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HOW TO GET ABOUT. The American Express and
Cooks have circular bus tours of the region.

[Eugene] Fodor’s Guide to Europe, 1967

Can concepts be learned? Jerry Fodor argued that they cannot be, that
the very idea of concept learning is “per se confused”.! Concepts may be
innate, they may be acquired through various non-rational processes that
we shouldn’t count as learning, but, according to Fodor, they cannot be
learned.

Here’s his argument:

(1) If there were concept learning, it would have to be by a process of

hypothesis testing.

(2) Concepts cannot be learned by hypothesis testing, on pain of circular-
ity.
Therefore,

(3) There can be no concept learning.

In broad brushstrokes, there are two options for resisting this argument:

deny premise (1) or deny premise (2).

“For helpful discussions, thanks to Christopher Blake-Turner, Kirstine la Cour, Keith
DeRose, Daniel Ferguson, Daniel Greco, Joshua Knobe, Joanna Lawson, Jason Stanley,
Zoltan Gendler Szab6, Nadine Theiler, and a reviewer for Mind & Language.

ISee Fodor (2008, Ch. 5), as well as Fodor (1998, Ch. 6). In Fodor (1975), Fodor had
made a similar argument towards the conclusion that most of our concepts are innate. But
in the later work I will be discussing, he tempered this conclusion, allowing that many
concepts may be acquired in some way, just not through learning. The earlier argument
also turned on the claim that most of our concepts are atomic, but the later arguments
make no use of this.
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Denying premise (1) is a popular strategy. According to many, we can
learn concepts in ways that are not any kind of hypothesis testing. Some
would grant Fodor that these are not really rational processes—whatever
exactly that amounts to—but reject his assumption that learning must be a
rational process.? Others hold that some such learning processes are rational
processes, and so reject (1) even granting this assumption about learning.?
I find this latter variant of the strategy congenial, and defend it in other,
in-progress work.

What I want to do here, though, is grant premise (1) and take the less
popular route of denying premise (2). A few others have attempted this,
but I will be showing a new way it can be done.* It will involve putting
two ideas together. The first is an idea from the metaphysics of ability
that goes back at least to Kenny (1975): for an important sense of “ability’,
actuality does not entail ability. I'll use this to argue that there is a gap in
Fodor’s defense of premise (2). The second idea allows us to exploit this
gap, showing how concepts can be learned by hypothesis testing in a non-
circular way. The idea, which comes from recent computational cognitive
science, is that the kind of hypothesis testing involved in human learning
is stochastic, involving generative random sampling, as in Monte Carlo
methods used to approximate Bayesian inference. I'll call this approach to
denying premise (2) the Monte Carlo Way.

1. Fodor’s Circle

To start, we need to see how Fodor defends premise (2). Why does he think
learning concepts by hypothesis testing would be viciously circular?

ZFor responses that explicitly deny that learning must be a rational process, see Margolis
and Laurence (2011, p. 518) and Sundstrém (2019).

3See Sterelny (1989), Weiskopf (2008), Margolis and Laurence (2011, p. 519), Carey
(2009), Carey (2011, p. 162), and Carey (2015).

See Margolis and Laurence (2011) and Buijsman (2019) for other arguments against
premise (2).
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Hypothesis testing is just standard inductive inference. One begins with
some candidate hypotheses (coming from who knows where—their origin
is beyond the scope of inductive logic, or indeed any kind of logic, as far as
Fodor is concerned). Then one tests these hypotheses on the basis of how
well they conform with one’s experiences, perhaps by eliminating them
until one is left with just a single hypothesis, perhaps by assigning prior
conditional probabilities and updating by conditionalization, perhaps by
some other algorithm. Fodor does not go into the details about how this
process might actually work, presumably because he thinks his argument
will go through no matter what the details are.

Concepts cannot be learned by any kind of hypothesis testing, Fodor

claims, because this would involve a vicious circle. Here’s the argument.”
(i) To learn a concept C by hypothesis testing, you must consider a

hypothesis about c-hood, which can then be confirmed by experience.

But (ii) if you consider a hypothesis about c-hood, you must already be able
to think thoughts about c-hood.

So (iii) you must already possess C in order to do the relevant hypothesis

testing.

So (iv) learning a concept by hypothesis testing presupposes that you already
have the concept.

But (v) learning a concept would require that you did not already have the
concept prior to the learning.

So (vi) hypothesis testing cannot be a way of learning a concept.

This is Fodor’s Circle.
We might try to get out of Fodor’s Circle by denying (v), along the same

lines as Plato’s response to Meno’s Paradox, as some interpreters read it.°

>See Fodor (1998, pp. 123-124) and Fodor (2008, pp. 138-140).
®See, e.g., Fine (2014, Ch. 4).
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On this view, one might really learn C through hypothesis testing even
though one had the concept all along. But this would amount to challenging
merely the letter of Fodor’s conclusion rather than its substance.

A more promising way out is to reject (i). To do this, one would need
to describe a way of testing hypotheses without having the hypothesis in
mind, as Margolis and Laurence (2011) do, or a means of learning a concept
C by hypothesis testing without confirming hypotheses about c-hood, as
Buijsman (2019) does. No doubt such proposals will be controversial, but I
myself do not wish to stir up any controversy about them. If rejecting (i)
works, so much the worse for Fodor’s argument.

The way out that I want to explore, though, does not need to deny either

(i) or (v). Instead, it denies (ii).

