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ABSTRACT

This dissertation is concerned with two of the largest questions that we can ask about
the nature of physical reality: first, whether physical reality begin to exist and, second,
what criteria would physical reality have to fulfill in order to have had a beginning?
Philosophers of religion and theologians have previously addressed whether physical
reality began to exist in the context of defending the Kaldm Cosmological Argument (KCA)
for theism, thatis, (P1) everything that begins to exist has a cause for its beginning to exist,
(P2) physical reality began to exist, and, therefore, (C) physical reality has a cause for its
beginning to exist. While the KCA has traditionally been used to argue for God’s existence,
the KCA does not mention God, has been rejected by historically significant Christian
theologians such as Thomas Aquinas, and raises perennial philosophical questions —
about the nature and history of physical reality, the nature of time, the nature of causation,
and so on — that should be of interest to all philosophers and, perhaps, all humans.
While I am not a religious person, I am interested in the questions raised by the KCA.
In this dissertation, I articulate three necessary conditions that physical reality would
need to fulfill in order to have had a beginning and argue that, given the current state of
philosophical and scientific inquiry, we cannot determine whether physical reality began
to exist.

Friends of the KCA have sought to defend their view that physical reality began to
exist in two distinct ways. As I discuss in chapter 2, the first way in which friends of
the KCA have sought to defend their view that physical reality began to exist involves a
family of a priori arguments meant to show that, as a matter of metaphysical necessity, the
past must be finite. If the past is necessarily finite, then the past history of physical reality
is necessarily finite. And if having a finite past suffices for having a beginning, then, since
the past history of physical reality is necessarily finite, physical reality necessarily began
to exist. I show that the arguments which have been offered thus far for the view that the
past is necessarily finite do not succeed. Moreover, as I elaborate on in chapter 5, having

a finite past does not suffice for having a beginning.
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As I discuss in chapter 3, the second way in which friends of the KCA have sought
to defend their view that physical reality began to exist involves a family of a posteriori
arguments meant to show that we have empirical evidence that physical reality has a
finite past history. For example, the big bang is sometimes claimed to have been the
beginning of physical reality and, since we have excellent empirical evidence for the big
bang, we have excellent empirical evidence for the beginning of physical reality. The big
bang can be understood in two ways. On the one hand, the big bang can be understood
as a theory about the history and development of the observable universe. Understood
in that sense, then I agree that the big bang is supported by excellent empirical evidence
and by a scientific consensus. On the other hand, some authors (particularly science
popularizers, science journalists, and religious apologists) have wrongly interpreted big
bang theory as a theory about the beginning of the whole of physical reality. As I argue,
while a beginning of physical reality may be consistent with classical big bang theory,
classical big bang theory does not provide good reason for thinking that physical reality
began to exist.

In part II, I turn to discussing three necessary, but not necessarily sufficient, conditions
for physical reality to have a beginning. Before discussing the three conditions, in chapter
4, I introduce three metaphysical accounts of the nature of time (A-theory, B-theory, and
C-theory) as well as some formal machinery that will subsequently become useful in
the dissertation. I introduce the first of the three conditions in chapter 5. According
to the Modal Condition, physical reality began to exist only if, at the closest possible
worlds without time, physical reality does not exist. I show that this condition helps us
to make sense of various views in both theology and philosophy of physics. In chapter
6, I introduce the second of my three conditions, the Direction Condition, according to
which, roughly, physical reality began to exist only if all space-time points agree about the
direction of time, so that all space-time points can agree that physical reality’s putative
beginning took place in their objective past. In chapter 7, I discuss the third condition,
the Boundary Condition, according to which physical reality began to exist only if there
is a past temporal boundary such that physical reality did not exist before the boundary.

I show that there are two senses in which physical reality could be said to have had a past
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temporal boundary. Lastly, in chapter 8, I show that there is a relationship between my
three conditions and classical big bang theory, even though the relationship is not the one
usually identified in the literature.

In part III, I present four arguments for the view that, at the present stage of philo-
sophical and scientific inquiry, we cannot know whether physical reality satisfies the three
necessary conditions to have had a beginning and, consequently, we cannot know whether
physical reality had a beginning. As I will prove in chapter 9, no set of observations that
we currently have, when conjoined with General Relativity, entails that physical reality
satisfies the Direction or Boundary Conditions. As I show in chapter 10, considerations in
the philosophical foundations of statistical mechanics entail either that the Cosmos vio-
lates the Modal Condition or else that there is a transcendental condition on the possibility
of our knowledge of the past that prevents our access to data we would need to gather
to determine whether physical reality satisties the Boundary Condition. In chapter 11, I
show that there are a number of live cosmological models according to which physical
reality does not satisfy the Boundary Condition. As long as we don’t know whether
any of those cosmological models are correct, we do not know whether physical reality
satisties the Boundary Condition. Lastly, I turn to confirmation theory and show that, at
our present stage of inquiry, ampliative inferences for the conclusion that physical reality

satisfies the Modal, Direction, and Boundary Conditions are not successful.
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1. INTRODUCTION

The Cosmos is all that is or ever was or ever will be.
Our feeblest contemplations of the Cosmos stir us
— there is a tingling in the spine, a catch in the
voice, a faint sensation of a distant memory, as if we
were falling from a great height. We know we are

approaching the greatest of mysteries.

— Carl Sagan, Cosmos

Following Sagan, I will understand Cosmos to mean the totality of physical reality and to
exclude any supernatural or abstract entities should they exist.! According to the Kaldm

Cosmological Argument (KCA),
1. Everything that begins to exist has a cause for its existence.
2. The Cosmos began to exist.>
3. Therefore, the Cosmos has a cause for its existence.

An investigation into the soundness of the KCA sets a research agenda.® In order to
determine whether the KCA is sound, we need to answer two questions. First, whether
we have reason to think that anything that begins to exist has a cause for its existence;
to answer that question, we would need to interrogate the concept of causation and
determine the contexts in which we ought to invoke causes. There are reasons to doubt

the KCA's first premise that I have taken up elsewhere (Linford, 2020), but here I set the

11By ‘Cosmos’, Imean to non-rigidly designate the collection of whatever physical objects exist. The Cosmos
exists just in case any physical entity exist.

21The KCA is often written in terms of the universe and not in terms of the Cosmos. However, the meaning of
the term “universe’ widely varies. For example, physicists have developed so-called “multiverse theories”
which are said to entail that there are universes other than our own. On the most popular versions of
multiverse theories, for example, the inflationary multiverse, the other universes are proper parts of the
same space-time manifold that our universe is part of. For that reason, the various universes are proper
parts of one overall physical reality. To avoid confusion, I have stipulatively defined the term ‘Cosmos’ to
mean the totality of physical reality.

31The KCA is a deductive argument. Deductive arguments are said to be sound just in case the argument
satisfies two conditions. First, the premises of the argument are true. Second, the argument is valid, that is,
there is no possible situation in which the argument’s premises are true and the conclusion is false. Since
the KCA is a valid argument, we have left to investigate whether the KCA is sound.
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first premise aside. The second question concerns whether we have reason to think that
the Cosmos began to exist. This dissertation investigates the empirical case for the view
that the Cosmos began to exist.

The research agenda set by the KCA is open to everyone regardless of whether they
endorse God’s existence. I am not a theist, myself, but my research agenda has been
set by investigating the KCA. Certainly, the foremost proponents of the KCA, either in
the present or historically, have been Christian or Muslim apologists or theologians —
e.g., John Philopponus, Al-Kindi, Al-Ghazali, Bonaventure, William Lane Craig, Robert
Koons, J.P. Moreland — and they have argued that the cause of the Cosmos must be
God. In fact, the Arabic word kaldm originates in Islamic theology. Nonetheless, God
appears nowhere in the KCA, itself; theists, atheists, and agnostics alike are free to affirm
the KCA. Moreover, while the conclusion of the KCA is officially endorsed by all three
Abrahamic religions (Judaism, Christianity, Islam), theists can reject the KCA either by
rejecting one of the KCA's premises, e.g., perhaps God caused the Cosmos but the Cosmos
did not begin, or by rejecting the conception of God as Creator. In fact, some historically
important Christian theologians, such as Thomas Aquinas, did reject the KCA. Thus,
theists, atheists, and agnostics alike can reject the KCA. The mystery as to the ultimate
origins of the totality of physical reality motivates a family of perennial philosophical
questions that should interest nearly all philosophers and possibly nearly all members of
our species. Consequently, whether the KCA is sound is of broad philosophical interest
and should not be relegated to a narrow discussion among philosophers of religion and
theologians.

This dissertation includes thirteen chapters and is divided into three parts. Part I
discusses the KCA. Chapters 2 and 3 cover the a priori and a posteriori defenses of the
KCA respectively. The a priori defense has been (in my view) adequately and convincingly
addressed elsewhere; the best responses to the a priori defense have been provided by
Wes Morriston (2000, 2003, 2010, 2013, 2022), Alex Malpass, e.g., (2021, unpublished),
and in co-authored work by the two of them together (2020). I discuss some of the best
arguments against the a priori defense of the KCA in chapter one. My discussion of

previous responses to the a priori defense is meant to motivate the rest of the dissertation,
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where I turn to the a posteriori defense. In chapter two, I turn to the a posteriori defense
of the KCA, that is, attempts to utilize resources from physical cosmology — particularly
from Big Bang cosmology — to support the premise that the Cosmos began to exist.

In part II, I turn to clarifying the concept that the Cosmos had a beginning. Note that
since I've stipulatively defined the Cosmos as the totality of physical reality, the existence
of any physical entities at all suffices for the existence of the Cosmos. Consequently,
another way to understand my goal in part II is to articulate a set of general conditions
for all physical entities to have had a beginning. Instead of developing a full set of
necessary and sufficient conditions for the Cosmos to have had a beginning, I develop
three conditions that are at least necessary for the Cosmos to have had a beginning; in
order for those conditions to be adequate, the conditions should be useful in determining
whether the Cosmos had a beginning and should help to elucidate the concept of a
beginning. Moreover, while an explication of the notion that the Cosmos had a beginning
should be of intrinsic philosophical interest, I am focused on a sense of ‘beginning” that
renders the conjunction of the KCA's two premises as plausible as possible. In developing
the notion that the Cosmos had a beginning, we face a trade-off. On the one hand, to help
the second premise — that the Cosmos began to exist — ‘beginning’ should be understood
as broadly as possible. On the other hand, to help the first premise — that anything that
begins to exist has a cause for its beginning — ‘beginning” should be understood narrowly
as possible so as to avoid making the first premise obviously false.

Part I includes chapters 4 through 8. Chapter 4 discusses conceptions of the beginning
of the Cosmos that require a specific metaphysical theory of time. Since my aim is to
develop a conception of the beginning of the Cosmos that does not require a specific
metaphysical theory of the nature of time, I set aside those conceptions that do require
a specific metaphysical theory of the nature of time. In chapter 5, I develop my first
necessary criterion for the Cosmos to have had a beginning by turning to a problem that
can be posed in both analytic theology and in philosophy of physics. As I discuss, some
analytic theologians have argued that God is in time, time is finite to the past, and God
did not begin to exist. If God is in time and time is finite to the past, then God’s past

is finite. And if God did not begin to exist, then some entities with a finite past are
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beginningless. This leaves us with a question: what criteria distinguishes entities with a
finite past but that are beginninglesss from entities with a finite past that have a beginning?
Likewise, according to a burgeoning literature in philosophy of physics, time might not be
fundamental to physical reality. Timeless entities are beginningless. So, if physical reality
is fundamentally timeless, then physical reality is fundamentally beginningless. Ergo,
philosophers of physics, like philosophers of religion and theologians, have discussed
entities whose past might be finite but that are beginningless. Using the Lewis-Stalnaker
semantics for counterfactual conditionals, I develop a condition — that I call the Modal
Condition — that distinguishes beginningless entities with a finite past from entities with
both a finite past and a beginning. As I will argue, the Cosmos began to exist only if
there is nothing that suffices for the Cosmos’s existence and which would have existed if
time had not existed. Moreover, the Modal Condition provides us with another reason
for thinking that the a priori case for the beginning of the Cosmos fails, namely, that all
of the a priori arguments have attempted to show only that, as a matter of metaphysical
necessity, past time is finite. Even if the Cosmos’s past is finite, the Cosmos could still fail
to satisfy the Modal Condition and so could still be beginningless.

In chapter 6, I discuss a second necessary condition — the Direction Condition — for
the Cosmos to have a beginning. If the Cosmos did have a beginning, then the beginning
must be to the collective past of the rest of the Cosmos. As Geoffrey Matthews (1979) and
Mario Castagnino, Olimpia Lombardi, and Luis Lara (2003) have shown, the Cosmos has
a global direction of time — roughly, a “shared” direction of time throughout all of space-
time — only if specific chronogeometric criteria are satisfied. The Direction Condition is
the conjunction of their chronogeometric criteria for a global direction of time.

Chapter 7 discusses the final criterion for the Cosmos to have had a beginning, viz, that
there is a boundary to the Cosmos’s history. For example, one intuitive sense in which
the Cosmos could have a beginning is just that there is a finite interval of time such that
no physical entities exist before that interval. However, there are other ways in which
the Cosmos could include a boundary; for example, the Cosmos’s history might include
a Cosmos-wide closed boundary infinitely far to our past. I summarize all of the relevant

ways in which the Cosmos could have a past boundary through a disjunctive condition,
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that is, either the Cosmos includes a past closed boundary (the topological conception) or
else the Cosmos includes a finite initial segment (the metrical conception).

In chapter 8, I turn to the relationship between classical Big Bang models and the
Direction/Boundary Conditions. According to science popularizations, religious apolo-
gists, and some philosophers, Big Bang cosmology is a theory about the origins of the
Cosmos. While I disagree, Big Bang cosmology is not altogether irrelevant to our notion
that the Cosmos had a beginning. As I discuss, a variety of classical Big Bang models
satisfy a technical condition for being singular, i.e., b-incompleteness. I prove a theorem
that connects the Direction and Boundary Conditions to b-incompleteness, namely, that all
classical space-times that satisfy the Direction and Boundary Conditions are b-incomplete.
While space-time is likely not classical, and so the theorem does not necessarily have di-
rect physical or metaphysical implications, the theorem clarifies why some authors have
thought the Big Bang was the beginning of the Cosmos. Since the Modal Condition is one
of the novel contributions made to the literature by this dissertation, past authors have
only had access to the Direction and Boundary Conditions. If the Direction and Boundary
Conditions were the only criteria needed for the Cosmos to have had a beginning and
we assume (incorrectly) that General Relativity is a final theory of space-time, then the
Cosmos having a beginning would turn out to entail b-incompleteness. If we added the
additional assumptions that the Cosmos is spatially homogeneous and isotropic, then we
would be able to derive classical, singular Big Bang models.

Part III turns to discussing Cosmic Skepticism, the view that the provinciality of our
current knowledge of the physical facts with respect to scale, spatio-temporal location,
or energy prevents us from having empirical access to whether the Cosmos satisfies the
Modal, Direction, and Boundary Conditions. I develop four arguments that, collectively,
mount a case for Cosmic Skepticism.

In chapter 9, I show that classical space-times satisfying the Direction and Bound-
ary Conditions are observationally indistinguishable from classical space-times that do
not satisfy the Direction and Boundary Conditions. Despite the fact that space-time in-
distinguishability has enjoyed a multi-decade long discussion in philosophy of physics

and may threaten to undermine many of the results on which the a posteriori defense
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of the KCA depends, space-time indistinguishability has only twice, to my knowledge,
been discussed in relationship with the KCA: first, in one of my own recent publications,
i.e.,, Linford, 2021, and, second, in relation to Kant’s first antinomy, i.e., Beisbart, 2022.
Moreover, while some friends of the KCA have discussed specific cosmological models
proposed by physicists at length, e.g., Craig and Sinclair, 2009, 2012, we should not think
that any specific cosmological is probable. There are a large number of mutually incom-
patible cosmological models in the current literature that are compatible with all of the
observational data gathered thus far. Many of those models were developed as toy models
or to explore physical possibilities and so were not intended as probable descriptions of
the Cosmos as a whole. Moreover, many of the best models appear to be equally well
supported by the data. Assuming that the model with the greatest epistemic probability
is not significantly more probable than at least one other model, since the probabilities of
the models must add to 1, the epistemic probability of the most probable hypothesis is
no greater than approximately 0.5.* Moreover, even if we do suppose that one cosmolog-
ical model is significantly more probable than other cosmological models, which seems
unlikely, there can be no more than one hypothesis with an epistemic probability greater
than 0.5; thus, even if some live cosmological model is probable, the majority of live cos-
mological models are improbable. Since the majority, or perhaps all, of live cosmological
models are improbable, we should not be surprised if friends of the KCA are able to show
that a wide selection of cosmological models that lack a beginning are improbable.
Instead of investigating whether any particular cosmological model is probable, philoso-

phers interested in how physical cosmology might be brought to bear on the KCA should
instead discuss what we can say about the global structure of space-time given the obser-
vational data available to us or that might become available in the future. That question —
what can we say about the global structure of space-time on the basis of our observations?

— is the central question that has been investigated in the literature on observationally

41 This result is trivial to prove. Suppose that there are three hypotheses A, B, and C, where A is the most
probable hypothesis and B is the second most probable hypothesis. Also, assume that the difference in the
probabilities of A and B are small, so that Pr(A) ~ Pr(B). Since their epistemic probabilities must sum to 1,
we have that Pr(A) + Pr(B) + Pr(C) = 1. Consequently, Pr(A) + Pr(B) < 1. Since Pr(A) = Pr(B), we have that
2Pr(A) 5 1, which entails that Pr(A) < 0.5. Since the most probable hypothesis has a probability less than
approximately 0.5, we know that the other hypotheses have a probability no greater then 0.5.
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indistinguishable space-times. Therefore, one of my goals is to bring the literature on
observationally indistinguishable space-times to the attention of philosophers interested
in using physical cosmology to either support or reject the KCA.

In chapter 10, I discuss a set of conditions that constrain our knowledge of the Cosmos’s
past, including a transcendental condition on the possibility of our knowledge of the past.
Chapter 11 shows that, despite claims made by two of the KCA’s proponents, a variety
of contemporary cosmological models do not satisfy the Boundary Condition. We don’t
know whether one of those models is correct and so we don’t know whether the Cosmos
does satisfy the Boundary Condition. Lastly, chapter 12 completes my case for Cosmic
Skepticism by turning to confirmation theory. I discuss two kinds of inductive arguments
that might be used to establish that the Cosmos has a beginning or features relevant for
determining whether the Cosmos has a beginning. First, there are part-to-part inferences,
which involve inferring from a portion of the Cosmos to which we have empirical access
to a portion of the Cosmos to which we do not have empirical access and whose features
might relevantly bear on whether the Cosmos satisfies the Modal, Direction, or Boundary
Conditions. Second, there are part-to-whole inferences, which involve inferring from an
empirically accessible portion of the Cosmos to the Cosmos as a whole. I argue that, at
least at the present stage of philosophical and scientific inquiry, part-to-part inferences
and part-to-whole inferences do not succeed. As a consequence of the fact that we cannot
determine, at the present stage of physical inquiry, whether the Cosmos satisfies the
Modal, Direction, or Boundary Conditions, a wholly empirical case for the KCA’s second

premise, i.e., that the Cosmos began to exist, does not succeed.
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Part 1

THE KALAM COSMOLOGICAL
ARGUMENT
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2. THE A PRIORI DEFENSE OF THE KCA

In order to motivate the project for the rest of this dissertation, this chapter summarizes
some of the reasons that I regard the a priori defense of the KCA’s second premise as weak.
There are three ways of building the a priori defense of the view that the Cosmos began
to exist: first, one can argue that there are no actually infinite collections, second, one
can argue that beginningless series are not metaphysically possible, and, third, one can
argue that no actually infinite collection can be formed by successive addition. I turn to

discussing all three in turn.

2.1 Actually infinite collections and beginningless series

In this section, I will consider two of the three families of arguments against an infinite
past; first, the argument that the Cosmos’s past must be finite because actually infinite
collections are metaphysically impossible and, second, the argument that beginningless
series are not metaphysically possible. I will discuss the two arguments together because
there is a powerful objection — the unsatisfiable pairs diagnosis — that applies to both.
Let’s begin by considering arguments whose aim is to establish that the Cosmos had a
beginning on the grounds that there are no actually infinite collections. A collection of
objects is said to be actually infinite just in case the collection has more than any finite
number of members and all of the members of the collection collectively exist together,
whereas a collection is said to be potentially infinite just in case the collection has a finite
number of members but grows without bound. In order to defend the claim that the

Cosmos began to exist, proponents of the KCA have offered the following argument:

1. If past time is infinite, then there is an actually infinite collection.
2. There are no actually infinite collections.
3. Therefore, the past is not infinite (modus tollens from 1, 2).

4.If the past is not infinite, then the Cosmos has only existed for a finite period of time.
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5.If the Cosmos has only existed for a finite period of time, then the Cosmos began to

exist.

6. Therefore, the Cosmos began to exist (modus ponens from 3, 4, 5).

This is a valid argument and so we have left to determine whether the argument is sound.
In subsequent chapters (particularly chapter 7), I will challenge the notion that if the
Cosmos has only existed for a finite period of time, then the Cosmos began to exist. For
now, let’s consider how proponents of the KCA have defended the first subargument, that
is, step 3. Since 3 deductively follows from premises 1 and 2, we should examine how KCA
proponents defend premises 1 and 2. According to KCA proponents, premise 1 follows
from the observation that if past time is infinite, then there is an actually infinite collection
of past events, and so an actually infinite collection. One can challenge this premise on the
grounds that on some metaphysical accounts of time, e.g., presentism, the past does not
exist and so there is no collection of past events. Perhaps this objection can be overcome;
at any rate, let’s turn to premise 2. In support of premise 2, supporters of the KCA attempt
to show that actually infinite collections are metaphysically impossible. There are at least
two strategies for showing that actually infinite collections are impossible and I turn to
each, in turn, below; I reply to the argument that beginningless series are metaphysically

impossible in my discussion of the first strategy.

2.1.1 The first strategy for showing that actually infinite collections are impossible

On the first strategy, one constructs a scenario that would be metaphysically possible
if actually infinite collections were metaphysically possible. One then shows the con-
structed scenario leads to an absurd consequence. If there are independent reasons for
thinking that the absurd consequence is metaphysically impossible, then we have reason
to think that the scenario, itself, is metaphysically impossible. And if the scenario, itself,
is metaphysically impossible, then actually infinite collections are metaphysically impos-
sible. Throughout this section, I will assume that having a finite past and beginning to

exist are co-extensive; nonetheless, this conception will be revised in part II. For example,
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in chapter 5, I will argue that even if the Cosmos’s past history were finite, the Cosmos
might still be beginningless.

One popular choice for a thought experiment is Hilbert’s Hotel (HH). HH is a hotel
with an actually infinite number of rooms, e.g., a room for every positive integer. A
variety of counterintuitive consequences follow from HH. For example, supposing that
HH is full, one can accommodate any number — including an infinitude — of additional
guests. To accommodate one more guest, have the guest in room 1 move to room 2, the
guest in room 2 move to room 3, and so on, up the chain of rooms. To accommodate an
infinitude of additional guests, have the guest in room n move to room 2n. Since there
is a one-to-one mapping from the positive integers to the even integers, all of the current
guests can be moved into an even numbered room, and a countable infinity of new guests
can be moved into the odd numbered rooms.

Proponents of the KCA claim that HH is absurd because HH violates intuitively
plausible principles. According to a prima facie intuitively plausible principle, if a hotel
is full, then the hotel cannot accommodate additional guests. HH can accommodate new
guests even when full. One can object that this analysis relies on a systematic ambiguity
in the concept of fullness. One way in which a hotel can be full is if no additional guests
can be added to the hotel. Another way that a hotel can be full is if every room in the
hotel is occupied. For hotels with a finite number of rooms, the two senses of ‘fullness’
are coextensive. But in the case of a hotel with an infinitude of rooms, the two senses
are not coextensive. In contexts where the two senses of “fullness’ fail to be coextensive,
there are two senses of the principle that a full hotel cannot accommodate new guests. In
one sense, ‘full’ means that the hotel cannot accommodate additional guests. Clearly, HH
is not full in that sense, so that the principle that a full hotel cannot accommodate new
guests is inapplicable. Alternatively, ‘full’ can mean that all of the rooms are occupied.
Taken in that sense, while HH is full, the principle that a full hotel cannot accommodate

new guests turns out to be false.!

11There is a second systematic ambiguity in the presentation of the HH. Two consequences of the light
cone structure of relativistic space-times are that (i) there is no absolute simultaneity and that (ii) there is an
absolute maximum speed for the propagation of any signal. For those of us who are realists with respect to
relativity, light cone structure is a good candidate for a metaphysically necessary feature of space-time since,
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Let’s set this ambiguity aside; I think that there is a deeper objection to arguments
that utilize HH in attempting to show that actually infinite collections are impossible.
At most, HH shows that actually infinite collections have counterintuitive consequences.
While the counterintuitive features of the HH might provide us reason to be surprised to
empirically discover an infinitely large hotel drifting somewhere out in space, the mere
fact that a scenario is counterintuitive does not, in itself, provide us reason for thinking
that the scenario is not metaphysically possible. While we might note that contemporary
physics has provided us with reason to endorse a variety of counterintuitive scenarios
as actual, the barrier to entry for metaphysical possibilia is quite low. For example, a
galaxy-sized elephant that recites the Star Spangled Banner in perpetuity is presumably
metaphysically possible, but is not a serious candidate as an empirical hypothesis.

Given the low barrier for inclusion as a metaphysically possible scenario, KCA propo-
nents need to provide us a scenario whose consequences are more than counterintuitive.
For example, KCA proponents might provide us with a scenario that results in a contradic-
tion. Proponents of the argument that beginningless series are metaphysically impossible
have offered scenarios, such as the Grim Reaper scenario (e.g., Koons, 2014, 2017),% that
do result in a contradiction.

I offer two comments before describing a version of the Grim Reaper scenario. First,
authors who utilize the Grim Reaper, and other related, scenarios, in defense of the
KCA have a narrower aim than showing that all infinite collections are metaphysically
impossible; their aim has been to show either that all temporal or all causal series have finite

past extension. Nonetheless, their argument is qualitatively similar to the Hilbert Hotel

for example, light cone structure determines the objective ordering of events and the distinction between
space and time. If light cone structure is a metaphysically necessary feature of space-time, then the guests
couldn’t switch rooms all at once for doing so requires the guests to switch rooms simultaneously. Moreover,
since signals can propagate only at finite speed, the “wave” of guests transferring rooms must travel through
the hotel at finite speed. To accommodate even one additional guest would require infinite time. In chapter
7, 1 will consider the possibility that the Cosmos includes two events between which an infinite amount of
time elapses. Provided that such a scenario is not metaphysically possible, while each guest in the hotel
will eventually move, there will never be a time, from any reference frame, from the perspective of which
all of the guests will have moved. If accommodating one additional guest means that there will be a time
when the process of accommodating the new guest has completed, then a full HH might not be able to
accommodate a new guest after all.

21Koons, and others, were inspired by discussion in José Benardete’s (1964) book.
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argument that I previously considered in this section, namely, that, given the consequences
of some specific scenario(s) that we construct, we are supposed to infer that infinite past
series are metaphysically impossible.

Second, although the thought experiment, as presented by Koons and others, involves
grim reapers and other fantastical details, I will present the thought experiment in terms
of a mechanical device that I will refer to as Pam. Pam has existed for every time that there
has been. If time began in the Big Bang, then Pam began to exist at the Big Bang. And
if past time is infinite, then Pam’s past history is infinite. Pam contains a clock, a digital
camera, a computer, a stylus, and a piece of paper. At the end of every hour as recorded
by Pam’s clock, the camera takes a photo of the paper, the computer checks the photo to
see if the stylus has previously written on the piece of paper, and, if the stylus has not
written on the piece of paper, the stylus writes on the piece of paper. Otherwise, Pam
does nothing. And now we ask — at the present day, has the stylus written on the piece of
paper? Suppose time never began, so that Pam is presently infinitely old. The stylus must
have written on the piece of paper, for if there ever was a time when the stylus had not
written, then the stylus would write. When did that happen? Suppose the stylus wrote
on the piece of paper at 1pm today. In that case, at noon, Pam checked to see if Pam had
previously written on the piece of paper. Finding that Pam had not written on the piece
of paper, Pam would have written on the piece of paper at noon. That’s a contradiction;
surely, if Pam had written on the piece of paper at noon, then Pam would not have written
on the paper at 1pm. No contradiction results if our original assumption — that time never
began — is false, for in that case, there would be a first hour.

The scenario involving Pam is not metaphysically possible because the scenario en-
tails a contradiction. Proponents of the KCA say that there are scenarios involving be-
ginningless series that entail contradictions for a more fundamental reason, namely, that
beginningless series are metaphysically impossible. To the contrary, consider that sce-
narios in which actually infinite collections or beginningless series entail a contradiction
are described by a conjunction of several propositions, e.g., P&Q&R. Supposing P&Q&R
entails a contradiction, we can conclude that = ¢ (P&Q&R). If we push the negation past

the o-operator, we can infer (=P V =Q V =S), but we cannot infer that (for example) OJ-P.
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Thus, the fact that various scenarios involving beginningless series or actually infinite
collections are metaphysically impossible does not, in itself, show that beginningless se-
ries or actually infinite collections are metaphysically impossible;* we can construct other
scenarios involving beginningless series or actually infinite collections that do not entail
contradictions. Moreover, there is a simpler, unifying explanation as to why scenarios like
the one I've constructed are not possible, viz, simply that such scenarios are contradictory.
This is the basis for a convincing reply to scenarios meant to show that beginningless past
series are metaphysically impossible called the unsatisfiable pairs diagnosis (UPD).

As Shackel (2005) and Malpass (unpublished) unpack the UPD, all of the scenarios
meant to show that beginningless series are metaphysically impossible involve the fol-

lowing two principles:
P: The set S has no first member.

Q: For all xin S, E at x iff E nowhere before x.

P applies to beginningless series because beginningless series have no first member, e.g.,
beginningless temporal series have no first moment. Q applies to beginningless series
because for all of the moments in the series, e.g., Pam writes at that moment only if Pam
has not written at a previous moment. As Shackel and Malpass have proven, the two
principles cannot be jointly satisfied, thatis, = ¢ (P&Q). According to UPD, the fact that the
two principles cannot be jointly satisfied explains why the scenario involving Pam, as well
as a variety of similar scenarios, are not possible; but, given the UPD, we are left without a
reason for thinking that beginningless series, themselves, are metaphysically impossible.
While we can infer CI(—=P V —Q), we cannot infer J-P. A similar diagnosis can be offered
for the scenarios involving actually infinite collections that entail either absurdities or
contradictions; supposing that some infinite collections (e.g., infinitely large hotels) are
impossible, we do not thereby have a reason to think that other infinite collections, whose
existence does not entail an absurdity or a contradiction, are impossible. On my view,

the UPD comes close to a demonstration that there is little hope for the first strategy for

3tLandon Hedrick (2022) has recently published a similar argument.
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denying the existence of a beginningless series or of an actually infinite collection. By
way of analogy, after learning Euler’s proof that there is no circuit that traverses the seven
bridges of Konigsberg without doubling back, no one is surprised that there is no possible
world that includes such a circuit. Nothing of metaphysical significance follows for the
nature of bridges, paths traversing bridges, or the like. Likewise, why do we require any
more explanation as to why the scenario involving Pam is metaphysically impossible than
that the scenario fails to be self-consistent?

Nonetheless, I will offer one additional objection to the first strategy. Proponents of
the first strategy, such as Robert Koons, utilize a modal recombination principle — of the
sort famously defended by David Lewis — in order to construct the Grim Reaper scenario.
According to the recombination principle Koons utilizes, given a space-time region and its
contents s; from some possible world w; and a distinct space-time region s, with distinct
contents from some other possible world w,, another possible world w3 can be constructed
that includes duplicates of s;, s, and their contents. The modal recombination principle
can be used to construct a kind of inverse Grim Reaper scenario. Consider that for any
negative integer, there is a possible world where an angel says that integer. (If one would
prefer, one can instead consider a mechanical device that prints out a negative integer.)
Using the modal recombination principle, we can string together events in which angels
state distinct integers in order to construct a possible world W that includes a series of
angels counting down through all of the negative integers; W includes a beginningless
series since there is no first negative integer. If proponents of the first strategy are correct
in endorsing the modal recombination principle to construct their thought experiments,
there is nothing — so far as I can tell — that bars us from constructing W. And if W is a
legitimate metaphysical possibility —and W is a legitimate metaphysical possibility so long
as the modal recombination principle is true — beginningless series are not metaphysically

impossible.
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2.1.2 The second strategy for showing that actually infinite collections are impossible

Whereas the first strategy utilizes the consequences of thought experiments, the second
strategy utilizes general principles in an effort to provide us reason to think actually
infinite collections or beginningless series are metaphysically impossible. Since the second
strategy does not utilize thought experiments, the second strategy is not susceptible to
the objections discussed in the previous section. Consider the following triple of jointly

incompatible principles:

Hume’s Principle: Any two collections have the same size just in case their members

can be put into 1-to-1 correspondence.

Euclid’s Principle: The whole of any collection is larger in size than any proper

sub-collection.

Actually Infinite: There is an actually infinite collection, that is, there is a collection C

such that there is a 1-to-1 map between C and a proper sub-collection of C.

Since the three principles are mutually incompatible, we must deny at least one principle;
since the three principles are not logically exhaustive, there is at least logical space to deny
all three. Since all three principles are intuitively plausible but mutually incompatible,
they jointly generate a paradox, sometimes called Galileo’s Paradox, e.g., Parker, 2009.
Proponents of the second strategy claim that we should endorse both Hume’s Principle
and Euclid’s Principle. If Hume’s Principle and Euclid’s Principle are each metaphysically
necessary, then Actually Infinite is not metaphysically possible. Thus, advocates of the
second strategy argue that we should resolve Galileo’s Paradox by rejecting Actually
Infinite. The trouble is that one could endorse other combinations of principles in order
to solve Galileo’s Paradox and there is, as far as I can tell, little reason — other than one’s
private intuitions — for favoring the choice made by friends of the second strategy over

the available alternatives. For example, consider the following principle:

The Cardinality Principle: The size of any collection is the cardinality of that collection.
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If one denies the Cardinality Principle, then one should deny Hume’s Principle. Moreover,
consider that although the segment of the real line from 0 to 1 has the same cardinality
as the segment of the real line from 0 to 2, the latter has twice the Lebesgue measure as
the former. Since the Lebesgue measure of a point set captures one notion of the size of
that point set, there is a well-defined sense of ‘size” in which the size of a point set is not
determined by the cardinality of that point set. And given that sense of ‘size’, we have
reason to deny the Cardinality Principle and, consequently, Hume’s Principle. In that
case, we can consistently endorse Euclid’s Principle and Actually Infinite.

Relatedly, Paul Draper (2008, p. 49) points out that there are at least two distinct senses
of ‘larger than’.* First, there is a sense of ‘larger than’ consistent with Hume’s Principle,
viz, collection A might be said to be larger than collection B just in case (i) there is no 1-to-1
correspondence between A and B and (ii) there is a 1-to-1 correspondence between B and a
proper sub-collection of A. Second, there is a sense of ‘larger than’ that is inconsistent with
Hume’s Principle, namely, the “all-and-then-some” sense. For example, all of the integers
are contained in the rationals, but the rationals include elements that are not included in
the integers. In fact, a number of authors (e.g., Bellomo and Massas, 2021; Benci et al.,
2006, 2007; Mancosu, 2009; Nasso and Forti, 2010; Trlifajovd, 2018; VieriBenci and Nasso,
2003) have developed conceptions of set size that differ from the notion recommended
by the Cardinality Principle in the case of infinite sets. I will refer to these alternatives
as Euclidean conceptions. According to Euclidean conceptions, the set of rationals has a
larger size than the set of integers, because the rationals include the integers as a subset,
even though both sets have the same cardinality. Likewise, Euclidean conceptions entail
an alternative conception of ‘smaller than’ that is not tied to cardinality in the case of
infinitely large sets. Given that there are two analyses of ‘larger than” and ‘smaller than’,
there are two analyses of ‘equal size’; only one analysis of ‘equal size’ is consistent with
Hume’s Principle. As Draper points out, the analysis of ‘equal size” that is inconsistent
with Hume’s Principle is consistent with Euclid’s Principle. Thus, if we endorse Euclid’s

Principle, affirm a Euclidean conception, and thereby deny that cardinality successfully

1 As Richard Sorabji (1983, pp. 217-218) has shown, the distinction between the two senses of ‘larger than’
has been known since at least the medieval period.
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captures the notion of the size of a collection, then we ought to reject Hume’s Principle.
In that case, we are left without a reason to reject Actually Infinite.

