more coherent than the hypothesis that only one part has

that feature. I will argue that, assuming Draper’s account of intrinsic probability is correct

and that inductive generalization is reliable, each part of nature has an inductive support

relation with neighboring parts of nature. If each part of nature does have an inductive

support relation with neighboring parts of nature, then hypotheses that postulate objective

uniformity extending over the entire Cosmos are as coherent as hypotheses about physical

reality could possibly be. On the other hand, hypotheses concerning the entirety of the

Cosmos are as immodest as hypotheses about physical reality could possibly be. Thus,

asssuming Draper’s account of intrinsic probability and that inductive generalization is

reliable, there is a tension between modesty and coherence that grows with the scope of a

given hypothesis and which is maximized for hypotheses about the whole of the Cosmos.

Part-to-whole inferences require us to project a set of empirical regularities from a specific

portion of the Cosmos to the Cosmos as a whole. Thus, while the hypotheses that feature

in part-to-whole inferences are as coherent as hypotheses about physical reality could be,

they are also as immodest as hypotheses about physical reality could be. There is, as yet,

no known way to adjudicate the tension between modesty and coherence. And since the

tension between modesty and coherence is particularly acute for part-to-whole inferences,

at our present stage of philosophical and scientific inquiry, we have reason to be skeptical

of part-to-whole inferences.

In order to show that the reliability of inductive generalization depends on the existence

of inductive support relations between distinct parts of nature, I turn to considering

a thought experiment. (Similar thought experiments are provided in Draper,  2015 and

Draper,  unpublished .) Let’s suppose that we are in the epistemic situation of our Neolithic

ancestors with respect to Sun rises – that is, we do not have any sophisticated astronomical

knowledge – and consider the following two hypotheses:

1. RISES := All mornings include a Sun rise.
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2. NISES := All mornings before 2050 include a Sun rise and all mornings after 2050

will not include a Sun rise.

Let a Sun nise be an event before 2050 in which the Sun rose or an event after 2050 that

will not include a Sun rise. Then NISES can be re-written as:

2.* NISES := All mornings include a Sun nise.

We can construct an inductive generalizations whose conclusion is RISES.

R1) All observed mornings included a Sun rise.

RC) Therefore, all mornings include a Sun rise.

We can likewise construct an inductive generalization whose conclusion is NISES:

N1) All observed mornings included a Sun nise.

NC) Therefore, all mornings include a Sun nise.

Both inductive generalizations have true premises, but, if inductive generalization is reli-

able, then the conclusion of the first argument must be more probable than the conclusion

of the second argument. The challenge is to determine why we should think that the con-

clusion of the first inductive generalization is more probable than the conclusion of the

second inductive generalization. As I’ve said previously, the probability of a hypothesis

in light of the evidence is determined by Bayes’s Theorem:

Pr(h|e&K) =
Pr(h|K)Pr(e|h&K)

Pr(e|K)
(12.2)

As I noted previously, we can partition Pr(h|e&K) into two parts. We can think of the ratio

Pr(e|h&K)/Pr(e|K) as the contribution that our evidence makes to Pr(h|e&K) and we can

think of the prior probability Pr(h|K) as the probability of h relative only to our background

knowledge and independent of our evidence. Since the evidence is predicted equally well

by RISES and NISES, we have that:
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Pr(e|RISES&K) = Pr(e|NISES&K) (12.3)

But since I’ve assumed that RISES is more probable, given the evidence, than is NISES,

we have that:

Pr(RISES|e&K) > Pr(NISES|e&K) (12.4)

If we apply Bayes’s Theorem to both sides of inequality  12.4 and then utilize equation

 12.3 , we arrive at:

Pr(RISES|K) > Pr(NISES|K) (12.5)

That is, the reason RISES has a greater epistemic probability than NISES must be due to

RISES’s prior probability.

The prior probability is determined by our background knowledge and by the intrinsic

probability. Since the difference in the prior probabilities is unlikely to be due to our

background knowledge – in the absence of astronomical knowledge, what information

could our background knowledge contain that would distinguish between RISES and

NISES? – the difference must be explained by the difference in the intrinsic probabilities

of the two hypotheses. That is, RISES has a greater prior probability than NISES because

RISES has a greater intrinsic probability than NISES. As I’ve said, according to Draper’s

account of intrinsic probability, the relative intrinsic probability of the two hypotheses

are determined by their relative modesty and coherence. Recall that the coherence of a

hypothesis is determined how well the parts of a hypothesis support one another. Suppose

that, all else being equal, one part of nature having a specific feature raises the probability

that other parts of nature also have that feature. In that case, all else being equal, the

hypothesis that distinct parts of nature share a specific feature – that is, the hypothesis

of objective uniformity – will be a more coherent hypothesis than the hypothesis that the

two parts do not share that feature – that is, the hypothesis of objective variety.
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Although RISES and NISES can be expressed in ways that are equally syntactically

complex, if we assume that there are natural kinds, RISES is stated in terms of natural

kinds and NISES is not. Thus, despite how the two hypotheses might be expressed,

RISES postulates an objective uniformity whereas NISES does not. (Draper (  2015 , p. 55)

has made a similar point.) Therefore, if, all else being equal, objective uniformity is

more intrinsically probable than objective variety, RISES would have a greater intrinsic

probability than does NISES. And, thus, the reliability of inductive generalization requires

that, all else being equal, objective uniformity is more intrinsically probable than objective

variety.

I will not attempt to prove that there are inductive support relations between distinct

parts of nature. Doing so would likely require an entire dissertation unto itself. Instead, I

claim only that insofar as Draper’s account of intrinsic probability is correct and insofar as

inductive generalization is reliable, there are inductive support relations between distinct

neighboring parts of nature. In the next subsection, I further explicate the notion of

inductive support relations and the related notion of friendliness to the scientific project.

Inductive Support Relations and the Scientific Project

We can distinguish possible worlds that are friendly to the scientific project from worlds

that are unfriendly to the scientific project. Worlds that are friendly to the scientific project

are worlds in which there is an inductive support relation between neighboring parts of

the space of parameters describing that world. Consider Conway’s Game of Life.  

9
 The

Game of Life consists of an infinite array of squares, resembling an infinite chess board,

where each square can be in one of two states, i.e., {Black, White}. At each time, the state

of the array is updated by a set of rules to produce a subsequent state. If a square is in the

black state and is neighbored by either zero or one squares in the black state, then, at the

next time, the square transitions to the white state. If a square is in the black state and is

neighbored by four or more squares in the black state, then the square transitions to the

white state at the next time. If a square is in the black state with two or three neighboring

9
 ↑ My use of this example is inspired by the discussion in chapter 2 of Daniel Dennett’s ( 2003 ).
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squares that are also in the black state, then the square persists in the black state to the

next time. If a square is in the white state with three or more neighbors, then the square

transitions to the black state. Given some initial state, the array of squares results in

a surprisingly complex pattern. In fact, despite the fact that there are simple rules for

updating each square, one can assemble a universal Turing machine in the Game of Life

(Dennett,  2003 , p. 46); consequently, any computer program, of any degree of complexity,

can be functionally realized by the Game of Life so long as the array’s initial state – that is,

which squares are in the black state and which squares are in the white state – is carefully

chosen.

Suppose that some possible worlds consist only of an instance of the Game of Life (or

of some structure isomorphic to an instance of the Game of Life) and call such a world a

Life World. The state of a Life World at a given time can be specified by specifying the

squares that have the state ‘Black’. Likewise, the state of the Life world at all times can

be specified by indicating the state of the squares at all times. We can define an inductive

support relation between two squares at a time or between one time and another.

Friendliness to the scientific project is a degreed quantity. A world is said to be

friendlier to the scientific project the greater the degree to which one part of the parameter

space describing that world raises the probability that an adjacent part of the parameter

space has a corresponding state. In Life Worlds, the state of any square at a time is

independent of the states of the other squares at the same time so that there are no

inductive support relations between the squares at a fixed time. However, the state of

a Life World at time t, together with the rules, deductively entails the state of that same

world at time t + 1, so that there is an inductive support relation between the state of a

Life World at a time and the state of a Life World at any subsequent time. To put the

point another way, the state at t, in conjunction with the rules, provides the best sort of

evidence for the state at subsequent times. Moreover, since the state of a Life World at t is

inconsistent with all but a specific subset of possible past states, given the rules, there is

an inductive support relation between the state at t and states at previous times. That is,

while the state at t does not deductively entail the state at all prior times, the state at t can
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support inferences about the states at prior times by ruling out states that are inconsistent

with the state at t.

Unlike Life Worlds, our world contains an approximately relativistic space-time that

might not be decomposable into an array of discrete elements and in which there may not

be such things as Cosmos-wide instants of time. However, friendliness to the scientific

project can be suitably generalized to any parameter space, regardless of whether that

parameter space is discrete or continuous. Our world appears to be sufficiently friendly

to the scientific project that there are inductive support relations between space-time

events that are sufficiently close to each other, e.g., the space-time interval between the

two events is sufficiently small.  

10
 That is, if space-time point a has feature F, 

11
 then, all

else being equal, the fact that a is F raises the probability that a nearby space-time point b

is also F, so long as a and b are sufficiently close:

Pr(Fb|Fa) > Pr(Fb) (12.6)

As I’ve explained, coherence is the degree to which the parts of a hypothesis are mutually

supportive. Intuitively, one might expect that the coherence of the hypothesis A&B

increases as Pr(A|B)/Pr(A) increases. 

