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Abstract

Our aim is to provide a sequent calculus whose external consequence
relation coincides with the three-valued paracomplete logic ‘of non-
sense’ introduced by Dmitry Bochvar and, independently, presented
as the weak Kleene logic Kw

3 by Stephen C. Kleene. The main fea-
tures of this calculus are (i) that it is non-reflexive, i.e., Identity is
not included as an explicit rule (although a restricted form of it with
premises is derivable); (ii) that it includes rules where no variable-
inclusion conditions are attached; and (iii) that it is hybrid, insofar
as it includes both left and right operational introduction as well as
elimination rules.

1 Introduction

The three-valued logics ‘of nonsense’ Kw
3 and PWK are the paracomplete

and paraconsistent members of the weak Kleene family, first developed by [2]
and [14], respectively. These logics, extensively studied in the literature, are
rendered by considering valuations complying with the weak Kleene truth-
tables and, respectively, considering the set of designated values to be 1, or
1 and also 1⁄2.

¬
1 0
1⁄2 1⁄2
0 1

∧ 1 1⁄2 0
1 1 1⁄2 0
1⁄2 1⁄2 1⁄2 1⁄2
0 0 1⁄2 0

∨ 1 1⁄2 0
1 1 1⁄2 1
1⁄2 1⁄2 1⁄2 1⁄2
0 1 1⁄2 0

Figure 1: weak Kleene truth-tables

Among their well-known distinctive features is the fact that they are
negation duals of each other, i.e., for any sets of formulae Γ,∆ we have that
Γ ⊧PWK ∆ if and only if ¬∆ ⊧Kw

3

¬Γ, and vice versa. Thus, for instance,
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PWK contains all classical tautologies and no contradictions; conversely,
Kw

3 contains all classical contradictions and no tautologies. More gener-
ally, while the intersection of those inferences valid in Classical Logic and
these systems is non-empty, it is known that when well-rehearsed variable-
inclusion conditions are violated, both PWK and Kw

3 lose some classical
inferences, e.g., φ ∧ ψ ⊭PWK φ and φ ⊭Kw

3
φ ∨ ψ, usually referred to as the

rules of Simplification and Addition, respectively—for more, see [11, 17, 18].
Both logics have been studied under different presentations over the last

decade, e.g. via abstract algebraic logic [3], logical matrices [4] and struc-
tural sequent calculi with explicit variable-inclusion conditions [5, 7]. More
recently, [19] have offered a metainferential characterization of PWK in the
form of a substructural sequent calculus, LK−

W . Distinctive features of this
calculus are (i) that it is non-transitive, i.e., Cut is not included as an explicit
rule (although a restricted form of Cut is derivable); (ii) that it includes the
fully classical rules for negation, i.e., no variable-inclusion conditions are
attached to L¬ or R¬; and (iii) that it is hybrid, insofar as it includes both
(classical) left and right operational rules and their ‘inverses’, i.e. elimina-
tion rules for ¬, ∧ and ∨. As a result, LK−

W captures PWK-consequence
from a metainferential perspective, in terms of its external consequence rela-
tion, as defined in [1]. For example, Simplification is invalid in PWK, and
accordingly Meta Simplification (the metainference going from ⇒ φ ∧ ψ to
⇒ φ) is not derivable in LK−

W .
Our aim in this paper is to offer a dual to LK−

W , in the form of a
substructural calculus which we will call LK∖Id

W whose external consequence
relation coincides with Kw

3 -consequence.
1 Our target calculus will have a

number of features, in accordance with the previous remarks. First, LK∖Id
W ,

like its paraconsistent counterpart LK−
W , will be hybrid. Secondly, in line

with the aforementioned duality of the PWK and Kw
3 , and the duality

between Cut and Reflexivity pointed out in [9], LK∖Id
W will be non-reflexive

—meaning that some classical metainferences will be lost— and that it will
derive no classical inferences.

Some aspects of this calculus can be highlighted in order to see how it
compares to formalisms already available in the literature. On the one hand,
it is a sequent calculus, as opposed to a natural deduction one given in [20].
On the other hand, it is a two-sided sequent calculus, as opposed to the
multi-sided sequent calculi presented for it in [12] and [5]. Furthermore, it
is a two-sided sequent calculus for the target system which has no linguistic
restrictions on its rules, distinct from the case of [8]. To conclude, it presents
a two-sided sequent calculus with many inverted or “elimination” rules which

1We choose this nomenclature to be as descriptive as possible, inasmuch as our target
calculus is an alternative presentation of LK without Identity or Reflexivity, and with
a weakened set of inverse or elimination rules for the connectives. Furthermore, this
nomenclature is in accordance with the recent practice in the specialized literature, for
which see [10].
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motivates an original extension of the reduction techniques presented in
[15]—to account not only for the case of a general elimination rule like the
Cut rule but also for more particular operational cases of such rules.