We could instead deny Euclid’s Principle and endorse Hume’s Principle and Actually
Infinite. As I've discussed, various authors have developed Euclidean conceptions of
the size of infinite sets. For example, Matthew Parker (2013) has argued that there are a
series of problems that plague Euclidean conceptions of the size of infinite sets. While
Parker admits that the problems he identifies are not necessarily insurmountable, one
person’s modus ponens is another person’s modus tollens. So, while one philosopher
might take Hume’s Principle and Euclid’s Principle to jointly show that Actually Infinite
is false, another philosopher might take Hume’s Principle and Actually Infinite to jointly
show that Euclid’s Principle is false. In that case, one could consistently endorse Actually
Infinite.

Lastly, consider the following alternative to Euclid’s Principle:

The Modified Euclid’s Principle: The whole of any finite collection is larger in size than

any proper sub-collection.

The Modified Euclid’s Principle is consistent with both Euclid’s Principle and its denial, so
that accepting the Modified Euclid’s Principle need not involve rejecting Euclid’s Principle.
However, Euclid’s Principle is a logically stronger principle than the Modified Euclid’s
Principle in the sense that the former entails the latter but the latter does not entail the
former. When we can make do with a logically weaker principle without a logically
stronger principle, all else being equal, we should endorse the logically weaker principle
without endorsing the logically stronger principle. Both principles are consistent with
all of the same evidence, since all of the cases that confirm Euclid’s Principle involve
finite collections. Thus, accepting Euclid’s Principle involves taking an additional and
(apparently) unnecessary step; friends of the second strategy need to tell us why we
should take that step. They have thus far failed to convincingly do so.

So far, we’ve seen that one can respond to Galileo’s Paradox by denying either Hume’s
Principle or Euclid’s Principle instead of denying Actually Infinite and that friends of the
second strategy have yet to successfully defend their view that we should adopt both
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principles. While there is no clear reason why we should endorse both principles, there
are at least two reasons in favor of denying at least one of the principles. First, consider
that the physically possible worlds are those worlds which are consistent with the laws
of physics and are typically understood to be a subset of the metaphysically possible
worlds. Thus, if there is a model M that is both (i) self-consistent and (ii) consistent with
the known laws of physics, we have defeasible reason for thinking that M represents a
metaphysically possible state of affairs. There are models — such as de Sitter space-time —
that are self-consistent, consistent with known physical laws, and include actually infinite
collections.” Thus, since we have defeasible reason for thinking that actually infinite
collections are physically possible, we have defeasible reason for thinking that actually
infinite collections are metaphysically possible.

Second, as previously mentioned, friends of the second strategy endorse potentially
infinite collections while denying that there are any actually infinite collections. But as
Cantor argued, the potentially infinite depends on the actually infinite. For example,
we can rigorously define the convergence of an infinite sequence without defining the
value of the sequence at infinity. For example, in introductory calculus, we might express
the convergence of some sequence {5, S, ....} to some value S as lim,,, S, = S. In that
context, we customarily tell students that S is the value that S, has when n = co. Put
that way, the convergence of a sequence seems to require that the sequence has a specific
value at infinity, i.e., S = S. But, (in)famously, defining the value of a limit at infinity is a
conceptual error. Mathematicians prefer to say that S, approaches, but never reaches, S.
When students return to convergent series in a subsequent Real Analysis class, they learn
that the convergence of a sequence can be rigorously defined without defining the value of
the sequence at infinity. We can say that any sequence {51, Sy, ....} converges to a value Sjust
in case, for any € > 0, there exists a positive integer N such that, foralln > N, |S, — S| <e.
The rigorous definition of the convergence of a sequence makes use of the potentially

infinite because the definition describes a sequence that perpetually grows closer to a

51To see that de Sitter space-time does include an actually infinite collection in the relevant sense, consider
any complete time-like geodesic in de Sitter space-time. From the perspective of an observer located at any
point on that geodesic, there are an infinite number of hours (for example) to their past.
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limit. To make the point clearer, for increasing values of 1, the function f(n) = |5, — S|t
grows without bound and therefore models potential infinity; that is, the value of f(n)
is potentially infinite. Nonetheless, as Cantor would remind us, the sequence’s index
ranges over an actually infinite set, i.e., n is defined as a positive integer. For that reason,
the rigorous definition of the convergence of a sequence presupposes the existence of an
actually infinite collection. This feature of the rigorous definition of the convergence of a
sequence can be generalized: potential infinities presuppose actual infinities.

Cantor’s notion that the potential infinite presupposes the actual infinite is echoed in
the reply that Swinburne offers to Craig’s arguments against actually infinite collections.
As Swinburne (2004, p. 139) points out, Craig’s arguments rely on the premise that if the
past is beginningless then the collection of past events is an actually infinite collection.
The collection of past events is an actually infinite collection only if there is some sense
in which past events have reality. Swinburne goes on to point out that if the collection
of past events has reality at least in some sense, then the collection of events within the
past hour equally has reality in the same sense. There were an infinite series of periods of
unequal length in the past hour, e.g., the past 1/2 hour, the past 1/4 hour, etc. Craig argues
that the entire interval of the past hour is more fundamental than any subdivision of the
past hour; we can subdivide the past hour only as a potential infinite. Nonetheless, Craig
endorses the view that the past hour can be arbitrarily subdivided in whichever way one
would like;® for that reason, Craig must presuppose that the past hour already includes
an actual infinitude of subdivisions. (Cantor offered a similar argument involving the
bisection of a line; see, e.g., Shapiro, 2011, p. 105.) Likewise, the “gunky” view of time

endorsed by Craig entails that every subinterval of time includes proper subintervals;

®TDespite Craig’s presentism, Craig has long argued that instants do not exist. As I've described, Craig
denies that any physical collection could be infinite while also denying the view that time is discrete. If
time is continuous, one might have thought that any finitely long interval of time includes an infinitude of
instants. In order to avoid the consequence that any interval of time includes an infinitude of instants, Craig
adopts the Aristotelian position that intervals of time are fundamental and instants are a kind of mental
fiction we arrive at as the boundary points of any given interval. Craig writes that “only intervals of time
are real or present and that the present interval (of arbitrarily designated length) may be such that there
is no such time as ‘the present’ simpliciter; it is always ‘the present hour’, ‘the present second’, etc. The
process of division is potentially infinite and never arrives at instants” (Craig, 1993a, p. 260; also see Craig,
2000, pp. 179-180, Craig and Sinclair, 2009, pp. 112-113). For discussion, see Dumsday, 2016; Loke, 2016;
Puryear, 2014, 2016; Zarepour, 2021.
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every subinterval includes proper subintervals only if an actual infinitude of subintervals
already exist in the original interval.” Unless friends of the second strategy are willing to
deny the potentially infinite — which they are not usually willing to do — friends of the

second strategy ought to accept the actually infinite.

2.2 Forming actually infinite collections by successive addition

I've discussed two strategies for showing that there are no actually infinite collections
(or for showing that beginningless series are not metaphysically possible) and why those
two strategies do not suffice for showing that the Cosmos has a finite past. In this section,
I turn to a strategy which attempts to establish that the Cosmos has a finite past and
that involves the thesis that an actually infinite collection cannot be formed by successive
addition. A collection is formed by successive addition just in case one element is added
to the collection at a time. On some metaphysical views about the nature of time — as
discussed below —the past is formed by successive addition since the past forms by present
moments passing away one at a time. And since no infinite collection can be formed by
successive addition — or so the argument goes — the past, being a collection formed by
successive addition, cannot be infinite. Call this the Successive Addition Argument.

There are two reasons as to why this argument is not convincing. First, as proponents
of the Successive Addition Argument recognize, e.g., Craig, 2013, p. 13, the argument
assumes a controversial view about the metaphysics of time, namely, the A-theory of
time, according to which time objectively passes. If, instead of time passing, there is an
eternal space-time block, then moments are not added to the past and so our past did not

form by successive addition. I will have more to say about the A-theory in chapter 4; here,

7?Craig could reply that “cutting” the past hour into subintervals introduces divisions that were not already
present. I don’t see how a reply of that sort could work. The past hour isn’t a spatial extension that we
can subdivide; there isn’t a physical process that can cut up intervals of time and produce something new,
i.e., an instant, at the point at which the cut is made. Similarly, the notion that one could cut up a temporal
interval in order to make an instant present is surely a category mistake. Instead, for each time, the totality
of past events is a completed collection, and whatever subdivisions can be made of a past temporal interval,
even if the subdivisions are not fundamental, must already have reality, at least in some sense, before the
subdivisions are mentally made by the human intellect. For example, consider a particle that travels from
point A, at time t4, to point B, at time ¢, such that t4 < tg. At any moment during the particle’s journey,
we can consider how much time has elapsed thus far; so long as the particle’s motion is continuous, the
particle’s motion continuously marks out subdivisions of time.
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I will note simply that the A-theory of time is at least controversial and does not enjoy
popularity among (for example) philosophers of physics. Note the following four facts
about the Successive Addition Argument: (i) the Successive Addition Argument requires
a controversial premise, (ii) given that the premise is controversial, whether the premise
enjoys a high probability is at least unclear, (iii) the conclusion of an argument, all else
being equal, is as probable as the conjunction of the argument’s premises, and (iv) the
probability of a conjunction is no more probable than the least probable conjunct.® Given
(i)-(iv), the Successive Addition Argument is not a persuasive reason to think that the past
is finite.

Second, regardless of whether the A-theory of time is true, the Successive Addition
Argument is question begging. While proponents of the Successive Addition Argument
are on safe ground when they argue that an infinite collection cannot form from a finite
collection by successive addition, they are on shakier ground when they argue that there
cannot be an infinite collection each of whose members were added by successive addition.
AsIwill argue in chapter 7, one way for the Cosmos to lack a beginning is that infinite time
precedes every past moment. But, in that case, the Cosmos’s past did not form, at least
in the sense that a finite collection forms, since the Cosmos’s past was always infinite.”
Since the Cosmos’s past did not obviously form in the relevant sense, the Cosmos’s past
did not obviously form by successive addition. And if the past did not form by successive
addition, even if actually infinite collections could not form by successive additions, the
Cosmos could still have an infinite past.

One could object that although the past was always infinite, each moment was added
to the past by successive addition. Since the past is comprised by nothing other than
moments, all parts of the past were added by successive addition. And if all parts of the
past were added by successive addition, the past was formed by successive addition.

Two replies can be offered. First, consider an analogous inference: since each feather

in a pile is light, the entire pile of feathers is light; we know this inference is not valid

81 The fact that the probability of a conjunction is no more probable than the least probable conjunct follows
from the conjunction rule, i.e., Pr(A&B) = Pr(A|B)Pr(B). The conjunction rule entails that Pr(A&B) < Pr(B).
Note, also, that Pr(A&B) = Pr(B) only if Pr(A|B) = 1.

91Sorabji (1983, p- 220) makes a similar objection to the successive addition argument.
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because some piles of light feathers are heavy. Similarly, the inference from each moment
having been added by successive addition to the conclusion that the entire series formed
by successive addition may be fallacious. Nonetheless, I'm not sure if the inference is
fallacious because we know that some inferences from parts to wholes are not fallacious.
For that reason, set this reply to one side. Second, consider an analogy commonly used
by proponents of the Successive Addition Argument. The claim goes that one cannot
count to infinity (Craig and Sinclair, 2012, p. 116). The reason that one cannot count
to infinity is that no matter how many numbers one has counted, there is an infinitude
of numbers left to count. Likewise, no matter how many individual elements one has
added by successive addition, a finite collection cannot be made into an infinite collection.
Nonetheless, if the collection that one is adding to is already infinite, then there is no need
to turn a finite collection into an infinite collection. On one version of the previously
mentioned hypothesis that the past was always infinite, for any past moment, there was
only a finite span of time to the present.! Thus, unlike attempting to count from zero to
infinity, there need be no problem in reaching the present from any past moment."

Let’s consider another analogy to bolster the intuition that if the past is infinite, then
the past did not form, and so did not form by successive addition. On a metaphysical view
about the nature of time called growing block theory, the past and present exist but not the
future. The past is a block that “grows” by moments coming into being at the present and
passing into the past. The Successive Addition Argument has an easy interpretation in
terms of the growing block theory, namely, that the block of the past grows by successive
addition. In the case of a finite past, there was a first moment to which successive
moments were added via successive addition. No matter how many moments are added
to the block of the past, the block of the past will never be transformed from being finite
to being infinite. No progress can be made in gathering together an infinite collection
when gathering together one element at a time, just as no progress is made in counting

to infinity by counting one integer at a time. Proponents of the Successive Addition

101 An alternative version of the hypothesis includes moments that are infinitely far to the past, as discussed
in chapter 7.
111Wes Morriston (2022) and Paul Draper (2008, p. 47) have previously made similar arguments.
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Argument want to generalize this conclusion; they would tell us that since no collection
formed by successive addition can be actually infinite, the block of the past cannot be
extended infinitely far to the past.

Contrast growing block theory with another metaphysical view about the nature of
time called shrinking block theory, namely, the view that the present and future exist but
not the past. There is a nearly complete symmetry between the growing block theory and
the shrinking block theory; where the growing block theory says that the past grows by
successive addition, the shrinking block theory says that the future shrinks by successive
subtraction. If the future is finite, then, as each moment passes, the future shrinks;
eventually, the last moment will pass. Nothing will follow. The situation is different with
respect to an infinite future. In the case of an infinite future, the future block never truly
shrinks, in the sense of decreasing in cardinality. Just as one cannot make progress in
constructing an infinite series when gathering one element at a time, one cannot make
progress in removing elements, one by one, from an infinite collection. No matter how
many elements have been removed, an infinitude remains. Since the future block never
truly shrinks in cardinality and no progress is made in unmaking the future block, the
future is not unmade by successive subtraction. If, in the case of shrinking block theory,
the future cannot be unmade by successive subtraction, then, in the case of growing block
theory, the past was not made through successive addition. Adding moments to an infinite
past no more grows the past, in the cardinal sense, than taking away moments reduces an
infinite future, in the cardinal sense.

In correspondence, Alex Malpass considered Andrew Loke’s (2014) thought exper-
iment in which a Hilbert Hotel is constructed over an infinitude of past time, by, for
example, constructing one room per year. Rooms are added to Loke’s HH by successive
addition since one room is added per year. Let’s suppose that infinite past time precedes
every past year and that there is finite time between any past year and the present. In
that case, supposing that rooms stop being built this year, there would be a hotel with
an infinitude of rooms, and so a completed HH. But suppose instead that rooms stopped
being made five years ago. In that case, there would likewise be an infinitude of rooms

and so a completed HH. In fact, if rooms stop being built in any past year whatsoever, the
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HH would already have been completed. Thus, supposing that infinite past time precedes
every past year and that there is finite time between any past year and the present, the HH
is already complete prior to any year that there has ever been. The addition of any room
to the HH during any past year fails to make any progress in expanding the size of the
hotel. Since (i) the HH is already complete prior to any year that there has ever been and
(ii) the addition of a room during any past year fails to expand the size of the hotel, the
process of constructing rooms did not make the hotel; instead, the hotel always already
existed.’? Likewise, if the Cosmos’s history includes an infinitude of past time prior to
every moment, then the Cosmos has always already existed.

AsIwill discuss in chapter 5, all of the a priori arguments for a beginning of the Cosmos
fail for a reason that I haven’t discussed thus far. Proponents of the KCA typically endorse
the views that God is in time, past time is finite, and so the view that God has existed
only for finite time, while also endorsing the view that God is beginningless. Thus, KCA
proponents typically endorse the view that some entities that have existed only for finite
time are beginningless. The a priori arguments for the beginning of the Cosmos show, at
most, that the Cosmos’s past is finite; thus, the a priori arguments are incomplete because
the a priori arguments do not address whether the Cosmos is a beginningless entity with
a finite past. In chapter 5, I argue that there is a specific condition — the Modal Condition
— that can be used to distinguish entities whose pasts are finite but are beginningless from
entities whose pasts are finite and have a beginning. Thus, supposing my argument for the
Modal Condition is successful, KCA proponents will need to conjoin their arguments for
the finitude of the past with an argument that the Cosmos satisfies the Modal Condition.
Since KCA proponents haven’t even attempted to show that the Cosmos satisfies the
Modal Condition, their a priori argument for the beginning of the Cosmos remains at best

incomplete.

129Loke’e HH bears some resemblance to a conception of divine eternity put forward by Brian Leftow. As
I'will discuss in chapter 5, for Leftow (2005, p. 58), a proposition is already true at any given time ¢ just in
case the proposition is true at  and would have been true had time never reached f. On Leftow’s view, God
already exists at the first moment of time because God would have existed even if time had not. Similarly,
there is a sense in which Loke’s HH precedes time altogether because, for any given time t, Loke’s HH
already exists at t.

39



2.3 Summary

In this chapter, I summarized three families of a priori arguments for the beginning of
the Cosmos, viz, that either actually infinite collections are metaphysically impossible, that
beginningless series are metaphysically impossible, or that, as a matter of metaphysical
necessity, no actually infinite series can be formed by successive addition. I went on to
summarize a variety of reasons for rejecting all three a priori arguments. Having rejected
all three families of a priori arguments, in the next chapter, I summarize the a posteriori
defense of the KCA’s second premise together with some standard reasons for thinking
that classical Big Bang cosmology, though not altogether irrelevant for the KCA’s second

premise, does not adequately support the KCA’s second premise.
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3. THE A POSTERIORI DEFENSE OF THE KCA

While I maintain little hope for the a priori defense of the KCA, the KCA can be defended
on a posteriori grounds. KCA proponents have appealed to various results from physical
cosmology, which they claim succeed in showing that the Cosmos began to exist. Some
proponents of the KCA, e.g., Andrew Loke (2017), argue that the KCA should primarily
be defended on a priori grounds and have sought only to show that results from physical
cosmology are consistent with the Cosmos having a beginning. Nonetheless, a number
of the KCA'’s foremost proponents have argued that the KCA can be defended on a pos-
teriori grounds; moreover, as someone who is skeptical of our ability to reach subsantive
metaphysical conclusions without consulting the sciences, I view the a posteriori defense
as more worthy of our time and reflection than the a priori defense.

Consider Craig’s (2007a) comments with respect to Swinburne’s rejection of the a priori
defense of the KCA. As Craig summarizes, Swinburne makes the claim that the KCA'’s
tirst premise, viz, that whatever begins to exist has a cause, enjoys only inductive support.
Craig writes that he is “more than happy to accept the truth of [the first premise] on purely
inductive grounds. While the kalam [sic] argument itself is a deductive argument, that
does not imply that its premisses are not to be supported by inductive evidence”. As Craig
continues to explain, he has “made extensive appeal to the inductive evidence supplied
by science as justification for both premisses of the kalam argument”. Craig notes that he
agrees with Swinburne in that the “present state of science” supports “the conclusion that
the universe came into existence at some time in the finite past”. Thus, as Craig interprets
Swinburne, Swinburne endorses a wholly empirical defense of the KCA. Moreover, Craig
signals that he would be happy with a wholly empirical defense of the KCA. Indeed,
Swinburne has defended a cosmological argument on wholly empirical premises in two
books; see Swinburne’s (2004) and his (2010).

The Craig/Swinburne view that the beginning of the Cosmos can be provided a wholly
a posteriori defense appears to many to be supported on excellent grounds. Science
popularizations, no less than religious apologists, often report that twentieth century

physical cosmology established the physical world —and so the Cosmos —had a beginning.
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According to the story we are often told, Big Bang cosmology tells us that the universe
— taken by the public to mean the totality of physical reality — began in a cataclysmic
event fourteen billion years ago. Although science popularizers and religious apologists
overstate their case, Big Bang cosmology is not irrelevant for thinking about the beginning
of the Cosmos. In this chapter, in order to summarize the a posteriori defense of the KCA’s
second premise, I review Big Bang cosmology, introduce the notion of a cosmological
singularity (which I make rigorous in chapter 8), and describe the relevance that both
have for the a posteriori defense of the second premise of the KCA. Although Big Bang
cosmology is not altogether irrelevant for the KCA’s second premise, Big Bang cosmology
does not adequately support the KCA’s second premise. I also present a set of standard
arguments as for why most physicists do not seriously endorse the Big Bang as the

beginning of the Cosmos.

3.1 The Historical Narrative

Prior to the twentieth century, few authors expected that a case for the beginning of
the Cosmos could be constructed utilizing wholly empirical premises. For example, ar-
guments meant to establish that God created our world depended either on establishing
that actually infinite collections were impossible (e.g., Al-Kindi, Al-Ghazali, Bonaventur,
John Philoponus), that an infinite regress of essentially ordered elements was impossible
(Thomas Aquinas), or that a sufficient reason is required for explaining the existence of
the totality of contingent entities (e.g., Samuel Clarke and Gottfried Wilhelm Leibniz).!
The relative absence of pre-twentieth century empirical arguments for the view that God
created our world is easy to explain. On the one hand, if time were arbitrarily truncated
- e.g., if we arbitrarily postulate that time began a few seconds ago with everything, in-
cluding our memories and this dissertation, in their current state — then a radical skeptical
catastrophe results in which we cannot trust the evidence we have for the past Earman,

1977, pp. 119-122. On the other hand, the general expectation had been that moments

!7Helge Kragh (2008) describes a notable exception, i.e., a community of nineteenth century German
theologians who utilized thermodynamics to construct a quasi-empirical case for the Cosmos’s beginning.

42



of time, or perhaps the contents of moments of time, are sufficiently homogeneous that
nothing empirically distinguishes some specific moment as the moment of Creation.

This situation changed dramatically in the early twentieth century with the advent of
General Relativity. In General Relativity, space-time is a dynamical entity coupled to the
matter-energy distribution. Historically, that the Cosmos began was taken to be more or
less synonymous with the notion that the Cosmos had an initial finitely long period in
its life. Whether the Cosmos had an initial finitely long period is a bit of unobservable
chronogeometric structure. For scientific realists, we are justified in endorsing the unob-
servables entailed by a given physical theory provided we have sufficient independent
evidence for that theory. Thus, for scientific realists, given the dynamical coupling be-
tween matter-energy and chronogeometry, unobservable chronogeometric structure can
be inferred by examining the matter-energy distribution. Scientific realists might hope
that empirical data, in conjunction with physical theory, may be able to tell us that the
Cosmos began. We will see in subsequent chapters that this hope is dashed in various
ways, even for the scientific realist. For now, set that aside and retain hope.

In the early twentieth century, Edwin Hubble discovered that galaxies are, on average,
receding from one another. On the assumption — now confirmed to high precision for
the observable universe — that galaxies are distributed homogeneously and isotropically
throughout space, the Einstein Field Equations simplify to a pair of ordinary differen-
tial equations called the Friedmann-Lemaitre-Robertson-Walker (FLRW) equations. The
FLRW equations predict that unless the matter-energy density populating space-time has
a specific critical value, space-time will either expand or contract. Given Hubble’s ob-
servation of galactic recession, together with other data (e.g., elemental abundances, the
Cosmic Microwave Background Radiation, etc), physicists reached the conclusion that
the observable universe must have been in a radically different state in the distant past.
The Einstein Field Equations, interpreted literally, suggest that space-time has an open
boundary at a finite time in the past beyond which space-time cannot be extended. Ac-
cording to the Einstein Field Equations, to ask what was before that open boundary would

be analogous to asking what is north of the north pole. This at least superficially seems
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like what many intuitively mean by the beginning of the universe, i.e., a first finitely long
period in the history of the universe.

And this point is worth pausing over for three reasons. First, the popular misconcep-
tion that science has told us the Cosmos had a beginning is based on efforts to explain the
consequences of General Relativity to a mathematically unsophisticated general public.
Second, General Relativity is the first mathematically sophisticated theory of chronogeom-
etry to explicitly deal with the notion that space-time could have had a beginning. Even if
General Relativity is not a final theory of space-time, General Relativity — by the theory’s
own lights — purports to be a fundamental theory of space-time. For that reason, one
desideratum for an account of the beginning of the Cosmos is that the account should at
least be consistent with General Relativity and should allow us to either make sense of or
to refine the intuition that singular Big Bang models include a beginning; I will take up
that project in chapter 8. Third, as I will also unpack below, proponents of the a posteriori
defense of the KCA have understood Big Bang cosmology to provide evidence for the

KCA'’s second premise.

3.1.1 The Big Bang and the KCA

Having summarized some of the relevant history of Big Bang cosmology, I turn to
unpacking how Big Bang cosmology has featured into the a posteriori defense of the
KCA. The reader should also note that this section helps to support one of the points I've
already made, namely, that some of the foremost defenders of the KCA have held that the
KCA'’s second premise can be supported on a posteriori grounds alone. Let’s begin by
considering how, in 1992, Craig described the role of Big Bang cosmology in supporting

the KCA'’s second premise:

The discovery during this century that the universe is in a state of isotropic
expansion has led, via a time-reversed extrapolation of the expansion, to the
startling conclusion that at a point in the finite past the entire universe was
contracted down to a state of infinite density, prior to which it did not exist.

The standard Big Bang model, which has become the controlling paradigm
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for contemporary cosmology, thus drops into the theologian’s lap just that
crucial premiss which, according to Aquinas, makes God’s existence practically

undeniable (Craig, 1992, pp. 238-9).

In this context, when Craig uses the term ‘universe’, he means what I have called the
Cosmos. As Craig interprets Aquinas, Aquinas rejected the KCA in part because Aquinas
could not foresee that empirical evidence for a beginning of the Cosmos would one day
become available;? nonetheless, Craig claims that, given Big Bang cosmology, we ought
to support the second premise of the KCA. The following year, Craig wrote, “What a
literal application of the Big Bang model requires, therefore, is creatio ex nihilo. A literal
interpretation of the Big Bang model in which the universe originates in an explosion
from a state of infinite density, that is, from nothing, provides a simple, consistent, and
empirically sound construction of how the universe began” Craig, 1993c, p. 44. That is,
at least as Craig understood the matter in the early 1990s, classical Big Bang cosmology
conclusively establishes the second premise of the KCA.

As I discuss throughout this dissertation, the reason that classical Big Bang models are
thought to include a beginning —as opposed to merely depicting the observable universe’s
transition from some previous physical state — involves the fact that Big Bang models are
singular, that is, that the models depict space-time as having an open boundary to the
past beyond which, as a matter of physical and mathematical necessity, space-time cannot

be extended. In this section, I offer a rough, intuitive conception of singularities as they

29Thomas Aquinas famously rejected the KCA on the grounds that there are no purely philosophical (or non-
theological) arguments which establish that Creation is finitely old (Aquinas, n.d., IQ46A1; Aquinas, 1965).
In Thomas’s view, that Creation is finitely old is a doctrine which, like the doctrine of the Trinity, is available
only through divine revelation (Aquinas, n.d., IQ46A2). Aquinas did offer cosmological arguments for
God’s existence, but Aquinas’s cosmological arguments do not rely on the finitude of the past. For example,
Aquinas’s prime mover argument is based on the Aristotelian principle that any object which is not purely
actual cannot move from potentiality to actuality by itself; instead, non-purely actual objects require a
purely actual being (i.e., God) for their existence. While Aquinas thought that a purely actual prime mover
is needed to explain the existence of the Cosmos, Aquinas denied that the coming into being of non-purely
actual objects is an event that needs to have happened at some particular point in the finite past (Aquinas,
n.d., IQ46A1). And while Aquinas argued that, based on the principle that there cannot be an infinite chain
of efficient causes, there must be a first efficient cause, Aquinas did not argue that the first efficient cause
must precede Creation either in time or in the order of explanation; in fact, Aquinas argued that the efficient
cause of Creation can co-exist with Creation for each time that Creation exists (Aquinas, 1965); for this
reason, Aquinas argued, Creation could be co-eternal with God in the sense that there was no first moment
in time at which Creation began to exist.
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appear in classical Big Bang models, with the parenthetical remark that many other kinds
of singularities appear in mathematical physics. In chapter 8, I provide a more rigorous
description of what makes a space-time singular after I've had a chance to introduce and
define some technical machinery.

As I've said, General Relativity provided us with the first scientific theory in which
space-time, itself, plays a dynamical role within the theory; moreover, the classical Big
Bang models are General Relativistic models. General Relativity tells us that there is a
class of space-times said to be singular. For the sake of intuition, consider the function
f(x) = 1/x. Because there is no value of f(x) at x = 0, there is a well-defined sense in which
x = 0 represents an open boundary between the positive and negative real numbers.
Likewise, a specific class of singular space-times — those containing so-called curvature
singularities — include open boundaries where space-time comes to an end. There are non-
singular solutions to the FLRW equations. However, for singular FLRW models, when
we trace time backwards, we find that the energy density grows without bound and, in
consequence, the Ricci scalar curvature grows without bound. FLRW space-times become
ill-defined when the scalar curvature diverges. For that reason, one encounters an open
boundary beyond which space-time cannot be extended. As I will discuss in chapter 7, a
past boundary to the Cosmos is a necessary (but not sufficient) condition for the Cosmos
to have had a beginning. Traditionally, authors have often focused on the boundary to the
exclusion of all other criteria that might be thought necessary for the Cosmos to have had
a beginning and so the fact that (some) classical Big Bang models include a past boundary
has often been taken to indicate that the Cosmos likely had a beginning.

A decade after Craig’s previously quoted remarks, Craig and his co-author James
Sinclair discuss, but do not endorse, the following argument for the view that the universe

began to exist:

P1. If space-time is singular, the universe began to exist.
P2. Space-time is singular.

C. Therefore, the universe began to exist (Craig and Sinclair, 2012, p. 98).
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Here, Craig and Sinclair mean that if the Cosmos includes a space-time with a past singular
boundary, then the Cosmos began to exist. Call this the Singularity Argument. Craig and
Sinclair do not endorse the Singularity Argument because, as they acknowledge, there are
non-singular cosmological models and singularities will likely be replaced by some other
structure in a successor theory to General Relativity. Although Craig and Sinclair do not
endorse the Singularity Argument, they do maintain that singular cosmological models
provide strong evidence for a beginning of the Cosmos because they argue that there
will be features in a future quantum gravity theory that correspond to the cosmological
singularities in FLRW models. As Craig and Sinclair write, “There may be no such things
as singularities per se in a future quantum gravity formalism, but the phenomena that
[General Relativity] incompletely strives to describe must nonetheless be handled by the
refined formalism, if that formalism has the ambition of describing our universe” (Craig
and Sinclair, 2012, p. 106). That is, even if cosmological singularities are not real features
of the universe, they are approximations of real physical features of the universe, and
the way in which cosmological singularities approximate the universe suggests that our
universe had a beginning. I don’t find this argument convincing. While scientific realists
would argue that presently well supported physical theories approximate their successor
theories, no scientific realist claims that all of the entailments of current scientific theories
approximate features that will appear in future scientific theories. What reason do we
have for thinking that the structure which replaces singularities in a successor theory will
have any relevant relationship to a beginning of the Cosmos? I cannot see any such reason
and Craig and Sinclair have certainly not attempted to provide one. I will return to this
issue in chapter 12.

Nonetheless, on Craig and Sinclair’s interpretation, twentieth century cosmology was
largely motivated by attempts to overcome or “evade” mathematical results concerning
singularities in classical space-times, i.e., the singularity theorems, and perhaps motivated
by a prejudice against theistic hypotheses. I do not endorse Craig and Sinclair’s historical
narrative. As we will see, there are good reasons for thinking that the appearance of
singularities in a physical theory is an indication that the theory will be replaced by a

successor theory; insofar as we have good reason for thinking that a current theory will be
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replaced, we have reason to look for the successor theory — importantly, reasons that have
nothing at all to do with a prejudice against theistic hypotheses. Thus, cosmologists were
unlikely to have been motivated by a prejudice against theistic hypotheses since there are
other and better explanations for their actions.® In any case, Craig and Sinclair have offered
various reasons why attempts to evade the singularity theorems have ended in failure. In
the early 1990s, Craig argued that non-singular cosmologies are overly speculative and
are implausible compared to singular cosmologies (Craig, 1993b). By 2009, Craig had
conceded that non-singular cosmologies have been successfully produced. Nonetheless,
Craig and Sinclair argue that such attempts have (typically) failed to produce cosmologies
without beginnings or have otherwise been empirically ruled out (Craig and Sinclair,
2009, p. 180). Craig and Sinclair have gone on to provide the argument discussed above,
namely, that while cosmological singularities might not survive future physical inquiry,
the feature of the world picked out by the singularity theorems — apparently, that there
is a boundary to the Cosmos’s temporal existence — should survive into future physical
inquiry (Craig and Sinclair, 2012, pp. 105-6).

An important point should be made here that is often lost in the literature on the KCA
and that helps to explain one of the ways my dissertation contributes to the literature on
the KCA. Supposing that Craig and Sinclair are right that all of the cosmological models
developed thus far have been either singular, include a non-singular beginning, or have
already been empirically ruled out, we cannot then infer that the Cosmos likely had a
beginning. The collection of possible space-times is not exhausted by the collection of
cosmological models thus far developed. Supposing that all of the cosmological models
developed thus far on which the Cosmos is beginningless are implausible, cosmological
models on which the Cosmos has a beginning may likewise be implausible.* The family

of cosmological models thus far developed might not even be a representative subset of

37One can also check this conclusion against the history of the discipline. For example, as John Earman
(1995, pp. 11-21) has described, Einstein’s reasons for rejecting singularities had nothing to do with a
prejudice against theism.

#1By way of analogy, consider the hypothesis h1:= ‘my bedroom floor is covered with dust in the shape of
Mickey Mouse’ and hy:= ‘my bedroom floor is not covered in dust but is covered with mud in the shape
of Mickey Mouse’. Obviously, #; and h, cannot both be true. Nonetheless, the two hypotheses are both
improbable. Thus, we cannot infer that h; is probable by showing that /, is improbable.
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the collection of all possible space-times, including all of the space-times consistent with
our empirical data. Authors who have previously written on the KCA have neglected
important mathematical results about the global properties of space-time that are inde-
pendent of specific cosmological models; I consider some results about the global features

of space-time in chapter 9.

3.2 Four Reasons Not to Take Curvature Singularities Seriously

As I've summarized, proponents of the KCA — such as Craig and Sinclair — now
acknowledge that physical cosmology has moved on from an understanding of singular-
ities as actually physically realized within nature. Nonetheless, friends of the a posteriori
case for the KCA'’s second premise continue to argue that various results concerning sin-
gularities — particularly the singularity theorems developed by Roger Penrose, Stephen
Hawking, Arvind Borde, Alan Guth, and Alexander Vilenkin — do have relevance for
addressing whether the Cosmos began to exist.

In contrast, physicists usually interpret divergences, such as curvature singularities,
in physical theories as an indication that the theory will be supplanted in future inquiry
by a non-divergent theory. There are already excellent independent reasons for thinking
that General Relativity will be supplanted by a non-singular theory. As Enrico Cinti and
Vincenzo Fano (2021, p. 112) write, “most approaches to Quantum Gravity point in the
direction of singularities, including that connected to the big bang, not being a genuine
feature of spacetime at the quantum level”. As Sean Carroll (2010, pp. 50-51) describes,
since physicists do not yet know what physical theory will replace singularities, physicists
do not yet know whether the universe includes a past boundary: “if someone asks you
what really happened at the moment of the purported Big Bang, the only honest answer
would be: ‘I don’t know.” Once we have a reliable theoretical framework in which we can
ask questions about what happens in the extreme conditions characteristic of the early
universe, we should be able to figure out the answer, but we don’t yet have such a theory.”
As Carroll goes on to describe, “It might be that the universe didn’t exist before the Big

Bang, just as conventional general relativity seems to imply. Or it might very well be
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[...] that space and time did exist before the Big Bang; what we call the Bang is a kind of
transition from one phase to another.” There are other possibilities; for example, space-
time might have somehow “emerged” from a primordial non-spatio-temporal state. In
any case, the point is that physicists generally think that results concerning singularities
are spurious and do not represent good reasons for thinking that the Cosmos includes a
beginning of its existence.