12
 If equation  12.6 applies to two events, then the

10
 ↑ Thanks to David Albert for offering some casual comments that aided me in an early formulation of this

notion. On Albert’s formulation, inductive support relations are relations between two neighboring spatio-
temporal regions. Unfortunately, that formulation won’t do, in part because the size of a spatio-temporal
region is not a relativistic invariant. The space-time interval is not a good parameter for this purpose
either because, in light-like directions, the space-time interval between numerically distinct points is always
zero. The affine parameter is not a good parameter because the affine parameter is defined only up to an
arbitrary constant. The generalized affine parameter is not a good parameter either because the generalized
affine parameter (i) depends on an arbitrary choice of basis vectors and (ii) because the generalized affine
parameter is a Euclidean parameter, the parameter does not scale appropriately with spatio-temporal
distances, e.g., along time-like directions, larger generalized affine parameters correspond to smaller time-
like distances. However, there is a natural parameter for performing inductive inferences in the contexts
ordinarily considered by physical cosmologists, namely, the average galactic red-shift. Given Hubble’s law,
this parameter does tell us important information about whether we should project an inductive inference
to a specific cosmological context.
11

 ↑ Feature F can be fairly complex. For example, Fa might be the statement that a particle passing through
a satisfies a particular equation of motion. In that case, Fb is the statement that a particle passing through b
also satisfies that equation of motion, even though, e.g., the particle’s velocity might be different at a than
at b.
12

 ↑ I don’t mean to define the intrinsic coherence of a hypothesis in terms of Pr(A|B)/Pr(A) or in terms of any
other probabilistic measure. There is a sizeable literature on probabilistic measures of coherence that deals
with similar issues as Draper’s account (for recent overviews, see Hansson,  2018 ; Koscholke,  2016 ; Olsson,
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hypothesis that there is uniformity between the two events – that is, that the same predicate

function F applies to a and b – is more coherent than the hypothesis that there is variety

between the two events – that is, that the predicate apples to a and not to b. This

is defeasible, e.g., the evidence could show that two events are different in important

respects.

I’ve defined the inductive support relation in terms of the spatio-temporal distance

between two points, but we can more generally define the inductive support relation in

terms of the distance between any two parts of a parameter space. For example, in the

case of an ideal gas, there is an inductive support relation between the characteristics of

a gas at one value of the pressure and the characteristics of the gas at another value of

the pressure; the further apart the two pressures, the weaker the inferences we can make

about the second gas on the basis of the first. Consider a discrete parameter space S. Let

Fu be a predicate function that evaluates to true if u is F and is otherwise false, where u

is an element of S. Then let Pr(Fu) be the epistemic probability that u is F. Finally, we

can define the requisite inductive support relation as follows. There exists an inductive

support relation between v and w, where v and w are elements of S, iff

Pr(Fw|Fv) > Pr(Fw) (12.7)

In other words, there is an inductive support relation between two elements of a given

parameter space if the probability that a given element is F, given that the other element

is known to be F, is greater than if the other element were not known to be F. To say that a

discrete parameter space is friendly to the scientific project is then just to say that there is

an inductive support relation between neighboring elements. I will assume that there are

 2017 ), but no probabilistic account of coherence can offer an adequate articulation of Draper’s intrinsic
coherence. Probabilistic accounts of coherence define coherence measures as functions over probability
distributions that are themselves defined on sets of propositions. According to Draper’s account of intrinsic
coherence, the intrinsic probability of a hypothesis is determined (in part) by the coherence. To compare
Draper’s account with probabilistic accounts of coherentist justification, we can think about hypotheses
as the conjunction of the propositions in a set. In that case, supposing that some probabilistic account of
coherence could be used to articulate Draper’s view, one would conclude that the intrinsic coherence is
determined by the intrinsic probability and the intrinsic probability is determined by the intrinsic coherence;
we’d be left with a tremendous bootstrapping problem from which, as far as I can tell, there could be no
escape.
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similar inductive support relations for all of the dimensions of the parameter space of any

given hypothesis. (If there is a dimension of the parameter space of a given hypothesis

on which there are no inductive support relations then that dimension is not friendly to

the scientific project.)

Why do I make the assumption that there are inductive support relations between

neighboring parts of a parameter space but not between arbitrarily chosen points in a

parameter space? Suppose that the state of some physical system S1 is described by a

point a in a parameter space, the state of another physical system S2 is described by a

neighboring point b, and a third physical system S3 is described by a point c that is distant

from a and b. In that case, there is a greater degree of analogy between the systems

described by a and b than there is between either a or b and c. Given the greater degree

of analogy between a and b, then is more reason to think that a resembles b (for example)

then there is for thinking that a resembles c. This intuitive notion can be captured by

stipulating that the strength of the inductive support relation decreases monotonically

with distance.

As I’ve said, part-to-whole inferences require that there are inductive support relations

between parts of nature that are arbitrarily far apart; if so, then the known physical facts

could be extended to parts of nature infinitely distant (i.e., inequality  12.7 continues to

hold in the limit that the two points are infinitely far apart). There are two cases to

consider. First, suppose that we take two points, a and b, located arbitrarily far apart and

such that a has feature F. And now we ask whether the fact that a has feature F raises

the probability that b has feature F. Due to the fact that the inductive support relation

decreases with distance, the degree to which a being F is evidence for the hypothesis

that b is F will generally depend upon the distance between a and b. We don’t have a

mathematical function that describes how rapidly the inductive support relation would

decrease and the details of such a function are likely dependent upon specific details about

the system, feature, or parameter space in question. Nonetheless, given that the inductive

support relation decreases with distance, the further that b is from a, the more skeptical

we should be concerning inferences about b given information about a.
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In the second case, consider a situation in which we are investigating a region in a

parameter space; I will use R to represent the set of points in that region. And suppose

that we have information about a sample of points from a subregion of R whose points I

will denote S, namely, that all of the points in S have feature F. Can we infer that the rest

of R – that is, the set of points in R− S – probably has feature F so that there is an objective

uniformity throughout the entirety of R? As I’ve discussed, on the assumption that there

are inductive support relations between neighboring parts of a parameter space, objective

uniformity is more coherent than objective variety. So, the hypothesis h that all of the

points in R have feature F is coherent; moreover, the larger R is, the more coherent h is.

However, the larger R is, the more h claims about the world. Consequently, the hypothesis

that there is objective uniformity over a large region of a parameter space is an immodest

hypothesis.

Part-to-whole inferences purport to project a feature from the portion of the Cosmos’s

parameter space available to us to the entire parameter space. The resulting hypothesis is

as coherent as a hypothesis about physical reality could possibly be while simultaneously

being as immodest as a hypothesis about physical reality could possibly be. How should

the tension between modesty and coherence be resolved? This question has, thus far,

gone unaddressed in the literature. Without criteria that allow us to adjudicate the ten-

sion between modesty and coherence, at the present stage of scientific and philosophical

inquiry, part-to-whole inferences are unjustified. The trouble is not that we know that

modesty will win out over coherence for any particular parameter space, but instead that,

given the current state of our knowledge with respect to the nature of induction, we have

no reason to think that modesty will not win out over coherence for large scale universal

generalizations.

Without a fully articulated theory resolving the tension between modesty and coher-

ence, we lack the grounds on which to make inferences about portions of the Cosmos’s

parameter space that are sufficiently exotic, including the scales, spatio-temporal loca-

tions, or energies relevant to the formation of the Cosmos or whether there was such an

event or process as the formation of the Cosmos. As things stand at the current stage of

inquiry, we should endorse Cosmic Skepticism, because our knowledge of the physical
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facts is provincial with respect to scale, spatio-temporal location, or energy in such a way

that blocks empirical access to either the formation of the Cosmos or whether there was

such an event or process as the formation of the Cosmos.

Any inference from empirically accessible features of the world that the Cosmos satis-

fies the Modal, Direction, and Boundary Conditions would need to project natural laws

to domains far removed from observations in terms of the relevant scales, places, times,

and energies. The tension between modesty and coherence provides us with reason to

be skeptical that any known law has universal – or arbitrarily large – scope and so we

have reason to be suspicious of projections to sufficiently exotic scales, places, times, and

energies. Thus, we have reason to be suspicious that we can presently make the inductive

inferences needed to infer whether the Cosmos had a beginning. In the next subsection,

I turn to considering a specific family of part-to-whole inferences that might be used to

argue that the Cosmos satisfies the Direction and Boundary Conditions. In light of the ten-

sion between modesty and coherence, the members of the family of arguments described

are left without adequate justification.

Projections involving distant space-time domains

In this subsection, I will consider projections from the portion of space-time we can

observe to space-time as a whole. We don’t know how much larger the Cosmos is than

our space-time, but we do know that all of space-time is included in the Cosmos. If our

space-time is significantly larger than the observed portion of space-time, we know that

the Cosmos is much larger than the observed portion of the Cosmos. We have several

reasons for thinking that our space-time is significantly larger than the portion that we

can observe. Our observational data – both from the Cosmic Microwave Background and

from the observed distribution of galaxies – indicates that the observable universe is very

close to being flat. So close, in fact, that, given current instrumentation, the observable

universe is observationally indistinguishable from being flat. There is the possibility that

space-time is truncated not far beyond our cosmological horizon; call this hypothesis

TRUNCAT. In present physical theory, there is no principled reason as to why TRUNCAT
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should be true. And, importantly, if TRUNCAT is true, the inductive inferences we

ordinarily take ourselves to be licensed to make to regions immediately neighboring our

cosmological horizon would systematically result in incorrect conclusions.