2. Ability, Actuality, and a Gap in the Circle

Fodor’s Circle turns on two assumptions about abilities. One is that there is
a connection between abilities and concept possession, which Fodor makes

explicit:

Ability Implies Concept Possession (AICP)
“A sufficient condition for having the concept C is: being able to think
about something as (a) C (being able to bring the property C before
the mind as such, as [Fodor] sometimes put[s] it).”

Fodor (2008, p. 138, Fodor’s emphasis).

AICP is required to make Fodor’s Circle work, since it is what allows us to
infer (iii) from (ii). If one could have an ability to think of something as a c
without having the concept C, then one could test the relevant hypothesis
without already having the concept, so the threat of circularity would
dissipate. But Fodor takes AICP to be self-evident, and I am happy to grant
it.
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The second assumption, which is left implicit, is about how ability

relates to actuality.

Actuality Implies Ability (AIA)
If someone actually ¢’s, then they had the ability to ¢ when they ¢’d.

Fodor needs to assume AIA, since otherwise there would be no reason to
accept (ii), which is just an application of AIA to abilities to think.

Fodor’s Circle involves inferring from the fact that someone actually
considers (and so thinks) a hypothesis involving the concept C to the
conclusion that that person already had the concept C. For this inference
to work, we need to be able to infer from someone’s ability to think a
thought to their possession of the relevant concept, as AICP allows. But we
also need to be able to infer from the fact that someone actually thought a
hypothesis to the conclusion that they had the ability to think it. This is what
AIA allows when applied to abilities to think. Without it, or something
very much like it, Fodor’s Circle will have a gap, since the learner might
actually consider a C-involving hypothesis without having the ability to
think C-involving thoughts, in which case AICP would not kick in to get us
to the conclusion that they already possess C.

Perhaps Fodor didn’t highlight AIA because he didn’t notice he was
relying on it, or perhaps he took it to be so self-evident that it didn’t need to
be mentioned. Some others have taken AIA to be a clear conceptual/analytic
truth: “of course”, says J. L. Austin, “it follows merely from the premiss
that he does it, that he has the ability to do it, according to ordinary English”
(Austin 1956, p. 175). Suppose we're debating about whether Annika
can sink this putt, for example. If she misses, this might not settle the
question—perhaps she has the ability, but something went wrong in this
case. However, if she in fact sinks it, this would seem to conclusively show
that she did have the ability to sink that putt. So it may seem that AIA is on

firm ground.
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Moreover, it is natural to think that statements of abilities are equivalent

to corresponding modal statements using can.

(1) a. Annika is able to sink this putt.
b. Annika can sink this putt.

And it seems plausible to understand the can’s of such statements as
possibility modals with some kind of metaphysical flavor.” But all it takes
to make a possibility modal of this kind true is the existence of a single
accessible world where the prejacent is true. And since the actual world
should always be an accessible one when we’re dealing with metaphysical
modality (actuality should imply possibility), truth of the prejacent in the
actual world will suffice for truth of the modal sentence, and hence for the
equivalent ability claim. In other words, a natural account of the meaning
of ability statements lends further support to AIA.

However, things are not so rosy for AIA, as metaphysicians have long
observed, going back at least to Kenny (1975). At least on one ordinary
understanding of is able to (and the relevant sense of can), actuality does not

imply ability. To see why, consider the following cases.

Lucky Hole-in-one

Bob is a terrible golfer, often badly messing up even easy shots. On
this occasion, though, he luckily swings with decent form, then a
lucky bounce off a tree and unexpected gust of wind carries his ball
into the hole for a hole-in-one. Though Bob in fact hit a hole-in-one,
he did not have the ability to hit a hole-in-one.

Random 58-ball
As part of an assignment for her statistics class, Cindy is drawing
balls from a bag. There are 10,000 balls in the bag, each labelled with

a different numeral from 1 to 10,000. Cindy does not have a special

’See Hilpinen (1969), Kratzer (1977), and Kratzer (1981).
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technique which allows her to draw the ball labeled ‘58", and so does
not have the ability to draw the 58-ball. She shakes up the bag, draws
a ball at random and, it turns out, draws the 58-ball. However, this
does not mean she had the ability to draw the 58-ball after all.

Kenny (1975, p. 136) gives the example of a hopeless darts player who hits
the bullseye once in his life, despite lacking the ability to hit the bullseye, as
well as his own inability to correctly spell ‘seize’, which he actually spells
correctly about half the time. There will be potential counterexamples to
AIA, Kenny observes, “whenever it is possible to do something by luck
rather than skill” (ibid.).

Cases like these—along with a slew of other arguments—have been
used to show that a straightforward possibility modal analysis of ability
modals cannot be right. At least some abilities require something besides a
single possibility where the relevant event happens, so we need to analyze
abilities (and statements about abilities) in some other way.® So what does
it take to have an ability? This remains a contentious issue. Analyses have
been proposed in terms of conditionals, other kinds of modality, generics,
dispositions, and combinations thereof. We need not decide between these
for present purposes. What’s important is that such cases show that at least
for one ordinary sense of ‘ability’, one might actually do something without
having the ability to do that thing. For this kind of ability, where ¢-ing
depends too much on luck or randomness, AIA fails.’

Now we can see that there is a gap in Fodor’s Circle, and so also in
his argument against the possibility of concept learning: Fodor implicitly

relies on AIA, but AIA is false. We can also see, at least schematically,

8Besides Kenny (1975), see Mele (2003), Vihvelin (2013, Ch. 1), Maier (2015), and
Mandelkern, Schultheis, and Boylan (2017), though see also Schwarz (2020) for a recent
defense of a version of the possibility modal analysis. For an argument that possibility is
not necessary for ability, which would be another blow to the possibility modal analysis,
see Spencer (2017).

