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Abstract

In this paper, we ask: how should an agent who has incoherent credences update

when they learn new evidence? The standard Bayesian answer for coherent agents

is that they should conditionalize; however, this updating rule is not defined for

incoherent starting credences. We show how one of the main arguments for con-

ditionalization, the Dutch strategy argument, can be extended to devise a target

property for updating plans that can apply to them regardless of whether the agent

starts out with coherent or incoherent credences. The main idea behind this exten-

sion is that the agent should avoid updating plans that increase the possible sure

loss from Dutch strategies. This happens to be equivalent to avoiding updating

plans that increase incoherence according to a distance-based incoherence measure.

Penultimate draft, to appear in Philosophy and Phenomenological Review
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1 Introduction

A central question in Bayesian epistemology is how agents should update their credences

when they learn new information with certainty. The most popular answer is that they
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should conditionalize. Conditionalization has been defended using a variety of different

arguments, most prominently Dutch strategy arguments (Lewis, as published by Teller

(1973)) and accuracy-based arguments (Briggs & Pettigrew, 2020; Greaves & Wallace,

2006; Oddie, 1997). A major limitation of conditionalization is that it is only defined for

agents whose credences are probabilistic. This means that the rule is silent about how

to best update from incoherent starting points. Nonetheless, even in those cases, some

updating plans seems to be more adequate than others, as in the following example.

Example 1. Consider two agents, Jane and Clara, whose initial credences are identical

and incoherent: cr(A&B) = 0.4, cr(¬A&B) = 0.4, cr(B) = 0.9 and cr(¬B) = 0.1. Upon

learning B, Jane’s updating plans include crB(A) = 0.5 and crB(¬A) = 0.5, while Clara’s

include crB(A) = 0.3 and crB(¬A) = 0.7. Even though both are in principle going to be

coherent after learning B, there is some intuitive pull to judge Jane’s updating plans to

be more aligned with her initial credences than Clara’s.

Our aim in this paper is to explore whether we can devise a target property for up-

dates that preserves the spirit of conditionalization, but that can apply both to agents

with initially coherent and with initially incoherent credences.1 We show how this can

be done by utilizing the Dutch strategy argument for conditionalization. The main idea

behind our proposal is that an agent should plan to update their credences in a way that

doesn’t increase the possible sure loss from Dutch strategies. This happens to be equiva-

lent to avoiding updating plans that increase incoherence according to a distance-based

incoherence measure. The resulting way of evaluating updates recommends updating by

conditionalization to coherent agents, and updating in a similar way that we call tolerant

conditionalization (TC) to incoherent agents.2

Our discussion will proceed as follows: In section 2, we present the standard Dutch

strategy argument for conditionalization, and explain why it is an undesirable limitation

that this update norm is only defined for initially coherent agents. In section 3, we review

some existing distance-based approaches to measuring incoherence that track Dutch book

loss. We explain how incoherent agents who have fixed information can augment their

existing credences without becoming more incoherent. In section 4, we show how this idea

can be applied to cases in which incoherent agents learn new information. Dutch strategy

loss can be measured as the incoherence of the agent’s initial unconditional credences,

extended with their updating plans. We call the additional incoherence stemming from

1For different approaches to this issue, see Gilboa and Schmeidler (1993; 1994) and Babic (2020).
Gilboa and Schmeidler propose update rules for non-additive probability measures whose application
need not result in additive ones. Babic explores what happens if incoherent agents use a version of
standard conditionalization without renormalizing, and argues that the results tell against norms that
recommend approximating ideally rational credences. We take the opposite route and argue from these
approximation norms to a different way of extending conditionalization to incoherent agents, yielding
coherent updated credences.

2Thanks to Justin Snedegar for suggesting the name.
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this extension plan incoherence. According to tolerant conditionalization, an incoherent

agent should plan to update their credences upon learning some piece of new information

with certainty in a way that minimizes their plan incoherence. In section 5, we show

how our initial models can be enriched by incorporating agents’ conditional credences in

addition to their unconditional credences and updating plans. In section 6, we discuss

options for using alternative incoherence measures, and also how our results can impact

the accuracy of an agent’s credences.

2 The Dutch Strategy Argument for

Conditionalization and its Limitations

In Bayesian epistemology, the standard answer to the question of how an agent should

update their credences upon becoming certain of a new piece of information is “Condi-

tionalize!”. More specifically, when constraining the actual updated credences, the norm

goes like this:3

Conditionalization: When new evidence A is acquired with certainty (and no other

evidence is acquired), the resulting credence in every claim B is equal to its previous

credence conditional on A, so crnew(B) = crold(B|A), assuming that crold(A) > 0.

Conditional credences are standardly required to obey the ratio formula according to

the norms of ideal Bayesian rationality:

Ratio Formula: The conditional credence of B given A, written cr(B|A), equals

cr(A&B)/cr(A), assuming that cr(A) > 0.

The norm of conditionalization has been defended with a variety of arguments. The

first argument in its favor was offered by David Lewis.4 It is a Dutch strategy argument

for conditionalization, which shows that if an agent doesn’t update by conditionalization,

they are vulnerable to a sequence of bets that will lose them money no matter what.

More recently a couple of accuracy-based arguments for conditionalization have been of-

fered. Oddie (1997) as well as Greaves and Wallace (2006) have argued that the expected

accuracy of conditionalization is higher than the expected accuracy of any other updating

rule. Briggs and Pettigrew (2020) have argued that any non-probabilistic credal strat-

egy (a combination of initial credences and updating plans) is accuracy-dominated by a

probabilistic, conditionalizing strategy, while probabilistic, conditionalizing strategies are

undominated.5 Some philosophers prefer accuracy-based arguments for epistemic norms

3We distinguish between two versions of conditionalization, following Pettigrew (2020), where this is
called “Actual Conditionalization”

4The argument is standardly attributed to David Lewis, but first appeared in print in a paper by
Paul Teller (who credits Lewis) (Teller, 1973).

5Diaconis and Zabell (1982) have furthermore shown that conditionalizing a credence assignment
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to Dutch book arguments, because they want to avoid appealing to pragmatic considera-

tions in justifying epistemic norms. Yet, as, for instance, Christensen (2004) has argued,

less literal interpretations of Dutch book arguments can avoid some of these objections.

In principle, one can endorse both types of arguments insofar as they support the same

conclusions.

Our aim in this paper is to extend the Dutch strategy argument to come up with

a desirable target property for updates based on incoherent starting points. Hence, we

will focus on Dutch strategies for now, but we will return to the question of how our

results connect to accuracy-based justifications of conditionalization in section 5. It has

recently been shown that the standard Dutch strategy argument for conditionalization

must assume that the agent’s evidence consists in learning that exactly one member of a

partition is true. We will adopt this assumption throughout the paper.6

Here is a simple example of how a non-conditionalizing agent can be exploited with a

Dutch strategy.

Example 2. Suppose an agent is to learn the truth of one of the members of the partition

{B,¬B} and begins with the following probabilistic starting credences:

cr(A&B) = 0.4, cr(¬A&B) = 0.4, cr(B) = 0.8 and cr(¬B) = 0.2.

This commits them to the conditional credence cr(A|B) = 0.5, insofar as they obey

the ratio formula.

defined over a partition of propositions on E is equivalent to moving to the closest coherent credence
assignment that assigns cr(E) = 1 according to the Kullback-Leibler divergence. Unfortunately, their
result only applies to partitions, not to credence assignments over arbitrary sets of propositions.

6Proponents of evidential externalism want to reject the partitionality assumption. They argue that
in cases in which it is not transparent to the agent what their evidence is, the partitionality assumption
fails, which means that a crucial premise in the Dutch strategy argument is unavailable (Das, 2020;
Gallow, 2019a). The problem also applies to the expected accuracy argument for conditionalization, as
Schoenfield (2017) shows, as well as the accuracy dominance arguments by Briggs and Pettigrew (2020)
and Nielsen (2021). It is a matter of current debate how to respond to these results, but we can see two
main strategies in the recent literature. The first strategy is to modify how we should understand the
relevant notion of evidence.

(1a) For example, Schoenfield (2017) argues, in line with earlier results by Shafer (1985) and Hild
(1998), that agents must update on the claim that they have learned some piece of evidence E, rather
than E itself, which is a way of guaranteeing that there are no externalist counterexamples.

(1b) Alternatively, we might employ a contextualist (or relativist/expressivist) interpretation of what
counts as the agent’s evidence. Salow (2019), picking up a similar idea in Greco (2017), offers a view on
which the referent of the term “evidence” can never fail to satisfy certain internalist principles in a given
context.

Both (1a) and (1b) are compatible with the approach in this paper. The second strategy is to devise
alternative, externalist-friendly arguments for either conditionalization or another updating rule.

(2a) For example, Gallow (2019b) and Zendejas Medina (2021) set out to devise such alternative
updating strategies. Unfortunately, their proposals rely on expectation-based arguments, which are
difficult to generalize to agents with incoherent starting credences.

(2b) Rescorla (2020) discusses how the factivity assumption in standard Dutch strategy arguments
can be relaxed. His discussion might give us some hints about how to develop future proposals that will
be compatible with the approach taken in this paper.

We are currently undecided on which of these strategies is most likely to be successful, but at least
the first one would be compatible with our approach here.
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Hence, if they were to conditionalize upon learning that B, they would have to update

their credence in A to 0.5. Now, let’s suppose they don’t plan to conditionalize, but to

adopt a 0.4 credence in A upon learning that B, which is the non-normalized posterior

cr(A&B) = 0.4, so crB(A) = 0.4. In that case, before knowing whether B is true, the

bookie will sell the agent the following two bets:

Bet 1: pays $1 if A and B are true, nothing otherwise.