Assuming that we are licensed to make inductive inferences to regions immediately

neighboring our cosmological horizon, we should set TRUNCAT aside. This leaves us

with three possibilities; in all three possibilities, space-time is large enough that the tension

between modesty and coherence should make us suspicious as to whether our inductive

inferences can be extended to the totality of space-time, let alone the totality of the Cosmos:

1. FLAT: Space-time globally approximates a flat FLRW space-time. In this case, space-

time is infinitely spatially extended, so that the observable portion of space-time is

infinitely smaller than space-time as a whole.

2. A-FLRW: The observable universe approximates a flat FLRW space-time, space-time

is not globally flat, but space-time does globally approximate an FLRW space-time.

In this case, space-time has some global curvature, but space-time is so large that the

global curvature is not currently detectable. In that case, space-time would need to

be sufficiently large – possibly infinitely large – in order to accommodate the global

curvature.

3. OTHER: The observable universe approximates a flat FLRW space-time, space-time

is not globally flat, and space-time does not globally approximate an FLRW space-

time. In this case, all bets are off; as I showed in a previous chapter, supposing that

the space-time does satisfy the Direction and Boundary Conditions, the observable

portion of our space-time could be isometrically embedded in a variety of space-

times that do not satisfy the Direction or Boundary Conditions.

In sum, insofar as our inductive procedures are reliable and we can set aside TRUNCAT,

either FLAT, A-FLRW, or OTHER are true. But if FLAT, A-FLRW, or OTHER are true, then

space-time must be significantly larger than our cosmological horizon. Given how large

space-time must be if our inductive procedures are reliable, the tension between modesty
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and coherence provides us reason to be suspicious of the kind of large scale inductive

inferences that one could make from the observable universe to space-time as a whole.

Inductive inferences regarding whether the Cosmos satisfies the Direction or Boundary

Conditions require us to make a projection from the observed portion of the Cosmos to

the unobserved portion. For example, consider that even if we somehow knew that

the space-time region in our absolute past terminates with a boundary, there may be

space-time points space-like separated from us whose pasts do not include a boundary,

as I discussed in chapter  9 . In that case, the Cosmos would not satisfy the Boundary

Condition. To rule out that possibility would require us to project from our past to space-

time points indefinitely far from us and, thus, would require us to make projections into

domains where the tension between modesty and coherence is not adequately understood.

Moreover, supposing that we could establish that there is a fixed and uniform direction

of time throughout the entire observable universe, one might try to establish that the entire

Cosmos satisfies the Direction Condition by projecting that direction of time to the entire

Cosmos. Again, there could be distant regions, space-like separated from ourselves, where

the direction of time is inconsistent with the direction of time we observe throughout

the observable universe. Thus, without resolving the tension between modesty and

coherence, we do not know whether the Cosmos satisfies the Direction Condition.

The Copernican Principle

One might try to use a part-to-whole inference to evade the problems that I raised

in chapter  9 . If one could restrict the collection of space-times that are observationally

indistinguishable from our own to a collection of space-times that satisfy the Boundary

Condition, then one might be able to infer that the Cosmos satisfies the Boundary Condi-

tion. The Copernican Principle states, roughly, that our location within the Cosmos is not

distinguished. Since the early modern period, physicists have tended to assume that the

Copernican Principle is true.

As Chris Smeenk ( unpublished , pp. 13–14) points out, if we interpret the Copernican

Principle to entail that all free-falling observers see the Cosmic Microwave Background as
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isotropic, then the Ehlers-Geren-Sachs (EGS) theorem ( 1968 ) can be utilized to restrict the

space of observationally indistinguishable space-times to FLRW space-times, since, in that

case, the EGS theorem entails that the Cosmos is exactly FLRW. The Cosmic Microwave

Background is known to be only approximately isotropic, but a generalization of the EGS

theorem by Stoeger, Maartens, and Ellis ( 1995 ) ensures that in space-time regions where

the Cosmic Microwave Background appears nearly isotropic for all free-falling observers,

space-time can be well approximated as FLRW. So, if local conditions can be successfully

projected to other parts of the Cosmos through the use of a part-to-whole inference,

then perhaps we can know much more about the global distribution of matter-energy-

momentum – and so be in a much better position to infer whether the Cosmos satisfies the

Boundary Condition and possibly the Direction Condition, both of which depend upon

the global matter-energy distribution.f

We have reason to doubt that this inference is successful. First, we can understand

the Copernican Principle as having large scope – or at least large with respect to our

observational capacities – without defining the Copernican Principle as having universal

(or arbitrarily large) scope. As Chris Smeenk ( unpublished , p. 14) points out, there are live

cosmological hypotheses, such as inflation, that entail that the projection fails. Since we

should not make the brash step of ruling out live cosmological hypotheses from the arm

chair, we should not be confident that the projection succeeds. Moreover, the inference

requires us to project a set of principles (e.g., the Copernican Principle, the isotropy of the

microwave background, etc) to the whole of the Cosmos. Again, while the application of

a set of principles to the entire Cosmos is as coherent as a hypothesis about physical reality

could be, the hypothesis is simultaneously as immodest as a hypothesis about physical

reality could possibly be.

12.4 Inductive Inferences and the Modal Condition

I’ve argued that two families of inductive inferences that might be used to establish

that the Cosmos satisfies the Modal, Direction, and Boundary Conditions are unsuccessful.

There is another set of considerations that suggest that establishing whether the Cosmos
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satisfies the Modal Condition might not be possible, even in principle, regardless of which

form of inductive inference we attempt to use.

Recall that when I introduced the notion that the Cosmos could be fundamentally

timeless in chapter  5 , I drew an analogy with the Matrix. The Matrix might functionally

realize space-time. If so, the space-time that we have experience with may have an

altogether different structure than the space-time inhabited by the computers running

the Matrix. Suppose that we had good evidence, from, e.g., a quantum gravity theory,

that the space-time we have experience with, which I will call ordinary space-time, is

functionally realized by some more fundamental substructure, e.g., a spin network or the

universal wavefunction or whatever. In that case, just as the computers running the Matrix

themselves enjoy a spatio-temporal existence, perhaps the substructure to which ordinary

space-time is reducible itself enjoys a spatio-temporal existence. On what grounds could

we distinguish between a timeless substructure and a spatio-temporal substructure? I’m

not sure that we could; presumably, whether we could depends upon the specific details

about the structure that we discover to functionally realize ordinary space-time and how

we discover the fact that the structure functionally realizes space-time.

12.5 Objections

In this last section, I consider four objections to the arguments that I’ve offered in

this chapter. First, I consider an objection according to which large scale cosmological

inferences should proceed by inference to the best explanation instead of by inductive

generalization. Second, I turn to an objection involving the fact that laws of nature are

often thought to have universal scope. If laws of nature do have universal scope and our

best scientific theories include laws of nature, then, one might object, there must be some-

thing wrong with the worries that I raised concerning part-to-whole inferences. Third,

I turn to an objection concerning inductive generalizations in mathematics. Allegedly,

mathematicians sometimes perform inductive generalizations over infinite domains. If

mathematicians do perform inductive generalizations over infinitely large domains, then,

one might object, there must be something wrong with my claim that we should be skep-
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tical of universal generalizations performed over the entire Cosmos. Fourth, I turn to an

inductive generalization performed by some natural theologians. According to some nat-

ural theologians, we can use an inductive generalization to infer that God (or a God-like

being) is omnipotent. If so, then, one might object, perhaps we shouldn’t be skeptical

of universal generalizations performed over the entire Cosmos. I will show that none of

these objections are successful.

12.5.1 Modesty, Coherence, and Inference to the Best Explanation

I’ve argued that large scale inductive generalizations are beset by an as yet unresolved

tension between modesty and coherence. Perhaps the reader will be tempted to reply that

instead of deploying induction over large scale domains, we should deploy Inference to the

Best Explanation (IBE). Since IBE does not depend on inductive generalization, or so the

claim goes, IBE does not meet the same objections as large scale inductive generalizations

do. Some authors have argued that inferences to the best explanation are hidden inductive

inferences, perhaps supplemented with deduction. For example, Fumerton ( 1980 ) argues

that IBE depends upon a hidden analogical argument from experience. If so, inferences to

the best explanation, when deployed over sufficiently large domains, will have to contend

with the tension between modesty and coherence.

Regardless of whether we accept that induction is more fundamental than IBE, both

inductive generalization and IBE depend on our theory of intrinsic probability. IBE is often

utilized when we are faced with a situation where a set of mutually exclusive hypotheses

predicts the data equally well. Compare the problem that I raised in subsection  12.3.2 

concerning RISES and NISES. Even though RISES and NISES predicted the available

evidence equally well, the reliability of induction required that RISES is more probable

than NISES. At first glance, both the inference schema for IBE and the puzzle I posed

using RISES and NISES ask us to perform the same task, viz, how should we choose

the “best hypothesis” out of a collection of hypotheses all of which are consistent with

our total evidence? According to standard accounts of IBE, the best hypothesis needs

to be selected on the basis of a set of theoretical virtues, e.g., simplicity, parsimony, and
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the like. As I discussed in subsection  12.3.1 , insofar as the theoretical virtues can be

considered independent of our total evidence or background knowledge, on Draper’s

view, the theoretical virtues are reducible to modesty and coherence (Draper,  2015 ,  2017 ).

Consequently, Draper’s theory of intrinsic probability should tell us that, in a wide variety

of cases, IBE is either reducible to or replaceable by a comparison of intrinsic probability.