Briefly, we can identify at least three reasons for denying that we should think the
singularities that sometimes appear in FLRW models have physical significance. I will
add a fourth reason that should appeal to authors who endorse the a priori case for the
KCA's second premise.

The History of Physical Inquiry. Other theories that have appeared in the history
of physical inquiry have included singularities. When those theories were supplanted
by a successor theory, the singularities vanished. Thus, the history of physical inquiry
provides us with some inductive support for the conclusion that the singularities which
appear in General Relativity will vanish when General Relativity is supplanted by a
successor theory.

For example, as Steinhart and Turok (2007, pp. 37-38) point out, there are singularities
that appear in the equations describing fluid flow (the Navier Stokes equations) because
the equations assume that fluids are continuous and do not adequately take into account
their atomic composition. When the Navier Stokes equations are replaced by a more
accurate description in terms of molecular dynamics, the singularities vanish. As Erik

Curiel describes,

This attitude [that singularities represent defects in physical theories and not
genuine physical phenomena] is widely adopted with regard to many impor-
tant cases, e.g., the divergence of the Newtonian gravitational potential for
point particles, the singularities in the equations of motion of classical electro-
magnetism for point electrons, the singular caustics in geometrical optics, and
so on. No one seriously believes that singular behavior in such models in those

classical theories represents truly singular behavior in the physical world. We

50



should, the thought goes, treat singularities in general relativity in the same

way (Curiel, 2021).

While we do not currently possess an accepted quantum gravity theory, a quantum gravity
theory is generally expected to replace curvature singularities by some other structure,
just as other divergent physical theories have been replaced by non-divergent theories.
Indeed, the most popular candidates for a quantum gravity theory, such as string theory
and loop quantum gravity, replace curvature singularities and allow for the development
of cosmological models without a past boundary.

Mass-energy density considerations. For a second reason for denying that the singu-
larities that sometimes appear in FLRW models have physical significance, consider that
Quantum Field Theory and General Relativity are mutually incompatible theories. For
that reason, physicists expect General Relativity to be supplanted by a successor theory in
future physical inquiry. General Relativity is more likely to be supplanted because Quan-
tum Field Theory deals with the “building blocks” of nature and has been confirmed in a
wider domain.

Given that General Relativity is generally expected to be supplanted by another phys-
ical theory, we can ask in which domains General Relativity provides a good approxima-
tion. General Relativity is typically thought to provide a good approximation for small
curvature and low energy. For example, dimensional analysis supports the notion that
quantum gravity effects are important when the De Broglie wavelength approaches the
Planck length. De Broglie wavelengths on the order of the Planck length are associated
with an energy of approximately 10?® electronvolts. In the vicinity of the curvature sin-
gularities appearing in FLRW models, the curvature and mass-energy density become
unboundedly large. Consequently, as one approaches a curvature singularity, one en-
counters energies arbitrarily larger than 10% electronvolts (or, indeed, larger than any
finite energy). Thus, in order to know what might have happened at earlier times, we
would need to have in hand a description of whatever exotic physical theory should

replace General Relativity at energies greater than 10%® electronvolts.
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General Relativity should not be trusted at energies beyond 10% electronvolts; in
particular, the prediction that space-time has a past temporal boundary cannot be trusted.
We do not yet possess a successful theory for energies beyond 10? electronvolts, or at
least there is no consensus as to what theory should supplant General Relativity in that
domain, and so we do yet know what sort of exotic physics there might be for energies
that exceed 10% electronvolts.

Finite domain. There are another set of considerations closely related to the concerns
about curvature and mass-energy density and that provide another reason for denying
that the singularities that sometimes appear in FLRW models have physical significance.
No matter how we think about the domain of validity of General Relativity, the domain
of validity of physical theories is generally understood to be finite. No physicist should
expect to be able to accurately extrapolate a physical theory over an actually infinitely
large domain. General Relativity predicts that as we approach a curvature singularity, the
mass-energy density and curvature become arbitrarily large. Thus, no matter where the
boundaries on the domain of validity of General Relativity might be, General Relativity
predicts that there is some location closer to the curvature singularity where the energy-
density and curvature are larger. For that reason, we should not be realists with respect
to the curvature singularities appearing in FLRW models and have no good reason for
accepting the prediction that space-time has a past temporal boundary.

Counting down from infinity. The last reason for rejecting the physical significance
of cosmological singularities is one that does not enjoy wide support — and certainly is
not well-supported by physicists — but which should be taken seriously by friends of
the a priori case for the KCA’s second premise. Recall that, according to one of the a
priori arguments, we cannot count up to infinity and cannot count down from infinity.
However, curvature singularities — if they were real - would provide a physical realization
of counting down from infinity. Let’s recall again the function f(x) = 1/x that I used to
explain the notion of a curvature singularity. Imagine placing ourselves on the x axis at
x = 1 and moving slowly towards x = 0. Pick any number you want larger than 1; call
that number N. No matter what number you pick, as we move towards x = 0, we will

eventually encounter a value of x such that f(x) is larger than N. For example, if you
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choose N = 5, then, when x is equal to or smaller than 1/5, f(x) is equal to or greater
than 5. One consequence is that all of the positive integers can be mapped to values of
x between 0 and 1. In classical Big Bang models, the Ricci curvature, the matter-energy
density, and the temperature grow without bound as we move backwards in time. Just
as f(x) maps all of the positive integers to values of x between 0 and 1, so, too, all of the
positive integers appear as values of the Ricci curvature, the matter-energy density, and
the temperature as we approach the Big Bang singularity. If counting down from infinity
—as in counting down through all of the negative integers — cannot be physically realized,
then there must be a finite maximum value for the Ricci curvature, matter-energy density,
and temperature. But if there are finite maximum values for the Ricci curvature, matter-
energy density, and temperature, then there is no Big Bang singularity. For example, our
current universe might have emerged from a prior universe bouncing through a highly
(but not infinitely) compressed state — as I discuss in chapter 11 — instead of having a
singular boundary. Ergo, defenders of the a priori case for the KCA’s second premise

themselves have reason not to endorse the reality of curvature singularities.

3.2.1 Responses by Philosophers

No physicist that I have met is surprised by the three reasons I've offered for not
endorsing a realistic interpretation of space-time singularities. For physicists, the three
reasons that I have offered are obvious, well-known, and are not tremendously interesting
or novel. However, I have encountered philosophers who, in casual conversation or
correspondence, express surprise that physicists do not endorse a realistic interpretation
of space-time singularities. Reactions expressed by philosophers, in correspondence or
casual conversation, have tended to be of three sorts. First, some philosophers are simply
unaware that physicists mean the term singularity in a technical sense and do not merely
mean that the Big Bang was initiated by a special point. For example, some philosophers
I have spoken to appear to think that the Big Bang singularity was a point, and so a
part of space-time, having infinite matter-energy density instead of an open boundary to

space-time. I'm not entirely sure why they would think that space-time including a point
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with infinite mass-energy density would have some sort of relationship to whether the
Cosmos had a beginning. In any case, the mistaken view that the Big Bang singularity
was some sort of special point is not an argument and so there is nothing to respond
to, other than to say that, hopefully, this chapter provides enough of an introduction to
the issues involved to dissuade philosophers from thinking that a singularity is merely a
special point of some kind.

Second, some philosophers have heard that there are curvature singularities within
black holes and they have read that we now possess excellent evidence that black holes
exist, e.g., images captured by the Event Horizon telescope, gravitational wave data from
LIGO, and the like. In reply, the three arguments I have provided for not taking curvature
singularities seriously in FLRW models do apply equally to the curvature singularities
General Relativity predicts for black holes. However, we should be careful when we say
that physicists have excellent evidence for black holes. Physicists have evidence that there
are astrophysical systems which obtain sufficiently high mass-energy densities that they
develop horizons. For readers unfamiliar with the notion of a horizon, roughly, a horizon
is a surface beyond which we cannot receive signals. If we were to approach a black hole,
we would find that the velocity we would need to escape the black hole increases as we
approach the black hole’s center. Atsome point, we would find that the velocity we would
need to escape the black hole is the speed of light; at that moment, we would be crossing
the black hole’s horizon. At points still closer to the black hole’s center, the velocity needed
to escape the black hole is greater than the speed of light. Thus, a signal that originates
from within the horizon of a black hole would need to move faster than the speed of
light to reach outside observers; since no signal can move faster than light, no signal can
be transmitted from points within the horizon to points outside the horizon. If a black
hole includes a curvature singularity, the singularity is clothed within the horizon. We
do not have compelling observational evidence that any black hole includes a curvature
singularity clothed within that black hole’s horizon and, given that no signal can exceed
the speed of light, we likely could not have compelling observational evidence that any
given black hole includes a curvature singularity. Physicists generally think that while

black holes exist — that is, while there exist compact objects with sufficient mass-energy
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density to have developed a horizon — physicists do not generally think that the interior
of those objects is accurately described by General Relativity. While black holes exist, they
likely do not contain singularities. Thus, the arguments that I've provided here do not
provide reason to deny that there are astrophysical black holes, at least when that claim
is correctly interpreted.

Let’s move to a third response I've sometimes heard philosophers express. Science
journalists will sometimes say that singularities are points to which physical laws do not
apply. In casual conversation or correspondence, philosophers sometimes repeat that
statement and are surprised to learn that, according to General Relativity, curvature sin-
gularities are open boundaries and not parts of space-time. Charitably, science journalists
are expressing the notion that our knowledge of physical law is thought to run out as we
approach the locations where General Relativity predicts the occurrence of a curvature
singularity and not that fundamental physical law somehow stops applying. General
Relativity does not have the power to literally predict points beyond the reach of physical
law —how could a physical theory possibly do that? —but suppose that, somehow, General
Relativity did predict that there are points where physical law no longer applies. One (per-
haps defeasible) desideratum for a final physical theory is that the theory has unlimited
scope. If General Relativity predicted the existence of points beyond the scope of physical
law, wouldn’t we understand such a prediction as a defect of General Relativity? And
if we did understand such a prediction as a defect of General Relativity, wouldn't this
provide us with another reason to deny that we should endorse a realistic interpretation

of curvature singularities?

3.3 Some other philosophical responses

In this section, I briefly turn to some philosophical arguments which attempt to show
that the Big Bang is relevant for whether the Cosmos began to exist but which do not
draw upon results about singularities.” To begin, let’'s compare the situation in which

present physical cosmologists find themselves with the situation that nineteenth century

>1The arguments in this section were suggested by Paul Draper in correspondence.
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geologists found themselves in with respect to the debate between catastrophism and
uniformitarianism. Suppose that Greg is a nineteenth century geologist who thinks that
there is some minimal evidence for catastrophism and that Greg wants to know whether
there is some evidence that the Earth began in the finite past. Greg might point out that
if the Earth did begin to exist in the finite past, then there was a castrophe in the Earth’s
history before which we cannot trace the history of the Earth.

Throughout this dissertation, I will assume the relevance theory of evidence, according
to which some datum e is evidence for hypothesis & relative to background knowledge
K just in case the datum raises the probability of 4, i.e., Pr(hle&K) > Pr(h|K). Data that
raises the probability that the Earth hasn’t always existed in the Earth’s present state
raises the probability that the Earth began and so is evidence for the Earth’s beginning.
Likewise, I would concede that Big Bang cosmology provides us with some evidence that
the universe has not always existed in the universe’s present state and so some evidence
for the conclusion that the universe began. Moreover, as I will discuss in chapter 7, one
necessary condition for the Cosmos to have had a beginning is that the Cosmos includes
a past boundary. While the universe is a proper part of the Cosmos, the Cosmos could
not have a past boundary unless the universe has a past boundary. For that reason, that
the universe includes a past boundary raises the probability that the Cosmos includes a
past boundary. Thus, all else being equal, since Big Bang cosmology provides us with
evidence that the universe has undergone change over time, we have some evidence that
the Cosmos includes a past boundary and so some evidence that the Cosmos includes a
beginning.

A few things can be said in reply. First, the relevance theory of evidence provides a
very minimal threshold for data to count as evidence for a hypothesis. Consider LEP-
RECHAUN, that is, the hypothesis that the grass outside my apartment was made green
by invisible leprechauns casting a green-making spell over the grass. In ordinary lan-
guage, we might say that there is no evidence for LEPRECHAUN. But, according to the
relevance theory of evidence, the fact that the grass outside my apartment is green is
evidence for LEPRECHAUN. The trouble is just that the evidence is not strong enough

to render LEPRECHAUN more epistemically probable than its negation. Likewise, while
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the fact that the universe has changed over time might provide some evidence that the
Cosmos began, the evidence is not so strong as to render the Cosmos having a beginning
more probable than the Cosmos not having a beginning. Second, whether we endorse a
specific hypothesis ought to be decided by the total evidence and not merely in virtue of
the fact that there is some data supporting the hypothesis.

I turn to considering a second philosophical argument. Gottfried Leibniz (1956, pp. 26—
27) considers (and rejects) a view according to which the Cosmos was preceded by empty
time. Since Leibniz endorses the Principle of Sufficient Reason, Leibniz asks for a sufficient
reason for the Cosmos beginning at the specific time at which the Cosmos began and not
at some other. Suppose that we trace the expanding universe backwards and suppose
that there is some maximal matter-energy density to the universe. (For example, loop
quantum gravity implies that there is a maximum physically possible matter-energy
density.) Since the matter-energy density cannot be higher than the maximum and, as we
trace the expansion backwards, the matter-energy density increases, there must be some
time when the universe began to expand.

Consider two possibilities: first, that the universe existed in that maximally dense
state for a past eternity or, second, that the maximally dense state corresponds to the
tirst moment of time. If the maximally dense state existed for a past eternity, then we
face Leibniz’s problem; why did that maximally dense state begin expanding at some
particular time instead of some other? But if the maximally dense state corresponds to the
tirst moment of time, then we avoid Leibniz’s problem because, in that case, the universe
was not preceded by time. If there was a first moment of time, then the Cosmos must
have a past boundary, and we have at least some evidence that the Cosmos began to exist.

There are at least three problems with this argument. First, the argument requires the
adoption of a philosophically controversial premise, i.e., the Principle of Sufficient Reason.
Second, provided that we accept the Principle of Sufficient Reason, as with the previous
philosophical argument, the argument provides only weak evidence for the conclusion
that the Cosmos began to exist. Third, the argument involves a false dichotomy. The
maximally dense state could have been preceded by a contracting universe, as I consider

in chapter 11.
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3.4 Summary

In this chapter, I've summarized the a posteriori case for the KCA’s second premise. At
tirst glance, Big Bang cosmology offered to physicists what many authors from previous
centuries considered infeasible, viz, an empirically well supported physical theory one
of whose consequences is that there is a finite interval of time to our past prior to which
the observable universe did not exist. Empirically oriented defenders of the KCA, such
as Craig, Sinclair, and Swinburne, have argued that Big Bang cosmology lends strong
empirical support to the KCA’s second premise. However, the view that Big Bang cos-
mology lends strong empirical support to the KCA’s second premise depends on various
mathematical results in General Relativity. Physicists have a standard set of reasons for
rejecting those mathematical results. General Relativity is likely to be supplanted in a
future physical theory. Whether or not the universe, let alone the Cosmos, should be
said to have a beginning according to whatever theory supplants General Relativity is not
currently known.

I've rehearsed some standard reasons for doubting that curvature singularities are
physically realized. However, as I have already discussed, friends of the KCA’s second
premise have argued that the KCA’s second premise can be defended without appealing
to curvature singularities. Thus, I have not yet shown that the KCA is without merit. In
order to examine whether we can determine that the Cosmos had a beginning, we should
articulate and clarify the concept of the Cosmos having a beginning. Unfortunately, most
philosophers, physicists, and theologians who have previously discussed the beginning
of the Cosmos have failed to articulate a conception of the beginning of the Cosmos and,
so far as I know, no author has previously articulated a fully adequate conception. In the
next section, I develop three necessary (though not necessarily sufficient) conditions for
the Cosmos to have had a beginning. While I make no claim about the sufficiency of the
three conditions, the three conditions do push the investigation of the beginning of the

Cosmos substantially forward.

58



Part 11

GETTING CLEAR ON THE
BEGINNING OF THE COSMOS
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4. THE BEGINNING OF THE COSMOS AND THE METAPHYSICS
OF TIME

41 Introduction

In part II of this dissertation, I address how we should understand the notion that
the Cosmos began to exist. One might have thought that the concept of the beginning
of the Cosmos could be analyzed from the armchair. As a first pass, the Cosmos began
to exist if there is a moment of time such that the Cosmos exists at that moment and
the Cosmos does not exist at any prior moment. As we will see, this definition will not
do and, unfortunately, a full suite of necessary and sufficient conditions for the Cosmos
to have a beginning are surprisingly difficult to come by. Instead of developing a full
suite of necessary and sufficient conditions, I will sketch and defend a set of conditions
that meet the following three desiderata: (i) the conditions should be necessary for the
Cosmos to have a beginning, (ii) the conditions should be useful in determining whether
the Cosmos had a beginning, and (iii) the conditions should help to elucidate the concept

of a beginning. The three conditions that I will sketch and defend are:

1. The Modal Condition: At all of the closest possible worlds where time does not

exist, the Cosmos does not exist.
2. The Direction Condition: The Cosmos has a global direction of time.

3. The Boundary Condition: Either there is a closed boundary to the past of every
non-initial space-time point (the topological conception) or there is an initial objectively

finite portion of the Cosmos’s history (the metrical conception).

I do not claim that these three conditions are logically independent. In this dissertation,
I remain neutral on their logical interrelationships and my discussion of each the three
conditions will be relatively self-enclosed.

Throughout, I will frequently discuss how these three conditions can be understood
in the context of classical space-times, that is, relativistic and pre-relativistic space-times.

As I've already explained, the majority of physicists and philosophers of physics agree
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that General Relativity will be supplanted in future physical inquiry by a quantum theory
of gravity. We do not yet possess a universally agreed upon quantum theory of gravity.
In some places, particularly in discussion of the Modal Condition, I will discuss some of
the proposals for quantum gravity theories. However, in other places, I discuss only how
my account applies to classical space-times.! For that reason, my comments in part II
should be regarded as provisional and subject to revision in light of future physical (and
philosophical) inquiry.

In this chapter, I begin a discussion of what ‘beginning to exist’ means by discussing
whether beginning to exist requires a specific metaphysical theory about the nature of
time to be true. In their sophisticated defenses of the KCA, William Lane Craig and
James Sinclair have argued that beginning to exist is an irreducibly tensed notion, so
that the Cosmos could have begun to exist only if the A-theory of time — that is, the
view that there are objectively and irreducibly tensed facts — is true (Craig and Sinclair,
2009, pp. 183-184; Craig, 1990, pp. 337-338; Craig, 2007b); this conclusion is shared by
many other philosophers, including William Godfrey-Smith (1977), Bradley Monton (2009,
p. 94), David Oderberg (2003, p. 146), Ryan Mullins (2016, pp. 135-136, 143, 147; 2011,
p- 43), and Felipe Leon (2019, p. 62). Other authors, e.g., Hans Reichenbach (1971, p. 11),
have maintained that B-theory entails that nothing objectively begins or changes and so
are implicitly committed to the view that if anything does objectively begin or change,
A-theory is true.

Although some authors have claimed that beginning to exist is a kind of change and
that change requires the truth of A-theory, B-theorists have developed an alternative
account of change that does not require A-theory. The most popular B-theoretic account
of change is the at-at theory, that is, the theory that a change occurs just in case (i) some
state of affairs a obtains at time t;, (ii) some state of affairs f mutually incompatible with
a obtains at time t,, and (iii) t; # t,. In order to use the at-at theory in a conception of the

beginning of the Cosmos, there would need to be a time before the Cosmos exists and a

17Quantum gravity may provide further obstacles to a clear notion that the Cosmos began that I do not
discuss in this chapter. For example, if the Cosmos can be in a superposition of having a beginning and not
having a beginning, there may not be a determinate fact about whether the Cosmos began.
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subsequent time when the Cosmos does exist. Some authors (e.g., Richard Swinburne)
maintain that the Cosmos’s beginning was preceded by empty time and so they can
accommodate an at-at conception of the Cosmos’s beginning. However, other authors
maintain that time is a physical phenomenon; if they are right, time could not have
preceded the Cosmos. In order to accommodate the intuitive notion that the Cosmos
and time could have begun together, we need an alternative to the at-at conception. An
alternative can be developed according to which, roughly speaking, a change occurs just
in case either the three conditions from the at-at conception obtain or some state of affairs
a obtains during some period of time and there is no prior period of time in which «a
obtains. In that case, the Cosmos could have begun if there was once a finite period of
time before which the Cosmos did not exist. This notion will need to be made rigorous,
and consistent with relativity, in subsequent chapters.

The present chapter sets the stage for the rest of part II. In order for my account of the
notion that the Cosmos had a beginning to accommodate as many metaphysical views
about the nature of time as possible, the present chapter leaves us with three desiderata:
(i) the account should be consistent with both A- and B-theory, (ii) the account should
be consistent with our best physical theories concerning the nature of time, including
Special and General Relativity, and (iii) the account should be consistent with, but should
not require, the view that there was time before the Cosmos’s existence. While I will not
assume in this dissertation that beginning to exist is an objectively tensed notion, some
readers may find that view attractive. If they do, they can take solace in the fact that the
necessary conditions for the Cosmos to have had a beginning that I defend throughout
part II (the Modal, Direction, and Boundary Conditions) are not assumed to be sufficient
conditions; the reader may, if they choose, add a Tensed Condition. Additionally, this
chapter has the aim of introducing the various metaphysical accounts of time that I will

make use of throughout the rest of this dissertation.
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4.2 Metaphysical Accounts of Time

In this section, I will describe three families of metaphysical accounts of time — A-
theories of time, B-theories of time, and C-theories of time — that will be useful both in
this chapter and throughout the rest of this dissertation. According to the A-theories
of time, time objectively “passes” or “flows” and grammatical tenses express objective
and irreducible truths. Objective passage is usually understood to involve an absolute
distinction between the past, the present, and the future; events are either absolutely
past, absolutely present, or absolutely future. The passage of time involves future events
becoming present and present events becoming past. The objective relations that past,
present, and future bear to each other are termed the A-relations and, according to A-
theorists, the tenses appearing in natural languages express the A-relations. The series of
events arranged according to the A-relation is called the A-series.

B-theories of time conjoin two theses. First, B-theories of time deny that time passes
or flows and that there are any irreducibly tensed truths. Second, B-theories of time
endorse the view that there are absolute relations of before and after. B-theory is sometimes
said to include the relation simultaneous-with. The orthodox Minkowskian interpretation
of relativity precludes the possibility that any two spatio-temporally non-overlapping
events are absolutely simultaneous. While the absolute simultaneity of spatio-temporally
overlapping events is trivial, relativity is typically understood to preclude any absolute
and non-trivial simultaneity relation. For that reason, I will leave absolute simultaneity
out of the definition of B-theory.? Since B-theorists deny that time passes or flows and
deny that there are any irreducibly tensed truths, B-theorists are typically understood to

deny that there is an objective (or non-indexical) distinction between the past, present, or

27One may wonder how there could be absolute before/after relations if, according to relativity, there are
no non-trivial absolute simultaneity relations. Pre-relativistic conceptions of time mandate that any two
numerically distinct space-times points p; and p, are such that p; is either before, after, or simultaneous
with p,. Readers unfamiliar with relativity may therefore think that if p; and p, fail to be simultaneous,
then p; must be either before, after, or else not absolutely temporally related to p,. Relativistic space-times
escape this intuition by introducing a distinction between space-like and time-like separated points absent
from pre-relativistic space-times. In relativistic space-times, any two numerically distinct space-time points
p1 and p» are such that either p; and p; are time-like related — in which case either p; is either absolutely
before or after p, — or p; and p; are space-like related, in which case p; is not absolutely simultaneous-with,
before, or after ps.
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future. B-theorists can accommodate an indexical distinction between the past, present,
and future similar to the spatial relations of here and there, but B-theorists cannot hold
that there is an objective “passage” of time from future to present to past. As I've said,
B-theorists do endorse objective relations of before and after; in turn, before and after are
termed the B-relations. The series of events arranged according to the B-relation is called
the B-series.

The claim is often made that relativity supports the B-theory of time. While there are
non-traditional versions of B-theory that drop the notion that any two non-overlapping
events can be absolutely simultaneous, the B-series, as originally formulated by John
McTaggart (1908) and as often presented in introductory metaphysics textbooks, pos-
tulates a distinct formal structure for space-time than does the standard Minkowskian
interpretation of relativity. Consider that Michael Loux (1998, p. 213), in his introductory
metaphysics textbook, describes B-theory as entailing that “time is a dimension along
with the three spatial dimensions; [time] is just another dimension in which things are
spread out.” Since the time dimension and the three spatial dimensions are independent,
we might think of each instant of time — or each point along the temporal dimension — as
corresponding to an arrangement of objects in space, so that any two events are simulta-
neous just in case they exist together in the same three-dimensional space. Philosophers of
physics will recognize that the view described by Loux most closely matches Newtonian
space-time, that is, the view that space-time consists of a series of three dimensional spaces
located at successive times, and does not match the Minkowskian view in two important
respects. First, on B—theory as described by Loux, time is an additional dimension to
our familiar three spatial dimensions. As Minkowski (1952, p. 75) argued, in relativity,
both space and time disappear as independent existences, so that we are left with a kind
of union of the two that is neither spatial nor temporal. To be sure, space-time, as un-
derstood by Minkowski, is a four-dimensional manifold, but, since the division between
space and time cannot be formulated without adopting a reference frame, the dimensions
are themselves neutral between space and time. Second, to the extent that a time param-

eter appears in orthodox relativity, time is measured along trajectories (i.e., the so-called
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proper time) traversing space-time and not as an additional dimension to the three spatial
dimensions.

Lastly, there are the C-theories. Like B-theories, C-theories deny that time passes or
flows and that there are any irreducibly tensed truths. But C-theories additionally deny
that that there are absolute or objective relations of before and after. That is, C-theories
deny that time has any absolute or objective direction. C-theories endorse the view
that there is an objective betweeen-ness relation called the C-relation. The series of events
arranged according to the C-relation is called the C-series.

A-, B-, and C-theories can be distinguished by the arity of the objective relations
postulated by each theory. A-theories postulate three monadic predicates (past, present,
and future). For example, let § represent the time of my birth and let # be the predicate
representing past-ness. In that case, A-theorists will agree that $() is now true, though
P(B) was once false (or, on the view that there are no determinate truths about the future,
that P(B) once had no truth value). The passage of time is reflected in the fact that there
is some collection of non-indexical sentences, e.g., (), whose truth value changes. B-
theory postulates two binary relations (before and after). For example, let < represent
the before relation and let IT represent the time at which I am writing this sentence. In
that case, B-theorists will agree that § < Il. The fact that, according to B-theory, time
does not objectively pass is reflected in the fact that there is no collection of non-indexical
sentences whose truth value changes, e.g., B < ITis timelessly true.> C-theory postulates
one trinary relation (between-ness). Let I represent Lincoln’s delivery of the Gettysburg
address, Q) represent the 2024 American presidential election, and let 8 represent the
between-ness relation. C-theorists will agree that B(I’,I1, Q). But, due to the symmetry
of B, C-theorists will also agree that B(€),I1,I'). The fact that, for C-theorists, time does
not objectively pass is reflected by the fact that, for the C-theorist, there is no set of non-

indexical sentences whose truth value changes. And the fact that, for C-theorists, there is

31B-theorists allow that the truth values of indexical sentences can change. For example, the indexical
sentence ‘I graduated from the University of Rochester thirteen years ago’ is true when stated in 2022 but
false when stated in any other year. Nonetheless, according to B-theory, the truth of that sentence can be
exhaustively explained by a set of non-indexical sentences whose truth value does not change. Compare:
the sentence ‘I am in Indiana’ is true when uttered in Indiana, false when uttered outside of Indiana, and
entirely explicable without positing some special metaphysical status to Indiana’s border.
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no direction to time is reflected by the symmetry of the between-ness relation, e.g., that

BT,11,Q) < B(Q,I1,T) is timelessly true.

4.3 Beginning of Existence and Metaphysical Accounts of Time

Having laid out the various metaphysical theories concerning the nature of time, in
this section, I turn to considering whether the notion that the Cosmos began to exist
requires a specific metaphysical account of the nature of time. As I will show, the notion
that the Cosmos began to exist is incompatible with C-theory. And while some authors,
whose views I will summarize, have thought that the beginning of the Cosmos requires
the A-theory of time, I will argue that we should develop a notion of the beginning of

time that is consistent with both A-theory and B-theory.

4.3.1 C-Theory and Beginning to Exist

Let’s first turn to showing that the notion that the Cosmos had a beginning is incom-
patible with C-theory. Intuitively, beginning to exist is an asymmetric notion; if I began
to exist at my birth and endure or perdure for some time, then I did not also cease to exist
at my birth.* Consequently, if one of the C-theories is true, nothing begins to exist.

Whether we should say that C-theories of time are theories of time is at least somewhat
controversial. When McTaggart first introduced and defended the view that our world
is ordered according to a C-series and not the A- or B-series, he thought that he had
abolished time altogether by showing that time is “unreal”. In chapter 5, I will consider
views according to which the Cosmos is fundamentally timeless. Most of the theories

that I will consider are more radical than C-theory. Nonetheless, in chapter 10, I will

“1Jeffrey Brower raised the objection that, intuitively, an object O which exists for a single instant (and
satisfies the other conditions for beginning to exist that I discuss in chapters 5, 6, and 7) begins to exist. Fair
enough, though, in that case, time asymmetry is still important for distinguishing the notion that O began
from the notion that O ceased to exist. We can say that O began for several reasons, each tied to a temporal
asymmetry, e.g., there is a time before O’s existence, there is a time ¢ such that O did not exist before ¢, etc.
Likewise, the destruction of O is tied to temporal asymmetry, e.g., there is a time after O’s existence, there is
a time ¢ such that O does not exist after ¢, etc. Consequently, if O exists only for one instant T, then T can be
understood as both the “birth” and “death” of O, where birth and death are tied to distinct ways in which
T bears an asymmetric relation to other (real or unreal) times.
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assume that if C-theory is correct, then the Cosmos is fundamentally timeless, or at least
not fundamentally temporal in any sense that is relevant for whether the Cosmos began.

For present purposes, let’s set aside the C-theories of time.

4.3.2 A-theoretic Accounts of Beginning

Some authors have argued that beginning to exist requires an A-theory of time. Con-
sider that most A-theorists understand the passage of time to involve states of affairs
coming into being. For example, growing block theorists maintain that only the present
and the past exist. Future events do not yet exist, but come into being by becoming
present. On B-theory, all moments of time exist simpliciter and so do not come into be-
ing by becoming present. Consequently, if ‘my apartment began to exist’ expresses the
proposition that my apartment came into being by becoming present, then my apartment
beginning to exist is inconsistent with B-theory. Nothing begins, in this sense, unless the
A-theory is true. Likewise, Craig and Sinclair (2009, pp. 183-184) have argued that if there
are no tensed facts, then there is no fact about the universe beginning to exist and the quest
to find a cause of the universe is confused. Monton (2009, p. 94) puts the point in terms
of four-dimensionalism. If space-time is a timeless four-dimensional block, in which time
is another direction of space, then a boundary of time is not a beginning in the relevant
sense. However, as I've discussed, relativistic four dimensionalism should not be under-
stood as the view that time is another dimension of space. In any case, Monton’s point
can be made without geometrizing time. Monton’s point can be re-phrased as follows:
B-theory is sometimes interpreted to imply that space-time is an eternal and changeless
four-dimensional block; if the four-dimensional block is eternal and changeless, then
nothing ever changes. If nothing ever changes, then nothing begins to exist. Thus, on at
least some conceptions of beginning to exist, beginning to exist requires A-theory. In the

next section, I turn to examining an alternative B-theoretic account of beginning to exist.
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4.3.3 B-theoretic Accounts of Beginning

The At-At Conception

If beginning to exist requires the A-theory of time, then there may be good reason
to deny the view that the Cosmos began to exist. For example, there are a variety of
arguments against the A-theory of time, including the fact that the A-theory of time is at
least difficult to render compatible with relativity (Putnam, 1967; Rietdijk, 1966; Penrose,
1989, pp. 201, 303-304; Petkov, 2006; Romero and Pérez, 2014). Insofar as we have reason
to be realists about relativity, and so to think that space-time has the formal structure
postulated by relativity, we would have reason to deny that the Cosmos began to exist.
Likewise, insofar as there are philosophical arguments against tensed theories of time,
we would have reason to deny that the Cosmos began to exist. Nonetheless, despite
the claims made by A-theorists, there are B-theoretic accounts of change that allow B-
theorists to accommodate a different sense of beginning to exist. The fewer controversial
assumptions that an account requires, the better off the account is. If an account of
beginning to exist can be formulated that remains neutral between A- and B-theory, that
account of beginning to exist would be superior to an account that requires either A- or
B-theory.

For that reason, let’s turn to considering one standard B-theoretic account of change.
According to the at-at theory, for change to occur requires only that there (tenselessly)
exists a time t; at which state of affairs s; obtains and a numerically distinct time t, at
which state of affairs s, obtains such that s; and s, are incompatible states of affairs.”
Perhaps we can say that x began to exist only if there exists a time #; at which x did not
exist, a numerically distinct time ¢, at which x exists, and t; is absolutely before t,. On this
interpretation, for my apartment to begin to exist requires only that there is a time when
my apartment does not exist that occurs absolutely before another numerically distinct

time at which my apartment does exist. Call this account the at-at account of beginning.

>1The at-at theory was originally developed as a theory of motion in reply to one of Zeno’s Paradoxes
(Russell, 1918, pp. 83-84; Arntzenius, 2000; Huggett, 2019; Salmon, 1980). However, motion is a kind of
change (i.e., change in position over time) and, as pointed out in, e.g., Salmon, 1977, p. 222 the at-at theory
is easily generalized into a theory of change.
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The at-at account of beginning requires that there was a moment of time before the
Cosmos existed. Swinburne has offered a substantivalist account of time in which time
precedes what Swinburne calls the “Universe” — roughly equivalent to my “Cosmos” —
and in which time has no beginning even though the Universe had a beginning. And
Swinburne (1996) has argued that the Universe began just in case there was a time pre-
ceding the Universe. Alan Padgett (2000; 2001a, p. 109; 1989, 1991, 2010, 2013), Ryan
Mullins (2014, 2016, 2020), Garrett DeWeese (2016), and other members of the so-called
“Oxford School” have likewise defended views on which there was amorphous time prior
to Creation. Members of the Oxford School can endorse the at-at account of the Cosmos’s
beginning because, on their view, there is a time that precedes the Cosmos.® While I think
the Oxford School’s view that time is non-physical is implausible, I do not argue against
the Oxford School in this dissertation. For that reason, one desideratum for the necessary
conditions for the Cosmos to have had a beginning that I develop in this dissertation is
that the conception be consistent with the Oxford School’s conception of time.

While some authors, such as the members of the Oxford School, maintain that time is
non-physical and so could have preceded the Cosmos’s existence, other authors maintain
that time is a physical phenomenon that could not have preceded the Cosmos’s existence.
Contemporary physical theory appears to suggest that time is a physical phenomenon,
so that time could not have preceded the Cosmos. For example, we can distinguish two
ways of understanding the standard Minkowskian interpretation of relativity. Substantival
Minkowskians understand space-time as a physical object (or substance). If Substantival
Minkowskianism is true, then there is no time before the existence of physical objects and
so no time before the Cosmos exists. As I've said, the at-at account of beginning requires
two times, e.g., one time at which the Cosmos does not exist and a subsequent time at
which the Cosmos does exist. Thus, if both Substantival Minkowskianism and the at-at
account of beginning are correct, then the Cosmos did not begin to exist. On the other

hand, Relational Minkowskians deny that space-time is a physical object. For the Relational

®To be clear, most, perhaps all, members of the Oxford School endorse the A-theory of time. Nonetheless,
their view that time is not a physical phenomenon and precedes the Cosmos is compatible with both
A-theory and B-theory.
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Minkowskian, space-time should be understood in terms of the relations between material
bodies or in terms of the properties (or attributes) of a single material body. Note that if
space-time should be understood in terms of the relations between material bodies, then
there is no time before the existence of material bodies. For that reason, if both Relational
Minkowskianism and the at-at account of beginning are correct, then the Cosmos did not
begin to exist. Therefore, if the at-at account of beginning to exist is correct and either
version of Minkowskianism is correct, then the Cosmos did not begin to exist. Prima facie,
this appears to rule out a beginning of the Cosmos, since one is hard pressed to imagine
a better alternative interpretation of relativistic physics that avoids the view that time is a
physical phenomenon.

