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1.	Introduction	
	
What	 can	 we	 infer	 from	 numerical	 cognition	 about	mathematical	 realism?	 In	 this	
paper,	 I	 will	 consider	 one	 aspect	 of	 numerical	 cognition	 that	 has	 received	 little	
attention	 in	 the	 literature:	 the	 remarkable	 similarities	 of	 numerical	 cognitive	
capacities	 across	 many	 animal	 species.	 This	 Invariantism	 in	 Numerical	 Cognition	
(INC)	 indicates	 that	 mathematics	 and	 morality	 are	 disanalogous	 in	 an	 important	
respect:	 proto-moral	 beliefs	 differ	 substantially	 between	 animal	 species,	 whereas	
proto-mathematical	 beliefs	 (at	 least	 in	 the	 animals	 studied)	 seem	 to	 show	 more	
similarities.	 This	makes	moral	 beliefs	more	 susceptible	 to	 a	 contingency	 challenge	
from	evolution	compared	to	mathematical	beliefs,	and	indicates	that	mathematical	
beliefs	might	 be	 less	 vulnerable	 to	 evolutionary	 debunking	 arguments.	 I	 will	 then	
examine	 to	 what	 extent	 INC	 can	 be	 used	 to	 flesh	 out	 a	 positive	 case	 for	
mathematical	realism.	Finally,	 I	will	review	two	forms	of	mathematical	realism	that	
are	promising	 in	 the	 light	of	 the	evolutionary	 evidence	about	numerical	 cognition,	
ante	rem	structuralism	and	Millean	empiricism.		
	
2.	The	contingency	challenge	
	
Moral	realism	is	the	view	that	moral	claims,	such	as	“slavery	is	wrong”,	or	“Jane	is	a	
good	person”,	are	about	 facts	and	that	we	know	some	of	 these	 facts.	 	Moral	 facts	
are	 normative:	 they	 not	 only	 describe	 what	 is	 the	 case	 (e.g.,	 slavery	 is	 wrong,	 or	
giving	people	their	freedom	is	right),	but	also	what	ought	to	be	the	case	(e.g.,	people	
should	 never	 be	 enslaved).	 Such	 facts	 are	 different	 from	 natural	 facts	 (e.g.,	 that	
water	is	composed	of	H2O),	but	that	does	not	make	them	any	less	true	in	the	eyes	of	
the	moral	 realist.	 By	 contrast,	moral	 antirealists	 contend	 that	 there	 are	 no	moral	
facts.	Traditionally,	moral	antirealists	have	argued	that	moral	claims	do	not	describe	
beliefs,	but	emotions	(e.g.,	violence	makes	me	feel	bad,	slavery	makes	me	feel	sorry	
for	enslaved	people).	More	recently,	authors	such	as	Sharon	Street	(2006,	2008)	and	
Richard	 Joyce	 (2006)	 have	 argued	 against	moral	 realism	 on	 evolutionary	 grounds.	
They	 worry	 that	 human	 moral	 intuitions,	 and	 their	 resulting	 judgments	 are	
influenced	by	the	peculiar	evolutionary	history	of	our	species.	Arriving	at	the	correct	
moral	beliefs,	given	the	contingency	of	human	evolution,	would	be	a	formidable	and	
inexplicable	instance	of	luck.	It	would	be	as	if	one	set	sail	in	the	hope	that	the	winds	
and	tides	will	get	one	to	Bermuda	(Street	2006,	121).	As	Street	writes,		

	
There	 is	 a	 striking	 coincidence	 between	 the	 normative	 judgments	 we	
human	 beings	 think	 are	 true,	 and	 the	 normative	 judgments	 that	



	 2	

evolutionary	forces	pushed	us	in	the	direction	of	making.	I	claim	that	the	
realist	about	normativity	owes	us	an	explanation	of	this	striking	fact,	but	
has	none	(Street	2008,	207).		

