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Abstract 

What does it take to have a causal understanding of complex hydrological 

systems from empirical time-series analysis? This is the starting point of the 

thesis focused on causality, which begins by introducing the facets of 

complexity. Complexity is related to the difficulty of understanding, which 

can be linked to the analysts, their ability to observe the system, elucidate it 

among all potential realities. Complexity could also be a trait of systems 

themselves presenting high dimensionality, nonlinear mechanisms, and a lack 

of self-organization. Understanding, nonlinearity, dimensionality, and 

organization, are the four angles investigated in this thesis and covered 

respectively in chapters 2, 4, 5, and 6. The last three are hydrogeological study 

cases applied to Lhomme Karst System, Rochefort, Belgium (LKS, Chapter 

3), given that karst systems are particularly heterogeneous and complex 

hydrogeological environments.  

In Chapter 2, the question of understanding the hydrological system is 

addressed from a philosophical essay on the concept of causality. The history 

of causality is traced from Ancient Greece to the present day, highlighting the 

major philosophical issues related to the concept while comparing them to 

epistemological issues in hydrology. The thesis provides a unifying and 

philosophical framework to address causality in science. Chapter 4 studies 

how the LKS affects the nonlinear behavior of the Lhomme River recession 

dynamics. A parsimonious method borrowed from the theory of nonlinear 

dynamical system is adapted for the case of recession analysis. Karst-induced 

nonlinearity is successfully detected in the LKS, while conventional methods 

of nonlinear recession analysis in hydrology do not reveal such an increase in 

complexity. Chapter 5 is focused on the dimension reduction of a time-lapse 

Electrical Resistivity Tomography (ERT) model of the subsurface above the 

Rochefort cave, using Time-Series Clustering (TSC). Using various time-

series representations, resistivity series are clustered to extract spatiotemporal 

temporal patterns using three different algorithms. Similarly, four causal 

inference methods, which reports the organization of time-series variables as 

a causal graph are compared in Chapter 6. Three different study cases are 

considered, among which a virtual experiment, a case aiming at detecting 

preferential flow path from drip discharge data within the cave and ERT 

spatiotemporal patterns, a case framing the systemic behavior of the Rochefort 

cave system using relative gravimetry data that monitor changes in the mass 
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balance. Both Chapter 5 and 6 bring methodological awareness respectively 

on the TSC algorithms and causal inference methods and the variability and 

robustness of the reported results. Their conclusions stress the importance of 

conducting sensitivity analysis in both cases and that confidence in the results 

comes from redundant patterns while varying the approaches. 

The conclusion makes consistent links between the philosophical framework 

and the potentialities and difficulties experienced in each chapter. It is 

concluded that what is needed to understand a complex system goes beyond a 

causal inference algorithm. It starts upstream with data, requires resources, 

questioning and philosophy, clear objectives, rationality rooted in plural 

approaches, and a scientific community with other skills, knowledge, and 

perspectives.  
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Chapter 1 Introduction 

“All science is the search for unity in hidden likenesses [...] 

order must be discovered and, in a deep sense, it must be 

created. What we see, as we see it, is mere disorder.”   

Bronowski 

Abstract 

Hydrological systems can both be perceived and studied as very simple or 

very complex systems. This introductory chapter first covers how 

hydrological systems can be characterized and modeled in a simple way with 

lumped hydrological models or hydrograph analysis. Beyond that, they remain 

challenging to understand because of the numerous alternative modeling 

approaches that have been developed to deal with the specificity of 

hydrological systems worldwide, and the lack of observables to constraint and 

limit the number of models. Intrinsically, hydrological systems are complex 

because of their heterogeneity and a large number of interacting variables 

(high-dimensionality). Mechanistically, hydrological processes are sensitive 

to initial conditions (nonlinearity) due to this heterogeneity, their high-

dimensionality, or the inherent nonlinear nature of hydrological processes, and 

the presence of thresholds ruling intermittent processes. If complex, they are 

nevertheless not random but organized, an emergent property of most systems 

allowing us to have both a generalized understanding of their behavior and to 

study them from various points of view that are not necessarily sophisticated. 

With empirical study cases developed on one of the most complex types of 

hydrological systems, i.e., karstic systems, the Ph.D. thesis investigates four 

topics: (1) What does it take to understand or know something, what is 

causality? (2) How to assess hydrological complexity from the nonlinear 

analysis of river recession hydrographs? (3) How to escape high-dimensions 

by identifying macro-level structures based on dynamic similarity? And (4) 

How to reveal robust causal relationships between hydrological variables?  
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1.1 Theoretical Background 

1.1.1 Hydrological Systems: the Simple Way 

Hydrology can be defined as a science that deals with the waters above and 

below the land surfaces of the Earth; their occurrence, circulation, and 

distribution, both in time and space; their biological, chemical and physical 

properties; and their interaction with their environment, including their 

relation to living beings (WMO, 2012). Since water involves necessarily 

interactions, hydrology is a systemic science. Systems themselves could be 

defined, among many other definitions, as an assembly of objects, processes, 

or concepts, most often interacting with each other, which are focused on or 

result in a specific outcome (WMO, 2012). The global hydrological cycle is a 

system. Still, systems are typically nested: they include many systemic units 

(e.g., terrestrial, oceanic, climatic, ecological, or social systems) while being 

themselves part of a broader system (e.g., the astrophysical system).  

In terrestrial hydrology, catchments are typical systemic units closed by a 

watershed defined according to an outlet. Catchments are made of different 

interrelated components such as the surface, soils, groundwater bodies, the 

channel network, or human-made infrastructures (e.g., dams, pumping wells). 

Mostly focused on terrestrial hydrology, Dooge (1968) describes a system as 

any structure, device, scheme, or procedure, real or abstract, that interrelates 

in a given time reference, an input, cause, or stimulus, of matter, energy, or 

information, and an output, effect, or response, of information, energy, or 

matter. In contrast with the former, this definition stresses the importance of 

the input-output relationship to characterize a system. Most commonly, 

terrestrial hydrological systems are indeed characterized while considering the 

mass balance equation (or continuity equation in the form of an ordinary 

differential equation) which assumes that the state of an hydrological system 

is given by the variation of its water content over time  (Δ𝑊𝐶, 𝑑𝑊𝐶/𝑑𝑡) 

responding to the total amount of water flowing in (𝑄𝑖𝑛) and out (𝑄𝑜𝑢𝑡): 

Δ𝑊𝐶 (or 𝑑𝑊𝐶 𝑑𝑡⁄ ) = 𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡  𝐸𝑞. 1.1 

This approach is not new. A first mass balance computation goes back to 

Perrault (1674) that succeed to close the annual mass balance of Seine basin 

in France (Δ𝑊𝐶 ≅ 0)  at the annual scale considering estimates of 

precipitation (𝑄𝑖𝑛) together with discharge and evapotranspiration (𝑄𝑜𝑢𝑡). He 
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concluded that rainfall was indirectly at the origin of springs. In doing so, he 

was at the same time reintroducing the modern vision of the hydrological cycle 

in Europe and pioneering modern hydrology (Bras, 1999). The mass balance 

is neither an outdated approach. For instance, the Gravity Recovery And 

Climate Experiment (GRACE) satellite mission allows to have a direct spatial 

and measurement of the variations of the water content (Δ𝑊𝐶), that is, a 

valuable closure to improve the global estimates of the mass balance 

components such as precipitation, evapotranspiration runoff or discharge 

(Wouters et al., 2014). Eq. 1.1 is extremely powerful to investigate any 

hydrological system and remains of an astonishing simplicity.  

In the case of the hydrology of a catchment area, the change in water storage 

is usually the unknown, and the hydrological analysis of the catchment area 

usually involves the three types of data mentioned above: precipitation, 

evapotranspiration, and discharge. The simplest conceptual models consider 

at least two subsystems or conceptual reservoirs also constrained by the mass 

balance (Eq. 1.1): a surface system and a groundwater or aquifer system 

(Figure 1-1). The storage of the surface reservoir 𝑆𝑠 is fed intermittently by 

the precipitation 𝑃. It loses water by evapotranspiration 𝐸𝑇 (surface 

evaporation and plant transpiration), through infiltration 𝐼 (or recharge) 

feeding the groundwater reservoir, and through a quickflow 𝑄𝑞 that responds 

rapidly to rainfall. The 𝑄𝑞 includes rapid hydrological processes such as 

surface runoff (or overland flow), or rapid subsurface lateral drainage. 

Quickflow is intermittent and becomes negligible once rainfall has stopped 

for a while. The mass balance of this top reservoir is Δ𝑆𝑆 = 𝑃 − 𝐸𝑇 − 𝐼 − 𝑄𝑞. 

Since 𝐸𝑇 and 𝑃 are input data, they can be grouped together into an effective 

precipitation input 𝑃𝑒𝑓𝑓 = 𝑃 − 𝐸𝑇 . The groundwater reservoir storage only 

responds to Δ𝑆𝐺 = 𝐼 − 𝑄𝑏, where 𝑄𝑏 represents the baseflow, or groundwater 

discharge that has a delayed response to rainfall events. The total river 

discharge 𝑄 is given by the sum of two components 𝑄𝑞 and 𝑄𝑏.  
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Figure 1-1: A simplified catchment hydrological system or lumped conceptual 

model. The model acknowledges three reservoirs: a Surface/Soil reservoir of 

storage 𝑆𝑆 fed by precipitation 𝑃 and emptied by evapotranspiration 𝐸𝑇, 

recharge or infiltration 𝐼, and quick surface or subsurface flows 𝑄𝑞; a 

Groundwater reservoir of storage 𝑆𝐺 taking infiltration as input and releasing a 

baseflow 𝑄𝑏; River discharge 𝑄 in the channel network sums up the fast 

contribution of quickflow and the delayed one of baseflow.  

Figure 1-1 is a universal archetype, but more composite model structures are 

most of the time considered. For instance, one may take into account two 

separate reservoirs for the surface and the soil system. Then, the surface 

reservoir produces a quickflow assimilable to surface runoff, and the soil 

reservoir produces another flow representing the subsurface flow, usually 

referred to as interflow, with a delay in between quickflow and baseflow. 

Technically, it is possible to stack up reservoirs in a cascade to simulate the 

river discharge, as the Nash cascade model does with linear reservoirs (Nash, 

1959). Intentionally, some would add them for their physical meaning: canopy 

water storage, different soils, or geological horizons. Whatsoever the number 

of modeling units, the mathematics of each abstract water reservoir is simple 

and aims at expressing the reservoir outflows 𝑄𝑜𝑢𝑡 (e.g., 𝑄𝑞, 𝐼, or 𝑄𝑏) as a 

function of the reservoir storage 𝑆. The relation is named the storage-discharge 

relationship. A common expression is: 

𝑄𝑜𝑢𝑡 = 𝑐𝑆𝑑 𝐸𝑞. 1.2 

where 𝑐 and 𝑑 are parameters. If 𝑑 is equal to 1, then Eq. 1.2 reflect a linear 

reservoir. Otherwise, the storage-discharge relationship is nonlinear.  

Regarding, the groundwater discharge or baseflow, Eq. 1.2 is well 

acknowledged (e.g., Hall, 1968; Tallaksen, 1995). For the modeling of 
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quickflow 𝑄𝑞, Eq. 1.2 should be applied considering a threshold storage value 

𝑆𝑇 to ensure the intermittency of surface or subsurface runoff processes:  

𝑄𝑞 = {
𝑐(𝑆 − 𝑆𝑇)𝑏 , if 𝑆 > 𝑆𝑇

0, if 𝑆 ≤ 𝑆𝑇
 𝐸𝑞. 1.3 

The excess water volume or depth, 𝑆 − 𝑆𝑇, is the one that is routed relatively 

quickly to the channel network. The delay and the transfer time depend on the 

parameters 𝑐 and 𝑑. It could represent runoff due to the exceedance of 

infiltration capacity (Horton, 1933) at the surface or due to the soil saturation 

and progressive rise of the water table (Dunne and Black, 1970). In catchment 

hydrology, Eq. 1.2 and 1.3 are not the most common equation to produce and 

transfer runoff amounts to the channel. Popular runoff production functions 

for catchment modeling are, for instance, the curve number method (SCS, 

1972) or the Green-Ampt infiltration model (Green and Ampt, 1911). A 

typical routing function is the unit hydrograph (Sherman, 1932a), which 

behaves as a linear transfer function. In general, the underlying principles 

behind runoff activation are thresholds and exponential production responding 

to an effective precipitation followed by a delayed routing.  

If one agrees on a conceptual model and its governing equations, then system 

identification is made when the optimal parameters are identified. One 

solution is to do it numerically with an implementation of the lumped 

catchment model and its equations. The hydrological model can be calibrated 

following a split-sample-test routine (Klemeš, 1986b) that divides the dataset 

into at least two periods. The first one is used for calibration, the second for 

validation. In most cases, the model is calibrated and validated by fitting the 

hydrograph, i.e., the total streamflow discharge 𝑄 (Figure 1-1). The fitting 

depends on an objective function. The Nash and Sutcliffe Efficiency (𝑁𝑆𝐸, 

Nash and Sutcliffe, 1970) is very popular: 

𝑁𝑆𝐸 = 1 −  
∑ (𝑄𝑠𝑖𝑚

𝑡 − 𝑄𝑜𝑏𝑠
𝑡 )

2𝑁
𝑡=1

∑ (𝑄𝑜𝑏𝑠
𝑡 − �̅�𝑜𝑏𝑠)2𝑁

𝑡=1

 𝐸𝑞. 1.4 

where 𝑄𝑠𝑖𝑚
𝑡  is the simulated hydrograph time-series of length 𝑁, 𝑄𝑜𝑏𝑠

𝑡  is the 

observed one with a mean �̅�𝑜𝑏𝑠. The highest 𝑁𝑆𝐸 gives the best model, up to 

a limit of 1, indicating a perfect fit. A negative 𝑁𝑆𝐸 indicates that the mean 

streamflow discharge is a better estimator than the model. If a good 𝑁𝑆𝐸 is 
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both obtained for the calibration and the validation period, the model could be 

used for operational or scientific purposes. The parameters or the internal 

variables that were inferred (e.g., 𝐼, 𝑄𝑞, 𝑄𝑏 in Figure 1-1) can be interpreted 

assuming that they are realistic. The model could also be used to design or test 

scenarios for scientific inquiry, water management, and support to decision 

making.  

Another solution to hydrological system identification is hydrograph analysis. 

Hydrograph analysis is usually divided into two complementary procedures: 

recession analysis and hydrograph separation (Brodie and Hostetler, 2005; 

Hall, 1968; Tallaksen, 1995). Recession analysis is focused on the analysis of 

sustained decreasing streamflow periods, particularly low flows, such that the 

quickflow 𝑄𝑞 is considered null and the recession periods of the hydrograph 

𝑄 data are reflecting the dynamic of the baseflow component 𝑄𝑏. If no aquifer 

recharge (𝐼 in Figure 1-1) is further assumed during the same periods, one can 

estimate the parameters of Eq. 1.2 from by analyzing the dynamics of 

recession. Since the groundwater storage is usually not observed, recession 

analysis relies on other dynamical expressions of the recession. The Brutsaert 

and Nieber (1977) model (B&N) is the primary framework for recession 

analysis: 

−
𝑑𝑄

𝑑𝑡
= 𝑎𝑄𝑏 𝐸𝑞. 1.5 

where 𝑑𝑄/𝑑𝑡 stands for the time derivative of the streamflow variable 𝑄, 

theoretically supposed to reflect 𝑄𝑏 thanks to a recession extraction method. 

The recession constant 𝑎 and the nonlinear exponent 𝑏 are recession 

parameters. Since the aquifer reservoir is supposed to decay exponentially 

(Eq. 1.2), the same holds for the recession rate −𝑑𝑄/𝑑𝑡. By applying a 

logarithmic transformation, Eq. 1.5 becomes linear: 

log (−
𝑑𝑄

𝑑𝑡
) = log(𝑎) + 𝑏 log(𝑄)  𝐸𝑞. 1.6 

Conveniently, fitting a line in the recession plot cloud reporting the  

log(− 𝑑𝑄 𝑑𝑡⁄ ) against the log(𝑄) allows estimating the recession parameters. 