The trouble is that even if time is a physical phenomenon, we should still be able to say
that the Cosmos began. For example, supposing that time is a physical phenomenon, we
should be able to say that the Cosmos and time began together. The at-at conception of the
beginning of the Cosmos is inadequate because the at-at conception would inappropriately
rule out such a possibility.

There is an additional reason to rule out the at-at conception of the beginning of the
Cosmos. We can say that an entity E has a beginning-in-time just in case E has a beginning
and, during all of the times in which E exists, E is a content of moments of time and so is
distinct from time itself. In contrast, let’s use beginning-of-time to refer to the beginning of
time, itself. The at-at conception should be thought of as a conception of beginning-in-time
as opposed to a conception of the beginning-of-time (Draper, 2008). Supposing that time
is a physical phenomenon, so that time begins when the Cosmos begins, the beginning of
the Cosmos is the beginning of time, itself. Thus, in order to be consistent with the view
that time is a physical phenomenon, an analysis of the beginning of the Cosmos should
accommodate the view that the beginning of the Cosmos was the beginning-of-time. For
that reason, we need an alternative to the at-at conception for discussing the Cosmos’s
beginning.

Consider, again, the aforementioned desideratum that our conception of the Cosmos’s
beginning should be consistent with the Oxford School’s conception of time. This desider-

atum reflects a more general thought about what sort of criteria a good conceptual analysis
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of the Cosmos’s beginning should involve. In the introduction to this dissertation, I stated
thatI am interested in a conception of the beginning of the Cosmos that fulfills two desider-
ata. First, to help the second premise of the KCA -— that the Cosmos began to exist —
‘beginning’ should be understood as broadly as possible. Second, to help the first premise
— that anything that begins to exist has a cause for beginning — ‘beginning’ should be
understood as narrowly as possible so as to avoid making the first premise obviously
false. We can refine our intuitions, in light of sophisticated philosophical, scientific, and
mathematical inquiry, about which epistemically possible worlds include a beginning of
the Cosmos. For example, above, I showed that both Substantival Minkowskianism and
Relational Minkowskianism, when conjoined with the at-at conception of the beginning
of the Cosmos, led to the intuitively wrong conclusion about whether the Cosmos began
to exist. While this dissertation does not take up whether Substantival Minkowskianism
or Relational Minkowskianism are true, one of my goals for developing a conceptual
analysis of the beginning of the Cosmos is that the concept be neutral with respect to as

many metaphysical theories as possible.

Other B-theoretic Conceptions

The at-at account of the Cosmos’s beginning leads to counterintuitive consequences
about which possible worlds include a beginning of the Cosmos. Thankfully, there is an
alternative analysis of the Cosmos’s beginning that does not lead to the same counter-
intuitive consequences. The trouble with the at-at conception was the invocation of two
times, including a time before the Cosmos’s existence. In order to retain consistency with
the Oxford School, we shouldn’t rule out the possibility that there are times before the
Cosmos. But to avoid the problems posed by the at-at conception, we need an account
that does not make explicit reference to times before the Cosmos’s beginning. We are

thereby led to the following proposal:

If the Cosmos began to exist, then there was a time (or perhaps a finite interval of time) such

that there were no prior times (or prior intervals of time) at which the Cosmos existed.
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This proposal requires only one time (or one finite interval of time) and so escapes the
worries that were introduced by the at-at account. Nonetheless, this proposal remains
consistent with the Oxford School by allowing for the possibility that there were prior
times at which the Cosmos did not yet exist.

Nonetheless, this accountis not fully satisfactory. Recall that, on the standard Minkowskian
interpretation of relativistic space-times, we should not understand temporal series as a
sequence of three dimensional spaces; instead, time is measured along trajectories that
pass through space-time so that every temporal series is indexed to a specific trajectory
through space-time. For that reason, in relativistic space-times, there is no such thing
as a moment or interval of time simpliciter. Since the account we’ve developed thus
far requires a moment, or interval, of time simpliciter, we will need to develop a more
sophisticated conception in subsequent chapters. We will return to this issue in chapters

6and 7.

4.4 Summary

The present chapter sets the stage for the rest of part II. Iidentified three desiderata
that will need to be fulfilled in order for an analysis of the notion that the Cosmos
had a beginning to be consistent with as many metaphysical views about the nature of
time as possible: (i) the account should be consistent with both A- and B-theory, (ii) the
account should be consistent with our best physical theories concerning the nature of
time, including Special and General Relativity, and (iii) the account should be consistent
with, but should not require, the view that there was time before the Cosmos’s existence.
In addition, this chapter allowed me to introduce the various metaphysical accounts of
the nature of time that I will make use of throughout the rest of this dissertation.

As I've discussed, a variety of A-theorists have argued that nothing begins to exist if
B-theory is true. However, B-theorists have developed an alternative account of change,
the at-at theory, according to which change involves the existence of two mutually incom-
patible states of affairs at two distinct times. While some authors maintain that time is

not a physical phenomenon and so may have preceded the Cosmos, contemporary phys-
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ical theory suggests that time is a physical phenomenon and so could not have existed
before the Cosmos. In order to accommodate the intuitive notion that the Cosmos and
time could have begun together, B-theorists need an alternative to the at-at conception
for articulating the notion that the Cosmos began to exist. I developed an alternative
conception according to which the Cosmos could have begun if there was once a finite
period of time before which the Cosmos did not exist. This notion will need to be made
rigorous, and consistent with relativity, in subsequent chapters.

In the next chapter, I will further develop my analysis of the notion that the Cosmos
began in a different way, i.e., by, first, turning to a debate in philosophy of religion
concerning God’s relationship to the beginning of time and, second, considering a similar
issue in the literature on the philosophical foundations of relativity, quantum gravity, and

quantum interpretations.
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5. THE MODAL CONDITION

5.1 Introduction

At first glance, theologians and philosophers of physics are unlikely bedfellows.
Nonetheless, both theologians and philosophers of physics are interested in understand-
ing the claim that the whole of physical reality — the Cosmos — began to exist. For
theologians, the claim that the Cosmos began to exist should be contrasted with the claim
that God did not begin to exist. Some analytic theologians and philosophers of religion
have defended the view that while there is a first finitely long period of time in God’s
life, God’s life was beginningless (Craig, 2001b; Erasmus, 2021; Loke, 2017). This view
is conceptually problematic because, prima facie, to begin to exist just means that one’s
life included a finitely long initial period of time. On the other hand, as discussed below,
a variety of contemporary physical theories and research programs are committed to the
claim that the Cosmos is not fundamentally spatiotemporal (Barbour, 1994, 1999; Bihan,
2017a, 2017b, 2019, 2020; Butterfield and Isham, 2006; S. Carroll, 2019, 2022; S. Carroll and
Singh, 2019; Earman, 2002a; Healey, 2002, 2021; Huggett, 2022; Huggett and Wiithrich,
2013, 2018; Oriti, 2014, 2020, 2021; Rovelli, 2020; Wilson, 2021).! If the Cosmos is not

fundamentally spatiotemporal, then, even if there were an initial finitely long period of

11Throughout this chapter, Imake use of the notion of fundamentality. For example, I will examine theological
theories according to which there is a fundamental aspect of God that is non-temporal and I will examine
speculative physical theories according to which there is a fundamental aspect of physical reality that is
non-spatio-temporal, or at least non-temporal. I do not provide an account of fundamentality here — in part
because providing a conceptual analysis of fundamentality turns out to be non-trivial — but I will provide
the reader with some intuition pumps for thinking about what I mean when I say that A is a fundamental
aspect of some entity E. To say that A is a fundamental aspect of some entity E means that, at the level
of metaphysical explanation, A is a non-derivative aspect of E; while there are other aspects of E whose
explanation is in terms of A, A does not have a further and more basic explanation in terms of other aspects
of E. We can identify a set of formal properties obeyed by the fundamentality relation. The fundamentality
relation is transitive, i.e., if x is fundamental to ¥ and y is fundamental to z, then x is fundamental to z.
Fundamantality is irreflexive, i.e., nothing is fundamental to itself. And fundamentality is asymmetric, i.e.,
if x is fundamental to y, then y is not fundamental to x.

One way that A could be fundamental to E would be if A is the reductive base for E. For example,
H,0 molecules are fundamental to water. However, fundamentality is more general than the relation of
being-a-reductive-base-for since (for example) God is not reducible to God’s fundamental aspect(s), but God’s
less fundamental aspects are explained in terms of God’s more fundamental aspects. As another example,
the relation of being-functionally-realized-by is another example of fundamentality, so that (for example) if
mental states are functionally realized by, but not reducible to, neuronal states, then neuronal states are
fundamental to mental states.
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time in the life of the Cosmos, the Cosmos would be fundamentally beginningless. Thus,
both theologians and philosophers of physics are interested in theories according to which
there was an initial, finitely long period of time in the life of some x, even though x is
beginningless.

Consequently, both theologians and philosophers of physics should be interested in
developing necessary criteria for beginning to exist that distinguish beginningless entities
whose lives include an initial finite period from entities that did begin to exist. In this
chapter, I defend a necessary, but not sufficient, condition for beginning to exist that
distinguishes the two classes of entities. According to the Modal Condition, the Cosmos
had a beginning only if at all of the closest possible (or counterpossible) worlds where
time does not exist, the Cosmos does not exist. To articulate the Modal Condition, I begin
by discussing a theological debate concerning God’s relationship to time and I develop
the Modal Condition using the Lewis-Stalnaker semantics for counterfactual conditionals.
AlthoughIam not myself a theist, the theological reflections contained in this chapter were
useful for thinking through a novel necessary condition for the beginning of existence;
for that reason, I invite naturalists to read through the theological sections of this chapter
with an open mind. After developing the Modal Condition in the theological context, I
turn to a discussion of the Modal Condition in philosophy of physics. One upshot of this
chapter is that, despite frequent claims to the contrary, establishing that physical reality
has a finite past is not sufficient for establishing that physical reality had a beginning.

5.2 The Theological Problem

5.2.1 A survey of views on God’s relationship to time

As I explained in the introduction, this chapter is concerned with two problems that
have a common solution: one problem in philosophy of religion and another problem
in philosophy of physics. In order to explicate the problem in philosophy of religion, I
need to first explicate how, assuming that God exists, God might be thought to relate to
time. There are three views about how God might be related to time (Deng, 2018; Ganssle,

n.d. Leftow, 2005; Padgett, 2013). First, as defended by most classical theologians, God
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might be absolutely timeless, in the sense that God’s life does not begin or end and God is
not subject to temporal succession. Proponents of the absolutely timeless God sometimes
say that God inhabits a timeless present that never passes into or out of either being or
God’s experience. This is contrasted with temporal entities, which experience successive
presents. Second, God might be temporal but everlasting (or sempiternal), in which
case God’s life is subject to temporal succession but extends infinitely into the past and
infinitely into the future.? Third, there is a family of hybrid views according to which God
is in some sense timeless and in some sense temporal. I will refer to theories maintaining
that God is in some sense timeless and in some sense temporal as hybrid views.

The family of hybrid views can be further subdivided in at least two ways. First, there
there is the so-called Oxford School (DeWeese, 2016; Mullins, 2014, 2016, 2020; Padgett,
1989, 1991, 2000, 2001a, 2010, 2013; Swinburne, 1996). According to the Oxford School,
time did not begin with the Cosmos. However, the Oxford School distinguishes between
two distinct kinds of time: physical time and metaphysical time. Physical time is time as
described by and measured within the physical sciences. Since physical time is time as
described by and measured within the physical sciences, physical time could not exist
without physical entities. According to the Oxford School, absent the laws of physics,
there would be no fact about the ratio in duration between two non-overlapping intervals
of time, so that, without the Cosmos, there would be no fact about the duration of any
given temporal interval. That is, according to the Oxford School, without the physical
universe, time is amorphous. Later in this chapter, I will discuss the views of one member
of the Oxford School — Alan Padgett — at some length. Padgett refers to physical time as
Measured Time and refers to metaphysical time as “eternity” (Padgett, 1989, 1991, 2000,
2001a, 2010); for Padgett, metaphysical time is time as experienced by God independent
of physical reality.

The Oxford School can, itself, be subdivided into two groups: first, a group I will
call the Oxford Identificationists, who maintain that time is numerically identical with an

attribute of God, and a group I will call the Oxford Creationists, who maintain that time is

27 A history of the first two views in ancient and medieval philosophy, and their relationship to contemporary
philosophy, is provided in Kukkonen, 2015.
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Figure 5.1. The most popular proposals in analytic theology concerning how
God might be related to time.
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not numerically identical with God but was created by God. Oxford Creationists argue
that God transcends time because, on their view, God serves as the ground of time, God
is unchanged by time, God has full control over the course of history, and God’s aseity
demands that God be understood as prior in the order of being to the existence of time.
As Padgett describes the view, God is “relatively timeless”, in that, while God is subject
to change in God’s non-essential characteristics, God’s life is not measured by time and is
not affected or contained by time (Padgett, 2000, p. 126).

Recall that I said there were two versions of the hybrid view. So far, we’ve discussed
one version of the hybrid view — the Oxford School — as well as two subgroups within the
Oxford School —i.e., the Oxford Identificationists and the Oxford Creationists. The second
version of the hybrid view is a perspective championed by William Lane Craig according
to which God is timeless sans Creation and temporal with Creation (see, for example,
Craig, 2001b, pp. 270-275, Erasmus, 2021, and chapter 6 in Loke, 2017).2 In this chapter, I
adopt Jacobus Erasmus’s name for that perspective, i.e., Craig’s Creation Hypothesis or CCH
(Erasmus, 2021, p. 197). Unlike the Oxford School, CCH involves the claim that time did
begin with Creation. But, like the Oxford Creationists, CCH proponents affirm that God
is prior in the order of being to time, that God transcends time, and that God is causally
responsible for time. Importantly, according to CCH proponents, God somehow became
temporal in virtue of having created time. As CCH proponents ordinarily explicate their
view, the actual world includes a state of affairs in which God, alone, exists and, in that
state of affairs, God is timeless. On the view of time endorsed by CCH proponents,
change suffices for the existence of time. In the timeless state of affairs, God initiated
the first change and, in doing so, brought time into being. The timeless state of affairs,

qua timeless, cannot temporally precede the Cosmos; nonetheless, according to CCH

31 Another hybrid view has sometimes been suggested that draws on the distinction Gregory Palamas drew
between the divine essence (or nature) and the divine energies. A Palamite theologian might say that while
the divine essence (or nature) is timeless, the divine energies are temporal. See, for example, Dumsday,
2021, p. 37. 1 will set this view aside for the purposes of this chapter, in part because the resulting hybrid
view has not — as far as I have been able to find — been well developed in the analytic theology literature
and in part because I am not sufficiently familiar with the view to competently comment on it. Readers
who think that the Palamite view resolves the theological problems that I raise better than the views that
I consider can interpret this chapter as articulating the destination of theological views alternative to their
own.
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proponents, the timeless state of affairs causally preceded both time and the Cosmos.
Moreover, by initiating the first change, God initiated the beginning of time. One of my
goals in this chapter is to offer a better articulation of CCH than has previously been
offered; to do so, I will, in some places, make use of arguments presented by the Oxford
School and particularly by Oxford Creationists.

I will ultimately argue that the version of CCH previously offered is incoherent. In
particular, as I will argue, the view that the actual world contains a state of affairs in
which God is timeless as well as a state of affairs in which God is temporal is problematic.
However, my aims are not completely destructive; I want to offer CCH proponents an
alternative version of CCH that I think is coherent. To that end, I will offer an alternative
version of CCH that does not include the thesis that the actual world includes a state of
affairs in which God is timeless. For my purposes, I will consider any view to be a version
of CCH if, according to that view, (i) God is atemporal sans Creation and temporal with
Creation and (ii) God is prior in the order of being to time, that God transcends time, and

that God is causally responsible for time.

5.2.2 Theological accounts of the beginning of the Cosmos

Having surveyed the various ways that God has been proposed to relate to time, I
turn next to how CCH proponents have thought about the notion that the Cosmos had
a beginning. The Oxford School and CCH proponents differ in a variety of ways. For
example, Oxford School proponents say that a duration of beginningless, amorphous time
temporally preceded God’s creation of the Cosmos whereas CCH proponents say that a
state of affairs in which God, alone, exists and exists timelessly causally, but not temporally,
precedes the Cosmos. Nonetheless, both the Oxford School and CCH proponents agree
on three theses: (i) God is actually temporal, (ii) time is wholly explicable in terms of God,
and (iii) while God did not begin to exist, the Cosmos did begin to exist. While the Oxford
School and CCH proponents do disagree about why time is wholly explicable in terms

of God,* let’s put that difference to one side. I am interested in how the Oxford School

#1The Oxford School is committed to the view that time is wholly explicable in terms of God either because
time is an aspect of God (the Oxford Identificationists) or because God created time (the Oxford Creationists),
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and CCH proponents might explicate the notion that while God did not begin to exist, the

Cosmos did begin to exist. One is tempted to say that:

Beginning-to-exist-1 :=4s x began to exist just in case x is temporal and there was
some finite period of time such that there were no previous finitely long periods of

time during which x existed.
If so, then:

1. The Cosmos began to exist just in case the Cosmos is temporal and there was a

finitely long period of time T such that the Cosmos did not exist before T and

2. If God is actually temporal, then, since God did not begin to exist, there is no initial

finitely long period of time in God’s life.

However, this account is incompatible with CCH. CCH proponents are committed to the

claims that:

3.God is actually, but not necessarily, temporal,
4. There was a first finitely long period of time, and

5.God did not begin to exist.

If there is a first finitely long period of time and God is temporal, then, contrary to 2, there
must have been a first finitely long period of time in God’s life. Therefore, one may argue
that 3-5 are collectively inconsistent with Beginning-to-exist-1. The Oxford School avoids

this problem because the Oxford School rejects 4; for the Oxford School, the Cosmos was

whereas, for CCH proponents, God initiated the first change and the existence of change suffices for the
existence of time.

5tWhen this chapter was submitted as an article for publication with Erkenntnis, an anonymous reviewer
asked whether this problem can be resolved by compartmentalizing the first finitely long period of time in
God’s life to God’s temporal life. Note that the problem under discussion concerns whether having a first
finitely long period of time in the life of x suffices for showing that x began to exist; if the reviewer is correct
that God did not begin to exist because we can compartmentalize the first finitely long period of time in
God’s life to God’s temporal life, then that x has a first finitely long period of time in its life does not suffice
for showing that x began to exist. That is, if the reviewer’s suggestion is correct, then beginning-to-exist-1
is incorrect.
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preceded by amorphous time, so that time lacks a first finitely long period. Thus, one
tempting way to resolve this difficulty would be to simply affirm the Oxford School - or
perhaps some other view of God — and reject CCH as incoherent. Let’s forego the option
of rejecting CCH in order to further investigate CCH.

To reiterate the incompatibility between CCH and Beginning-to-exist-1, suppose that
Beginning-to-exist-1 is true. In that case, if God entered time in virtue of God’s creation of
time, as CCH proponents allege, then God’s life includes a first finitely long period of time.
If God’s life did include a first finitely long period of time, then Beginning-to-exist-1 entails
that God began to exist. CCH proponents want to avoid the conclusion that God began to
exist; therefore, they need to identify a plausible alternative to Beginning-to-exist-1. Here

is one alternative Craig has considered:

Beginning-to-exist-2 : =4 x begins to exist at ¢ just in case “x exists at ¢; there is no
time immediately prior to t at which x exists; and the actual world contains no state

of affairs involving x’s timeless existence” (as quoted in Morriston, 2000, p. 155).

Beginning-to-exist-2 does not seem to be adequate for Craig’s purposes and Craig has since
abandoned it (Craig, 2002).° Though Craig has abandoned Beginning-to-exist-2, Christo-
pher Bobier’s arguments against Beginning-to-exist-2 are instructive for articulating an
adequate notion of beginning to exist.

Beginning-to-exist-2 consists of three conditions. Let’s focus on the third condition,
that is, that there is no actual state of affairs involving x’s timeless existence. According
to Bobier, the notion that there is no actual state of affairs involving x’s timeless existence
can be analyzed two ways. On the first analysis, the notion that there is no actual state
of affairs involving x’s timeless existence means that “[t]he actual world contains no
possible state of affairs involving x’s timeless existence” (emphasis is Bobier’s; see his 2013,
p- 597). Bobier argues that Craig cannot mean that x began to exist only if the actual world
contains no possible state of affairs involving x’s timeless existence. Bobier thinks that a
timeless basketball is metaphysically possible. If a timeless basketball is metaphysically

possible, then there is a possible state of affairs involving a basketball’s timeless existence.

TBobier (2013) argues persuasively that Craig’s latest criteria will not work either.
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So, the first option would entail that basketballs do not begin to exist and surely Craig
does not think that basketballs are beginningless. I do not agree with Bobier that timeless
basketballs are possible, though I grant Bobier’s point; the mere possibility that x timelessly
exists does not entail that x did not actually begin.

On the second analysis, the notion that there is no actual state of affairs involving x’s
timeless existence means that a state of affairs involving x’s timeless existence does not
obtain in the actual world Bobier, 2013, p. 597. This analysis will not fit Craig’s purposes
either. As I've discussed, on Craig’s view, God did not begin to exist. Suppose that
beginning-to-exist-2 did provide the correct analysis of beginning to exist. On Craig’s
view, God satisfies the first two conditions in Beginning-to-exist-2. That is, since Craig
endorses a first moment (or interval) of time ¢, God exists at t and there is no time prior to
t at which God exists. Thus, in order for God to be beginningless, God must violate the
third condition, that is, there must obtain a state of affairs in the actual world in which
God exists timelessly. Bobier argues that there cannot be such a state of affairs. As Bobier
argues, no state of affairs obtains in which God exists timelessly prior to Creation because,
according to Craig, time began with Creation and there are no states of affairs temporally
prior to Creation. Moreover, no state of affairs obtains in which God exists timelessly after
Creation because, on CCH, God is in time after Creation. Therefore, according to Bobier,
the second option entails that there are no actual states of affairs involving God existing
timelessly. If so, then, on the conception of beginning to exist we are considering, God
began to exist.

One might object that Bobier has moved too quickly in concluding that no state of
affairs obtains in which God exists timelessly. While Bobier has argued that no state of
affairs obtains in which God exists timelessly before, simultaneous with, or after Creation,
one might argue that if a state of affairs in which God exists timelessly did obtain, then,
in virtue of being timeless, that state of affairs cannot be before, simultaneous with, or
after Creation. Why couldn’t a state of affairs obtain in the actual world that simply did
not enter into before, after, or simultaneous-with relations? Thus, instead of showing that
such a state of affairs does not obtain, perhaps Bobier has merely drawn out an implication

of such a state of affairs. In the next section, I elaborate on why we should not commit
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ourselves to the view that the actual world includes both a state of affairs in which God is

timeless sans Creation and a state of affairs in which God is temporal with Creation.

Does God’s Life Have Two Portions?

I am addressing the notion that there obtain two states of affairs in the actual world:
one state of affairs in which, sans Creation, God exists timelessly and another state of
affairs in which, with Creation, God exists temporally. The question becomes in virtue of
what the two states of affairs hang together in such a way that both states of affairs include
numerically one deity. One could propose that the two states of affairs are two portions
of God’s life, that is, the portion of God’s life in which God is timeless and the portion of
God’s life in which God is in time.” As I argue in this section, I have difficulty seeing how
God'’s life could include both portions; without an adequate conception of how the two
states of affairs could hang together, an alternative version of CCH — one that involves
only the state of affairs in which God is in time — is preferable. Subsequently, I develop
that alternative version of CCH and show the Modal Condition can be utilized in defense
of that alternative.

Supposing that God’s life includes both temporal and non-temporal portions, we
should not say that the atemporal portion of God’s life precedes the temporal portion
since the atemporal portion cannot enter into temporal relations such as before or after
(Craig, 2001b, pp. 267-268, Helm, 2001a, p. 49, Leftow, 2009, pp. 290-291). Friends of
CCH, such as Craig, Erasmus, and Loke, have themselves argued that the atemporal
portion of God’s life is not before the temporal portion. On an A-theory of time, when
one says that an event is past, one means just that the event has already passed. So, if the

atemporal portion of God’s life has passed away when God became temporal, then we

7TSome theologians will object that, given the doctrine of divine simplicity, God’s life cannot be divided into
portions. Craig, and other friends of CCH, reject the doctrine of divine simplicity. Moreover, since friends
of CCH think that there is a state of affairs in which God is in time, and that God is subject to temporal
succession, friends of CCH are already committed to the view that God’s temporal life can be divided into
successive moments. But to say that God’s temporal life can be divided into successive moments is just
to say that God’s temporal life can be divided into portions. If God’s temporal life can be divided into
portions, then I have difficulty seeing why friends of CCH wouldn’t simply say that the two states of affairs
are portions of God’s life simpliciter.
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would have the logically impossible conclusion that the atemporal portion of God’s life is
past.® Thus, if there is an atemporal portion of God’s life, then, however that portion may
be related to the temporal portion of God’s life, the atemporal portion, qua atemporal,
cannot pass away. (Similar remarks were made in Kabay, 2009, p. 128 and Helm, 2001b,
p- 163.) So, instead, the suggestion might be that the portion of God’s life that is in time
is present while the timeless portion is not present but, nonetheless, exists simpliciter.

This interpretation faces apparently insurmountable problems. For example, the iden-
tity conditions between the two portions of God'’s life are utterly mysterious. God cannot
perdure or endure — let alone retain psychological continuity or maintain God’s personal
identity in some other way — between the two portions of God’s life because one portion
is not in time. One might instead suggest that there is a kind of continuity between the
two portions of God’s life because the atemporal portion timelessly causes the temporal
portion. Setting aside difficult philosophical issues about whether an atemporal entity can
cause a temporal entity, a mere causal relation does not suffice for establishing continuity
between the two portions of a life. Without perduring or enduring, I have difficulty seeing
how the two portions could be understood as two portions of the life of numerically one
entity as opposed to the lives of two deities.

Craig and other friends of CCH are monotheists and so will want to avoid the con-
clusion that there is more than one deity. However, at the level of logical consistency,
there is no tension that I can see between polytheism and CCH. Happily, there is a second
difficulty for the view that God’s life includes both temporal and non-temporal portions.

To reiterate, we have been considering a view according to which God did not begin to

87 According to one popular argument for the view that God is timeless, there is a tragedy in our own
temporal existence because, for those of us in time, parts of life fall away from us and can never be
recovered. We might look back on our loved ones who are no longer with us, but, so long as we are limited
to the present life, we cannot experience, once more, the loved ones who are no longer with us. Proponents
of the timeless God point out that God, as a perfect being, must not experience the tragedy of time passing
and so no part of God’s life falls away from God’s experience. This implies that no part of God’s life has
passed away and that no part of God’s life is before any other part, so that God’s life is not subject to A—
or B-relations (or so the argument goes). If God is not subject to A~ or B—relations, then God is timeless.
When Craig (2001a, pp. 132-136) replies to this argument on behalf of the view that God has a temporal
portion of God’s life, Craig does not object to the notion that, for a timeless God, no part of God’s life passes
away. This seems to be an implicit admission that timeless entities cannot pass away so that the timeless
portion of God’s life, qua timelessness, could not pass away. Elsewhere, Craig (2001a, p. 159) explicitly tells
us that for the atemporal portion of God’s life, there is no before or after and time does not pass.
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exist because a state of affairs in which God timelessly exists obtains and a state of affairs
in which God is temporal obtains as well as the possibility that the atemporal portion
of God’s life timelessly causes the temporal portion of God’s life. The portion of God'’s
life that is in time is in time essentially; the temporal portion of God’s life, qua temporal,
cannot exist in any possible world from which time is absent. Beginning-to-exist-2 entails
that x began to exist only if there obtains no state of affairs in which x timelessly exists.
Therefore, since there couldn’t be a state of affairs in which the temporal portion of God'’s
life timelessly exists, even if God can be said not to have a beginning, the portion of
God'’s life that is in time would have a beginning. Craig is committed to the principle
that anything that begins to exist requires a cause for its existence (S. Carroll and Craig,
2016; Craig, 1979; Craig and Sinclair, 2009, 2012; Craig and Smith, 1995). If anything that
begins to exist does require a cause for its existence, then the portion of God’s life that is
in time requires a cause for its existence. The only plausible candidate for the cause of the
temporal portion of God’s life is the atemporal portion of God’s life. Craig has argued
that any cause of a temporal entity must itself be temporal and that God is temporally
related to —in fact, simultaneous with — the Cosmos when God causes the Cosmos to begin
Craig, 2001b, p. 276. Thus, the cause of the temporal portion of God’s life must likewise be
temporally related to — in fact, simultaneous with — the beginning of the temporal portion
of God’s life. Nonetheless, the timeless portion of God’s life cannot be temporally related
to, let alone simultaneous with, anything, so that the timeless portion of God’s life cannot
be the cause of the temporal portion of God’s life.” Consequently, unless we give up CCH,
Beginning-to-exist-2 fails and we need a different analysis for beginning to exist.

There is a third difficulty for proponents of CCH who maintain that God’s life includes
both a temporal and an atemporal phase. Consider one argument that both the Oxford
School (e.g., Mullins, 2016; Padgett, 2000) and CCH proponents (e.g., Craig, 1998) have
offered against the view that God is absolutely timeless. Some proponents of divine
timelessness have argued that if the A-theory of time is true, then, even though God
cannot undergo intrinsic change in virtue of being timeless, God does undergo changes

in God’s extrinsic relations (i.e., Cambridge changes) in virtue of God’s relationship to

91Similar points were previously made in Mullins, 2020, p. 225 and Helm, 2011, p. 222.
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a changing temporal reality. To the contrary, friends of the Oxford School and of CCH
have argued that the A-theory of time is incompatible with the existence of a timeless
entity that is either extrinsically or intrinsically related to temporal entities. For example,
suppose that God exists, God was the Creator of some temporal entity E, and that the
A-theory of time is true. In that case, even if God does not undergo any changes in God’s
intrinsic characteristics, as time passes and E ages, God undergoes Cambridge changes
with respect to E. As Craig (1998, pp. 222-223; 2001a, pp. 140-141) puts the point, when
God created the Cosmos, God was not timeless in virtue of the fact that God acquired a
new characteristic. But, on Craig’s view, any entity that acquires a new characteristic —
even if that new characteristic solely involves entering into a new extrinsic relation — is
temporal.' Therefore, even if God is immutable in God’s intrinsic characteristics, Craig
concludes that God is subject to temporal passage. Notice that a parallel argument can
be provided for the atemporal portion of God’s life. If the atemporal portion of God’s life
is either intrinsically or extrinsically related to the temporal portion of God’s life — as is
presumably required for the two phases to be portions of numerically one life — and the
A—theory of time is true, then the timeless portion would acquire a new extrinsic relation
when the temporal portion begins to exist. In that case, the timeless portion would not
actually be timeless.

Erasmus (2021) and Craig (2001b, pp. 272-273) have each attempted to explain how
the atemporal portion of God’s life might be related to the temporal portion of God’s life.
Erasmus draws upon a distinction between an instant and an event. As Erasmus describes
the distinction, an instant is an indivisible temporal point while an event is a change from
one instant to another. On a discrete view of time, time can be understood as a series of
instants, i.e., t1, t, t3, ..., t,, and as a series of events, i.e., e(14, t5), e(t2, t3), ..., €(t -1, t,), Wwhere

e(t;, tiz1) is the event of changing from instant ¢; to ¢;;;. Erasmus then asks us to consider

197For example, suppose that God bears an extrinsic relation R to Adam-at-time-f; and bears extrinsic
relation =R to Adam-at-time-t,. Let’s also suppose that Craig’s preferred version of A—theory, presentism,
is true so that only the present moment exists. When ¢ is present, God bears extrinsic relation R to Adam-
at-time-t; but, since t, does not yet exist when t; is present, God does not yet bear =R to Adam-at-time-t,.
Subsequently, t; passes out of existence and f, passes into existence. Since God bears =R to Adam-at-time-t,,
we know that God must take on the extrinsic relation =R to Adam by ¢, and that God must no longer bear
R to Adam. But that’s just to say that there is succession in God’s life and so that God is temporal.
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God at t;. On a relational conception of time, there is time only if there is change, that is,
transition from one instant to another. Therefore, the state of affairs, involving God, at t;
is the same state of affairs, involving God, as there is at the closest possible world without
time. For Erasmus, the distinction between the closest possible world without time and
the actual world consists just in the fact that God actualizes the change from t, to t,, that
is, e(t1, t2). Since the state of affairs, involving God, at t; is the same state of affairs as there
is at the closest possible world without time, Erasmus understands the state of affairs,
involving God, at t; as a timeless state of affairs.

Erasmus’s response does not adequately address the objection that I have raised. On
Erasmus’s view, t; is before t, and passes into t,. Therefore, t; is temporally related to t,.
If the state of affairs, including God, at t; were a timeless state of affairs, then that state
of affairs, in virtue of being timeless, could not pass away or into f, and could not occur
before t,. Furthermore, I doubt that all friends of the CCH can take up Erasmus’s response;
for example, Craig has denied both that instants exist and that time is discrete.!!

Although Erasmus intends for his discussion to be a loose summary of Craig’s re-
sponse, Craig’s response is distinct from the response that Erasmus has described. In
fact, while Craig agrees with Erasmus that, in the closest possible world without time,
the state of affairs involving God at t; would have obtained, Craig denies that t; obtains
in such a world (Craig, 2001b, p. 272). Craig’s response draws upon two analogies with
physical cosmology. In one analogy, Craig (2001b, p. 272, 2001a, p. 160) compares God’s
relationship to time to relativistic cosmological models featuring an initial singularity. As
Craig rightly points out, according to General Relativity, the initial singularity is not a part

of the space-time manifold but should instead be understood as an open boundary to the

111The reader might be perplexed that Craig denies the existence of instants, given Craig’s presentism, but
Craig has long argued that instants do not exist. Craig denies that any physical collection could be infinite
while also denying the view that time is discrete. If time is continuous, one might have thought that any
finitely long interval of time includes an infinitude of instants. In order to avoid the consequence that any
interval of time includes an infinitude of instants, Craig adopts the Aristotelian position that intervals of
time are fundamental and instants are a kind of mental fiction we arrive at as the boundary points of any
given interval. Craig writes that “only intervals of time are real or present and that the present interval (of
arbitrarily designated length) may be such that there is no such time as ‘the present’ simpliciter; it is always
‘the present hour’, ‘the present second’, etc. The process of division is potentially infinite and never arrives
at instants” (Craig, 1993a, p. 260; also see Craig, 2000, pp. 179-180; Craig and Sinclair, 2009, pp. 112-113).
For discussion, see Dumsday, 2016; Loke, 2016; Puryear, 2014, 2016; Zarepour, 2021.
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space-time manifold. Since the open boundary is not part of the space-time manifold, the
boundary cannot be said to temporally precede any of the space-time points within the
manifold. Craig claims that while the singularity is not temporally prior to space-time,
the singularity is causally prior to space-time.

However, this cannot be a good analogy because the reason that the open boundary
does not temporally precede any space-time point is that the open boundary does not
exist, that is, the open boundary is an absence. Presumably, Craig does not want to
commit himself to the view that God lacks being in any portion of God’s life, regardless
of whether that portion is temporal or atemporal. Moreover, it’s at least not obvious to
me that the singularity causally precedes space-time. While the nature of causation is
philosophically controversial, a variety of theories of causation deny that absences can be
causes; if an absence cannot be a cause, then, since an open boundary is an absence, an
open boundary cannot be a cause either. Even if we should accept an analysis of causation
on which absences can be causes, Craig and other friends of the CCH would be unlikely
to accept the view that the Cosmos could have been caused by sheer nothingness; thus,
while they might admit absences as causes, they would not admit an absence as the cause
of the Cosmos.