The article is structured as follows. In Section 2 we introduce the calculus
LK∖Id

W , and highlight some of its properties. In Section 3 we prove that the
derivability relation of LK∖Id

W is sound and complete for the local validity
with regard to the ts-consequence over the Weak Kleene valuations. Finally,
using this result, in Section 4 we show that the external consequence relation
of LK∖Id

W coincides with the logic Kw
3 .

2 The calculus LK∖Id
W

In this section, we will introduce the calculus LK∖Id
W whose external conse-

quence relation we will later show to coincide with Kw
3 . Before doing that,

we present the calculus LK for classical logic.2

Definition 2.1. Let Γ,∆ be sequences3 of formulas, and φ,ψ formulas. LK
is the sequent calculus defined by the following rules:

Structural rules

φ⇒ φ Id

Γ⇒∆
Γ, φ⇒∆

LW
Γ⇒∆

Γ⇒∆, φ
RW

Γ1, ψ,φ,Γ2 ⇒∆

Γ1, φ,ψ,Γ2 ⇒∆
LE

Γ⇒∆1, ψ,φ,∆2

Γ⇒∆1, φ,ψ,∆2
RE

Γ, φ⇒∆ Γ⇒∆, φ

Γ⇒∆
Cut

Γ, φ,φ⇒∆

Γ, φ⇒∆
LC

Γ⇒∆, φ,φ

Γ⇒∆, φ
RC

Operational Rules

Γ⇒∆, φ

Γ,¬φ⇒∆
L¬

Γ, φ⇒∆

Γ⇒∆,¬φ R¬

Γ⇒∆, φ Γ⇒∆, ψ

Γ⇒∆, φ ∧ ψ R∧
Γ, φ,ψ⇒∆

Γ, φ ∧ ψ⇒∆
L∧

2For the sake of convenience, the calculus we will present and call LK is not exactly
Gentzen original one, but an equivalent one.

3Sequences are ordered collections of objects (in this case, formulas). To avoid any
confusion, the elements of a sequence will be denoted as tuples ⟨φ1, . . . , φn⟩, to distinguish
them from sets that will be denoted as usual with brackets {φ1, . . . , φn}.
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Γ, φ⇒∆ Γ, ψ⇒∆

Γ, φ ∨ ψ⇒∆
L∨

Γ⇒∆, φ,ψ

Γ⇒∆, φ ∨ ψ R∨

Based on this calculus, we will build LK∖Id
W as follows.

Definition 2.2. Let Γ,∆ be sequences of formulas, and φ,ψ formulas.
LK∖Id

W is the sequent calculus defined by LW , RW , LE, RE, Cut, LC,
RC, L¬, R¬, R∧, L∨ plus the following rules:

Γ,¬φ⇒∆,¬φ
Γ, φ⇒∆, φ

E¬

Γ, φ,ψ⇒∆ Γ, φ⇒∆, φ Γ, ψ⇒∆, ψ

Γ, φ ∧ ψ⇒∆
L∧∗

Γ, φ ∧ ψ⇒∆, φ ∧ ψ
Γ, φ⇒∆, φ

E∧
Γ, φ ∧ ψ⇒∆, φ ∧ ψ

Γ, ψ⇒∆, ψ
E∧

Γ⇒∆, φ,ψ Γ, φ⇒∆, φ Γ, ψ⇒∆, ψ

Γ⇒ φ ∨ ψ,∆ R∨∗

Γ, φ ∨ ψ⇒∆, φ ∨ ψ
Γ, φ⇒ φ,∆

E∨
Γ, φ ∨ ψ⇒∆, φ ∨ ψ

Γ, ψ⇒ ψ,∆
E∨

Notice that there are many differences between LK and LK∖Id
W . Firstly,

in LK there are only introduction rules, while in LK∖Id
W we also add elimina-

tion rules for the connectives. Secondly, while LK contains all the structural
rules, LK∖Id

W is not reflexive since the rule Id is not in it. This implies, among
other things, that LK∖Id

W proves no sequent. Finally, the rules L∧ and R∨
of LK are not included in LK∖Id

W , but they are replaced by the weaker L∧∗
and R∨∗. As we will see in the next section, we need these modifications in
order to obtain soundness and completeness regarding the semantics we will
present. More comments on these will need to wait to the end of the next
section.

Given any sequent calculus we can extract, at least, two different conse-
quence relations from it. We focus on them for the case of our target system,
next.

Definition 2.3. The derivability relation ⊢seq
LK∖IdW

is defined as follows: given

a set of sequents S and a sequent s, S ⊢seq
LK∖IdW

s if and only if s is derivable in

the sequent calculus resulting from adding the set of sequents S as axioms
to LK∖Id

W .
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Notice that when S = ∅, ⊢seq
LK∖IdW

denotes the so-called internal-consequence

relation, i.e. that describing the provable sequents in the calculus LK∖Id
W .

