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Abstract

We analyze the logical form of the domain knowledge that
grounds analogical inferences and generalizations from a
single instance. The form of the assumptions which jus-
tify analogies is given schematically as the “determination
rule”, so called because it expresses the relation of one set
of variables determining the values of another set. The de-
termination relation is a logical generalization of the dif-
ferent types of dependency relations defined in database
theory. Specifically, we define determination as a rela-
tion between schemata of first order logic that have two
kinds of free variables: (1) object variables and (2) what
we call “polar” variables, which hold the place of truth
values. Determination rules facilitate sound rule inference
and valid conclusions projected by analogy from single in-
stances, without implying what the conclusion should be
prior to an inspection of the instance. They also provide a
way to specify what information is sufficiently relevant to
decide a question, prior to knowledge of the answer to the
question.1

1 Introduction to the Problem

In this paper we consider the conditions under which
propositions inferred by analogy are true or sound. As
such, we are concerned with normative criteria for analog-
ical transfer rather than a descriptive or heuristic theory.
The goal is to provide a reliable, programmable strategy
that will enable a system to draw conclusions by analogy
only when it should.

Reasoning by analogy may be defined as the process of
inferring that a conclusion property Q holds of a partic-
ular situation or object T (the target) from the fact that
T shares a property or set of properties P with another
situation/object S (the source) that has property Q. The
set of common properties P is the similarity between S
and T , and the conclusion property Q is projected from S
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onto T . The process may be summarized schematically as
follows:

P (S) ∧ Q(S)
P (T )
Q(T ).

This form of argument is nondeductive, in that its con-
clusion does not follow syntactically just from its premises.
Instances of this argument form vary greatly in cogency.
Bob’s car and John’s car share the property of being 1982
Mustang GLX V6 hatchbacks, but we could not infer that
Bob’s car is painted red just because John’s car is painted
red. The fact that John’s car is worth about $3500 is,
however, a good indication that Bob’s car is worth about
$3500. In the former example, the inference is not com-
pelling; in the latter it is very probable, but the premises
are true in both examples. Clearly the plausibility of the
conclusion depends on information that is not provided
in the premises. So the justification aspect of the logical
problem of analogy, which has been much studied in the
field of philosophy (see, e.g. [5], [13], [16], [31]), may be
defined as follows:

THE JUSTIFICATION PROBLEM:

Find a criterion which, if satisfied by any partic-
ular analogical inference, sufficiently establishes
the truth of that inference.

Specifically, we take this to be the task of specifying back-
ground knowledge that, when added to the premises of the
analogy, makes the conclusion follow soundly.

It might be noticed that the analogy process defined
above can be broken down into a two-step argument as
follows: (1) From the first premise P (S) ∧ Q(S), conclude
the generalization ∀xP (x) ⇒ Q(x), and (2) instantiate
the generalization to T and apply modus ponens to get
the conclusion Q(T ). In this process, only the first step
is nondeductive, so it looks as if the problem of justifying
the analogy has been reduced to the problem of justify-
ing a single-instance inductive generalization. The tradi-
tional criteria for evaluating the cogency of enumerative
induction, however, tell us only that the inference increases
in plausibility as the number of instances confirming the
generalization increases (without counter-examples) and is
dependent on the conclusion property being “projectible”
(see [11]). If this is the only criterion applied to analog-
ical inferences, then all projectible conclusions by anal-
ogy without counter-examples should be equally plausible,
which is not the case. For example, if inspection of a red
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robin reveals that its legs are longer than its beak, a projec-
tion of this conclusion onto unseen red robins is plausible,
but projecting that the scratch on the first bird’s beak will
be observed on a second red robin is implausible. A per-
son who has looked closely at the beak of only one red
robin will have no counter-examples to either conclusion,
and both conclusion properties are projectible, so the dif-
ference in cogency must be accounted for by some other
criterion. The problem of analogy is thus distinct from
the problem of enumerative induction because the former
requires a stronger criterion for plausibility.

One approach to the analogy problem has been to regard
the conclusion as plausible in proportion to the amount of
similarity that exists between the target and the source
(see [19]). Heuristic variants of this have been popular in
research on analogy in AI (see, e.g. [32] and [3]). Such
similarity-based methods, although intuitively appealing,
suffer from some serious drawbacks. Consider again the
problem of inferring properties of an unseen red robin from
those of one already studied: the amount of similarity is
fixed, namely that both things are red robins, but we are
much happier to infer that the bodily proportions will be
the same in both cases than to infer that the unseen robin
will also have a scratched beak. In other words, the amount
of similarity is clearly an insufficient guide to the plausibil-
ity of an analogical inference. Recognizing this, researchers
studying analogy have adverted to relevance as an impor-
tant condition on the relation between the similarity and
the conclusion ([27], [15]).