“There may be other senses of “ability” on which AIA holds, an issue which we will
discuss in §4.4.
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how concept learning by hypothesis testing could be possible. One might
actually consider some hypotheses involving C while lacking the ability
to think C thoughts. In which case one may not already possess C, even
while testing a hypotheses that involve it. And through confirmation of
such hypotheses, one may come to possess C.

The mere schematic possibility of concept learning is interesting. It
shows us that Fodor has not in fact established that “it’s true and a priori
that the whole notion of concept learning is per se confused” (Fodor 2008,
p- 130). And this is so even if we grant him his premise (1)—that concept
learning would have to be done by hypothesis testing—and his premise
(i)—that to learn C by hypothesis testing, one would need to consider a
hypothesis about c-hood. In thinking about how to respond to Fodor’s
argument, it is significant that we can grant even what has been most
contested but still resist his conclusion.

But beyond this negative point, it is not yet clear how seriously we
should take the possibility of concept learning by the route just described.
After all, the exceptions to AIA seem to fall within a fairly limited class.
Usually doing something does suffice for showing one has the ability. It
seems only to be where there is significant luck or randomness involved
that AIA fails. Is there reason to think that there is a possible method of
induction that could involve one actually considering hypotheses without
having the abilities to think those hypotheses? And even if there is some
such possible method, is there any reason to think that humans ever learn
concepts in something like this way?

In the next section I'll argue that a mainstream line of work in cognitive
science shows that the answer to both of these questions is “Yes”. We
should take the possibility of concept learning by AIA-violating hypothesis
testing seriously, not just as a way to poke a hole in a famous argument of
Fodor’s, but as a way to make sense of how we may in fact acquire concepts

through a rational process.
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3. The Monte Carlo Way Through the Gap

3.1 Bayesians and their Generative Sampling Algorithms

On Bayesian approaches in cognitive science, various cognitive processes
are cast as problems of inductive inference, where the aim of the processes
is to approximate a Bayesian ideal.’® According to this ideal, one starts
with some prior subjective probability distribution P(h) over hypotheses
in a given hypothesis space H, as well as likelihoods P(d|h) specifying
how likely the observation of some data d is supposing & is true. Then,
as one makes observations, one updates these prior probabilities to get
posterior probabilities via conditionalization, in accordance with Bayes’
theorem, which require that the posterior probability of & is proportional to
the product of its prior probability and its likelihood, relative to the sum of

the products and likelihoods for all the hypotheses i’ € H:

P(dlh)P(h)

POd) = < Pl yP()

From perception to language learning, motor control to emotion recog-

nition, there are now Bayesian models that have reached a high level of

t.ll

rigor and empirical support.” Of particular relevance to us are the impres-

sive advances in understanding concept learning using Bayesian models,

WFor overviews, see Griffiths, Kemp, and Tenenbaum (2008) and Perfors, Tenenbaum,
Griffiths, et al. (2011). For more philosophically oriented discussions, see Rescorla (2015),
Rescorla (2016), and Icard (2018).

Two clarificatory observations: first, cognitive scientists can use Bayesian methods for
data analysis and modelling without committing to Bayesian models in the relevant sense,
just as population biologists can use Bayesian methods without taking populations to be
doing Bayesian inference. Second, though there are important commonalities, most of
the Bayesians I will be discussing are not advocates of the Predictive Processing models
defended by Friston (2010), Hohwy (2013), and Clark (2016).

1gee, e.g., Perfors, Tenenbaum, and Regier (2011), Xu and Tenenbaum (2007), Kersten,
Mamassian, and Yuille (2004), Kérding and Wolpert (2004), Ong, Zaki, and Goodman
(2015).
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primarily due to Joshua Tenenbaum and his collaborators, to which we will
soon return.'?

Bayesian approaches have long been among the main contenders for
thinking about norms of inductive inference among statisticians, philoso-
phers of science, and epistemologists.”> The Bayesian turn in cognitive
science is more recent, largely because performing the relevant compu-
tations used to be intractable. This meant Bayesian models were neither
useful to scientists for making quantitative predictions nor attractive as
hypotheses for how cognitive processes actually work.

This changed with the advent of computationally tractable algorithms
for approximating Bayesian inference, together with an increase in com-
putational resources. Cognitive scientists now find themselves with tools
that allow them to easily determine quantitative predictions of Bayesian
models of a variety of cognitive processes, and have often found these
predictions to be borne out.* And this has not been merely an advance in
modellers’ tools. Interestingly, certain quirks of these algorithms—aspects
in which they systematically diverge from Bayesian ideals—have been
found to be reflected in human behavior. Many cognitive scientists have
accepted a natural explanation of this: that human minds use some such
methods in perception, judgement, inference, learning, and so on. More
specifically, many Bayesian cognitive scientists hold that human brains com-
pute probabilities using sampling methods to approximate ideal Bayesian

inference.'®

12This work goes back his dissertation, Tenenbaum (1999). Milestone publications
include Tenenbaum et al. (2011), Lake, Salakhutdinov, and Tenenbaum (2015), Lake,
Ullman, et al. (2017).

13For overviews, see Earman (1992), Easwaran (2011a), Easwaran (2011b), and Sprenger
and Hartmann (2019).

4On the increase of Bayesian modelling in cognitive science due to computational
tractability, see Lee and Wagenmakers (2013, p. 7).