	
Street	(2006)	lists	some	moral	concerns	that	are	similar	across	many	species,	such	as	
that	survival	is	good,	or	that	an	obligation	to	care	for	one’s	offspring	is	greater	than	
the	obligation	to	help	complete	strangers.	However,	many	other	moral	concerns	are	
the	 result	of	 the	peculiar	quirks	of	human	evolution.	For	example,	humans	believe	
that	 helping	 unrelated	 strangers	 is	 a	 good	 thing,	 or	 that	 one	 should	 punish	 group	
members	who	do	not	 follow	social	norms	 (Henrich	et	al.	2006).	 Such	 (proto)moral	
sentiments	are	not	present	in	other	primates	(see	e.g.,	Silk	and	House	2011).		
	 In	the	Descent	of	Man	(1871)	Darwin	 investigated,	among	many	other	topics,	
the	evolution	of	the	moral	sense	in	humans.	The	overall	project	of	that	book	was	to	
show	that	although	the	difference	between	human	cognitive	capacities	and	those	of	
others	was	substantial,	including	the	human	sense	of	morality,	beauty,	and	religion,	
it	 was	 only	 a	 difference	 in	 degree	 and	 not	 in	 kind.	 Darwin	 sought	 to	 establish	
precursors	of	the	moral	sense	in	other	animals.	He	conjectured	that	the	evolution	of	
moral	 capacities	 became	 unavoidable	 in	 cognitively	 complex	 social	 animals.	 As	 he	
wrote	 “any	 animal	 whatever,	 endowed	 with	 well-marked	 social	 instincts,	 the	
parental	and	 filial	affections	being	here	 included,	would	 inevitably	acquire	a	moral	
sense	or	conscience,	as	soon	as	its	intellectual	powers	had	become	as	well,	or	nearly	
as	well	developed,	as	in	man.”	(Darwin	1871,	71-72).	But	he	also	thought	that	their	
moral	beliefs	would	vary	depending	on	the	social	context	in	which	members	of	the	
species	would	evolve.	To	illustrate	this	point	vividly,	he	offered	the	following	thought	
experiment:	 if	 humans	 had	 evolved	 from	 animals	 with	 a	 eusocial	 structure,	 our	
moral	 beliefs	 would	 be	 very	 different	 from	 the	 ones	 we	 currently	 hold:	 “our	
unmarried	 females	would,	 like	 the	worker-bees,	 think	 it	 a	 sacred	duty	 to	 kill	 their	
brothers,	and	mothers	would	strive	to	kill	their	fertile	daughters;	and	no	one	would	
think	of	interfering”	(Darwin	1871,	73).	This	is	because	in	eusocial	societies,	the	long-
term	 survival	 of	 the	 group	 trumps	 concerns	 of	 individual	 workers.	 Eusociality	 has	
evolved	 three	 to	eleven	 times	 independently	 in	nature,	 in	 various	 clades	 including	
insects,	 shrimps,	 and	 mammals	 (West	 and	 Gardner	 2010).	 If	 there	 are	 rational	
creatures	on	other	planets	 the	kinds	of	actions	we	think	are	morally	 reprehensible	
could	be	obligatory	for	them	and	vice	versa.		
	 A	 moral	 realist	 could	 respond	 to	 this	 challenge	 by	 arguing	 that	 in	 eusocial	
structures,	 nests	 rather	 than	 individual	 workers	 are	 the	 right-bearers,	 so	 the	
difference	 may	 not	 be	 so	 vast	 after	 all.	 One	 could	 also	 argue	 that	 morality	 is	 a	
uniquely	human	domain,	which	does	not	even	arise	in	other	animals.	Other	animals	
have	proto-morality	at	best:	dispositions	that	lead	them	to	helping	behavior,	or	that	
lead	them	to	prefer	prosocial	over	anti-social	individuals,	but	no	explicit	moral	norms	
governing	 social	 interactions.	 Still,	 Darwin’s	 bee	 thought	 experiment	 stresses	 the	
contingency	 of	 moral	 beliefs	 upon	 our	 specific	 evolutionary	 history.	 Our	 moral	
beliefs	 are	 not	 just	 the	 product	 of	 evolution;	 they	 are	 the	 peculiar	 outcome	 of	
human	evolution,	a	haphazard	process	that	has	favored	unique	social	structures	and	
behaviors.		
	 Lillehammer	 (2010,	 365)	 terms	 challenges	 of	 this	 kind	 the	 Contingency	
Challenge:	“we	would	have	had	very	different	beliefs	 if	certain	things	about	us	had	
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been	 different,	 even	 supposing	 the	 relevant	 ethical	 facts	 to	 remain	 the	 same”.	 A	
related,	but	distinct,	challenge	is	the	Inflexibility	Challenge,	which	says	that	we	would	
have	 had	 the	 same	 beliefs,	 even	 if	 the	 relevant	 facts	 had	 been	 different.	 Street’s	
(2006)	 Darwinian	 dilemma	 for	moral	 realists	 stresses	 the	 inflexibility	 of	 our	moral	
beliefs:	 even	 if	 pain	 were	 morally	 good	 in	 some	 realist	 sense,	 we	 would	 still	 be	
inclined	 to	 disvalue	 it	 because	 evolution	 through	 natural	 selection	 leads	 us	 to	
disvalue	 pain,	 as	 it	 decreases	 survival	 and	 reproductive	 success.	 Both	 kinds	 of	
challenge	are	part	of	a	broader	kind	of	purported	failure,	which	spells	bad	news	for	
moral	 realism,	 the	Tracking	Failure	 (Lillehammer	2010).	The	evolutionary	challenge	
to	ethics	does	not	amount	to	the	claim	that	moral	beliefs	are	likely	not	truth-tracking	
because	they	are	the	outcome	of	a	 long,	evolutionary	process	 (this	 is	probably	the	
case	for	all	our	beliefs,	and	thus	would	render	the	challenge	trivial).	Rather,	it	is	the	
more	specific	claim	that	moral	beliefs	are	not	truth-tracking	because	they	depend	on	
contingent	facts	about	our	evolutionary	history.	
	 In	 this	 paper,	 I	 will	 not	 be	 concerned	 with	 the	 evolutionary	 debunking	
literature	on	moral	 realism,	but	 rather,	with	 the	question	of	whether	evolutionary	
challenges	to	moral	realism	could	be	extended	to	the	mathematical	domain	(see	also,	
e.g.,	Clarke-Doane	2012,	2014,	De	Cruz	2016).	This	fits	in	a	broader	literature	of	the	
so-called	“companions	in	guilt”	arguments	where	relevant	features	of	moral	realism	
are	argued	to	occur	in	other	domains	(e.g.,	logic,	perception,	mathematics)	(see	e.g.,	
Rowland	2016).	The	basic	outline	of	such	an	argument	holds	that	these	two	domains	
fall	or	stand	together:	if	a	challenge	to	moral	realism	proves	fatal,	it	will	also	be	fatal	
for	 that	 other	 domain.	 The	 question	 here	 is	 whether	 evolutionary	 debunking	
arguments,	 if	 successful	 against	moral	 realism,	also	damage	mathematical	 realism.	
Mathematical	realism—analogous	to	moral	realism—is	the	claim	that	mathematical	
statements	 such	 as	 “2	 +	 2	 =	 4”	 are	 about	 facts.	 In	 order	 to	 assert	 this,	 the	
mathematical	 realist	 posits	 that	mathematical	 entities	 (e.g.,	 the	 natural	 numbers),	
relations	 or	 structures	 exist.	 A	 dominant	 position	 in	 mathematical	 realism	 is	
platonism,	which	 holds	 that	mathematical	 objects	 exist.	 They	 are	 abstract	 entities	
that	exist	independently	of	human	minds,	cultural	constructs,	language	and	symbols.	
Clarke-Doane	(2014,	manuscript)	has	connected	the	contingency	challenge,	normally	
applied	 to	 the	 question	 of	 moral	 realism,	 to	 the	 Benacerraf-Field	 challenge	 to	
mathematical	 realism.	 Benacerraf	 (1973)	 originally	 formulated	 the	 following	
objection	to	mathematical	platonists:	 if	mathematical	objects	are	outside	of	space-
time,	 how	 can	we	 establish	 a	 causal	 link	 between	 these	 objects	 and	 the	minds	 of	
mathematicians?	 How	 can	 the	 physical	 brain	 of	 the	 mathematician	 get	 access	 to	
these	remote	mathematical	 facts?	Field	(1989)	reformulated	the	challenge	 in	more	
general	 terms.	 Field’s	 formulation	 does	 not	 require	 a	 causal	 link	 (which	 is	 a	
controversial	 requirement	 in	 any	 case),	 but	 hinges	 on	 the	 fact	 that	 mathematical	
realists	cannot	explain	the	reliability	of	mathematical	beliefs:		
	

We	start	out	by	assuming	the	existence	of	mathematical	entities	that	
obey	 the	 standard	mathematical	 theories;	we	 grant	 also	 that	 there	
may	be	positive	reasons	for	believing	in	those	entities	...	Benacerraf	’s	
challenge	 ...	 is	 to	 ...	 explain	 how	 our	 beliefs	 about	 these	 remote	
entities	can	so	well	 reflect	 the	 facts	about	 them	 ...	 [I]f	 it	appears	 in	
principle	impossible	to	explain	this,	then	that	tends	to	undermine	the	
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belief	 in	 mathematical	 entities,	 despite	 whatever	 reason	 we	 might	
have	for	believing	in	them	(Field	1989,	26).		