In a second analogy, Craig (2001b, pp. 272-273) compares God’s relationship to time
to the Hartle-Hawking model (1983). As Quentin Smith (e.g., 1997) interprets that model,
the initial singularity is replaced by a region featuring “imaginary time”. Within that
region, the space-time metric has Euclidean signature, with the consequence that there is
no metrical distinction between space and time. On Smith’s interpretation, that region
features four dimensions of space instead of featuring one dimension of time and three
dimensions of space. Smith argues that the timeless four-space region is topologically, but
not temporally, connected to space-time. Craig (2001b, p. 273) speculates that perhaps the
atemporal portion of God’s life is (somehow) topologically, but not temporally, connected
to the temporal portion of God’s life. I'm not convinced that Smith correctly interpreted

the Hartle-Hawking model,'? but set that aside. If there is an atemporal portion of God’s

129For example, Smith’s interpretation involves the view that what distinguishes space from time is the
distinction between Lorentzian and Euclidean signature. While the signature does provide a distinction
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life that is (somehow) topologically but not temporally related to the temporal portion of
God'’s life, then, once more, that atemporal portion can neither pass away nor into nor
be placed before the temporal portion of God’s life. Moreover, unless Craig can provide
adequate reason to think that the topological joint between the two portions of God’s
life can support perdurance or endurance between the two portions of God’s life, much
less psychological continuity or other ways in which personal identity persists, I do not
see how the topological joint suffices for showing the portions are the life of numerically
one deity. Furthermore, the supposition that there is a topological joint between the two
portions of God’s life would not suffice for showing that the timeless portion could be
related to the temporal portion without the timeless portion undergoing extrinsic change.

Loke (2017, p. 172) defends the coherency of the view that there is a causally prior
timeless portion of God’s life in a different way than either Erasmus or Craig. Recall that,
according to the way in which CCH proponents have previously described their view, the
actual world includes a state of affairs in which God exists alone, exists timelessly, and, in
that timeless state of affairs, begins time by initiating the first change. CCH proponents
often argue that only an entity with libertarian freedom could have the power to initiate
the first change from a timeless state. According to the objection that Loke considers,
an entity E, with libertarian freedom, cannot freely initiate change from a timeless state.
According to Loke’s imagined objector, for some entity E to change is just for E to have
property p at some time t; and property —p at some time t,, such that t; # t,. If E changes
from a timeless state, then E did not change from one time to another. Loke replies that
friends of the CCH can provide a disjunctive definition of change: for some entity E to
change is just for E to have property p at some time #; and property —p at some time
ty, such that t; # t,, or for E to have property p in a timeless state and property —p at
some time t. Loke’s reply does not appear to be adequate for defending the coherency of

changing from a timeless state. If E is in a timeless state, then E cannot pass from that

between space and time, the signature is an implausible candidate for providing a complete explanation of
the distinction between space from time for at least two reasons: (i) the signature cannot explain any sort of
past/future asymmetry and so cannot explain A- or B-relations and (ii) we can construct (anachronistically)
a model of Newtonian or Galilean space-time that include a space/time distinction while also featuring a
metric with Euclidean signature.
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timeless state and into a temporal state since a timeless state cannot, qua timeless, pass
away. For that reason, Loke is incorrect when he writes, “there is nothing absurd about
a personal timeless being deciding to leave His state of timelessness and enter into time”
(2017, p. 175). Moreover, Loke has not provided a way for an entity to perdure, endure,
or to persist in personal identity from a timeless state to a temporal state.'®

The preceding problems evaporate if we suppose that God does not timelessly coexist
with the temporal portion of God’s life in possible worlds where God is temporal. On the
condition for ‘beginning to exist” that I propose in this section, in the actual world, God
could be beginningless and yet only have a temporal portion of God’s life. That is, on my
proposal, an entity can have a finite past and yet, even though the actual world includes
no atemporal portion of that entity’s life, the entity may still be beginningless. Thus, even
though God’s life may include a first period of time, God could still be said not to have
begun to exist. Like Craig, Padgett (2001a, p. 106) denies the view that if God is temporal,
God could exist only if time exists. According to Padgett (2000, pp. 122-123), God could
“live” in a timeless world and has freely and timelessly chosen to live in a temporal world.
Since God timelessly chooses for our world to be one that includes time, there is no time
at which God makes our world a temporal world and consequently no transition in God'’s
life from an atemporal phase to a temporal phase. On Padgett’s view, there is only one
phase of God’s life. Despite having only one phase in God’s life, God includes atemporal
aspects alongside temporal aspects, and the atemporal aspects of God are responsible for
the existence of time.

One of the objections previously considered to the view that God’s life includes both
an atemporal portion and a temporal portion was that if A-theory is true, then, once the

temporal portion begins, the atemporal portion acquires a new relation. This led to the

131Loke (2017, pp. 172-173) goes on to consider whether the First Cause of the Cosmos could be a physical
state and argues that the First Cause must be able to prevent itself from “initially changing”. According to
Loke, only a timeless person with libertarian freedom, and not a timeless physical state, could prevent itself
from initially changing and therefore could not be a physical state. Set aside the fact that a timeless entity
should not be described in temporal terms, e.g., as initially anything. The real trouble seems to be opposite to
the problem that Loke discusses. As a matter of logical consistency, a timeless entity cannot literally become
anything else and therefore lacks the capacity to change from one state into some other. Consequently, a
timeless physical state, qua timeless, would have no more difficulty “preventing” itself from coming to
occupy some non-initial state than would a timeless person with libertarian freedom.
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contradiction that the atemporal portion is both atemporal and temporal. The reader
might worry that a similar objection can be provided for the view that God includes both
atemporal and temporal aspects. If the atemporal aspect is related to the temporal aspect
and we suppose that A-theory is true, why wouldn’t the atemporal aspect acquire new
relations as the temporal aspect changes?'* In reply, the CCH proponent could say that
God includes an atemporal aspect just in case there is an aspect of God that suffices for
God’s existence and that would have existed even if time did not. (As we will see, this
is just to say that the CCH proponent could adopt the Modal Condition.) In that case,
all aspects of God are undergoing relational changes throughout the entirety of God’s life
— the entirety of which is temporal — even though some of those aspects — importantly,
aspects that suffice for God’s existence — would have existed even if time had not existed.

For proponents of the CCH and unlike the Oxford School, past time is finite, so that
the life of any temporal entity includes an initial finitely long period. In that case, there is
an initial finitely long period of God’s life. If God’s life only includes the temporal phase,
how could God’s life be beginningless? Let’s turn back to Bobier. Bobier comes close
to suggesting the correct solution when he recognizes that what we require is a “modal
fact”. According to CCH, in the actual world, ‘God is timeless sans Creation’ is true.
Bobier wonders what fact in our world could make ‘God is timeless sans Creation’ true.
One candidate answer is a modal fact, that is, that had God not created the Cosmos, God
would have existed timelessly (Bobier, 2013, p. 598).

Padgett similarly offers a modal analysis as part of his study of God’s relationship to
time. Consider how Padgett argues for his view that while God is in time, God is not
necessarily in time. Padgett considers a possible world from which time is absent, but in
which God is the Creator of all things other than Godself. As the Creator of all things other
than Godself, all things other than God in the timeless world ontologically depend upon
God. Padgett grants that such a world is logically possible and, since Padgett believes

141Padgett has made a similar criticism of Whitehead’s “dipolar” conception of God, wherein God is
conceived as having an absolutely timeless aspect (which Whitehead identifies as God’s “primordial nature”)
and a temporal but everlasting aspect (which Whitehead identifies as God’s “consequent nature”). Padgett
(2000, p. 140) states, “It is hard to see how one ‘actual entity’ can exist in two antithetical modes of being,
without destroying the unity of that entity. Since timelessness as Whitehead and most thinkers have
understood it is the antithesis of time, no one being can be both timeless (in this sense) and temporal”.
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God can do any logically possible task, Padgett concludes that God could have actualized
the timeless world but freely chose to actualize a temporal world instead (Padgett, 2001a,
p- 106; Padgett, 2001b, pp. 106-107).

Padgett (2001a, p. 106) goes on to say that we have two possibilities for relating God
to time, i.e., that either “God’s time is a necessary precondition to God’s Being” or “that
God’s Being is a necessary precondition to God’s time (eternity)”. Padgett (2001a, p. 107)
rejects the possibility that time is a necessary precondition to God’s Being. When Padgett
proceeds to tells us that “God is not contained within time”, Padgett clearly does not
mean that God is atemporal. As I've discussed, Padgett is an Oxford Creationist and so
agrees with Craig that God is temporal. Instead, Padgett means that God’s being is prior
in the order of ontological dependence to the existence of time, so that the existence of
time should be understood in terms of God’s existence and not vice versa. Craig (2001b,
pp- 271-272; 2001a, p. 138) similarly offers a thought experiment that he uses to affirms
that, had God not initiated time, our world, including God, would have been timeless.
Craig and Padgett agree that God is prior in the order of being to the existence of time; on
their view, that God is prior to time explains why, even if time began and God is temporal,
God lacks a beginning. In light of Bobier’s, Padgett’s, and Craig’s comments, I propose
that the relation of ontological priority between God and time can be understood in terms

of a modal fact. I turn to characterizing that modal fact in the next section.

5.2.3 Theology and the Modal Condition

What modal fact would be adequate for Padgett’s or Craig’s views? Let T = ‘time
exists’. Using the standard Lewis-Stalnaker semantics for counterfactual conditionals,
let O— represent the would-counterfactual conditional. That is, if, in all of the closest
possible worlds where A is true, B is also true, then A O— B. Moreover, let ¢— represent
the might-counterfactual conditional. That is, if, in at least one of the closest possible
worlds where A is true, B is also true, then A ¢— B. On Craig’s or Padgett’s accounts,

time only exists in virtue of God’s contingent and freely-willed act of creation, that is, time

159 Nothing crucial hangs on the Lewis-Stalnaker semantics. Therefore, the reader can, if they would like,
substitute their favorite theory of counterfactual conditionals.
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is asymmetrically explained by God. Assuming that God necessarily exists, as endorsed
by most Christian philosophers and theologians, God exists at all of the nearest possible
worlds without time.'® Without time, God would have existed anyway. Consequently, we
have that =T O— dx.x = God. Using the modal condition, we can articulate an argument
for the CCH proponent’s view that, even though God’s life may have included an initial

finitely long segment, God is nonetheless beginningless:
P1) If any entity is non-temporal, then that entity did not begin to exist.
P2) God is fundamentally non-temporal.
C1) So, God fundamentally did not begin to exist.
P3) Any entity that fundamentally did not begin to exist did not begin to exist simpliciter.
C2) Therefore, God did not begin to exist simpliciter.

(P1) is true because any entity that is timeless is beginning. (P2) is true because God
is metaphysically prior to the existence of time and, for that reason, satisfies the Modal
Condition. That is, there is an aspect of God that suffices for God’s existence and which
would have existed even if time had not. (C1) follows from (P1) and (P2) by modus ponens.
(P3)is true because for any entity E, if there is an an aspect of E that suffices for the existence
of E but which did not begin to exist, then E did not begin to exist. Lastly, (C2) follows
from (C1) and (P3) by universal instantiation. Notice that this argument is independent
of whether God’s life includes an initial finitely long segment and so establishes the CCH
proponent’s view that God is beginningless even if God’s life includes an initial finitely
long segment.

Brian Leftow (2005, p. 58) comes close to articulating the Modal Condition in a dis-

cussion of Boethius’s conception of divine eternity. According to Leftow, “For all ¢, a

167Padgett (2000, p. 123) agrees that God necessarily exists, but argues that God freely chose to create the
Cosmos. According to Padgett (2000, p. 122), Duns Scotus showed that a timeless world is metaphysically
possible and that God could have “lived” in such a world. For that reason, even though God necessarily
exists, “the actual world could have been timeless”. There was no time prior to God’s free choice to create
a temporal world and so God eternally and contingently wills that our world be temporal. For that reason,
Padgett (2000, p. 123) writes, “God’s choice [...] to live a certain kind of life — to be dynamic, active, changing
—is the ground of the temporality of the universe”.
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proposition is already true at ¢ just in case it is true at t and would have been true had
time never reached t”. As Leftow explains, a proposition can then be said to already be
true at the first moment of time just in case that proposition would have been true had
time not existed. For that reason, at the first moment of time, we can say that God already
exists because God would have existed even if time had not. And since, at every time,
we should say that God already exists, we should say that God did not begin to exist.
Boethius (of course) differs from either proponents of the Oxford School or of the CCH
in that, for Boethius, God is not temporal. Nonetheless, if God includes both temporal
and atemporal aspects, then, supposing that God’s atemporal aspects suffice for God’s
existence, the Modal Condition arrives at more or less the same analysis of the claim that
God did not begin to exist as Leftow’s Boethius.”

Recall that Erasmus’s and Craig’s proposals for relating the atemporal portion of God’s
life to the temporal portion of God’s life involved the notion that the atemporal portion is
(somehow) a boundary to the temporal portion. There is another important reason that
the CCH proponent should not describe the atemporal portion as a boundary. According
to CCH proponents, God created the Cosmos. If the life of the Cosmos included a finite
initial period of time, then that finite initial period, itself, has aboundary. If the Cosmos has
a past boundary, why shouldn’t we conclude that the Cosmos, like the CCH proponent’s
God, has an atemporal portion of the Cosmos’s life and was therefore beginningless?
Consider, again, Erasmus’s construction. We can imagine a sequence of instants ty, t, ...,
t, comprising the history of the Cosmos. If the state of affairs involving the Cosmos at t;
had never changed to the state of affairs involving the Cosmos at t,, then, on a relational
theory of time, the Cosmos would have been atemporal. Thus, through reasoning parallel
to that which Erasmus provides in the case of God, we should conclude that the Cosmos’s
initial state of affairs was a timeless state of affairs. Consequently, if Erasmus’s argument

had been successful, we should say that the Cosmos is beginningless.

71 Likewise, Gregory Ganssle (2001, p. 11) writes, “Now I have to admit that it is strange to say that God
was timeless. It sounds as if I am claiming that there was a point in time at which he was timeless. What I
mean to stress here is it is possible for God to exist without time. If past time is finite, and if God brought
time into being, he is independent of time in this way”.
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Likewise, suppose Craig’s analogy between God and singular relativistic space-times
was successful. Craig has elsewhere taken Big Bang cosmology to show that the Cosmos
had a beginning. But if the singular boundary is an atemporal portion of the Cosmos’s
life — as Craig’s analogy seems to suggest — then the Cosmos was beginningless. (Similar
points were previously made in Mullins, 2020, p. 226 and Kabay, 2009, p. 121.) Moreover,
consider that having a temporal boundary is likely to itself be a necessary condition for
beginning to exist. Therefore, the claim that either God’s life or the Cosmos did not begin
to exist because God’s life or the Cosmos has a temporal boundary should strike us as
intuitively absurd and implausible. I think there is a clear reason that CCH proponents
say that God was beginningless and that the Cosmos had a beginning. Importantly,
according to CCH proponents, while God is prior to time in the order of being, CCH
proponents deny that the Cosmos is prior to time in the order of being. On their view,
God necessarily exists, so that God would have existed even if time did not, whereas the
Cosmos does not exist at the closest possible worlds without time.!® In other words, CCH
proponents appear to already implicitly endorse the Modal Condition.

Let’s turn to three possible objections. First, note that friends of the CCH typically
endorse the view that the span of past time is finite. If only the temporal phase of God’s
life is actual — so that God has only a temporal life and no atemporal phase — what explains
the fact that time began a finite temporal interval to the past? Here, I think a variety of
proposals can be offered. Suppose, as many friends of the CCH think, the series of past
events grows by successive addition and successive addition cannot produce an actually
infinite collection of past events. In that case, there is no need to postulate some state
that God has prior to time; instead, we need only to postulate that God created an initial
state while existing simultaneous to that initial state and then ensured the initial state was
added to by successive addition. Since CCH proponents believe an infinitude of past time
is metaphysically impossible, CCH proponents should say there is no special explanation

required for the fact that, in worlds that include time, past time is finite. (This isnot to deny

181Paul Kabay (2009) has argued that if God exists at all actual times (that is, God is omnitemporal) and time
began, then God began to exist ex nihilo. However, Kabay assumes that God has no atemporal mode of
being in the actual world. (See Kabay, 2009, pp. 122-123.) On the view under consideration in this chapter,
God does have an atemporal aspect.
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the CCH proponent’s claim that the beginning of the Cosmos does require explanation.)
Alternatively, if B— or C—theory are true, the entire space-time block exists simpliciter and
our place a finite distance from one boundary in the block is a purely indexical fact. No
particular need for explanation of that indexical fact arises. Thus, whatever metaphysical
view of time turns out to be correct, I don’t see why a finite past would require God to
occupy a timeless state prior to the beginning of time.

The second and third objection are resolved by one solution. For that reason, I will
tirst discuss the two objections and then discuss their common solution. For the second
objection, suppose that, perhaps for reasons beyond our ken, the world is better if time
exists than if time does not exist. In that case, at any metaphysically possible world w, God
knows w is better if time exists, and so God creates time. Time would necessarily exist,
even though time would ontologically depend upon God. In other words, the Modal
Condition would not be satisfied, even though God would be prior in the order of being
to time.

For the third objection, consider that some members of the Oxford School, e.g., Swin-
burne, depart from the traditional view that God necessarily exists. In that case, we can
either suppose that God does not create time in all possible worlds where God exists or
that God does create time in all possible worlds where God exists. In the former case, the
Modal Condition is satisfied. In the latter case, God would exist at all of the metaphysi-
cally possible worlds where time exists. Once more, the Modal Condition would not be
satistied, even though God would be prior in the order of being to time.

As I previously said, both the second and third objections can be handled by a common
solution, namely, by generalizing the Modal Condition from including only counterfactual
possibilities to including counterpossibilia. In the case that God necessarily exists and
necessarily creates time, the closest world without time would be a counterpossible world
where God exists but fails to create time. On the other hand, if God contingently exists
but creates time in every world in which God exists, then the closest world without time
would again be a counterpossible world where God exists but fails to create time. In
any case, on the counterpossible version of the Modal Condition, we should still say that,

without time, God would have existed anyway.
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5.3 The Disappearance of Time in Physical Cosmology

The proper conception of the Cosmos’s beginning is likewise an important question for
philosophers of physics. Naturalists are unlikely to find theological arguments appealing,
but, as I argue in this section, naturalists can take away an important lesson and thereby
derive the Modal Condition for their own non-theological purposes. There are live physi-
cal theories, or at least interpretations of physical theories, according to which space-time
is reducible to, functionally realized by, emergent from, or otherwise wholly explicable
in terms of, some more fundamental non-spatiotemporal physical substructure. If so,
whether a given proper part of the Cosmos is spatiotemporal will depend upon whether
that part’s substructure has the appropriate configuration, just as whether some body of
water occupies a gaseous, liquid, or solid state depends upon the configuration of that
body’s molecular constituents (Oriti, 2021, p. 27). In that case, a spatio-temporal proper
part of the Cosmos might include the Cosmos’s first period of time. Since the Cosmos’s
existence would be prior in the order of being to the existence of time, there is a deeply
intuitive sense in which the Cosmos would lack a beginning —just as a temporal God lacks
a beginning if God is prior to time in the order of being — even if there is a first period of
time in a non-fundamental proper part of the Cosmos. Thus, just as the theologian can
offer an argument for the view that God is beginningless even if God’s life includes an
initial finitely long segment, so, too, the naturalist can say that the Cosmos is beginningless

even if the Cosmos’s history includes an initial, finitely long segment:
P1) If any entity is non-temporal, then that entity did not begin to exist.
P2*) The Cosmos is fundamentally non-temporal.
C1*) So, the Cosmos fundamentally did not begin to exist.
P3) Any entity that fundamentally did not begin to exist did not begin to exist simpliciter.
C2*) Therefore, the Cosmos did not begin to exist simpliciter.

As in the theological case, since this argument is independent of whether the Cosmos’s

history includes an initial, finitely long segment, this argument demonstrates that the
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Cosmos would be beginningless so long as (P2¥) is true, that is, so long as the Cosmos is
fundamentally non-temporal.

Why think that (P3) is true? If there is a part (or aspect) p that suffices for the existence
of some entity E and p is beginningless, then E is beginningless. For example, consider
the Cosmos. If there is a part (or aspect) of the Cosmos that suffices for the Cosmos’s
existence, then the Cosmos is beginningless. Recall that I've stipulatively defined the
term ‘Cosmos’ to mean the totality of physical reality so that the existence of anything
physical at all suffices for the Cosmos’s existence. For that reason, if any physical entity
at all lacks a beginning, then the Cosmos lacks a beginning.

While the view that physical entities are essentially, and so fundamentally, spatio-
temporal has been a long held dogma, there are several distinct ways in which the view
has been put into doubt by developments in both philosophy of physics and theoretical
physics. Space prohibits me from offering more than a brief survey. Moreover, I do
not claim that a decisive case has been made for the view that space and time are non-

fundamental.'”

Several of the arguments that I describe remain controversial and, at
least in this chapter, I do not hope to settle live disputes concerning how to interpret the
physical theories that I discuss. Nonetheless, an analysis of beginning to exist should at
least be consistent with possible future directions of physical inquiry. As such, my aim
in this section is to describe several possible avenues of future inquiry with which an

analysis of beginning to exist should be consistent.

5.3.1 An Analogy for the Non-Fundamentality of Space-time

To ease our way into a discussion of the notion that space-time is not fundamental
to the physical world, let’s begin with an intuitive analogy. Suppose that something
like the scenario depicted in The Matrix were actual, so that what we ordinarily take
to be the external world is, in fact, a computer simulation. Let’s call the people who are

plugged into the Matrix victims. The set S of spatial relationships within the simulation are

19rNeither quantum gravity nor quantum foundations are areas in which we have reached the end of
inquiry. Moreover, given the provinciality of the energy scales that are available to us, we might not be able
to probe quantum gravity in sufficient detail to know which quantum gravity theory is correct.
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functionally realized by computers. The set S of spatial relationships between, and within,
the physical components comprising the computers might have nothing at all to do with
S. Consider, too, the set of temporal relationships 7~ between the events experienced by
the victims plugged into the Matrix. Let’s suppose that the computers control the length of
the specious present experienced by the victims, so that the duration between two events
within the Matrix might have little to do with the temporal durations between events as
witnessed by those who have been liberated from the Matrix. In that case, the Matrix
functionally realizes 7, even though there is a distinct set of temporal relations T outside
the Matrix. In other words, by functionally realizing S and 7, the Matrix functionally
realizes all of the spatio-temporal relations available to the victims. However, we have not
yet envisioned a scenario in which physical reality is fundamentally non-spatio-temporal
because the computers running the Matrix are themselves immersed in space-time.

Let’s take this thought experiment one step further by considering George Berkeley’s
God. In Berkeley’s metaphysics, all of the objects in our ordinary experience exist, but they
are realized within God’s mind. Presumably, Berkeley’s God would have no difficulty
realizing the code running on the computers in the aforementioned thought experiment.
But, unlike the computers in the aforementioned thought experiment, God is not, herself,
immersed in a spatio-temporal world. Instead of altering how the people within God’s
mind experience time by modifying their specious present, we can suppose that God is
metaphysically responsible for time itself. In that case, God functionally realizes all of
the spatio-temporal relations within God’s mind and so functionally realizes space and
time. For David Spurrett and David Papineau (1999) as well as Barbara Montero (2005), x
is physical just in case x is not irreducibly mental; thus, if fundamental reality were not a
person, did not instantiate folk psychological predicates, and did not otherwise instantiate
irreducibly mental predicates, then fundamental reality would be purely physical. There-
fore, to construct a view on which physical reality is not fundamentally spatio-temporal,
we need take only one more step beyond Berkeley’s God and suppose that, unlike Berke-
ley’s God, fundamental reality is not a person, does not instantiate folk psychological

predicates, and does not otherwise instantiate irreducibly mental predicates.
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In the following subsection, I will survey how the view that the Cosmos is not funda-
mentally spatio-temporal arises in three contexts: first, in the interpretation of relativistic
space-times; second, in the interpretation of quantum gravity theories; and, third, in the

interpretation of quantum mechanics.

5.3.2 Non-Fundamental Space-time in Three Contexts

Relativistic Space-times

Relativistic space-times have been interpreted as not being fundamentally temporal.
For example, contrary to how General Relativity is often presented today, Einstein offered
an interpretation in which space-time is functionally realized by the gravitational field
(“Space-time does not claim existence on its own, but only as a structural quality of the
tield”, 1961, p. 176). Moreover, on the standard Minkowskian interpretation of relativity,
space and time each disappear and we are left with a kind of union of the two (Minkowski,
1952, p. 75). The demand for general covariance in General Relativity is standardly
interpreted to mean that the division of space-time into space and time depends upon
the adoption of a specific reference frame, with an associated set of coordinates, with
the consequence that the division of space-time into space and time lacks metaphysical
significance (Oriti, 2021, p. 21). If the division of space-time into space and time lacks
metaphysical significance, then we should not interpret space-time points as either spatial
or temporal points; instead, we should interpret space-time points as belonging to a
new category of entities neutral between space and time. And if space-time points are
neutral with respect to either space or time, relativistic space-times are not fundamentally
temporal.

On the view that space-time points are themselves neutral with respect to space or
time, fundamental physical reality would satisfy the Modal Condition. In order to show
that fundamental physical reality would satisfy the modal condition, one needs to show
that in the closest possible worlds without time, the temporally neutral space-time points

would still exist. Since the points are not fundamentally temporal, the points could have
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existed without exemplifying A— or B—relations and so would have existed even if time

had not.

Quantum Gravity

While the view that relativistic space-times are not fundamentally temporal is contro-
versial, live proposals for quantum gravity theories provide still more reason to suspect
that physical reality is not fundamentally temporal. For example, if one applies the
canonical quantization procedure to the Hamiltonian formulation of General Relativity,
one can write down an analogue of the Schrodinger Equation for the universe, called the
Wheeler-DeWitt Equation, whose solution is the wavefunction (or the wavefunctional) of
the universe. In the Wheeler-DeWitt equation, the Hamiltonian annihilates the universal
wavefunction, in turn implying that the universal wavefunction has no time dependence
(Barbour, 1994, 1999; Butterfield and Isham, 2006, Earman, 2002a; Healey, 2002). Con-
sequently, according to the Wheeler-DeWitt equation, the universe occupies a timeless
quantum state. The result is the so-called Problem of Time (e.g., Thébault, 2022), wherein
physicists ask whether one can recover time in the appropriate limit from a timeless quan-
tum state or if one should give up the approach leading to the Wheeler-DeWitt Equation
altogether. While the Wheeler-DeWitt equation remains controversial, one accepted solu-
tion is to say that time should be replaced by a parameter internal to the Cosmos and that
can play time’s functional role (Barbour, 1994; Butterfield and Isham, 2006; Healey, 2002;
Thébault, 2022; Oriti, 2021, p. 22). As Carlo Rovelli describes, “An accepted interpretation
of [the disappearance of time] is that physical time has to be identified with one of the
internal degrees of freedom of the theory itself (internal time)” (1991, p. 442). If time should
be recovered as a parameter internal to the Cosmos, then the Cosmos is not fundamentally
temporal.

A number of approaches to quantum gravity exacerbate the problem still further (Bi-
han, 2017a, 2017b, 2019, 2020; Butterfield and Isham, 2006; Healey, 2002, 2021; Huggett,
2022; Huggett and Wiithrich, 2013, 2018; Oriti, 2014, 2020, 2021; Rovelli, 2020; Wilson,

2021). For example, some approaches to quantum gravity replace the continua (space-time
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and fields) available in either classical General Relativity or in a quantized gravitational
field with new fundamental degrees of freedom that are not spatio-temporal in any tra-
ditional sense (Oriti, 2021, pp. 23-27). As Oriti writes, “The main point should be clear:
in quantum gravity, the fundamental degrees of freedom are not continuum fields and
spacetime dissolves into pre-geometric, non-spatiotemporal entities, from which space,
time, and geometry have to emerge in some approximation” (Oriti, 2021, p. 23).

As an example, consider Loop Quantum Gravity (LQG). LQG roughly tells us that
space-time structure is underwritten by a discrete network of spins. An initial temptation
is to think that LQG merely tells us that space-time has a discrete structure instead of
the continuous structure postulated by General Relativity. If so, LQG does not deny that
physical reality is fundamentally spatio-temporal. This initial temptation is at least not
obviously correct for two reasons, to which I now turn.

First, I turn to disordered locality, as originally discussed in Markopoulou and Smolin,
2007. Suppose that the discrete structure found in LQG is a discrete space-time struc-
ture. In that case, the spatio-temporal relationships found in General Relativity might
be expected to correspond to network structure in a straightforward way. For example,
two objects that are contiguous in the General Relativistic description might be expected
to sit at adjacent nodes in the underlying network structure or, at the very least, would
be “closer” together in the network than objects that are spatio-temporally separated.
However, LQG postulates no systematic correspondence between the spatio-temporal
ordering of events and the adjacency relations in the underlying spin network. Some
adjacent nodes correspond to space-time points separated by large spatio-temporal dis-
tances. For that reason, Le Bihan (2020, p. 12) has argued that LQG leads to a new form of
eternalism (“atemporal eternalism”), on which the structure underlying space-time lacks
the formal properties of the space-time block and, consequently, should not be understood
as a space-time block.?® This argument is not decisive; consider that, in the Matrix example
I previously gave, the physical world outside the Matrix’s structure might not straightfor-

wardly correspondence to the spatio-temporal structure of the Matrix, even though the

21Nick Huggett (2022) has similarly argued that Group Field Theory postulates a structure underlying
space-time with an altogether different formal structure from that of space-time.
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external world might still be spatio-temporal. However, the argument is suggestive in
that if the Cosmos lacked spatio-temporal structure, we would expect the fundamental
formal structure of the world to substantially differ from that of the effective space-time
available to ordinary empirical observations.

In addition to the fact that we might have expected disordered locality (or something
close to it) if the Cosmos fundamentally lacked spatio-temporal structure, if disordered
locality did turn out to be correct, then we would lose much of the justification we would
otherwise have had for thinking that the Cosmos is irreducibly ordered according to
either an A-series or a B-series and so much of the justification we would have otherwise
had for thinking that the Cosmos is fundamentally temporal. Consider how A-theory is
typically defended. A-theory is typically defended by appealing to our phenomenological
experience of time. If loop quantum gravity is true, and so disordered locality is true,
then the Cosmos is not fundamentally structured according to the A-series found in our
phenomenological experience. While the possibility might remain that the Cosmos is
fundamentally structured according to some other A-series, I have difficulty seeing how
one could justify the view that the Cosmos is fundamentally structured according to an
A-series. Likewise, consider how B-theory is typically understood, e.g., as a series of
moments related one to another by B-relations. If what we ordinarily take to be moments
ordered by B-relations turn out not to be reflected in the Cosmos’s fundamental structure,
as would turn out to be the case if disordered locality turns out to be correct, then we lose
much of the justification we might have otherwise had for thinking that the Cosmos is
fundamentally organized according to a B-series. We would be left with a view according
to which the B-series we are familiar with is a derivative feature of our world and an open
question as to whether fundamental reality is structured according to some other B-series.

I now turn to one last reason one might think loop quantum gravity is not funda-
mentally spatio-temporal. This last reason draws on the fact that loop quantum gravity
is a quantum mechanical theory. In virtue of being a quantum mechanical theory, the
spin network exists in a superposition state, so that, unlike classical space-time, the spin
network does not have a definite or unique structure. Nonetheless, even though the

network doesn’t have a definite or unique structure in virtue of being in a superposi-
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tion state, the wavefunction describing the superposition state does have a definite and
unique structure. This suggests (again without definitively establishing) that the wave-
function is the fundamental object and not the spin network. Given that a variety of
authors (as discussed below) have argued that we should understand the wavefunction
as a non-spatio-temporal object, the object fundamental to loop quantum gravity might
be understood as non-spatio-temporal. Whether this is the correct way to interpret the
wavefunction remains a live dispute.

In quantum gravity theories where space-time is not fundamental, space-time can be
recovered only by considering a sufficiently large collection of nodes, that is, by consid-
ering the network’s hydrodynamic limit. Since space-time appears in the hydrodynamic
limit only when the fundamental non-spatiotemporal degrees of freedom are arranged
in an appropriate configuration, there may have been a physical process, termed geomet-
rogenesis (Oriti, 2021, pp. 29-32; also see Oriti, 2014), whereby the early universe (or the
Cosmos) “transformed” from a non-spatiotemporal phase into a spatiotemporal phase.
Nonetheless, such a process is conceptually problematic because the non-spatiotemporal
phase, qua non-spatiotemporal, cannot stand in the ‘before” relation to the spatiotemporal
phase. However, we may be able to replace our usual notion of time with a kind of
“proto-time” and thereby allow “proto-temporal” evolution from the non-spatiotemporal
phase into the spatiotemporal phase (Oriti, 2021, p. 31).

Consider the following toy model for geometrogenesis. Suppose that a cosmological
model can be parametrized by some parameter T such that, for values of T > Ty, T can be
interpreted as time, but, for values of T < Ty, T should not be thought of as time, since the
sub-spatiotemporal degrees of freedom do not “coalesce” in the way required for space-
time to emerge in the hydrodynamic limit. Candidates for such a parameter include the
universe’s volume or the scale factor (Oriti, 2021, p. 32). T should not be thought of as time
because T cannot be globally interpreted as time. There is a domain, i.e., T > T, where T
plays the functional role of time in our physical theories. Moreover, if one is committed
to B-theory, one could postulate that, for T > T, event A is before event B just in case
T(A) < T(B). However, when we trace T “backwards” beyond T, we encounter a non-

spatiotemporal domain where the ordering of the values of T should not be interpreted
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to correspond to B-relations, but can perhaps be interpreted as proto-B-relations, that is,
as ordering relations that are (somehow) more fundamental than B-relations. In some
sense, this is analogous to the theologian’s thought that there is a kind of conceptual or
explanatory priority in God’s mind prior to Creation, even though there might not be time
prior to Creation. In any case, even though Ty would be the beginning of time, there is a
clear intuition according to which Ty would not be the beginning of the Cosmos.?!

One might object at this point that I've previously rejected a similar model of God.
I rejected the possibility that there is both an atemporal phase and a temporal phase of
God'’s life on the basis that the continuity conditions between the two phases of God’s
life are utterly mysterious. God cannot perdure or endure from the atemporal phase to
the temporal phase, the atemporal phase cannot pass away or into the temporal phase,
and the atemporal phase cannot be before the temporal phase. Why shouldn’t we reject
the possibility that the Cosmos has two phases in its life for the same reasons? First,
note that many (perhaps most or all) of the proponents of the CCH are committed to the
A-theory of time. The view that space-time is not fundamental sits uncomfortably with
A-theory so that proponents of the view that space-time is not fundamental are much
more likely to be B- or C-theorists. On B- and C-theory, there is no temporal passage and
so nothing passes away or into anything else. Thus, for B- and C-theorists, there is no
problem for the view that the non-spatio-temporal phase does not pass away or into the
spatio-temporal phase.”> Moreover, while we might metaphorically speak about the life
of the Cosmos, the Cosmos does not have a life in the sense that God would have a life.

For that reason, the Cosmos’s life does not need to be unified in the sense that God’s life

21YWhen this chapter was submitted as an article to Erkenntnis, an anonymous reviewer objected to my
toy model of geometrogenesis. As the reviewer notes, one reason that one might think that T cannot be
interpreted as a time parameter for T < Tj is that the state of affairs such that T < Ty does not satisfy the
Einstein Field Equations. However, T < Ty might still be interpretable as, for example, a B—series and so
is interpretable as a time parameter after all. Supposing that the reviewer’s objection suffices for showing
that T < Ty can be interpreted as a temporal series, the reviewer’s objection does not suffice for showing
that T < Ty should be interpreted as a temporal series. For my purposes in this chapter, I need only to show
that the emergence of time from metaphysically prior, but not temporally prior, non-temporal phenomenon
is a live option that would be premature to rule out from the arm chair; again, I am not attempting to show
which interpretation of loop quantum gravity is the correct interpretation. Instead, I am summarizing a live
option that has been discussed in the literature.