15Gee Tenenbaum (1999), Griffiths, Vul, and Sanborn (2012), Denison et al. (2013), Vul et al.
(2014), Sanborn and Chater (2016), Icard (2016), Thaker, Tenenbaum, and Gershman (2017),
and Lloyd et al. (2019). Proponents of the Predictive Processing variant of Bayesianism
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How do these sampling methods work? There are many varieties,
tull specifications of which would require getting more involved than is
necessary for our purposes. Instead, I'll give an informal overview of one
popular class of sampling methods: Markov chain Monte Carlo methods.'®

In general, Monte Carlo methods are algorithms that use random sam-
pling to approximate exact solutions to various problems. Suppose, for
example, we want to find an integral of some complicated function of
several variables. Rather than computing it analytically, which may be
impossible, or through some deterministic approximation algorithm, which
may be intractable, we can approximate the solution by drawing many
random samples from a uniform distribution over the domain, evaluating
the function at those samples, taking the average of these results and multi-
plying it by hypervolume of the domain. This will approximate the solution,
and the more samples we take, the more accurate the approximation is
likely to be. The result is a method for determining the integral to an
arbitrary degree of precision in a relatively tractable way.

For some problems, as in the integral case, the random sampling can be
done from a uniform distribution, or some other standard distribution that
can be straightforwardly sampled from. In other cases, however, this won't
do. In particular, this won’t work for estimations of Bayesian posterior
probabilities. Intuitively, to estimate a posterior probability or likelihood,
we would want to sample from the posterior distribution itself—so that
we are more likely to draw samples from regions where the posterior
probability is higher. But we usually don’t have any way of doing this,
assuming that the posterior probability is difficult to compute directly.

Fortunately, there are Monte Carlo methods that circumvent the need

claim the human mind uses a different kind of approximation method—variational
methods—to approximate Bayesian inference. See Sanborn (2017) for a comparison.

1®Many of the articles cited above provide relatively accessible overviews of these and
other sampling methods. For more detail, see Kruschke (2010, Ch. 7), MacKay (2003, Ch.
29), and Andrieu et al. (2003).
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for directly sampling from the target distribution. Markov chain Monte Carlo
(MCMC) methods, for example, do this by by taking a biased random
walk through the sample space. So long as we can compare the relative
posterior likelihoods of our samples, we can keep the higher likelihood
samples, throw out a portion of the lower likelihood samples, and ‘explore’
the space in a way that spends more time in higher likelihood regions,
resulting in a collection of samples whose frequencies approximate the
posterior probabilities. Among other applications, MCMC methods can
allow for approximations of various features of an ideal Bayesian posterior,
even when computing these features analytically is intractable. For this
reason, cognitive scientists have proposed that MCMC methods are used
in a variety of cognitive processes that involve hypothesis testing. In §3.3,
we'll discuss a concrete example of such a proposal for concept acquisition.

For the issue at hand, the crucial fact about these algorithms for hypoth-
esis testing is that they do not proceed by considering and evaluating all of
the hypotheses in the hypothesis space, but instead proceed by generative
random sampling. Since the hypothesis spaces in question may be infinite
(or finite but enormous), going through all the hypotheses cannot be done,
so these methods generate and evaluate only a relatively small collection
of samples from the hypothesis space in a way that manages to be rep-
resentative of the whole space. And not only do they generate merely a
very sparse portion of the space, they generate the samples randomly. And
this kind of randomness is just what we need for an AIA-violating process.
Generative random sampling approaches to inductive inference, we’ll see,
show that the way of non-circular concept learning by hypothesis testing
suggested in the previous section is not a mere schematic possibility useful
for making a philosophical point, but a real candidate for how at least some
concept learning actually works.

Before spelling out how concept learning could work by generative

random sampling, though, two remarks are in order. First, we might want
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to ask whether using such algorithms really counts as hypothesis testing.
I assume this particular kind of hypothesis testing is not one that Fodor
had in mind. Nevertheless, this is how hypothesis testing is often done in
the quantitative sciences, and how many psychologists think it is done in
much of human cognition. We could read Fodor’s premise (2) in such a
narrow way that it excludes MCMC methods, and may thereby avoid the
impending counterexamples. This is an uninteresting response, however,
since it just moves the argumentative bump in the rug, making the present
proposal an objection to premise (1) rather than premise (2), in a way that
obscures important differences between the Monte Carlo Way and other
ways of objecting to Fodor’s argument.

Second, it is worth noting that there have been various objections
from both philosophers and psychologists to Bayesian models in cognitive
science, at least when such models are construed in realistic ways.17 There
have also been replies to these criticisms.'® Strictly, these debates do
not affect my primary aim, which is to refute Fodor’s claim that concept
learning is impossible. Since the criticisms of Bayesian modelling do not
purport to show that it is impossible that the mind works in these ways,
they do not undermine my use of these theories to show that concept
learning by hypothesis testing is possible. Nevertheless, my argument will
be more interesting if the Bayesian program is on the right track and an
approximately Bayesian way of learning concepts is how we learn at least

some of our concep’cs.19 In that case, we will have an idea of not just how

7See Jones and Love (2011), Eberhardt and Danks (2011), Colombo and Series (2012),
Marcus and Davis (2013), Marcus and Davis (2015), Block (2018), Colombo, Elkin, and
Hartmann (2019), and Mandelbaum (2019).

18See Goodman, Frank, et al. (2015), Zednik and Jikel (2016), Icard (2018), and Rescorla
(2020).