Price: $0.40 (= $1× cr(A&B))

Bet 2: pays $0.40 if B is false (¬B is true), nothing otherwise.

Price: $0.08 (= $0.40× cr(¬B))

The agent pays a total of $0.48 for these two bets. If B is false, they win back $0.40,

incurring a net loss of $0.08. If the agent learns that B is true (and nothing more), the

bookie buys back a third bet from the agent:

Bet 3: pays $1 if A is true, nothing otherwise.

Price: $0.40 (= $1× crB(A))

Now, with B being true, the agent is also stuck with a loss of $0.08, regardless of

whether A is true or false.7

In the example above, if the agent planned to update to a credence that is higher

than the one warranted by conditionalization, the bookie would have to adjust which

bets are bought and which ones are sold. Generally, the argument only works for known

updating plans, because they are needed to determine which bets will generate a sure

loss. A Dutch strategy cannot be made against agents whose updating plans are unknown.

Furthermore, if the agent plans to obey conditionalization, but fails to do so, they are

also immune to Dutch strategies. Dutch strategy arguments are thus often viewed as

supporting a synchronic norm constraining credences and updating plans8, which for our

purposes can be expressed as:

Rule Conditionalization: If, upon learning some evidence A with certainty (and no

other evidence), the agent plans to update their credence in claim B to crA(B), then

their planned credence equals their current credence in B conditional on A, so crA(B) =

cr(B|A), assuming that cr(A) > 0.

When it is clear from context, we just write “conditionalization”. In standard pre-

sentations of the Dutch strategy argument, it is assumed that the agent starts out with

coherent credences, and then different updating plans are compared to check whether

they lead to a sure loss. The reason for this is that if the agent has non-probabilistic

initial credences or violates the ratio formula, then there is a Dutch strategy inflicting

7A well-presented general recipe for constructing a Dutch strategy can be found in Briggs (2009).
8A detailed discussion which also includes non-deterministic updating plans can be found in Pettigrew

(2020).
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sure loss no matter which updating plans the agent adopts. For instance, in example

1, both Jane and Clara are exposed to Dutch strategies. Yet, as we will show shortly,

we can devise Dutch strategies against initially incoherent agents that can distinguish

between initial incoherence and incoherence generated by updating plans, which will help

us identify good updating plans for incoherent agents.

Why do we want to identify a good property of updates to credence assignments

that allows for incoherent starting points? What’s wrong with having a norm that only

works for coherent starting points? Probabilistic coherence of credence assignments is

usually seen as a rational ideal, but in practice, it is often violated. Empirical studies

in psychology and cognitive science have shown, in a variety of different settings, that

human reasoners tend to have incoherent credences, with violations of probabilism being

sometimes slight and sometimes more severe.9 In settings in which an initial credence

assignment is a dataset resulting from some sort of judgment aggregation, the collected

probability estimates may not be probabilistically coherent (see e.g. Wang, Kulkarni,

Poor, and Osherson (2011)). It would be desirable to know whether there is a target

property that updates to such incoherent credence assignments should have. In fact,

it would be very surprising if there were no way to characterize desirable updates to

incoherent credences - after all, our best psychological evidence suggests that human

reasoners update their incoherent credences all the time, without their credences spiraling

uncontrollably into varying degrees of incoherence. While we’re not in search of the

psychological mechanism for these updates, the existence of such a mechanism makes us

hopeful that we can identify a property that characterizes desirable updates to incoherent

credence functions.

It might be suggested that instead of updating incoherent credences directly, one

must coherentize incoherent credence assignments and then subsequently update these

revised credences. This suggestion addresses how a reasoner should actually go about

updating their credences, in an implementation-focused sense. Our proposal has a slightly

different aim. It is not intended as directly followable advice for incoherent thinkers

who seek to update their credences on new information. Rather, we aim to identify

a property that distinguishes desirable from undesirable updates, regardless of whether

the starting credences were coherent or incoherent. By what process the agent arrives

at their update is not relevant in this context. In trying to identify this property, we

take ourselves to be engaging in the same project as other Bayesian epistemologists and

decision theorists, who aim to specify what conclusions thinkers should reach, or what

decisions they should make, but not how they should get there.We will have reached our

9Some well-studied coherence violations include the base rate fallacy (see e.g. Kahneman and Tversky
(1973), Koehler (1996)), the unpacking effect (see e.g. Tversky and Koehler (1994), Van Boven and Epley
(2003)), the conjunction fallacy (see e.g. Tversky and Kahneman (1983) and Crupi, Fitelson, and Tentori
(2007)), and violations of the ratio formula (see e.g. Zhao, Shah, and Osherson (2009) and Costello and
Watts (2016)).
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aim if we can characterize such a property of updates, and justify why updates with this

property are desirable.

3 Dutch Books and Degrees of Incoherence

3.1 Distance-based Incoherence Measures and Dutch Books

Standard theories in Bayesian epistemology only distinguish between coherent and inco-

herent credence assignments and updating strategies, and they tend to have little to say

about the incoherent cases. Yet, as De Bona and Staffel have argued, this is an unfor-

tunate oversight (De Bona & Staffel, 2017, 2018; Staffel, 2019). Probabilistic coherence

tends to be advertised by Bayesians as a rational ideal that is desirable for non-ideal

thinkers to approximate. But in order for coherence to play this role, we need to know

more about incoherent credences – what does it mean for them to approximate coherence?

And why is it desirable for them to do so?

De Bona and Staffel have proposed that a good strategy to answer these questions

is to first identify some valuable property that fully coherent credences have. Then, the

task is to show that there is some way of measuring the distance of credence functions to

coherence, such that decreasing the distance to coherence delivers increasing portions of

this value.10 If we apply this reasoning to the idea that coherent credences are valuable

because they are action guiding, we get the following picture: Let cr be an agent’s

(unconditional) credences, defined over a set of sentences. (Using sentences rather than

propositions has the benefit of allowing agents to assign different credences to logically

equivalent claims.) If cr is coherent, then it is not vulnerable to a guaranteed loss from a

Dutch book, and hence delivers non-self undermining action guidance. If cr is incoherent,

then it is vulnerable to a Dutch book. We can measure both how incoherent cr is and

how large of a Dutch book loss it is vulnerable to in a way that correlates the two.

To characterize incoherence measures, we assume the agent has an unconditional cre-

dence assignment cr : {A1, . . . , An} → [0, 1] over a set of sentences Ai from a propositional

language L. This assignment can be represented as a set {cr(A1) = q1, . . . , cr(An) = qn},
with qi ∈ [0, 1]. In order to measure the distance from cr to coherence, one can mea-

sure the distance from the vector 〈cr(A1), . . . , cr(An)〉 ∈ [0, 1]n to the closest vector

〈cr∗(A1), . . . , cr
∗(An)〉 ∈ [0, 1] corresponding to a probabilistic credence assignment cr∗.

This distance can be measured with different functions d : [0, 1]n × [0, 1]n → [0,∞)

yielding different incoherence measures:

Id(c) = min{d(c, c∗)|c∗ is coherent}
10Here and below, we sometimes use “distance” in a general way to refer to both distances and diver-

gences in the mathematical sense. Technically, distances, but not divergences, must satisfy symmetry
and the triangle inequality.
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Common options for the function d include the p-norm distances dp, such as the Manhat-

tan (p = 1), the Euclidean (p = 2) and the Chebyshev (p =∞) distances (Thimm, 2013;

Potyka, 2014; De Bona & Finger, 2015). For each such distance, dp(X, Y ) is defined as

the p-norm of X − Y ; for instance, the Manhattan (or absolute) distance between two

vectors X, Y ∈ Rn is given by d1(X, Y ) =
n∑
i=1

|Xi − Yi|.

As mentioned above, we want to be able to capture the loss in value that comes

with increasing incoherence, and we can do so by tracking the size of the sure loss an

agent is exposed to via Dutch books. The guaranteed net loss caused by a Dutch book

against an incoherent agent can always be arbitrarily scaled up if the bet stakes are not

limited somehow. To measure the incoherence through this loss we need to normalize

it (Schervish et al., 2002, 2003). Staffel (2019) argues that normalizing Dutch book loss

by requiring that each bet has a maximal stake of 1 yields a desirable way of tracking

Dutch book loss induced by incoherence. The resulting measure is equivalent to Id1 for

unconditional credences (De Bona & Finger, 2015). In other words, the maximum sure

loss an agent is exposed to via a Dutch book with stakes no greater than 1 is equal to

the minimum Manhattan distance from their credences to coherent ones. This shows

how approximations to coherence can deliver increasing portions of value, the value here

being a decreasing vulnerability to losses from standardized Dutch books (we discuss the

use of alternative incoherence measures in section 6).

3.2 Augmenting One’s Credences without Increasing

Incoherence

This delivers a plausible story of why coherence is an ideal worth approximating, since

it tells us both what is meant by approximation, and what value is attained by approx-

imating coherence. We can now use this idea and apply it to various cases in which we

want to assess incoherent credence assignments. For example, agents often want to draw

inferences based on their existing attitudes, such as a very basic modus ponens inference

– from if p then q and p, they infer that q. It is fairly well understood how this type

of augmentative reasoning works for perfectly rational agents. They should simply draw

inferences from their existing attitudes that conform to the rules of logic and probability.

But can incoherent agents sensibly engage in this kind of reasoning without having to

first fix their incoherence? Is there a way to directly assess whether an augmentative

inference made by an incoherent agent is an advisable inference for them to make?