To be a useful criterion, the condition of the similarity P
being relevant to the conclusion Q needs to be weaker than
the rule ∀xP (x) ⇒ Q(x), for otherwise the conclusion in
plausible analogies would always follow just by application
of the rule to the target. Inspection of the source would
then be redundant. So a solution to the logical problem
of analogy must, in addition to providing a justification
for the conclusion, also ensure that the information pro-
vided by the source instance is used in the inference. We
therefore have the following:

THE NON-REDUNDANCY PROBLEM:

The background knowledge that justifies an anal-
ogy or single-instance generalization should be
insufficient to imply the conclusion given infor-
mation only about the target. The source in-
stance should provide information not otherwise
contained in the database.

This condition rules out trivial solutions to the justifica-
tion problem. In particular, though the additional premise
∀xP (x) ⇒ Q(x) is sufficient for the truth of the inference,
it does not solve the non-redundancy problem and is there-
fore inadequate as a general solution to the logical problem
of analogy. To return to the example of Bob’s and John’s
cars, the non-redundancy requirement stipulates that it
should not be possible, merely from knowing that John’s
car is a 1982 Mustang GLX V6 hatchback and some rules
for calculating current value, to conclude that the value
of John’s car is about $3500–for then it would be unnec-
essary to invoke the information that Bob’s car is worth
that amount. The role of the source analogue (or instance)
would in that case be just to point to a conclusion which

could then be verified independently by applying general
knowledge directly to John’s car. The non-redundancy re-
quirement assumes, by contrast, that the information pro-
vided by the source instance is not implicit in other knowl-
edge. This requirement is important if reasoning from in-
stances is to provide us with any conclusions that could
not be inferred otherwise.

This seems like an opportune place to draw a distinction
between this work and that of many others researching
analogy. There has been a good deal of fruitful work on
different methods for learning by analogy ([12], [2], [3], [32],
[1], [15], [10]) in which the logical problem is of secondary
importance to the empirical usefulness of the methods for
particular domains. Similarity measures, for instance, can
prove to be a successful guide to analogizing when pre-
cise relevance information is unavailable ([24]). However,
when studying any form of inference, it behooves the re-
searcher to at least consider what the basis of the infer-
ence process might be; for the most part such consider-
ation has been lacking, with the result that analogy sys-
tems have yet to demonstrate any wide applicability or
reliable performance. Our project is to provide an un-
derlying justification for the plausibility of analogy from
a logical perspective, and in so doing to provide a way to
specify background knowledge that is sufficient for drawing
reliable analogical inferences. The approach is intended to
complement, rather than to compete with, more heuristic
methods.

2 Determination Rules as a Solu-
tion

If we think about the example of the two cars (Bob’s and
John’s), it seems clear that, while we may not know what
the value of a 1986 Mustang GLX V6 hatchback is prior to
knowing the value of Bob’s car, we do know that the fact
that a car is a Mustang GLX V6 hatchback is sufficient
to determine its value. Abstractly, we know that either
all objects with property P also have property Q, or that
none do:

(∗) (∀xP (x) ⇒ Q(x)) ∨ (∀xP (x) ⇒ ¬Q(x)).

Having this assumption in a background theory is sufficient
to guarantee the truth of the conclusion Q(T ) from P (S)∧
P (T )∧Q(S) while at the same time requiring an inspection
of the source S to rule out one of the disjuncts. It is
therefore a solution to both the justification problem and
the non-redundancy problem.