	
How	we	should	cash	out	“explain	the	reliability”	is	not	easily	resolved.	Clarke-Doane	
(manuscript)	 argues	 that	 it	 should	 be	 spelled	 out	 in	 terms	 of	 safety:	 “In	 order	 to	
“explain	the	reliability”	of	our	mathematical	beliefs	 it	 is	necessary	to	show	that	we	
could	not	have	easily	had	false	ones	(using	the	method	that	we	actually	used	to	form	
them),	even	if,	had	we,	they	would	have	been	false.”	This	formulation	responds	both	
to	 the	 contingency	 challenge:	 our	 mathematical	 beliefs	 are	 not	 easily	 false	 (for	
instance,	 because	 they	 are	 not	 contingent	 upon	 our	 evolutionary	 history	 in	 a	way	
that	 is	 pernicious),	 and	 it	 also	 responds	 to	 the	 inflexibility	 challenge:	 our	
mathematical	 beliefs	 are	 not	 inflexible.	 They	 track	 something	 that	 is	 independent	
from	them,	and	that	could	be	false.			
	 Clarke-Doane	 (2016)	 argued	 that	 mathematical	 realists	 might	 not	 face	 an	
access	worry	because	mathematical	beliefs	are	arguably	safe.	This	might	be	because	
our	 “core”	 mathematical	 beliefs	 could	 be	 evolutionary	 inevitable.	 However,	 in	 a	
more	recent	paper	(manuscript)	Clarke-Doane	argues	that	it	would	be	very	hard	for	a	
mathematical	 realist	 to	 show	 that	mathematical	beliefs,	 say,	 about	 set	 theory,	 are	
safe,	because	 it	would	be	difficult	 to	show	that	“we	could	not	have	easily	believed	
different	axioms	of	set	theory”.	Indeed,	the	fact	that	mathematicians	disagree	about	
many	 core	 claims	 in	 every	mathematical	 area	 shows	 that	mathematical	 beliefs	 do	
not	meet	 this	 criterion.	 For	 instance,	 Edward	Nelson	 rejected	 the	 successor	 axiom	
(every	 natural	 number	 has	 a	 successor).	 Because	 mathematical	 beliefs	 are	
presumably	 less	 colored	 by	 irrelevant	 influences	 such	 as	 religion	 and	 cultural	
background,	 Clarke-Doane	 (2014)	 thinks	 that	 this	 puts	 mathematical	 realists	 in	 a	
worse	 position	 than	 moral	 realists,	 as	 the	 latter	 can	 at	 least	 explain	 away	 moral	
disagreements	as	a	result	of	distorting	irrelevant	factors,	but	the	former	cannot.		
	 This	interpretation	of	the	Benacerraf-Field	challenge	places	the	bar	for	realists	
quite	 high,	 some	 might	 argue,	 impossibly	 high.	 Moreover,	 some	 epistemologists	
have	argued	that	safety	is	not	a	useful	criterion	for	knowledge	(e.g.,	Bogardus	2014).	
Nevertheless,	 spelling	out	 the	Benacerraf-Field	 challenge	 in	 terms	of	 safety	 can	be	
useful	 if	we	consider	 the	evolutionary	origins	of	mathematical	beliefs,	 in	particular	
numerical	 beliefs.	 In	 this	 paper,	 I	 will	 not	 be	 concerned	 with	 set	 theory	 or	 other	
mathematical	 propositions,	 but	 with	 the	 evolutionary	 basis	 of	 our	 ability	 to	 form	
beliefs	about	numbers	at	all.		
	 There	 is	 a	 large	 literature	 that	 supports	 the	 view	 that	 formal	 mathematics	
depends	on	evolved	capacities	to	deal	with	number,	which	is	collectively	sometimes	
referred	 to	 as	 “the	 number	 sense”	 (e.g.,	 Dehaene	 2011).	 Two	 capacities	 are	
hypothesized	to	underlie	animals’	ability	to	deal	with	numbers:	the	object	file	system	
(OFS)	which	might	underlie	our	ability	 to	enumerate	and	keep	 in	working	memory	
small	 collections	 of	 items	 (up	 to	 three	 or	 four)	 precisely,	 a	 capacity	 that	 is	 called	
subitizing,	 and	 the	 approximate	 number	 system	 (ANS),	 which	 may	 underpin	 our	
capacity	to	estimate	and	compare	larger	collections	(Feigenson	et	al.	2004).		
	 Many	 cognitive	 scientists	 hold	 that	 the	 OFS	 and	 ANS	 lie	 at	 the	 basis	 of	 our	
ability	 to	 engage	 in	more	 formal	 arithmetic	 abilities.	 Elizabeth	 Spelke	 (e.g.,	 Spelke	
and	Kinzler	2007)	has	argued	that	ANS	supplemented	with	 language	allows	 for	 the	
ability	to	engage	in	formal	arithmetic.	She	finds	support	for	the	role	of	 language	in	
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studies	 indicating	 that	 people	 who	 speak	 languages	 without	 exact	 number	 words	
cannot	 perform	 basic	 calculations	 exactly	 (e.g.,	 6	 -	 2	 =	 4),	 but	 their	 approximate	
numerical	cognition	 is	on	par	with	numerate	adults	 (Pica	et	al	2004).	Although	 it	 is	
limited	in	that	it	only	allows	for	approximate	numerical	calculations,	the	ANS	already	
allows	 for	abstract	numerical	 representations	across	modalities:	preschool	children	
can	add	and	compare	arrays	of	dots	and	sound	sequences	(Barth	et	al.	2005).	Carey	
(2009)	 sees	 the	 OFS	 at	 the	 root	 of	 more	 formal	 arithmetical	 capacities.	 Her	
bootstrapping	account	emphasizes	the	role	of	subitizing	in	children’s	ability	to	learn	
the	successor	function	in	arithmetic.	Children	learn	to	associate	the	meanings	of	the	
first	words	 in	a	count	 list	 (in	English,	“one”,	“two”,	and	“three”)	with	collections	of	
one,	two	and	three	items,	which	they	can	subitize.	This	explains	why	children	tend	to	
learn	 the	 meanings	 of	 number	 words	 in	 the	 same	 order:	 they	 first	 become	 one-
knowers,	 then	 two-knowers,	 next	 three-knowers,	 and	 very	 occasionally,	 four-
knowers.	 But	 because	 subitizing	 stops	 at	 3	 or	 4,	 they	 need	 to	make	 an	 inductive	
generalization	to	learn	the	next	words	in	the	counting	sequence.	According	to	Carey,	
children	then	make	the	following	induction:	if	“x”	is	followed	by	“y”	in	the	counting	
sequence,	 adding	 an	 individual	 to	 a	 set	with	 cardinal	 value	 x	 results	 in	 a	 set	with	
cardinal	value	y.		
	 The	idea	that	these	two	capacities	play	a	critical	role	in	our	ability	to	engage	in	
formal	 arithmetic	 is	 not	 universally	 accepted	 (see	 e.g.,	 Rips	 et	 al.	 2006,	 Rips	 et	 al.	
2008).	 Some	 authors	 have	 argued	 that	 non-numerical	 sensory	 properties,	 such	 as	
visual	density	and	circumference	can	explain	 the	animal	data	and	have	questioned	
the	existence	of	the	ANS	(e.g.,	Gebuis	et	al.	2016).	That	being	said,	the	ANS	and	the	
OFS	 are	 still	 the	 predominant	 theories	 to	 explain	 animal	 numerical	 cognition.	
Authors	such	as	Lourenco	et	al.	(2012)	have	argued	that	people’s	ability	to	engage	in	
approximate	 arithmetic	 (both	 symbolic	 and	 non-symbolic)	 correlates	 with	 their	
mathematical	abilities.	This	has	been	confirmed	in	a	recent	meta-analysis,	although	
the	 correlation	 between	 mathematical	 skills	 and	 symbolic	 numerical	 abilities	 is	
stronger	(Schneider	et	al.	2017).	If	formal	arithmetic	is	dependent	(in	some	causal	or	
psychological	 sense)	 on	 the	 evolved	 number	 sense,	 it	 becomes	 relevant	 for	
mathematical	 realists	 to	 explore	 it	 in	 more	 detail.	 In	 particular,	 explaining	 the	
reliability	of	our	mathematical	 abilities	will	 involve	 reference	 to	 the	number	 sense	
and	the	way	it	forms	beliefs	about	magnitudes.		
	
3.	Invariantism	in	numerical	cognition	
	
Numerical	 cognition	 is	 a	 well-researched	 domain	 of	 higher	 cognition.	 While	
obviously	 it	 is	 not	 identical	 across	 species	 (for	 one	 thing,	 humans	 use	 Arabic	
numerals	 whereas	 mosquito	 fish	 do	 not),	 I	 will	 here	 examine	 striking	 similarities	
between	 the	 numerical	 capacities	 of	 animals	 from	 a	 wide	 variety	 of	 species	 and	
clades,	which	I	will	call	 invariantism	in	numerical	cognition	 (INC).	 I	will	here	 look	at	
four	 features	 of	 numerical	 cognition	 across	 species	 to	 argue	 the	 case	 for	 INC:	
numerical	cognition	is	present	in	many	different	animal	species,	including	in	animals	
with	small,	simple	nervous	systems	such	as	insects	and	spiders	(3.1),	it	plays	a	crucial	
role	in	animal	adaptive	decision	making	(3.2),	 it	shows	similarities	in	computational	
characteristics	and	limitations	across	species	(3.3)	and,	to	the	extent	that	it	has	been	
investigated,	 there	 is	evidence	 that	numerical	cognition	 is	 the	 result	of	convergent	
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cognitive	evolution	rather	than	common	descent	(3.4).		
	