¥Though it should also be noted that it is not Bayesianism per se that will be doing the
work. What will be important to my account is the use of generative random sampling in
hypothesis testing. This can be separated from many of the claims Bayesians make—a
generative random sampling algorithm for hypothesis testing need not approximate any
kind of Bayesian norm—so they need not be right about all the important aspects of their
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concepts could be learned, but how they are learned. This is not the place to
adjudicate these debates. For now I will simply assume that the Bayesian
approach, or some other approach relying on generative random sampling,
is at least a serious option worth exploring for understanding how the
human mind in fact works. If it can provide us with a counterexample to

Fodor’s premise (2), this would be a result of considerable interest.

3.2 The Monte Carlo Way

We've seen that Fodor’s argument that concepts cannot be learned through
hypothesis testing turns on an application of AIA. But AIA fails for just the
kind of process that many cognitive scientists propose is our actual way of
doing hypothesis testing. Putting these ideas together, we can show how
Fodor’s Circle can be avoided in principle, and may well be avoided in
practice.

Just as Cindy actually drew the 58-ball without having an ability to
draw the 58-ball, someone might actually think a thought without having
the ability to think that thought. This might happen if thinking the thought
is an unlikely result of a random process. So if an agent does hypothesis
testing through an MCMC method, the fact that they actually sampled the
hypothesis /1 out of the vast hypothesis space H is a very unlikely result
of a random process. So it may well turn out that they did not have the
ability to think /, even if they in fact thought it. And so they may have
considered a hypothesis involving a concept C even if they do not have the
ability to think C-thoughts. So their actual consideration of that hypothesis
does not show that they already had the concept, even granting that having
such an ability suffices for having the concept. And it may be that they
acquire an ability to think C thoughts as a result of confirming h. So if

we accept the cognitive scientists” proposal that concepts are acquired by

view, just this one component of it.
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some random sampling-based method of hypothesis testing in learning
concepts, then we’ll have avoided Fodor’s Circle. It is possible—and indeed
plausible—that we learn concepts through hypothesis testing.

That’s the Monte Carlo Way out of Fodor’s Circle, stated relatively
abstractly. It will be useful to see how it applies to a concrete theory of

concept acquisition.

3.3 A Monte Carlo Way of Learning about Magnets

After making relatively few observations of some domain of objects, children
generate and adopt theories of how objects in this domain work and why
they work this way. Ullman, Goodman, and Tenenbaum (2012) give an
account about how children discover and adopt these theories, and how
they learn new concepts in the process.?’ To illustrate how the Monte Carlo
Way works in practice, let’s look at how it applies in the case of Ullman et
al.’s account of how children learn theories of magnetism.

Ullman et al.’s account of theory learning has a few important parts. To
begin with, there is assumed to be some data about the domain in question.
This consists of some observations the child makes about, for example,
which objects stick together or repel each other. The child is assumed to be
trying to learn the correct theory of the domain in question. In Ullman et
al.’s framework, theories are taken to be conjunctions of laws which specify
conditions under which certain properties and relations hold. For example:
a theory might have as a part the law that if F(objectl) and F(object2), then
R(objectl, object2). Since a theory is just a statement of relational laws, to
connect it to the world we also need a specification of which objects have
which properties. In other words, children are also interested in which
model of the correct theory is the right one.

To learn a theory, children start with a hypothesis space determined

2See Bonawitz et al. (2019) for a recent follow up offering more fine-grained empirical
support for a model of this kind.
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by a probabilistic rewrite grammar. Beginning with a start symbol, the
grammar allows it to be transformed according to a variety of transition
rules, each with a specified probability, eventually resulting in a string
of terminal symbols that cannot be rewritten. In this case, the string of
terminal symbols is a theory—a statement of a conjunction of laws. Each
resulting theory will have a probability assigned, thus all the ‘grammatical’
hypotheses will have prior probabilities. Among the transformation rules
will be rules which allow the introduction of arbitrarily many predicate
and relation terms.

The posterior likelihood of a theory given some observed data is given by
the probabilities of all the possible models of the theory and the how likely
each model makes the observed data. So we have an infinite hypothesis
space of theories, and the likelihood of any particular theory is given by
what happens with a huge range of possible models satisfying that theory.
This is just the kind of case calling for an approximation algorithm.

Following Goodman, Tenenbaum, et al. (2008), Ullman et al. propose a
grammar-based MCMC algorithm that samples theories from the posterior
distribution over theories conditioned on the data. To start, an initial
theory from the hypothesis space is randomly generated. The likelihood of
this theory given the observed data is estimated by a separate sampling
algorithm over the models of the theory. Then the sampled theory is
modified in a random way, by replacing a randomly chosen part of the
theory with a randomly generated string from the grammar of theories. At
this point, the likelihood of the new theory is estimated, and compared
with the likelihood of the old theory. If the new theory makes the observed
data more likely than the old theory, then it is accepted as the new current
sample. If it doesn’t, it is accepted as the current sample with probability
proportional to the relative likelihoods of the data according to the two
theories. This process is repeated many times, exploring a small part of the

hypothesis space in a way that is random, yet biased towards theories that
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do a better job predicting the observed data.

One way to use the results of this process would be estimate a posterior
distribution over the hypothesis space, resulting in a probability distribution
over the theory space, rather than a single accepted theory.?! Ullman et al.,
however, treat the algorithm as a search algorithm, one trying to find the
most likely theory. So after a certain number of iterations of the algorithm,
the ‘current’ theory is treated as the accepted one, at least until new data
comes in.?

As with many other MCMC algorithms attempting to find a global
maximum—the most likely hypothesis—rather than the whole probability
distribution, Ullman et al.’s algorithm involves simulated annealing, which
over time reduces the chance that the learner will accept as a new sample
a theory with lower probability than the current sample.” This means
that the exploration will tend to stabilize in some local maximum of the
hypothesis space, but only after the search has been going for some time.