Also, we can define the external consequence relation from [1], with a slight
adaptation.4

Definition 2.4. The external consequence relation ⊢E
LK∖IdW

is defined as

follows: given two sequences of formulas Γ,∆, Γ ⊢E
LK∖IdW

∆ if and only if

{⇒ γ1, . . . ,⇒ γn} ⊢seqLK∖IdW

{⇒∆}, where Γ = ⟨γ1, . . . , γn⟩.

The external consequence relation is a relation between formulas, while
the derivability relation is a relation between sequents. Notice, however, that
both relation are closely related, and in particular providing a semantics for
the derivability relation can be used to provide a semantics for the external
consequence relation. In the next section, we do exactly that.

Before ending this section, notice that the choice of the rules of LK∖Id
W

is at some extent arbitrary, and more related to the way we will prove
completeness than to some deep conceptual reason. In this sense, there are
many equivalent (and maybe interesting) ways of defining LK∖Id

W . As an
example, the usual inverse rules of the classical connectives are derivable in
LK∖Id

W .

Fact 2.5. The following rules are derivable in LK∖Id
W :

Γ,¬φ⇒∆

Γ⇒∆, φ ¬Lδ
Γ⇒∆,¬φ
Γ, φ⇒∆ ¬Rδ

Γ⇒∆, φ ∧ ψ
Γ⇒∆, φ(ψ) ∧R

δ
Γ, φ ∧ ψ⇒∆

Γ, φ,ψ⇒∆ ∧Lδ

Γ, φ ∨ ψ⇒∆

Γ, φ(ψ) ⇒∆ ∨Lδ
Γ⇒∆, φ ∨ ψ
Γ⇒∆, φ,ψ ∨Rδ

Proof. Let’s show the derivability of ∧Rδ and∨Lδ. The other cases are sim-
ilar. For conjunction ∧Rδ, we only show the derivability of Γ⇒ ∆, φ, since
showing the derivability of Γ⇒∆, ψ is identical to it. To improve readabil-
ity, we omit the application of the rules LC, RC, RE and LE:

Γ⇒∆, φ ∧ ψ
LW

Γ, φ ∧ ψ⇒∆, φ ∧ ψ
E∧

Γ, φ⇒∆, φ
RW

Γ, φ⇒∆, φ,φ

Γ⇒∆, φ ∧ ψ
LW

Γ, φ ∧ ψ⇒∆, φ ∧ ψ
E∧

Γ, ψ⇒∆, ψ
RW

Γ, ψ⇒∆, ψ,φ

Γ⇒∆, φ ∧ ψ
LW

Γ, φ ∧ ψ⇒∆, φ ∧ ψ
E∧

Γ, φ⇒∆, φ
LW

Γ, φ,ψ⇒∆, φ
L∧∗

Γ, φ ∧ ψ⇒∆, φ

Γ⇒∆, φ ∧ ψ
RW

Γ⇒∆, φ ∧ ψ,φ
Cut

Γ⇒∆, φ

4In [1], the external consequence relation is defined as a Tarskian consequence relation,
i.e. only with single conclusions. Here we are straightforwardly adapting the definition in
order to accommodate multiple conclusions.
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For the case of the rule of the disjunction ∨Lδ, we only show the deriv-
ability of Γ, φ⇒∆, since showing the derivability of Γ, ψ⇒∆ is identical to
it. To improve readability, once again, we omit the application of the rules
LC, RC, RE and LE:

Γ, φ ∨ ψ⇒∆
RW

Γ, φ ∨ ψ⇒∆, φ ∨ ψ
E∨

Γ, φ⇒∆, φ
LW

Γ, φ,φ⇒∆, φ

Γ, φ ∨ ψ⇒∆
RW

Γ, φ ∨ ψ⇒∆, φ ∨ ψ
E∨

Γ, ψ⇒∆, ψ
LW

Γ, φ,ψ⇒∆, ψ

Γ, φ ∨ ψ⇒∆
RW

Γ, φ ∨ ψ⇒∆, φ ∨ ψ
E∨

Γ, φ⇒∆, φ
RW

Γ, φ⇒∆, φ,ψ
R∨∗

Γ, φ⇒∆, φ ∨ ψ
Γ, φ ∨ ψ⇒∆

LW
Γ, φ,φ ∨ ψ⇒∆

Cut
Γ, φ⇒∆

Other very important derivable rules related with the completeness proof
are the following:

Fact 2.6. The following all-purpose elimination rules are derivable in LK∖Id
W :

Γ,¬φ,φ ∧ ψ,φ ∨ ψ⇒∆,¬φ,φ ∧ ψ,φ ∨ ψ
Γ, φ⇒ φ,∆

Γ,¬ψ,φ ∧ ψ,φ ∨ ψ⇒∆,¬ψ,φ ∧ ψ,φ ∨ ψ
Γ, ψ⇒ ψ,∆

Proof. Straightforward by applying E∨, E∧ and E¬ in this order and then
LC and RC three times each.