Furthermore, 𝑎 and 𝑏 can be related to the aquifer reservoir characteristics, 

such as its thickness, porosity, or hydraulic conductivity (see Dewandel et al., 

2003; Troch et al., 2013). Regarding the terminology, the term linear recession 
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refers to the case where 𝑏 = 1, in which case the nonlinear exponent 𝑑 of Eq. 

1.2 is also equal to 1. However, the reservoir storage depletion or the recession 

dynamics remains exponential with respect through time. Indeed, the solution 

of the continuity equation (Eq. 1.1) for 𝑑𝑆 𝑑𝑡⁄ = −𝑐𝑆 is given by: 

𝑆(𝑡) = 𝑆0𝑒−𝑐𝑡 

𝑄(𝑡) = 𝑄0𝑒−𝑐𝑡 𝐸𝑞. 1.7 

Eq. 1.7 is widely used for linear recession analysis when a linear reservoir 

recession is assumed, and 𝑐 is the recession constant ruling the decay [𝑇−1] 

from an initial condition 𝑆0 or 𝑄0. Similarly, the recession constant 𝑐 can be 

estimated by applying the log transformation to Eq. 1.7 and fitting linearly 

individual recession segments. 

The next step of hydrograph analysis is hydrograph separation. It consists of 

the decomposition of the hydrograph time-series 𝑄 into its two components 

𝑄𝑞 and 𝑄𝑏. Hydrograph separation could be done in situ using tracing tests or 

chemo-physical analysis. Ex-situ, hydrograph separation relies on recursive 

digital filters that incorporate the recession parameters obtained from 

recession analysis, eventually calibrated based on tracing tests (e.g., 

Chapman, 1999; Eckhardt, 2005; Stewart, 2015). Hydrograph separation 

allows estimating water budgets holistically and identifying the relative 

proportion of baseflow in streamflow (referred to as baseflow index), 

monitoring groundwater and managing it to ensure the reliability of water 

supplies to ecosystems and human activities, among other purposes (see 

Brodie and Hostetler, 2005). Moreover, hydrograph separation offers the 

opportunity to investigate quickflow related processes and parameters related 

to surface characteristics (e.g., Blume et al., 2007), and is often the preliminary 

step to model floods and rainfall-runoff (𝑃𝑒𝑓𝑓 vs. 𝑄𝑞) relationships (Beven, 

2012b). 

1.1.2 Hydrological Systems and Complexity 

A simple conceptual model (Figure 1-1) formalized in a few relatively simple 

equations already provides a significant entry point to the study of the 

functioning of a hydrological system, whether through the reliance on lumped 

modeling, hydrograph analysis, or both (Kirchner, 2009). All these 

approaches are still widely used today. Nevertheless, terrestrial hydrological 

systems are often perceived or modeled as complex systems (see Bras, 2015; 
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McDonnell et al., 2007). Although widely used in science, complexity is not 

well defined, as noticed and discussed by Sivakumar (2017b). It is addressed 

here from four vantage points that help to explore the facets of complexity in  

hydrology. 

1.1.2.1 Complexity and Understanding 

A first intuitive definition of complexity would be “difficult to understand”, 

meaning “difficult to abstract or conceptualize”. It may also mean “difficult 

to predict”, however, a phenomenon may be easily predicted but hardly 

understood. To a certain extent, this definition is related to the person 

investigating the hydrological system. It may vary from person to person, just 

as what may be complex today for one person may become simple later on as 

long as the phenomenon is understood. It is, therefore, relative in time and 

from individual to individual. 

For this reason, Sivakumar (2017b) does not consider such a definition as a 

workable definition. Objectively and scientifically addressed, complexity 

should be a trait related to the characteristics of the real system, that is not the 

abstract or conceptual one. However, the individual relativity of 

understanding remains a scientific issue. For instance, Refsgaard et al. (2006) 

show the significant differences in the outcomes when a hydrological systems 

tackle from different conceptual perspectives (Figure 1-2, see also 

Vanclooster et al., 2000). In this sense, the fact that several unequivocal 

models exist may be an argument for claiming that hydrology deals with 

complex systems. Indeed, when one deals with a simple physical system such 

as the oscillation of a pendulum, such a diversity of models does not exist. 

However, the plurality of models is problematic when hydrology is supposed 

to provide unbiased facts and pieces of information to societal stakeholders 

(Kirchner, 2017; Saltelli and Funtowicz, 2014). Concurrently, this problem is 

not specific to hydrology, and we can generally speak of science in a crisis of 

reproducibility, and consequently, in a crisis of credibility (Saltelli and 

Funtowicz, 2017). 

In other aspects, the difficulty in understanding hydrological systems is not 

necessarily linked to the individual. It can be recognized at the community 

level, also for reasons that do not refer to the intrinsic properties of 

hydrological systems, but rather to the way we perceive or observe them. First, 

the relative complexity of hydrological systems could be imputed to the biased 
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perspective of scientific research. In that spirit, Beven et al. (2020) remind us 

that our perceptual understanding of hydrological systems (simplified in 

Figure 1-1) is quite good. However, we still expect that understanding in a 

science should grow over time (Sivapalan and Blöschl, 2017). This spirit 

drives scientists to engage in a complexity that Beven et al. (2020) call 

“sophistication” (idem for Sivakumar and Singh, 2012), but it usually results 

in improved predictions, and not in an overhaul of the basic perceptual model 

symbolizing our understanding. On the contrary, this ideal for improvement 

drives the development of a plethora of ever new and more sophisticated 

models that is sometimes referred to as cacophony (Dooge, 1978; Klemeš, 

1982; Sivapalan, 2006), and which casts doubt on our fundamental 

understandings of hydrology (e.g., Figure 1-2), reinforcing this sense of 

dealing with a complex subject. It is therefore important to distinguish 

between the complexity of a system and that of a model, which is more 

reflective of the choices made by the modeler, whether explicitly stated or not, 

and to his/her attention to detail. Hence, what is complex, is perhaps 

hydrological systems, but also, in a subjective way, hydrological models 

themselves while diving into model sophistication.  

 

Figure 1-2: Individual relativism of modeling outputs (adapted from Refsgaard 

et al., 2006). The conclusions of the five consultants regarding groundwater 

vulnerability to nitrate pollution using five different models (red: very 

vulnerable; dark blue: well protected). As extrapolated scenarios, no data exist 

to validate the model predictions. However, models rely on the same input data, 

indicating sharp conceptual divergences.   
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In that regard, hydrological systems are also difficult to understand, because 

challenging to observe and monitor holistically. The subjective sentiment of 

complexity could be related to the lack of data and to the practical difficulty 

of observing the internal physical states of hydrological systems (Blöschl and 

Zehe, 2005), especially beneath our feet (Grant and Dietrich, 2017). The 

Prediction in Ungauged Basins (PUB) decade initiative was launched by 

Sivapalan (2003) to impulse the development of innovative strategies to assess 

the hydrological behavior of poorly gauged catchments (Blöschl, 2013; 

Hrachowitz et al., 2013). Currently, improving data and their acquisition 

technologies are seen as a crucial driver to make progress in hydrology 

(Beven, 2019a; Beven et al., 2020; Sivapalan and Blöschl, 2017).  

In this respect, the ever-increasing availability of global hydrological datasets 

through satellite remote sensing offers new opportunities such as the direct 

monitoring of mass balance (Wouters et al., 2014), or the development of 

hyper-resolution global physically-based hydrological models (Sood and 

Smakhtin, 2015; Wood et al., 2011). The main challenges for these model of 

everywhere while diving into hyper-resolution is to remain relevant (Bierkens 

et al., 2015), given the remaining uncertainties in the remotely sensed dataset, 

the sustaining lack of knowledge about spatially distributed catchment 

processes and the importance of preferential flows in heterogeneous 

hydrological environments (Beven and Cloke, 2012). Indeed, it is now 

envisioned that physical representation of hydrological process for large 

catchment cannot systematically be derived from the laws derived from 

laboratory or hillslope experiments (Beven, 2000; Kirchner, 2006; McDonnell 

et al., 2007; Sivapalan, 2018). However, large scale hydrological experiments 

or testing is hardly conceivable as it is in general in Earth sciences. In 

particular, the physical representation of water flows in soils remains often 

based on Darcy-Richards equations that assume soil homogeneity. In some 

case, flows in an large heterogeneous medium can be modelled considering 

one homogeneous granular porous medium to account preferential flows, but 

their dynamics may deviate significantly from the descriptive behavior of this 

type of medium, making it impossible to obtain reliable results (Nimmo, 

2009).  

Preferential flows occurs due to local change in the hydraulic conductivity. 

This may occur due to soil heterogeneities funneling the flow into preferential 

flow paths, irregular soil moisture and air distribution patterns producing 

unstable flows, and very commonly due to the presence of macropores (ibid.). 
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These patterns of dual porosity are, however, ubiquitous, and explains the 

occurrence of fast flows and rapid spreads of pollutants where they should not 

appears (Beven and Germann, 2013). If at some point, it was expected that 

heterogeneities would disappear by pursuing finer spatial resolutions, 

Sivapalan (2018) reminds that they won’t, whatsoever the scale. In particular, 

advancing the physical process representation of preferential flows remains in 

practice very difficult since the structural organization of heterogeneities and 

the macropore networks in hydrological systems are particularly hard to 

observe and characterize.  

Finally, the difficulty of understanding hydrological systems could be due to 

their site-specificity, another reason for developing a plethora of models. All 

hydrological systems are unique simply because of their unique geographical 

location on Earth, an attribute called uniqueness of place (Beven, 2000). This 

uniqueness can extend to hydrological processes or the site-specific data. This 

fact has practical consequences related to hydrological modeling (see Beven, 

2000). Uniqueness could be seen as an intrinsic property of hydrological 

systems. However, it is also a state of mind. From an epistemological point of 

view, considering that each hydrological system is a conceptually unique 

system is a major impediment to the development of a unified theory in 

hydrology. On the contrary, the conceptual uniqueness of hydrological 

systems would oblige hydrologists to develop specific approaches, and the 

growth of hydrology as a science would be an extensive collection of specific 

and empirical knowledge like in an encyclopedia. So far, the development of 

a new unified theory of hydrology is still on the agenda and actively 

researched (Clark et al., 2015; Kumar, 2007; Sivapalan, 2006), and pursued 

with calls for synthesis (Blöschl, 2006).  

1.1.2.2 Complexity and Dimensionality 

A system is made of elements in interrelation (Dooge, 1968). Then, if we look 

for an inherent property of systems characterizing its complexity, counting the 

number of variables that interact (that is, the dimension) is a walkthrough. 

Thus, if we consider the spatial and temporal variability of the meteorological 

and hydrological variables interacting with the heterogeneities of the 

landscape, subsoil, and geology over large areas, we can very quickly imagine 

a system of high or even huge dimensions. Conceptual models (e.g., Figure 

1-1) can also quickly be accused of being unrealistic, excessively reductionist 

in the simplifying sense. At least since Freeze and Harlan (1969), many 



- 12 - Chapter I – Introduction 

hydrologists have moved away from the "system identification" approach in 

order to develop spatially distributed physically-based models pursuing more 

realism. These developments continue today but have been criticized. In 

practice, these models face the problem of equifinality of model parameters 

(Beven, 2006a). In other words, given the high dimensionality of the model 

and the lack of data to constrain it, many combinations allow good 

performance (e.g., Eq. 1-4). While predictions are often improved due to the 

model flexibility and its large degrees of freedom, the final parameters or 

internal state variables remain uncertain. Accordingly, Kirchner (2006) argues 

that such models are flexible marionette, correct in terms of hydrograph 

predictions but for the wrong reasons. In addition, physically-based spatially 

distributed models do not provide new understanding about catchment 

processes since they could be seen as a spatially distributed collection of 

lumped hydrological models (e.g., Figure 1-1; Figure 1-3) (Beven, 1989), 

based on the laws derived from laboratory and hillslopes experiments with no 

guarantees that they remain appropriate to describe processes occurring at 

large scale (Kirchner, 2006; McDonnell et al., 2007).  

 

Figure 1-3: Example of a physically-based karstic catchment model for flood 

forecasting (from Li et al., 2019, CC BY 4.0). The physically-based model is 

spatially distributed and grid-based representation of connected lumped 

reservoirs models.  
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Grayson et al. (1992) further argue that the idea of a positive correlation 

between model complexity (i.e., sophistication, section 1.1.2.1) and 

confidence in the results is a misperception, in part due to a lack of discussion 

on its capabilities and limitations. Besides, they are usually far from 

parsimonious since the information in the model space (parameters and 

internal variables) is highly redundant. Hence, the dimension of a performant 

high-dimensional model overestimates by far the intrinsic dimension of the 

real system. However, the question remains as to how to assess the intrinsic 

dimension of a hydrological system. Naturally, it is conceivable that the 

dimension of a hydrological model must be matched with the intrinsic 

dimension of the real system to achieve an approach that is neither too simple 

nor too complex, but parsimonious. Regarding hydrological modeling, some 

new paradigms have emerged in that regard. The first way is to remove 

redundant information from the model (dimension reduction). For spatially 

distributed models, grid mesh showing similar surface, soil, or groundwater 

characteristics could be grouped into functional lumped units, e.g., 

hydrological response unit (Flügel, 1995). Applying clustering methods 

before or after model calibration is also an option (Pagliero et al., 2019). Using 

information-theoretic methods, Loritz et al. (2018) investigate model 

compressibility. They showed, first, that only a portion of topographic 

information in the model is relevant for the simulation of distributed runoff 

and storage dynamics. Secondly, compressibility is not time-invariant, and, 

arguably, dependent on the hydrological state of the system. 

Besides, instead of picking predefined model, equations, or assumptions based 

on the modeler’s choice (e.g., Figure 1-2), a model could be conceived based 

on an iterative approach that looks back and forth to the data, starts simply 

and progressively complexify up to a satisfying result (e.g., Fenicia et al., 

2006). This flexible state-of-mind allows designing tailor-made or fit-for-

purpose models while learning during the design instead of relying on high 

dimensional fit-for-all-purpose models that blur our understanding (Savenije, 

2009). Nowadays, flexible hydrological frameworks allow testing rapidly 

various model architectures to select the optimal one (e.g., Clark et al., 2008, 

2011; Fenicia et al., 2011; Gupta et al., 2012). Within such a model, the final 

number of internal variables could be interpreted as the dimension of the 

system, where each variable has a physical meaning. 

Another approach would be to infer the dimension of the system from the 

output of the system, for instance, streamflow. First, signal decomposition 
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would allow to a certain extent by identify a number of component driving the 

signal. One can, for instance, identify harmonic components in the frequency 

domain of streamflow. This would allow us to identify the daily cycles in 

streamflow due to changes in solar radiation, temperature, and concurrently in 

evapotranspiration, as well as tidal or seasonal cycles. However, these cyclic 

components are ubiquitous in hydrological systems, and counting them will 

lead to the observation that hydrological systems have a similar dimension. 

They relate to patterns found in the external forcing rather than specific 

processes related to the hydrological functioning of the system. Considering 

these components as dimension would yield an underestimation. Indeed, they 

explain only a small part of the variability of the hydrograph, that in most case 

do not relate the hydrological processes of interest, which through spectral 

analysis, appears mainly as noise due to the random looking dynamic and 

occurrence of rainfall. 