Nonetheless, the theoretical virtues in terms of which a hypothesis may be considered

the best explanation are not always independent of our background knowledge or total

evidence. Jonah Schupback and co-author Jan Sprenger ( 2011 ) consider what they call

the explanatory power of a hypothesis, which I will refer to as the power of the hypoth-

esis; given that a hypothesis explains some datum, the power is the degree to which

a hypothesis renders that datum explicable as opposed to the contrary datum. For ex-

ample, if postulating an ancient earthquake renders the deformation of some portion of

bedrock less surprising than the deformation would otherwise be, the power is the degree

to which the deformation is less surprising than the deformation would otherwise be

(J. N. Schupbach and Sprenger,  2011 , p. 108). Shupback and Sprenger develop a set of

desiderata that any candidate measure of power should satisfy and then show that there

is a mathematical function which uniquely satisfies their desiderata (J. N. Schupbach and

Sprenger,  2011 ; J. Schupbach,  2017 , pp. 40–46, J. Schupbach,  2022 , pp. 75–77, 56–60). As

Shupback and Sprenger show, the explanatory power of a hypothesis h, given evidence

e and background knowledge K, should be mathematically expressed by the following

measure:

εSS(e, h,K) =
Pr(h|e&K) − Pr(h|¬e&K)
Pr(h|e&K) + Pr(h|¬e&K)

I will call εSS the Schupback-Sprenger power measure. Shupback shows that some hypoth-

esis h1 has greater explanatory power than some alternative and mutually incompatible

hypothesis h2, i.e., εSS(e, h1) > εSS(e, h2), if and only if Pr(e|h1&K) > Pr(e|h2&K). In other

words, according to the Schupback-Sprenger power measure, h1 has greater power than

h2, relative to evidence e and our background knowledge, only if h1 predicts e better than

h2 predicts e. Of course, that h1 has a greater ability to predict e than does h2 does not
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render h1 more probable than h2. For example, if I hear indiscriminate banging sounds

coming from my attic, we can hypothesize gremlins that produce precisely the sounds

that I hear; while the gremlin hypothesis may predict the sounds that I hear better than

any other available hypothesis, the gremlin hypothesis has a low posterior probability

precisely because the gremlin hypothesis has a low prior probability relative to our back-

ground knowledge (Sober,  2008 , p. 10; also see J. Schupbach,  2017 , pp. 51–52). In fact,

one can show that the fact that h1 predicts the data better than h2 entails that the posterior

probability of h1 is greater than the posterior probability of h2 only on the condition that

their prior probabilities are equal. Thus, the fact that h1 predicts the data better than h2

is no guarantee that h1 is more probable, all things considered, than h2. Nonetheless,

Shupback uses computer studies to show that, in a variety of statistical tasks, selecting a

hypothesis based on Shupback’s power measure outperforms the selection of a hypothesis

based on the prior probability (J. Schupbach,  2022 , pp. 80–84). Shupback concludes that,

all else being equal, we have defeasible reason to favor hypotheses that are ranked higher

according to the Schupback-Sprenger power measure.

We can ask whether, in the case of inferences over large domains, the Schupback-

Sprenger power measure allows us to overcome the tension between modesty and coher-

ence. Note, once more, that the ranking of hypotheses in terms of power is equivalent to

the ranking of hypotheses in terms of their respective ability to predict our data relative

to our background knowledge. There are then two possibilities. First, as with the gremlin

hypothesis, if the prior probability of a hypothesis h with a large domain is sufficiently

low, then, in the absence of sufficiently strong evidence, the posterior probability of h

will be low. Since the prior probability of h is determined – in part – by the intrinsic

probability of h, the question then becomes how low the immodesty of h drives the in-

trinsic probability of h. In other words, we return to the unresolved tension between

modesty and coherence. Second, supposing that the prior probability of h is not too low,

we need to ask how well h predicts some body of evidence over the contrary. In the case

of part-to-whole inferences, the question will be whether the hypothesis that the Cosmos

satisfies the Modal, Direction, or Boundary Conditions has a high probability. In that

context, one can compare the disjunction of hypotheses in which the Cosmos does satisfy
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the Modal, Direction, and Boundary Conditions against the disjunction of hypotheses in

which the Cosmos does not satisfy the Modal, Direction, and Boundary Conditions. As

far as inquiry has proceeded thus far, there is no clear reason for thinking that the former

disjunction better predicts our total evidence than does the latter disjunction. Thus, there

is no reason to think that the Schupback-Sprenger power measure saves the kind of large

scale inferences needed for inferring that the Cosmos had a beginning.

There is also a sense in which Schupback’s computational results support the argument

that I have presented in this chapter. Schupback’s simulations model an ideal agent that,

given randomly generated data, selects a hypothesis based either on chance, standard

probabilistic (e.g., Bayesian) reasoning, or via Schupback’s power measure. Schupback

scores each according to their respective accuracy, that is, out of a million trials, the

number of occasions on which an ideal agent would choose the true hypothesis. As the

number of hypotheses increase, the accuracy of all three methods decrease (J. Schupbach,

 2017 , pp. 52–53). As Schupback observes, this makes intuitive sense, viz, the accuracy

decreases as the number of ways that one could be wrong increases. David Glass ( 2012 )

has shown that similar results follow for a variety of distinct formal models of inference

to the best explanation. 

13
 But notice that this is equivalent to the statement that as

one’s hypothesis selection becomes increasingly immodest, one is more likely to select an

incorrect hypothesis. Thus, the results of Schupback’s computer studies suggest that even

if we did utilize Schupback’s power measure in place of standard methods, we would

likely still need to contend with the tension between modesty and coherence in the case

of hypotheses ranging over the totality of physical reality.

12.5.2 Laws with Global Scope

I’ve argued that there is a tension between modesty and coherence in virtue of which

we should be skeptical about universal generalizations whose conclusions have large or

universal scope. In this section, I consider an important objection involving the laws of

nature. According to the objection, one could argue that scientific explanation requires

13
 ↑ According to the results of Glass’s computer studies, the effect is minimized when the hypothesis chosen

is the one that maximizes the posterior probability.
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laws of nature and that laws of nature have universal scope. If scientific explanation

requires laws of nature, laws of nature have universal scope, and inferences involving

universal scope are unavailable to us, then scientific explanation is unavailable to us. But

scientific explanation is available to us, so we must be able to make successful empirical

inferences involving universal scope after all, or so the objection goes.

To the contrary, science does not require laws of nature with universal scope. There

are a variety of conceptions of laws of nature. On one conception, laws of nature are

principles of physical necessitation with universal scope (e.g., Armstrong,  1983 ; Dretske,

 1977 ; Hildebrand,  2020 ; Tooley,  1977 ). Insofar as there are true principles of physical

necessitation with universal scope, they are likely unknown to us, and insofar as there are

physical laws known to us at the present stage of physical inquiry, they are likely only

approximate. And while principles that are only approximately (and not actually) true

may be empirically adequate, might figure into successful scientific theories, 

14
 might be

pragmatically useful in engineering and technological development, might be explanatory,

and might even be enlightening for metaphysical inquiry and tell us partial information

about the nature of reality, such principles, if interpreted to have universal scope, are

literally false.

As Michael Scriven stated in a talk in 1959, “The most interesting fact about laws of

nature is that they are virtually all known to be in error. And the few exceptions not

only seem quite likely to become casualties before long, but their defection seems to be

a matter for small mourning” ( 1961 , p. 91). In a concluding paragraph, Scriven (Scriven,

 1961 , p. 101) tells us, “Laws are usually inaccurate; but they represent great truths so we

forgive them their errors”. Similar accounts have been defended by Eric Winsberg ( 2004 ,

 2006 ) and Ronald Giere (  1999 ). For Scriven, Winsberg, and Giere, laws have broad, but not

universal, domains of application. For Scriven, laws are non-accidental generalizations

that support counterfactuals within a specific domain, that acquire the status they have

from playing a specific theoretical role, and that serve as useful approximations within a

14
 ↑ The pessimistic meta-induction and its relatives help to establish that though the laws which appear in

our current best physical theories, if interpreted as principles with universal scope, are likely false, successful
scientific practice can utilizes those principles all the same.
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specific range of applications.  

15
 Ronald Giere has similarly offered an account of scientific

practice that revises the traditional notion of laws of nature. Giere replaces laws by

what he calls principles and which I will call Giere-principles. Giere-principles can be

understood in one of two ways: either as prescriptions for the construction of models

or as descriptions of models (Giere,  1999 , pp. 5–6, 94). 

16
 Winsberg offers what he calls

the “framework” conception of laws. In agreement with Scriven and Giere, Winsberg

understands laws to be principles that enable us to build models, plan experiments, and

to represent target phenomena of interest. As Winsberg (  2004 , p. 716) describes, “Rather

than taking laws to be universally true and delimiting the character of all possible worlds,

the proponent of the framework conception takes laws to be broadly reliable for a wide

array of practical and epistemic tasks”.