221Gee the related set of remarks Craig makes in his (1998, pp. 246-248).
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needs to be unified in order to be the life of numerically one deity. Furthermore, consider
that, in Galilean and relativistic space-times, space-time points do not perdure or endure.”?
There seems to be a category mistake in supposing that space-time, itself, either endures
or perdures. If there is a category mistake involved in the view that space-time, itself,
either endures or perdures, then there is a category mistake involved in the view that the
Cosmos endures or perdures. If there is a category mistake involved in the view that the
Cosmos endures or perdures, there is no demand for the Cosmos to endure or perdure
through geometrogenesis.

When this chapter was submitted as an article to Erkenntnis, an anonymous reviewer
raised an objection to my use of the quantum gravity proposals that I considered in
this section. According to the reviewer, the quantum gravity literature considers space-
time non-fundamental because the fundamental entities postulated by quantum gravity
theories (e.g., strings, causal sets, or whatever) do not satisfy the Einstein Field Equations.
For example, when the claim is made that space-time is recovered only as part of a
hydrodynamic limit, part of what is being claimed is that the Einstein Field Equations
are recovered only as part of a hydrodynamic limit. However, in a discussion of the
metaphysics of time, one might argue that we should allow that time has wider application
than the Einstein Field Equations. For example, couldn’t the A— or B—theory of time be
true even if the Einstein Field Equations do not apply? At least two replies can be offered
to the reviewer’s objection.

First, I do not claim that any specific quantum gravity theory is true or that any specific
interpretation of any particular quantum gravity theory is the correct interpretation. There
may be quantum gravity theories, e.g., causal set theory, that should be interpreted in A-
theoretic terms. For my purposes in this chapter, I claim only that the non-fundamentality
of time remains a live option that should not be ruled out from the arm chair. So long
as philosophers of physics are seriously considering the possibility that physical reality

is not fundamentally temporal, we need an analysis of the notion that the Cosmos had a

2311f a space-time point did endure or perdure, then an object could be at absolute rest by occupying the
same space-time point at successive times. Objects cannot be at absolute rest in Galilean or relativistic
space-times. Therefore, space-time points do not endure or perdure in Galilean or relativistic space-times.
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beginning consistent with the possibility that the Cosmos is not fundamentally temporal.
Second, while the reviewer might be correct to say that the reason for thinking the entities
fundamental to some specific quantum gravity theory are not spatio-temporal involves
the failure of the Einstein Field Equations, there are quantum gravity theories whose
fundamental entities should plausibly be thought of as non-temporal for other reasons.
For example, the failure of the Einstein Field Equations does not appear among the
reasons Baptiste Le Bihan (2020) surveyed for thinking that the entities fundamental to

loop quantum gravity or string theory are non-temporal.

Quantum Interpretations

In addition to relativity and quantum gravity, quantum mechanics has sometimes been
claimed to show that space and time are not fundamental. Some of the revolutionaries
who first developed quantum mechanics, e.g., Pascual Jordan and Max Born, thought
that quantum mechanics had revealed that microphysical entities are not spatiotemporal
(Capellmann, 2021; Kragh, 1996, p. 47; Luminet, 2011, pp. 2915-2918). In turn, the
notion that microphysical entities are not spatiotemporal inspired Georges Lemaitre in
the development of an early version of the big bang theory in which the universe originated
in a timeless entity (the primordial “atom”) (Lemaitre, 1931; Kragh, 1996, p. 47; Luminet,
2011).

Several contemporary approaches to the foundations of quantum mechanics likewise
suggest that space and time are not fundamental. For example, wavefunction monism is the
view that all that ultimately exists is the universal wavefunction. (Some wavefunction
monists are additionally committed to a “marvelous point” guided by the universal
wavefunction or to the “space” inhabited by the wavefunction, though that space should
not be thought of as space-time). We can distinguish at least three versions of the view. In
one version of the view, defended by David Albert (1996, 2013, 2015, 2019a, 2019b), Barry
Loewer (1996), Alyssa Ney (2012, 2013, 2020, 2021), and Jill North (2013), the universal
wavefunction is a field either defined on configuration space or on some more exotic state

space (Ney, 2020; also see chapter 4 in Ney, 2021). On this view, the wavefunction is
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typically thought of as fundamentally temporal and to occupy some kind of space, even
if not the space of our ordinary experience. However, other versions of wavefunction
monism entail that the universal wavefunction is not temporal. For David Bohm (1980,
p- 211), the universal wavefunction is again a field defined on some high dimensional state
space but time results as a consequence of projecting to a lower dimensional space. For
Julian Barbour (1999), the universal wavefunction is a field defined on superspace, that is,
the space of possible configurations of space-time, and with a distribution and amplitude
defined by the Wheeler DeWitt Equation. For Sean Carroll (2019, 2022) and co-author
Ashmeet Singh (2019), the universal wavefunction is a state vector in Hilbert Space. For
Bohm, Barbour, Carroll, and Singh, the universal wavefunction is not a temporal object.
If all that ultimately exists is the universal wavefunction, and the universal wavefunction
is not temporal, then space-time is reducible to, functionally realized by, emergent from,
or otherwise wholly and asymmetrically explained by the universal wavefunction.

Thus, there are a variety of live research programs according to which space-time
is not fundamental to the Cosmos and is instead asymmetrically explicable in terms of
some non-spatiotemporal structure. The non-spatiotemporal structure would be timeless,
just as the molecules that comprise liquids lack the property of liquidity. Just as God is
beginningless if God stands prior to time in the order of being, so, too, the Cosmos is

beginningless if the Cosmos stands prior to time in the order of being.

5.3.3 Physical Cosmology and the Modal Condition

Recall the lesson that the naturalist can take from the theological discussion in section
5.2. Timeless entities are beginningless. So, fundamentally timeless entities are funda-
mentally beginningless. To reiterate, consider an entity A that is fundamentally timeless.
In that case, there is an aspect of A —that is, the fundamental aspect — that is timeless. There
could be another aspect of A — that is, a non-fundamental aspect — that is not timeless.
Moreover, suppose that the existence of the fundamental aspect suffices for the existence
of A but A could have existed without the non-fundamental aspect. Supposing that the

non-fundamental aspect of A is in time in the actual world, A would still exist at one or
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more of the closest possible worlds lacking time. Because the fundamental aspect of A is
beginningless, and the existence of the fundamental aspect suffices for A’s existence, A is
beginningless, even if the non-fundamental aspect of A existed for an initial finitely long
period of time. Note that the non-fundamental aspect could have had a beginning, but a
beginning of the non-fundamental aspect of A is not the beginning of A simpliciter.

Recall that for God to be beginningless required =T 0— dx.x = God. So, for A to
lack a beginning even though A has an initial finitely long period of time requires that
-T ¢ dx.x = A, that is, had time not existed, A might have existed. Let C represent
the statement that the Cosmos exists. Thus, the statement that had time not existed, the
Cosmos might have existed anyway;, is represented as =T ¢— C. We want a necessary (but
not sufficient) condition for the Cosmos to have a beginning. To derive such a condition,
we should negate =T ¢&— C. The negation of =T ¢— Cis equivalent to =T 0— —C. So, the

Cosmos had a beginning only if

At all of the closest possible worlds where time does not exist, the Cosmos does not

exist.

Unfortunately, this criterion has not been given serious enough attention in philosophical
arguments for the beginning of the Cosmos, such as those that I discussed in chapter 2,
where authors swiftly move from the proposition that the Cosmos has a finite past to the
conclusion that the Cosmos began to exist. Likewise, the arguments that I considered in
chapter 3 swiftly moved from the view that the past history of the universe has a singular
boundary and is therefore finite to the conclusion that the Cosmos began to exist. Or
consider that, as Norman Kretzmann (1985), William E. Carroll (2007), and Jon McGinnis
(2015) point out, Scholastic philosophers assumed a conception of beginning to exist that
resembled beginning-to-exist-1. The Scholastic debate concerned whether God'’s creation
of the Cosmos was consistent with the Aristotelian view that the Cosmos had an infinite
(and so, on their view, beginningless) past. Scholastics assumed that either the Cosmos
had a beginning — in which case they assumed the past must be finite — or else the Cosmos
was beginningless — in which case they assumed the past must be infinite. A moment’s

reflection shows that both friends of the CCH and the Scholastics are incorrect. Supposing
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that one could show merely that the Cosmos had a finite past, one could not infer that the
Cosmos had a beginning; one must also show (among other criteria) that the Cosmos is
fundamentally temporal and therefore show that the Cosmos satisfies the aforementioned
Modal Condition. We have then a general reason for rejecting all of the versions of the
KCA that have thus far been offered in the literature. If proponents of the KCA want to
establish that the Cosmos began to exist, they will have to do much more than they have

done thus far.

54 Summary

In section II, we started with the tensed conception of beginning to exist. I rejected
the tensed conception because it was desirable to identify a conception of beginning
consistent with B-theory. We then turned to the at-at conception of beginning, which I
rejected because the at-at conception requires a time before the Cosmos’s existence. On the
assumption that time is a physical phenomenon, time began with the Cosmos, whereas
if, as the Oxford School supposes, time is non-physical, then there is at least a moment
(or interval) before which the Cosmos did not exist. In this section, we embarked on
developing a more sophisticated conception of the Cosmos’s beginning. By examining a
debate concerning God’s relationship to time, I developed the intuition that the Cosmos
had a beginning only if a specific modal condition were fulfilled. This intuition turns
out to be useful in understanding a debate concerning the philosophical foundations
of various physical theories that claim that time is (somehow) not fundamental to the
Cosmos. Finally, the Modal Condition was articulated by using the standard Lewis-

Stalnaker semantics for counterfactuals.
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6. THE DIRECTION CONDITION

Having established the Modal Condition, i.e., that the Cosmos has a beginning only if, at
all of the closest possible worlds where time does not exist, the Cosmos does not exist,
I turn to the Direction Condition, i.e., that the Cosmos began to exist only if the Cosmos
has a global direction of time. As a first, rough pass, the Cosmos has a global direction of
time just in case the entire Cosmos “shares” a direction of time. In this chapter, I borrow
the chronogeometric conditions for a global direction of time previously defended by
Geoffrey Matthews (1979, p. 84) and Mario Castagnino, Olimpia Lombardi, and Luis Lara
(2003). As they explain — and as I will unpack below — spacetime S has a global direction
of time just in case (i) a unique temporal orientation — or, e.g., past-to-future direction —
can be defined at each point of S, that is, S is temporally orientable, (ii) for any point p in S,
there is a locally defined direction of time at p, and (iii) for all pairs of points p and gin S,
the future (past) direction defined at p agrees with the future (past) direction defined at 4.

Some readers may be perplexed by the idea that time could lack a global direction. For
that reason, I will spend some time unpacking a few senses in which time could lack a
global direction. If our Cosmos began, then the beginning of the Cosmos must be prior to
all non-initial space-time points that the Cosmos includes. In order for the beginning to be
prior to all non-initial space-time points, all non-initial space-time points must agree that
the putative beginning is located to their past. And in order for all non-initial space-time
points to agree that the putative beginning is located to their past, all non-initial space-
time points must agree on the direction of time. There are two ways for space-time to
lack a global direction of time. First, space-time could fail to have a global direction of
time by failing to be temporally orientable. Second, given that space-time is temporally
orientable, space-time could fail to have a global direction of time if the direction of time
varied from one space-time region to another. I will consider each of these conditions
in turn. However, in order to discuss either notion, I need to first put a bit of formal
machinery on to the table.

There are three relations defined between any two points p and g in a relativistic space-

time and that should be thought of in terms of the line, or the closest analogue to a line,
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connecting the two points.! If light can travel from p to g or vice versa, we say that p and g
are light-like related. If an object, traveling slower than light, can travel from p to g, we say
that p and g are time-like related. And if p and q are neither time-like nor light-like related,
we say that p and g are space-like related. Points that are time-like or light-like related
to p can be divided into two classes. As light falls in on a point, the light forms a sphere
whose radius contracts with time. A cross section of a given sphere is a circle, so that
the process of light falling in on a point forms a cone when represented using successive
cross-sections. On the standard Minkowskian interpretation of relativity, the points that
are p’s past are the points that can transmit a signal to p; thus, the points that in p’s past
are said to be in p’s past light cone. Likewise, the light originating at p forms concentric
circles and forms a cone when represented using successive cross-sections. Thus, since the
points that are in p’s future are the points to which p can transmit a signal, the points that
tall in p’s future are said to be in p’s future light cone. The points that are space-like related
to p are said to be in p’s absolute elsewhere and, at least on the standard Minkowskian
interpretation, are not absolutely to the future of, to the past of, or simultaneous with p.
For that reason, we can say that there are no absolute temporal relations between p and
any points that are space-like related to p, that is, there are no temporal relations between
p and any of the points that do no fall into p’s past or future light cones. At p, we can
define future pointing, past pointing, and space-like pointing vectors. For example, a
tuture pointing vector at p points into the future light cone of p.

For readers who may not be familiar with relativistic space-times, I will stress that two
points being space-like related is disanalogous with two points being spatially related to
each other in space in a pre-relativistic conception of space-time. For example, at one
point of time in my life, all of the moments in the entire life of some other person, all 95
years from birth to death, could be space-like related to me.> Moreover, at a given point
of time in my life, in the reference frame that I occupy, the space-time points that are

simultaneous relative to my reference frame — and so might be said to be co-exist with me

11In Euclidean geometry, we can sensibly define a line as the shortest path between two points. In a
relativistic space-time, the closest analogue to a line — that is, a geodesic — turns out to be the longest path
between the two points.

21 This example previously appears in Gilmore et al., 2016, p. 108.
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in space — are only a subset of the points that are space-like related to me. This is another
reason for thinking that, as I discussed in chapter 4, relativistic four-dimensionalism is
not the four-dimensionalism from metaphysics textbooks.

The future direction of time at a given space-time point p can be represented by a
vector that points into p’s future light cone. In order to compare the direction of time at
one space-time point with the direction of time at another space-time point, we need a way
to “move” a future-pointing vector (for example) from one space-time point to another.
Mathematicians originally developed the notion that a vector could be assigned to the
points of a space for flat, Euclidean spaces. In order to generalize the notion to spaces
with arbitrary curvature, mathematicians imagine that we assign a flat space tangent to
each point, called the tangent space. For example, ancient peoples thought that the Earth
was flat. Upon discovering that the Earth is round, we can still construct a plane — the
tangent plane — that approximates the Earth’s surface at any given point on the Earth’s
surface.

The trouble is now that vectors at distinct points occupy distinct tangent spaces. In
order to compare the vectors at one point with the vectors at another point, we need a
mathematical operation that translates from one tangent space to another. The translation
is easier to perform when the two tangent spaces correspond to points that are located
closer together. Thus, to translate between the tangent spaces at two arbitrary points,
mathematicians imagine a continuous series of translations, from one tangent space to the
next, along a path. This operation — called parallel transport — can be thought of as moving
a vector through a space, while keeping the vector’s orientation fixed, so that the vector
can be compared to a vector at some other point.

Having put some of the requisite technical machinery on to the table, I now proceed

to a discussion of the two conditions for a space-time to have a global direction of time.

6.1 Temporally Orientable Space-times

AsI've said, the first way that a space-time may lack a global direction of time would be

if the space-time failed to be temporally orientable. Orientable surfaces have the feature
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that we can objectively distinguish the perpendicular direction from the surface. For
example, the plane is an orientable surface. Given a piece of paper lying flat on a desk,
we can objectively distinguish the direction from the paper’s surface to the ceiling and the
direction from the paper’s surface to the floor. To see this, imagine parallel transporting
a vector pointing towards the ceiling around the paper’s surface. Without crossing the
paper’s edge — an operation that is not mathematically allowed — parallel transport cannot
be used to turn a vector pointing towards the ceiling into a vector pointing towards the
floor.

Suppose that we take a one foot long piece of ribbon and connect both ends of the
ribbon without twisting the ribbon. The resulting surface — a cylinder without top or
bottom - is another orientable surface. Construct a vector ¢ pointing perpendicular from
the ribbon’s outer surface. Parallel transport ¢ around the ribbon without crossing the
ribbon’s edge and we eventually return 'to U's starting location. Upon returning, 7 will be
restored to U's original orientation. Without crossing the ribbon’s edge, there is no way to
turn an outward pointing vector into an inward pointing vector. To put the point another
way, a surface is orientable just in case parallel transport around a closed loop will never
reverse the orientation of the vector.

Now consider the surface formed if, instead of gluing the two ends of the ribbon
together in order to form a cylinder, we first rotate one end by 7 radians (180°) before
connecting the two ends. The resulting geometrical object is a non-orientable surface
mathematicians call a Mobius Strip. Notice that the © radians twist connected the ribbon’s
outside surface to the ribbon’s inner surface. When we move an outward pointing vector
around the ribbon, we will find that the vector eventually points inward, despite the fact
that the vector was never made to move over an edge. In fact, if an outward pointing
vector is made to “orbit” the surface of the ribbon in a fixed direction, we would find that
the first time the vector returns to its starting location, the vector is inward pointing. By

parallel transporting a vector around a closed loop, we were able to reverse the vector’s
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orientation. For that reason, we cannot identify an objective orientation for the surface of
a Mobius Strip, that is, Mobius Strips are non-orientable surfaces.?

We can ask an analogous question about the temporal orientability of relativistic space-
times. Suppose that when we parallel transport a future directed vector around a closed
loop in four-dimensions and return the vector to the point at which the vector started, the
vector becomes past directed. In that case, we would not be able to objectively identify
the past-to-future direction at a given point just as we cannot objectively distinguish the
orientation of a Mobius Strip. Some solutions to the Einstein Field Equations are not
temporally orientable. Although I am not sure how to metaphysically interpret non-
temporally orientable space-times, I think that any space-time with a beginning must be
temporally orientable.

That a space-time S is temporally orientable implies only that S is logically consistent
with defining an absolute past-to-future direction at every point of the space-time. But
logical consistency is not sufficient for showing that there is an objective past-to-future
direction at every point. If we knew which light cone was the past light cone and which
was the future light cone at any given space-time point p in S, then we would know
the past-to-future direction at p. Given the past-to-future direction at p, we could then
project the past-to-future direction to all other space-time points in S via parallel transport.
However, the chronogeometry specified by General Relativity is symmetric with respect
to the direction of time, so that the relativistic description does not suffice for telling us

which light cone we should label as past and which light cone we should label as future.

37There are some additional clarifications that can be made to distinguish the examples that I've offered
and relativistic space-times. We can distinguish between two distinct kinds of curvature, i.e., intrinsic and
extrinsic curvature. Even though the ribbon is a two-dimensional object, we can “bend” the ribbon in
three-dimensional space because we’ve embedded the ribbon into a three-dimensional space. This sort
of curvature — which requires a higher dimensional embedding space — is extrinsic curvature. In the
absence of intrinsic curvature, extrinsic curvature never deforms the contents of a surface. For example,
if a pattern is printed on the ribbon but the ribbon is made of, e.g., cardboard, then bending the ribbon
into a cylinder or a Mobius Strip leaves the pattern unaltered. On the other hand, intrinsic curvature does
deform the contents of a surface. For example, if the ribbon were made of rubber, then we could deform a
pattern printed on the ribbon’s surface by stretching the ribbon. While extrinsic curvature requires a higher
dimensional embedding space, intrinsic curvature can be defined without a higher dimensional embedding
space. In General Relativity, the curvature responsible for gravitation is intrinsic curvature. Likewise,
parallel transport can be defined without reference to a higher dimensional embedding space.
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In order to describe an objective direction of time, we need to add additional structure to
the relativistic description.

Suppose that we do add whatever additional structure suffices for specifying the past-
to-future direction at p. And now suppose that g is a space-time point space-like related to
p. If the past-to-future direction at p agrees with the past-to-future direction at g, then, to
tind the past-to-future direction at g4, we need only to parallel transport a future directed
time-like vector from p to 4. However, as we will see in the next section, nothing I've
said so far guarantees that the past-to-future direction at p agrees with the past-to-future
direction at q. Although temporal orientability guarantees that parallel transport around
a closed loop would never turn a future directed time-like vector into a past directed time-
like vector, temporal orientability is not sufficient for the future direction at p to agree with
the future direction at 4. In order to guarantee that p and g — and all other points in the
space-time — agree on the absolute direction of time, we need to fix the temporal direction

over the entire space-time.

6.2 Fixed Temporal Direction

If the Cosmos began, then the Cosmos’s beginning is prior to all non-initial events
in our Cosmos’s history. A number of authors have argued that fundamental physics
does not provide the distinction between past and future directions found in the macro-
physical world (Albert, 2000, 2017; S. Carroll, 2010; Farr, 2020; Farr and Reutlinger, 2013;
Loewer, 2012a, 2012b, 2020; Price, 1997). If past and future directions are not fundamen-
tally distinguished, then no event is fundamentally prior to all other events. Moreover,
many physicists and philosophers of physics have argued that, even though there is no
microphysical (or fundamental) direction of time, we can recover a macrophysical (or
non-fundamental) direction of time. Macrophysical processes that happen only in one
direction, e.g., the diffusion of gases into a room, involve an increase in entropy. Given
two times at which the entropy differs, we can define an entropy gradient between the
two times. Perhaps a local macrophysical direction of time should be understood in terms

of or should share a reductive explanation with the local entropy gradient. But, if so, since

116



the entropy gradient can change from one region of the Cosmos to another, perhaps there
is no globally definable direction of time. Without a globally definable direction of time,
no event can be macrophysically (or non-fundamentally) prior to all other events. In the
nineteenth century, Ludwig Boltzmann imagined that the entropy has fluctuated up and

down over time and fluctuates from one region of space to another:

There must then be in the universe, which is in thermal equilibrium as a whole
and therefore dead, here and there relatively small regions of the size of our
galaxy (which we call worlds), which during the relatively short time of eons
deviate significantly from thermal equilibrium. [...] For the universe as a
whole the two directions of time are indistinguishable, just as in space there is
no up or down. However, just as at a certain place on the earth’s surface we
can call “down” the direction toward the centre of the earth, so a living being
that finds itself in such a world at a certain period of time can define the time
direction as going from less probable to more probable states (the former will
be the “past” and the latter the “future”) and by virtue of this definition he will
tind that this small region, isolated from the rest of the universe, is “initially”

always in an improbable state (Boltzmann, 2003, p. 416).

According to Boltzmann, we distinguish past/future directions in our region of space and
during the time interval that we inhabit only because our region of space, over the relevant
time interval, includes a consistent entropy gradient. For Boltzmann, we identify a specific
direction as the past only because the entropy is low in that direction. This suggests that
there is a temporal direction (the past) in which the entropy is a minimum. Creatures
who live on the other side of the entropy minimum may regard our past direction as their
future direction. Although there is a loose sense in which we might regard the minimum
as the Cosmos’s “beginning”, the entropy minimum would not fundamentally be to the
past of any other time and would not have a distinguished status. In that case, we should
not say that the Cosmos truly began.

By way of illustration, consider a two-dimensional space-time. We can represent a two

dimensional space-time with a piece of graph paper. Suppose, moreover, that there are
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local features of the space-time such that (for whatever reason) time could consistently
point in the direction up the page. That is, one possible configuration of the space-time,
and the matter-energy populating space-time, is such that future directed vectors can be
drawn pointing from each point on the paper to the top of the page. Since all of the
vectors can be drawn pointing to the top of the page, our two-dimensional space-time
is temporally orientable and admits of a globally definable direction of time. However,
merely admitting a global direction of time —that is, mere consistency with a global direction
of time — is no guarantee that there is a global direction of time. If the direction of time
varies from one region to another — as in Boltzmann’s cosmology — then the direction in
which the vectors point will smoothly vary from one point on the graph paper to another.

To ensure that all points in the space-time agree on the direction of time, consider any
arbitrary future (past) directed vector il at p, whose direction is defined by the absolute
direction of time p, parallel transport i/ to some point g, and compare i to U, a future (past)
directed vector at 4 whose direction is determined by the absolute direction of time at 4.
If i and ¥ agree on temporal orientation for all future (past) directed vectors for all pairs

of points in the space-time, then the space-time has a global direction of time.

6.3 Summary

In this section, I articulated the Direction Condition, i.e., that the Cosmos began only if
the Cosmos has a global direction of time. A beginning requires a global direction of time
because, intuitively, the Cosmos’s beginning should be to the past of all non-initial space-
time points. In turn, a space-time S has a global direction of time if and only if S satisfies
three conditions (Matthews, 1979, p. 84, Castagnino et al., 2003). First, S is temporally
orientable. Second, for any space-time point p, there is a locally defined direction of time
at p. Third, for all pairs of points p and g in the space-time, the future (past) direction

defined at p agrees with the future (past) direction defined at g.
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7. THE BOUNDARY CONDITION

I turn to the third of the conditions for the Cosmos to have a beginning, i.e., the Boundary
Condition. Intuitively, for the Cosmos to have a beginning, the Cosmos must have a past
temporal boundary, such that the Cosmos did not exist before the boundary. There are
two ways in which the Cosmos could be said to have a past boundary and so the Bound-
ary Condition is defined disjunctively: either there is a closed boundary to the past of
non-initial space-time points (the topological conception) or there is an initial objectively
finite portion of the Cosmos’s history (the metrical conception). Although the distinc-
tion between the topological conception and the metrical conception of a past temporal
boundary was introduced by J. Brian Pitts (2008), I will argue that Pitts’s distinction is
not completely adequate. In this chapter, I develop a more sophisticated conception that
improves upon Pitts’s. Let’s turn to examining the two conceptions, beginning with the

topological conception.

7.1 The Topological Conception

Before motivating the topological conception, I need to first develop the notions of
closed, open, and clopen sets. Here, I will forego providing a formal definition of the three
notions in favor of providing some general intuitions. Consider a segment of the real line
from -1 to 1. The segment is closed just in case the segment includes the points —1 and
1. The segment is open just in case the segment does not include —1 and 1. Lastly, the
segment is clopen just in case the segment includes one of the end points but not the other.
The complement of any open set is closed. The union of a collection of open sets is open.
Now consider a point p in an n-dimensional space S. If there is some finite distance from p
we can move in any direction while remaining within S, then p is not a point on a closed
boundary. For example, consider a point on the left edge of a piece of paper. We say that
the point is on the boundary of the piece of paper because we cannot move any distance
turther left while remaining on the piece of paper. Contrast the point on the left edge with

a point g a distance ¢ to the right; no matter how small ¢ might be, so long as ¢ > 0, we
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can move ¢ to the right or the left of g and remain within the piece of paper.! Moreover,
the notion of closed and open sets, and the related notions of closed and open boundaries,
can be rigorously developed without appealing to any metrical notions, so that we can
define the notion of a closed boundary without referring to the length of any curve.

In order to motivate the topological conception of a beginning of the Cosmos, let’s
turn to a consideration of a view in the metaphysical foundations of space-time theories
called metrical conventionalism.> According to metrical conventionalism, there are no
non-conventional facts concerning the space-time metric. The standard interpretation of
relativity relativizes durations of time to reference frames. In this sense, relativity tells us
that there is no fact about the duration of the temporal interval between two numerically
distinct events independent of a choice of reference frame. The space-time conventionalist
goes one step further; for the conventionalist, the length of a given temporal interval
cannot be specified even after we’ve specified a particular reference frame. For the
conventionalist, after we’ve picked out a reference frame, we can determine the temporal
duration between numerically distinct events (or space-time points) only after selecting a
specific convention for measuring temporal durations. If metrical conventionalism is true,
there is no fact of the matter, independent of the adoption of a specific convention, as to the
temporal duration that has passed so far in the Cosmos’s history, including any fact about
whether the temporal duration of the Cosmos’s past history has been finite or infinite.
Since, at the level of metaphysics, there are no conventional facts, metrical conventionalists
say that there is no fact at all as to whether the Cosmos has a finite or an infinite past. As
I discussed in chapter 5, some conceptions of the beginning of the Cosmos entail that the
Cosmos had a beginning only if the Cosmos’s past is finite. On that conception, metrical
conventionalists would say that the Cosmos did not have a beginning, or at least did not
have a beginning in any sense that has relevance for metaphysics.

However, there is a conception of the beginning of the Cosmos consistent with metrical
conventionalism: the topological conception of the beginning of the Cosmos. In order to

explicate the topological conception of a beginning, let’s begin by considering the clopen

111 am assuming that the piece of paper is at least 2¢ units wide.
21For defenses of metrical conventionalism, see Griinbaum, 1968; Poincaré, 2001a; Reichenbach, 1958, 1971.

120



interval (0, 1]. Using the standard Lebesgue measure defined over the real line, the interval
(0,1] has a length of 1. But notice that (0, 1] has the same set theoretic and topological
features as (—oo, 1], that is, both intervals are continous, clopen intervals containing an
uncountable infinity of points. If we set aside the Lebesgue measure — that is, if we set
aside the metrical features of the interval — then there is no fact that distinguishes (0, 1]
from (—oo, 1] and so no fact distinguishing infinite from finite intervals. Likewise, suppose
that the Cosmos has an open boundary to the past. In that case, the Cosmos’s past history
has the same topological features as a past eternal Cosmos.® If metrical conventionalism
is true and the Cosmos has an open boundary to the past, then the Cosmos did not have
a beginning.

Now consider the closed interval [0,1]. The interval [0, 1] differs topologically from
(=o0,1] in virtue of having a closed boundary at 0. Importantly, if we set aside all of the
metrical features of the interval, we can still say that [0, 1] has a closed boundary to the
left at the point we’ve labeled ‘0’. For analogous reasons, if space-time conventionalism is
true and the Cosmos has a closed boundary to the past of every observer, we can still say
that the Cosmos has a past boundary, even though there is no fact concerning the temporal
interval between the boundary and ourselves. To put this point into intuitive terms, if
the Cosmos includes a first instant of time (and satisfies the other necessary conditions
for having a beginning) then we should say that the Cosmos began to exist. Whether that
tirst instant is finitely far, infinitely far, or indeterminately far into the past is irrelevant.

There is another closely related reason to prefer the topological conception over a
conception that appeals to metrical information. Relativistic space-times are defined by
a manifold M and a metric g. M is a collection of space-time points equipped with
topological structure. The spatio-temporal distance between any two points in M can
be defined in terms of g. There is no logical or mathematical inconsistency involved

in defining a second distinct metric g” over the same members of M, in terms of which

31To show that there is a topological distinction between an open and a closed boundary, consider that the
topological properties of a surface (or space or whatever) are obtained by considering the full set of features
of that surface (or whatever) invariant under continuous transformations. One can prove that compact
(closed and bounded) sets can be mapped by continuous functions only to compact sets. Consequently,
there is no continuous function mapping the compact set [0, 1] to the non-compact set (0, 1]; hence, the two
intervals are not topologically equivalent (Wapner, 2005, p. 121).
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we can define a second set of spatio-temporal distance relations. Theories that postulate
two metrics on a given manifold are called bimetric theories.* And, of course, nothing at
the level of logical or mathematical consistency forbids us from defining more than two
metrics on the members of M; theories that postulate n metrics on a given manifold can
be called n-metric theories.

For an intuitive grasp of the notion of a bimetric theory, consider once more the clopen
interval (0, 1]. Consider two points in that interval, for example, the points labeled by 0.5
and 0.7. On one way of defining the distance between the two points, the distance is the
absolute value of the difference between their respective labels, i.e., |0.7 — 0.5 = 0.2. We
can define another metric according to which the distance between any two points is the
absolute value of the difference in the squares of the two labels, i.e., [0.72 — 0.5%| = 0.24.
We ordinarily think that the distance between two points has a unique value. But on a
bimetric theory, there are two distances between any two points. In our example, the
distance between the points labeled by 0.5 and 0.7 is both 0.2 and 0.24.

In theoretical physics, there are a variety of motivations for bimetric theories. Consider
the following as a motivation that significantly problematizes the metrical conception of
a beginning of the Cosmos. As Henri Poincaré (2001a, pp. 55-57) and Hans Reichenbach
(e.g., 1958, pp. 30-34, 118-119) famously pointed out, any determination of chronogeom-
etry will be systematically underdetermined. We can always save the hypothesis that
space-time has some specific chronogeometry by introducing forces that universally act
onmeasuring instruments and distort all measurements taken by rulers or clocks. Poincaré
and Reichenbach argued that, given our inability to determine which effects are legiti-
mately chronogeometrical, there is no fact of the matter as to which effects are due to forces
and which are due to chronogeometry. Philosophers of science have since given up on
verificationism and are less prone to infer from systematic underdetermination between

two hypotheses h; and h, that there is no fact of the matter as to which of k; or h; are cor-

41 Bimetric theories indistinguishable from standard General Relativity have been considered in Feynman
et al., 2003; Pitts, 2019; Pitts and Schieve, 2003, 2004, 2007; Lockwood, 2007, pp. 335-336. A similar —
though in principle observationally distinguishable — theory was considered in Pitts and Schieve, 2007 and
Pitts, 2019; that theory approximates standard General Relativity arbitrarily well given a sufficiently small
graviton mass.
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rect. For that reason, we can rethink Poincaré’s and Reichenbach’s point; perhaps we can
distinguish between the effective metric handed to us by our observations and whatever
metric legitimately describes our space-time despite our observations. In that case, the
true duration of past time could be systematically hidden from us precisely because the
true metric would be epistemically inaccessible. In that case, we would have no right to
infer from the Cosmos appearing to have a finite age that the Cosmos really does have a
finite age. (Note that I am merely discussing this case as an epistemic possibility for the
course of future inquiry and not endorsing it. There may be other extra-empirical theoret-
ical virtues that would help us to distinguish hypotheses about physical chronogeometry,
e.g., parsimony and the like.)

According to General Relativity, the distribution of matter-energy across space-time
determines g. For that reason, insofar as g can be determined from observations, g is
determined from the observed matter-energy distribution. (There is reason to think that
g cannot be generically determined from the observations that would be available to
any observer embedded within space-time, but set that aside until chapter 9.) But if a
bimetric (or n-metric) theory turns out to be true, then the metric that can be constructed
from observations may not have any fundamental significance for the duration of past
time. Moreover, in the case that a bimetric theory does turn out to be true, perhaps we
would be able to determine both metrics. However, suppose that one metric is useful for
describing some class of phenomena and another metric for another class of phenomena.
For example, in the previously discussed example, the distance between the points labeled
by 0.5 and 0.7 is 0.2 with respect to one metric and 0.24 with respect to another. If both
metrics are required by fundamental physical theory, where one metric is required to
describe one set of physical phenomena and the other metric is required to describe
another set of physical phenomena, then we should say that the points labeled by 0.5 and
0.7 are 0.2 distance units apart in one respect and 0.24 units apart in another respect.

Just as two points can be two distinct distances apart if fundamental physical theory
includes two metrics, so, too, the Cosmos may be finitely old with respect to one metric
and infinitely old with respect to another metric. In that case, even supposing that both

metrics could be empirically determined, if a beginning of the Cosmos requires a finite
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past, there may not be a determinate fact as to whether the Cosmos began (see, for example,
Swinburne and Bird, 1966, p. 128; Halvorson and Kragh, 2019; Milne, 1948; Misner, 1969;
Roser, 2016; Roser and Valentini, 2017).

If we set aside the metric and focus only on M, then we have set aside all facts about the
duration of past time. M is a point set that has set theoretic properties, such as cardinality,
and topological properties, but not metrical properties. Since M does not come equipped
with metrical properties in itself, we cannot, by focusing only on M, mathematically
distinguish between whether M is a space-time with an open boundary in the finite past
and a space-time with an open boundary in the infinite past. However, M is equipped,
by construction, with topological structure. The distinction between an open and a closed
boundary is a topological feature. Therefore, without appealing to any metrical facts, we
can mathematically distinguish a space-time with a closed boundary - that is, a space-time
with a topological beginning — from a space-time without a closed boundary — that is, a
space-time without a topological beginning.

To complete my discussion of the topological conception, I turn to unpacking three
distinct families of ways for the Cosmos to have a topological beginning. As we will
see, two such ways are counterintuitive and surprising. The first family has a topological
beginning in the most intuitive sense; that is, all members of the first family are such
that there is a single closed boundary to the past of all non-initial space-time points.
Consider, for example, flat (Minkowski) space-time. Let’s define a system of coordinates
with respect to a reference frame F and let’s excise the portion of the space-time below the
line t = 0. The resulting space-time has a closed boundary at t = 0 and so features a shared
closed boundary to the past of all non-initial space-time points. If the space-time also
satisfies the first two conditions for having a beginning, then, intuitively, the space-time’s
initial closed bounding surface is the space-time’s beginning.