Using such an algorithm, a child can learn and come to use theories
containing predicates that do not already appear in any theory the child
already knows or any beliefs they already have, since among the rewrite
rules of the grammar that generates the hypotheses are rules for introducing
arbitrary new predicates which can be constrained by laws of the theory.
They may come to accept a theory that they had not been able to think prior
to running the algorithm.

Consider, for example, a child who after some observations accepts a

theory which groups objects into two classes: magnets, which are taken

Z'Which is one standard Bayesian approach to theory learning. See, for example, Thaker,
Tenenbaum, and Gershman (2017).

220n one view, this algorithm will be re-run every time one makes any observation, or
any observation involving the predicates of the theory in question. But one can imagine
restricting this in various ways. Perhaps, e.g., the algorithm is only rerun when one makes
a sufficiently surprising or puzzling observation.

Z3See Andrieu et al. (2003, pp. 18-20) for a discussion of simulated annealing in MCMC
algorithms more generally.
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to attract one another; and non-magnets, which neither attract each other
nor are attracted by magnets. Suppose at this point they have never had
any thoughts about objects which we would call magnetic but not magnets:
objects which are attracted by magnets but which do not attract each
other. After making some new observations and running the Ullman et
al. algorithm again, the child might ‘consider” a theory which postulates
the property of being magnetic, as a random modification to the simpler
theory they currently accept. Since such a theory will make the observed
interactions more likely, it will be accepted as a replacement for simpler
theories, and will be what they use to think about the objects they encounter,
as well as their starting point for later runs of the algorithm.

According to Fodor’s Circle, this cannot be a case of concept learning,
since in order to think hypotheses about objects’ being magnetic, the child
must have already been able to think of objects” being magnetic, so must
have already had the concept maGNETIC. And this is where the Monte Carlo
Way applies: the child does in fact think of an object’s being magnetic while
considering this hypothesis, but since AIA is false, it does not follow that
they already had the ability to think of an object’s being magnetic. Indeed,
since in the first instance they only managed to think this thought as an
unlikely result of this particular random ‘toss’ of theory generation, it is
just the sort of case where we expect AIA to fail. We can suppose that at the
time, nothing else they might have done or thought would have brought it
about that they would think of objects as magnetic. So we should not say
that the child already had the ability to think of objects as being magnetic
at the time they considered the hypothesis in question. So even assuming
AICP, we do not need to grant that they already possessed the concept.

So it is reasonable to hold that the child starts without the ability to think

MAGNETIC-involving thoughts.** And they also end up with such an ability

24Perhaps one might say the child already thought of things being magnetic, but confused
this with their being a magnet. For approaches to modelling this kind of confusion, see
Ripley (2018) and works cited therein. Whether something like this is the right approach
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as a result of doing hypothesis testing. As part of a search algorithm, they
consider a hypothesis with maGNETIC (still without having the ability to
think such thoughts), which is confirmed relative to their previous theories
by the data. Because of this, this hypothesis will be accepted as the new
sample, and so will be the base for further exploration of the hypothesis
space. This will make it highly likely that the next theories to be considered
will also involve maGNETIC. And if, as is plausible, the theory that is in
accepted at the end of the search involves it, it will be available to be used
by the child to understand and make predictions about their environment.
So as a result of the confirmation of the first theory with maGNETIC they
considered, the child will come to have the ability to think thoughts with
MAGNETIC, and by AICP, must have the concept by this point. And given that
they come to have this ability through the hypothesis being confirmed, it
seems that they have in fact learned macGNETISM through hypothesis testing.

Concept learning by an AIA-violating kind of hypothesis testing is a
plausible theory of how we actually come to have many of our concepts.
The Monte Carlo Way successfully gets us out of Fodor’s Circle.

4. Obstacles Along the Way

There are several important objections to the Monte Carlo Way. I will now

consider and answer some of the most pressing ones.

4.1 Rationality with Randomness?

Even if we grant that MCMC algorithms can count as hypothesis testing,

we might worry that the kind of randomness involved keeps them from

in this case will turn on delicate issues about concept individuation which I concede might
go either way. But this is just a special feature of the magnet case that won’t be present
in general. Some additions to theories will not be closely enough related to the previous
theories to reasonably count as modifications as opposed to addition of concepts.
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counting as rational processes. If we came to have a concept as a result
of a random process, how can this count as acquiring it in a rationally
evaluable way, as opposed to a matter of dumb luck? So if we’re going
along with Fodor’s claim that a process must be rationally evaluable to
count as learning, doesn’t this method of hypothesis testing fail to count as
learning? In which case, we can resuscitate Fodor’s argument by replacing
‘hypothesis testing” with ‘rationally evaluable hypothesis testing’.

In reply, we should observe that even if the random sampling itself
cannot be a rational process, this does not mean the process leading to
the acquisition of the concept is non-rational. Not every part of a rational
process needs itself to be a rational process. And there are many rational
processes that involve randomness in significant ways (see Icard (2019)).

It is also important to note that on the picture presented in §3.3, MAGNETIC
is acquired not just because it is part of a theory that is randomly sampled,
but because such a theory is confirmed by the data relative to the previously
sampled theory. Had it been disconfirmed, the algorithm would have
probably returned to the previous theory, rather than stabilizing in the
region of theories that include maGNETISM. The proposed learning process,
then, crucially involves a stage of epistemic evaluation. So it is not only as a
result of random sample being generated that one acquires the concept.

These points, I think, are enough to answer the objection. A fully
satisfying defense of this process being a rational one would require us to
defend a theory of what it takes for any process at all to be rational, and
show that it applies in this case. But this is a task for another time. For now
I will just say that the randomness involved does not give us good reason
to think that this cannot be done.