While I do not endorse all of the claims made by Scriven, Winsberg, and Giere, I agree

with several of their shared conclusions. For example, Scriven tells us that the usefulness

of an approximation depends on one’s purposes while Giere ( 1999 , p. 93) tells us that the

fit of a model to a target phenomenon depends on one’s purposes. I agree that how well a

theory, hypothesis, model, or approximation partially describes reality depends on what

features of reality we are interested in capturing. More important for my purposes in this

chapter, I agree that laws are, at best, only approximate (Scriven,  1961 , p. 92) and have a

limited range of application (Scriven,  1961 , pp. 92–93; Winsberg,  2004 , p. 716; Giere,  1999 ,

pp. 92–93). For that reason, we should not understand laws as having universal scope

and should not understand laws as applying to an arbitrarily large domain. Since laws

15
 ↑ For Scriven, the usefulness of an approximation is determined by (1) accuracy, (2) the range of application,

and (3) one’s purposes, while theoretical tractability is determined either by the approximation’s fit with
established theory or by whether the approximation can serve as a “good basis” for the development of a
new theory.
16

 ↑ According to Giere ( 1999 , p. 5), scientific practice should be fundamentally understood in terms of
models, where models are intermediate entities (e.g., Giere,  1999 , p. 92) between theories/hypotheses and
the objects of scientific study; the key role of models is to represent the objects of scientific study. Instead of
being true representations of the target phenomena, models are similar to or fit the target phenomena (Giere,

 1999 , pp. 5, 73, 92–93). Moreover, the model bears a degree of similarity to a target system only in “specified
respects” and “to limited degrees of accuracy” (Giere,  1999 , pp. 92–93). Furthermore, fit is a matter of one’s
purposes; fit “requires a specification of which aspects of the world are important to represent and, for those
aspects, how close a fit is desirable” (Giere,  1999 , p. 93). Models fit a target only to “within the limits of
what can be detected using existing experimental techniques” (Giere,  1999 , p. 95). When scientists compare
a model to a target phenomenon, they do so in virtue of data (Giere,  1999 , p. 74). A model can be ruled out
if, among other reasons, the model is a poor fit to the data (Giere,  1999 , pp. 74–75).
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do not have universal scope and do not apply to arbitrarily large domains, the objection

with which I began this chapter evaporates.

Some philosophers would be scandalized by the suggestion that laws of nature are

something other than true principles of physical necessitation with universal scope. For

example, Swartz ( n.d. ) interprets Scriven’s essay as implicitly drawing a distinction be-

tween Laws of Science (which Scriven calls “physical laws”) and laws of nature. According

to Swartz, the laws of nature are the true principles, even if unknown to us, that provide

an exact – and not merely approximate – description of nature. Swartz tells us that when

he and other philosophers are investigating the metaphysics of laws – e.g., agonizing

over whether physical determinism is compatible with free-will – they are simply not

interested in the “approximate truths” of science. The trouble is two-fold. First, the only

laws known to us are the Laws of Science. Second, the only impetus philosophers have

had for investigating the notion of laws of nature was the role that such laws apparently

play in scientific practice or in scientific theories (Giere,  1999 , p. 86). 

17
 The foundational

principles included in our best physical theories are broadly reliable for a wide variety of

practical and epistemic tasks; even if we accept that such principles need to be underwrit-

ten by more fundamental principles of physical or metaphysical necessitation, Scriven’s,

Winsberg’s, and Giere’s accounts land us closer to the truth about scientific practice.

Do Scriven’s, Winsberg’s, or Giere’s accounts require that we accept some form of

scientific anti-realism? Giere tells us that he is not an anti-realist and that, on his view,

scientific theories are not merely empirically adequate. Instead, Giere tells us that models

can successfully capture reality, so that, in virtue of models, we can come to have a partial

understanding of reality (Giere,  1999 , pp. 79–82). For my purposes in this chapter, it

suffices that scientific theories provide us with partial access to the truth and that the

principles fundamental to scientific theories, i.e., laws, can be understood as having a

limited – and so not universal – scope. If laws are admitted to have only a limited, and

17
 ↑ One might object that some philosophers have had a different impetus, e.g., Swartz is motivated by

questions about whether physical determinism is compatible with free-will. But the view that the physical
world is deterministic, or at any rate might be deterministic, is a view that arises out of the role that laws
have played in specific scientific theories.
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not necessarily universal, scope, then no objection can be made that science requires laws

with universal scope.

12.5.3 Inductive Inferences in Mathematics

I’ve been considering an argument according to which we cannot generally be confi-

dent in an extension of inductive inferences over arbitrarily large portions of a parameter

space. One might object by noting that there are cases where inductions appear to be

offered for infinite domains and where the induction is generally considered reliable. If

there are legitimate examples of non-spurious inductive inferences over infinitely large

domains, then there must be something wrong with the argument I’ve offered. Let’s put

one such example on the table.

Consider Goldbach’s Conjecture. 

18
 According to Goldbach’s Conjecture, for any posi-

tive even integer 2N, 2N can be written as the sum of two primes (Weisstein,  n.d. ; Echev-

erría,  1996 ; Baker,  2008 , p. 335). Though Goldbach’s Conjecture has yet to be proven,

mathematicians think that there is a strong case for the truth of Goldbach’s Conjecture

(Baker,  2007 ,  2008 ,  2017 ; Echeverría,  1996 ), and this case is supported, in part, by what, at

least prima facie, appears to be a universal generalization. Mathematicians have searched

the first 4 × 1018 integers, extended (by way of a theorem) from those integers to the first

8.37 × 1026 integers, and failed to find a counterexample (e Silva et al.,  2014 ). Given that

mathematicians have not found a counterexample among the first 8.37× 1026 integers, are

they justified in inferring that, probably, there are no counterexamples?

As it happens, on the assumption that Goldbach’s Conjecture is false – that is, given

that a counterexample exists – the counterexample is overwhelmingly likely to occur

among the first 8.37 × 1026 integers. Consequently, the fact that a counterexample does

not exist among the first 8.37×1026 integers provides overwhelmingly good evidence that

Goldbach’s Conjecture is true. To see how this result comes about, let’s approximate the

intrinsic probability that any given positive even integer cannot be written as the sum of

two primes. Define G2N as the sentence that 2N is a positive even integer that is the sum

18
 ↑ Thanks to Aaron Nung Kwan Yip and Levi Greenwood for help in developing this example.
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of two primes, p = 2N − k and q = k. Consequently, ¬G2N is the sentence that 2N is not the

sum of two primes, so that Pr(¬G2N) is the probability of a counterexample to Goldbach’s

Conjecture.

Consider all of the ways of summing the primes less than 2N. By the prime num-

ber theorem, the probability that a randomly chosen number less than 2N is prime is

1/ log(2N). Denote the number of primes less than 2N as P2N. Then the probability that a

randomly chosen positive integer less than 2N is prime can be written as P2N/(2N). Thus,

we have that P2N/(2N) ≈ 1/ log(2N), so that P2N = 2N/ log(2N). The number of ways of

summing the prime numbers less than 2N is the number of ways that prime numbers less

than 2N can be paired:

( Number of sums ) ≡ a =
1
2

(
2N

log(2N)

)2

= 2
(

N
log(2N)

)2

Let’s use S1, S2, ..., Sa to denote the sums of distinct primes less than 2N. We are trying

to find Pr(¬G2N). Note that ¬G2N is equivalent to the sentence that 2N is not equal to the

sum of any of the primes less than 2N. That is,

Pr(¬G2N) = Pr[(S1 , 2N)&(S1 , 2N)& ... &(Sa , 2N)]

Under the assumption that Si , 2N and S j , 2N, for i , j, are probabilistically indepen-

dent, i.e., Pr(Si , 2N|S j , 2N) = Pr(Si , 2N), and using the restricted conjunction rule, we

have that:

Pr(¬G2N) = Πa
n=1Pr(Sn , 2N)

Moreover, we also know that, for any i, Pr(Si , 2N) = 1 − 1
2N , so that:

Pr(¬G2N) = Πa
n=1

(
1 −

1
2N

)
=

(
1 −

1
2N

)a

Using the probabilistic independence condition previously mentioned, the probability

that there is a counterexample to Goldbach’s Conjecture greater than 2M can then be

computed using:
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Pr(∃x.(x > 2M)&¬Gx) = Pr(¬G2M ∨ ¬G2(M+1) ∨ ... )

= Pr(¬(G2M&G2(M+1)& ... ))

= 1 − Pr(G2M&G2(M+1)& ... )

= 1 −Π∞i=0Pr(G2(M+i))

= 1 −Π∞i=0

1 −
(
1 −

1
2(M + i)

)2
(

M+i
log(2(M+i))

)2
(12.8)

Likewise, we can find the probability that Goldbach’s Conjecture is true given that all

even integers less than 2M satisfy Goldbach’s Conjecture:

Pr(¬(∃x.(x > 2M)&¬Gx)) = Pr(∀x.(x ≤ 2M) ∨ Gx)

= Pr(∀x.Gx|x > 2M)

= Π∞i=0

1 −
(
1 −

1
2(M + i)

)2
(

M+i
log(2(M+i))

)2
(12.9)

This quantity can be numerically computed. For example, for 2M = 1000, 1−Pr(∀x.Gx|x >

2M) ≈ 2× 10−3 and, for 2M = 5000, 1−Pr(∀x.Gx|x > 2M) ≈ 10−13. Since the majority of the

probability for the occurrence of a counterexample obtains for small values of M (see figure

 12.1 ), an exhaustive computer search of small values of M comes close to ruling out the

possibility that there could be any counterexamples. That is, most of the probability mass

associated with possible counterexamples to Goldbach’s Conjecture appears in precisely

the region of parameter space that can be searched using computer studies. The fact

that we can see, by rational intuition alone, considerations that restrict the majority of

the probability mass to low values of 2M explains why a counterexample is unlikely to

appear for higher values of 2M. No appeal was made to the modesty or to the coherence

of Golbach’s Conjecture and no inductive generalization was carried out. In the case

of universal generalizations, there is typically no corresponding reason to think that the
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portion of parameter space most likely to include counterexamples to a given hypothesis

of interest is restricted to the observable portion of parameter space.

Furthermore, let’s consider the kind of reasons that allow us to restrict the majority of

the mass of the probability distribution to the observable portion of parameter space in the

case of Goldbach’s Conjecture. (For a similar argument, see Paseau,  2021 , pp. 9166–9167.)