As Staffel (2019) shows, the Dutch book based incoherence measure just introduced,

combined with the idea that you should not draw inferences that worsen your incoherence,

can be used to identify good augmentative inferences whose starting points can be either

coherent or incoherent credence assignments. The basic idea is that when an agent fills

gaps in their credence assignment based on their existing credences, they should not
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become more incoherent than they were to begin with. For coherent agents, this simply

means to add new credences that cohere with their existing credences according to the

probability axioms. This ensures that the augmented credences will be coherent as well.

For incoherent starting credences, remember that we have singled out an incoherence

measure that determines incoherence as the Manhattan distance between the vector rep-

resenting the agent’s incoherent credences and a vector representing some closest coherent

credence assignment over the same set of sentences. This measure tracks standardized

Dutch book loss if we limit betting stakes to at most 1 per bet. Given this measure,

an agent can never become less incoherent by adding an additional credence to her cre-

dence assignment, since adding a new credence cannot reduce the distance between her

credences and the closest coherent credences. Adding a new credence can only either in-

crease the distance between her credences and some closest coherent credence assignment,

or leave it unchanged. Staffel shows that it is always possible to fill gaps in one’s existing

credence assignment in such a way that it leaves one’s degree of incoherence unchanged.

Suppose the agent is trying to find the best credence to assign to some claim Ai about

which they previously had no opinion. There are two options: either they assign to Ai a

credence that coheres with some coherent credence assignment that minimizes the Man-

hattan distance to their existing credences (call this credence cr(Ai) = x), or they assign

to Ai a credence that doesn’t cohere with any coherent credence assignment that mini-

mizes the Manhattan distance to their existing credences (call this credence cr(Ai) = y).

If they choose cr(Ai) = y, then the distance of the agent’s thus augmented credences to

some closest coherent credence assignment will be greater than before cr(Ai) = y was

added, hence the agent’s incoherence and corresponding Dutch book vulnerability are

increased. However, it is always possible for the agent to choose some cr(Ai) = x instead.

Since cr(Ai) = x coheres with some coherent credence function closest to the agent’s

existing credences, adding it to the agent’s credences will leave the minimum distance

between their augmented credences and some closest coherent credences unchanged. It

thus represents a conservative choice for the new credence assignment.

Summing up, this shows that the constraint that augmentative inferences should not

make agents more incoherent can be applied regardless of whether the agent starts with

coherent or incoherent credences. In either case, we can identify which new credence as-

signments would leave the agent’s degree of incoherence unchanged, and are thus desirable

augmentative inferences.

Of course, augmentative reasoning is a special case, insofar as it assumes that the

agent doesn’t change their existing credences and doesn’t learn new information. But

we’re interested in cases in which agents learn new information and plan to update their

credences in response. We want to know whether we can identify a property of good

updating plans that applies regardless of whether the starting point is a coherent or an

incoherent credence assignment. It turns out that we can do so by using a similar idea to
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the one Staffel employed to identify good augmentative inferences. The basic idea is that

an agent’s updating plans should not worsen the incoherence already contained in their

starting credences. To implement this idea, we need to generalize our distance-based

Dutch book measure to make sure it can apply to updating plans, and explain how it

tracks the Dutch book loss from Dutch strategies. Applying this idea to coherent agents

yields the result that only rule conditionalization avoids plan incoherence. For incoherent

agents, we can similarly identify updates that keep their plan incoherence at zero. We

will explain the details of this proposal in the next section.

4 Plan Incoherence and Tolerant Conditionalization

4.1 Measuring Dutch Strategy Loss

Typical Dutch strategy arguments cannot distinguish between two different updating

strategies if the agent is already initially incoherent, since they will be exposed to sure

loss regardless of their updating plans. This sure loss would come from the regular Dutch

book the agent is vulnerable to for possessing incoherent initial credences. Nevertheless, if

the amount to be gambled in a Dutch strategy is normalized in some way, some updating

strategies can yield higher sure loss than others. To quantify this difference, we can

measure the sure loss inflicted by a Dutch strategy normalized by the greatest stake

involved, which is equivalent to measuring guaranteed loss when the stakes are no greater

than 1.

A Dutch strategy differs from a Dutch book due to the possibility of making bets at

two different times: initially, at t1; and at t2, after the agent learns the truth of some

element E from a given partition. The bets to be placed at t2 are a function of what is

learned. Suppose a Dutch strategy involves a bet on A at t2 if exactly E is learned. If

this bet pays λ (the stake), the fair price to the agent would be λ× crE(A), where crE(.)

denotes the updated credences after the agent learns E. As this bet is to occur only if E

is learned, it behaves exactly like a conditional bet on (A|E) at t1: the net loss is zero if E

is false, otherwise it works like a bet on A. Hence, if we want to compute the guaranteed

loss to which an agent with updating plans crE(.) for a fixed E is vulnerable from a Dutch

strategy, we can compute the same loss if we represent their updating plans as conditional

credences cr(.|E) instead and set up a synchronic Dutch book against the agent. In fact,

this identity holds even if the agent has updating plans for different sentences E, as long

as they belong to the partition they learn from. This correspondence reflects the link

between Dutch books against agents violating the ratio formula and Dutch strategies

against agents violating rule conditionalization. Example 3 illustrates this by giving the

synchronic Dutch book that corresponds to the diachronic one from example 2:
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Example 3. Consider the agent from example 2 with an extra conditional credence

cr(A|B) = 0.4 corresponding to the updating plan crB(A) = 0.4:

cr(A&B) = 0.4, cr(¬A&B) = 0.4, cr(B) = 0.8, cr(¬B) = 0.2 and cr(A|B) = 0.4.

The bookie will sell the agent the same two bets:

Bet 1: pays $1 if A and B are true, nothing otherwise.

Price: $0.40 (= $1× cr(A&B))

Bet 2: pays $0.40 if B is false (¬B is true), nothing otherwise.

Price: $0.08 (= $0.40× cr(¬B))

When B is false, these bets yield a loss of $0.08, as before. But now the bookie also

buys the following conditional bet, which has an effect only if B is true:

Bet 3: pays $1 if A is true, nothing otherwise. The bet is called off if B is false.

Price: $0.40 (= $1× cr(A|B))

The conditional gamble on (A|B) works like a bet on A when B is true. Thus, if B

is true, the loss is also $0.08, as in example 2.

To formalize losses from Dutch strategies, assume a partition P ⊆ L 11 from which the

agent is to learn a proposition. We also assume a set of pairs (Ai, |Aj) ∈ L×L to which

the agent assigns initial credences cr(Ai|Aj) and a set of pairs (Al, Ek) ∈ L × P for the

updating plans cr(Al|Ek). Call a credal strategy a set containing credences cr(Ai|Aj) =

qij
12 and updating plans crEk

(Al) = qkl for arbitrary qij, qkl ∈ [0, 1].13 An updating plan

crE(A) = q can be construed as a disposition to update the credence in A to q if exactly

E is learned with certainty. The credences and plans can be over different propositions,

for instance: Ψ = {cr(A) = 0.1, crC(B) = 1, crE(D) = 0}, for C,E ∈ P . Note that

unconditional credence assignments can be viewed as credal strategies with no updating

plans.

As standardly defined, conditionalization refers to an agent’s conditional credences.

Yet, we’ve defined credal strategies as being possibly gappy, in that they may lack the

conditional credences corresponding to the agent’s updating plans. To deal with this,

we propose to extend the definition of rule conditionalization. An agent who lacks the

relevant conditional credences still counts as obeying rule conditionalization as long as

there is a probability function pr∗ extending the initial credences in the agent’s credal

strategy Γ such that, for each of their updating plans crE(A) = q ∈ Γ, it holds that

11We say a set of sentences forms a partition if they are pairwise inconsistent and their disjuction is
valid.

12We use cr(Ai|>) to represent the unconditional credence cr(Ai).
13We use the term “unconditional credal strategy” to indicate that we are not yet incorporating agents’

conditional credences, only their updating plans, which need not be the same. While we can represent
updating plans as conditional credences for technical purposes as explained above, we don’t assume they
must be identical in real agents. See section 5 and also Zhao, Crupi, Tentori, Fitelson, and Osherson
(2012).
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q× pr∗(E) = pr∗(A&E). This understanding of rule conditionalization still assumes that

the agent obeys probabilism and the ratio formula.

For any unconditional credal strategy Γ, let Γsync denote the credal strategy formed

by replacing each updating plan crE(A) = q by a conditional credence cr(A|E) = q; for

instance, Ψsync = {cr(A) = 0.1, cr(B|C) = 1, cr(D|E) = 0}. If stakes are limited in the

same way, the maximum guaranteed loss an agent Γ is exposed to via a Dutch strategy

is equal to the maximum amount the agent Γsync can surely lose in a Dutch book.14

We saw in section 3.1 that, for unconditional credences, the maximum sure loss from

Dutch books an agent is exposed to when the stakes are no greater than 1 equals the Man-

hattan distance from her credences to some closest coherent credences. This result can

be extended to conditional credences and conditional gambles, via violation incoherence

measures (Potyka, 2014).

Given a probability measure pr : L → [0, 1] over the whole language, each conditional

credence cr(Ai|Ei) = qi corresponds to a violation εi defined as:

εi = pr(Ai&Ei)− qi × pr(Ei)

Note that εi = 0 iff pr(Ai&Ei) = qi× pr(Ei). For an unconditional credence cr(Ai) = qi,

its violation is defined via cr(Ai|>) = qi.