We can now turn to the second family. Let’s first remind ourselves of the three
conditions that are necessary for a topological beginning, i.e., that (i) at all of the closest
possible worlds where time does not exist, the Cosmos does not exist; (ii) the Cosmos has a
global direction of time; and (iii) there is a closed boundary to the past of every non-initial

space-time point. A three-dimensional cross-section of the four-dimensional space-time
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block such that every pair of points in the cross-section are space-like related is said to
be a space-like surface. Consider a space-time with space-like surface L and such that,
in some specific reference frame F, ¥ is a particular instant of time.> Let’s suppose that
the space-time is populated only by particles whose worldlines (or space-time worms)
intersect X and that do not undergo any non-gravitational forces. (That is, space-time is
populated only by particles traversing a time-like geodesic congruence.) Let’s define the
age of a particle according to F as the time that has elapsed since the particle’s beginning
in reference frame F. Suppose that for every particle whose age, in F, is a at X, there exists
another particle whose age, in F, is a + ¢, where ¢ € Rand 0 < ¢ < co. In this case, even
though every particle in the space-time had a beginning at some time in the finite past,
so that every particle’s worldline has a closed boundary to the past, there is no closed
boundary shared by all worldlines in the entire space-time. Importantly, we can always
trace the history of the space-time further back — according to time as measured in F — so
that there is no specific time at which the Cosmos began. That is, there are examples of
space-times where every object in the space-time began to exist, but there is no one time
(or one space-like surface) at which the space-time, itself, began.

According to a now famous theorem due to philosopher David Malament (1977b), for
temporally orientable space-times that possess a local past/future distinction, the space-
time’s topological, differential, and conformal structure can be completely determined by
specifying a class of continuous time-like curves. Since all classical space-times with a
topological beginning satisfy the Direction Condition and so have a global direction of
time, Malament’s theorem is applicable to all of the classical space-times we are consider-
ing. This suggests that we can construct all of the classical space-times with a topological
beginning, up to but not including their metrical structure, by specifying a class of time-
like curves. In the thought experiment in the previous paragraph, we considered the
worldlines of particles piercing X.. We can construct a space-time using the class of time-

like curves that pierce X and, given Malament’s theorem, that class of curves will suffice

>?One consequence of the relativity of simultaneity is that different reference frames will disagree about
which space-like surfaces correspond to instants of time, so Cosmos-wide instants can only be specified
relative to a particular reference frame.
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for determining the non-metrical structure of one family of classical space-times with a
topological beginning. And this suggests a class of space-times with a “jagged” closed
boundary, so that, in some sense, one’s distance from the beginning of the Cosmos de-
pends upon where one resides within the Cosmos. However old the Cosmos is in one’s
own “neck of the woods”, there may be some other space-time point in © where, according
to F, the Cosmos is older.®

Let’s turn to a third family of classical space-times with a topological beginning. Once
again, consider a classical space-time with a space-like surface X that corresponds to a
particular instant of time according to the coordinates defined by reference frame F. And
let’s also suppose that the space-time is populated only by particles with worldlines that
intersect 2. This time, let’s assign each particle the index ¢, where ¢ is a real number
between 0 and oo and such that there is a particle for each value of €. Let’s say that a’(¢)
is the “age” of particle ¢ according to reference frame F at .. Now define the particles

respective ages as a function of ¢:

1
1+e¢

af(e) = (7.1)

Notice that in the limit that ¢ increases without bound, af(¢) approaches 1. That is,
according to the coordinates defined by F, no particle has an age greater than 1, even
though there is no oldest particle. In this case, there is no closed boundary shared by all
particles, since each particle began at a distinct instant (relative to F), but the space-time

is still bounded to the past because no part of the space-time is older (again, relative to

1A simple example of one such space-time can be explicitly constructed by modifying Minkowski space-
time using the following procedure. Select some reference frame F. Consider the space-like surface t = 0
in frame F. Keep the portion of Minkowski space-time above t = 0 and throw away the portion below
t = 0. The space-like surface f = 0 now forms a boundary to the space-time; let’s call that boundary B. Now
perform a Lorentz boost into a frame F’ in motion relative to F.

For simplicity sake, suppose that we performed the aforementioned operations on a two-dimensional
space-time, where the t-axis runs up the page and the x-axis runs horizontally. In frame F, the boundary B
is a horizontal line corresponding to the x-axis. In F’, B is a diagonal line. Consider an observer, let’s name
them Albert, in frame F’. From Albert’s perspective, Albert is a finite proper time — let’s say T — from the
closest point on B to Albert. T can be used to specify a simultaneity slice relative to F’. There is another point
A on the T simultaneity slice some distance Ax" away from Albert such that the shortest distance between
B and Ais T + ¢. Since, relative to F’, B is a diagonal line, we can always find a value of Ax” such that ¢ is as
large as we’d like. And since we can make ¢ arbitrarily large, there is no maximal value to the time, relative
to F’, between B and the corresponding closest point on T.
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F) than 1. Malament’s theorem suggests that we can define a class of time-like curves,
all of which have a closed boundary in their respective pasts, even though there is no
closed boundary shared by any two time-like curves. One may have the intuition that this
family of space-times has a beginning in a stronger sense than the first family of classical
space-times with a topological beginning that we examined. Indeed, this is so, because, in
the sense to be explained below, this family of classical space-times has both a topological
and a metrical beginning. But, contrary to our intutitions, the shared metrical beginning
is an open boundary - since there is no time-like curve such that a*(¢) = 1 - while the local
and unshared “beginnings”, i.e., the start of each time-like curve, is closed.
Unfortunately, although we can mathematically distinguish space-times with a topo-
logical beginning from space-times without a topological beginning, we cannot, in general,
empirically distinguish the two. Again, the only features of space-time that can be em-
pirically discovered are those related to the distribution of the matter-energy populating
space-time. In the case of classical space-times, General Relativity ties a specific kind
of boundary to space-time, i.e., curvature singularities, to the matter-energy distribu-
tion. However, curvature singularities are open boundaries. Thus, the only boundaries
to classical space-times that are tied to the matter-energy distribution do not represent
topological beginnings. Recall the criteria that I stated at the outset, i.e., that the three
conditions I identify for the Cosmos to have a beginning be necessary for the Cosmos to
have a beginning, that the criteria should be useful in determining whether the Cosmos
had a beginning, and that the criteria should help to elucidate the concept of a beginning.
Given that a topological beginning would not be tied to the matter-energy distribution
and would, for that reason, not be empirically discoverable, and that there is little hope
for discovering the Cosmos’s beginning through non-empirical means, the topological
conception of the Cosmos’s beginning is not helpful in determining whether the Cosmos
had a beginning. Nonetheless, there is another sense in which the Cosmos could have a

past boundary, to which I now turn.
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7.2 The Metrical Conception

Suppose that time is absolute and has an open boundary to the finite past such that
there is no time before the boundary at which the Cosmos exists. Since the boundary
is open, the topological conception would say that the Cosmos did not begin to exist.
Nonetheless, there is a strong intuition that one way for the Cosmos to begin to exist
would involve time having an open boundary in the finite past (or, if one endorses the
Oxford School, there is a time interval with an open boundary such that the Cosmos does
not exist before the boundary). And there is a strong intuition that if the Cosmos had
another kind of open boundary —namely, an open boundary infinitely far to the past of all
space-time points — then the Cosmos did not begin to exist. Since this intuition concerns
the lapse (or total duration) of past time, following Pitts (2008), we can call the resulting
conception of the Cosmos’s beginning the metrical conception. Craig and Sinclair, following

Smith (1985), endorse a metrical conception of the beginning of time:

[...] we can say plausibly that time begins to exist if for any arbitrarily des-
ignated, non-zero, finite interval of time, there are only a finite number of
isochronous intervals earlier than it; or, alternatively, time begins to exist if for
some non-zero, finite temporal interval there is no isochronous interval earlier

than it (Craig and Sinclair, 2012, p. 99).

Note that Craig and Sinclair’s metrical conception is expressed disjunctively; while Craig
and Sinclair mean for the second disjunct to be equivalent to the first, as I will show,
the two disjuncts are not equivalent. Swinburne has endorsed a similar condition for
a beginning of the Universe in the finite past, where, by ‘Universe’, Swinburne means

roughly what I mean by ‘Cosmos”:

[...] to say that the Universe began a finite time ago is to say that all physical
objects spatially related to ourselves began to exist after a certain date, a finite
time ago. To claim that the Universe is eternal is to deny that there is any
date of which the last statement is true. [...] what does it mean to say that

something had a beginning a finite time ago? [...] If the Universe can be shown
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to have begun 1 units of [a time scale defined by an ideal clock] ago, where 7 is
a finite number, then the Universe can be said to have begun a finite time ago

(Swinburne and Bird, 1966, pp. 127-128).

Elswhere, Swinburne (2004, p. 138) writes, “The interesting question about whether the
universe is of finite age, or of infinite age, is the question about whether there has been a
universe only for no more than a finite number of periods of equal length (for example, a
tinite number of years) or whether it has existed for an infinite number of such periods.”

Swinburne’s account of a finitely old Universe differs from Craig and Sinclair’s account
of the Universe’s beginning for three reasons. First, Swinburne denies that the beginning
of time is metaphysically possible and so claims that time existed before the Cosmos.
For that reason, Swinburne’s account differs from accounts on which time began when
the Cosmos began. Second, Craig and Sinclair’s first disjunct stipulates that when we
pick out any arbitrarily specified finite interval of time, there are only a finite number
of isochronous earlier intervals and Craig and Sinclair’s second disjunct stipulates that
there exists some finite interval with a finite number of preceding isochronous intervals.
In comparison, Swinburne’s conception demands that we pick out a particular instant
as the present and that there are only a finite number of isochronous intervals earlier
than the present. Third, while Swinburne offers a sufficient condition for the Cosmos
(or the Universe) to have a beginning, Swinburne has elsewhere, e.g., (1996), argued that
beginning a finite time ago is not necessary for the Cosmos to have begun.

In this section, I construct a new metrical conception of the beginning of the Cosmos.
Swinburne (1996) offers a thought experiment from which he concludes that the Cosmos
having an infinite past would not entail that the Cosmos is beginningless. Instead of
reiterating Swinburne’s thought experiment, I offer three new thought experiments. The
new metrical conception will fulfill three desiderata. First, the metrical conception should
be consistent with the sufficiency of a finite past for establishing that the Cosmos had a
beginning. Second, the new metrical conception should be consistent with the Cosmos,
as described in the three thought experiments, having a beginning. Third, there should be

cases where the new metrical conception agrees with our intuition that the Cosmos had
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no beginning. As we will see, the new metrical conception, in certain respects, resembles

the second disjunct in Craig and Sinclair’s conception.

721 Three Thought Experiments

I now turn to a consideration of the three thought experiments. Before explicating
the three thought experiments, I briefly describe a collection of preliminary mathematical
notions. Given two sets, e.g., S1 = {a3,b,...} and S, = {a, by, ...}, the Cartesian product
of the two sets, denoted, e.g., S1 X S,, is the set of all pairs taken from the two sets, e.g.,
51X S; ={(al,ay), (al, by), ..., (b1, az), ...}. Thatis, S1 XS, = {(x, y)lx € S1&y € Sy}. We can label
all of the points in a given space by considering Cartesian products of the appropriate
sets. For example, there is an isomorphism between a two-dimensional plane and the
Cartesian product of the real line with itself, so that the set of points in the plane can
be represented by R x R = R?. We can represent the points in an n-dimensional space
recursively, e.g., R" = R X ...(n-2 times)... X R. Describing a space’s manifold in terms of
Cartesian products of subsets of R allows us then to define the space’s metrical properties
in terms of functions over R. Note that the collections of real numbers used to label the
points in a given manifold do not carry any information about how far apart the two
points are; to define the distance between two points in M, we need to define one or
more metrical relations on M as well as the “lengths” of some appropriate set of curves
connecting the two points.”

As T've said, relativistic space-times are a pair of objects, i.e., first, a set of points
(the manifold) M and, second, the metric tensor g. We can provide an analogous, albeit
anachronistic, description for pre-relativistic space-times. Newtonian and Galilean space-
times are described by the manifold R*, a temporal metric t, describing the duration
between any two instants of time, and a spatial metric h, describing the spatial distance

between any two points in space. Newtonian/Galilean space-times can be subdivided into

7TFor example, in relativistic space-times, g is a rank 2 tensor, with components Suv, from which we can
compute the “distance” (that is, the interval) between points p and g by maximizing fp " Suvdxtdx’, where

the integral is computed along a path from p to 4. For philosophical discussion and elaboration, see Bricker,
1993.
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three-dimensional spaces, where each three-dimensional space has a unique value of t -
representing the space-time at a given value of absolute time — and in which h defines the
standard Euclidean distance between any two points. In Newtonian space-time, points of
space persist over time — which can be represented by re-identifying the same space-time
points at successive times — whereas, in Galilean space-time, points do not persist over
time.

Before continuing on to a discussion of the three thought experiments, I need to
introduce a general principle that I will use to reach the lessons that I take from each of the
thought experiments. Given any two observers A and B, if the Cosmos began for A then
the Cosmos began for B and vice versa. If a version of the Boundary Condition entails
that the Cosmos began relative to some observer and did not begin relative to some other
observer, then that version of the Boundary Condition is inadequate.

Having laid out some mathematical foundations and stated a general principle, I

continue on to a discussion of the three thought experiments.

The Partially Amorphous Cosmos

Some cosmological models include a space-time region where there are no metrical
facts and another space-time region where there are metrical facts. Consider Bradford
Skow’s (2010) argument that an objective space-time metric might not be either an intrinsic
feature of space-time or wholly the result of features intrinsic to space-time. Instead, Skow
argues, space-time might have an objective, but extrinsic, temporal metricjust in case there
is some x that plays the functional role, in the physical laws, of determining the ratios
between any two non-overlapping spatio-temporal intervals.® If metrical facts require a
specific functional role to be fulfilled, then, in space-time regions where that functional
role is not fulfilled, there might not be any metrical facts, even though metrical facts do
obtain in other space-time regions.

For example, in Roger Penrose’s (2012) Conformal Cyclic Cosmology, there are no facts

about spatio-temporal scale, that is, no metrical facts, at early or late times in the history

81Skow cashes out his view in terms of absolute time, but indicates that he intends for his view to be
generalizable to relativistic space-times.

131



of the observable universe.” A temporal (or spatio-temporal) interval for which there is
no fact concerning the length of the interval — that is, an interval to which metrical facts
are inapplicable — is said to be amorphous. To put the view another way, if space-time is
metrically amorphous within some region, then there is no objective fact about the ratio
of the durations of two non-overlapping intervals within that region. In relativistic space-
times, lengths and temporal intervals depend upon the adoption of a specific reference
frame. Amorphous time goes one step further in that if time is amorphous then, even
within a given reference frame, there are no facts about how long a given temporal
interval is. One example of amorphous time is time for which metrical facts are purely
conventional, as already discussed, though amorphous time can also be such that one
cannot even adopt a conventional metric. For the sake of simplicity, let’s suppose that
Newton and Galileo were correct that time is absolute.’® Let’s also suppose that there
is a finitely long interval of non-amorphous time labeled A, followed by an interval of

amorphous time labeled B, and then followed again by an interval of non-amorphous

970n some quantum gravity theories — such as causal set theory (Bombelli et al., 1987; Brightwell and
Gregory, 1991; Dowker, 2006, 2013, 2017, 2020) — the space-time metric appears only in the theory’s
continuum limit, thereby allowing for the possibility that there are regions of the Cosmos where the
space-time metric is inapplicable. However, we should not necessarily think of those regions as amorphous
in the sense discussed in this section. Consider, for example, consider Brightwell and Gregory’s (1991)
construction of the continuum limit for a space-time interval spanned by a number of space-time atoms
“linked” together in a chain. When the chain is sufficiently long, the space-time interval is proportional to
the number of links in the chain. As causal set theorists like to say, in causal set theory, metrical facts are
determined by counting. For that reason, supposing that there are only a small number of space-time atoms
in some region, so that the continuum limit does not apply in the region, we need only consider a larger
region to recover relevant metrical facts. In any case, recall that the Boundary Condition for the Cosmos
to have a beginning is disjunctive. If the initial portion of the Cosmos is correctly described by causal set
theory, then, since causal sets always have closed boundaries, the Cosmos would satisfy the first disjunct —
by having a topological beginning — and so would have a beginning.

19rNothing crucial in this example hangs on whether time is absolute. The example can be reconstructed
for relativistic space-times. To construct a relativistic space-time without metrical structure, first consider
a space-time S with metric g,,. And now consider the metric §,, produced from §,, by the conformal
transformation g,, = Q?g,, where Q is a positive and smooth but otherwise arbitrary scalar function. For
relativistic space-times, multiplication by Q? leaves the space-time’s light cone structure unaltered. Call the
resulting space-time S. Two space-times that are related by such a transformation, e.g., S and S, are said to
be conformally equivalent. A space-time without metrical structure can then be constructed by identifying all
of the members of a given class of conformally equivalent space-times. Let’s call the space-time that results
from identifying all of the members of a given class of conformally equivalent space-times Sc. Since the
conformal transformation left the light cone structure unaltered, Sc is equipped with light cone structure
but not metrical structure and so Sc is an example of a relativistic amorphous space-time. For related
technical details, see chapter 11 and references therein. To construct a relativistic space-time analogous
to the space-time inhabited by Pam and Jim, one can “glue” a metrically amorphous space-time region R
between two regions that are not metrically amorphous.
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time labeled C. Formally, we are supposing that A is a Newtonian or Galilean space-time
region with an objective temporal metric, that B has the topology of a Newtonian or
Galilean space-time region without an objective metric, and that C is another Newtonian
or Galilean space-time region. Suppose, further, that the Cosmos does not exist prior to
A. Call this construction the Partially Amorphous Cosmos.

Suppose that Pam is an arbitrarily chosen observer in A. Pam should say that the
Cosmos began in her finite past. Suppose that Jim is an observer in C. For Jim, since
there is an interval of amorphous time between himself and the beginning identified by
Pam, there is no fact concerning how far in the past the Cosmos began. Consequently,
even though, intuitively, Jim should agree that time began, there is no fact about how
many isochronous intervals can be placed into Jim’s past. Since there is no fact about
how many isochronous intervals can be placed into Jim’s past, Craig and Sinclair’s first
disjunct entails the intuitively wrong conclusion that the Partially Amorphous Cosmos
did not begin to exist. Swinburne’s metrical conception entails the intuitively wrong
conclusion that the Partially Amorphous Cosmos began to exist for Pam but not for Jim.
A Newtonian or Galilean Cosmos with a beginnining can have a non-initial segment in
which there is no objective temporal metric. Instead of articulating the metrical conception
in terms of there being a determinate number of isochronous intervals to the past of every
temporal interval, as in Craig and Sinclair’s first disjunct, or as indexed to some observer’s
present, as with Swinburne, the metrical conception should entail that, for space-times
with a metrical beginning, time is not metrically amorphous in the initial segment of the

Cosmos’s history."

1A similar point has been previously made in various places, but, in particular, see Earman, 1977, pp. 125-
126, 131. For example, Hermann Weyl (1997) maintained that the choice of time scale is, is to a certain
degree, conventional. In more technical terms, Weyl argued that there is gauge freedom in one’s choice
of metric tensor so that the metric tensor is determined only up to a conformal factor, as in footnote 10.
Additional technical details for Weyl’s theory can be found in Bell and Korté, 2016. The result, if Weyl were
correct, is that there is gauge freedom in the proper time along any given trajectory. Weyl postulated that
the gauge could be fixed for each trajectory, but only in such a way that the rate at which a given clock
ticks depends the clock’s specific trajectory. Someone who returns to Earth after having traveled at close
to the speed of light would discover not only that their twin’s clock read differently than their own — as in
Einstein’s relativity — but that their twin’s clock ticks at a different rate.

In any case, were Weyl's theory correct, time scale would not correspond to any objective physical
fact (Penrose, 2004, p. 451). Einstein objected that frequency and mass can be related through quantum
mechanics (i.e., E = hf) and relativity (i.e., E = mc?). Provided a frequency, one can construct a clock. So,
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The Fractal Cosmos

There are a number of fractal curves whose arc length is infinite (von Koch, 2004, p. 38;
Mandelbrot, 2004), even though they occupy a finite region of the plane. Consider, then,
a fractal curve with infinite arc length that occupies a region of the x — y plane with an
end point at the left at x = —1 and an end point at the right at x = 1. We can “glue” finitely
long line segments, parallel to the x-axis, to the curve’s left end point and another to the
curve’s right end point. Call the line segment on the left L, the fractal curve C, and the
line segment on the right R. Restricting ourselves to the resulting L — C — R compound

geometric object, notice that:
1. There is a finite distance between any two points in L.

2. There is a finite distance between any two points in R.

given that any observer with mass effectively carries a clock, there is an objective way for any observer
with mass to fix a time-scale (Bell and Korté, 2016; Penrose, 2004, p. 453). Conversely, if Weyl’s theory
had been correct, then the masses of particles wouldn’t be fixed and would vary with the history of a
given particle. This would have violated the quantum mechanical principle that identical particles have
identical masses. Thus, on Einstein’s proposal, whether there are facts that distinguish finite and infinite
temporal durations depends upon the local matter-energy distribution, i.e., in the absence of mass, there is
no objective distinction between finite and infinite temporal intervals. One can adopt Einstein’s proposal
that the masses of objects determine the frequencies for locally fixing time scales without adopting Weyl's
theory. If Einstein’s proposal is correct and objective time scales depend on the local presence of mass
then, if there were no masses in the initial segment of the Cosmos’s history, there would be no objective
distinction between the Cosmos having an infinitely or finitely long initial segment. In that case, unless the
initial segment of the Cosmos has a closed boundary to the past of all other space-time points not on the
boundary, the Cosmos would lack a beginning.

One set of authors has argued along independent and fairly different lines that in classic models of
the Big Bang, which are often said to include a beginning, our universe’s past should not be understood
as objectively finite. Standard cosmological (i.e., Friedmann-Lemaitre-Robertson-Walker or FLRW) space-
times can be sliced into space-like hypersurfaces such that the mean extrinsic curvature is constant on each
hypersurface. This is known as the Constant Mean (extrinsic) Curvature (CMC) foliation. We can label
the hypersurfaces in the CMC foliation with the cosmic time, that is, time as recorded by observers who
are locally at rest with respect to the universe’s expansion. When cosmologists say that the universe has a
finite age according to a given cosmological model, they typically mean that there is finite cosmic time to
the past. Nonetheless, the hypersurfaces in the CMC foliation can be relabeled in such a way that the order
of the hypersurfaces is preserved. For example, one can relabel the CMC hypersurfaces by the scale factor,
a measure of a length-scale characteristic of the universe’s expansion, or by various monotonic functions of
the scale factor. Importantly, one can relabel the CMC hypersurfaces with parameters, e.g., the York time
(York, 1972; Roser, 2016, p. 49), that map the singular surface bounding FLRW space-times to the infinite
past. Various authors (Milne, 1948; Misner, 1969; Roser, 2016; Roser and Valentini, 2017) have argued that
labelings that do map the singularity to the infinite past are more physically significant than the cosmic time.
Consequently, showing that one inhabited an FLRW space-time bounded by a past singularity might not
be sufficient for showing that the Cosmos had a beginning; one must also show that past time is objectively
finite.
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3. There is an infinite distance between any point in L and any point in R.

Once more, for the sake of simplicity, suppose that Newton and Galileo had been right
that time is absolute.'> Moreover, suppose that absolute time had the metrical structure of
L — C = R. Suppose that Pam is an arbitrarily chosen observer in the L segment of history.
By construction, L is a finitely long line segment; for that reason, there is only a finite
period of absolute time to Pam’s past (or, for the Oxford School, only a finite period of
absolute time to Pam’s past during which the Cosmos exists). Intuitively, supposing that
the Modal Condition is satisfied, the metrical conception, when conjoined with the fact
that there is only a finite period of absolute time to Pam’s past, should strongly suggest that
there was a beginning of absolute time. (Alternatively, so long as the Modal Condition is
satisfied, the metrical conception and the fact that the Cosmos has only finite past temporal
extension should strongly suggest that there was a beginning of the Cosmos.) However,
for any arbitrarily chosen observer — call them Jim —in the C or R segments of history, the
beginning suggested by Pam is located infinitely far in the past. For that reason, Craig and
Sinclair’s first disjunct clashes with intuition by entailing that the Fractal Cosmos has no
beginning while Swinburne’s version clashes with intuition by entailing that the Cosmos
has a beginning for Pam but not for Jim. Again, we need a conception on which whether

the Cosmos has a beginning is not observer relative.

The Partial Sum Cosmos

In this section, I'll consider two different mathematical constructions as thought ex-
periments: first, a more “pedestrian” version and, second, a more technical version that
draws upon the way in which partial sums relate to infinite convergent series. I offer the
pedestrian version so that readers who cannot follow the technical version can at least
draw the core points from the pedestrian version. In the pedestrian version, let’s begin by
considering the series of positive integers in increasing order: 1, 2, 3, ... Mathematicians
say that the sequence has order type w. Sequences of order type w do not have a last

member, but we can add in a last member z by defining z such that z comes after every

127 An analogous construction can be produced using relativistic physics.
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member in the sequence. We can then use z to define a new sequence: 1, 2, 3, ..., z. We
can also consider the series of negative integers in increasing order: ..., =3, =2, —1. This
sequence has order type w*. Sequences with order type w* have no first member — since
the sequence of negative numbers has no start — but we can add in a first member a by
defining a such that a comes before every member in the sequence. We can then use a
to define a new sequence: 4, ..., =3, =2, —1. Lastly, we can “glue” together the w and w=
sequences by identifying z witha: 1,2, 3, ..., z, ..., =3, =2, —1. Call this the v — @* sequence.
Given a countably infinite set of points, we can identify each point in the set with one
member of the w — w* sequence and we can define topological relations such that points
labeled by sequential values in the w — w"* sequence are neighbors, e.g., the point labeled
1is to the right of the point labeled 2 and all of the points labeled by negative integers are
to the right of the positive integers.

We can define a metric over the point set labeled by the w — " sequence with the
following properties: (i) the distance between any two points in the portion labeled by the
positive integers is given by the absolute value of the difference between the corresponding
twointegers, (ii) the distance between any two points in the portion labeled by the negative
integers is given by the absolute value of the difference between the corresponding two
integers, (iii) the distance between z and any other point is infinite, and (iv) the distance
between any of the points labeled by a positive integer and any point labeled by a negative
integer is infinite. We’ve succeeded in defining a point set equipped with topological
structure, that is, a manifold, and a metric. If time had the corresponding structure — so
that —1 is used to label the present — then, even though there might be infinite time to our
past, we should still intuitively say that time has a beginning. Time would have a first
instant, namely, the point labeled by 1.

For the more technical version, let’s begin by considering the infinite sum:

6 v 1
As with any convergent infinite series, the value of 7.2 is defined in terms of the limit of

the corresponding partial sum:
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In turn, since the generalized harmonic numbers Hl(\r,) are defined as Hl(\r,) = le\] 1/n", we
can re-write the partial sum gy in terms of Hﬁ):
N = %Hﬁ)

Given the properties of the generalized harmonic numbers, the variable gy can assume
any one of the values in a set that is bounded from below by 6/7* and from above by
1, ie, gy € {%Hf), %Hf),...}. Furthermore, define S; such that S; = {q1,42, ...} U {1}.
Define a function d(xn, ym) = IM — N| such that xy and v are both possible values of gy.
d(xn, ym) maps a pair of values in S; to the set of positive integers. Furthermore, define
d(xn,1) = d(1, ym) = co. We can then think of d(xn, ym) as a metric defining the distance
between points labeled by xy and yy; moreover, we've defined the metric such that any
one of the points labeled by values of gy < 1 are infinitely far from 1.

Let’s now “paste” a mirror image copy of this collection on to the points along the real
line labeled by numbers between 1 and 2 — 6/7?, i.e., points labeled by numbers in the set

{.,2-6/ TEZng), 2-6/ JtzHgZ)}. We can do this by considering the sum

As well as the partial sum

Define S, = {...,2 — 6/n2H§2), 2 — 6/TCZH§2)} U {1}. For the points labeled by values in S,, we
can define a corresponding metric as before, i.e., d’(xy, y;,) = IM — N|. Using this metric,
points labeled by values between 1 and 2 — 6/7* are infinitely far from the point labeled

by 1. We can now define a combined metric for the collection of points labeled by values

between 6/m* and 2 — 6/7*:
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|M—N| xN<1&yM<1
1) in<l&ym>1
D(xn, ym) =
00 in>21&ym<1

|M—N| xN>1&yM>1

Using D(xn, ym), we can construct a space-time, featuring discrete time, in the following
way; let’s call this space-time the Partial Sum Cosmos. Suppose that time is discrete
and, for simplicity, suppose, again, that time is absolute. Further, let us suppose that
the whole of history consists of a set of temporal atoms labeled by values (as described
in the construction above) between 6/7* and 2 — 6/7* with a temporal metric given by
D(xn, ym). Arbitrarily pick an observer situated at one of the temporal atoms ap after the
atom labeled 6/7*> and before the atom labeled 1. Once again, call this observer Pam.
Because the temporal atom labeled 6/7 is the first temporal atom, there is a boundary to
absolute time located in Pam’s past. Intuitively, since, according to the temporal metric
D(xn, ym), Pam is a finite distance from that boundary, i.e., D(ap, 6/7*) < oo, Pam should
conclude that time had a beginning in the finite past. However, for any of the observers
located at one of the temporal atoms to the future of the temporal atom labeled by 1, the
beginning identified by Pam is infinitely far to their past. This is analogous to the result
we found for the Fractal Cosmos, where, for some set of observers, past time is infinite,
even though we should intuitively say that time had a beginning.

Craig and Sinclair’s first disjunct reaches conclusions for the Partial Sum Cosmos that
clash with our intuitions for reasons parallel to those we identified for the Fractal and
Partially Amorphous Cosmoses. That is, Craig and Sinclair’s first disjunct would say that
the Partial Sum Cosmos is beginningless. Swinburne’s metrical conception also reaches
conclusions for the Partial Sum Cosmos that clash with intuitions for reasons parallel
to those we identified for the Fractal and Partially Amorphous Cosmoses. Swinburne’s
metrical conception would say that there is one set of observers in the Partial Sum Cosmos
for whom the Cosmos began and another set of observers for whom the Cosmos did not

begin. According to the new metrical conception that I develop below, supposing the
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Partial Sum Cosmos satisfies the other conditions necessary for having a beginning, the

Partial Sum Cosmos’s beginning is not relative to any set of observers.

Drawing lessons from the three thought experiments

In the cases of the Fractal Cosmos and the Partial Sum Cosmos, one may object that
infinity is not a number, in which case distances and temporal intervals cannot be infinite.
Four replies can be offered. First, that there are space-time points between which the
temporal interval is not well-defined would suffice for my purposes. For that reason,
if we understand the temporal intervals involved not as infinite but as divergent — and
so as not well-defined — similar conclusions follow. Second, while infinity is not a real
number, there are well known geometrical constructions in which points are included
that are at an infinite distance from other points. One family of constructions are the
fractal curves already discussed. For another example, consider the projection of the
Riemann sphere on to the complex plane, which allows one to identify complex infinity
with the sphere’s north pole. There is no recognized mathematical difficulty involved in
including “points at infinity” in a given construction. AsI’ve shown in chapter 2, whether
there are metaphysical problems involved in such constructions has yet to be successfully
shown. Third, there are solutions to the Einstein Field Equations — such as Malament-
Hogarth space-times — that include observers who, in finite time, can observe the results
of a computation that takes infinite time to perform (Earman and Norton, 1993; Etesi
and Németi, 2002; Hogarth, 1966, Manchak and Roberts, 2016). (On a more technical
level, what’s crucial about Malament-Hogarth space-times is the feature that a time-like
half-curve, along which there is infinite proper time, can “fit” inside some observer’s
past light cone, where the observer is not located at time-like infinity.) If we accept
some standard solutions to the Einstein Field Equations, e.g., Kerr black holes or anti-De
Sitter space-time, as legitimately metaphysically possible, then we need to allow for the
metaphysical possibility of infinite arc lengths. Fourth, supposing that one considers the
Fractal Cosmos and the Partial Sum Cosmos as metaphysically impossible, one is still left

with the Partially Amorphous Cosmos as a viable epistemic possibility.
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According to Craig and Sinclair’s account, the Cosmos began only if the Cosmos’s
history includes no more than a finite number of isochronous intervals earlier than any
arbitrarily chosen interval. In the three thought experiments, so long as the Cosmos
satisfies the Modal Condition and the Direction Condition, there is a strong suggestion
that the Cosmos began; nonetheless, in the three thought experiments, there are some
temporal intervals such that there is no finite or determinate number of isochronous
intervals to that interval’s past. According to Swinburne’s account, the Cosmos began
just in case there are a finite number of isochronous intervals earlier than the present.
But in the three thought experiments, there could be observers situated such that there
there is no finite (or determinate) number of isochronous intervals before their present.
Moreover, since Swinburne’s version of the metrical conception is indexed to the present
of a given observer, Swinburne’s version yields inconsistent conclusions about whether a
given Cosmos had a beginning. Craig, Sinclair, and Swinburne’s accounts — like my three
thought experiments — assume that time is absolute. In the case of absolute time, the new
metrical account should (roughly) say that (i) there is a (closed or open) boundary B to
the past of all space-time points and (ii) there exists some time T such that, according to
the objective metric of absolute time, the span of time between B and T is finite.

A good conception of the beginning of the Cosmos should not depend on whether
time is absolute and should at least be consistent with relativistic physics. (Ideally, the
account should also be consistent with a future quantum gravity theory, but, given that
we do not yet possess a successful quantum gravity theory, the account that I offer here
will need to be provisional.) For that reason, a metrical conception of the beginning of the
Cosmos that did not assume absolute time is desirable. In order to construct a new version
of the metrical conception that does not assume absolute time, I need to first explicate the
generalized affine parameter. But in order to motivate the generalized affine parameter,
we need to take a brief detour through relativity. Readers already sufficiently familiar

with relativity to know what the generalized affine parameter is can skip the detour.
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7.2.2 A brief detour through relativity

In pre-relativistic physics, one could imagine releasing synchronized and properly
functioning clocks, each of which has some arbitrary velocity, from numerically one
point. (Nevermind worries about whether two clocks can occupy one point.) We could
then synthesize all of the subsequent clock readings together to form an absolute time,
where disparate parts of the Cosmos would be said to be located at objectively the same
time T just in case they coincide with a clock that reads T. And then one could imagine
checking that the clock readings were properly synthesized together by re-collecting the
clocks at numerically one point and noting that they all remained synchronized. In
relativistic physics, we cannot successfully perform this synthesis. After the clocks are
released, the hypersurface on which all of the clocks record the same time should not be
understood as a moment of time for, in that context, simultaneity becomes relativized to
one’s trajectory through space-time. Moreover, when the clocks are collected together at
numerically one point, we would find that their readings were no longer synchronized;
instead, their readings depend on the path that each clock has taken.

Instead of defining an absolute time for the whole of the Cosmos, relativistic physics
introduces the notion of proper time. Proper time is analogous to the distance recorded by a
car’s odometer; in some sense, proper time records the distance that an object moves along
a given path through space-time. Famously, a young person who shoots off in a rocket ship
at close to the speed of light, turns around, and returns to Earth may find the twin they left
behind in a nursing home. The difference in the twins’ respective ages is explained by the
fact that the twins traversed distinct paths through space-time. The twin who remained
on Earth traversed an objectively longer trajectory than the twin who went away and came
back; the fact that their trajectory is longer explains the fact that they experienced a longer
duration of time. If time is a parameter marked off along the trajectory of an object then we
should not think of time as a parameter describing the global chronogeometric structure
of space-time. Instead, space-time is a collection of points, none of which should be
considered specifically spatial or temporal. On Minkowski’s metaphysics, there is a four

dimensional space-time block, but the fourth dimension is not time. For this reason, the
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popular notion that time is the fourth dimension is either mistaken or at least misleading.
Instead of thinking of time as a dimension spanning the block, from one end to the other,
we should think of time as marked out along trajectories, just as odometers mark out
distances along the trajectories traversed by cars in three dimensional space.