3.1.	Numerical	competence	is	present	in	a	wide	variety	of	clades		
Most	 research	 on	 numerical	 competence	 has	 been	 conducted	 with	 primates,	
including	rhesus	monkeys,	capuchin	monkeys	and	chimpanzees.	For	example,	rhesus	
monkeys	 are	 able	 to	 order	 collections	 of	 items	 from	1	 to	 9	 (Brannon	 and	 Terrace	
1998).	 Other	 mammals,	 including	 brown	 bears	 and	 dogs,	 are	 also	 capable	 of	
discriminating	numerosities.	For	example,	brown	bears	were	trained	to	select	among	
two	screens	the	display	that	had	the	largest	number	of	dots	(even	if	sometimes	that	
meant	 the	overall	 lowest	 surface	area,	because	 the	dots	were	smaller),	using	 food	
reinforcements	(Vonk	and	Beran	2012).	Domestic	dogs	were	tested	using	a	violation-
of-expectation	paradigm,	where	they	saw	simple	calculations	 including	“1	+	1	=	2”,	
“1	+	1	=	1”	and	“1	+	1	=	3”.	Dogs	looked	longer	at	the	incorrect	outcomes,	which	is	
interpreted	as	showing	they	did	not	expect	 the	 incorrect	outcomes	and	thus	know	
that	 1	 +	 1	 =	 2	 (West	 and	 Young	 2002).	 Birds,	 including	 pigeons,	 chickens	 (even	
newborn	chicks)	and	crows,	are	capable	of	calculating	and	estimating	collections	of	
items	(e.g.,	Scarf	et	al.	2011,	Ditz	and	Nieder	2016,	Rugani	et	al.	2008).	Although	not	
all	experiments	control	for	non-numerical	cues,	such	as	the	total	surface	area	or	the	
density	of	displays,	many	experiments	have	done	so.	For	example,	mosquito	fish	can	
discriminate	 between	 smaller	 (e.g.,	 3	 vs.	 2)	 and	 larger	 groups	 (e.g.,	 8	 vs.	 5),	 even	
when	controlling	 for	 the	density	of	 the	 fish	and	 the	overall	 space	occupied	by	 the	
group	(Dadda	et	al.	2009).	For	larger	groups	(e.g.,	8	vs.	4),	total	area	and	the	amount	
of	 movement	 of	 the	 fish	 in	 both	 groups	 matter	 (Agrillo	 et	 al.	 2008).	 Such	
experiments	 strongly	 suggest	 that	 it	 is	 numerical	 cues—rather	 than	non-numerical	
continuous	variables—that	animals	are	responsive	to.		
	 A	recent	domain	of	inquiry	is	numerical	competence	in	insects	and	spiders	(see	
Pahl	et	al.	2013	for	a	review).	Although	insects	have	small	nervous	systems,	they	are	
very	adept	at	integrating	complex	information,	such	as	the	relative	returns	of	nectar	
by	 particular	 types	 of	 flowers,	 even	 depending	 on	 times	 of	 the	 day	 and	 the	
probability	 of	 yields	 (Real	 1991).	 Numerical	 information	 is	 one	 such	 source	 of	
information	that	insects	and	spiders	use	in	their	everyday	ecological	decisions.	Portia	
africana	spiders,	for	example,	practice	communal	predation,	sharing	their	prey	with	
another	resident	conspecific.	Juvenile	Portia	africana	prefer	to	settle	when	there	is	
one	conspecific	present,	preferring	this	outcome	to	zero,	 two	or	three	conspecifics	
(Nelson	 and	 Jackson	 2012).	 Dacke	 and	 Srinivasan	 (2008)	 designed	 a	 carefully	
controlled	 experiment	where	 bees	were	 trained	 to	 fly	 in	 a	 long	 tunnel	where	 five	
landmarks	consisting	of	identical	yellow	strips	were	placed	at	irregular	intervals,	and	
the	 feeder	 was	 hidden	 at	 one	 of	 those	 landmarks.	 In	 the	 test	 condition,	 the	
researchers	examined	whether	bees	would	look	for	the	feeder	close	to	the	number	
of	 landmark	they	were	trained	they	could	find	it.	The	bees’	accuracy	was	very	high	
up	until	3,	but	became	more	erratic	at	4	and	5.	Bees	not	only	are	able	to	discriminate	
numbers	 sequentially,	 but	 also	 to	 visually	 discriminate	 different	 numerosities	 of	
displays.	They	can	match	displays	of	two	blue	dots	and	two	yellow	stars,	and	can	do	
so	up	to	3,	and	their	performance	drops	at	chance	level	at	4	(Gross	et	al.	2009).	This	
is	a	striking	similarity	to	other	animals,	suggesting	bees	may	be	subject	to	the	same	
limitations	of	the	OFS	as	human	infants	(Starkey	and	Cooper	1980).		
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3.2.	Numerical	cognition	plays	a	crucial	role	in	animal	adaptive	decision-making	
While	early	authors	writing	on	numerical	competence	in	animals	tended	to	dismiss	it	
as	a	last	resort,	to	which	animals	only	turn	if	there	is	no	other	information	available	
(Davis	 and	Pérusse	 1988),	 the	 current	 consensus	 is	 that	 animals	 use	 their	 number	
sense	 in	 adaptive	 decision-making.	 The	 best-studied	 ecological	 situation	 in	 which	
animals	 rely	 on	 numerosities	 is	 food	 choice:	 given	 that	 they	 need	 to	 travel	 to	 a	
source	of	 food	and	use	up	 time	and	energy	doing	 so,	 it	makes	 sense	 to	 go	 to	 the	
source	that	has	the	most	food.	Research	indicates	that	animals	tend	to	“go	for	more”,	
selecting	maze-arms,	 feeders	 and	 other	 experimental	 setups	 that	 have	 the	 largest	
number	of	 food	 items.	 For	example,	 free-ranging	adult	 salamanders	placed	 in	a	T-
shaped	enclosure	that	could	choose	between	the	ends	containing	either	1	or	2	live	
flies,	or	2	or	3	live	flies,	chose	the	arm	of	the	enclosure	with	the	most	flies	(like	other	
amphibians,	salamanders	can	only	visually	see	small	stimuli	if	they	move).	However,	
they	 showed	 no	 preference	 if	 the	 choice	was	 between	 3	 and	 4	 or	 5	 and	 6,	 again	
revealing	limits	to	the	OFS	(Uller	et	al.	2003).		
	 Petroica	 australis,	 a	 food-caching	 songbird,	 shows	 sophisticated	 reliance	 on	
numerical	 information	 when	 storing,	 retrieving	 and	 pilfering	 caches	 of	 food	
(mealworms).	The	birds	could	watch	food	being	put	in	a	pair	of	artificial	cache	sites,	
and	could	choose	one	of	 them.	They	were	successful	 in	 finding	 the	cache	with	 the	
most	mealworms	 (experimenters	 controlled	 for	 duration	 and	 other	 non-numerical	
confounds)	 in	 caches	 up	 to	 12	 items.	 The	 experimenters	 also	 did	 a	 violation	 of	
expectation	experiment,	where	birds	watched	a	number	of	mealworms	being	stored,	
but	only	a	subset	was	findable,	and	they	examined	whether	these	birds	would	take	a	
longer	 time	 searching	 for	 the	 remaining	 worm(s).	 This	 study	 revealed	 that	 birds	
looked	longer	in	2	vs.	1	in	3	vs.	2,	but	not	in	8	vs.	4	conditions,	perhaps	because	they	
were	 subject	 to	 the	 limitations	 of	 OFS	 which	 is	 especially	 operative	 for	 keeping	
numerosities		in	working	memory	(Hunt	et	al.	2008).		
	 Animals	also	use	numerical	information	for	selecting	their	territory	(Nelson	and	
Jackson	2012),	and	for	choosing	whether	or	not	to	attack	a	rivaling	group,	based	on	a	
comparison	of	that	group’s	size	and	the	own	group’s	size	(e.g.,	McComb	et	al	1994	
for	a	study	with	wild	lionesses).	Shoaling	fish	choose	to	aggregate	with	shoals	based	
on	their	perceived	size,	for	example	guppies	prefer	a	shoal	of	8	over	a	shoal	of	4	to	
aggregate	with	(Bisazza	et	al.	2010).		
	