Suppose Γ = {cr(A1|E1) = q1, . . . , cr(An|En) = qn} is a set of conditional and uncon-

ditional credences. Each probability measure pr yields a vector of violations 〈ε1, . . . , εn〉.
Their elements can all be zero iff the credences are probabilistic and satisfy the ratio

formula. We can measure the incoherence of a set of credences as the minimum of the

1-norm of this violation vector. Formally, the incoherence measure Iε can be defined as:

Iε(Γ) = min
pr
||〈ε1, . . . , εn〉||1 = min

pr

n∑
i=1

|εi| = min
pr

n∑
i=1

|pr(Ai&Ei)− qi × pr(Ei)|

.

Since pr(>) = 1 and pr(Ai&>) = pr(Ai) for any probability measure pr, cr(Ai) = qi

yields the violation εi = pr(Ai) − qi. Consequently, for a set of unconditional credences

Γ, it holds that Id1(Γ) = Iε(Γ). Moreover, if Γ also contains conditional credences, Iε(Γ)

is the maximum sure loss the agent Γ is exposed to via a Dutch book whose stakes are

no greater than 1, possibly including conditional gambles (De Bona & Finger, 2015).

Putting the pieces together, the maximum sure loss from a Dutch strategy that an

agent with credal strategy Γ is exposed to, when the stakes are no greater than 1, is equal

to Iε(Γsync). We can demonstrate this way of measuring the Dutch book loss of a credal

strategy by applying it to the agent from example 2.

14We’re abusing the notation here, equating agents with their credal strategies.
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Example 4. In example 2, the agent’s credal strategy is:

Γ = {cr(A&B) = 0.4, cr(¬A&B) = 0.4, cr(B) = 0.8, cr(¬B) = 0.2, crB(A) = 0.4}

To determine the maximum sure loss from a Dutch strategy with stakes no greater

than 1, we can apply Iε to the credal strategy with updating plans replaced by conditional

credences:

Γsync = {cr(A&B) = 0.4, cr(¬A&B) = 0.4, cr(B) = 0.8, cr(¬B) = 0.2, cr(A|B) = 0.4}

The sure loss is then given by Iε(Γsync), which can be computed by finding a probability

measure pr solving the optimization problem below:

min |ε1|+ |ε2|+ |ε3|+ |ε4|+ |ε5|

pr(A&B)− 0.4 = ε1

pr(¬A&B)− 0.4 = ε2

pr(B)− 0.8 = ε3

pr(¬B)− 0.2 = ε4

pr(A&B)− 0.4× pr(B) = ε5

The solution pr∗ is such that pr∗(A&B) = pr∗(¬A&B) = 0.4 and pr∗(A|B) = 0.5,

yielding ε1 = ε2 = ε3 = ε4 = 0 and |ε5| = 0.08. The resulting Iε(Γsync) = 0.08 is

the guaranteed loss the agent with credal strategy Γ would be vulnerable to via a Dutch

strategy, limiting the highest stake to 1. This is the same sure loss an agent with credal

strategy Γsync is exposed to via a Dutch book with conditional gambles.

4.2 Plan Incoherence and Tolerant Conditionalization

The maximum sure loss a Dutch strategy can extract from an agent’s credal strategy,

which includes their initial credences and updating plans, cannot be smaller than the

maximum sure loss the agent is vulnerable to from a Dutch book on their initial credences

alone (with stakes no greater than 1 per bet). Different sets of updating plans, yielding

different credal strategies, can result in a bigger or smaller increase to this sure loss. We

call this increase plan incoherence.

Credal strategies Γ can be partitioned into two parts: initial credences Γcr and up-

dating plans Γplan. Now we can formalize the plan incoherence of an agent with credal

strategy Γ as Iε(Γsync)− Iε(Γcr), as illustrated in example 5.
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Example 5. Recall the agent from examples 4 and 2, whose initial credences are:

Γcr = {cr(A&B) = 0.4, cr(¬A&B) = 0.4, cr(B) = 0.8, cr(¬B) = 0.2}

Their updating plan is Γplan = {crB(A) = 0.4}, forming the credal strategy Γ = Γcr∪Γplan.

As the initial credences are probabilistic, Id1(Γcr) = Iε(Γcr) = 0. But from example 4

we know that Iε(Γsync) = 0.08, implying a plan incoherence for the credal strategy Γ of

Iε(Γsync)− Iε(Γcr) = 0.08− 0 = 0.08.

The plan incoherence can never be negative, as the Dutch book for the initial credences

can be replicated in the Dutch strategy for the credal strategy. We have not yet shown if

and when the plan incoherence can be zero for arbitrary initial credences. The incoherence

of the initial credences Iε(Γcr) is computed via a probability measure pr∗ minimizing the

1-norm of the violations. For unconditional credences cr, this pr∗ is an extension of a

Manhattan-closest coherent credence assignment cr∗, which minimizes d1(cr, cr
∗). If the

conditional credences in Γsyncplan yield null violations for such a pr∗, the plan incoherence

is zero. This is achieved if the updating plans crE(A) = q ∈ Γplan are such that q =

pr∗(A|E) whenever pr∗(E) > 0. Hence, for any set of initial credences Γcr, there is

always a way of extending it with updating plans Γplan, forming Γ = Γcr ∪Γplan such that

Iε(Γsync) = Iε(Γcr) and the plan incoherence is equal to zero. Actually, this is the only

way to achieve null plan incoherence (see Corollary 1 in the Appendix).

In particular, if Γcr is coherent, it can be extended to a probability measure pr∗, and

zero plan incoherence corresponds to conditionalizing pr∗ – i.e., updating plans in Γplan

have the form crE(A) = pr∗(A|E), whenever pr∗(E) > 0, for a pr∗ extending cr.

Hence, an agent with possibly incoherent credences always has two options: adopting

updating plans that increase the sure loss they are exposed to from a Dutch strategy with

stakes lesser or equal to 1 or adopting updating plans that keep this loss constant. The

latter option is captured by the following property:

Tolerant Conditionalization: The agent’s credal strategy has zero plan incoherence.

For an agent with probabilistic initial credences obeying the ratio formula, positive

plan incoherence is equivalent to Dutch strategy vulnerability, and tolerant conditionaliza-

tion is equivalent to rule conditionalization. For agents with incoherent initial credences,

we can see the difference between violating and satisfying TC in our agents from example

1:

Example 6. Recall Jane and Clara from example 1. They have the same initial credences:

Jcr = Ccr = {cr(A&B) = 0.4, cr(¬A&B) = 0.4, cr(B) = 0.9, cr(¬B) = 0.1}

Jane’s updating plan is Jplan = {crB(A) = 0.5}, while Clara’s is Cplan = {crB(A) = 0.3}.
Their credal strategies are then J = Jcr ∪ Jplan and C = Ccr ∪ Cplan, respectively.
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As both have incoherent initial credences, both are vulnerable to sure loss from Dutch

books. The bookie can buy bets with $1 stakes on A&B and ¬A&B, each for $0.4, and sell

a bet paying $1 if B is true for $0.9, thus inflicting a net loss of $0.1 on each of them. The

maximum guaranteed loss when stakes are normalized is thus Iε(Jcr) = Iε(Ccr) = 0.1.

The maximum sure loss above reflects the Manhattan distance from the initial cre-

dences to a closest coherent credence assignment cr∗, for instance with cr∗(A&B) =

cr∗(¬A&B) = 0.45, yielding cr∗(B) = 0.9 and cr∗(¬B) = 0.1. By the ratio formula,

these credences entail cr∗(A|B) = 0.5, which matches Jane’s plan Jplan. Hence, adding

this conditional credence to the initial credences, forming Jsync, does not increase the

Manhattan distance to coherence, and Iε(Jsync) = Iε(Jcr). This implies that Jane’s plan

incoherence, Iε(Jsync)− Iε(Jcr), is equal to zero, and tolerant conditionalization holds.

To check whether Clara also obeys tolerant conditionalization, we need to compute

Iε(Csync), which is equal to the maximum sure loss she is exposed to via a Dutch strategy

when stakes are normalized, and compare this to her initial incoherence. Recall that

Csync = Ccr ∪ Csync
plan , where Csync

plan = {cr(A|B) = 0.3}, so Iε(Csync) can be determined by

finding a probability measure pr solving the optimization problem below:

min |ε1|+ |ε2|+ |ε3|+ |ε4|+ |ε5|

pr(A&B)− 0.4 = ε1

pr(¬A&B)− 0.4 = ε2

pr(B)− 0.9 = ε3

pr(¬B)− 0.1 = ε4

pr(A&B)− 0.3× pr(B) = ε5

One possible solution pr∗ is such that pr∗(A&B) = 0.4, pr∗(¬A&B) = 0.5 and

pr∗(A|B) = 4/9, yielding ε1 = ε3 = ε4 = 0, ε2 = 0.1 and ε5 = 0.13. Thus, Iε(Csync) =

0.23, and the plan incoherence is Iε(Csync)−Iε(Ccr) = 0.13. We can conclude that Clara

violates tolerant conditionalization.

The pr∗ above indicates that the updating plan crB(A) = 4/9, together with the initial

credences Ccr, would satisfy tolerant conditionalization. In fact, any crB(A) = q with

q ∈ [4/9, 5/9] would do so, as there would be a probability measure pr∗, with pr∗(A|B) = q,

extending a credence assignment cr∗ that is Manhattan-closest to cr.