As a way of describing the relation between P and Q
in the above disjunction, we might say that P decides
whether Q is true for any situation x. Of course, one
might notice that the background knowledge we bring to
the car example is more general in form. Specifically, we
have knowledge of what is called in database theory a “de-
pendency” relation ([28]), that the make, model, design,
engine, condition, and year of a car determine its current
value. Abstractly, a functional dependency is defined as
follows ([29]):

(∗∗) ∀x, y F (x) = F (y) ⇒ G(x) = G(y).
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In this case, we say that a function (or set of functions) F
functionally determines the value of function(s) G because
the value assignment for F is associated with a unique
value assignment for G. We may know this to be true
without knowing exactly which value for G goes with a
particular value for F . A taxonomy of the forms for the
relation “F (x) determines G(x)” has been worked out by
researchers in database theory, in which such dependencies
are used as integrity constraints ([28]). If the example of
Bob’s and John’s cars (CarB and CarJ respectively) from
above is written in functional terms, as follows:

Make(CarB) = Ford ∧ Make(CarJ ) = Ford

Model(CarB) = Mustang ∧ Model(CarJ) = Mustang

Design(CarB) = GLX ∧ Design(CarJ) = GLX

Engine(CarB) = V 6 ∧ Engine(CarJ) = V 6

Condition(CarB) = Good ∧ Condition(CarJ ) = Good

Y ear(CarB) = 1982∧ Y ear(CarJ ) = 1982

V alue(CarB) = $3500

V alue(CarJ) = $3500,

then knowing that the make, model, design, engine, condi-
tion, and year determine value thus makes the conclusion
valid. In our generalized logical definition of determina-
tion (see the section on “Representation and Semantics”),
the forms (*) and (**) are subsumed as special cases of a
single relation “P determines Q”, written as P & Q.

Assertions of the form “P determines Q” are actually
quite common in ordinary language. When we say “The
IRS decides whether you get a tax refund”, or “What
school you attend determines what courses are available”,
or, quoting a recent television advertisement, “It’s when
you start to save that decides where in the world you can
retire to”, we are expressing an invariant relation more
complicated than a purely implicational rule. At the same
time, we are expressing weaker information than is con-
tained in the statement that P implies Q. If P implies
Q then P determines Q, but the reverse is not true, so
traditional implication falls out as a special case of deter-
mination. That the knowledge of a determination rule is
what underlies preferred analogical inferences seems rela-
tively transparent once the problem is set up as we have
done. We therefore find it surprising that only recently
has the possibility of valid reasoning by analogy been rec-
ognized (in [30]) and the logical form of its justification
been worked out in a way that solves the non-redundancy
propblem (in [6]). Most research on analogy and general-
ization seems to have assumed that an instance can provide
at most inductive support for a rule. Our work suggests
that rule formation and analogical projection are better
viewed as being guided by higher level domain knowledge
about what sorts of generalizations can be inferred from
an instance. This perspective seems consistent with more
recent AI techniques for doing induction and analogy (e.g.
[14],[15]) which view such inferences as requiring specific
knowledge about relevance rather than just an ability to
evaluate similarity. We have concentrated on making the
relevance criterion deductive.

3 Representation and Semantics

To define the general logical form for determination in
predicate logic, we need a representation that covers (1)
determination of the truth value or polarity of an expres-
sion, as in example cases of the form “P (x) decides whether
or not Q(x)” (formula (*) from previous section), (2) func-
tional determination rules like (**) above, and (3) other
cases in which one expression in first order logic deter-
mines another. Rules of the first form require us to extend
the notion of a first order predicate schema in the following
way. Because the truth value of a first order formula can-
not be a defined function within the language, we introduce
the concept of a polar variable, which can be placed at the
beginning of an expression to denote that its truth value
is not being specified by the expression. For example, the
notation “i P (x)” can be read “whether or not P (x)”, and
it can appear on either side of the determination relation
sign “&” in a determination rule, as in

P1(x) ∧ i1P2(x) & i2Q(x).

This would be read, “P1(x) and whether or not P2(x) to-
gether jointly determine whether or not Q(x),” where i1
and i2 are polar variables.

The determination relation cannot be formulated as a
connective, i.e., a relation between propositions or closed
formulas. Instead, it should be thought of as a relation
between predicate schemata, or open formulas with polar
variables. For a first order language L, the set of pred-
icate schemata for the language may be characterized as
follows. If S is a sentence (closed formula or wff) of L, then
the following operations may be applied, in order, to S to
generate a predicate schema:

1. Polar variables may be placed in front of any wffs that
are contained as strings in S,

2. Any object variables in S may be unbound (made free)
by removing quantification for any part of S, and

3. Any object constants in S may be replaced by object
variables.

All of and only the expressions generated by these rules
are schemata of L.