Consider a right triangle on a Euclidean plane, whose base has length 2 and whose
heightis b. According to the Pythagorean theorem, the hypotenuse 1 of the triangle is given
by a®+b? = h%. By specifying two orthogonal axes, we can use the Pythagorean theorem to
express any length in terms of distances along the two axes. The Pythagorean theorem has
a natural generalization for expressing intervals in four dimensional space-time. For the
sake of simplicity, I will consider Minkowski space-time, that is, a relativistic space-time
from which gravity and curvature are absent. In Minkowski space-time, the length of any
four-dimensional interval I can be written in terms of the coordinates defined by a given
reference frame F. Projecting the interval on three perpendicular spatial directions x, y, z

and the temporal axis ¢, all defined by F, we have:

P+ +yr+22 =1

The parameter c is the speed of light and can be thought of as the conversion factor
between space and time. Notice that, unlike the Pythagorean theorem, there is a negative
sign on the first term. The negative sign introduces the possibility that I can be zero even
though ¢, x, y, and z are non-zero.

To understand the situation in which I = 0, let’s consider the distance 7, in three
dimensional space, that a beam of light traverses in a time t. Assuming that the light
starts its journey at x = 0, y = 0, and z = 0, we can use the Pythagorean theorem for three
dimensional space to find the distance the light has traveled when the light reaches the

point (x, y, z):

r= 22+ 2+ 22
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We know that the distance traversed by an object is given by the speed of the object
multiplied by the time over which the object travels. Since light moves at the speed ¢, we

have that r = ct, or, in other words,

X+ Yr+ 22 =t

Squaring both sides and re-arranging, we have:

Py +22 - =0

In other words, along the trajectory traveled by a beam of light, I = 0. What is the
significance of the fact that I = 0 along the trajectories that light travels? Even though
t, x, y, and z individually vary between coordinate systems, I does not vary between
coordinate systems. So, consider an interval marked out by ¢, x, y, and z in one coordinate
system and #’, x’, ¥/, and z’ in a second coordinate system. Since I does not vary between

coordinate systems, we have that:

—ct? +x?+ Y+ 2% = =P + X+ P+ 2

Since the variables on the left hand side come equipped with primes, we say that the
observer whose coordinates are used on the left hand side is the primed observer. Suppose
that I represents the interval along the primed observer’s trajectory. Relative to oneself,
one never moves, since one never becomes (for example) further away from oneself. Thus,
relative to the primed observer’s own coordinates, the primed observer does not move
through space. For that reason, x’ = y’ = z’ = 0. But any given observer will measure that,

according to a clock that they carry, time passes, so that t' # 0. Consequently,

—ct? = —cP + X+ P+ 27

Thus, the interval, when placed along one’s own trajectory, measures one’s own proper

time. However, along the trajectories that light travels, I = 0. Thus, relative to light, time
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does not pass. More rigorously, we can say that, along the trajectories that light traverses,
no proper time elapses.

This is a deeply counterintuitive result. Light traverses numerically distinct points
and yet never records that time passes. One may argue that we made an error, though, if
we did, the error is still more counterintuitive. We assumed that there is some reference
frame relative to which light is at rest. If there were such a reference frame, then we
could accelerate an object up to light speed, so that light was at rest relative to that object.
Relativity forbids the existence of any reference frame from the perspective of which light
is at rest. If so, light has no rest frame.

Recall the proposal that we started with, namely, that the Cosmos could be said to
have a finite past just in case, according to any trajectory that an object could traverse,
only finite proper time has transpired. We found that there is some sense in which time
does not pass for light. If we take that result literally, then, even if for all observers
moving slower than light, the Cosmos is eternal to the past, there is a sense in which,
for light, zero time has passed in the Cosmos’s history. What we need is a suitable
alternative A to proper time with two features. First, for bodies moving slower than light,
A should distinguish infinitely from finitely long trajectories. That is, for trajectories along
which there is (in)finite proper time should be assigned (in)finite values of A. Second, A
should parametrize the points along the trajectories followed by light in such a way that
numerically distinct points are afforded distinct labels. There are a variety of parameters
with these features that one could choose, but one standard choice is the generalized affine
parameter, to be discussed below. If we accept the generalized affine parameter as the
right choice for the job, we can say that two space-like surfaces are finitely separated one
from another just in case all of the time-like and light-like curves between the two surfaces
have finite generalized affine length. And then, to say that the Cosmos has a finite initial
segment is just to say that there is a Cosmos-wide space-like surface X such that all of
the time-like and light-like trajectories that can be traced backwards from ¥ encounter a
boundary at a finite value of the generalized affine parameter. In the next subsection, I will
complete my articulation of the new metrical conception by articulating the generalized

affine parameter.
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7.2.3 The New Metrical Conception

Let’s recall the problem that we are trying to resolve with the generalized affine
parameter. We want to be able to distinguish finite from infinite space-time intervals
in both time-like and light-like directions, but, due to the combination of positive and
negative signs in the space-time interval, the proper time to any point whatsoever along
light-like directions is zero. The combination of positive and negative signs in the space-
time interval is a reflection of the fact that relativistic space-times are hyperbolic and
not Euclidean. In a four dimensional Euclidean space, there is no negative sign, e.g.,
P = +x* + y* + z°. If we could map from hyperbolic space-time into a Euclidean space
in a way that preserved finite time-like intervals as finite and infinite time-like intervals
as infinite and that, along light-like directions, labeled numerically distinct points with
distinct values, we would have constructed a parameter that satisfied the desiderata
identified at the end of the last section. The generalized affine parameter makes use of
precisely this trick.

I now turn to unpacking the technical details involved in constructing the generalized
affine parameter. Readers unfamiliar with relativity may find the following exposition
difficult to follow; my hope is that they will gather the general “gist”. A half-curveis usually
defined as a curve that starts somewhere in space-time and is inextendable. A classical
space-time model S is said to be extendable just in case there is another larger space-time
model S” into which S can be isometrically embedded; moreover, S is inextendable just in
case S is not extendable. A typical assumption in relativistic physics is that space-times
are “as large as they can be”; that is, that space-time is inextendable. A curve y in S is
inextendable just in case there is no larger space-time S” into which S can be isometrically
embedded and in which y is longer than y was in S. Intuitively, an inextendable curve is
a curve that encounters an impassible boundary to space-time. For the sake of complete
generality in explicating the concept of the beginning of the Cosmos, I will not assume
that the Cosmos is inexteendable and, for that reason, I will offer a modified definition

of half-curves. For my purposes, a half-curve in a space-time S is a curve that begins
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somewhere in S and that has no further extension in S. Intuitively, if a half-curve y in S
has finite length, then y encounters a boundary of S.

Consider a classical space-time (M, g). Without loss of generality, and utilizing the
notation from Earman, 1995, p. 35, consider a time-like half curve y(v) defined on [0, v,) —
M, where v is a parametrization of y and such that v, < +co. For each of the tangent spaces
at each point in M, we can choose a set of four orthonormal basis vectors; this is the so-
called “frame field”. In particular, let’s denote the basis vectors defined at each of the
tangent spaces at each point along y(v) as €!(v), so that at v = 0, the basis vectors are given
by €/(0). Given €/(0), we can define the other basis vectors in the tangent spaces at the
other points along y(v) via parallel transport.

Now that we have defined orthonormal basis vectors for each of the tangent spaces

along y(v), we can write the components of a tangent vector V in terms of the e?(v) as:

4
Ve = Z X'(0)e(v)
i=1

The Euclidean length of V* is given by:

IVl =

4
Y (Xi(0))?
i=1

And, thus, we have succeeded in expressing the tangent vectors along y(v) using the
Euclidean signature. Given the components of this tangent vector, we can write the

generalized affine parameter A(v) as

v 4
A@) = fo Z(Xi(v*))zdv*
i=1

Where v" is a dummy variable replacing v inside the integral. Since the summation under
the square root within this integral is defined using a positive definite signature, the
generalized affine parameter can be thought of as the arc length of a curve in a four-

dimensional space instead of a four-dimensional space-time. Using the generalized affine
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parameter, we can define a notion of generalized affine length. The generalized affine length

g.a.l. is the total length of y(v), that is,

gal. —f \ Z(Xl(v )2do’
i=1

As Earman notes, the choice of a different set of basis vectors ef(v) for each tangent space
leads to a different generalized affine parameter defined on y(v). (Of course, once a choice
of basis has been made at v = 0, that choice is propagated to every other point along y(v)
by parallel transport.) But if one choice of basis vectors leads to a finite generalized affine
length, then any other choice of basis vectors will lead to a finite generalized affine length;
likewise, if any choice of basis vectors leads to infinite generalized affine length, then any
other choice will lead to infinite generalized affine length. For that reason, whether the
generalized affine length is finite or infinite is independent of our choice of orthonormal
basis vectors and satisfies the desiderata identified at the end of the previous section.

Recall the intuition that motivated this section. We can say that two space-like surfaces
are finitely separated from each other just in case all of the time-like and light-like curves
between the two surfaces have finite generalized affine length. Likewise, for the sake of
intuition, imagine a closed or open boundary B where B is prior to all space-time points
not included in B and a space-like surface L. Suppose, further, that the Cosmos satisfies
the Modal Condition and the Direction Condition. If no other conditions are required for
the Cosmos to have a beginning and if all of the time-like and light-like curves between
B and X have finite generalized affine length, then, intuitively, B should count as the
space-time’s beginning. Therefore, the Cosmos has a finite initial segment just in case there is a
Cosmos-wide space-like surface X such that all of the time-like and light-like trajectories that can
be traced backwards from T have finite generalized affine length.

One may worry that I have made two implicit assumptions in explicating what it
would mean for the initial segment of the Cosmos’s history to be finite. First, one might
worry that I have assumed that the time-like and light-like curves in the initial segment
of the Cosmos’s history are objectively comparable. Readers harboring this sort of worry

are right to do so; if, for whatever reason, the generalized affine lengths of curves are
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incommensurate, then the fact that all of the curves have finite generalized affine length
might not be meaningful. Second, one might worry that I have assumed that there is
a meaningful distinction between finite and infinite space-time regions. For example,
if the lengths of temporal durations are conventional or if time is amorphous in the
initial segment, then there is no objective distinction between finite and infinite initial
segments. But this worry is mistaken. On the one hand, if there is no objective finite/infinite
distinction in the initial segment and the initial segment has a closed boundary, then the
initial segment has a topological beginning. Since the third criterion for the Cosmos to
have a beginning is disjunctive, we would be able to say that the Cosmos has a beginning.
On the other hand, if there is no objective finite/infinite distinction in the initial segment
and the initial segment has an open boundary, then the initial segment cannot be said
to be finite in virtue of the generalized affine length; the generalized affine length, itself,
wouldn’t be either finite or infinite for any of the time-like or light-like curves in the

segment. In that case, the Cosmos would not have a beginning.

7.3 Objections

In this section, I turn to two important objections to the view that I've presented in this
chapter. According to the first objection, while the Boundary Condition, as I've stated it,
captures two of the ways in which space-time could have a boundary, I haven’t shown
that there are no other ways in which space-time could have a boundary. According
to the second objection, the metrical conception may be able to subsume the topological
conception, in which case I wouldn’t have to define the Boundary Condition disjunctively.

In the following, I show that both objections are incorrect.

7.3.1 The First Objection: Uniqueness?

On my view, the Boundary Condition is a necessary condition for the Cosmos to have a
beginning. While the reader might share my intuition that the Cosmos having a beginning
requires that the Cosmos include a past boundary of some kind, the Boundary Condition

— at least as I stated the condition — can be a necessary condition for the Cosmos to have
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a beginning only if the topological conception and the metrical conception exhaust all of
the ways for the Cosmos to have a beginning. Why think that the topological conception
and the metrical conception are the only two ways for the Cosmos to include a beginning?
According to a standard mathematical procedure for constructing a space or space-time,
we begin with a set of simples (or “points”) which we can then endow with additional
structure, e.g., Norton, 1999; Isham, 1994, pp. 10-11; Maudlin, 2010, Maudlin, 2012, pp. 5-
8; DeLanda, 2013, pp. 14-18; North, 2021, pp. 40-51. The additional structure forms a
hierarchy, that is,

1. The set theoretic structure describes the properties the point set has in virtue of being
a set, e.g., the cardinality of the point set or whether a given entity is a member of

the point set.

2. The topological structure describes the continuity or discontinuity of the space or
space-time as well as whether the space or space-time has closed, open, or clopen

boundaries.

3. The affine structure describes the primitive distinction between curves and straight

lines.
4. The metrical structure describes the distance (or interval) between any two points.

5. The differentiable structure allows us to distinguish smooth curves from curves with

sharp or broken edges.

Additional structure can be defined on any given point set as well. For example, A-
theories of time define primitive temporal structure in terms of the monadic predicates
of pastness, presentness, and futurity. Consequently, A-theories endow space-time with
what I will call monadic structure. On B-theories of time, a binary relation — the B-relation —
is defined between any two numerically distinct time-like related events a and , in virtue
of which we can say either that a is before  or 8 is before a. Likewise, on some — albeit
outdated — metaphysical accounts of the nature of space (or of the nature of place), we

should supplement space with additional structure. For example, Aristotle’s view of the
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nature of place denies the homogeneity of space and defines the center of the Earth as the
center of the Cosmos. For that reason, Aristotle’s view includes fundamental relations of
up and down. Let’s call the additional structure added in the case of either B-theory or the
Aristotelian conception of place ordinal structure, since, in either case, we are imposing an
ordering relation on a given point set.

Plausibly, the Boundary Condition should be definable in terms of the formal structure
out of which we can construct models of space-time. Intuitively, given the various formal
structures described above, only two kinds of formal structure — that is, topological
structure and metrical structure — are capable of capturing the notion of a boundary. For
example, when we say that an ordinary object, e.g., a table, has a boundary, we might
mean that, e.g., the table has an edge, that is, a topological boundary, or we might mean
that the table has finite spatial extension, that is, a metrical boundary. We don’t mean that
the table has a boundary in virtue of our ability to define straight lines on the table, or our
ability to distinguish smooth curves from curves with sharp edges, or in terms of some
ordinal or monadic structure that we can define on the parts of the table.’®* Since there
are only two ways of capturing the notion of a boundary in terms of the formal structure
out of which we can construct models of space-time, I've defined the Boundary Condition

disjunctively in terms of those two notions.

7.3.2 The Second Objection: Disjunctive or Atomic?

According to the second objection, the metrical conception is a broader family that
includes all of the cases captured by the topological conception, in which case there is
no need to define the Boundary Condition disjunctively. I'll begin by describing why
someone might think that the metrical conception could subsume the topological concep-
tion. Consider a space-time S with a closed boundary C to the past of every non-initial
point. Note that S satisfies the topological conception because there is a closed boundary

to the past every non-initial space-time point. Suppose that C is a space-like surface.

131 Perhaps the reader will object that one way that a series can have a boundary involves the series having
a first member and having a first member has to do with the ordinal structure of the series. Nonetheless,
having a first member is better described in terms of topological structure. Likewise, one might object that
firstness is a monadic predicate; but, again, firstness is better understood in terms of topological structure.
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Now consider any past directed half-curve originating on C. Since there are no points to
the past of any point on (, the generalized affine length of any past directed half-curve
originating on C is trivially zero. Consequently, C is a space-like surface such that all past
directed half-curves have finite generalized affine length. Thus, S satisfies the metrical
conception. If every space-time satisfying the topological conception is bounded by a
space-like surface, then every space-time satisfying the topological conception also satis-
ties the metrical conception. (Note that the converse is not true, since a space-time could
satisfy the metrical conception by including the appropriate kind of open boundary.)

One way to re-state the objection being considered in this section is as a challenge
to produce a space-time that satisfies the topological conception but does not satisfy the
metrical conception. As I've shown, every space-time that satisfies the topological con-
ception by being bounded by a space-like surface will trivially satisfy both the topological
conception and the metrical conception. Thus, any space-time that satisfies the topologi-
cal conception without satisfying the metrical conception must be bounded by something
other than a space-like surface. Recall the space-times with “jagged” boundaries con-
sidered earlier; for example, the space-time constructed from a congruence of time-like
curves whose respective ages are given by the function af(¢) in section 7.1. Call that space-
time the a space-time. Space-times with a “jagged” boundary need not be bounded by
a space-like surface. Nonetheless, the at space-time still satisfies the metrical conception;
we need an additional criterion in order to identify space-times that satisfy the topological
conception without satisfying the metrical conception.

The reason that the af space-time satisfies the metrical conception is that the a* space-
time includes an initial finite segment. Thus, any space-time satisfying the topologi-
cal conception without satisfying the metrical conception must have a non-space-like
“jagged” closed boundary without including an initial finite segment. There are at least
two ways of constructing a space-time of that kind. First, consider a space-time S* with a
non-space-like “jagged” closed boundary that satisfies the metrical conception. Construct
a new space-time by making the initial finite segment of S* metrically amorphous. Since
the initial segment of S* is metrically amorphous, the initial segment of S* is neither finite

nor infinite. Given both that there is no finite initial segment of S* and that the points on
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the boundary of S* do not comprise a space-like surface, S* does not satisfy the metrical
conception. Nonetheless, S* satisfies the topological conception, since S* includes a closed
boundary.

Here is a second way to construct a space-time satisfying the topological conception
and not the metrical conception. Consider a space-time S* that fails to satisfy the metrical
conception by having infinite extension to the past of every space-time point. We can
now construct a new space-time by “adding in” a non-space-like “jagged” boundary to
the infinite past, analogous to the way in which the extended real line is constructed by
adding points at positive and negative infinity to the standard real line. I'm not sure
whether such a construction is reasonable, but such a construction at least seems logically
possible. Given the logical possibility of such a construction, the Boundary Condition

should be stated in such a way that allows for the construction’s possibility.

7.4 Summary

In this chapter, I defended the last of my three necessary conditions for the Cosmos
to have had a beginning. Intuitively, an entity begins to exist just in case there is a
temporal boundary before which the entity did not exist. This intuition needs to be made
more precise; as I argued, previous attempts to precisify the notion of a boundary to
the Cosmos’s history — as provided by Craig, Sinclair, and Swinburne — do not succeed.
While Pitts (2008) previously offered a useful distinction between the topological and
metrical senses of a beginning, I have shown that his version of the metrical conception is
inadequate. The novel proposal that I offered in this chapter borrows Pitts’s distinction,
improves on the metrical conception, and, contrary to Pitts’s rejection of the metrical
conception, is defined in terms of a disjunction between the two. According to my
proposal, the Cosmos had a beginning only if either the topological conception or the
metrical conception are satisfied. According to the topological conception, there is a
closed boundary to the past of non-initial space-time points. According to the metrical
conception, there is an initial objectively finite portion of the Cosmos’s history. In turn,

there is an initial finite portion of the Cosmos’s history just in case there is a Cosmos-wide
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space-like surface X such that all of the time-like and light-like trajectories that can be

traced backwards from X have finite generalized affine length.
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8. CLASSICAL BIG BANG MODELS AND THE
DIRECTION/BOUNDARY CONDITIONS

8.1 Introduction

A variety of authors have expressed the intuitive idea that if classical Big Bang models
were correct, then the Cosmos would have a beginning. I disagree; for example, even if
classical Big Bang models were correct, and we (somehow) didn’t need a quantum gravity
theory, one would still need to show that the Cosmos satisfies the Modal Condition.
However, the Modal Condition is one of the novel contributions made to the literature
by this dissertation. For that reason, past authors have only had access to the Direction
and Boundary Conditions. Consequently, we should interpret the claim that classical Big
Bang models involve a beginning as a claim about classical Big Bang models satisfying
the Direction and Boundary Conditions. As I prove in this chapter, if the Direction
and Boundary Conditions were the only criteria needed for the Cosmos to have had
a beginning, we assume (incorrectly) that General Relativity is a final theory of space-
time, and we assume that space-time is maximally extended, then the Cosmos having a
beginning would turn out to entail a technical criterion for a space-time to be singular, i.e.,
b-incompleteness. If we added the additional assumptions that the Cosmos is spatially
homogeneous and isotropic, that is, the cosmological principle, then we would be able to
derive classical, singular Big Bang models. The short theorem that I prove in this chapter
precisifies the intuition that classical, singular Big Bang models include a beginning and,
in doing so, provides evidence that I have provided the correct criteria for the Cosmos to
have a beginning. The theorem also shows that the Direction and Boundary Conditions
are more fundamental than the sort of “beginning” involved in classical Big Bang models.

I will first describe one way to more rigorously characterize space-time singularities
than I have previously offered. Unfortunately, physicists, philosophers of physics, and
mathematicians have yet to develop a fully satisfactory set of conditions for distinguishing
singular from non-singular space-times. Given the deeply technical nature of this problem,
the solution is beyond my current abilities and I will not attempt to resolve the problem

here. Instead, I will summarize some of the relevant literature in order to offer one
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standard, if not fully satisfactory, conception of how singular and non-singular space-
times differ. Having provided a more rigorous characterization of singular space-times —
in terms of b-incompleteness, as described below — I will prove a theorem that states the
precise relationship between singular space-times and my three conditions for a beginning
of the Cosmos, namely, that all classical space-times satisfying the Direction and Boundary
Conditions are b-incomplete and show how that result can figure into a derivation of the

Big Bang singularity.

8.2 B-Incompleteness and Singular Space-times

Although singular FLRW space-times include a divergent Ricci scalar, divergences in
the various curvature parameters are neither necessary nor sufficient for a classical space-
time to be singular (Curiel, 1999, 2021; Earman, 1995; Joshi, 2014). For my purposes,
we can utilize what John Earman (1995, p. 36) calls the “semi-official definition” and
what elsewhere has been called the “most widely accepted solution” for defining singular
space-times (Curiel, 2021). A classical space-time is said to be b-complete just in case every
time-like and light-like half-curve has infinite generalized affine length. According to
Earman’s semi-official definition, a classical space-time is then said to be singular just in
case the space-time is not b-complete. Arguably, one should add the condition that space-
time is maximally extended (Lam, 2007, p. 715). Since this definition is not completely
satisfactory,! I will not take up the position here that all and only singular space-times
are b-incomplete. Moreover, I will not take up the debate, e.g., Earman, 1995, p. 32;
Manchak, 2021, as to whether the space-time we inhabit is maximally extended. Instead,
I will assume that space-time is maximally extended. In any case, b-incompleteness will
allow us to see the precise sense in which my three conditions for the Cosmos to have a
beginning relate to singular space-times. That is, as I prove in the next section, all classical
space-times that are maximally extended and that satisfy the Direction and Boundary

Conditions are b-incomplete. Consequently, if the Cosmos satisfies the Modal Condition

117For some of the problems involved with utilizing b-incompleteness as the definitive feature of singular
space-times, see chapter 2 in Earman, 1995; also see Curiel, 2021.

155



and includes a classical space-time satisfying the Direction and Boundary Conditions —

and so has a beginning — then space-time is b-incomplete.

8.3 All classical space-times satisfying the Direction and Boundary Conditions are
b-incomplete

Before beginning the proof, two cautionary notes are in order. First, the converse of
the result to be proved in this section does not hold, i.e., if the Cosmos is b-incomplete,
it would not follow that the Cosmos satisfies the Direction and Boundary Conditions.
By this point in the dissertation, the reason should be obvious. If the Cosmos were b-
incomplete, this would tell us, at most, that the Cosmos satisfies the Boundary Condition,
but would not tell us whether the Cosmos satisfies the Modal or Direction Conditions.
Even if space-time were finite to the past, with no extension to the past of the Big Bang,
the Cosmos might still fail to satisfy the Modal Condition and so fail to have a beginning.

Claim. All maximally extended classical space-times that satisfy the Direction and
Boundary Conditions are b-incomplete.

Proof. To begin the proof, let’s assume that the Cosmos includes a maximally extended
classical space-time satisfying the Direction and Boundary Conditions. Recall that, ac-
cording to the Boundary Condition, the Cosmos began to exist just in case either there is
a Cosmos-wide closed boundary to the past of every non-initial space-time point or there
is an initial objectively finite portion of the Cosmos’s history. We can proceed to prove by
cases.

Let’s first suppose that space-time has a closed boundary 8 to the past of every non-
initial space-time point. The proof for this case is trivial. Consider any time-like or
light-like half-curve y that originates at some point p € 8. Any such curve will have zero
extension backwards through the space-time.? Since the curve has zero backwards exten-
sion, the space-time is b-incomplete. Having established the first case, let’s move to the

second. Suppose that there is an initial objectively finite portion of the Cosmos’s history.

27This result will not necessarily follow for any curve that is not located in 8. For example, suppose
that space-time has a closed boundary but that the initial portion of the Cosmos has the “fractal” metrical
properties discussed above. In that case, any time-like or light-like curve not located in 8 will have infinite
backwards extension.
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Now consider an arbitrary time-like or light-like half-curve originating on some space-
like surface X in the initial objectively finite portion and that extends backwards through
the Cosmos. By the definition of an objectively finite portion of the Cosmos’s history
established above, this half-curve must have finite generalized affine length. Therefore, if
the Cosmos includes a classical space-time satisfying either of the two disjuncts — and so
satisfying the Boundary Condition — the Cosmos is b-incomplete. Therefore, we have the
desired result, i.e., if the Cosmos includes a classical space-time satisfying the Direction
and Boundary Conditions, then space-time is b-incomplete.

Having proven the desired result, let’s turn to considering how the result relates my
three conditions for the beginning of the Cosmos to classical Big Bang cosmology. Classical
Big Bang cosmology is modeled using FLRW space-times. The FLRW space-times that
are sometimes claimed to be a model of the beginning of the universe include a curvature
singularity and are b-incomplete. According to a result that has been proven elsewhere,
all FLRW models (excluding those that have pathological features such as closed time-
like curves) satisfy the Direction Condition (Castagnino et al., 2003; Matthews, 1979); as
a consequence of the result that I've proven here, the non-pathological FLRW models
satisfying the Boundary Condition are b-incomplete. In the case of maximally extended
FLRW models, the converse holds as well, that is, all b-incomplete maximally extended
FLRW models satisfy both the Direction Condition and the Boundary Condition.

Arguably, the Direction and Boundary Conditions are more fundamental than the Big
Bang singularity because the Direction and Boundary Conditions figure into a derivation
of the Big Bang singularity. Suppose (i) General Relativity is true, (ii) the cosmological
principle is true, (iii) space-time is maximally extended, (iv) space-time satisfies the Direc-
tion Condition, and (v) space-time satisfies the Boundary Condition. The combination of
those five deductively entails space-time is correctly modeled by one of the FLRW metrics
with a Big Bang singularity. The assumption that General Relativity is true entails the
Einstein Field Equations. The Einstein Field Equations together with the assumption that
the cosmological principle is true — that is, that space-time can be “cut up” (or foliated) into
space-like surfaces on which the matter-energy distribution is homogeneous and isotropic

—entails that space-time is one of the FLRW models. Since we’ve assumed that space-time
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is maximally extended, we can make the further restriction to maximally extended FLRW
models. Maximally extended FLRW models can be subdivided into two families: those
that include a Big Bang type singularity and those that do not. Using the fact that the
Direction and Boundary Conditions together entail that space-time is b-incomplete, we
can eliminate the FLRW models that do not include a Big Bang type singularity. Thus, in
the context of General Relativity, the Direction and Boundary Conditions, together with
some additional assumptions about the global structure of space-time, can be used to
derive the Big Bang singularity.

This result — that the Direction and Boundary Conditions can figure into a derivation of
the Big Bang singularity — helps to show one sense in which the Direction and Boundary
Conditions are more fundamental than Big Bang theory. The result also helps to clarify
why, on the assumption that General Relativity is true, one still cannot infer that the
Cosmos began to exist. I will argue in chapter 12 that we have no good reason for thinking
that the cosmological principle is unrestricted in scope. The unrestricted cosmological
principle is required for the derivation. Second, as I have mentioned, Manchak has
challenged the notion that we can know space-time to be maximally extended, so that the
assumption that space-time is maximally extended is at least controversial. Third, I will
argue in chapter 9 that the conjunction of General Relativity and any set of observations
that we are likely to have will not entail that the Cosmos satisfies the Direction or Boundary
Conditions and I will argue in chapter 12 that inductive arguments for the view that the
Direction or Boundary Conditions are satisfied do not succeed either. In order to know
whether the Direction and Boundary Conditions are satisfied, we would need to know
substantive details about the global distribution of matter-energy that we are not in an

epistemic position to know.

8.4 Summary

In this chapter, I've completed two tasks. First, I provided a more rigorous charac-
terization of what space-time singularities are in terms of b-incompleteness. Second, I

showed what the relationship is between classical, singular Big Bang models and the
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Direction and Boundary Conditions. I thereby proved a theorem explaining the intuition
that classical, singular Big Bang models involve a beginning. According to the theorem,
if the Cosmos satisfies the Direction and Boundary Conditions and space-time is maxi-
mally extended, then space-time is b-incomplete. I sketched a second theorem according
to which if we add the cosmological principle, then singular FLRW models follow as a
deductive consequence. Consequently, the Direction and Boundary Conditions are more
fundamental than the Big Bang singularity.

Having established three necessary conditions for the Cosmos to have had a beginning
and explicated how those three necessary conditions are connected to the mathematics
of (classical) singular space-times, we have left to determine whether the Cosmos in fact
satisfies the three conditions. That is the project that I take up in part III of this dissertation;
as we will see, the current state of inquiry in physical cosmology provides us with strong
reason to doubt that we know, or possibly even could know, whether the Cosmos satisfies

the Modal, Direction, and Boundary Conditions.
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Part 111

COSMIC SKEPTICISM DEFENDED
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9. OBSERVATIONALLY INDISTINGUISHABLE SPACE-TIMES AND
THE BEGINNING OF THE COSMOS

Nature loves to hide.

— Heraclitus

Somewhere, something incredible is waiting to be

known...
— Carl Sagan

9.1 Introduction to Part III

Cosmic Skepticism is the provisional thesis that the provinciality of our knowledge of
the physical facts with respect to scale, spatio-temporal location, or energy prevents us
from having empirical access to whether the Cosmos satisfies the Modal, Direction, and
Boundary Conditions. If Cosmic Skepticism is true, then we do not have empirical access
to either the formation of the Cosmos or whether there was such an event or process as
the formation of the Cosmos. Cosmic Skepticism is a skeptical thesis not in the sense that
we have an a priori in principle reason for thinking that we cannot know whether the
Cosmos had a beginning but instead in the sense that as empirical inquiry currently stands
we have reason to think that we cannot know whether the Cosmos had a beginning.
Future inquiry may change our epistemic situation in radical ways that are impossible
for us to foresee. My strategy for defending Cosmic Skepticism involves defending the

following argument:

1. We know the Cosmos began to exist only if we know the Cosmos satisfies the three
conditions introduced in part I, i.e., the Modal Condition, the Direction Condition,

and the Boundary Condition.

2. We do not know whether the Cosmos satisfies the three conditions.
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3. Therefore, we do not know whether the Cosmos began to exist.

In part II of this dissertation, I defended the view that the Cosmos began to exist only
if the Cosmos satisfies the Modal, Direction, and Boundary Conditions. Thus, we can
know that the Cosmos began to exist only if we know that the Cosmos satisfies the Modal,
Direction, and Boundary Conditions. In the third part of this dissertation, I consider four
arguments for the second premise.

First, whether the Cosmos satisfies the Boundary Condition is a bit of unobservable
chronogeometric structure. According to a standard view in philosophy of science, we
have reason to believe in an unobservable entity provided we have reason to believe a
broader theory which entails that entity’s existence. While we should expect General
Relativity to be replaced in subsequent physical inquiry by a quantum gravity theory,
General Relativity remains our best theory of chronogeometric structure. In the context of
General Relativity, whether two space-times are observationally indistinguishable turns
out to be a tractable and precise mathematical problem. As I will prove, no set of obser-
vations that we currently have, when conjoined with General Relativity, entails that the
Cosmos satisfies the Direction or Boundary Conditions. That is, because of the provin-
ciality of our knowledge of the Cosmos due to the relative scale of the Cosmos and our
spatio-temporal location within the Cosmos, General Relativity suggests that our Cosmos
is observationally indistinguishable from another very different space-time that fails to
satisfy the Direction or Boundary Conditions.

Second, considerations in the philosophical foundations of statistical mechanics entail
either that the Cosmos violates the Modal Condition or else that there is a transcendental
condition on the possibility of our knowledge of the past that prevents us from having
knowledge of states of affairs prior to a specific past boundary. Here we meet a warning
from the nineteenth century: the fact that there is some past boundary beyond which we
cannot make reliable inferences does not entail that the Cosmos satisfies the Boundary
Condition. Instead, the existence of a past boundary beyond which we cannot make

reliable inferences suggests that the provinciality of our knowledge of the physical facts
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with respect to spatio-temporal location prevents us from knowing whether the Cosmos
satisfies the Boundary Condition.

Third, if a variety of live cosmological models are true, then the Cosmos does not
satisfy the Boundary Condition. Due to the provinciality of our knowledge with respect
to scale, time, space, and energy, we do not know whether any of those cosmological
models are true, or at least true in sufficient detail to suggest on their basis whether the
Cosmos satisfies the Boundary Condition. Nonetheless, we cannot rule the models out
and so cannot rule out the possibility that the Cosmos was beginningless.

Fourth, I complete the case for Cosmic Skepticism by turning to confirmation theory.
There are two families of inferences that could be used in arguing for the conclusion that the
Cosmos satisfies the Modal, Direction, and Boundary Conditions: part-to-part inferences
and part-to-whole inferences. Part-to-part inferences involve projecting an empirical
regularity from an observable portion of the Cosmos into an unobservable portion of the
Cosmos. Once the empirical regularity has been projected into the unobservable portion,
the empirical regularity can be used to argue either that the Cosmos began to exist or
that the unobservable portion includes features relevant to whether the Cosmos began to
exist. I will show that part-to-part inferences fail because they rely upon a weak analogy
between observable and unobservable portions of the Cosmos and because we have no
good reason to think that the known physical facts are representative of all of the physical
facts that there are.

Next, I turn to part-to-whole inferences. Part-to-whole inferences project an empirical
regularity from an observable portion of the Cosmos to the whole Cosmos. I will show
that part-to-whole inferences are poor inferences because, as with part-to-part inferences,
we have no good reason for thinking that the known physical facts are representative of
all of the physical facts that there are. However, part-to-whole inferences are also poor
inferences for a more profound reason. Assuming that Paul Draper’s account of intrinsic
probability is correct, the intrinsic probability of a hypothesis is determined by the modesty
of the hypothesis, that is, how much the hypothesis tells us about the world, the coherence
of the hypothesis, that is, the degree to which the parts of the hypothesis are mutually

supportive, and nothing else. I show that on the assumptions that Draper’s account of
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intrinsic probability is correct and that induction is reliable, there is an as yet unresolved
tension between the modesty and the coherence of hypotheses that is particularly acute
for hypotheses about the totality of physical reality. As long as that tension remains
unresolved, we are unable to judge the intrinsic probability of hypotheses about the entire
Cosmos and thus ill-equipped to make part-to-whole inferences.

The four arguments collectively provide a strong case for the conclusion that we cannot
know whether the Cosmos satisfies the Modal, Direction, or Boundary Conditions and so
cannot know whether the Cosmos began to exist. And since we cannot know whether the
Cosmos began to exist, we cannot know whether the second premise of the KCA is true.

Ergo, the wholly a posteriori defense of the KCA fails.

9.2 Introduction to Chapter 8

Whether the Cosmos has a beginning —and so whether the Cosmos satisfies the Modal,
Direction, and Boundary Conditions — is not directly observable. Nonetheless, according
to a standard view in philosophy of science, we have reason to endorse the truth of an
unobservable claim just in case a well supported scientific theory, in conjunction with
some body of observations, entails the truth of the unobservable claim. In this chapter, I
address whether some collection of observations, in conjunction with General Relativity,
entails that physical reality includes a space-time satisfying the Direction and Boundary
Conditions. General Relativity is not likely to be a final or complete theory of space-time,
but, until we have a well supported quantum gravity successor theory, General Relativity
is the best scientific theory of space-time that we have. For that reason, the conclusions
that I reach in this chapter should be understood as only provisionally held. Moreover,
even if no body of observations, in conjunction with General Relativity, entails that space-
time satisfies the Direction and Boundary Conditions, there may be oth