We can see now that TC is similar in spirit to the strategy for augmentative reason-

ing from section 3. The basic idea in both cases is that we identify a closest coherent

credence assignment cr∗ to the agent’s existing incoherent credences, which represents

a conservative coherentization of the agent’s credences. Then we identify either a new

unconditional credence (in the augmentative case) or an updating plan that coheres with

cr∗. This method ensures that neither the augmented credence nor the updating plan
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worsen the agent’s existing incoherence. However, there is also an important difference

between the two cases. Agents who augment their credences in the way we’ve described

don’t worsen their incoherence, but they also don’t become coherent. By contrast, an

agent who obeys tolerant conditionalization will end up with coherent credences if they

follow their updating plans. We think this is a sensible outcome, since TC is supposed

to identify the most desirable update that is available to an incoherent agent. However,

the fact that TC recommends coherent credences of course doesn’t mean that incoher-

ent agents will in fact become coherent upon updating their credences. We can interpret

varying degrees of plan incoherence as identifying better and worse updating plans agents

might adopt.

The cases discussed so far concern agents who learn new information, but we can

also consider what happens when an agent “learns” a tautology. For coherent agents,

conditionalizing on a tautology leaves their credences unchanged. By contrast, when

an incoherent agent considers updating on a tautology, tolerant conditionalization is

satisfied just in case the agent plans to move to a Manhattan-closest coherent credence

assignment. TC can thus also act as a property of coherentizing updates in the absence

of new empirical information. This seems like a desirable property, since it aligns with

plausible existing suggestions for how incoherent agents should coherentize their attitudes.

While there is a sense in which tolerant conditionalization is a more general version of

rule conditionalization, there is also an important difference between them. Rule condi-

tionalization is usually understood as a norm that rational agents should obey whenever

they are to learn some new information from a partition with certainty. We think that

this characterization as a norm is too strong for tolerant conditionalization. Instead, TC

should be understood as identifying updating plans that have specific pragmatic benefits.

Every probabilistic, conditionalizing credal strategy has these benefits, as well as some

credal strategies with non-probabilistic initial credences. In specific cases, we can then

ask whether these benefits provide a good enough reason to favor an update that complies

with TC, or if there are overriding considerations that call for a different update. This

could happen, for example, if an incoherent agent is somehow aware that a particular

coherentization of their attitudes is rationally called for, even though it violates TC. TC,

and more generally the idea that agents should try to minimize increases in incoherence

in their reasoning, are based on the thought that incoherent agents who have no insight

into the origin of their incoherence should adjust their credences in a conservative man-

ner. However, if an agent finds out somehow that a particular type of error is the source

of their incoherence, then they should fix this particular mistake even if their credence

change doesn’t align with TC. In such a case, the benefits of complying with TC are

outweighed.
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5 Incorporating Conditional Credences

So far, our representations of agents’ credence assignments have only incorporated their

unconditional credences and their updating plans. These simplified representations didn’t

incorporate their conditional credences. A conditional credence cr(A|B) = q can be

interpreted as the agent’s credence q in A on the supposition that B is true, which is

closely related to, but not identical with an updating plan for learning B. For coherent

agents, we know that their conditional credences relate to their unconditional credences

via the ratio formula, and that their updating plans match their conditional credences,

but we cannot assume this is true for incoherent agents. Zhao et al. (2009) provide

evidence that human reasoners’ unconditional and conditional credences are not related

via the ratio formula. Zhao et al. (2012) found that in human reasoners, the conditional

credence of an event A supposing an event B does not match the credence of A after

having learned B. It is desirable to be able to represent these ways of being incoherent

in our models. In what follows, we show how to incorporate conditional credences into

our representations of incoherent agents’ credences.

An agent possessing both unconditional and conditional credences can be incoherent

in two ways: the unconditional credences might be non-probabilistic or the conditional

credences might violate the ratio formula. In either case, the agent is vulnerable to a

Dutch book, and the corresponding sure loss, when stakes are no greater than 1, can

be measured via Iε. We can again define plan incoherence as the increase in sure loss

caused by considering the updating plans as additional conditional credences. Tolerant

conditionalization then still requires null plan incoherence. For coherent initial credences,

updating plans equal to the conditional credences keep the agent immune to Dutch books,

thus tolerant conditionalization is equivalent to conditionalization. When the agent is

initially incoherent, tolerant conditionalization may or may not demand that the updating

plans match the conditional credences, as we shall see.

The sure loss caused by a Dutch strategy can be measured as the sure loss from a

Dutch book if we represent updating plans as conditional credences, as shown in Section

4.1. This approach can be extended to credence functions that include initial conditional

credences, but we need to handle possible duplicated credences in Γsync coming from

the updating plans. For instance, if cr(A|B) = q ∈ Γcr is a conditional credence and

crB(A) = q′ ∈ Γplan is an updating plan, we need a way to consider both at the same time

in the set Γsync, as different elements, to compute the Dutch book sure loss corresponding

to the Dutch strategy loss. In this case, crB(A) = q′ ∈ Γplan is replaced by cr(A′|B) = q′

in Γsyncplan , where A′ is logically equivalent to A (say A&A) but cr(A′|B) = q′ is not already

in the initial credences Γcr.

Example 7. Recall Jane from examples 1 and 6, with an additional conditional credence
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cr(A|B) = 0.5:

Jcr = {cr(A&B) = 0.4, cr(¬A&B) = 0.4, cr(B) = 0.9, cr(¬B) = 0.1, cr(A|B) = 0.5}

Jane’s updating plan is Jplan = {crB(A) = 0.5}, and her credal strategy is J =

Jcr ∪ Jplan.

In example 6, the updating plan crB(A) = 0.5 did not increase her incoherence when

considered together with her unconditional credences. Consequently, neither does her

initial conditional credence cr(A|B) = 0.5, and her initial incoherence remains Iε(Jcr) =

0.1. Any probability measure pr∗ minimizing the 1-norm of the violations in Jcr has

pr∗(A|B) = 0.5, so considering her updating plan as an additional conditional credence,

Jsyncplan = {cr(A′|B) = 0.5}, does not increase her initial incoherence: Iε(Jsync) = Iε(Jcr ∪
Jsyncplan ) = 0.1. Therefore, her plan incoherence is Iε(Jsync) − Iε(Jcr) = 0, and tolerant

conditionalization is satisfied.

In the example above, tolerant conditionalization is satisfied by updating plans that

are identical to the initial conditional credences, as standard conditionalization would

require, even though the latter violate the ratio formula. However, this is not generally

true. Matching updating plans with initial conditional credences is neither a sufficient

nor a necessary condition for satisfying TC, as the next example shows.

Example 8. Recall Clara from examples 1 and 6, with an additional conditional credence

cr(A|B) = 0.3:

Ccr = {cr(A&B) = 0.4, cr(¬A&B) = 0.4, cr(B) = 0.9, cr(¬B) = 0.1, cr(A|B) = 0.3}

Clara’s updating plan is Cplan = {crB(A) = 0.3}, and her credal strategy is C =

Ccr ∪ Cplan.

Note that Csync from example 6 is identical to Ccr here, so that we have Iε(Ccr) =

0.23. Any probability measure pr∗ minimizing the 1-norm of the violations in Ccr has

pr∗(A|B) 6= 0.3. Hence, considering her updating plan as an additional conditional cre-

dence, Csync
plan = {cr(A′|B) = 0.3}, does increase the incoherence, namely to Iε(Csync) =

Iε(Ccr ∪ Csync
plan ) = 0.36. Tolerant conditionalization is thus violated, as her plan incoher-

ence is Iε(Csync) − Iε(Ccr) = 0.13. Even though the updating plan matches her initial

conditional credence, it ends up increasing the sure loss the agent is exposed to, for it

does not match the closest coherent credences.

What updating plan crB(A) = q could Clara alternatively adopt to satisfy tolerant

conditionalization, given her initial credences Ccr? Recall from example 6 that there’s a

probability measure pr∗ minimizing the 1-norm of the violations in Ccr here that yields

pr∗(A|B) = 4/9. This means that an updating plan Cplan = {crB(A) = 4/9} would imply

Iε(Csync) = Iε(Ccr) = 0.26, with null plan incoherence. In this case, tolerant condition-
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alization would be satisfied by an updating plan that differs from the initial conditional

credence.

The example above shows that Clara would be exposed to a lesser sure loss via Dutch

strategies if her updating plan violated standard conditionalization’s assumption that

crB(A) = cr(A|B). This norm is intended to apply to probabilistic agents satisfying

the ratio formula, and we can see that conditional credences violating the ratio formula

are not reliably good updating guides. Yet, the converse question remains open: Are

conditional credences satisfying the ratio formula always a good updating guide? The

norm of conditionalization gives us an affirmative answer in the probabilistic case, but

in non-probabilistic scenarios, conditional credences obeying the ratio formula can lead

reasoners astray, as the next example shows.

Example 9. Consider an agent with the following initial incoherent credences:

Γcr = {cr(A&B) = 0.4, cr(¬A&B) = 0.4, cr(B) = 0.9, cr(¬B) = 0.2, cr(A|B) = 4/9}

Note that cr(A|B) = cr(A&B)/cr(B), so the ratio formula is satisfied. Nonetheless, any

probability measure pr∗ minimizing the 1-norm violation has pr∗(A&B) = pr∗(¬A&B) =

0.4, yielding pr∗(A|B) = 0.5. This pr∗ yields Iε(Γcr) = 13/90 ≈ 0.144. An updating plan

Γplan = {crB(A) = 0.5} would satisfy tolerant conditionalization, while any other value

for crB(A), including crB(A) = 4/9, would increase the sure loss, implying positive plan

incoherence.