In the case of Goldbach’s Conjecture, we ask whether each positive even integer is the

sum of two primes; by way of rational intuition, we know substantive facts about the

entire collection of positive even integers and the fact that we do know substantive facts

about the entire collection of positive even integers by way of rational intuition plays a

substantial role in the derivation of the probability distribution that I considered above.

We are likely to know substantive facts about the global features of a given parameter

space purely by way of rational intuition only in the case of wholly formal disciplines

such as pure mathematics or logic. The sciences are not wholly formal disciplines and

so are unlikely to include any analogous cases; thus, a part-to-whole inference that had a

feature of that kind is implausible.

12.5.4 Inductive Inferences and Omnipotence

In the previous subsection, I considered an objection according to which mathemati-

cians have successfully made inductive generalizations over infinitely large domains. I

showed that mathematicians have not actually made an inductive generalization over an

infinitely large domain. In this subsection, I turn to a claim that is sometimes made by

natural theologians. Some natural theologians have claimed to be able to infer that God

(or a God-like being) is omnipotent in virtue of the fact that a being that can perform

every possible task is more intrinsically probable than a being that can perform some, but

not all possible, tasks. If natural theologians can successfully perform such an inference,

then they must be able to resolve the tension between modesty and coherence in favor

of coherence. In the following, I will show that whether natural theologians can perform

such an inference is far from obvious. While the hypothesis that there is a being that can

perform all possible tasks is highly coherent, the hypothesis is profoundly immodest. And
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we can understand the immodesty of the hypothesis in virtue of the fact that there are a

vast number of ways in which a being can fail to be omnipotent. (A similar argument,

but in much less mathematical detail, was previously offered in the concluding section of

Draper,  2015 .)

Natural theologians purport to be able to surmise the existence of a powerful being

from the existence of the Cosmos, the appearance of complex order in our world, or

from other empirical observations; nonetheless, there are an infinity of powerful, but

not omnipotent, beings that are consistent with the same data. How does one infer

the existence of an infinitely powerful being from observing a series of finite effects?

The strategy often pursued by natural theologians has involved the observation that the

hypothesis that a being can do all (compossible) tasks is simpler or more coherent than

the hypothesis that a being can do some specific delimited number of tasks.

To model the intrinsic probability of an omnipotent being, my strategy will be to first

consider hypotheses about the tasks that may be accomplished by a finite being and then

to study how the intrinsic probability changes as the number of tasks increases to infinity.

This will allow me to develop a toy model that can be used to think about the extension

of any hypothesis beyond a known domain of application. I will call the (in)finite being

Taquesha. Let ϕ1 be the hypothesis that Taquesha can perform task 1, ϕ2 be the hypothesis

that Taquesha can perform task 2, etc, up to ϕM. I will use A to represent the hypothesis

that Taquesha can perform all M tasks. The hypothesis that Taquesha is omnipotent is

recovered in the limit that M becomes infinitely large; I claim that we can expect the

tension between modesty and coherence to grow as M increases. Omnipotence – i.e., the

hypothesis that Taquesha can perform an infinity of tasks – is maximally coherent, but

immodest – i.e., omnipotence rules out a large disjunction of alternatives according to

which Taquesha can perform some, but not all, tasks. Let’s begin with a simple example

where there are four tasks, i.e., {ϕ1, ϕ2, ϕ3, ϕ4}. In this case, there are 24 = 16 possible

combinations:
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ϕ1&ϕ2&ϕ3&ϕ4 ϕ1&ϕ2&ϕ3&¬ϕ4 ϕ1&ϕ2&¬ϕ3&ϕ4

ϕ1&ϕ2&¬ϕ3&¬ϕ4 ϕ1&¬ϕ2&ϕ3&ϕ4 ϕ1&¬ϕ2&ϕ3&¬ϕ4

ϕ1&¬ϕ2&¬ϕ3&ϕ4 ϕ1&¬ϕ2&¬ϕ3&¬ϕ4 ¬ϕ1&ϕ2&ϕ3&ϕ4

¬ϕ1&ϕ2&ϕ3&¬ϕ4 ¬ϕ1&ϕ2&¬ϕ3&ϕ4 ¬ϕ1&ϕ2&¬ϕ3&¬ϕ4

¬ϕ1&¬ϕ2&ϕ3&ϕ4 ¬ϕ1&¬ϕ2&ϕ3&¬ϕ4 ¬ϕ1&¬ϕ2&¬ϕ3&ϕ4

¬ϕ1&¬ϕ2&¬ϕ3&¬ϕ4

(12.10)

We can divide the sixteen possibilities into four sets. The first set, which I will denote A,

contains the single hypothesis:

ϕ1&ϕ2&ϕ3&ϕ4 (12.11)

The second set contains seven members:

ϕ1&ϕ2&ϕ3&¬ϕ4 ϕ1&ϕ2&¬ϕ3&ϕ4 ϕ1&ϕ2&¬ϕ3&¬ϕ4

ϕ1&¬ϕ2&ϕ3&ϕ4 ϕ1&¬ϕ2&ϕ3&¬ϕ4 ϕ1&¬ϕ2&¬ϕ3&ϕ4

ϕ1&¬ϕ2&¬ϕ3&¬ϕ4

(12.12)

I will use B to represent the hypothesis reporting the disjunction of the seven members of

this set. Note that B is logically equivalent to ϕ1&¬(ϕ2&ϕ3&ϕ4). That is, B consists of all

of the possible combinations in which Taquesha can do task 1 but cannot perform one or

more of the other tasks. The third set also contains seven members:

¬ϕ1&ϕ2&ϕ3&ϕ4 ¬ϕ1&ϕ2&ϕ3&¬ϕ4 ¬ϕ1&ϕ2&¬ϕ3&ϕ4

¬ϕ1&ϕ2&¬ϕ3&¬ϕ4 ¬ϕ1&¬ϕ2&ϕ3&ϕ4 ¬ϕ1&¬ϕ2&ϕ3&¬ϕ4

¬ϕ1&¬ϕ2&¬ϕ3&ϕ4

(12.13)

I will use C to represent the disjunction of these seven statements. Note the symmetry

between B and C; whereas B is logically equivalent to ϕ1&¬(ϕ2&ϕ3&ϕ4), C is logically

equivalent to ¬ϕ1&¬(¬ϕ2&¬ϕ3&¬ϕ4). That is, C is the hypothesis that Taquesha cannot

do task 1 but can do at least one task. The fourth set, like the first set, contains the single

member:
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¬ϕ1&¬ϕ2&¬ϕ3&¬ϕ4 (12.14)

I will call the single member of this last set D. D is the hypothesis that Taquesha can

perform none of the tasks. The division into four hypotheses is naturally generalized to

the case where there are M possible tasks and N = 2M possible combinations. That is, A is

the hypothesis that Taquesha can perform all M tasks, B is the hypothesis that Taquesha

can perform task 1 and one or more other tasks, C is the hypothesis that Taquesha cannot

perform task 1 but can perform one or more other tasks, and D is the hypothesis that

Taquesha cannot perform any tasks.

At this stage, I need to introduce some additional terminology. Let’s call each of the

ϕi a microhypothesis. A, B, C, and D are macrohypotheses. The members of the above four

sets, formed by conjoining microhypotheses, are midhypotheses, so-called because they are

mid-level between microhypotheses and macrohypotheses.

Let Pn denote the probability of hypothesis n, e.g., PA is the probability of A. I am

going to suppose that all N midhypotheses are equally modest. Therefore, if there were

no inductive support relations between ϕi and ϕ j, then PA = 1/N. However, since we

are interested in understanding the relationship between modesty and coherence, I will

suppose that there are inductive support relations between ϕi and ϕ j, for any i and any

j. 

19
 That is, PA receives a boost, from the uniformity in the hypothesis, above the value

that PA would have been attributed when we only consider the modesty of PA. Therefore,

PA > 1/N. Let’s define ε as the boost that PA receives due to coherence, i.e., ε ≡ PA − 1/N.

That is, just as there is an inductive support relation between ϕi and ϕ j, for any i and

any j, I will suppose that there is an inductive support relation between ¬ϕi and ¬ϕ j

for any i and any j. In other words, just as the fact that Taquesha can perform task i is

19
 ↑ Parameter spaces have an underlying topology and metric that tells us how each part of the parameter

space is connected to any other. In the case of a parameter space with a discrete topology, the metric can be
“read off” the topology. (This is not so in the case of a continuous topology, where a single topology is equally
consistent with multiple metrics.) For example, the squares in a Life World have a discrete topology and
the distance between any two squares is found by counting the number of intervening squares. Generically,
we can expect that the inductive support relation falls off with distance. In Taquesha’s case, I will assume
that the tasks form a complete graph, so that every task is a neighbor to every other task, i.e., there is an
inductive support relation betweenϕi andϕ j, for any i and any j, and an inductive support relation between
¬ϕi and ¬ϕ j for any i and any j.
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evidence that Taquesha can perform task j, so, too, Taquesha’s inability to perform task

i is evidence for Taquesha’s inability to perform task j. Given the symmetry between A

and D, we can reasonably suppose that PA = PD. There is also symmetry between B and

C, i.e., for every disjunct in B, there is a corresponding disjunct in C, so that PB = PC. We

have the normalization condition that PA + PB + PC + PD = 1, which, together with the

aforementioned symmetries, entails:

PA + PB =
1
2

(12.15)

From the definition of ε,  12.15 entails that we can re-write PB in terms of ε:

PB =
1
2
−

1
N
− ε (12.16)

We know that PB ≥ 0; together with  12.15 , this implies that PA is bounded from above by

1/2. Using the definition of ε, we then have that 1/N + ε ≤ 1/2. So, we have lower and

upper bounds for ε:

0 ≤ ε ≤
1
2
−

1
N

(12.17)

Without an explicit theory of the degree to which coherence increases PA, and so the size

of ε, we cannot say anything definite about how PA and PB compare other than in the case

where there are exactly two microhypotheses. In that case, PA = 1/4 + ε and PB = 1/4 − ε;

ergo, PA > PB. However, when the number of microhypotheses is greater than 2, we

need a theory that would allow us to rank hypotheses in terms of the degree to which

their internal inductive support relations boost ε and that would allow us to compare

the intrinsic probabilities of two macrohypotheses. Notice, too, that as N increases, the

upper bound on ε increases, so that there is a sense in which our uncertainty about the

magnitude of ε generically grows with N. In other words, while coherence may be a good

guide to intrinsic probability when there are very few microhypotheses, e.g., when we

are considering the inductive support relations between two specific parts of a parameter

space, we should be skeptical that coherence is a good guide to intrinsic probability
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when we consider large portions of a parameter space consisting of a large number of

microhypotheses.