To motivate the definition of determination, let us turn
to some example pairs of schemata for which the determi-
nation relation holds. As an example of the use of polar
variables, consider the rule that, being a student athlete,
one’s school, year, sport, and whether one is female deter-
mine who one’s coach is and whether or not one has to do
sit-ups. This can be represented as follows:
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EXAMPLE 1:

(Athlete(x) ∧ Student(x) ∧ School(x) = s ∧
Y ear(x) = y ∧ Sport(x) = z ∧ i1Female(x))

& (Coach(x) = c ∧ i2Sit − ups(x)).

As a second example, to illustrate that the component
schemata may contain quantified variables, consider the
rule that, not having any deductions, having all your in-
come from a corporate employer, and one’s income deter-
mine one’s tax rate:

EXAMPLE 2:

(Taxpayer(x) ∧ Citizen(x, US)∧
(¬∃dDeductions(x, d))∧ (∀i Income(i, x) ⇒
Corporate(i)) ∧ PersonalIncome(x) = p)

& (TaxRate(x) = r).

In each of the above examples, the free variables in the
component schemata may be divided, relative to the de-
termination rule, into a case set x of those that appear free
in both the determinant (left-hand side) and the resultant
(right-hand side), a predictor set y of those that appear
only in the determinant schema, and a response set z of
those that appear only in the resultant.2. These sets are
uniquely defined for each determination rule. In particu-
lar, for example 1 they are x = {x}, y = {s, y, z, i1}, and
z = {c, i2}; and for example 2 they are x = {x}, y = {p},
and z = {r}. In general, for a predicate schema Σ with
free variables x and y, and a predicate schema X with free
variables x (shared with Σ) and z (unshared), whether the
determination relation holds is defined as follows:

THE DEFINITION OF DETERMINATION:

Σ[x, y] & X [x, z]
iff

∀y, z(∃xΣ[x, y] ∧ X [x, z]) ⇒ (∀xΣ[x, y] ⇒ X [x, z]).

In interpreting this formula, quantified polar variables
range over the unary Boolean operators (negation and af-
firmation) as their domain of constants, and the standard
Tarskian semantics is applied in evaluating truth in the
usual way (see [9]). This definition covers the full range of
determination rules expressible in first order logic, and is
therefore more expressive than the set of rules restricted
to dependencies between frame slots, given a fixed vocabu-
lary of constants. Nonetheless, one way to view a predicate
schema is as a frame, with slots corresponding to the free
variables.

4 Use in Reasoning

Much of the work in machine learning, from the early
days when Shakey was learning macro-operators for ac-
tion ([21]) to more recent work on chunking ([22]) and
explanation-based generalization ([20]), has involved get-
ting systems to learn and represent explicitly rules and

2Readers familiar with statistical modeling might notice that the
terms for these sets of variables are borrowed from regression analysis.
For a discussion of the statistical analogue of determination, and its
relations to regression and classificiation, see [7]

relations between concepts that could have been derived
from the start. In Shakey’s case, for example, the plan-
ning algorithm and knowledge about operators in STRIPS
were a sufficient apparatus for deriving a plan to achieve
a given goal. To say that Shakey “learned” a specific se-
quence of actions for achieving the goal means only that
the plan was not derived until the goal first arose. Like-
wise, in EBG, explaining why the training example is an
instance of a concept requires knowing beforehand that
the instance embodies a set of conditions sufficient for the
concept to apply, and chunking, despite its power to sim-
plify knowledge at the appropriate level, does not in the
logician’s terms add knowledge to the system. By defining
determination rules prior to the acquisition of case data, we
can enable the system to generalize appropriately without
making the rules it will generate implicit from the start.

Determination rules are the kind of knowledge that pro-
grammers of an intelligent system often have. We may
not know very many specific rules about which coaches
instruct which teams, but we still know that the latter de-
termines the former, and this knowledge has the potential
to generate an infinite number of more fine-grained rules.
In addition to enhancing the power of intelligent systems,
the logical formulation of analogical inference enables it
to be used reliably in the logic programming and expert
system contexts. A logic programming implementation is
described in the next section. Determination rules may be
useful in knowledge engineering for two reasons:

1. In many domains a strong (implicational) theory may
not be available, whereas determination rules can be
provided, and the system can gain expertise through
the acquisition of examples from which it can reason
by analogy.

2. Even when a strong theory is available, its complete
elucidation may be difficult, and it may be easier to
elicit knowledge using questions of the form “What
are the factors which go into making decisions about
Q?”, i.e., to extract determination rules.