This means that the agent would be better off with a conditional credence cr(A|B) =

0.5, violating the ratio formula, instead of cr(A|B) = 4/9. In fact, we would have

Iε(Γcr) = 0.1 in that case.

The example above reflects the fact that Dutch book arguments for the ratio formula,

just like those for conditionalization, rely on probabilistic unconditional credences. For

agents violating probabilism, it may be better to violate the ratio formula and/or standard

conditionalization, given the aim of minimizing incoherence (as measured by sure loss via

Dutch books when stakes have a fixed upper bound).

6 Alternative Incoherence Measures and Relations

to Accuracy

6.1 Alternative Incoherence Measures

Tolerant conditionalization can be read as requiring the agent not to increase their inco-

herence when extending their initial credences with conditional credences corresponding

to their updating plans. This correspondence was supported by the equivalence between
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Dutch strategies and Dutch books, explained in section 4.1. We’ve defined incoherence

measures via the maximum guaranteed loss an agent is exposed to from a Dutch book con-

taining suitably bounded gambles. To achieve this, we have been limiting the maximum

bet prize or stake, which results in an incoherence measure equivalent to the Manhat-

tan distance to the closest coherent credences, for unconditional initial credences. There

are additional ways of normalizing the loss from a Dutch book, and the corresponding

incoherence measures can be employed to derive variations of tolerant conditionalization.

Schervish, Seidenfeld and Kadane (2002; 2003) have put forward a whole family of

incoherence measures based on guaranteed Dutch book loss. They suggest that the bets

in a Dutch book are limited via a function f of the bet sizes, where f can either consider

only the amount (called the escrow) the agent or the bettor can lose in each bet, or their

sum, which is the stake. The function f must be continuous, non-decreasing in each

argument and invariant under permutation of its arguments, among other properties.

These properties define a whole spectrum of functions within two particular extreme

cases, the maximum and the sum, on which we focus. In total, six particular ways of

normalizing the sure loss from sets of bets stand out, as one can consider the agent’s

escrows (a), the bettor’s escrows (b) or the total stake (s) of the bets, and then bound

either their maximum or their sum: Iamax, Iasum, Ibmax, Ibsum, Ismax and Issum.

We employed Ismax = Iε in formulating TC, because it has some desirable properties

that its alternatives lack, as Staffel (2019) explains in some detail. Focusing on the

stakes of a bet, instead of the agent’s or bookie’s escrow, has the advantage of being

able to capture the degree of incoherence resulting from credences in tautologies and

contradictions. By contrast, escrow-based measures have trouble capturing this and are

best used only for credences in contingent claims. We furthermore prefer the max- to the

sum-normalization for collections of bets. This is because the max-normalization tracks

incoherence anywhere in an agent’s credence assignment, whereas the sum-normalization

tracks only worst-case incoherence. For example, if an agent assigns zero credence to a

tautology, this will entirely determine the agent’s degree of incoherence, regardless of what

their other credences look like, if we use the sum-normalization. The max-normalization

does not have this feature.

Another reason to adopt Ismax comes from the possibility of characterizing TC when

credences are viewed as probability lower/upper bounds. When the agent assign cre-

dences over a partition or an algebra, and these assignments can be seen as a set of

consistent probability lower/upper bounds, TC is equivalent to conditionalizing a proba-

bility measure satisfying those bounds (see Theorem 2 and Corollary 2 in the Appendix).

This means that an underconfident (or overconfident) agent that assigns numeric cre-

dences cr as if they were probability lower (upper) bounds, defining a set of probability

measures, should conditionalize a measure in this set to satisfy TC. The result also ap-

plies to Dempster-Shafer belief/plausibility functions since they can be seen as consistent
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probability lower/upper bounds.

Even though we prefer Ismax, we don’t want to preclude readers from using their

preferred incoherence measure, and defining alternative versions of TC using measures of

their choice. Any incoherence measure I based on Dutch book loss, with its particular

way of limiting the bets, can be used to gauge the increase in incoherence caused by

the updating plans in a credal strategy Γ, defined as I(Γsync) − I(Γcr), which we call

plan I-incoherence. TC can then be parametrized by a measure I, demanding the plan

I-incoherence to be null, when the original TC would be a particular instance, with

I = Iε.

I-Tolerant Conditionalization: The agent’s credal strategy has zero I-plan incoher-

ence.

Each instance of I-TC has distinctive properties that can be advantageous in par-

ticular scenarios. For instance, suppose the agent has incoherent credences cr(.), over a

partition or an algebra, that can be made coherent if multiplied by a normalizing factor

0 < α < 1, such that cr∗(.) = α× cr(.) is coherent. In this setting, Iasum-TC is equivalent

to conditionalizing cr∗(.); that is, to first normalizing then conditionalizing. When α > 1,

this equivalence holds for Ibsum-TC instead.

In principle, plan I-incoherence and I-TC can be defined for any incoherence mea-

sure15, not only for those based on Dutch books. Nevertheless, the link between the

updating plans and the conditional credences is loosened when incoherence is not mea-

sure as Dutch book/strategy loss. Once we stop using Dutch books, it is not obvious

that the incoherence of a credal strategy Γ should be measured as the incoherence of

Γsync. Apart from that, plugging different measures into I-TC might be desirable for

other reasons, for instance due to benefits in epistemic utility. In any case, we think that

versions of TC need to be justified by showing that they track some valuable property of

updates.

6.2 Relations to Accuracy

Rule conditionalization has recently been supported by depragmatized arguments, based

not on Dutch strategies, but on purely epistemic considerations (Briggs & Pettigrew, 2020;

Greaves & Wallace, 2006; Oddie, 1997). Those arguments view accuracy as an epistemic

good to be pursued and show how a probabilistic agent who obeys rule conditionalization,

rather than another updating rule, has an accuracy advantage. In this section we explore

how our notion of plan incoherence can be instantiated to generate a target property for

the credal strategies of initially incoherent agents based on accuracy.

15We assume incoherence measures are monotonic (I(Γ) ≤ I(Γ∪Ψ)), otherwise plan incoherence could
be negative.
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Greaves and Wallace (2006) and Oddie (1997) propose an expected epistemic utility

argument in support of rule conditionalization. Their argument relies on an expectation

calculated via the agent’s initial credences, assumed to be coherent. In a non-probabilistic

scenario, it is not clear how this expectation would be computed, which is why we won’t

try to extend their argument to initially incoherent agents.

A different approach, proposed by Briggs and Pettigrew (2020) and improved by

Nielsen (2021), employs the accuracy of the whole credal strategy to ground rule condi-

tionalization in accuracy-dominance terms. For any reasonable accuracy measure, any

non-conditionalizing credal strategy is strongly accuracy-dominated by some probabilis-

tic, conditionalizing one (the latter would do better than the former in any possible world)

that is not even weakly dominated in this sense. Furthermore, probabilistic, conditional-

izing credal strategies are never strongly accuracy-dominated. Note that the dominance

is between credal strategies, so the initial credences are not held fixed. As there are

no expectations involved, we can try to extend this approach to non-probabilistic initial

credences.

We are looking for a target property that can be applied to agents with fixed incoherent

initial credences Γcr to evaluate their updating plans Γplan. A natural proposal would be

to demand that the credal strategy not be accuracy-dominated by another strategy with

the same initial credences. That is, given their initially incoherent credences, there would

be no other updating plans with which the agent would do better in any possible world.

Unfortunately, any probabilistic set of updating plans Γplan would yield non-dominance

in that sense. That is, to dominate any credal strategy with probabilistic updating plans,

one would need to change the initial credences as well, not only the updating plans.

Probabilistic updating plans are certainly desirable, but we aim for a stronger property

that relates them somehow to the agent’s initial credences.

If an agent’s credal strategy is accuracy-dominated by a probabilistic, conditionalizing

one, perhaps they should adopt the updating plans of the latter. However, there might be

a set of different dominating credal strategies to pick plans from, and the agent’s current

plans might in principle already match those in a dominating credal strategy. Still, if

all dominating options would change their updating plans, the agent’s updating plans

seem to be flawed. Intuitively, if the agent is incoherent, and their credal strategy is thus

dominated, their updating plans seem to be better if they can be held fixed while moving

to a dominating credal strategy. This is captured by the following property, where I is

an inaccuracy measure that evaluates credal strategies in possible worlds.

I-Stability : Given non-probabilistic credences Γcr, the updating plans Γplan are I-

stable if there is a probabilistic, conditionalizing credal strategy Ψcr ∪ Γplan that is more

I-accurate than Γcr ∪ Γplan in all possible worlds.

Incoherent agents with stable updating plans have at least one alternative, better
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credal strategy with the same plans. This does not mean the the agent should change

their initial credences to adopt a dominating credal strategy, but that this is possible,

while keeping the same updating plans. Conversely, incoherent agents with unstable

updating plans could achieve more accuracy in all possible worlds only if their plans are

changed.