The bounds that I’ve identified on ε are consistent with both PA < PB and PA > PB and

they remain consistent for arbitrarily large values of N. However, we can examine the

space of possible values of ε if we treat ε as a random variable and assign a probability

density to the space of possible values of ε, i.e., ρ(ε). If we had an explicit functional form

for ρ(ε), we could then compute Pr(PA > PB), that is, the probability that ε is large enough

for PA to exceed PB.

There are three desiderata that ρ(ε) should satisfy. First, comparatively more weight

should be assigned to smaller values of ε, that is, ρ(ε) should be a monotonically de-

creasing function. At best, ρ(ε) could be a uniform distribution with support restricted

to [0, 1/2 − 1/N], which could, perhaps, be motivated through some version of the prin-

ciple of indifference. Second, it would be preferable to have a single parameter λ that

can be varied to study deviations from the uniform distribution, e.g., λ = 0 represents

the uniform distribution and larger values represent deviations therefrom. Third, ρ(ε)

should have finite support only from 0 to 1/2− 1/N, since ε cannot assume values outside

that interval. Unfortunately, there is no unique choice that satisfies all three desiderata.

However, as it will turn out, the conclusions that I reach on the basis of ρ(ε) will hold for

any distribution that satisfies the three desiderata. One possible choice is the truncated

exponential distribution:

ρ(ε) =
λe−λε

1 − e−λ(1/2−1/N)
(12.18)

The distribution needs to be truncated because, as discussed, ε can only assume values in

the interval [0, 1/2 − 1/N]. Using the facts that PA = 1/N + ε and PB = 1/2 − 1/N − ε, one

can show that:

Pr(PA > PB) = Pr
(1
4
−

1
N
< ε ≤

1
2
−

1
N

)
(12.19)

In turn, this probability can be evaluated by integrating ρ(ε):
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Pr
(1
4
−

1
N
< ε ≤

1
2
−

1
N

)
=

∫ 1
2−

1
N

1
4−

1
N

λe−λε

1 − e−λ(1/2−1/N)
dε =

1 − eλ/4

1 − eλ(1/2−1/N)
(12.20)

Having computed the integral, we can observe that Pr(PA > PB) monotonically decreases

as N increases; see figures  12.2 and  12.3 . Moreover, Pr(PA > PB) is maximized in the limit

that λ becomes zero, that is, for the uniform distribution. In that limit, and for large N,

one can show that Pr(PA > PB) = 1/2. This result should make intuitive sense. In the limit

that N→∞, the upper bound on ε is 1/2 and the lower bound on ε is 0. Moreover, for PA

to exceed PB, εmust be at least 1/4. Therefore, half of the values drawn from the uniform

distribution restricted to [0, 1/2] are such that PA exceeds PB. Ergo, assuming ε is drawn

from a uniform distribution, Pr(PA > PB) = 1/2. For any other value of λ, for large N,

Pr(PA > PB) is less than 1/2. A similar verdict can be reached for any other choice of ρ(ε)

that monotonically decreases with ε, since all possible choices of ρ(ε) that monotonically

decrease with εwill be bounded from above by the uniform distribution. For example, we

can consider a truncated normal distribution with mean µ less than or equal to 1/4 − 1/N

and study how Pr(PA > PB) changes with the standard deviation σ. For the truncated

normal distribution, one finds that:

Pr
(1
4
−

1
N
< ε ≤

1
2
−

1
N

)
=

∫ 1
2−

1
N

1
4−

1
N

exp(− 1
2 ( ε−µσ )2)dε∫ 1

2−
1
N

0
exp(− 1

2 ( ε−µσ )2)dε
=

erf(1/2−1/N−µ
√

2σ
) − erf( 1/4−1/N−µ

√
2σ

)

erf(1/2−1/N−µ
√

2σ
) − erf( −µ√

2σ
)

(12.21)

where erf(x) is the error function, defined as the integral of the Gaussian from 0 up to x.

I wrote a short program to numerically solve this expression as a function of µ and σ in

the limit that N goes to infinity; for results, see figure  12.4 . As expected, when µ ≤ 1/4,

Pr(PA > PB) ≤ 1/2. Somewhat surprisingly, for values of µ larger than 1/4, most values of

σ yield a value for Pr(PA > PB) that is not appreciably large. Nonetheless, this is consistent

with the expectation that as σ becomes large as compared with 1/2 − 1/N, that is, the size

of the interval on which ε has support, the results for the truncated normal distribution

should reproduce the results from the uniform distribution independent of the value of µ.
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In the limit that we consider an infinity of possible tasks, the probability that PA

exceeds PB is no greater than 1/2. The verdict that we can surmise from this discussion

is that unless we have a well-motivated reason to think that ε has a large value, we

cannot conclude that coherence saves the omnipotence hypothesis. More generally, when

considering the extension of a hypothesis to an indefinitely large domain, unless we have

a good reason to think otherwise, we should not be confident that coherence will make

uniformity more probable than the alternative hypothesis that there is some variety, given

all of the ways in which there could be variety. In application to hypotheses concerning

the totality of physical reality, we should be skeptical concerning any confident claim that

known physical principles extend to domains arbitrarily distant from those that are well

understood.

12.6 Summary

This chapter completed my case for Cosmic Skepticism by turning to confirmation

theory. I’ve previously shown that no widely agreed upon and empirically well supported

theory demonstrates that the Cosmos began to exist. Nonetheless, scientific inferences

are ampliative. One might have hoped that science could provide us reason to think that

a beginning of the Cosmos is more probable than the contrary. In this chapter, I showed

that, at least as philosophical and scientific inquiry currently stands, our hopes for an

ampliative inference to the beginning of the Cosmos are dashed.
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Figure 12.1. The probability that some number greater than 2M is a coun-
terexample to Goldbach’s Conjecture for various values of 2M. Note that
the majority of the probability mass is “clustered” around small values of
2M so that computational searches for a counterexample to the Goldbach
Conjecture comes close to ruling out the possibility of a counterexample.
Goldbach’s Conjecture is a special case because there is no reason for the
probability of a counterexample to a hypothesis to assume most of its mass
within the accessible portion of a parameter space.
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Figure 12.2. The probability that PA exceeds PB, as a function of the number of
microhypotheses, assuming that ε is drawn from an exponential distribution
restricted to [0, 1/2 − 1/N].
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Figure 12.3. “Heat map” illustrating the probability that PA exceeds PB as
a function of the number of microhypotheses on the assumption that ε is
drawn from an exponential distribution restricted to [0, 1/2 − 1/N]. Note
that although the number of microhypotheses is restricted to integer values
greater than 2, the heat map was constructed using continuous values of the
number of microhypotheses.
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Figure 12.4. “Heat map” illustrating the behavior of Pr(PA > PB) assuming
that ε is drawn from a truncated normal distribution in the limit that N→∞.
The variable p is an abbreviation for Pr(PA > PB). Note that Pr(PA > PB) = 1/2
occurs only along the vertical line µ = 1/4.
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13. CONCLUSION

This dissertation has been a long argument against wholly empirical defenses of the

second premise of the KCA, that is, that the Cosmos – the whole of physical reality –

began to exist. The project was motivated in part  I by the observation that a compelling

case against the a priori defense of the second premise has already been provided in the

literature. Given that a compelling case against the a priori defense of the second premise

has already been provided in the literature, I devoted the rest of the dissertation to a

consideration of the a posteriori (or wholly empirical) defense of the second premise. In

part  II , I turned to clarifying the concept that the Cosmos began to exist; unfortunately,

while clarifying the concept that the Cosmos began to exist should be fundamental to any

consideration of the KCA, few authors have attempted to clarify the concept. I develop

three necessary (but not necessarily sufficient) conditions for the Cosmos to have had a

beginning. The first condition encapsulates the notion that the Cosmos is fundamentally

spatio-temporal:

1. Necessarily, if the Cosmos began to exist, then the Modal Condition is true. The

Modal Condition states that at the closest possible worlds where time does not exist,

the Cosmos does not exist.

In other words, the Cosmos began to exist only if there is nothing that suffices for the

Cosmos’s existence and which might have existed if time had not existed. The Modal

Condition requires that the Cosmos is not fundamentally timeless. Given that the Cosmos

is not fundamentally timeless, the second and third condition for the Cosmos to have had

a beginning are conditions on the chronogeometric structure of the space-time S that the

Cosmos includes:

2. Necessarily, if the Cosmos began to exist, then the Direction Condition is true.

The Direction Condition states that here is a global direction of time throughout

spacetime. There is a global direction of time throughout spacetime only if (i) S

is temporally orientable, (ii) for any space-time point p, there is a locally defined
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direction of time at p, (iii) for all pairs of points p and q in the space-time, the future

(past) direction defined at p agrees with the future (past) direction defined at q.