In particular, Sivakumar and Singh (2012) propose to address complexity 

from the scope of the theory of nonlinear dynamic systems, or chaos theory 

(see Sivakumar, 2017a). An essential part of the chaos theory relies on the 

systemic concept of state space reconstruction (Deyle and Sugihara, 2011; 

Packard et al., 1980; Sauer et al., 1991; Takens, 1981). The state space is the 

𝐷-dimensional space whose coordinate axes are represented by the 𝐷 

explanatory variables of the system, where 𝐷 would be the physical dimension 

of the system. Within the state space, all states and trajectories (or orbits) 

visited by the system can be reported. The problem is that, generally, one 

cannot study the actual state space since the internal variable of the system are 

usually unknown (e.g., Figure 1-1). However, Takens, (1981) provides a 

popular method for state space reconstruction from only one variable time-

series, referred to as the delay embedding theorem.  

Intuitively, in an abstract and deterministic dynamical system ruled by a few 

ordinary differential equations, the state of the system will define the future 

trajectory of each variable (e.g., Eq. 1.1 to 1.3). Hence, the trajectory of one 

single variable is related to the state of all variables in the system. Takens thus 

proposes to analyze the trajectories of one single variable, recovered using 

successive delays, to reveal the dynamical structure of the whole system 

(Figure 1-4). The necessary number of delayed coordinates to unfold the 

dynamic is called the embedding dimension (𝑚), which could be interpreted 

as a complexity metric, however, potentially different than 𝐷 (see section 

4.2.2.1). Sivakumar and Singh (2012) propose instead to estimate the fractal 
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(i.e., not integer) dimension of the reconstructed systems, which reflect how 

the attractor manifold (the geometry drawn by the trajectories) tends to occupy 

the reconstructed state space. In the case of the Lorenz’s system (Figure 1-4), 

the fractal dimension is slightly above 2 because the wings of the butterfly 

extend themselves as a surface. In fine, Sivakumar and Singh (2012) propose 

the fractal dimension as a generic estimator of dynamic complexity that could 

guide the modelers in building models with a dimension that correlates with 

the intrinsic dimension of the modelled dynamic.  

 

Figure 1-4: Reconstruction of system dynamic from one time-series with 

Takens embedding theorem. The example shows the emblematic Lorenz 

system (1963), a simplified model of atmospheric or thermal convection, 

whose trajectories depict a butterfly. It is possible to reconstruct a pseudo-

system with the same characteristics from a single time variable and its 

successive lags (Takens, 1981). 

Finally, dimensionality, even if it is a characteristic that can be attributed to 

the real system, is related to complexity in a sense “difficult to understand” 

(section 1.1.2.1). Quite directly, a large number of variables impede the 

generalized conceptual understanding of the system. According to 

Koutsoyiannis (2006b), the quest for small dimensions of hydrological 

dynamics nourishes the hope of representing a complicated system with a few 

equations. The author nevertheless recalls the limitations of the theory of 

nonlinear dynamic systems and the necessity to discuss them with respect to 

the characteristics of hydrological time-series such as intermittency, noise, the 

time-series length, or the effect of high auto-correlation (also reviewed in 

Sivakumar, 2017a).  
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1.1.2.3 Complexity and Mechanisms 

Within a system, mechanical processes can reduce or expand the dimension 

of the dynamic if compared between the input and the output. The fact that 

streamflow data could be modeled with a simple conceptual model, 

incomplete data, and few ordinary differential equations (section 1.1.1, see 

also Kirchner, 2009) is proof by example. Indeed, rainfall is undoubtedly 

much more a random-looking both in space and time, high dimensional and 

less predictable than streamflow. A simple way to understand that is to look 

at Figure 1-5. The first device (a) is a Quincunx as designed by Galton (1889). 

Quincunx refers to the structure of offset obstacles through which marbles 

must pass to end up in a compartmentalized receptacle. Thanks to a funnel, 

the balls start their passage under similar initial conditions. Nevertheless, they 

remain sufficiently different to generate at the end, a random distribution that 

follows a normal law. The other device (b) is a conceptual rework such that 

the device is able to accept any random input and turn it into a deterministic 

outcome. These are drastic views. Most likely, a hydrological system such as 

a catchment exhibits both characteristics. Similar rainfall events occurring 

during similar environmental conditions will still produce some variability in 

the hydrograph response due to sensitivity to initial condition or high 

dimensional interactions. Conversely, similar hydrograph response may occur 

with different rainfall event at different environmental conditions. After all, a 

hydrological catchment or any closed drainage system defined by an outlet is 

like a funnel. 

Generally speaking, sensitive dependence to initial conditions (e.g., Figure 

1-5.a) is referred to as nonlinearity (Sivakumar, 2017b). All nonlinear 

dynamical and deterministic systems exhibit such a dependence up to the point 

they may yield to random-looking outputs. This is chaotic determinism. Even 

simple systems, such as the Lorenz system with three variables (Figure 1-4), 

could be chaotic. Hence, randomness is not solely imputable to high-

dimensionality (section 1.1.2.2). Consequently, the presence of nonlinearity 

affects the predictability of a system over the long term.  
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Figure 1-5: The mechanics of randomness and determinism. (a) the original 

Galton Quincunx (1889) able to generate a Gaussian random distribution from 

tiny differences in the initial input; (b) a reversed conceptual device able to 

generate a deterministic output from random input. 

Hydrological systems are inherently nonlinear as being sensitive to initial 

conditions (Sivakumar, 2017b). However, one would always expect some 

linear correlation between catchment input (effective precipitation) and its 

output (river discharge). Linearity implies strictly proportional relationships. 

Hydrological systems are, therefore, nonlinear but still present mainly 

monotonic relationships. For this reason, hydrology has mostly relied on 

linear methods to understand hydrological systems (e.g., Dooge, 1973), 

especially before the 2000s (Sivakumar, 2017b). According to Blöschl and 

Zehe (2005), the use of linear methods can explain the occurrence of poor 

predictions in hydrology. Otherwise, the nonlinear nature of the system itself 

affects its predictability, together with the lack of observability (section 

1.1.2.1). Nonlinearity in hydrology takes forms that have already been 

mentioned. First, nonlinearity is mainly associated with curvilinear or 

exponential relationships (e.g., Eq. 1.2, 1.5, 1.7, Brutsaert and Nieber, 1977; 

SCS, 1972). Typically, the groundwater hydraulic theory of groundwater 

suggest that the discharge of homogeneous aquifer is nonlinear (Eq. 1.5 with 

𝑏=1.5), but higher degrees of nonlinearities are found when the aquifer 

geomorphology is heterogeneous or anisotropic (Brutsaert and Nieber, 1977; 

Harman and Sivapalan, 2009b; Rupp and Selker, 2005; Troch et al., 2013). 
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Nonlinear recession patterns (Eq. 1.5) may result from the joint contribution 

of different reservoirs. For instance, the linear discharge (Eq. 1.7) of 

heterogeneous hillslopes in the landscape may explain the nonlinearity of the 

total streamflow in large catchments (Chen and Krajewski, 2015; Clark et al., 

2009; Harman et al., 2009).  

The other type of nonlinear mechanism are thresholds, which are crisp 

sensitivity to initial conditions behind the intermittency of hydrological 

processes (e.g., Eq. 1-3). Thresholds are behind processes such as surface 

runoff or macropore flow activation (Blöschl and Zehe, 2005; Wilson et al., 

2017; Zehe and Blöschl, 2004; Zehe and Sivapalan, 2009). In more general 

terms, they are conceptually behind any processes that may occur at some 

level of saturation or desaturation of a reservoir, true or abstract, affecting an 

hydrological system (e.g., relative humidity and condensation or rainfall, 

dam's spillway system, legal or illegal emergency reactions during floods or 

droughts). Thresholds or intermittency are problematic in terms of nonlinear 

time-series analysis. An intermittent process repeatedly switches from a 

dimension of 0 (a constant point, no trajectory) to a higher dimensional and 

nonlinear dynamic and vice versa. For this reason, intermittency leads to the 

underestimation of the dimension of intermittent dynamic (Koutsoyiannis, 

2006b; Sivakumar, 2001). Intermittency further violates the hypothesis that 

nonlinear dynamical systems never revisit the exact same point in the state 

space, i.e., the hypothesis of aperiodicity (Kantz and Schreiber, 2003; 

Sivakumar, 2017a). Surely, if one reconstructs a system (Figure 1-4) from an 

intermittent variable, he/she will not have information about the system states 

while the process is off.   

Nevertheless, threshold effects are sensitive to resolution and scales both in 

time and space. A daily rainfall time-series may contain approximatively 50% 

of zero values in Belgium, none in a monthly series. Spatially, thresholds are 

supposed to be less crisp over a large area because different thresholds occur 

at different places and times. Indeed, they could even disappear if we consider 

that a large watershed with perennial stream encompasses some of its 

subbasins that have intermittent streams or runoff axes. In that spirit, Brutsaert 

and Nieber (1977) already showed that the early stage of recession exhibit 

higher nonlinearity, most likely related to the presence of intermittent flow. 

Similarly, but from a spatial point of view, nonlinearity evolves within a 

catchment with changes in the extent of the open channel drainage network 

(Biswal and Marani, 2010). 
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As with dimensionality, the nonlinearity of natural processes can affect the 

processes of understanding (section 1.1.2.1). In simple terms, understanding 

favors linear explanations, even semantically, such as “rain causes floods”, or 

“wind increases evapotranspiration”. Whether someone who would respond 

to this assertion by saying “it depends”, although the answer is more correct 

than the assertion itself, the answer is far from a satisfactory explanation and 

most will agree on a “yes”. Linearity is interpretable by the brain and easily 

communicated. The very definition of nonlinearity is, in this sense, linear: the 

more sensitive dependence, the more nonlinearity. The popularity of the B&N 

model (Eq. 1.5) is also because, beyond its simplicity (section 1.1.2.2), it is 

linearizable (Eq. 1.6). Pragmatically, a scientist that uses nonparametric 

nonlinear methods may expect better predictability but will have more trouble 

to interpret and communicate the results, especially if the method is 

nonparametric, because it usually means that the model structure is not 

specified into a comprehensive and interpretable equation (section 1.1.2.1), 

and high dimensional (section 1.1.2.2) as many methods developed in the field 

of machine learning (Shen, 2018). 

1.1.2.4 Complexity and Organization 

Systems are typically organized, and another way to address complexity is to 

refer to the complexity of such an organization. Organization has various and 

often conflicting definitions (see Sivakumar, 2017b). In general, organization 

is a feature attached to the whole system. It presupposes some kind of order 

that arises from the general properties of systems: (1) boundaries or 

constraints, (2) while remaining open to allow storages and exchanges 

matters, energy, or information from and towards their external environment, 

and (3) internal interactions including feedback processes. Since the system 

contributes to its own level of organization, we speak of self-organization. 

From a physical point of view, dissipative  systems are open systems that share 

these properties. Nowadays, catchments are increasingly seen as dissipative 

systems (Kumar, 2007). They have boundaries in space (e.g., the watershed), 

but also in time since hydrological time-series are bounded by their extremes. 

They exchange water bi-directionally with the atmosphere, store water, 

release it downstream, and involve processes that include feedbacks and 

interactions (Figure 1-1). 

In practice, and often without resorting to the concept, organization is 

described in various ways. A general word that is often used in hydrology and 
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relates to organization is the term pattern (Sivapalan, 2006). To assess 

organization or patterns, it is first possible to describe static spatial features, 

such as the geometrical properties of the watershed or the surface drainage 

network, the spatial arrangement of topography, land cover and use, pedology, 

geology in an extensive qualitative way or relying upon summarized statistics 

or indicators. Similarly, one may look for time-invariant properties in the 

hydrological time-series, for instance, the statistical distribution or its 

corresponding moment. In particular, the cumulative probability of 

streamflow, also known as the flow duration curve, is an important 

hydrological signature characterizing a catchment (see, for instance, Figure 

3-3). Computing the long term relative contribution of flows to the mass 

balance or the hydrograph is also an option, e.g., done by the baseflow index 

revealing the long term importance of groundwater discharge in the 

streamflow (�̅�𝑏/�̅�). One could also estimate chaotic invariants such as 

indicators of the fractal dimension, or the sensitive dependence to initial 

conditions. In a way, the dimension reduction that is operated between the 

input (effective precipitation) and the output indicates a gain of order and thus 

reflects the organization of the system. Another way to picture organization 

statically is to present the causal relationship in a conceptual model (e.g., 

Figure 1-1). In general, when the causal relationships in a system are reported 

with directed arrows between variables, we speak of directed acyclic graphs 

or DAG (Pearl, 2000).  

Organization is also dynamic and varying on the short terms (e.g., Loritz et 

al., 2018). Then, organization is also reflected by the variations found in the 

time-series of the different hydrological components. They are revealed, 

temporally, spatially or both, by relying either on modeling, signal 

decomposition, or hydrograph separation. Historically, hydrology has been 

focused on the study and the reproduction of temporal patterns, e.g., by fitting 

the hydrograph. Accordingly, Sivapalan (2018) refers to it as the paradigm of 

hydrograph fitting. However, now that spatial data is becoming more and 

more abundant, hydrologists are more interested in studying the 

spatiotemporal patterns as well (Woods, 2002). In particular, the concept of 

hydrological connectivity (Bracken et al., 2013) highlights that not the entire 

area covered by the watershed contributes to discharge, but only the areas 

connected to the outlet, dynamically, depending on the hydrological state of 

the basin. In this spirit, the watershed could be an improper boundary for the 

system closure, which could be time-variant.  
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Finally, organization transcends scales as systems are typically nested into 

each other. Understanding the up or downscaling behavior of variables and 

processes both in space and time is an important topic in hydrology (Blöschl 

and Sivapalan, 1995; Klemeš, 1983), that has already been partially 

introduced with respect to the scaling behavior of dimensionality, a nonlinear 

processes or intermittency (section 1.1.2.2 and 1.1.2.3, and above).  

As with dimensionality or nonlinearity, organization, while an inherent 

property of natural systems, also affects understanding. First, for the reasons 

that were already discussed, because organization encompasses interrelations 

that are mechanically described (1.1.2.3) and involve several variables 

(1.1.2.2). Hence, a high-dimensional and nonlinear real system will be 

difficult to abstract into an organized conceptual one symbolizing our 

understanding. The other reason would be that understanding could also be 

seen as a system that includes boundaries, constraints, inputs, outputs, storage, 

exchange, interrelations, and feedback. In that sense, this Ph.D. is an output 

of a system, much larger than myself, that targets understanding, and I hope 

that the lower level boundary elements introduced in this background will 

allow understanding this work and its purpose, hopefully, with some level of 

organization.  

1.2 Ph.D. Project and Dissertation  

1.2.1 The MIGRADAKH project 

The Ph.D. project started in January 2017 funded by a FRIA grant provided 

by the Fonds de la Recherche Scientifique (FNRS, Belgium). The project was 

launched under the name “MIning GRavity DAta from a Karst Hydrosystem” 

(MIGRADAKH). The Ph.D. project follows another project started in 2013, 

Karst Aquifer ReseArch by Geophysics (KARAG, www.karag.be). KARAG 

allowed the hydro-geophysical investigation of the site studied in this Ph.D., 

which is the Lhomme Karst System (LKS, Chapter 3) next to the city of 

Rochefort (Belgium). KARAG has resulted in the publication of two Ph.D. 

dissertations firming up the understanding of the hydrological behavior of the 

system (Poulain, 2017; Watlet, 2017).  

The MIGRADAKH project was motivated by the fact that hydrology has 

always been mainly relying on a hypothetico-deductive approach. Whether 

based on simple (Figure 1-1) or more complex physical and possibly spatially 
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distributed models (e.g., Figure 1-3), these approaches assume how the system 

works, while its specificity is obtained through parametrization. Today, 

hydrology is turning more towards empirical approaches (Sivapalan, 2018) to 

the extent that our conceptual understanding is relatively uncertain beyond the 

basics (section 1.1.2, Figure 1-2).  