4.2 Representing H without Representing /?

Here’s another worry: doesn’t the learner using an algorithm like Ullman

et al.’s need to be able to represent the hypothesis space H from the

preprint | 2021-06-03 | dtfg-1.3 | mike.deigan@rutgers.edu



Don’t Trust Fodor’s Guide in Monte Carlo 21

beginning? And wouldn’t this require them to already be able to represent
each hypothesis i € H? But then the learner would need to have the
concepts required for being able to think any of the theories they could
come to have, be it MAGNETIC or CARBURETOR, Which lands us right back
in Fodor’s conclusion: this cannot be a way of learning concepts, since it
requires that one possess the concepts already.?

First, it is not clear that the learner needs to represent H. They just
need to be able to generate hypotheses in accordance with the probabilistic
rewrite grammar that determines H and the learner’s prior’s over it. Even
granting that this requires some explicit representation of the grammar’s
transition rules and their probabilities, it is not clear that this should suffice
for holding that the agent is thereby representing H as a whole.

Second, even if we grant that this would count as representing #, it
does not follow that this must count as representing each 1 € H. One
might ‘cognize’ a natural language without representing each grammatical
sentence in the language, perceive the speckled hen without representing
each particular speckle, and think of the set of real numbers without each
real number being such one represents that number in particular. So even
if we say that the learner must be able to represent H in order to learn via

some Bayesian approximation algorithm, this does not mean they already

Indeed, Ullman et al. themselves seem to concede as much:

There is a sense in which, at the computational level, the learner already must
begin the learning process with all the laws and concepts needed to represent
a theory already accessible. Otherwise the necessary hypothesis spaces and
could not be defined. In this sense, Fodor’s skepticism on the prospects for
learning or constructing truly novel concepts is justified. Learning cannot
really involve the discovery of anything “new”, but merely the changing of
one’s degree of belief in a theory, transporting probability mass from one
part of the hypothesis space onto another.

Ullman, Goodman, and Tenenbaum (2012, p. 478)

And though they immediately go on to say that there is also a sense in which learners do
make genuine discoveries of new concepts and laws, I think they’ve already conceded to
much to Fodor here.
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need to be able to represent each of the theories which they might come to
consider through running the algorithm.

Nevertheless, there remains a concern. The learning algorithms in
question don’t require just any representation of H, but one which allows
for sampling its members. But how could one sample from it if the
individual potential samples aren’t already there? For Cindy to draw the
58-ball out of the bag, the 58-ball must already be in the bag. And it seems
the only way the members of H could already be there to be sampled would
be by their each being represented. So it looks like the learner using an
MCMC algorithm does need to be able to represent each hypothesis before
they come to consider it.

This concern, however, turns on pushing the balls-from-a-bag picture of
sampling beyond its appropriate limits. The approximation algorithms in
question, and the Ullman et al. algorithm in particular, rely on generative
random sampling. The samples are not sitting in a mental bag to be drawn
from when required. Rather, they are constructed on the fly according to
a partly randomized procedure. In the Ullman et al. algorithm, what’s
required is some procedure which is able to generate theories specified
by the hypothesis grammar with the probabilities determined by those
given for the grammar’s transition rules, as well as a procedure for taking a
previously generated output from the grammar, randomly picking a place
to modify it, and generating a new theory in H on that basis. None of this
requires that the theories in H are already represented by the learner prior
to running the learning algorithm any more than being able to generate
some sentence in English, or some sequence of legal chess moves, requires
that you already had a representation of that sentence or that sequence of
chess moves.

Nor does being able to generate any member of H imply that for any
member of H, one can generate it. It's not just AIA that fails for this kind

of randomized process, but also distribution of ability over disjunction,
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as Kenny (1975, p. 137) also pointed out. Cindy has the ability to draw
a ball from the bag—i.e., has the ability to [draw the 1-ball vV draw the
2-ball v...V draw the 10,000-ball]—this does not mean she has the ability
to draw the 1-ball A the ability to draw the 2-ball A... A the ability to
draw the 10,000-ball. What's required for the relevant sampling algorithms
are abilities to generate samples from H, but these do not imply that one
already has abilities to think each member of H. So one need not have
the concepts required for thinking each member of H in order to run such

algorithms.

4.3 Evaluating h?

It is important to the proposal we’re considering that the learner not only
think a given hypothesis /, but also evaluate it. The proposal is one about
how concepts are learned through hypothesis testing, not mere hypothesis
generation. An objector might allow that coming up with /4 in the first place
could be the result of a random process that doesn’t require an ability to
think /, but deny that the evaluation stage could be performed through
luck or randomness, and so take it to require an ability to think /. On the
Ullman et al. account, evaluation will involve estimating the likelihood of i
by generating many models satisfying the theory it expresses and checking
whether the observed data obtain in those models. This use of & seems
systematic, not like a matter of luck. So mustn’t the learner already be
able to think / after all, at least at the point at which it is being evaluated?
Circularity threatens once again.

To avoid the threat, we should distinguish between being able to ¢ and
being able to ¢ from a position partly along the way to ¢-ing. The latter
need not entail the former. To see this, consider the following variant of

Lucky Hole-in-one.

Lucky Birdie
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Bob is a terrible golfer, often badly messing up even easy shots. On
this occasion, though, he luckily swings with decent form, then a
lucky bounce off a tree and unexpected gust of wind carries his ball
onto the green within a foot of the hole. He then makes the easy putt
for a birdie. Though Bob did in fact birdie, he did not have the ability
to birdie.