3.3	Similarities	in	computational	characteristics	and	limitations	
As	we	have	seen,	the	Object	File	System	(OFS)	and	the	Approximate	Number	System	
(ANS)	 are	 the	 dominant	 ways	 to	 explain	 human	 numerical	 cognition.	 Both	 have	
specific	limitations	and	characteristics.	The	OFS	is	accurate	for	collections	of	items	up	
to	3	or	4.	It	allows	animals	to	make	comparisons	and	calculations	across	modalities.	
For	 example,	 rhesus	monkeys	 (Jordan	 et	 al.	 2005)	 and	 human	 infants	 (Jordan	 and	
Brannon	2006)	can	match	the	number	of	voices	they	hear	to	the	correct	number	of	
speaking	 heads	 they	 see	 on	 a	 monitor.	 It	 also	 supports	 addition	 and	 subtraction.	
Infants,	 as	 well	 as	 domestic	 dogs,	 show	 surprise	 at	 unexpected	 additions	 and	
subtractions,	 such	 as	 1	 +	 1	 =	 1	 or	 2	 –	 1	 =	 2	 (Wynn	 1992,	West	 and	 Young	 2002).		
Above	3	or	4,	the	OFS	is	not	able	to	make	calculations	or	comparisons	anymore.	For	
example,	chicks	can	discriminate	between	displays	of	1	and	2,	and	between	2	and	3	
items,	but	not	between	3	and	4,	or	4	 versus	5,	or	4	 versus	6	 (Rugani	 et	 al.	 2008),	
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although	 chicks	 can	 tell	 the	 difference	 between	 larger	 numbers	 when	 the	 ratio	
difference	 between	 them	 is	 large	 enough,	 e.g.,	 2	 vs.	 8	 and	 8	 vs.	 32	 (Rugani	 et	 al.	
2015).	 We	 saw	 above	 that	 this	 limitation	 was	 also	 observed	 in	 bees	 and	 in	
salamanders,	 and	 in	 human	 infants.	 Human	 numerate	 adults	 can,	 of	 course,	
distinguish	between	collections	of	3	and	4,	or	4	and	6.	Yet	even	adults	are	subject	to	
the	 limitations	 of	 the	 OFS:	 they	 are	 much	 more	 accurate	 in	 enumerating	 small	
collections	of	items	(up	to	3)	than	larger	collections,	with	a	steep	decline	in	precision	
after	 3	 (Revkin	 et	 al.	 2008).	 The	 explanation	 for	 this	 limitation	 of	 the	 OFS	 is	 that	
there	are	inherent	limitations	to	working	memory.	The	OFS	works	by	putting	mental	
representations	of	discrete	objects	(e.g.,	two	bananas,	one	sound	and	one	dot)	in	a	
placeholder	 format	 as	 slots	 that	 are	 kept	 in	working	memory	 (Feigenson	&	 Carey	
2005).	
	 The	 ANS,	 unlike	 the	 OFS,	 does	 not	 have	 a	 strict	 limit	 on	 how	 much	 it	 can	
represent,	 although	 experimental	 setups	 typically	 stay	 under	 100.	 This	 system	
handles	the	approximate	representation	of	numbers,	and,	 like	the	OFS,	 it	can	work	
across	modalities,	and	it	supports	addition	and	subtraction	(Barth	et	al.	2005).	Next	
to	 these	 features,	 its	 outputs	 show	 the	 Weber-Fechner	 signature:	 the	
discriminability	of	two	magnitudes	(numerosities)	 is	determined	by	their	ratio.	As	a	
result,	 numerical	 judgment	 improves	 with	 increasing	 distance	 (e.g.,	 it	 is	 easier	 to	
discriminate	2	 from	8	 than	7	 from	8,	not	only	 if	 this	 is	presented	as	 collections	of	
dots	but	even	in	symbolic	format	(see	Moyer	and	Landauer	1967	for	the	first	classic	
study	to	show	the	distance	effect	in	symbolic	format).		
	 Comparative	 research	 indicates	 that	 rhesus	 monkeys’	 performance	 on	
approximate	 arithmetical	 tasks	 is	 similar	 to	 that	 of	 college	 students.	 Students	 and	
rhesus	monkeys	were	required	to	mentally	add	a	number	of	dots	and	select	a	display	
that	showed	the	sum	(e.g.,	for	displays	of	1	and	7	dots,	the	display	containing	8	dots	
had	 to	 be	 selected).	Next	 to	 the	display	 showing	 the	 correct	 sum	 (e.g.,	 1	 +	 7	 =	 8)	
there	was	a	distractor	display	that	contained	an	incorrect	number	of	dots	(e.g.,	1	+	7	
=	 5),	 which	 had	 a	 cumulative	 surface	 area	 close	 to	 the	 correct	 solution.	 Although	
adults	 were	 more	 correct	 (94%	 correct	 answers,	 compared	 to	 only	 74%	 for	 the	
monkeys),	 their	 response	patterns	were	 very	 similar,	 showing	 similar	 sensitivity	 to	
the	 ratio	between	the	numerical	values	of	 the	sum	and	choice	stimuli,	 in	 line	with	
the	Weber-Fechner	law	(Cantlon	and	Brannon	2007).	In	a	direct	comparative	study,	
pigeons	performed	on	a	par	with	primates	in	numerical	tasks	such	as	ordering	cards	
with	 different	 numbers	 of	 items	 in	 ascending	 order,	 showing	 very	 similar	 distance	
effects,	i.e.,	better	performance	if	numerosities	lie	further	apart	(Scarf	et	al.	2011).	
	 There	 have	 been	 a	 few	 systematic	 studies	 that	 have	 examined	whether	 the	
ANS	 in	 non-human	 animals	 other	 than	 primates	 obey	 the	 Weber-Fechner	 law.	
Gómez-Laplaza	and	Gerlai	 (2011)	 showed	that	angelfish	 (Pterophyllum	scalare)	 can	
choose	the	larger	of	two	shoals,	and	that	their	number	discrimination	is	sensitive	to	
the	ratio	difference	between	the	two	groups,	e.g.,	they	prefer	to	aggregate	with	the	
larger	shoal	if	the	differences	are	4:1	(e.g.,	12	vs	3),	3:1	(9	vs	3),	and	2:1	(8	vs	4),	but	
not	at	smaller	ratio	differences,	e.g.,	1.5:1	(9	vs	6	and	6	vs	4).	Carrion	crows	(Corvus	
corone)	 can	 discriminate	 numbers	 up	 to	 30	 (in	 displays	 that	 controlled	 for	 total	
surface	area)	in	line	with	the	Weber-Fechner	law	(Ditz	and	Nieder	2016).	While	more	
research	would	need	to	be	carried	out	to	see	how	far	this	generalizes,	the	research	
so	 far	 supports	 similar	 cognitive	 mechanisms	 of	 OFS	 and	 ANS	 underlying	 animal	
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numerical	competence	in	a	wide	range	of	species.		
	 	
3.4	 Neural	 correlates	 of	 numerical	 cognition	 shows	 evidence	 of	 convergent	
evolution	
In	 human	 brains,	 several	 areas	 of	 the	 neocortex	 are	 associated	 with	 numerical	
cognition,	in	particular	the	bilateral	intraparietal	sulci.	This	area	is	active	when	adults	
engage	in	calculation	with	Arabic	digits	and	dots	(e.g.,	Dehaene	et	al.	1999)	or	even	
participants	 are	merely	passively	 looking	at	or	 listening	 to	Arabic	digits	or	number	
words	(Eger	et	al.	2003).	The	intraparietal	sulci	are	also	active	in	four-year-olds	and	
in	 adults	when	 presented	with	 visual	 displays	 of	 collections	 of	 items	 that	 differ	 in	
number	(Cantlon	et	al.	2006).	Homologous	areas	in	the	primate	parietal	cortex	and	
prefrontal	 cortex	 are	 responsive	 to	 numerosity.	 Recordings	 of	 single	 neurons	
responses	in	the	brains	of	monkeys	show	that	there	are	number-sensitive	neurons	in	
the	 lateral	 prefrontal	 cortex	 and	 the	 intraparietal	 sulcus	 of	 the	 posterior	 parietal	
cortex.	These	number-sensitive	neurons	selectively	respond	to	a	specific	number	of	
items	in	visual	dot	displays,	including	zero.	Their	response	does	not	vary	with	other	
spatial	 features,	 such	 as	 the	 size	 of	 dots,	 but	 seems	 to	 be	 number-specific.	While	
they	 preferentially	 fire	 at	 a	 given	 number	 of	 dots	 (say,	 3),	 they	will	 also	 respond,	
albeit	 less	 frequently,	 to	 other	 numerosities	 (say,	 2	 or	 4),	 with	 response	 patterns	
following	 a	Gaussian	 curve	 around	 the	 preferred	 numerosity	 (Tudusciuc	&	Nieder,	
2007).			
	 Bird	 numerical	 cognition	 is	 situated	 in	 the	 endbrain,	more	 specifically	 in	 the	
nidopallium	 caudolaterale.	 The	 neurons	 of	 crows	 in	 this	 part	 of	 the	 brain	 fired	
selectively	 for	 different	 numerosities,	 just	 like	 they	 did	 in	 rhesus	monkeys,	 e.g.,	 a	
neuron	selectively	tuned	to	4	items	also	responded,	but	to	a	lesser	extent,	to	3	and	5	
items	 (Ditz	 and	 Nieder	 2015).	 Primates	 and	 birds	 have	 markedly	 different	 brain	
structures.	Their	last	common	ancestor	lived	about	300	million	years	ago,	at	a	time	
when	 the	 six-layered	 neocortex	 (which	 hosts,	 among	 others,	 the	 neurons	
responsible	 for	 numerical	 cognition)	 had	 not	 evolved	 yet	 in	 mammals.	 Thus,	 the	
similarities	between	crows	and	rhesus	monkeys	in	neural	representation	of	number	
show	a	striking	convergent	evolution.	
	 The	 similarities	 between	 insect	 and	mammalian	 (including	human)	numerical	
cognition	 cannot	 be	 due	 to	 homologous	 neural	 structures	 either.	 The	 European	
honeybee	only	weighs	0.1g,	and	its	brain	only	weighs	0.001	g,	with	a	total	size	of	1	
mm3,	and	about	1	million	neurons.	Compared	to	the	human	brain	with	its	100	billion	
neurons,	 it	 has	 only	 1/100,000th	 of	 the	 number	 of	 human	 neurons.	 The	 main	
functions	 relating	 to	 memory	 and	 adaptive	 decision-making	 are	 situated	 in	 the	
mushroom	 bodies	 and	 the	 central	 complex,	 so	 this	 is	 likely	 also	 where	 numerical	
cognition	takes	place.	Unfortunately,	 it	 is	not	possible	at	present	to	find	the	neural	
correlates	 for	numerical	cognition	 in	such	a	small	brain	 (see,	however,	Greco	et	al.	
2012	for	recent	advances	in	scanning	brains	of	live	bees).	Given	these	similarities	in	
processing,	 in	 spite	 of	 very	 different	 neural	 implementation,	 insect	 numerical	
cognition	presents	another	case	of	convergent	evolution.		
	 	