Initially, the goal of the Ph.D. project was to investigate new empirical, 

dynamic, and causal inference methods from the theory of nonlinear 

dynamical system to assess how empirical causality detection from time-series 

could recover hydrological or other causal connections in the LKS. The 

second objective was to investigate further how these empirical techniques 

could be used to develop physically-based karst models with a flexible data-

driven structure and closing the mass balance using local gravimeters 

(Delforge et al., 2017). However, the idea of being able to solve causality 

using an empirical method and nesting it in a physically realistic model was a 

bit presumptuous. Indeed, somehow, unveiling the causality of the 

hydrological cycle is the ultimate goal of hydrology (Blöschl et al., 2019). In 

investigating these methods, the Ph.D. ran up against their limitations, and the 

project remained focused on the potential of these methods.  

1.2.2 Thesis Outline 

1.2.2.1 Scope: Karst Systems and Beyond 

Among hydrological systems, karst systems are perceived as very complex 

ones. Their studies are particularly relevant in that they provide about 25% of 

drinking water supplies, occupy around 10% of the world's continental surface 

area (Ford and Williams, 2007), and are present in 21.6 % of European 

geology (Chen et al., 2017). Their complexity comes from the fact that karst 

systems develop on soluble rocks and, as a result, a particularly heterogeneous 

network of micropores and macropores (cracks, fissures, conduits, or caves) 

develops below the ground (Bakalowicz, 2005; Goldscheider and Drew, 2007; 

Hartmann et al., 2014; White, 2006). Beyond heterogeneity, karst systems 

exhibit the following features (ibid.; see also karst.iah.org): 

1. Evolution: they change over time and possibly with abrupt changes, for 

instance, through the collapsing, dissolution,  erosion, or the ghost-rock 

karstification (Dubois et al., 2014) processes; 



Chapter I – Introduction - 23 - 

 

2. Individuality (i.e., Uniqueness): because of the singular heterogeneities 

and the network organization of each karst system, their structure and 

dynamics are particularly unique (i.e., less generalizable); 

3. Lack of observability: the heterogeneities cannot be exhaustively 

characterized, and karst studies have to deal with insufficient databases; 

4. Anisotropy: hydraulic properties vary depending on the orientation of the 

geological materials and the fracture network; 

5. Duality of porosity: karst systems present at least a duality of porosity 

considering matrix microporosity and the macropore network. The duality 

of porosity also leads to the duality of flow (e.g., quick preferential flow 

and delayed matrix baseflow). 

6. Nonlinearity: the sensitive dependencies to initial conditions result from 

the heterogeneities, a higher number of natural reservoirs (high 

dimensionality), or duality of porosity and their threshold fill-and-spill 

effects.  

So far, all these characteristics, although exacerbated in the case of karst 

systems, are now seen as universal and challenging characteristics of 

hydrological systems (section 1.1.2). Furthermore, Hartmann et al. (2014) 

report that karst systems are still studied and modeled from the same simple 

lumped basis as exposed in section 1.1.1, but also from a wide variety of 

model (section 1.1.2.1, Figure 1-2) ranging between these simple lumped 

conceptions to high-dimensional spatially distributed, and physically-based 

(section 1.1.2.2) representations, with similar scaling issues (section 1.1.2.4, 

see also Kiraly, 2003). Finally, the concept of the watershed as a closure of 

the hydrological system is also challenged (section 1.1.2.4) in the case of karst 

systems (e.g., Bakalowicz, 2005). These are regularly delineated through the 

concept of connectivity, for example, by means of tracer tests (ibid.). 

Then, two reasons allow explaining why the scope of this thesis expands itself 

beyond karst systems. The first one is that, undoubtedly, from any initiative 

focusing on the conceptualization of karst systems will derive useful 

applications to understand hydrological systems in general. Secondly, the 

Ph.D. project is about conceptualization using empirical methods applied to 

time-series in general, that can be applied to all hydrological systems if not all 

systems monitored over time. 
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1.2.2.2 Thesis Content and Organization 

With empirical methods, the thesis explores, although non exhaustively, the 

four domains discussed in section 1.1.2, that are understanding, 

dimensionality, mechanics, and organization. As a second introductory 

section, Chapter 2 mines further the problems related to the development of a 

robust understanding of hydrological systems. For that purpose, the chapter is 

an epistemological essay that attempts to define what is causality based on the 

historical evolution of the concept in the philosophy of sciences, however, 

illustrated from the scope of hydrology. In Chapter 3, the study site and the 

data used for discussing the other themes are presented. In particular, Chapter 

4 develops a method to address catchment complexity by analyzing the 

nonlinear patterns in river recession data in the Lhomme catchment. Chapter 

5 is a comparative analysis relying on Time-Series Clustering (TSC), i.e., 

dimension reduction, to identify the major hydrological and lithological 

structures (hydrofacies) in the subsurface above the Rochefort caves from a 

high-dimensional electrical resistivity model. The last chapter investigates 

causal inference methods and their ability to reveal system organization as a 

causal graph. It combines a virtual experiment, a case studying hydrological 

connectivity between the surface and the percolation in the underlying cave, 

and a case focused on the general behavior of the Rochefort cave system 

relying on relative gravimetry data monitoring mass changes in the system. 

Since I study the surface river network, the karst subsurface, and the 

percolation patterns successively, the thesis structure can also be interpreted 

as diving progressively more in-depth into the karst.  

Chapters 2, 4, 5, and 6 are adaptations of scientific papers that were or will be 

submitted in the frame of this Ph.D. project. Publishing in a scientific journal 

most of the time, requires a specific and narrow focus on a specific problem, 

the scope of the journal, and the targeted audience. The particularity of these 

sections shall not hinder the understanding and follow-up of the general 

message of this thesis. To ensure it, these chapters are all preceded by a 

Foreword section allowing me to depict the broader context of these adapted 

publications. Moreover, such informal sections provide a storytelling angle to 

the thesis and report with transparency the initial intentions behind the 

research. From an epistemological point of view, the next chapter will cover 

why such transparency is also essential in science.  
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Chapter 2 Which causality for hydrology? An 

evolutionary perspective 

“When we try to pick out anything by itself, we 

find it hitched to everything else in the Universe.” 

  

John Muir 

Foreword 

Initially, the general and naive idea of the thesis was to use empirical methods 

to reveal the causal links, their arrangement, to build a physical model 

articulating on the revealed causal structure (section 1.2.1). The method of 

causal inference was the Convergent Cross-Mapping (CCM) method, which 

takes into account the nonlinear interactions between variables and, therefore, 

interesting to apply on a karst system. The first tests of this method revealed 

causal links that were difficult to support, such as local hydrological variables 

affecting precipitation. These illogicalities pushed me to feed an interest in the 

definition of causality, aside from my scientific investigations.  

Ideally, any starting point for a method is a definition that states principles. 

Then it is easier to think about how to turn them into a methodical approach. 

In scientific papers, the definition of causality is often avoided or barely 

introduced. Causality is succinctly linked to the identification of a cause and 

its effect, their mechanism, or defined in the negative, e.g., correlation is not 

causality. I believed that causality is closely related to epistemology, which 

studies knowledge and its limits. So, I conducted a parallel review of causality 

in the philosophy of science and a review of epistemological concerns in 

hydrology. Over the first two years of the project, my view of causality, and 

the way I would have defined it, changed constantly. It began to stabilize with 

the progressive writing of this chapter, started in summer 2019, followed by 

many exchanges with my supervisors. After valuable remarks by Bernard 

Feltz, philosopher of science at UCLouvain, the writing ended a year later. He 

helped me to sharpen the conclusion and chase away the few inconsistencies. 

A simplified version of this chapter is being considered for publication in the 

opinion section of the HESS journal.  
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Abstract 
 

Causality is a vague and controversial concept but persistent in the sciences. 

There is currently a growing interest in it. For the science of hydrology seeking 

to unify its theory of hydrological systems, this opinion assumes that a unified 

understanding of causality is the first requirement. Through a Darwinian 

evolution of causality in the Philosophy of Science from ancient Greece to the 

present day, causality is related to contemporary epistemological topics in 

hydrology such as the debate between theoretical or applied hydrology, the 

problem of change, the realism of models, whether physical or empirical, the 

different causal perceptions of hydrology among hydrologists and within 

society, or the view of hydrological systems as self-organized structures with 

emergent functions. Through the journey, the most recent and robust methods 

for measuring causality are reviewed, depending on whether causality is 

related to physical rationalism, empirical observation, psychological or 

societal perceptions of facts, or to an organized and systemic behavior. While 

all these approaches have fruitfully contributed to advances in hydrology and 

to the way causality is thought, there is a need for a definition of causality that 

encompasses them. As suggested, causality is grounded in the minds of a 

community that has integrated the past interactions with the real world into 

facts, theories, and methods characterizing its ability to infer further 

knowledge in the future and operate in the real world. Causal explanations 

emerge from this evolving system as stable, robust, constrained by logic, and 

testable consensus on how systems are conceptualized within the scope of 

science that fixes its context, limits, and purposes. More than a body of causal 

laws or theories, we argue that causality today has become a flexible analytical 

framework to guide and frame science in its quest for understanding and 

progress.  
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2.1 Introduction 

Which causality for hydrology? This idea of a plural causality contrasts with 

a conventional interpretation that expresses one intangible truth about the 

mechanisms of a phenomenon, and for which science should work to unveil 

their nature. Still, causality is a vexed question, and this definition is one of 

many. It has plural meanings inherited from its controversial history. 

Formalized in Ancient Greece, Aristotle suggested four types of causes aiming 

to provide the best explanations (Falcon, 2019). In the 18th century, Leibniz 

formalized the principle of sufficient reason, which states that any 

phenomenon in the real world shall have natural causes (Melamed and Lin, 

2018). At this time, causality was instead interpreted temporarily by the 

directed link between two successive events, the cause and its effect. 

However, the philosopher David Hume has shown that such a link cannot be 

demonstrated, relegating causality as a law to the rank of belief (Hume, 1738). 

In 1912, the mathematician, logician, and philosopher Bertrand Russell 

pointed out that the use of the term causality or cause, at that time, had 

disappeared from science and was just discussed among philosophers: “the 

law of causality [...] is a relic of the bygone age, surviving, like the monarchy, 

only because it is erroneously supposed to do no harm”.  

Today, three centuries after Hume and one after Russell, what is the status of 

causality in science? Figure 2-1 reports the trends in the percentage of 

scientific articles that use the specific terms “causality”, “causal”, “causative”, 

and “causation” in the title, keywords, and abstracts of scientific articles 

within the SCOPUS literature database (Appendix I for further details).  

All linear trends are significantly positive (p-value < 10-2), suggesting a come-

back either in the scientific interest or affinity with the concept of causality. 

Regardless of the domain (ALL), scientific articles refer today twice more 

than 20 years ago to the causality related terms in their titles, keywords, and 

abstracts. The relative use of the words is much more pronounced in Social 

Sciences (SS), Heath Sciences (HS), and Life Sciences (LS) articles compared 

to Physical Sciences (PS), or specifically to hydrological or water-related 

journals (HYDRO) given the historical influence of physics and engineering 

in hydrology. Several hypotheses can explain this schism. Russel’s opinion on 

a science free from the vagueness of causality, thanks to its method, may still 

be present in the Physical Sciences. Besides, speaking of a physical causal 
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relationship is somehow tautological. One could argue that in PS, physical 

means causal since a non-causal physical relationship is a non-sense. 

Paradoxically, the reliance on a causality-related terminology is the strongest 

in what are sometimes called inexact sciences (SS). Preferably, it could relate 

to system complexity: the more complex systems a discipline studies, the more 

causal terminology it uses. This potential pattern would explain the percentage 

differences between the HYDRO group and the AGRI and ENVI groups, both 

including publications related to the science of hydrology, but more focused 

on systemic concerns that involve more complex interactions.  

 

Figure 2-1: Trends in causality related terms in the titles, keywords, and 

abstracts of scientific articles (1999-2019) for all SCOPUS articles (ALL); the 

scientific domains of Social Sciences (SS), Health Sciences (HS), life sciences 

(LS), and physical sciences (PS); the specific subject areas of Agricultural and 

Biological Sciences (AGRI ∈ LS) and Environmental Sciences (ENVI ∈ PS); 

for articles whose source title contains the prefix 'hydro' or the word 'water' 

(HYDRO). 

In this opinion, causality is hypothesized as the cornerstone of all science, but 

its facets point to different conceptual meanings, making science seemingly 

fragmented. What is tacitly or explicitly meant by causality in the diverse field 

of science or between individual scientists is possibly different.  
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The same assumption could hold for hydrology, which is often described as 

fragmented science: 

1. Into sub-disciplines, based on the component of the hydrological cycle 

(e.g., surface, subsurface, groundwater hydrology). According to Klemeš 

(1982), the purpose of fragmenting sciences into disciplines and sub-

disciplines is to split the possibly infinite causal chain into segments, each 

containing only a few chain links; 

2. Into a physical fragmentation due to the uniqueness of every hydrological 

environment on Earth, further leading to their uniqueness of processes  

(Beven, 2000). This view considers that every particular system has its own 

causal laws threatening a unified understanding of hydrological systems.  

3. Between operational hydrology oriented towards engineering, 

management, decision making, or forecasting, independently of complete 

understanding of hydrological processes, and the science of hydrology 

which aims to understand these processes and expect to become 

autonomous regarding its hydraulic engineering background (e.g., 

Clifford, 2002; Dooge, 1968; Klemeš, 1986b). The dichotomy depicts two 

kinds of causality: one oriented towards pragmatism and the other towards 

understanding; 

4. Into a cacophony depicted by the jungle made of many physically-based 

hydrological models (Dooge, 1978; reiterated by others: Klemeš, 1982; 

Sivapalan, 2006) that have been developed since the physically-based 

paradigm introduced by Freeze and Harlan (1969). The latter is motivated 

by the idea that causality should specifically relate to physics to remain 

useful in extrapolated environmental conditions. Yet, dozens of physically-

based models exist (see Beven, 2012; Singh and Frevert, 2002a, 2002b), 

from simple lumped ones to hyper-resolution spatially distributed ones, all-

carrying causal views on their own. Complex models were supposed to be 

more physical as they tend to explain the hydrology from detailed 

discretized parts of the system and could, therefore, be attached to a 

reductionist, mechanistic approach referred to as Newtonian, bottom-up, 

or upwards approaches to causality (Klemeš, 1983); 
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5. Between empirical approaches, often more related to operational 

hydrology. Such methods have more emphasis on data modeling rather 

than physical process representation: data-based modeling (Young, 2013), 

stochastic modeling (Koutsoyiannis, 2016; Yevjevich, 1987), chaotic 

deterministic approaches (Sivakumar, 2017a), information-theoretic 

approaches (Goodwell et al., 2020; Singh, 2015), or deep learning 

algorithms (Shen, 2018). If Klemeš (1982) criticized these “let-the-data-

speak” approaches, they have never disappeared and may be carried out by 

researchers that have faith in their contribution to the causal understanding 

of hydrological systems. 

6. Between people: first, scientists since the methods mentioned above and 

scope of investigation divide researchers and possibly their opinions. 

Modelers using different models will come up with very different outputs 

and conclusions (Refsgaard et al., 2006; Vanclooster et al., 2000; Figure 

1-2). This fact is concomitant with a general reproducibility and, therefore, 

a credibility crisis in science (Saltelli and Funtowicz, 2017), and a further 

fragmentation between science and society. Some people do not trust 

scientists anymore in their neutral and objective ability to reveal facts and 

their causes (Kirchner, 2017).  

A genuine opinion about the fragmented status of hydrology should be 

balanced considering the numerous initiatives that seek to unify hydrologists 

around a theory (Beven, 2006b; Dooge, 1986; Kumar, 2007; Sivapalan, 2006), 

synthesize the current knowledge (Blöschl, 2006; Blöschl et al., 2013), or 

bring focus on research questions and grand challenges (Blöschl et al., 2019; 

Montanari et al., 2013; Sivapalan, 2003). Despite the weak use of causal 

vocabulary in the front end of articles (Figure 2-1), it is between the lines of 

these initiatives that the importance of causality is acknowledged:  “the 

exploration of the underlying causal mechanisms, will ultimately become the 

basic elements of the new theory of hydrology at the basin scale” (Sivapalan, 

2003); “The reaction of society to change is necessarily related to its causes 

and therefore an informed quantification is needed” (Montanari et al., 2013); 

“[…] the science of hydrology where the ultimate goal is to understand 

hydrological causality”(Blöschl et al., 2019). 