3 Soundness and completeness

In this section, we will provide a semantics for the derivability relation
⊢seq
LK∖IdW

, and prove soundness and completeness for it. For this purpose,

the appropriate notion of satisfaction of a sequent by a valuation will be the
notion of ts-satisfaction, as we shall see next.5

Definition 3.1. A weak Kleene valuation v ts-satisfies a sequent Γ⇒∆ if
and only either v(γ) ∈ {0} for some γ ∈ Γ, or v(δ) ∈ {1} for some δ ∈∆.

When no confusion arises we will talk about satisfaction in a valuation,
simpliciter (omitting the ts part). Given this, we are in position to define
a semantics for the derivability relation, as preservation of satisfaction at
every valuation.

Definition 3.2. S ⊧seqWKts
s if and only if for every weak Kleene valuation,

if it ts-satisfies every sequent in S, then it ts-satisfies s.

5The notion of ts-satisfaction, as well as other notions of validity, counterexample, or
satisfaction, can be found, e.g., in [6].
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This relation is referred to in, e.g. Humberstone’s [16], and related lit-
erature as the relation of local consequence or local validity given by a fixed
notion of satisfaction for sequents (in this case ts-satisfaction), and a fixed
set of valuations (in this case weak Kleene valuations, symbolized as WK).
Thus, we will prove that: for any set of sequents S and sequent Γ⇒∆ over
the propositional language L.

S ⊢seq
LK∖IdW

Γ⇒∆ if and only if S ⊧seqWKts
Γ⇒∆

In other words, we will show that the derivable rules in LK∖Id
W correspond

to the locally valid metainferences with regard to the ts-consequence relation
over the weak Kleene valuations. This will suffice in providing our target
semantics for the derivability relation of our resident calculus.

3.1 Soundness

We can easily deal with the right-to-left direction of our target result, as
follows.

Lemma 3.3. For any set of sequents S and any sequent Γ⇒∆, if S ⊢seq
LK∖IdW

Γ⇒∆, then S ⊧seqWKts
Γ⇒∆.

Proof. Assume S ⊢seq
LK∖IdW

Γ ⇒ ∆, and suppose there is a weak Kleene val-

uation v that ts-satisfies all the sequents in S. Since there is a derivation
in LK∖Id

W from S to Γ ⇒ ∆, and given the fact that the rules from LK∖Id
W

preserve ts-satisfaction over the weak Kleene valuations, we can prove (by
induction on the length of the derivation) that the aforementioned weak
Kleene valuation v, in fact, ts-satisfies Γ⇒∆.

3.2 Completeness

The hard part, as always, is coming from the proof theory to the semantics.
In order to prove the main result of our paper, the completeness theorem,
we will follow [15], but instead of using deduction chains [21], we will use
the equivalent method of reduction trees, see [13, 22]. On another note, we
will need to introduce some modifications regarding the method presented in
[15], since the calculus under consideration contains additional elimination
rules besides Cut.

Let S be any finite set of sequents. We will, then, prove that given any
S and a particular sequent Γ ⇒ ∆, either S ⊢seq

LK∖IdW

Γ ⇒ ∆ or there is a

weak Kleene valuation which ts-satisfies all the inferences in S but doesn’t
ts-satisfy the sequent Γ⇒∆.

For this purpose, assume some enumeration of the formulas of the lan-
guage F0, F1, . . . . Let’s start with any sequent Γ ⇒ ∆ (different from the
empty sequent), denoted by Γ0 ⇒∆0 in the tree.
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Let set(Γ) be the set of formulas in Γ, with Γ any sequence of formulas.
We say that a sequent Γ ⇒ ∆ is in the Weakening-closure (W-closure, for
short) of a theory S if there exists a sequent Σ⇒ Π in S such that set(Σ) ⊂
set(Γ) and set(Π) ⊂ set(∆).

The idea is to build a tree in steps in such a way that at each step n
we transform the topmost sequent of each branch of the tree (Γn ⇒ ∆n).