4.	The	metaphysical	significance	of	INC	
The	behavioral	and	neural	similarities	in	the	numerical	cognition	of	a	wide	diversity	
of	species	and	clades	 is	a	remarkable	phenomenon,	which	 I	 termed	invariantism	in	
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numerical	cognition	(INC).	It	cannot	be	explained	by	homology	(similarities	due	to	a	
shared	ancestral	trait)	given	how	divergent	insect,	avian	and	mammalian	brains	are.	
If	 homology	 cannot	 explain	 INC,	what	 alternative	 do	we	 have?	Homology	 is	 often	
contrasted	to	homoplasy	(similarity	due	to	independent	evolution),	but	homoplasy	is	
a	 portmanteau	 term	 for	 several	 distinct	 evolutionary	 patterns	 (Hall	 2013).	 One	 of	
these	 is	 convergent	 evolution,	 when	 similar	 features	 evolve	 independently	 in	
different	species	as	a	result	of	similar	evolutionary	pressures.	For	example,	 insects,	
birds	and	bats	developed	wings	that	help	them	to	escape	predators	or	pursue	prey.	
INC	 is	 a	 good	 candidate	 for	 convergent	 evolution:	 a	 trait	 that	 emerged	 in	 diverse	
clades	as	a	result	of	similarly	evolutionary	pressures.	An	alternative	explanation	for	
INC	 is	 homology,	 when	 traits	 that	 evolve	 through	 convergent	 evolution	 share	 a	
similar	 genetic	 regulatory	apparatus.	 Examples	 include	 the	Pax6	gene,	which	helps	
regulate	 vision	 in	 mollusks,	 vertebrates,	 and	 insects,	 and	 the	 FoxP2	 gene,	 which	
regulates	human	 language	development	and	 song	production	 in	 songbirds	 (Scharff	
and	 2011).	 However,	 even	 in	 these	 cases	 of	 deep	 homology	 there	 is	 considerable	
independent	 evolution	 to	 accommodate	 anatomical	 differences	 (e.g.,	 the	 eye	
structure	of	 insects	versus	mammals).	Moreover,	 if	the	structures	 in	question	were	
not	 adaptive,	 it	 is	 unlikely	 that	 these	 deep	 homologies	 would	 have	 occurred.	 For	
example,	the	Pax6	gene	regulates	the	prenatal	development	of	eyes,	such	as	the	iris,	
and	its	function	can	be	explained	by	the	fact	that	seeing	is	adaptive.	Thus,	even	if	a	
deep	 homology	 underlies	 numerical	 competence	 in	 these	widely	 divergent	 clades,	
the	similarities	between	them	remain	striking.		
	 Some	of	the	convergence	in	numerical	cognition	across	clades	likely	has	to	do	
with	 constraints	 in	 computation	 and	 memory,	 including	 the	 Weber-Fechner	
signature	and	the	limitations	of	the	OFS.	Nothing	of	mathematical	interest	happens	
when	 natural	 numbers	 >	 3,	 it	 is	 just	 a	 limitation	 of	working	memory.	Why	would	
animals	be	better	 at	discriminating	 smaller	numerosities,	 and	why	would	 the	 ratio	
difference	be	more	relevant	 than	the	absolute	difference?	The	difference	between	
small	 numbers	 is	 often	 more	 ecologically	 significant	 than	 that	 between	 large	
numbers,	 for	example,	to	a	hungry	foraging	monkey,	 it	 is	more	relevant	to	see	the	
difference	between	a	patch	with	one	 fruit	 versus	 two	 fruit	 than	 it	 is	 to	be	able	 to	
distinguish	between	11	and	12	fruits.	This	ecological	function	of	numerical	cognition	
leads	 me	 to	 posit	 the	 following	 claim:	 INC	 presents	 substantial	 evidence	 for	
mathematical	 realism.	 It	 indicates	 that	 animals	 are	 tracking	 something	 in	 the	
environment	(numerosities),	and	realism	is	the	best	explanation	for	numerosities.		
	 In	an	earlier	paper	(De	Cruz	2016),	I	outlined	an	indispensability	argument	for	
mathematical	 realism	 from	 numerical	 cognition.	 I	 proposed	 that	 the	 best	
explanation	 for	 numerosities	 involves	 numbers—animals	 make	 representations	 of	
magnitude	in	the	way	they	do	because	they	are	tracking	structural	(or	other	realist)	
properties	 of	 numbers.	 This	 fits	 in	 an	 ongoing	 discussion	 on	 whether	 physical	
phenomena	 have	 genuine	 mathematical	 explanations.	 Baker	 (2005,	 2015)	 has	
argued	 that	 this	 is	 the	 case,	 citing	 such	 cases	 as	 the	primeness	of	 the	 life-cycle	of	
insects	 that	 are	 members	 of	 the	 genus	Magicicada	 and	 structural	 properties	 of	
honeycombs.	 In	 the	case	of	Magicicada,	 their	 life	 cycles	are	either	13	or	17	years.	
These	 consist	 of	 a	 long	phase	 they	 spend	as	 larvae	underground	and	a	brief	 adult	
phase	spent	above	ground	when	they	reproduce.	The	primeness	of	their	 life	cycles	
makes	it	less	likely	that	the	life	cycles	of	predatory	species	would	intersect	with	them,	
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thus	 increasing	 their	 reproductive	 success.	 Primeness	 is	 a	 mathematical	 property	
that	plays	a	relevant	role	in	the	biological	explanation	for	why	their	life	cycles	have	
these	 durations.	 Such	 examples	 are	 used	 to	 bolster	 the	 case	 for	 platonism	 about	
mathematical	objects.		
	 I	 will	 not	 here	 reiterate	 these	 arguments,	 but	 instead	 will	 consider	 Clarke-
Doane’s	 (2014,	manuscript)	more	 recent	 challenge.	Now,	 the	mathematical	 beliefs	
Clarke-Doane	targets	are	those	of	professional	mathematicians,	such	as	the	axioms	
of	set	theory,	rather	than	more	elementary	beliefs	such	as	that	7	is	prime,	or	that	2	+	
2	 =	 4.	 Indeed,	 he	 is	 happy	 to	 concede	 that	 the	 latter	would	 be	 safe,	 just	 like	 the	
belief	 that	burning	babies	 for	 fun	 is	wrong	 is	 true	 for	any	moral	non-error	 theorist	
(Clarke-Doane	 2014).	 However,	 the	 evolutionary	 challenge	 against	 mathematical	
realism	 targets	 those	 more	 basic	 beliefs	 too,	 just	 like	 evolutionary	 debunking	
arguments	against	moral	 realism	challenge	 fundamental	moral	beliefs	 such	as	 that	
pain	is	bad.		
	 With	 INC	we	have	a	clear	disanalogy	between	mathematics	and	morality:	the	
proto-moral	beliefs	of	different	species	are	divergent,	whereas	numerical	cognition	
is	 invariant	 across	 species.	 This	makes	 numerical	 cognition	 less	 susceptible	 to	 the	
contingency	challenge	that	has	been	proposed	against	moral	realism.	In	the	case	of	
moral	realism,	one	can	see	how	our	beliefs	would	easily	have	been	different	 if	our	
evolutionary	history	had	gone	a	different	way.	Our	moral	beliefs	 could	have	easily	
been	false	(assuming	a	non-naturalist	form	of	moral	realism1),	but	our	mathematical	
beliefs	could	not	have	been.	This	is	because	evolution	has	shaped	our	minds	(as	well	
as	those	of	bees,	crows,	rhesus	monkeys,	chicks,	angelfish,	etc.)	 to	track	numerical	
information.	 Similarities	 in	 numerical	 cognition	 across	 a	 wide	 range	 of	 unrelated	
species	 require	 some	 explanation,	 and	 mathematical	 realism	 can	 provide	 this	
explanation	 straightforwardly,	 namely	what	 animals	 are	 tracking	 are	mathematical	
truths/structures.	I	am	not	arguing	that	antirealists	cannot	explain	INC.	Nevertheless,	
the	anti-realist	would	need	to	explain	why	unrelated	animals	such	as	salamanders,	
bees,	crows,	angelfish	and	rhesus	monkeys	(and	of	course	humans),	would	be	able	to	
track	 discrete	 quantities	 in	 their	 environment,	 would	 be	 able	 to	 do	 so	 across	
modalities,	and	would	use	this	information	to	inform	their	adaptive	choices.	INC	thus	
shifts	the	burden	of	proof	in	the	direction	of	the	antirealist.		
	 One	 can,	 of	 course,	 resort	 to	 highly	 contrived	 scenarios	where	 animals	 have	