In particular, the view of causality has changed through the way the 

community considers models, that are, causal representations of hydrological 

systems. Some hydrologists advocate for the reconciling of operational 

hydrology and the science of hydrology for some sake of consistency between 
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theory and practice (e.g., Koutsoyiannis, 2014). Complex physically-based 

models have been subject to significant criticism for decades (Beven, 1989; 

Grayson et al., 1992; Kirchner, 2006; McDonnell et al., 2007). Even if 

physically-based, they were increasingly referred to as perceptual, conceptual 

models, or just hypothesis, agreeing that a compromise must be reached 

between simplicity and complexity and that new physical laws suitable for the 

large catchments shall be discovered. On the one hand, the progress in model 

evaluation and comparison allowed to constraint the jungle by identifying the 

best models, their parameters and structures, made more comfortable with the 

development of flexible modeling frameworks (e.g., Clark et al., 2008, 2011; 

Fenicia et al., 2011; Gupta et al., 2012). On the other hand, simple physically-

based models and empirical models have recovered their complementary 

merits (Hrachowitz and Clark, 2017; Koutsoyiannis, 2016; Savenije, 2009; 

Todini, 2007). Empirical models are now proposed as a new paradigm to 

address causal inference in Earth Sciences (Goodwell et al., 2020; Meyfroidt, 

2016; Rinderer et al., 2018; Runge et al., 2019b). They were also progressively 

seen as viable top-down approaches to highlight laws for large catchments, 

and hydrologists advocates for a merging of bottom-up and top-down 

approaches (Klemeš, 1983; Sivapalan, 2006; Sivapalan et al., 2003). Today, 

the top-down approach also focuses on the study of higher-level emergent 

watershed patterns that arise from a watershed organization (Kumar, 2007; 

Sivapalan, 2006). As a result, hydrologists have moved away from single-

watershed modeling to the comparative analysis of watershed patterns and the 

development of an appropriate classification framework based on 

hydrological similarity (e.g., Wagener et al., 2007). Emerging from this task 

of comparison and classification of populations of watersheds, the Darwinian 

hydrological approach, by analogy to the evolution theory, asks the question 

of how some watersheds became what they are (Harman and Troch, 2014). 

In general, hydrology has evolved from an engineering or physical science of 

place to become an Earth science that should be regarded as empirical 

(Sivapalan, 2018). Some authors go so far as to call hydrology an inexact 

science (Beven, 2019b; Beven et al., 2020). New branches have emerged 

aiming to bring hydrology closer to other disciplines, such as ecohydrology 

(Eagleson, 2002) or sociohydrology (Sivapalan et al., 2012), hence closer to 

causality addressed from these fields. This evolution is part of a broader 

change of worldview from a physically and naturally driven hydrology to the 

inseparability of hydrological, ecological, and human systems at the 

Anthropocene era, which stresses the importance of interdisciplinarity (Abbott 
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et al., 2019; Lall, 2014; Montanari et al., 2013; Savenije et al., 2014; Vogel et 

al., 2015; Wagener et al., 2010). Online platforms have emerged to share data 

and collaborate from anywhere on Earth (Ceola et al., 2015). Hydrologists 

works on how best communicate our messages to the general public (Bogaard 

et al., 2017; Lutz et al., 2018), and how to frame knowledge and skills, despite 

the everchanging landscape of hydrological sciences, to transfer them to the 

next generation of hydrologists (see Seibert et al., 2013). 

Notwithstanding these great perspectives, hydrologists invest themselves in 

increasingly challenging duties (Clifford, 2002). Hydrologists keep seeking 

new hydrological laws, hopefully, simple ones, but now deal with water crisis 

concerns in various socio-cultural environments (Sivakumar, 2011b) that 

strengthen the uniqueness of hydrological systems. They shall highlight 

solutions to the Anthropocene challenges based on future scenarios while 

dealing with a changing environment, where the past and the law of nature are 

no longer seen as the best basis to depict the future (Koutsoyiannis, 2013; 

Milly et al., 2008; Srinivasan et al., 2017; Thompson et al., 2013).  

All these concerns reflect most of the epistemological issues that have 

occurred in hydrology the last 40 years, and they are all, somehow, related to 

causality. This paper aims to bring the somehow to the how by mirroring the 

controversial history of causality with epistemological issues in hydrology. In 

this respect, the approach is similar to Darwinian hydrology (Harman and 

Troch, 2014). What the causality of hydrological systems is not asked in the 

first place, but how causality itself has evolved into what it is, and how it 

connects to the broader history of the concept, coevolved in different fields of 

science (Figure 2-1) as well as between the various way of doing hydrology. 

Meaningful concepts related to causality or its siblings as truth, knowledge, or 

understanding are traced to highlight the multiple facets of causality and 

potentials for a synthesis (listed in Appendix III). If hydrologists pursuit the 

cause of a unified understanding, one can indeed argue that the first step is to 

inquire about the federating concept of causality. 

2.2 Sensing Species of Causes 

Harman and Troch (2014) pointed out that while Darwin’s theory is about 

evolution, he had at his disposal a taxonomy of species that defines them based 

on the essential traits that all individual in the same species shares. We will 

thus start our journey by looking at existing intuitive definitions of the word 
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“cause” before trying to understand how they came to be. The Merriam-

Webster's Learner's Dictionary reports three distinct and straightforward 

definitions: 

(d1) Something or someone that produces an effect, result, or conditions 

(cause-effect relationships, e.g., heavy rainfall causes floods); 

(d2) A reason for doing or feeling something (perceptual causes, e.g., floods 

prevent someone from building in risky areas); 

(d3) Something (such as an organization, belief, idea, or goal) that a group 

or people support or fight for (teleological causes, e.g., flood risks 

should be reduced in the future). 

These three definitions express three vantage points to address causality. The 

first one (d1) is instead that of a third-person observer who observes a cause 

and the effect it produces. The second (d2) is focused on first-person 

perception, that of a human behavioral agent who feels the world and acts 

accordingly. The third one (d3) brings a socially shared or constructed context 

or an idealistic value to the notion of cause.  

Most likely, the definition (d1) is the one that natural scientists would rely on, 

as they are third-person observers analyzing nature. Indeed, definition (d1) 

expresses causes in the sense of cause-effect relationships, which is the most 

common meaning in science (Sivapalan and Blöschl, 2017). In general, cause 

and effect are ordered in time in such a way that cause precedes effect. 

However, cause and effect can be perceived as instantaneously related (e.g., 

gravity), just as they can also arise from intrinsic properties or spatial ordering 

as well. For instance, the cause of water in the liquid phase condition is related 

to a temporal mechanism such as condensation or melting, or to the molecular 

and structure of the water and the mechanisms of hydrogen bonds. In that way, 

some cause refers to the time-invariant internal quality of an object, while 

some others involve motion, time and occur in a contextual situation. In 

general, when the cause and the effect are identified and derived from 

observation only, the causal law is empirical. When such an empirical 

relationship is understood either from the light of another causal theory, 

eventually relating motion with intrinsic properties of interacting objects, or 

if the empirical relationship holds long enough to become a theory itself, it 

becomes a mechanistic causal law, as the mechanisms are supposed to be 

unveiled or discovered. The same distinction between intrinsic causes and 

situational temporal causes holds for perceptual causes (d2): peoples may act 
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or feel according to their dispositions (e.g., happy/sad, afraid/fearless) or 

according to their environment (e.g., sunny or rainy). The last definition, with 

respect to time, depicts a cause to be maintained or pursued, which will 

eventually be achieved in the future (e.g., a unified theory of hydrology). The 

temporal ordering is opposite to definition (d1) in that the cause (d3) is after 

the effects and drives people to the future by supporting a purpose. Still, the 

term “driver” is also used to qualify a cause of change in a system (e.g., 

urbanization, deforestation). Not only for people, the term “driver” may also 

symbolize a goal-directed transition from one state to another in transient 

natural systems looking for a new end-state or equilibrium. The term 

teleological comes from the ancient Greek telos meaning both goal or end.  

Definition (d2) and (d3) are also noteworthy for scientists. The question is 

whether these definitions are independently related to causality or whether 

they create the whole concept through interaction? For example, a scientist 

who discovers a cause-effect relationship (d1) will most likely support his or 

her discovery with others (d3) so that other people feel and do things 

differently (d2). The other question is how these three definitions emerged 

from the past. As a starting point, we will follow the invitation of Erwin 

Schrödinger that suggested that the scientific representation of the world 

consists of a specific attitude of mind, which arose among Greek thinkers and 

was transmitted to us (Schrödinger, 1954). 

2.3 On One Origin of Causality 

2.3.1 The Presocratic Revolution: Looking for Archê 

At the very beginning was chaos, a word that still transcribes the apparent lack 

of causality in modern science. From this chaos, as described by the poet 

Hesiod (8th c. B.C), has emerged the first attempt to bring some order: the 

gods. However, the gods were not a parsimonious model to explain the world, 

including hydrology, since each river was attached to a god (Brewster, 1997). 

Two centuries later, the presocratic revolution arises: the gods’ fickle 

characters are no longer considered as sufficient reasons to explain the world 

(Curd, 2019). Presocratics suggested that the world is causally governed by a 

few numbers of first principles called archê, explaining both the origin of the 

world and how it has been transformed. The revolution started with Thales of 

Miletus (6th c. B.C.), the first philosopher, physicist, from phusis meaning 

nature, or even hydrologist (Koutsoyiannis et al., 2007), who recognized water 
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as the first principle. Far from unanimity, the Greek Antiquity debated the 

archê and their essence for two centuries. Many kinds of models arise from 

these debates (Curd, 2019). The reductionist one of Democritus (5th c. B.C.) 

suggests that the world can be explained from tiny indivisible particles, 

atomos, that recall modern physics. The systemic one of Empedocles (5th c. 

B.C.) considers that the world involves four elements that evolve and get 

organized based on two driving forces, love and strife, that remind coevolution 

and survival of the fittest in biology. Some fundamental principles of logic are 

laid down, such as the principle of non-contradiction embodied in 

Parmenides’ poem (6th c. B.C.), stating that something cannot be true or false 

at the same time or in the same manner. In summary, the philosophical debate 

over archê revolved around three main concerns: (1) their number: are the first 

principles one, plural, or infinite?; (2) their substance: are they made of matter, 

spirit, or both?; and (3) their persistence: are they eternal or changing as 

suggested by the presocratic Heraclitus (6th c. B.C.) with his “panta rhei” 

(everything flows)? 

If reinterpreted through the scope of hydrology, these questions remain 

surprisingly relevant today, considering (1) the pluralism of hydrological 

definitions, laws, and models, from their process representations to their 

representative modeling units (e.g., Beven, 2006b; Blöschl, 2006; Reggiani 

and Schellekens, 2003), together with (2) the question of the physical realism 

of these concepts (Beven, 1989; Grayson et al., 1992; Kirchner, 2006), and (3) 

their persistence in a changing world, where Heraclitus is still quoted today 

(e.g., Koutsoyiannis, 2013; Milly et al., 2008; Montanari et al., 2013; Wagener 

et al., 2010). 

2.3.2 The Golden Age of Athens: Philosophy, Sciences, 

and Society 

The Athens of Pericles (5th c. B.C.) was the home of many thinkers, three of 

whom had divergent opinions on what knowledge or causality is: Plato, 

Protagoras, and Aristotle (Table 2-1). All were philosophers, but given what 

they could represent today, they are introduced as the philosopher, the 

manager, and the scientist. Plato’s dialogue Theaetetus is about the question: 

what is knowledge? It features the emblematic Socrates discussing with a 

young man, Theaetetus (see Chappell, 2019).  
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In a dialectic way, that is, starting by stating different point of views, 

Theaetetus suggests three definitions of knowledge, as: 

(d4) Perception; 

(d5) True belief; 

(d6) Justified true belief.  

The first (d4) instead reflect Protagoras’ definition of knowledge embodied in 

his famous quote: “Man is the measure of all things”, and is comparable to 

definition (d2). Socrates rejects this subjective and relativist proposition with 

many arguments, one of them being that perception can be false about what 

the thing is, and could, therefore, not be knowledge. The second (d5) is also 

rejected as a belief is just empirical, e.g., about the fact that the sun will rise 

tomorrow, but without justification, one cannot assert that the belief is true. 

This leads to the third definition (d6). Unfortunately, the speakers were unable 

to agree on what constitutes an appropriate justification. The debate is still up-

to-date in modern theories of knowledge (see Ichikawa and Steup, 2018). 

Table 2-1: Account of Plato, Aristotle, and Protagoras on knowledge and 

causality 

 Plato 

The philosopher 

Protagoras 

The manager 

Aristotle 

The scientist 

On 

Knowledge 

Knowledge is justified 

true belief  

Man is the measure of 

all things 

We have knowledge of 

a thing only when we 

have grasped its cause 

Purpose  Unified understanding 

for the sake of 

enlightenment and 

goodness. 

Success in the 

management of 

personal and public 

affairs 

Understanding 

necessary truths and 

their causes 

Method Philosophy, dialectic, 

non-contradiction, 

dialogues, and 

allegories 

Speech, debate, 

argument, language, 

and communication 

Observation 

Logic, The Four 

Causes, 

Treaties 

Grounding  Transcendence 

World of Ideas 

Personal and societal 

perceptions, values, 

belief, and norms. 

Immanence 

Real World 

In general, Plato gives no clear guidelines to address causality or truth. His 

thoughts are never developed in first-person treatises but dialogues involving 

third parties and the crossing of divergent opinions with the dialectical 

method. So is the Theaetetus, where Socrates applies his well-known method 
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of critical thinking that seeks to refute any claims of his interlocutors in virtue 

of the principle of non-contradiction, in the spirit of Popper’s falsificationism 

(Popper, 1959). Even more disturbing, Plato portrays Socrates in his Apology 

as the wisest man in the world for his words, "I neither know nor think that I 

know." Still, to Wolfsdorf (2011), the nature of justification in Theaetetus can 

be likened to a broad notion of cause, aitia in ancient Greek, that gave birth to 

etiology, the study of causation. It referred to an answer to the “why” question 

and was instead developed by Aristotle (section 2.3.3.1). 

Answering such a “why” question for Plato is undoubtedly related to his 

metaphysical and dualistic philosophy. Plato provided a view harmonizing 

presocratic concerns by recognizing the existence of two worlds (Robinson, 

2017): (1) the world of particulars where things are plural, made of matter, but 

ephemeral and imperfect, and (2) the world of Ideas (or Forms, Universals) 

made of a few universal principles of an eternal spiritual nature. As Ideas are 

the purest form of reality, Plato’s notion of causality is grounded in the world 

of Ideas, based on transcendence (Delacy, 1939): Ideas govern and infuse 

themselves into the real world giving rise, essence and motion to particular 

objects. This view is best embodied in Plato’s allegory of the cave (Wheeler, 

1997).  

Figure 2-2 illustrates the allegory with a caricature of catchment hydrology. 