Through luck, Bob is put in the position far along the way to getting a birdie.
He does have the ability to follow through and birdie from this position, as
a matter of skill rather than luck. However, at no point does he have the
ability to simply birdie the hole. In particular, we should not think that
once the ball has landed on the green Bob has suddenly acquired the ability
to birdie the hole. He continues to lack this ability, as the lucky darts player
continues to lack the ability to hit the bullseye in the millisecond before
their dart in fact hits it. If Bob were to play the hole again, he would almost
certainly fail to birdie.

We can say something similar about the learner’s evaluation of h. Partly
through luck, the learner comes to consider /. They may then, from this
position, be able to follow through and successfully test /1 by generating
models of it and so on. Like Bob’s putting, this follow-through may be a
matter of skill rather than luck, and may be quite systematic. However, at
no point does the learner need to have the ability to simply think or test /.
In particular, we should not think that once / has been generated, a learner
originally unable to think or test & has suddenly acquired the ability to
do so. They acquire such abilities, on this proposal, only once / has been
sufficiently confirmed and the learning algorithm stabilized on it through
simulated annealing. Until then, if faced with with similar data or other
good occasions for thinking or testing h, the learner would almost certainly
fail to do so.

If this reply to the objection is on the right track, we will want our theory

of concept learning to tell us about the details of the postulated ability to
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evaluate a wide range of generated hypotheses. This will likely be bound
up with details about how the generated hypotheses are in fact represented,
another issue that deserves a more thorough treatment than can be given
here. And it should be emphasized that it is an empirical question whether
in human learning the generation of some hypotheses depends on luck
until they have been sufficiently confirmed. One can imagine learners who
acquire the ability to rethink some thought as soon as they’ve generated
it once, regardless of whether it has been confirmed or disconfirmed. We
should thus not take the reply here to be the end of the theoretical story.
It aims only to show how we can coherently hold that a learner might
evaluate & in the systematic way outlined by Ullman et al. without taking

the learner to already have an ability to think /.

4.4 What Kind of Ability?

Distinguishing kinds of ability has a venerable history in philosophy. So
when applying a claim about ability to some particular philosophical issue,
one must take care to avoid a bait-and-switch, and check that the kind of
ability that the claim is true of is the right kind of ability for the philosophical
application at hand. One might worry, then, that even if AIA fails for certain
kinds of abilities, it does hold for the relevant kinds of abilities, in which
case the Monte Carlo Way looks like a dead end. That is, if AIA fails for
the kinds of abilities that concept possession entails, then I have not found
a good way of responding to Fodor’s argument against the possibility of
concept learning by hypothesis testing.

To turn this concern into a proper objection, we would need to identify
a kind of ability for which AIA is valid, then plausibly claim that this sense
of ability suffices for concept possession, as AICP requires. But this is by
no means an easy task.

It is plausible that ‘able to” is ambiguous in English, and that one of the
senses does indeed validate AIA. Bhatt (1999, Ch. 5) observes that ‘was able
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to” has different implications when it is read as an episodic way, as in (2-a),

and when it is read in a generic way, as in (2-b).

(2) a. Yesterday, John was able to eat five apples in an hour.

b. Inthose days, John was able to eat five apples in an hour.

AIA fails for the generic reading, for processes that turn on luck or random-
ness in a significant enough way. On its episodic reading, however, ‘able
to” is basically equivalent to ‘managed to’. And it is at least plausible that
actuality suffices for possessing ability in this sense, even when the result
was a matter of luck: perhaps yesterday, Bob was able (managed) to hit a
hole in one, Cindy was able (managed) to draw the 58-ball, and Kenny’s
darts player was able (managed) to hit the bullseye.

The problem for turning this into an objection is that on this sense of
‘able to’, ability is not just sufficient, but necessary. If someone didn’t ¢,
they didn’t manage to ¢, and so were not, in the relevant sense, able to ¢.
And no serious view of concept possession can require one to be actually
thinking of bears in order to have the concept BEAR. So there is no reason to
take this to be the kind of ability closely connected with concept possession.

As far as I know, there is no good reason to take the ordinary English
sense of “able to” to have any other readings. So at least if the objector is
looking for a suitable sense of ‘ability” in English, I do not think their search
will succeed. Perhaps, though, no ordinary sense of ‘able to” is suitable for
serious theorizing about the mind, and so we need to stipulate a technical
sense of ‘is able to” instead. And perhaps the right technical sense of ‘able
to” will be one on which AIA holds. So there is still hope that this objection
will block the Monte Carlo Way out of Fodor’s Circle.

Well, perhaps. Fodor himself did not specify any technical sense of
‘ability’, but this doesn’t mean it can’t be done. The trick would be to specify
some sense of ability for which AIA fails but AICP still holds (whether
self-evidently or not). I cannot rule out that someone could find such a
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sense, but I am skeptical. In order to validate AIA, the sense of ability
will need to be a fairly weak one. But why should we care about such a
weak sense of ability for theorizing about concept possession? My own
suspicion is that the notion of ability will need to be precisified for certain
theoretical purposes, but that what we’re likely to find is that it is still a
relatively robust form of ability—one for which AIA fails—that we take to

entail concept possession.

5. Conclusion

Since AIA is false, there is a gap in Fodor’s argument against the possibility
of concept learning by hypothesis testing. Models of learning that rely on
generative random sampling sail neatly through this gap. Concepts can
be learned through hypothesis testing, and it is plausible that this is how
humans learn at least some of their concepts. We can escape Fodor’s Circle
by taking the Monte Carlo Way.
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