																																																								
1	Some	 naturalistic	 forms	 of	moral	 realism	 are	 less	 susceptible	 to	 the	 contingency	
challenge,	in	particular	the	neo-Aristotelian	approach	to	morality	(as	e.g.,	outlined	by	
Foot,	2001).	According	 to	neo-Aristotelians,	what	counts	as	a	good	human	 life	and	
human	 flourishing	 is	 the	 truth-maker	 of	 moral	 claims.	 Humans	 have,	 as	 evolved	
creatures,	 certain	 limitations	 on	 the	 conditions	 that	 will	 make	 them	 thrive	 and	
flourish.	 The	 role	 of	 the	 ethicist	 is	 to	 find	 out	 how	 to	 fulfill	 these	 conditions.	
Fitzpatrick	 (2000)	has	challenged	 the	neo-Aristotelian	account	by	pointing	out	 that	
not	all	evolved	features	lead	to	flourishing,	for	example,	male	elephant	seals	fight	to	
gain	control	of	large	harems,	which	makes	evolutionary	sense	but	does	not	seem	to	
contribute	 to	 their	 wellbeing.	 However,	 as	 Lott	 (2008)	 has	 countered,	 the	 neo-
Aristotelian	approach	does	not	 look	at	animals	 from	the	outside,	but	 instead	 from	
the	 inside	 of	 life-forms.	 In	 that	 respect,	 it	 would	 seem	 that	 it	 is	 “good”	 for	 bee	
queens	to	kill	their	fertile	daughters,	to	harken	back	to	Darwin’s	example.			
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adaptive	 responses,	 such	 as	 choosing	 the	 most	 numerous	 shoal	 or	 cache	 of	
mealworms,	without	 tracking	mathematical	 truths.	 Plantinga’s	 (1993)	 evolutionary	
argument	 against	 naturalism	 famously	 argued	 that	 animals	 can	 have	 the	 right	
adaptive	 behaviors	 without	 truth-tracking	 beliefs,	 e.g.,	 a	 hominin	 who	 runs	 away	
from	a	 tiger	 (adaptive	response),	but	does	so	because	he	believes	 the	 tiger	 is	cute	
and	he	wants	to	pet	it,	but	he	also	believes	that	the	best	way	to	pet	it	is	to	run	away	
from	 it	 (maladaptive	belief).	While	such	scenarios	are	metaphysically	possible	 (and	
some	have	outlined	them	for	the	case	of	numerical	beliefs,	e.g.,	Clarke-Doane	2012),	
they	are	not	very	plausible.	An	error-theorist	would	have	to	come	up	with	a	scenario	
for	each	case	of	evolved	numerical	cognition	(which,	to	the	best	of	our	knowledge,	
has	 occurred	 independently	 at	 least	 in	 insects,	 birds,	 mammals,	 and	 fish)	 where	
somehow	wrong	or	irrelevant	mathematical	beliefs	would	lead	to	the	right	adaptive	
responses.	 At	 present,	 there	 is	 no	 satisfying	 positive	 case	 for	 mathematical	
antirealism	that	accounts	for	INC	without	resorting	to	arcane	scenarios.		
	 	
5.	Which	form	of	realism	does	the	animal	cognition	literature	support?	
	
The	Benacerraf-Field	challenge	 to	mathematical	 realism	asks	 realists	 to	explain	 the	
reliability	 of	 mathematical	 beliefs.	 This	 is	 not	 as	 demanding	 as	 outlining	 a	 causal	
account	(which	would	be	impossible	under	some	forms	of	realism	in	any	case),	but	
requires	us	to	show	that	our	evolved	mathematical	beliefs	are	safe	from	error.	I	have	
argued	in	previous	work	(De	Cruz	2016)	that	Shapiro’s	(1997)	ante	rem	structuralism	
is	a	possible	candidate	in	the	light	of	evolution.	One	reason	to	look	more	closely	into	
realist	structuralist	accounts	is	that	authors	in	this	field,	such	as	Shapiro	(1997)	have	
made	substantial	efforts	 to	explain	how	 their	account	would	work	 in	a	naturalistic	
framework.	Moreover,	ante	rem	structuralism	provides	a	straightforward	account	of	
reference	 and	 semantics,	 and	 can	 provide	 an	 account	 of	 mathematical	 structure	
irrespective	 of	 the	 agent	 cognizing	 it,	 which	makes	 the	 approach	 suitable	 for	 our	
explanation	 of	 numerical	 cognition	 across	 species.	 To	 summarize,	 ante	 rem	
structuralism	holds	that	non-applied	mathematics	is	concerned	with	structures	that	
are	 conceived	of	as	abstract	entities	 (platonic	universals),	 i.e.,	 structures	 that	exist	
independently	and	prior	to	any	instantiations	of	them.	Ante	rem	structuralists	do	not	
specify	 the	precise	nature	of	 these	entities,	but	 rather	 focus	on	the	role	 they	play.	
Numbers	 are	 positions	 in	 a	 certain	 structure,	 and	 can	 be	 discerned	 in	 the	
environment	 as	 patterns.	 The	 bootstrapping	 account	 (Carey	 2009)	 can	 offer	 a	
glimpse	 of	 how	 we	 can	 have	 mathematical	 beliefs	 that	 are	 safe,	 and	 that	 track	
mathematical	 structures.	 According	 to	 this	 account,	 young	 children	 learn	 to	
recognize	 the	 1,	 2	 and	 3	 pattern,	 thanks	 to	 their	 OFS,	 which	 allows	 for	 exact	
discrimination	of	numerosities	up	to	3.	Since	the	OFS	is	very	precise,	learning	the	1,	2	
and	3	pattern	is	a	reliable	process	(at	least	in	neurotypical	children	who	do	not	suffer	
from	 dyscalculia).	 The	 children	 learn	 the	 remaining	 natural	 numbers	 through	 a	
process	 of	 induction.	 This	 part	 of	 the	 learning	 process	 is	 stable	 thanks	 to	 the	
abundant	 cultural	 scaffolding	 (e.g.,	 counting	 songs)	 and	 feedback	 (e.g.,	 parents	
correcting	 their	 child,	 or	 helping	 their	 child	 to	 count	 a	 given	 collection	 of	 items)	
children	receive	 (see	also	De	Cruz	2018).	 In	 this	way,	an	ante	rem	 structuralist	can	
explain	the	reliability	of	our	natural	number	concepts	to	track	mathematical	truths.		
	 Another	plausible	realist	(non-platonist,	in	this	case)	account	that	is	compatible	
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with	 INS,	 is	 Millean	 empiricism.	 Kitcher	 (1984)	 revived	 this	 position,	 arguing	 that	
mathematical	 epistemology	 should	 seek	 inspiration	 from	 how	 children	 learn	
arithmetic.	 It	 thus	 fits	 well	 in	 a	 naturalistic	 account	 of	 mathematical	 cognition.	 A	
closely	related	view	is	Aristotelian	realism,	recently	defended	by	Franklin	(2014).	Mill	
(1843,	165)	proposed	that	numbers	are	properties	of	physical	aggregates:		
	