From this point of view, hydrologists can be seen as prisoners of the real 

world, looking at imperfect, seemingly unique watersheds (Beven, 2000), and 

should work to free themselves, come out of the cave, and find the 

enlightenment, which would allow them to see and reach the idea of the 

watershed, a unique and universal understanding of all watersheds in the real 

world. Although caricatured, the comic illustrates a widespread idealistic 

definition of science and causality, like the one of Bronowski (1956), “All 

science is the search for unity in hidden likenesses [...] order must be 

discovered and, in a deep sense, it must be created. What we see, as we see it, 

is mere disorder. The definition was echoed in hydrology (Klemeš, 1982; 

Sivapalan and Blöschl, 2017) and is somehow embodied in the quest of 

universal hydrological laws (Beven, 2006b; Dooge, 1986; Sivapalan, 2006) 

and watershed blueprints (Beven, 2002b; Freeze and Harlan, 1969; Montanari 

and Koutsoyiannis, 2012; Savenije and Hrachowitz, 2017). From that point of 

view, causality itself is a teleological cause (d3) driving science, including 

hydrology, where the ultimate goal of hydrology can be seen as the causality 

of the water cycle (Blöschl et al., 2019). On the other hand, modelers with 
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strong beliefs in the causal nature of their model are not that far from Plato’s 

idealism in such a way that there would believe in a causal link, similar to 

(d1), though, a transcendental one between their model and reality.  

 
 

Figure 2-2: The cave allegory and the idealist quest of a unified theory for 

catchment hydrology (artwork by Morgane Gloux). 

Regarding Protagoras, knowledge or causality could be perception (d2, d4). 

Yet, in his defense, truth is not entirely subjective and relative to individuals, 

but to the society to which the individual belongs (Taylor and Lee, 2016). 

Hence, truth and causality are interpreted with respect to a system of shared 

belief, values in the society (d3) that are embedded in norms, the moral and 

political laws (nomos). Another way to see it is the proper justification of 

knowledge (d6) is social and societally constructed, or “created” in the word 

Bronowski (1956), but not static as eventually reframed using speeches, 

debates, with the weapons of language, communication, and argumentation. 

In doing so, Protagoras is accused of distortion: to make weaker arguments 

stronger. However, his vision of causality (d2, d4) is not for an end of 

enlightenment or as mean of understanding, but as a mean of being successful 

in life, that involves social processes such as perceptions, communication, 

action, and intervention. From now,  the manager's causal vision is a relativist 

pragmatism rooted in societal grounds. 
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What about the place of science and the laws of nature in his vision? It seems 

that Protagoras does not exclude phusis-related arguments in decision-

making, insofar as it constitutes a genuine argument of authority for the laws, 

norms, and conventions that are adopted, but the nomos prevails on the phusis 

(Boyaci Gülenç, 2016; Taylor and Lee, 2016). Protagoras then values all 

arguments including scientific ones, as politicians today in the words of 

Kirchner (2017): “Science is respected in the policy process because—or, 

more precisely, to the extent that—it is perceived [d2, d4] to convey unbiased, 

factual information [d1, d6]”. Protagoras' definition of science would instead 

be based on its role and relevance in responding to societal needs and 

demands, as sometimes echoed in hydrology (Lall, 2014; Sivapalan and 

Blöschl, 2017).  

On his side, Aristotle’s work is somehow pursuing what could be a proper and 

non-subjective account for definition (d6). Aristotle’s legacy is impressive, 

manifold, and still incredibly up-to-date, and developed within detailed 

treatises such as modern scientific writing, with many references to the ancient 

philosophers (Shields, 2008). His corpus divides the different disciplines of 

knowledge, in this case, drawing a clear line between metaphysics and physics 

and thus breaking with the idea of transcendent causality (Figure 2-2). In other 

words, he did not believe that the real world is entirely governed by Ideas and 

the principle of transcendence, but by principles internal to the real world, i.e., 

by immanence. His definition of nature, phusis, regroups all things that are 

ruled by themselves. Thus, physics is the study of all immanent and necessary 

truths and principles in the real world. Aristotelian nature is opposed to his 

notion of technique (technê) that refers to things designed or driven from the 

outside, such as human-made objects or arts. To Aristotle, scientific 

knowledge is a body of organized necessary truths that arises from the study 

of causes (Angioni, 2016). Necessity is a deterministic notion in the sense that 

it targets the essence of things, determining what they necessarily are, not on 

the details that could be referred to as chance, fortune, accident, or 

randomness. To address what is essential, causal or not, Aristotle had 

developed the first explicit framework to deal with causality in nature in his 

Physics, and laid down the basis of logic in the Organon (meaning tools, 

instrument). Since these materials are of great importance to understand the 

evolutionary trail of causality, they are developed specifically in the next 

subsection. 
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2.3.3 The Legacy of Aristotle 

2.3.3.1 Aristotle’s Four Causes 

In Aristotle’s Physics, causality is defined as the capability of answering 

“why” questions (Falcon, 2019; Shields, 2008). To this end, he suggested a 

pluralism of four causes that shall be studied to provide a complete 

explanation and justification for knowledge (d6). His framework is fit for 

everything, not only for nature, as shown by his example of a bronze statue : 

(d7) Material cause: “that out of which”, e.g., the bronze of a statue; 

(d8) Formal cause: “the form”, “the account of what-is-to-be”, e.g., the shape 

of the statue; 

(d9) Efficient cause: “the primary source of the change or rest”, e.g., the 

sculptor, the art of bronze-casting the statue; 

(d10) Final cause: “the end, that for the sake of which a thing is done”, e.g., 

art, representing someone, for a buyer.  

In other words, a complete causal explanation to the “why” is nested with four 

other types of questions: “from what” (d7), “into what” (d8), “how/by” (d9), 

and “what for” (d10) (for comparison, see Blöschl et al., 2019). The efficient 

cause (d9) gave birth to the modern notion of cause and effect (d1), the 

mechanistic one that highlights how the lower-level elements, the materials 

(d7), turned into a higher level of organization, the form (d8). While studying 

nature, it is vital to free the causes of human feelings, beliefs, and desires 

(d2,d4), as they are independent of the immanent nature. A scientist, in line 

with Aristotle’s legacy, will instead approach the efficient cause (d9) of the 

statue by focusing on the art of bronze-casting, the mechanical recipe, rather 

than from the sculptor’s intentions (Falcon, 2019). Similarly, Aristotle 

formalized teleological causes (d3) with his final causes (telos, d10). 

However, he did believe that nature had teleological purposes in itself, that is 

independent of human’s (or gods’) intentions (d2). For instance, one cannot 

understand something as simple as an egg by considering its teleological 

purpose, i.e., its endpoint, or asymptote of giving birth (Grene, 1976).  

Aristotle was accused of blurring the canon of causation by relying on 

different types of causes (Shields, 2008). In addition, Aristotle’s causes are 

lacking guidelines. How do we scale the proper material cause? What 

characterizes the form of the essence of a watershed? Aristotle would most 
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likely answer that it is a problem of conceptualization (Klemeš, 1983). In his 

introduction of Physics (185b8-185b9, see Aristotle, 1995), he succinctly 

grasped in one paragraph, the problem of causality concerning closure, 

continuity, and confounding factors, which sums up the main difficulty of 

hydrology as a science:  

“Now we say that the continuous is one or that the indivisible is one, or things 

are said to be one, when the account of their essence is one and the same, as 

liquor and drink. If their One is one in the sense of continuous, it is many; for 

the continuous is divisible ad infinitum. There is, indeed, a difficulty about the 

part and whole […], whether the part and the whole are one or more than 

one, and in what way they can be one or many, and, if they are more than one, 

in what way they are more than one. [..] Further, if each of the two parts is 

indivisibly one with the whole, the difficulty arises that they will be indivisibly 

one with each other also”. 

To solve the problem of conceptualizing the material or formal cause (d7, d8), 

Aristotle's final cause (d10) is of great help. Aristotle saw that accident, 

coincidence, chance, or randomness as an event or fact that lacks final causes 

(d10), even if they have a material, formal, efficient one (d7, d8, d10). In this 

way, a default on an eggshell has no place in causal analysis of the egg whose 

ultimate goal is to focus attention on the material, formal, and efficient aspects 

that pursue the goal of hatching. This kind of philosophy is referred to as 

functionalism, best depicted by the aphorism echoed in the field of 

architecture: “form follows function”, the rest is unnecessary details. In this 

way, giving meaning to things, necessarily reduce the dimension of a problem. 

Still, things may have plural meaning: the final cause of an egg could be 

eating, in which case the egg is causally framed differently, e.g., by a 

nutritionist. The growth of knowledge should investigate plural meaning, and 

Aristotle would have indeed argued that scientist are looking at randomness if 

they do not link their analysis to a natural purpose giving meaning to nature 

and science. This view is comparable to the one of Sivapalan (2009) 

emphasizing the importance of purpose in hydrology, while quoting Seneca: 

“If one does not know to which port one is sailing, no wind is favorable”. 

2.3.3.2 The Roots of Logic 

Causality is not just about framing or conceptualization. It also involves 

correct reasoning logic. The purpose of logic is inference, that is, identifying 
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true statements or causal relationships. Aristotle explicitly recognized two 

fundamental reasoning approaches (Table 2-2): deduction (d12) and induction 

(d13). These have only been amended recently by Charles Sanders Peirce 

(1839-1914 A.C.) with a third form of reasoning, i.e., abduction (d14), that 

we will consider for the sake of completeness. Peirce claimed, however, to 

have been inspired by Aristotle (Peirce, 1960). In order to have generic 

definitions, these reasoning approaches are expressed  in relation to the 

concept of abstraction (d11) defined as a mental object or ideas within the 

mind, on which reason can act. For example, hypotheses, definitions, physical 

laws, or conceptual models are all abstractions because they are the abstract 

objects of various complexity on which reasoning and logic are based. 

Typically, induction is the generalization process that creates abstractions 

from observations. On the other hand, deduction is the logic that manipulates 

simpler abstractions (hypotheses) to create new and possibly more complex 

ones (thesis) by rules, such as a mathematical demonstration. Abduction is 

somehow the opposite of deduction. It seeks to infer the best hypotheses that 

support some observed and induced abstractions, or facts, such as the work of 

a detective. Abductive logic was explicitly introduced very recently by Baker 

(2017) in hydrology in the light of recent debates on hypothesis testing (also 

discussed in Harman and Troch, 2014). Imagination (d15), phantasia in 

Aristotle’s de Anima (Shields, 2016), is the last component we choose to 

include, without discussing it, but for the sake of closure and to not reduce 

reasoning to the strict formality of logic. In this way, it is permissible to 

consider that not all abstract ideas come exclusively from induction (d13), but 

from elsewhere or spontaneously, as a bright or crazy idea, which may be 

necessary for advancing science (Burt and McDonnell, 2015; Klemeš, 1983; 

Sivapalan and Blöschl, 2017). 
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Table 2-2: Abstraction, the three fundamental reasoning approaches, and 

imagination 

Label Term Definition Example 

(d11)  Abstraction An abstract mental object All of the examples below. 

(d12)  Deduction Inference in which a new 

abstraction (thesis) about 

particulars follows necessarily 

from prior general or universal 

abstractions (hypotheses) 

Since rain falls, the ground 

will be wet. 

(d13)  Induction Inference of a generalized 

abstraction from the sensory 

observation of particular 

instances in the real world. 

Rain is always followed by the 

ground being wet; the fact that 

rain precipitates; what rain 

itself is in general. 

(d14)  Abduction Inference to the most likely 

general and universal premises 

associated with a conclusion 

generalized from particular 

instances. 

The ground is wet, it must 

have rained 

(d15)  Imagination The mental ability to create 

abstractions not exclusively 

based on sensed particular 

instances 

An equation; a virtual abstract 

reservoir; an elephant watering 

the ground. 

2.3.3.3 Actuality and Potentiality 

Understanding the cause of a static object as a statue is an easy task compared 

to the analysis of an everchanging object such as a watershed. Aristotle laid 

down two other principles in his Metaphysics (Cohen, 2016; Marmodoro, 

2018), also discussed in his Physics (Book III), that are convenient to address 

and summarize the frustrating and widely debated Heraclitus’ problem 

(Koutsoyiannis, 2013; Koutsoyiannis and Montanari, 2015; Lins and Cohn, 

2011; Matalas, 2012; Milly et al., 2008, 2018; Montanari and Koutsoyiannis, 

2014) of finding some stationary causes when things change and involve 

motion: 

(d16) Actuality (entelecheia or energeia): what is capable of being seen, the 

account of what is seen, e.g., the statue of bronze, the artisan crafting 

the statue, data; 

(d17) Potentiality (dunamis) or dispositionality: what is capable of being 

built, the capacity to be in a different state, the account of what-could-

be, e.g., a sword of bronze, forecasts.  
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Therefore, actuality is preferentially related to the induction (d13) and 

potentiality to the deduction (d12). The efficient cause or processes (d9), e.g., 

the art of bronze casting, is supposed to give an account of what-could-be 

(d17) by deduction, similar to a hydrological model running probable 

scenarios (Montanari and Koutsoyiannis, 2014). To Aristotle, a transition 

from potentiality to actuality is metaphysical causation, similar to Figure 2-2. 

In other words, the law transcends the real world. Hydrological models, 

physical law, a fitted statistical model, are somehow all expressions (d9) of 

potentialities that are a static representation of motion (d8) generalized by 

induction (d13). They allow reasoning by deduction (d12) to extrapolate the 

field of what-is-to-be (d8) to the what-could-be (d17). However, Aristotle had 

understood the problem of induction (section 2.4.3.1), and why such models 

induced from observations may be wrong (Phys. 201b24-202a2): “motion is 

thought to be a sort of actuality, but incomplete, the reason for this view being 

that the potential, whose actuality it is is incomplete”. Failure of model 

predictions, or engineered infrastructure, can, therefore, be seen as a wrong 

generalization of potentialities due to incompleteness of data. Some see it as 

a change of potentiality, using the term nonstationarity (Milly et al., 2008). 

Some others call it change, just a perceived one revealed by new actuality, that 

allows us to correct our underframed or fitted account of potentiality, that has 

in the end ever been stationary or time-invariant (Koutsoyiannis, 2006a, 2013; 

Lins and Cohn, 2011; Montanari and Koutsoyiannis, 2014), and that forces 

hydrologists to incorporate the new agent of change (Ehret et al., 2014; 

Montanari et al., 2013; Troch et al., 2015).  

2.4 Hydrology Through the Evolutionary Path of 

Causality 

2.4.1 Middle Ages: Is Hydrology Realistic? 

For the sake of brevity, causality related thoughts belonging to the long period 

of the Middle Ages won’t be developed, in spite of genuine opinions on 

causality (see White, 2018). Generally speaking, the Middle Ages were 

dominated by Platonic duality between Particulars and Forms, matter and 

spirits, or body and souls (Spade, 2018). It is only in the 13th century that 

Aristotle was reintroduced in Europe, notably, by St Thomas Aquinas (1225-

1274 A.C.). Both causality and Platonic dualism were reinterpreted through 

the prism of the Judeo-Christian faith, mostly by scholastic philosophy. 

Concerns of causality were instead focused on free will (d2) and the 
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explanation of motion, i.e., on the efficient causes (d9) that became simply 

termed causes. Indeed, at that time, the material cause (d7) and the formal one 

(d8) lost their status of causes to became instead explanations or “because” 

(White, 2018). The final or teleological cause (d10) took on a cosmic meaning 

and is attached to the designs and plans of the Judeo-Christian God (Grene, 

1976). 

Still, one cannot speak about causation without considering the controversial 

theses of Ockham (1285-1347 A.D.) that reject the existence of universal 

concepts, e.g., Platonic Ideas  (Spade and Panaccio, 2019). By that, he meant 

that universal concepts are mental abstractions (d11) of reality and not reality 

itself. In this respect, the controversy launched by Ockham, i.e., the problem 

of universals, remains relevant in hydrology. Indeed, Figure 2-2 can be 

reinterpreted as there may be two caricatural and opposite views within the 

hydrological community: one that believes in a universal representation of 

catchment hydrology (Clark et al., 2015; Dooge, 1986; Sivapalan, 2006), and 

those who look at catchments as unique entities (Beven, 2000; Blöschl, 2006). 

Ockham's debate also echoes to Box’s famous quote (Box, 1976): “all models 

are wrong, but some are useful”. Ockham goes further than such an aphorism 

and tells us how universal ideas, even though false, can be useful: they are 

economical and allow us to explain a variety of concrete real-world objects 

under the same term, under a single abstract representation (d11). This 

metaphysical belief (d2, d3, d5) is known as: 

(d18) The principle of parsimony, or Ockham's razor: one should not multiply 

reasons without necessity (Baker, 2016). 