In order for an incoherent agent to satisfy I-stability, their credal strategy Γ = Γcr ∪
Γplan must be I-accuracy-dominated by a condionalizing Ψ = Ψcr ∪Γplan. But Ψcr ∪Γplan

I-accuracy-dominates Γcr ∪ Γplan iff16 Γcr is dominated by Ψcr. Predd et al. (2009)

show that, if we measure distance17 between credence assignments with a divergence

dI corresponding18 to an additive inaccuracy measure I based on a proper scoring rule,

the coherent credences Γ∗cr that are closest to the incoherent, unconditional credences Γcr

will strongly I-accuracy-dominate it. Therefore, given incoherent credences Γcr, the agent

can always form I-stable updating plans by conditionalizing this closest coherent Γ∗cr. By

Theorem 1 (see Appendix), these credal strategies are exactly those with null plan IdI-

incoherence, where IdI measures incoherence as the distance to the dI-closest coherent

credences. Thus, for unconditional initial credences, an incoherent agent satisfying IdI-

TC is guaranteed to have I-stable plans.19

If the agent wants to satisfy a specific IdI-TC in order to obtain the corresponding

epistemic benefit of I-stable updating plans, they might have to violate standard TC,

being vulnerable to larger Dutch strategy losses. Particularly, TC is Id1-TC for uncondi-

tional initial credences, but since there is no I based on a proper scoring rule that yields

dI = d1, the closest credences according to d1 and dI in general differ. But fortunately,

in some cases the agent can avoid this dilemma. For instance, if the agent assigns their

initial credences to a partition, then for any credence function and any additive inaccu-

racy measure I based on a proper scoring rule, it is possible to satisfy both IdI-TC and

standard TC, where dI is the divergence corresponding to I (see Proposition 2 in the

Appendix). In other words, if I is an additive inaccuracy measure based on a proper scor-

ing rule, and if initial credences are assigned over a partition, there is a set of updating

plans with zero plan IdI-incoherence and zero plan incoherence. As in general, for any

incoherent set of unconditional credences, there is a set of Manhattan-closest probability

measures, and TC implies conditionalizing some measure in this set, this compatibility

with an arbitrary IdI-TC might hold even in cases where credences are not defined over

a partition.

16It is assumed that the inaccuracy measure I satisfies Temporal Separability (Briggs & Pettigrew,
2020): I(Γ, w) = I(Γcr, w) + I(Γplans, w) for any possible world w.

17Distance measures must satisfy symmetry and the triangle inequality, and some divergences dI do
not, so we are abusing the terminology here.

18See for instance Gneiting and Raftery (2007) for the definition of this correspondence.
19For more details on formulating accuracy-based incoherence measures, see De Bona and Staffel

(2017).
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Example 10. Recall Jane’s credal strategy, from example 6, focusing on the initial cre-

dences in the partition A&B,¬A&B,¬B:

Jcr = {cr(A&B) = 0.4, cr(¬A&B) = 0.4, cr(¬B) = 0.1}, Jplan = {crB(A) = 0.5}

Let I be the additive inaccuracy measure based on the Brier Score, so that the correspond-

ing divergence dI is (squared) Euclidean distance. The coherent credences J∗cr that are

Euclidean-closest to Jcr are:

J∗cr = {cr(A&B) = 0.433, cr(¬A&B) = 0.433, cr(¬B) = 0.133}

As J∗cr implies cr(A|B) = 0.5, conditionalizing it yields crB(A) = 0.5. Thus, by Theorem

1, Jcr ∪ Jplan has null plan IdI-incoherence, and Jane satisfies IdI-TC. Furthermore, the

Euclidean-closest coherent assignment, J∗cr Brier-dominates Jcr, entailing that the credal

strategy J∗cr ∪ Jplan Brier-dominates Jcr ∪ Jplan, which means that the plans in Jplan are

Brier-stable. Finally, note that J∗cr are also Manhattan-closest to Jcr, and, by Corollary

1, Jane thus satisfies standard TC.

7 Conclusion

Our aim in this paper was to answer the question of how agents with incoherent initial

credences should update when they learn new evidence. We wanted to identify a desirable

property of updates, such that this property would hold of conditionalizing updating plans

for coherent agents, and of some privileged set of updating plans for incoherent agents. To

characterize such a property, we started by choosing an incoherence measure that tracks

normalized Dutch book loss, and showed how to define an agent’s plan incoherence, which

is the additional incoherence stemming from adding the agent’s updating plans to their

initial, possibly incoherent unconditional credences. In defining plan incoherence, we took

advantage of the fact that a Dutch strategy involving updating plans always corresponds

to a Dutch book involving conditional bets. Inspired by previous work on how to identify

desirable properties of augmentative reasoning in incoherent agents, we then defined

updating plans as satisfying tolerant conditionalization just in case their plan incoherence

is zero. This property is satisfied only by conditionalizing updating plans when agents

are initially coherent. When agents are initially incoherent, TC essentially asks them

to follow updating plans that cohere with some closest coherent credence assignment

identified by our incoherence measure. While we think TC identifies a desirable property

of updates for incoherent agents, we don’t think updating by TC has the status of a

requirement. Sometimes there can be overriding reasons to choose an alternative updating

plan, for example when an agent is aware of an epistemically superior way of fixing their
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incoherence.

We then demonstrated some ways of extending and generalizing TC. We originally

assumed that a credal strategy only contained an agent’s initial unconditional credences

and their updating plans. We showed how to incorporate an agent’s conditional credences

(which, in incoherent agents may or may not correspond to their updating plans). We

then demonstrated that for incoherent agents, complying with TC sometimes requires

not updating according to the ratio formula crB(A) = cr(A&B)/cr(B). Also, agents are

sometimes better off (in terms of Dutch book loss) if they have conditional credences

violating the ratio formula, independently of any updates. Lastly, we showed how to

define alternative versions of TC by using different incoherence measures. For example,

one might use a different type of Dutch book measure, or an incoherence measure that

tracks accuracy dominance relations between credence functions. Different measures will

often recommend different updating plans as satisfying the corresponding version of TC.

Yet, we showed that when assigning credences to a partition, agents can always satisfy

standard TC and some version of TC that tracks accuracy dominance simultaneously.20

8 Appendix

We say a probability measure pr : L → [0, 1] satisfies a credence cr(A|B) = q if

pr(A&B) = pr(B)× q. For unconditional credences, B = > and pr(A&B) = pr(B)× q
is equivalent to pr(A) = q. A probability measure satisfies a set of credences (or, equiv-

alently, a credence assignment) Γ if it satisfies all credences in Γ.

The main technical results are stated for incoherence measures Id defined via functions

d that measure the distance from a given set of credences Γ to a probability measure pr:

Id(Γ) = min{d(Γ, pr)|pr is a probability measure}

The function d is assumed to be adequate, meaning it satisfies four properties:

• d(Γ, pr) ≥ 0;

• d(Γ, pr) = 0 iff pr satisfies Γ;

• d(Γ, pr) ≤ d(Γ ∪Ψ, pr);

• d(Γ ∪Ψ, pr) = d(Γ, pr) iff pr satisfies Ψ.

The first and the second properties ensure that d behaves like a distance, being zero iff the

credences Γ agree with pr. The third one guarantees that the measure Id is monotonic,

20For helpful discussion and suggestions we would like to thank the audiences at the LSE Choice Group,
the Cognitive Values Workshop at CU Boulder and the Rutgers Foundations of Probability Seminar, as
well as Richard Pettigrew, Kenny Easwaran, Justin Snedegar, Snow Zhang, Glenn Shafer, Alex Meehan,
and an anonymous reviewer for this journal.
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avoiding decreases in incoherence when we add credences. The fourth property allows

the agent to assign new credences without increasing their incoherence by following the

closest probability measure pr; and this is the only way to achieve that.

An inaccuracy measure I is additive if I(cr, w) =
∑

i S(cr(Ai), w) for a scoring rule S.

For a coherent credence assignment cr′, I(cr, cr′) denotes the expected value of I(cr, w)

according to cr′. For an inaccuracy measure I, the corresponding divergence is defined

as dI(cr, cr
′) = I(cr, cr′)− I(cr′, cr′).

We point out that, for any divergence D that measures the distance between (con-

ditional) credence assignments over the same sentences, we can define a function d over

credence assignments and probability measures as:

d(Γ, pr) = min{D(Γ,Ψ)|pr satisfies Ψ}

When pr(B) = 0, any cr(A|B) = q is satisfied by pr, but the minimization guarantees

that the conditional credences cr(.|B) = q ∈ Ψ match those in Γ. Now the incoherence

measure Id is equivalent to the distance to the D-closest coherent credence assignment

over the same sentences, as defined in the main text for simplicity:

Id(Γ) = min{D(Γ,Ψ)|Ψ is coherent}

Note that, ifD = dI for an additive I based on a proper scoring rule, the corresponding

d is adequate.

Theorem 1. A credal strategy Γ = Γcr ∪ Γplan yields null plan Id-incoherence, for an

adequate d, iff there is a probability measure pr : L → [0, 1] satisfying Γsyncplan such that

Id(Γcr) = d(Γcr, pr).

Proof. (→) To prove the contrapositive, suppose there is no probability measure pr sat-

isfying Γsyncplan such that Id(Γcr) = d(Γcr, pr). Then, for any probability measure pr, either

pr(A&E) 6= q × pr(E) for some crE(A) = q ∈ Γplan, and pr does not satisfy Γsyncplan , or

Id(Γcr) < d(Γcr, pr). In both cases, since d is adequate, we have d(Γsync, pr) > Id(Γcr).
Therefore, Id(Γsync) > Id(Γcr), and plan Id-incoherence is positive.

(←) Now suppose there is a probability measure pr satisfying Γsyncplan such that Id(Γcr) =

d(Γcr, pr). Thus, since d is adequate, d(Γsync, pr) = d(Γcr, pr) = Id(Γcr). As Id is

monotonic, Id(Γcr) ≤ Id(Γsync), and Id(Γsync) ≤ d(Γsync, pr) implies Id(Γsync) = Id(Γcr).

Corollary 1. An unconditional credal strategy Γ = Γcr ∪ Γplan satisfies tolerant condi-

tionalization iff there is a probability measure pr satisfying Γsyncplan and extending a credence

assignment cr∗ that is Manhattan-closest to Γcr.