The use of determination rules appears to be a natural
stage in the process of knowledge acquisition, occurring
prior to the acquisition of a strong predictive theory; for
example, we have as yet no theory that can even come
close to predicting the vocabulary, grammar and usage of
an entire language simply from facts about the nation it
belongs to, but we still have the corresponding determi-
nation rule that one’s nationality determines one’s native
language, with a few exceptions. We have been building
a list of different categories of determinative knowledge.
Here are some examples of processes in which determina-
tion rules are found:

• Physical processes: initial conditions determine out-
come; boundary conditions determine steady-state
values for whole system; biological ancestry deter-
mines gross physical structure; developmental envi-
ronment determines fine structure of behavior; struc-
ture determines function; function determines struc-
ture (less strongly); disease determines symptoms;
symptoms determine disease (less well); diet, exercise
and genes determine weight; etc.
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• Processes performed by “rational agents”: case de-
scription determines legal outcome; upbringing and
education determine political leaning; social class and
location determine buying patterns; nationality de-
termines language; zip code determines state; address
determines newspaper delivery time; etc.

• Processes in formal systems: program input deter-
mines program output; program specification deter-
mines program; etc.

• The system’s own problem-solving processes: all the
problem solving abilities the system has, be they plan-
ning, search, inference, programming or whatever,
can be analyzed into an input P and an output Q.
Constructive processes, such as planning and design,
which have enormous search spaces, are particularly
amenable to reasoning by analogy. ([4] begins to ad-
dress these issues, implicitly using the determination
rule that (exact) problem specification determines so-
lution; the key issue to be resolved before such work
can succeed is to identify the various abstracted levels
of description for problems and solutions which will
allow use of less specific determination rules that do
not require exact matching of specifications.)

5 Implementation in a Logic Pro-
gramming System

Determination-based analogical reasoning can be imple-
mented directly as an extension to a logic programming
system, such as Genesereth’s MRS system (see [23]). The
programmer simply adds whatever determination rules are
available to the database and the system will use them
whenever possible to perform analogical reasoning.

Given a query X [T, z], the basic procedure for solving it
by analogy is as follows:

1. Find Σ such that Σ[x, y] & X [x, z] (i.e., decide which
facts could be relevant).

2. Find y such that Σ[T, y] (i.e., see how those facts are
instantiated in the target).

3. Find S such that Σ[S, y] and S )= T (i.e., find a suit-
able source).

4. Find z such that X [S, z] (i.e., find the answer to the
query from the source).

5. Return z as the solution to the query X [T, z].

We add this procedure to the system’s recursive routine
for solving a goal, so that it now has three alternatives:

1. Look up the answer in the database.

2. Backchain on an applicable implication rule.

3. Analogize using an applicable determination rule.

To solve goal X [T, z] using determination rule Σ[x, y] &
X [x, z], we simply add the following conjunctive goal to
the agenda:

Σ[t, y] ∧ Σ[s, y] ∧ (s )= t) ∧ X [s, z].

The subgoals of this can be solved recursively by the same
three alternative methods, thus achieving the procedure
given above.

An example may be helpful here. Suppose we have
the goal of finding out what language Jack speaks, i.e.,
NativeLanguage(Jack, z). We have the following back-
ground information:

Nationality(Jack, UK)
Male(Jack)
Height(Jack, 6′)
. . .
Nationality(Giuseppe, Italy)
Male(Giuseppe)
Height(Giuseppe, 6′)
NativeLanguage(Giuseppe, Italian)
. . .
Nationality(Jill, UK)
Female(Jill)
Height(Jill, 5′10′′)
NativeLanguage(Jill, English)
. . .

and among our determination rules we have that nation-
ality determines native language (except for Swiss), as
well as other such rules, for instance that nationality
and whether or not one has dual citizenship determines
whether or not one needs a visa to enter the United States
and how long one may stay:

(Nationality(x, n) ∧ ¬Nationality(x, Swiss))
& (NativeLanguage(x, l).

(Nationality(x, n) ∧ i1Dualcitizen(x, US))
& (i2NeedV isa(x, US) ∧ Maxstay(x, t)).