6

The tree so built will be called a reduction tree. If the topmost sequent of
a branch of the tree belongs to the W-closure of S, then we say that the
branch is closed (and otherwise is open). If all of the branches of a tree are
closed, we say the tree is closed (and otherwise is open). The tree is built
according to the following instructions:

n = 4m If Γn ⇒∆n is not in the W-closure of S, then extend the tree with
Fm,Γn ⇒∆n and Γn ⇒ Fm,∆n.

n = 4m + 1 If Γn ⇒ ∆n is not in the W-closure of S, then, if set(Γn) ∩
set(∆n) = {φ0, . . . , φl}, extend the tree with one only one node of the
form:
¬φj , Fi ∨ φj , φj ∨ Fi, Fi ∧ φj , φj ∧ Fi,Γn ⇒ ¬φj , Fi ∨ φj , φj ∨ Fi, Fi ∧
φj , φj ∧ Fi,∆n

for each i ∈ {0, . . . ,m}, and each j ∈ {0, . . . , l}. If set(Γn)∩set(∆n) = ∅
go to the next step.

n = 4m + 2 If Γn ⇒ ∆n is not in the W-closure of S, then what to do is
determined by the rightmost formula in ∆n:

• If ∆n = ∆′
n, p with p a propositional letter, extend the tree with

Γn ⇒ p,∆′
n.

• If ∆n = ∆′
n, φ ∧ ψ, extend the tree with two branches: Γn ⇒

φ ∧ ψ,∆′
n, φ and Γn ⇒ φ ∧ ψ,∆′

n, ψ.

• If ∆n =∆′
n, φ ∨ ψ extend the tree with three branches:

– the first one with Γn ⇒ φ ∨ ψ,∆′
n, φ,ψ

– the second one with Γn, φ⇒ φ ∨ ψ,∆′
n, φ

– the third one with Γn, ψ⇒ φ ∨ ψ,∆′
n, ψ

• If ∆n =∆′
n,¬φ, extend the tree with Γn, φ⇒ ¬φ,∆′

n.

n = 4m + 3 If Γn ⇒ ∆n is not in the W-closure of S, then what to do is
determined by the rightmost formula in Γn and it’s left to the reader.

Stop condition If all the topmost sequents Γn ⇒∆n are in the W-closure
of S, stop the process.

6In order to simplify the notation, by Γn ⇒∆n we refer to possibly different sequents,
i.e. to the different topmost sequents belonging to each branch of the tree at the step n.
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Now, we will prove that if the reduction tree is closed, then we can build
a proof of the root sequent from the set of sequents S. In order to do that,
we need the following definition:

Definition 3.4. The height of a finite tree is the number of nodes in the
longest branch of the tree (i.e. the branch containing more nodes).

Lemma 3.5. Given some set of sequents S and a sequent Γ ⇒ ∆, if the
reduction tree is closed then S ⊢seq

LK∖IdW

Γ⇒∆.

Proof. Notice first that if a tree is closed then all the topmost sequents of
all the branches are in the W-closure of S. So, take any of these topmost
sequents, say Γ ⇒ ∆ and let Σ ⇒ Π ∈ S, such that set(Σ) ⊂ set(Γ) and
set(Π) ⊂ set(∆). It’s straightforward to check that then Γ ⇒ ∆ can be
obtained from Σ⇒ Π by successive applications of Weakening (LW and/or
RW ), and possibly Exchange (LE and RE) and Contraction (LC and RC).
In other words, there is a derivation from S to the topmost sequents of all
the closed branches. Now we will prove by induction on the height of the tree
that from the topmost sequents of any finite tree we can build a derivation
of the root sequent. Of course we will only focus on the interesting cases.

The base case is trivial and consists in a tree with height 1. By the
way the tree is constructed, this means that the tree has only one node and
therefore the topmost sequent of the tree coincides with the root sequent
(and is a sequent in S).

For the inductive step, assume all the topmost sequents in any branch of
any tree with height lesser or equal than n are such that from all of them it
is possible to build a proof of the root sequent. Now, we need to prove that
from the topmost sequents of a tree with height lesser or equal than n+ 1 it
is possible too. Thus, we only need to consider how the topmost sequents
of the subtree of height n+1 are obtained. So, we need to take into account
the last instruction applied in order to generate each topmost sequent. Most
of the instructions read from top to bottom are simple applications of rules
of the calculus LK∖Id

W with some Contraction and Exchange, and therefore
are left to the reader. The most interesting cases are the sequents obtained
by the application of the reduction instruction for a conjunction on the left,
a disjunction on the right and the instructions applied when some formula
is both on the antecedent and the succedent of a sequent.

Let’s start then with the first case. Assume we have the following situ-
ation in the topmost sequents of the subtree with height n + 1 (Case i):

φ ∧ ψ,Γ, φ,ψ⇒n+1 ∆ φ ∧ ψ,Γ, φ⇒n+1 ∆, φ φ ∧ ψ,Γ, ψ⇒n+1 ∆, ψ

Γ, φ ∧ ψ⇒n ∆
⋮
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where the superscript in the ⇒n+1 means that the sequent is the topmost
sequent of a tree of height n + 1. Notice, that read from top to bottom the
tree above is not a derivation in LK∖Id

W .
The second case is somewhat similar to the previous one. Suppose we get

the following situation in the topmost sequents of the subtree with height
n + 1 (Case ii):

Γ⇒n+1 φ ∨ ψ,∆, φ,ψ Γ, φ⇒n+1 φ ∨ ψ,∆, φ Γ, ψ⇒n+1 φ ∨ ψ,∆, ψ
Γ⇒n ∆, φ ∨ ψ

⋮

It is not the case that read from top to bottom the above tree is a
derivation in LK∖Id

W .
In both cases, the proofs of the bottom sequents from the topmost se-

quents can be easily obtained just by applying L∧∗ and R∨∗, plus some
applications of ER,EL,CL,CR.