Proof. Recall that, for unconditional credences, the Manhattan distance from Γcr to

a probabilistic credence assignment cr′ is the 1-norm of the corresponding violations
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vector 〈ε1, . . . , εn〉, with n = |Γcr|, where the violations are computed via any probability

measure extending cr′. Consider a function d such that d(Γ, pr) = ||〈ε1, . . . , εn〉||1, noting

it is adequate. We have that Iε(Γcr) = Id(Γcr). For a probability measure pr, Id(Γcr) =

d(Γcr, pr) iff pr extends a credence assignment cr∗ that is Manhattan-closest to Γcr. The

result then follows from Theorem 1, as TC is equivalent to null plan Iε-incoherence.

Proposition 1. Let dI be the divergence corresponding to an additive inaccuracy measure

I based on a proper scoring rule. Let a, b, c be coherent credence assignments over a set

of sentences A ⊆ L, with a 6= c. If b(A) = λa(A) + (1− λ)c(A) for all A ∈ A and some

λ ∈ (0, 1], then dI(a, b) < dI(a, c).

Proof. By definition, dI(a, b) = I(a, b)− I(b, b). Since I(., b) is linear in b,

dI(a, b) = λI(a, a) + (1− λ)I(a, c)− λI(b, a)− (1− λ)I(b, c)

For I is proper, −I(b, a) ≤ −I(a, a) and −I(b, c) < −I(c, c), implying:

dI(a, b) < λI(a, a) + (1− λ)I(a, c)− λI(a, a)− (1− λ)I(c, c)

dI(a, b) < (1− λ)(I(a, c)− I(c, c)) = (1− λ)dI(a, c)

As λ ∈ (0, 1] and dI(a, c) > 0, we have dI(a, b) < dI(a, c), finishing the proof.

Proposition 2. Let dI be the divergence corresponding to an additive inaccuracy measure

I based on a proper scoring rule. If initial credences are unconditional and assigned to

sentences that form a partition, it always possible to satisfy TC while having null plan

IdI-incoherence.

Proof. Consider an unconditional credence assignment cr : P → [0, 1] over a partition

P = {A1, . . . , Am}. Let crI : P → [0, 1] be such that IdI(cr) = dI(cr, crI). We will prove

by contradiction that Iε(cr) = d1(cr, crI), hence we suppose Iε(cr) < d1(cr, crI). The

result then follows by Theorem 1 and Corollary 1, for conditionalizing crI would yield

IdI-TC and TC.

If cr is coherent, conditionalizing entails TC and null plan IdI-incoherence, so we

focus on the two incoherent cases, where
∑

i cr(Ai) < 1 and
∑

i cr(Ai) > 1.

Consider first that
∑

i cr(Ai) < 1. Any credence assignment cr∗ : A → [0, 1] is a

coherent Manhattan-closest one iff cr∗(Ai) ≥ cr(Ai) for 1 ≤ i ≤ m and
∑

i cr
∗(Ai) = 1.

As Iε(cr) < d1(cr, crI), we have that crI(Ai) < cr(Ai) for at least some i. Let M be

the non-empty set of propositions Ai with crI(Ai) ≤ cr(Ai). Note that M ( P , for∑
i cr(Ai) <

∑
i crI(Ai) implies crI(Ai) > cr(Ai) for some i. Let cr−I : M → [0, 1] and

cr+I : P \M→ [0, 1] be credence assignments such that cr−I (Ai) = crI(Ai) for all Ai ∈M
and cr+I (Ai) = crI(Ai) for all Ai ∈ P \M. Analogously, consider cr− : M→ [0, 1] and
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cr+ : P \M→ [0, 1], just narrowing the domain of cr. As
∑
M
cr(Ai) +

∑
P\M

crI(Ai) > 1 >∑
P
cr(Ai), there is a λ ∈ (0, 1) such that

∑
P\M

λcr(Ai) + (1 − λ)crI(Ai) = 1 −
∑
M
cr(Ai).

Define c+λ : P \M→ [0, 1] via cr+λ (Ai) = λcr(Ai)+(1−λ)crI(Ai) for all Ai ∈ P \M. Let

cλ : P → [0, 1] be the union between cr− and cr+λ . Note that cλ, c
+
λ , c−λ , crI and cr+I are

coherent. As I is additive, dI(cr, crλ) = dI(cr
−, cr−λ ) + dI(cr

+, cr+λ ) = dI(cr
+, cr+λ ). By

Proposition 1, dI(cr
+, cr+λ ) < dI(cr

+, cr+I ) ≤ dI(cr, crI). Hence, crI is not the dI-closest

coherent credence assignment, which is a contradiction.

If
∑

i cr(Ai) > 1, the proof is completely symmetrical. Now, Iε(cr) < d1(cr, crI)

implies cr(Ai) < crI(Ai) for some Ai and cr(Ai) > crI(Ai) for other Aj. We define in

the same way the set M and the credence assignments cr+I , cr−I , cr+ and cr−. Now cr−λ
is a convex combination between cr−I and cr−, such that its union with cr+ forms the

coherent cλ. As I is additive, dI(cr, crλ) = dI(cr
−, cr−λ ). By Proposition 1, dI(cr

−, cr−λ ) <

dI(cr
−, cr−I ) ≤ dI(cr, crI), which is a contradiction, finishing the proof.

Theorem 2. Let Γcr = {cr(Aj) = qj|1 ≤ j ≤ m} be a set of unconditional credences,

where {A1, . . . , Am} ⊆ L can be partitioned into sets of sentences forming partitions. Let

Π≥ (respectively, Π≤) be the set of probability measures pr : L → [0, 1] with pr(Aj) ≥ qj

(pr(Aj) ≤ qj) for all 1 ≤ j ≤ m. When Π≥ (Π≤) is non-empty, a credal strategy Γcr∪Γplan

satisfies TC iff there is a pr ∈ Π≥ (pr ∈ Π≤) satisfying Γsyncplan .

Proof. Assume Π≥ (respectively, Π≤) is non-empty. By Corollary 1, it suffices to prove

that pr ∈ Π≥ (Π≤) iff pr extends a coherent credence assignment that is Manhattan-

closest to Γcr. We start by partitioning A = {A1, . . . , Am} into
n⋃
i=1

Bi, where each Bi ⊆ A

is a set of sentences forming a partition. Let Γi ⊆ Γcr be {cr(Aj) = qj|Aj ∈ Bi}, such

that Γcr = Γ1 ∪ · · · ∪ Γn. For each 1 ≤ i ≤ n and any probability measure pr, we have∑
Aj∈Bi

pr(Aj) = 1, since Bi forms a partition. As Π≥ (Π≤) is non-empty, it follows, for all i,

that
∑

Aj∈Bi
qj ≤ 1 (≥ 1). Consequently, Iε(Γi) = 1−

∑
Aj∈Bi

qj (respectively, = −1+
∑

Aj∈Bi
qj)

for each 1 ≤ i ≤ n. Note that, in general, we must have that Iε(Γcr) ≥
n∑
i=1

Iε(Γi).

Consider a probability measure pr ∈ Π≥ (Π≤). Note that
∑

Aj∈Bi
|pr(Aj) − qj| =∑

Aj∈Bi
pr(Aj) − qj (resp., =

∑
Aj∈Bi

qj − pr(Aj)), thus
∑

Aj∈Bi
|pr(Aj) − qj| = Iε(Γi). Conse-

quently, as Iε(Γcr) ≤
n∑
i=1

∑
Aj∈Bi

|pr(Aj)−qj| =
n∑
i=1

Iε(Γi), we have that Iε(Γcr) =
n∑
i=1

Iε(Γi).

Therefore, Iε(Γcr) =
m∑
j=1

|pr(Aj)−qj| and pr extends a coherent credence assignment over

A that is Manhattan-closest to Γcr.

Consider now a probability measure pr : L → [0, 1] with pr(Al) < ql (respectively,

pr(Al) > ql) for some cr(Al) = ql ∈ Γk, for a Γk ⊆ Γcr. This implies
∑

Aj∈Bk
pr(Aj)− qj <
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∑
Aj∈Bk

|pr(Aj)− qj| (resp.
∑

Aj∈Bk
qj − pr(Aj) <

∑
Aj∈Bk

|qj − pr(Aj)|), which means Iε(Γk) <∑
Aj∈Bk

|pr(Aj) − qj|. Hence, Iε(Γcr) =
n∑
i=1

Iε(Γi) implies Iε(Γcr) <
m∑
j=1

|pr(Aj) − qj|. It

follows that pr does not extend a Manhattan-closest coherent credence assignment.

Corollary 2. Let Γcr = {cr(Aj) = qj|1 ≤ j ≤ m} be a set of unconditional credences,

where {A1, . . . , Am} ∈ L forms an algebra. Let Π≥ (respectively, Π≤) be the set of prob-

ability measures pr : L → [0, 1] with pr(Aj) ≥ qj (pr(Aj) ≤ qj) for all 1 ≤ j ≤ m. When

Π≥ (Π≤) is non-empty, a credal strategy Γcr ∪ Γplan satisfies TC iff there is a pr ∈ Π≥

(pr ∈ Π≤) satisfying Γsyncplan .

Proof. As A = {A1, . . . , Am} forms an algebra, we can partition it into pairs of sentences

Bi = {Bi, B
′
i}, for 1 ≤ i ≤ m/2 = n, such that B′i is equivalent to ¬Bi, yielding

A = B1 ∪ · · · ∪ Bn. The result then follows from Theorem 2.
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