Using the first of these determination rules, the system
generates the new goal:

(Nationality(Jack, n)∧
¬Nationality(Jack, Swiss))∧

(Nationality(s, n) ∧ ¬Nationality(s, Swiss))∧
s )= Jack∧
NativeLanguage(s, z),

which is solved after a few simple deduction steps, with Jill
as the source s. One may observe that the more “similar”
source Giuseppe is ignored, and that the irrelevant facts
about Jack and Jill are not examined. When the facts
satisfying the various subgoals of the analogy are not ex-
plicitly available in the database, the system will of course
attempt solutions by further reasoning, either analogical
or implicational. For example, if Nationality(Jill, UK)
were replaced by Birthplace(Jill, London), then the anal-
ogy could still succeed if a rule relating Birthplace and
Nationality were available. Thus we have a natural, goal-
directed reformulation which reveals implicit similarities in
an efficient manner.

In comparison to the more traditional, heuristic ap-
proaches to analogy, the use of determination rules has
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significant efficiency advantages in addition to its other
properties. Winston ([32]) and Greiner ([12]) point out
the enormous complexity of matching the target against
all possible sources in all possible ways to find out the
most similar source; as we observed in the implementa-
tion example, finding the determination rule first enables
us to pick out the relevant target facts and use those to
index directly to an appropriate source, thus overcoming
the matching problem. We also render irrelevant the prob-
lem of finding a suitable similarity metric, and transform
the reformulation problem (which arises when a change of
representation might reveal a previously hidden similarity)
from an open-ended nightmare of forward inference into a
relatively controlled, goal-directed process.

The ability of determination-based analogical reasoning
to avoid unnecessary matching makes it a reasonable al-
ternative to traditional rule-based logic systems. For some
problems, analogy is more efficient than using a corre-
sponding set of implication rules. A determination rule
P (x, y) & Q(x, z) and a set of instances replace a set of
implication rules:

∀xP (x, Y1) ⇒ Q(x, Z1)
. . .
∀xP (x, Yn) ⇒ Q(x, Zn),

where n can be arbitrarily large. Furthermore, since it
must test the premises of every rule that could imply a goal
until it finds the right one, a backward chaining system
requires a lengthy search that can be avoided by using a
determination rule.

A common form of reasoning that displays this behavior
is taxonomic inheritance, for which we might use a rule
such as

∀x IsA(x, 73DodgeV an) ⇒ V alueIn87(x, $650)

to conclude the current resale value of one of our cars.
With 7500 models in our database, this would take
us 7500/2 backchains on average. Replacing the im-
plication rules with a determination rule IsA(x, y) &
V alueIn86(x, z) and a collection of prototypical instances
(exactly analogous to the TypicalElephant frames in se-
mantic nets) we can solve our goal in four backchaining
steps.

Another example is that of diagnostic reasoning, in
which the (simplified) traditional approach uses a collec-
tion of rules of the form:

∀xHasSymptoms(x, < Symptom − listk >)
⇒ HasDisease(x, < Diseasel >).

These implication rules would be replaced by a determina-
tion rule HasSymptoms(x, y) & HasDisease(x, z) and a
case library.

6 Conclusion

There are a number of problems related to analogy that
we have not solved. What we have is a method for gen-
erating correct generalizations and analogical inferences,
given correct determination rules. At the same time, our
work has created new problems: a reasonable next step

is to work out how determination rules can themselves be
acquired. Some early thought on the determination rule
acquisition problem points to four basic methods:

1. Deduce a determination rule from other known facts
(For an example, see [26]).

2. Induce a determination rule from instances (essen-
tially calculate the empirical degree of determination
of X by Σ—see [25] and [7]).

3. Induce a determination rule from a collection of spe-
cific rules.

4. Generalize from a collection of more specific determi-
nation rules.

Because we have a formal definition for determination,
inductive acquisition of determination rules is conceptually
straightforward, if pragmatically troublesome. Acquisition
experiments on a broad knowledge base are currently un-
der way using the CYC system ([17]). We are also building
determination-based expert systems by induction from ex-
amples in the domains of market forecasting and mechan-
ical device diagnosis from acoustic emission. The results
so far seem very promising.

A full understanding of the human processes of analog-
ical inference and generalization will surely require fur-
ther investigations into how we measure similarity, how
situations and rules are encoded and retrieved, and what
heuristics are used in projecting conclusions when a valid
argument cannot be made. But it seems that logic can
tell us quite a lot about analogy, by giving us a standard
for evaluating the truth of its conclusions, a general form
for its justification, and a language for distinguishing it
from other forms of inference. At the same time, we have
found a consideration of the logical problem to be of prac-
tical benefit, for reasoning by analogy using determinative
knowledge appears to give a system the ability to learn
reliably new rules that would otherwise need to be pro-
grammed.
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