The principle is regularly considered in the evaluation and choice of models, 

sometimes explicitly relating the performance of a stochastic model to its 

degrees of freedom (Akaike, 1974; Schwarz, 1978). Likewise, in hydrology, 

the search for simplicity and parsimony remains a concern (Dooge, 1997; 

Koutsoyiannis, 2016; McDonnell et al., 2007; Weijs and Ruddell, 2020). The 

question is: can we elaborate a parsimonious process-based (d9) model 

suitable for all catchments? In the current state of hydrology, generically, 

universal models are complex (i.e., sophisticated, section 1.1.2.1) but not 

parsimonious, while parsimonious ones are not universal. Still, the new 

emphasis on catchment classification (e.g., Wagener et al., 2007) expects to 

develop a taxonomy based on hydrological similarity, such that each 

watershed in a taxon could eventually be modeled parsimoniously. However, 
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if a universal model or framework is recognized as a good teleological cause 

(d3) driving the progress of the science of hydrology, many hydrologist belief 

that there will still be an actual need for a plurality of models and types of 

models (either complex or simple), if not because of catchment uniqueness, at 

least to address particular practical applications (Weiler and Beven, 2015), 

i.e., to frame the model around what for it should be useful (d2, d10). The 

problem of universal is still an open debate.  

2.4.2 Rationalism: Could Hydrology Be a Machine? 

Rationalism emerged with Descartes (1596-1650 A.C.), among others, in a 

period where the Church had a dogmatic authority over some domains of 

knowledge and where scientists such as Galileo were prosecuted for their 

controversial causes (d3). In this context, Descartes claimed that knowledge 

should go back to basics: pure reason and the use of deduction (d12), relying 

on undoubtful truth as premises that have passed the test of Descartes’ 

methodological doubt (Descartes and Renault, 2016). His scientific method 

suggests addressing complex problems by splitting them into simpler 

problems and then to reconstruct complexity from simplicity. In the same 

vein, Descartes is also attributed to the view of the animal-machine, the human 

body (d8) being like a machine and could be mechanistically described (d9) 

from its parts (d7). This mechanistic worldview is nowadays referred to as 

bottom-up or upward causation (Klemeš, 1983), since the higher level, the 

whole, is explained from the lower-level components. Another rationalist, 

Leibniz (1646-1716 A.C.) formalized a vital principle regarding cause-effect 

relationships (d1, d9), that can be explained by posing the distinction between 

two other types of causes: 

(d19) Principle of sufficient reason: everything has a cause (Melamed and 

Lin, 2018); 

(d20) Necessary cause: a cause/reason/condition that is always involved in 

the realization/observation of an event/state; 

(d21) Sufficient cause: a cause/reason/condition or a set of it that always 

implies the realization/observation of an event/state. 

Hence, Leibniz’s principle (d19) says that for all events in the world, there 

exist causes that explain them, suggesting that these causes will always imply 

the event (d21). The principle reflects a deterministic worldview that is 

emblematic of this rationalist period. At the same time, the principle is a strong 
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impulse for causality, stating that everything is worth a partial (d20) or 

complete (d21) causal explanation. Besides, Leibniz contributed to the 

development of the mathematics of differential equations. So did Newton 

(1642-1727 A.C.) in the same period. Since then, dynamical systems’ states 

are conveniently explained by a set of differential equations, a mathematical 

expression of Aristotle’s efficient cause (d9) that explain motion (d8, d16, 

d17) from initial conditions and physical properties (d7). As Newton 

developed the Newtonian mechanics, the mechanistic, physically-based, or 

dynamic hydrology (Eagleson, 1970) is also often referred to as Newtonian 

hydrology (see Sivapalan, 2018). 

The merits of rationalism and mechanistic causation (d1, d9) cannot be denied. 

Most of the progress in modern physics and the advance in technological 

development comes from this philosophy. Although the approach is 

sometimes described as reductionist, Klemeš  (1982), quoting Ziman (1978), 

reminds that “whatever one’s philosophical attitude towards reductionism, 

there is an inescapable scientific necessity of trying to ‘understand’ and 

‘explain’ [d8, d9, d10] the behavior of any system [d9, d16] in terms of a 

relatively few comprehensible elements [d7] without recourse to an elaborate 

extracerebral computation [d18]”. Hence, all causal models are reductionist 

in that sense of reduction to the parts (d7, d9) or in whatsoever sense, since it 

will always reduce causal reality to an abstraction of it (d11). Also, deduction 

(d12) is the only logical process that allows to reason outside of the realm of 

experience, which is a necessary condition (d20) for technological 

development and to make a forecast in the future under changing conditions 

(section 2.3.3.3). This capability of extrapolation (d12, d17) by consideration 

of the mechanism (d9) is the primary motivation and asset of the physically-

based model since the beginning of their development (Freeze and Harlan, 

1969).  

The main fallacies of deduction (d12), as acknowledged by Descartes, are 

easily summarized: deduction is the most robust type of inference, but it 

derails when the reasoning is built from imperfect, uncertain, or wrong pieces 

of knowledge as hypotheses. In that regard, mechanistic determinism was 

rapidly challenged by the apparent randomness of nature, which was seen as 

a human failure in seeing sufficient causes (d21). Laplace (1749-1827 A.C), 

with his well-known demon, suggested that the world (d8) can still be 

mechanistically apprehended (d9), but by a supreme intelligence that would 

be able to perfectly grasp the state of the universe and the forces at work (d7) 



- 48 - Chapter 2 - Which Causality for Hydrology? An evolutionary perspective 

(Laplace, 1814). This fantasy (d15) supports the dream of science, including 

hydrology, that will free itself from the empirical need of data (see Silberstein, 

2006). Often portrayed as an emblem of causal determinism (d9, d19), Laplace 

was nevertheless a pioneer formalizing the logic of inference by induction 

(d13) found in the theory of probability that has emerged from the work of 

Bayes (1702-1761 A.C.). Since the human mind is far from being a supreme 

intelligence, Laplace motivated his essay on probability by the need to grasp 

the apparent randomness of the world due to our lack of knowledge. This lack 

of knowledge is often referred to as epistemic uncertainty (e.g., Beven, 2016). 

From the mechanistic point of view, which became the paradigm of 

physically-based hydrology, randomness is sometimes seen as the “evil” and 

determinism as the “good” (Koutsoyiannis, 2010), and hydrologist should 

work to reduce randomness and uncertainties. This view is very different from 

Aristotle’s one that suggests that randomness is lack-of-purpose noise (d10, 

section 2.3.3.1). Regarding uncertainties, Nearing et al. (2016) reminded the 

extent of many discussions on the role of uncertainties (d3, d10; e.g., 

Pappenberger and Beven, 2006; Sivapalan, 2009), their nature (d7, d8; e.g., 

Koutsoyiannis, 2010; Montanari, 2007), and their appropriate handling (d9; 

Beven et al., 2012, 2008; Clark et al., 2012; Mantovan and Todini, 2006; 

Stedinger et al., 2008; Vrugt et al., 2009). Thus, although fuzzy by nature, 

randomness can be studied as well in the light of Aristotelean causality by 

asking its source (d7), its form (d8), its propagation (d9), as well as its 

meaning and purpose (d10). 

In phase with Laplace’s concern, physically-based hydrological models were 

deemed imperfect because of their lack of resolution and thus failed to account 

for the necessary spatial and temporal heterogeneities (d7, d8, d20) that 

control hydrological processes (d9). In the opposite way of parsimony (d18), 

this suggests that model faithfulness is correlated with model complexity 

(Grayson et al., 1992). With such a state of mind, it is expected that the 

hydrological behavior of a watershed (d8) will be solved automatically and 

sufficiently (d21) by relying only on the mechanism (d9, d17) with detailed 

enough data (d7) (see Sivapalan, 2018).  

This bottom-up roadmap has been thoroughly criticized. First, obviously, no 

physically-based hydrological models have ever been able to rely on the sole 

logic of deduction (d12), such as the law of physics. They are enslaved to 

calibration (d13). More reductionism in terms of details had the opposite 

effect, as highlighted by the modeling paradox of model complexity (Beven, 



Chapter 2 - Which Causality for Hydrology? An evolutionary perspective - 49 - 

 

2012a; see also section 1.1.2.2). If the finer resolution and process 

representation in hydrological models is motivated on a deductive argument 

(d12), the increasing complexity resulting from discretization makes 

hydrological models more strongly dependent on the inductive reasoning of 

calibration (d13), because of the higher number of parameters, and eventually 

more uncertain if not constraint enough due to equifinality issues (Beven, 

2006a). Equifinality refers to the plurality of many different competing model 

structures and parameter sets within a model (d9) that might give equally 

acceptable results (d8, d17). Accordingly, these acceptable results may not 

include a single realistic configuration given that the goodness of fit is granted 

by the degrees of freedom of the model (Kirchner, 2006). From that 

perspective, mechanistic physically-based models may be right, especially if 

the formal cause of the watershed hydrology (d8) is exclusively evaluated on 

the paradigm of hydrograph fitting (see Sivapalan, 2018; Woods, 2002), but 

for the wrong reason, as being based on wrong hypotheses that suggest that 

processes studied in laboratory or hillslopes remain valid for real and large 

catchment (Beven, 1989). To Savenije (2001) as for many others (McDonnell 

et al., 2007; Sivakumar, 2008; Sivapalan, 2006), the curse of equifinality is 

instead a blessing giving some empirical (section 2.4.3) justification to the 

principle of parsimony (d18), beyond its metaphysical status, that motivate a 

functional modeling approach (section 2.3.3.1) meaning that the form of the 

model (d8) follows its function, that is to be “fit-to-purpose” (d2, d3, d10; 

Beven, 2012a). 

Another argument in phase with the same conclusion is that heterogeneities 

never disappear (Sivapalan, 2018), or the continuous is divisible ad infinitum 

as said by Aristotle (section 2.3.3.1). In pursuing this way, hydrologists will 

inevitably end up with hydrological models operating at the scale of subatomic 

particles. This non-sense was discussed by Klemeš (1982) that advanced that 

the purposes of fragmenting science “is to split the (possibly) infinite causal 

chain into segments, each containing only a few chain links; the scope of one 

discipline is thus intentionally limited to seeking causal relationships [d1, d9, 

d17] among phenomena [d8, d13, d16] within only a relatively small range 

[d18], whose lower boundary [d7] represents the discipline's first principles 

or scientific basis coinciding with the discipline's objective [d3, d10]”. He 

later referred to this task succinctly under the term of conceptualization 

(Klemeš, 1983), which appears to be a critic reminder that hydrologists shall 

think about the material, the formal causes, and their scales (d7, d8), as they 

will not be solved from themselves by encoding hydrological processes (d9) 
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in a computer program. This has motivated (d2) many researchers to focus on 

those lower boundary as representative elements for watersheds (Beven, 

2006b; Reggiani and Schellekens, 2003). Conceptualization remains a tedious 

task (section 2.3.3.1) due to the range of scales, both spatial and temporal, 

involved in the hydrological cycle (see also Blöschl and Sivapalan, 1995). 

2.4.3 Empiricism: Hydrology Beyond Association and 

Refutation? 

2.4.3.1 Model Evaluation: the Problem of Induction 

Despite his connection to rationalism, Newton said about his theories, 

"hypotheses non fringo", i.e., I do not make hypotheses, stressing the empirical 

foundations of all sciences. In fact, distinguishing empirical from mechanistic 

law is very challenging. To be fully causal (Klemeš, 1982), a model should 

operate without recourse to calibration. Then, even when based on physics 

(section 2.4.2), empiricism is intrinsic to hydrology, and all models are 

empirical. From this point of view, the only criterion that could distinguish an 

empirical model from a physical-based model is through its ability to remain 

correct under hydrological conditions different from those in which the model 

was developed (section 2.3.3.3; 2.4.2; d9, d16, d17). This is how models are 

in practice cross-validated with the split sample test routine (Klemeš, 1986b). 

However, many empirical models, including physically-based models 

working for the wrong reasons, can succeed and be operationally used as long 

as the system under study is not subject to previously unobserved change. 

Thus, a change would be required to decide on the causal nature of the model, 

which will remain ultimately problematic when models aim precisely at 

anticipating or predicting the nature of this change in order to act and make 

decisions. Hence, it is not possible to know ultimately whether a model is 

causal a priori, which relays hydrological predictions to the rank of beliefs 

(d5), or prophecy (Beven, 1993). This is precisely the observation made by 

one of the fathers of empiricism and philosopher of causality, David Hume 

(1711-1776 A.C.), through his shock sentence targeting the astral bodies that 

Newton had just described: "We cannot know if the sun will rise tomorrow".  

What can we know? This is the question of interest to Hume (1738, 1748). As 

an empiricist, he suggested that the origin of all ideas, as well as the 

association of ideas and causality, is the result of the synthesis of our sensitive 

and lived experiences (d16), i.e., induction (d13). Hume examined a simple 
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statement, that is, “a cause produces an effect” (d1), and tried to investigate 

the sufficient conditions (d21) to assert such a claim. Hume offers four 

necessary (d20) principles illustrated in Table 2-3. First, the cause must occur 

before effect (d22). This criterion is also known as the post hoc ergo propter 

hoc adage meaning “after this, thus because of this”. The principle of priority 

establishes the importance of the temporal dimension and time asymmetry 

regarding causality (e.g., Koutsoyiannis, 2019). Secondly, the cause and the 

effect coexist on a space-time continuum offering the opportunity for 

interactions (d23). Thirdly, constant conjunction (d24) shall be observed 

between the occurrence of cause and effect. The principle should be refined 

by the addendum “under similar conditions” to account for nonlinear effects. 

Constant conjunction to the same conclusions is also what is expected from 

independent scientific experiments and thus relate to the concept of the 

repeatability and reproducibility of scientific outputs. The fourth principle, the 

necessary connection (d25), is surprising because it states that the first three, 

although necessary (d20), are not sufficient (d21), and requires a mysterious 

additional necessary connection reminding the difficulty of finding a proper 

justification (d6) in the Theaetetus problem (section 2.3.2). The fourth 

principle is at the origin of Humean doubt and skepticism, which is a moderate 

skepticism that does not prohibit speculation with enthusiasm on causality, or 

getting close to it, with, nevertheless, a guardrail reminding us that causality 

is a belief (d5) and that what is deemed causal today may be deceiving and 

wrong tomorrow. 

Hume’s problem of induction consists of a wrong empirical synthesis (d13) 

on the available observables (d16). The problem seems unsolvable since 

experiencing is always finite in time. A corollary comes out from the logic of 

Popper (1959): any verified causal claim (d6) is either true or false. Then, the 

statement was a strong motivation (d2) to change the paradigm of model 

evaluation from verificationism to falsificationism as one can only assert that 

something is false. This depicts a definition of truth, and by extension of 

causality, in the negative. What is scientifically true or causal (d5) is what 

could be tested but has not yet been proven to be false. One way to address 

the problem is to seek from new observables (d16) that refute a theory or a 

model by integrating the technologies of our time (see Peters-Lidard et al., 

2017), or previous knowledge to test hypotheses in virtual experiments 

(Schalge et al., 2016).  
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Table 2-3: Hume’s causal criteria applied to the “rainfall causes river flood 

peaks” association 

Label Principle Definition Example of the rainfall-flood 

peaks association  

(d22)  Priority The cause occurs before the 

effect. 

Rainfall occurs before flood 

peaks 

(d23)  Contiguity The cause and effect are 

contiguous in time and space. 

The observed rainfall and flood 

peaks are closely related in 

space and time.  

(d24)  Constant 

conjunction 

The occurrence of the cause 

systematically implies the 

occurrence of the effect [under 

the same conditions]. 

Similar rainfall always implies 

the observation of similar flow 

peaks under similar conditions. 