The last interesting case is the following (Case iii):

¬φj , Fi ∨ φj , φj ∨ Fi, Fi ∧ φj , φj ∧ Fi,Γn ⇒
n+1 ¬φj , Fi ∨ φj , φj ∨ Fi, Fi ∧ φj , φj ∧ Fi,∆n

Γ′ ⇒n ∆′

⋮

with j ∈ {1, . . . , l} and {φ1, . . . , φl} = set(Γ′) ∩ set(∆′) and i ∈ {0, . . . ,m},
where n = 4m+1. Again, this tree read from top to bottom is not a legitimate
derivation in LK∖Id

W .
However, it is very easy to notice that in order to obtain the sequent of

level n from the sequent of level n + 1 one needs to apply several times E¬,
E∨, E∧, LE, RE, LC and RC. Of course, the order and the number of the
application of these rules will ultimately depend on l and the formulas in
Γn,∆n.

By Inductive Hypothesis we know that there is a proof from the conclu-
sion sequents of each of these derivations and all the other topmost sequents
of the tree of height n to the root sequent (since they are topmost sequents
of a tree of height n). Since we have built derivations of these sequents from
the topmost sequents of trees of height n+1, we can combine the two proofs
and obtain a proof from the topmost sequents of a tree of height n + 1 to
the root sequent. Notice that any closed tree is a finite tree, and therefore
in any closed tree we have a proof from S to the topmost sequents of the
tree and from them to the root sequent, i.e. we have a proof from S to the
root sequent.

Now, we need to prove that if a tree is open, then we can build a coun-
terexample. In order to do that, we need to introduce the following defini-
tion:
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Definition 3.6. The complexity of a formula φ is the number of connectives
of the formula.

Lemma 3.7. Given some set of sequents S and a sequent Γ ⇒ ∆, if the
reduction tree is open, then there is a weak Kleene valuation v which ts-
satisfies all the sequents in S but does not ts-satisfy Γ⇒∆.

Proof. Suppose the reduction tree for Γ⇒∆ from S is open and then choose
any open branch of it. We will now consider the result of collecting in Γω

all the formulas appearing to the left of any sequent of this branch and in
∆ω all the formulas appearing to the right of any sequent of this branch.
Naturally, we can consider the sets set(Γω) and set(∆ω) having all the
formulas appearing in these collections. Moreover, we know that no sequent
appearing on any node of this branch is in the W-closure of the theory S.
Furthermore, by construction, we know that every formula appears either
to the left or to the right, or both, in one of the sequents of this branch.
Therefore, we know that for every formula φ it is such that φ ∈ Γω or φ ∈∆ω.
Now, consider a valuation v such that

v(p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if p ∈ Γω and p ∉∆ω

0 if p ∉ Γω and p ∈∆ω

1⁄2 if p ∈ Γω and p ∈∆ω

We now show a number of things regarding this valuation. First, that
it is a weak Kleene valuation such that for all φ, v(φ) = 1 if and only if
φ ∈ Γω and φ ∉ ∆ω, v(φ) = 0 if and only if φ ∉ Γω and φ ∈ ∆ω, whereas
v(φ) = 1⁄2 if and only if φ ∈ Γω and φ ∈ ∆ω. Secondly, that it will constitute
a ts-counterexample to the root sequent Γ⇒∆ while ts-satisfying all of the
sequents in the theory S.

Let’s start by proving the first thing above. We prove this by induction
on the complexity of the formulas. The base case where φ has no connectives
i.e. is a propositional variable, is obvious by definition. Let’s move then to
the inductive step. Assume it holds for formulas with complexity n or less,
and prove that it also holds for formulas of complexity n+ 1. So, φ is either
a negation, a conjunction, or a disjunction. We will consider each of these
cases.