3. Necessarily, if the Cosmos began to exist, then the Boundary Condition is true. The

Boundary Condition states that either S includes a closed boundary to the past of

all non-initial points in S (the topological conception) or S includes a finite initial

segment (the metrical conception). S includes a finite initial segment just in case there

is a space-like surface Σ such that all of the past directed half-curves originating on

Σ have finite generalized affine length.

Having provided three necessary conditions for the Cosmos to have had a beginning, I

turned to the relationship between my three conditions and classical models of the Big

Bang in General Relativity. Given that Big Bang cosmology does not involve a discussion

of the Modal Condition, on the conceptual analysis that I have offered for the beginning of

the Cosmos, Big Bang cosmology cannot be a theory about the beginning of the Cosmos.

The aims of Big Bang cosmology are narrower than my aims; Big Bang cosmology can

perhaps be interpreted as a theory about the history of the observable universe and not

a theory about the origins of the totality of physical reality. Nonetheless, if one assumes

(i) the Direction and Boundary Conditions, (ii) that General Relativity is true, and (iii) the

Cosmological Principle, one can derive Big Bang cosmology as a deductive consequence.

In part III, I turned to a defense of Cosmic Skepticism, the thesis that the provinciality of

our current knowledge of the physical facts with respect to scale, spatio-temporal location,

or energy prevents us from having empirical access to whether the Cosmos satisfies the

Modal, Direction, and Boundary Conditions. In defense of Cosmic Skepticism, I offered

the following argument:

4. We know the Cosmos began to exist only if we know the Cosmos satisfies the Modal

Condition, the Direction Condition, and the Boundary Condition.

5. We do not know whether the Cosmos satisfies the three conditions.

6. Therefore, we do not know whether the Cosmos began to exist.
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I developed three arguments to defend Cosmic Skepticism and thereby the view that we

do not know whether the Cosmos satisfies the Modal Condition, the Direction Condition,

and the Boundary Condition.

First, according to a widely held view in philosophy of science, we have reason to

endorse unobservable entities if we have independent reason to endorse a broader the-

ory that entails the existence of the unobservable entity. Chronogeometric structure is

unobservable. For that reason, whether the Cosmos satisfies the Direction and Bound-

ary Conditions is unobservable. My first argument addresses whether General Relativity,

when conjoined with observational data, entails that the Cosmos satisfies the Direction and

Boundary Conditions. General Relativity, conjoined with observational data, can entail

that the Cosmos satisfies the Direction and Boundary Conditions only if cosmologically

relevant space-times satisfying the Direction and Boundary Conditions are observation-

ally distinguishable from space-times that do not satisfy the Direction and Boundary

Conditions.

In the context of General Relativity, whether space-times having some precisely specifi-

able feature are observationally distinguishable from space-times lacking that feature turns

out to be a tractable mathematical question that can be resolved using tools standardly

employed (by mathematical and theoretical physicists) when studying the topology and

large scale structure of relativistic space-times. I proved that a broad class of space-times

– including cosmologically relevant space-times – that satisfy the Direction and Boundary

Conditions are observationally indistinguishable from space-times that do not satisfy the

Direction and Boundary Conditions.

Thus, General Relativity, conjoined with observational data, does not entail whether

the Cosmos satisfies the Direction and Boundary Conditions. While General Relativity

will likely be supplanted in future physical inquiry, we do not yet know what features

General Relativity’s successor theory will include. For that reason, we cannot yet use

General Relativity’s successor to determine whether the Cosmos satisfies the Direction

and Boundary Conditions.

My discussion of observationally indistinguishable space-times makes a contribution

to the literature on the KCA in an additional respect. While proponents of the KCA
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have analyzed specific cosmological models, e.g., Craig and Sinclair,  2009 ,  2012 , there

are a large number of live mutually exclusive cosmological models that are consistent

with all of our observational data. Many of those models were developed as toy models

or to explore physical possibilities and so were not intended as probable descriptions of

the Cosmos as a whole. Moreover, many of the best models appear to be equally well

supported by the data. Assuming that the model with the greatest epistemic probability

is not significantly more probable than at least one other model, since the epistemic

probabilities of mutually exclusive cosmological models must sum to 1, the epistemic

probability of the most probable model is no greater than about 0.5. Even if suppose that

some cosmological model is much more probable than any other cosmological model, no

more than one cosmological model can have an epistemic probability greater than 0.5.

Thus, most cosmological models are improbable. We should not be surprised if friends

of the KCA are able to show that most cosmological models that lack a beginning are

improbable. We should instead be interested in what, if anything, we can say about the

large scale structure of space-time using the observational data empirically accessible to

us. That question – what can we say about the global structure of space-time on the basis

of our observations? – is the central question that has been investigated in the literature

on observationally indistinguishable space-times. And while physicists and philosophers

of physics have been discussing observationally indistinguishable space-times and global

space-time structure for several decades, authors interested in the KCA have not yet taken

notice. I have explicitly shown how results in that literature might be brought to bear on

the KCA.

Next, I discuss some constraints imposed on our knowledge of cosmological history

by foundational work in statistical mechanics. Either the Cosmos violates the Modal Con-

dition or else that there is a transcendental condition on the possibility of our knowledge

of the past that prevents us from having knowledge of states of affairs prior to a specific

past boundary. Since the Cosmos began to exist only if the Modal Condition is satisfied,

the Cosmos began to exist only if we do not have knowledge of cosmological history prior

to a specific past boundary. Here we met a warning from the nineteenth century: the fact

that there is some past boundary beyond which we cannot make reliable inferences does
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not entail that the Cosmos satisfies the Boundary Condition. And so we meet a second ar-

gument in defense of Cosmic Skepticism, viz, that there is a past boundary beyond which

we cannot make reliable inferences suggests that the provinciality of our knowledge of the

physical facts with respect to spatio-temporal location prevents us from knowing whether

the Cosmos satisfies the Boundary Condition.

I turned to a broad family of live cosmological models – bounce cosmologies – accord-

ing to which a past dynamical process prepared the compressed state that initiated the

observable universe in the Big Bang. While friends of the KCA have interpreted bounce

cosmologies to satisfy the Boundary Condition, I defended the traditional interpretation

of bounce cosmologies according to which bounce cosmologies violate the Boundary Con-

dition. We don’t know whether any bounce cosmology is correct, much less whether any

bounce cosmology is correct in sufficient detail to infer whether the Cosmos satisfies the

Boundary Condition. Nonetheless, given that bounce cosmologies are empirically live

options, we should not rule out bounce cosmologies prematurely. Again, this argument

adds to my case for Cosmic Skepticism. Due to the provinciality of our knowledge with

respect to scale, time, space, and energy, we do not know whether one of the bounce cos-

mologies is correct, or at least correct in sufficient detail to suggest on their basis whether

the Cosmos satisfies the Boundary Condition. For that reason, we do not know whether

the Cosmos began to exist.

Fourth, I completed my case for Cosmic Skepticism by turning to confirmation theory.

There are two families of inferences that might be used as part of an argument for the

conclusion that the Cosmos satisfies the Modal, Direction, and Boundary Conditions

and so began to exist: part-to-part inferences and part-to-whole inferences. Part-to-part

inferences first project empirical regularities from an observable portion of the Cosmos

to an unobservable portion and then, using that empirical regularity in the unobservable

portion, infer either that the Cosmos began to exist or that the Cosmos has features relevant

for determining whether the Cosmos began to exist. I argued that part-to-part inferences

fail for three reasons. First, part-to-part inferences rely upon a weak analogy between

observable and unobservable portions of the Cosmos. Second, we have no good reason

for thinking that the known physical facts are representative of all of the physical facts
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that there are. Our knowledge of the physical facts is provincial with respect to scale,

spatio-temporal location, and energy. For that reason, part-to-part inferences are poor

inferences.

In contrast, part-to-whole inferences first project empirical regularities from the observ-

able portion of the Cosmos to the whole Cosmos and, second, use the unrestricted version

of the empirical regularities to infer that the Cosmos began to exist or that the Cosmos

has features relevant for determining whether the Cosmos began to exist. Part-to-whole

inferences similarly fail because we have no good reason for thinking that the known

physical facts are representative of all of the physical facts that there are. Our knowl-

edge of the physical facts is provincial with respect to scale, spatio-temporal location,

and energy. Thus, part-to-whole inferences are also poor inferences. But part-to-whole

inferences face another problem with respect to their intrinsic probability. Assuming that

Draper’s account of intrinsic probability is correct, the intrinsic probability of a hypothe-

sis is determined by the modesty of the hypothesis, the coherence of the hypothesis, and

nothing else. As I have argued, there is a tension between modesty and coherence that

grows as the scope of a hypothesis is increased. Hypotheses concerning the Cosmos –

the totality of physical reality – have the broadest scope that hypotheses about physical

reality can possibly have. Since there is, as yet, no widely agreed upon or well-supported

theory for resolving the tension between modesty and coherence, we are ill-equipped to

judge the intrinsic probability of hypotheses concerning the Cosmos. Therefore, at the

present stage of inquiry, we are ill-equipped to judge whether the Cosmos satisfies the

Modal, Direction, and Boundary Conditions. Consequently, we are ill-equipped to judge

whether the Cosmos began to exist.
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