When	we	call	a	collection	of	objects	two,	three,	or	four,	they	are	not	two,	
three,	or	four	in	the	abstract;	they	are	two,	three,	or	four	things	of	some	
particular	kind;	pebbles,	horses,	inches,	pounds’	weight.	What	the	name	
of	number	connotes	 is,	 the	manner	 in	which	single	objects	of	 the	given	
kind	must	be	put	together,	in	order	to	produce	that	particular	aggregate.	

	
In	this	view,	numerical	cognition	detects	high-level,	general	properties	of	aggregates,	
e.g.,	an	angelfish	that	chooses	a	shoal	of	seven	fish	over	three	fish	 is	detecting	the	
high-level	 general	 property	of	 aggregates	 that	 7	 >	 3.	According	 to	Mill,	we	do	not	
need	to	invoke	the	existence	of	3	and	7,	separate	from	their	concrete	instantiations	
in	 the	 physical	world.	Millean	 empiricism	does	 not	 presuppose	 platonist	 ontology,	
but	 it	 is	 nevertheless	 a	 realist	 ontology	 (see	Balaguer	 1998,	 chapter	 5),	 because	 it	
regards	the	laws	of	arithmetic	as	highly	general	laws	of	nature.		
	 A	 common	 objection	 to	 Millean	 empiricism	 is	 that	 aggregates	 do	 not	 have	
determinate	number	properties.	 For	example,	 a	group	of	 lions	 can	be	divided	 into	
many	 different	 parts,	 for	 instance,	 it	 is	 composed	 of	 7	 lions,	 28	 legs,	 etc.	 Kessler	
(1980)	responds	to	this	problem	by	arguing	that	in	Mill’s	account,	numbers	are	not	
properties	of	aggregates,	but	relations	that	hold	between	aggregates	(e.g.,	the	pride)	
and	 properties	 of	 those	 aggregates	 (e.g.,	 individual	 lions).	 Infants	 and	 animals	 are	
successful	 at	 finding	 the	 relevant	 properties	 of	 aggregates	 in	 numerical	 tasks,	 for	
instance,	 they	 can	 compare	 the	 number	 of	 speakers	 they	 see	with	 the	 number	 of	
voices	 they	 hear	 (Jordan	 &	 Brannon	 2006).	 When	 they	 are	 presented	 with	 a	
collection	of	objects	(e.g.,	an	array	of	dots)	infants	seem	to	be	less	able	to	detect	a	
decrease	or	increase	in	the	individual	objects’	size,	than	they	are	to	detect	a	change	
in	 numerosity.	 They	 need	 as	 much	 as	 a	 four-fold	 change	 in	 size	 to	 notice	 it,	 as	
revealed	 by	 a	 longer	 looking	 time.	 This	 suggests	 that	 once	 infants	 attend	 to	
numerosity,	they	disregard	the	physical	particulars	of	the	items	that	constitute	them	
(Cordes	&	Brannon	2011).	In	line	with	Millean	empiricism,	they	can	make	high-level	
generalizations	 about	 numerosities	 that	 go	 beyond	 the	 physical	 properties	 of	
aggregates.	Given	 that	 the	world	at	our	 scale	mostly	consists	of	 separable	objects,	
there	may	have	been	an	evolutionary	advantage	of	making	high-level	generalizations	
about	 numerosities,	 along	 the	 lines	 of	 separable	 objects	 as	we	 and	 other	 animals	
encounter	them	in	daily	life	(see	also	Dehaene	2011,	231).		
		 Ante	rem	structuralism	and	Millean	empiricism	are	two	realist	ontologies	that	
are	 compatible	 with	 the	 evolved	 features	 of	 numerical	 cognition.	 Both	 meet	 the	
Benacerraf-Field	challenge	of	explaining	the	reliability	of	numerical	representations.	
For	 the	 structuralist	 account,	 direct	 interaction	 with	 structures	 is	 not	 required	 to	
know	 numbers,	 and	 for	 Millean	 empiricism,	 numerosities	 form	 a	 high-level	
generalization	of	the	properties	of	discrete	middle-sized	objects.	
	
6.	Conclusion	
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In	 this	paper,	 I	have	argued	 that	mathematics	and	morality	are	disanalogous	 in	an	
important	 respect.	 Mathematical	 beliefs	 seem	 to	 be	 less	 contingent	 upon	 our	
peculiar	evolutionary	history	 than	moral	beliefs	are.	 I	have	presented	evidence	 for	
invariantism	in	numerical	cognition:	numerical	cognition	occurs	across	many	animal	
clades,	 including	insects,	fish,	amphibians,	birds	and	mammals,	and	is,	according	to	
the	dominant	theories	on	numerical	cognition,	subserved	by	two	systems:	the	ANS,	
which	 deals	 with	 larger	 collections	 of	 items	 through	 approximation,	 and	 an	 exact	
system	for	small	numerosities	up	to	3	or	4	(the	OFS).	Numerical	information	plays	a	
crucial	 role	 in	animal	decision-making.	Animals	across	widely	different	clades	show	
similar	 cognitive	 limitations	 and	 strategies	 in	 dealing	 with	 numbers,	 including	 an	
ability	 to	 deal	 with	 numbers	 across	modalities.	 Neural	 evidence	 suggests	multiple	
instances	of	convergent	evolution.	If	animal	minds	have	hit	upon	these	solutions	so	
many	 times	 independently,	 this	 would	 be	 a	 formidable	 coincidence	 which	
antirealists	would	need	to	explain.	Of	course,	INC	also	requires	an	explanation	under	
the	 assumption	 of	 mathematical	 realism.	 In	 particular,	 the	 Benacerraf-Field	
challenge	 asks	 the	 mathematical	 realist	 to	 explain	 the	 reliability	 of	 mathematical	
beliefs.	 If	 this	 were	 in	 principle	 impossible	 to	 achieve,	 this	 would	 undermine	 our	
mathematical	beliefs,	according	to	Field	 (1989).	The	Benacerraf-Field	challenge	can	
be	cashed	out	in	terms	of	safety:	the	realist	needs	to	show	that	we	could	not	easily	
have	had	false	mathematical	beliefs.	
	 I	 showed	 that	 ante	 rem	 structuralism	 and	 Millean	 empiricism	 provide	 a	
solution	to	the	Field-Benacerraf	challenge:	they	can	explain	the	reliability	of	animal	
numerical	 beliefs,	 and	 thus	 by	 extension	 of	 human	mathematical	 beliefs	 that	 are	
based	 upon	 them,	 such	 as	 the	 belief	 that	 11	 follows	 10,	 or	 that	 7	 is	 prime.	 	 My	
argument	 does	 not	 provide	 an	 evolutionary	 justification	 of	 more	 formal	
mathematical	beliefs,	such	as	those	involved	in	set	theory.		
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