If φ = ¬ψ we have to consider three cases. Firstly, suppose ¬ψ ∈
Γω and ¬ψ ∉ ∆ω. By the former, we know that ψ ∈ ∆ω given the reduction
rules, but we also know that ψ ∉ Γω because otherwise ¬ψ ∈∆ω would be the
case given the reduction rules, but contrary to our assumptions. Therefore,
by the inductive hypothesis, we know that v(ψ) = 0 and furthermore that
v(¬ψ) = 1. Secondly, suppose ¬ψ ∉ Γω and ¬ψ ∈ ∆ω. By the latter, we
know that ψ ∈ Γω given the reduction rules, but we also know that ψ ∉ ∆ω

because otherwise ¬ψ ∈ Γω would be the case given the reduction rules,
but contrary to our assumptions. Therefore, by the inductive hypothesis,
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we know that v(ψ) = 1 and furthermore that v(¬ψ) = 0. Thirdly, suppose
¬ψ ∈ Γω and ¬ψ ∈∆ω. By the former, we know that ψ ∈∆ω given the reduc-
tion rules, and by the latter we know that ψ ∈ Γω given the reduction rules.
Thus, by the inductive hypothesis, we know that v(ψ) = 1⁄2 and furthermore
that v(¬ψ) = 1⁄2.

If φ = ψ ∧ χ we have to consider three cases. Firstly, suppose ψ ∧ χ ∈
Γω and ψ ∧ χ ∉ ∆ω. By the former, and given the reduction rules we know
that either ψ ∈ Γω and χ ∈ Γω, but none belongs in ∆ω, or ψ ∈ Γω and
ψ ∈∆ω, or χ ∈ Γω and χ ∈∆ω. But given the reduction rules, the latter two
cases would imply that ψ ∧ χ ∈ ∆ω, contrary to our assumptions. Thus, we
are necessarily in the case where ψ ∈ Γω and χ ∈ Γω, but none belongs in
∆ω. Whence, by the inductive hypothesis, we know that v(ψ) = v(χ) = 1
and furthermore v(ψ ∧χ) = 1. Secondly, suppose ψ ∧χ ∉ Γω and ψ ∧χ ∈∆ω.
By the latter, we know that ψ ∈ ∆ω or χ ∈ ∆ω, given the reduction rules.
Moreover, we know that in each of the respective cases, ψ ∉ Γω or χ ∉ Γω,
because otherwise ψ ∧ χ ∈ Γω would be the case given the reduction rules,
contrary to our assumptions. Therefore, by the inductive hypothesis, we
know that v(ψ) = 0 or v(χ) = 0, while also being the case that v(ψ) ≠
1⁄2 ≠ v(χ), and furthermore that v(ψ ∧ χ) = 0. Thirdly, suppose ψ ∧ χ ∈
Γω and ψ ∧ χ ∈ ∆ω. By the former, given the reduction rules we know that
either ψ ∈ Γω and χ ∈ Γω, or ψ ∈ Γω and ψ ∈ ∆ω, or χ ∈ Γω and χ ∈ ∆ω. By
the latter, we know that ψ ∈ ∆ω or χ ∈ ∆ω. Thus, by inductive hypothesis,
either v(ψ) = 1⁄2 or v(χ) = 1⁄2. Whence, v(ψ ∧χ) = 1⁄2. The case for φ = ψ ∨χ
is analogous to the previous case and is left to the reader as an exercise.

Given this, we now prove the second fact mentioned above, that it will
constitute a ts-counterexample to the root sequent Γ ⇒ ∆ while not con-
stituting a ts-counterexample of this kind for any of the sequents in the
theory S. The former is guaranteed by the fact that set(Γ) ⊆ set(Γω) and
set(∆) ⊆ set(∆ω), thus for all γ ∈ Γ and all δ ∈∆, v is such that v(γ) ∈ {1, 1⁄2}
while v(δ) ∈ {1⁄2,0}. The latter is guaranteed by the fact that no sequent
appearing on any node of this branch is in the W-closure of any sequent
in S. This further guarantees that v is not a valuation such that for any
sequent Σ ⇒ Π in S, and for all σ ∈ Σ and all π ∈ Π, v(σ) ∈ {1, 1⁄2} while
v(π) ∈ {1⁄2,0}. Therefore, v is a valuation that ts-satisfies all of the sequents
in S. This concludes the proof.

Theorem 3.8. For any set of sequents S and any sequent Γ ⇒ ∆, if
S ⊧seqWKts

Γ⇒∆, then S ⊢seq
LK∖IdW

Γ⇒∆.

Proof. From Lemmas 3.5 and 3.7.

Before ending this section, let’s go back to the differences between LK
and LK∖Id

W . First, now it should be clear why the rules L∧ and R∨ are
not included in LK∖Id

W : they are not locally valid with regard to the ts-
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consequence relation over the weak Kleene valuations. Take for example the
following application of L∧:

p, q⇒ r
p ∧ q⇒ r L∧

It’s easy to note that this instance is not locally valid (e.g. the valuation
v(p) = 1⁄2, v(q) = v(r) = 0).

On the other hand, for the sake of completeness we need to replace
them by the weaker, but sound, L∧∗ and R∨∗. Regarding the elimination
rules, as it becomes clear from the proofs in this section, these are crucial to
obtain completeness. Of course, these rules are derivable in LK, but once
Id is subtracted from LK, the elimination rules for the connectives are not
derivable anymore, and that’s why we need to add them.

4 The consequences for paracomplete weak Kleene

Now that we have shown that the derivability relation of our calculus co-
incides with the preservation of ts-satisfaction by a weak Kleene valuation
(i.e., that ⊧seqWKts

= ⊢seq
LK∖IdW

) we will use these facts to show that our tar-

get calculus can, indeed, represent a proof-theory for Kw
3 . Notice first the

following:

Definition 4.1. Γ ⊧Kw
3
∆ if and only if for all weak Kleene valuations v, if

v(γ) = 1 for all γ ∈ Γ, then v(δ) = 1 for some δ ∈∆.

Lemma 4.2. Γ ⊧Kw
3
∆ if and only if {⇒ γ1, . . . ,⇒ γn} ⊧seqWKts

{⇒∆}.

Proof. Straightforward, by noticing that {⇒ γ1, . . . ,⇒ γn} ⊧seqWKts
{⇒ ∆}

if and only if either some of the ⇒ γi is not ts-satisfied by a weak Kleene
valuation, or ⇒∆ is ts-satisfied by a weak Kleene valuation. If the former,
then this means that v(γi) ∈ {1⁄2,0}, whereas the latter would mean that
v(δ) = 1 for some δ ∈ ∆. It is immediate to notice that this would amount
to this valuation not being a counterexample to Γ ⊧Kw

3
∆, whence the sat-

isfaction conditions for {⇒ γ1, . . . ,⇒ γn} ⊧seqWKts
{⇒ ∆} and Γ ⊧Kw

3
∆ are

equivalent.

Finally, this suffices to show that the external consequence relation of our
non-reflexive sequent calculus appropriately characterizes the consequence
relation of Kw

3 .

Theorem 4.3. Γ ⊧Kw
3
∆ if and only if Γ ⊢E

LK∖IdW

∆.

Proof. Immediate from Lemma 4.2, Lemma 3.3, and Theorem 3.8.
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Before turning the page on these observations, one may reflect a bit about
how the involvement of variable-inclusion characteristic of Kw

3 is present in
our calculus. In this vein, it is well known as reported, e.g., in [18], that
Γ ⊧Kw

3
φ if and only if Γ ⊧CL ∅, or Γ ⊧CL φ and V ar(φ) ⊆ V ar(Γ). This

could lead some to wonder how a similar fact is to be represented within the
LK∖Id

W . For that purpose, observe the following general fact, and the more
concrete reflection on the limited validity of reflexivity within said calculus:

Theorem 4.4. The following rule is derivable in LK∖Id
W

Γ⇒∆
φ⇒ φ

if var(φ) ⊆ var(γ) and var(φ) ⊆ var(δ), for every γ ∈ Γ and δ ∈∆.

Proof. Let Γ,∆ be two sequences of formulas and φ a formula such that
var(φ) ⊆ var(γ) and var(φ) ⊆ var(δ) for every γ ∈ Γ and δ ∈ ∆. Let v
be a weak Kleene valuation that it is a ts-counterexample of φ ⇒ φ. It
is straightforward to notice that it should be the case that v(p) = 1⁄2 for
some p ∈ var(φ) (otherwise it couldn’t be a counterexample of φ). But, by
hypothesis, p ∈ var(γ) and p ∈ var(δ), for every γ ∈ Γ and δ ∈ ∆. Hence,
since v is a weak Kleene valuation, v(γ) = v(δ) = 1⁄2 for every γ ∈ Γ and
δ ∈ ∆. By definition this means that v is a counterexample of Γ⇒ ∆. This
implies that Γ ⇒ ∆ ⊧seqWKts

φ ⇒ φ. By completeness, i.e., by Theorem 3.8,
Γ⇒∆ ⊢seq

LK∖IdW

φ⇒ φ. In other words, the rule

Γ⇒∆
φ⇒ φ

it is derivable in LK∖Id
W .

Notice that with this observation we do not intend to exhaust the charac-
terization of all the cases in which Identity or Reflexivity is derivable in our
calculus, but just to emphasize that in some instances the variable-inclusion
requirements have a connection with it being so. Furthermore, a fully de-
tailed account of the link between variable-inclusion requirements and rule
derivability in our calculus (beyond the restricted case of the external con-
sequence relation) is also worth exploring, but will take much more space
than what we are granted here.
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Béziau, W. Carnielli, and D. Gabbay, editors, Handbook of Paraconsis-
tency, pages 153–175. College Publications, London, 2007.

[19] Francesco Paoli and Michele Pra Baldi. Proof theory of paraconsistent
weak Kleene logic. Studia Logica, 108(4):779–802, 2020.

[20] Graham Priest. Natural Deduction Systems for Logics in the FDE Fam-
ily, pages 279–292. Springer International Publishing, Cham, 2019.
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