(d25)  Necessary 

connection 

The additional principle that is 

necessary to avoid being 

deceived by the first three. 

We cannot know ultimately, 

but we can speculate infinitely 

deeper and deeper on overland 

flow, subsurface flow, 

hydrological connectivity, etc. 

However, Popper's assertion on falsification as the driver (d3, d10) of progress 

in science, and how (d9) falsification should be pursued, is the subject of 

recent debates in hydrology (Beven, 2018; Blöschl, 2017). Most agreed that 

more emphasis on hypothesis testing should be beneficial and adopted using 

model evaluation framework, field exploration, and data collection. However, 

it is recognized as difficult in practice as a matter of testability (see also 

Dooge, 1986). Models are more complex than Hume’s focus on one cause 

producing one effect (d1). They are high dimensional hypotheses themselves 

(d8) built upon imperfect or incomplete data (d7, d16) that shall be regarded 

as hypotheses (d11) as well. In conclusion, refutation is necessary (d20) but 

not sufficient (d21) and shall be pursued in parallel with model development.  

It is also illusory to completely discredit the verificationist and pragmatic 

argument if new technologies make it possible to make better predictions, as 

could be the case with the new generation of empirical models resulting from 

the learning machine (Shen et al., 2018). When Mandelbrot's fractional noise 

model was criticized for being nonrealistic physically, the latter responded 

that his model is at least empirically more justified, and that all justifications 

of models of nature are empirical (Mandelbrot, 1970). By the words of 

Richard Dawkins, when asked the question of the foundations of the 

justification of scientific truths (d6), the answer is "it works ...". The pragmatic 

argument is undeniable and eventually more useful than a physically-based 

model for practical purposes (see also d26). Nevertheless, it does not deprive 
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scientists of asking why it works and whether it is for the right reason by 

opening the black box and turning it into a grey box that gives an intelligible 

(d18) account of the mechanism (d7, d8, d9)(Kirchner, 2006). 

2.4.3.2 The Quest of a Necessary Connection 

Beyond refutation, another and less pessimistic path is to not give up on the 

human ability to infer more robust associations, to mine more in-depth the 

idea of the necessary connection (d25), and to hunt the association-causation 

fallacies. Accordingly, another empiricist, Berkeley, suggested a 

precautionary principle, which is often translated in modernity by 

“association (or correlation) [d5,d8, d16, d24] is not causation [d6, d9, d17, 

d25]”. In his words (Berkeley, 1710), the transition from association to 

causality must be made with rules and wise contrivance. The same caution 

applies today in hydrology (Christofides and Koutsoyiannis, 2011). If Hume 

is probably responsible for the reluctance of referring to causality in science 

according to  Russell (1912), it is at the end of the 19th century that causality 

started its come-back, and precisely by looking for associations. With the rise 

of statistics in the late 19th century, the terms ‘regression’ and ‘correlation’ 

(d24) were coined by Francis Galton in 1888, first termed statistical scales, 

and later formalized by Pearson through its well-known coefficient as an 

objective and statistical measure of association (see Stigler, 1989). 

Accordingly, Yule developed the foundations of time-series analysis: partial 

correlations (Yule, 1907) and serial correlations that study time-dependencies 

(Yule, 1921). Cross-correlations or correlograms allows investigating the 

principle of priority (d22) and identifying causal delays. Besides, building 

upon correlation and illustrated on agrometeorological variables, Wright 

(1921) laid the foundations of the modern causal graph theory, now based on 

Bayesian network, structural equation modeling, among others (see Pearl, 

2000; Spirtes et al., 1993). 

In the '60s, causality is explicitly back. Reichenbach (1956) stated why an 

association may causally spurious while verifying Hume’s three criteria 

(Table 2-3, d22, d23, d24): 

(d26) Principle of the common cause: constant conjunction (d24) is either the 

product of causal interrelation or the result of shared driving variables. 
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Accordingly, two renowned scientists, the mathematician Wiener (1956), 

followed by the econometrician Granger (1969), proposed an empirical 

definition of causality based on the principles of priority (d22), common cause 

(d26), and predictability (d8): a variable is causal to a predicted variable if not 

considering its past (d22) significantly increases the uncertainty of the 

predictions while considering all other potential explaining variables (d26). 

The Granger causality is tested with a multivariate linear framework around 

vector autoregressive models or cross-spectral methods (Granger, 1969). 

More recently, they have been some development in addressing nonlinear 

causal interactions with new bi-variate methods based on the information 

theory (Shannon, 1948) known as transfer entropy (Schreiber, 2000), or on the 

basis of chaos theory (Sugihara et al., 2012; Ye et al., 2015). The idea is now 

extended to multivariate nonlinear frameworks (d26) of time-series analysis 

based on conditional mutual information (Hlaváčková-Schindler et al., 2007; 

Runge et al., 2019a). A broader view of the evolution, nature, opportunities, 

and challenges of what is now called a causal revolution or new paradigm can 

be obtained from some reviews in the field of Earth sciences or hydrology 

(Goodwell et al., 2020; Meyfroidt, 2016; Rinderer et al., 2018; Runge et al., 

2019b; see also Chapter 6). 

In general, all these models, that are now labeled causal, are generated from a 

few time-series. They are non-reductionist (to the small parts, d7) and could 

be regrouped within a manipulabilist, interventionist, or counterfactual 

philosophy or theory of causation (Menzies and Beebee, 2001; Woodward, 

2016). They are empirical as they tell us what change in one observed quantity 

corresponds to a change in another (Klemeš, 1982). However, what is 

implicitly expected with a causally inferred model is based on a pragmatic and 

intuitive definition of causes: 

(d27) Manipulable cause: handling devices to manipulate the effects. 

Accordingly, an interventionist would critic a high-resolution model because 

they are framed upon diluted causes that have lost their status since 

intervening on a model unit will not much affect the outcome. In hydrology, 

such a non-reductionist model was often labeled top-down or data-driven if 

built with the inductive logic (d13) of regression. Even though these methods 

have had considerable credence in addressing causality in other disciplines, 

notably in econometrics and neurosciences, time-series analysis techniques or 

stochastic hydrological models (e.g., Yevjevich, 1987) were not specially 
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considered as “causal”  within the science of hydrology. They were instead 

labeled empirical, assuming that they miss the causes in the sense of 

mechanism (Klemeš, 1982). This view was not entirely supported (e.g., 

Koutsoyiannis, 2010), and empirical causal modeling was developed within 

hydrology by using similar methods based on structural equations and labeled 

as data-based mechanistic models (see Young, 2006, 2013). Aside from data-

based mechanistic modeling, study cases relying explicitly on causal inference 

methods are somewhat rare and recent. Some papers investigate potential 

feedbacks of soil moisture on precipitation and the importance of confounding 

(d26) factors (interannual variability, seasonality, rainfall-induced synchrony) 

using Granger causality (Salvucci et al., 2002; Tuttle and Salvucci, 2017). 

Molini et al. (2010) studied cross-scales rainfall interactions relying on 

wavelet analysis to address the principle of priority in both the temporal and 

the frequency domains. In the last decade, nonlinear causal inference methods 

have been applied to study ecohydrologic feedback processes (Ruddell and 

Kumar, 2009) and to the study of hydrological connectivity (Rinderer et al., 

2018; Sendrowski and Passalacqua, 2017).  

In particular, hydrological connectivity is intriguing in the way it echoes 

Hume’s necessary connection (d25). Hydrological connectivity studies the 

preferential and actual flow paths of water (see Bracken et al., 2013). 

Following Rinderer et al.’s terminology (2018), structural connectivity refers 

to the potential ones (d17, d23), independently of water, and solely based on 

static geomorphology. Functional connectivity, in environmental sciences, 

refers to the spatial adjacency or contiguity characteristics interacting with 

temporally varying factors to lead to the connected flow of material (d8, d16, 

d23), eventually revealed by statistical associations. Rinderer et al. (2018) 

coined the termed effective connectivity to refer to the connections revealed 

by causal inference methods, thus, satisfying priority (d22), time asymmetry, 

and constant conjunction (d24), and depending on the methods, a constraint 

on confounding factors (d26). Their results also showed that the retrieved 

causal relationships are method-sensitive and that spurious and physically 

unrealistic causal relationships may appear unless physically constrained with 

structural and functional connectivity measures (d16, d17, d23). They further 

suggested to systematically use multiple methods to infer causality from an 

abductive logic (d14), and to retrieve parsimonious (d18) connectivity maps 

by applying a threshold on the significance level of causal associations.  
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In general, empirical methods are criticized as they merely reveal causal 

interactions without any explanation of the mechanism. In that sense, an 

association is just the expected account of what is to be (d8) that could either 

be an out-of-purpose anomaly (d10) if it does not characterize the whole 

system (d8). To Meyfroidt (2016), such methods are complementary to 

qualitative and narrative studies that pay more attention to the causal 

mechanism. To Runge et al. (2019), causal inference and physical models 

should be studied complementarily. Moreover, to Rinderer et al. (2018), 

information about causal and physical mechanisms should be used to 

constrain causal inference methods. Somehow, in many ways, Hume's 

necessary connection as a mysterious empirical criterion turns out to be an 

account of the mechanism (d9). The same conclusion can be drawn from the 

past evolution of hydrology. Closely related to the cross-correlation method, 

the unit hydrograph method (Sherman, 1932a) allows addressing priority 

(d22) and characterize transit or transfer times (d8) between rainfall and river 

runoff. Sherman (1932b) succeeded in relating (d8) the unit hydrograph to the 

catchment characteristics (d7, d23, d24), and his method became part of the 

linear theory of hydrological systems (d9) (Dooge, 1973, 1968). 

However, the fact that different empirical causal inference methods outcome 

different causal structures (e.g., Rinderer et al., 2018) is a recall that each 

method is carrying its hypotheses: general ones such as general assumptions 

of linearity or not, structural ones regarding parametric methods, and 

methodological ones regarding nonparametric methods. From this point of 

view, these analytical methods are sensitive and, in a way, are a vector of 

information on the mechanisms. They are not purely inductive and are 

sometimes very assimilable to a parsimonious mechanistic model. A sharp 

distinction between empirical and mechanistic remains highly debatable but 

arguably not productive. In any case, hiding behind the empirical myth of 

"hypotheses non fringo" would deprive us of an opportunity of understanding 

because they are hypotheses to be explored. Perhaps, Newton hid behind this 

myth to avoid (d2) being prosecuted like Galileo by dogmatic authorities? 

Moreover, even data should be seen as a hypothesis (d11) (Beven, 2018) that 

could be intentionally rearranged and conceptualized in many ways (d7) 

clustered by expert knowledge (d7, d8, d9), association metrics (d8), or 

creativity (d15). A fortiori, the human observation was found to be full of tacit 

hypotheses that shall be explored: “we know more than we can tell” (Polanyi 

and Sen, 1966). All of these concerns relate to phenomenology. 
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2.4.4 Phenomenology: Hydrology Beyond Perceptions? 

Hume’s account of causality as belief has influenced Kant (1724-1804 A.C.) 

and his revolution built on this interpretation of causality: a mental 

representation of the real world (Berry, 1982; De Pierris and Friedman, 2018). 

This change of worldview involves a notion of causality that is no longer 

based on the principle of nature itself (immanence, section 2.3.3.1), but on 

how nature appears to us through our interpretative and directed 

consciousness, i.e., on the concept of phenomenology (Smith, 2018) 

developed latter by Husserl (1859-1938 A.C.). From the phenomenological 

point of view, the mind is not third-person reasoning about the reality of 

concrete objects in the real world (d1), but a first-person interpreting 

phenomenon as it appears within the mind (d2). Heidegger (1889-1976 A.C.) 

further stated that the phenomena are a function of the historical antecedent of 

the individual mind, such that causality is no more absolute but relative to 

individual minds, groups, or societies. After two millennia, the vision of the 

sophist Protagoras (section 2.3.2) is back (Caston, 2019; see also Klemeš, 

1983): “man is the measure of all things”. Consequently, a phenomenological 

consideration of causality questions the human observer and how he/she takes 

the measure of things instead of the observed object in itself. Phenomenology, 

as a new ground for causality, is focused on perceptions and exported itself in 

various interrelated disciplines: sociology, cognitive sciences,  psychology, 

behavioral sciences or linguistics (e.g., Berger et al., 1967; Brown and Fish, 

1983; Heider, 1958; Kelley, 1973).  

2.4.4.1 Sensing Causal Perceptions in Society 

A phenomenological approach also has advantages in water resource 

management as well as in the science of hydrology. The subject remains 

difficult to deal with exhaustively because of the vast field of perceptions 

related to water. On a blue planet, water is many things to many people: a 

source of wealth as an essential need for humans and ecosystems, a factor 

related to the production of food, energy, and goods, a recreational luxury, or 

a part of our spiritual life. Water is also a source of threats and hazards through 

excess, contamination, or scarcity. Water is an essential subject to study, 

understand, manage, legislate, requiring communication across a wide range 

of media, within and between many different societies, cultures, groups, or 

individuals. Vogel et al. (2015) point out that water resource management has 

historically been built on an interdisciplinary basis combining hydrological, 
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economic, and engineering considerations, as well as legal, political, religious, 

and ethical considerations (see also Sivakumar, 2011a). Water governance 

policies have not integrated all water-related concerns at once. Savenije et al. 

(2014) show how perceptions in water control and governance have changed 

over time. Initially focused on its hydraulic mission, water governance has 

developed on a Cartesian reductionist paradigm (Falkenmark, 2001), which 

has resulted in a bureaucratic sectorization offering mainly technocratic 

solutions focused on water security. Today, the paradigm is somewhat 

integrated, adaptive, and systemic (see section 2.4.5). It recognizes the 

interrelationships between water, ecosystems, and human activities, the multi-

purpose role of water, and the plural reality of stakeholders' perceptions 

through participatory processes in water governance. Noticeably, Falkenmark 

(2001) quoted the words of the Secretary-General of the European 

Environment Agency: "Facts are facts, but perceptions are reality".  

Of these perceptions, which often become perceived causes and turn into 

action (d2, d27),  Table 2-4 summarizes various concepts related to perceived 

causation, sometimes termed differently. The first six (d28 to d33) are part of 

a theory of causal attribution (Heider, 1958; Kelley, 1973; Weiner et al., 1987) 

that studies the naive (and usually biased) way in which people attribute 

causes to people's behaviors or external events, and how it affects their 

chances of success or failure. In the same vein, psychology and cognitive 

sciences have studied the nature of individual behaviors dealing with 

uncertain risks (Slovic, 1987; Tversky and Kahneman, 1974). These theories 

sensing people’s perceptions have been widely applied to the study of people's 

behavior concerning natural hazards, such as floods for example (Boholm, 

1998, 2009; Buchecker et al., 2013; Burn, 1999; Fuchs et al., 2017; Kellens et 

al., 2013; Terpstra, 2011). The term causal frame (d34) is widely used and 

denotes how people, media, politics perceive reality (e.g., Chong and 

Druckman, 2007; Lakoff, 2010; Tversky and Kahneman, 1981). Frames are 

seen as heuristics for interpreting reality, understanding, judging, making 

decisions, and acting in everyday life. In general, people, politics or media 

exhibit a tendency to have simple biased frames and to attribute a fact or an 

event to one single cause (Kelley, 1973; Lakoff, 2010; Mackie, 1965), that is 

often necessary but insufficient (d20, d21), e.g., “rain causes floods”. Such a 

simple causal structure is sometimes referred to as linear or direct causation 

(or thinking), by opposition to systemic causation (Lakoff, 2010).  
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Table 2-4: A review of some psychological, cognitive, or sociological 

concepts related to causality 

Label Term Definition Example (for a flood event) 

(d28)  Dispositional 

cause 

A cause that is attributed 

internally to one’s personal trait 

(d2, >< d29) 

The manager is incompetent. 

(d29)  Situational 

cause 

A cause that is attributed 

externally to the environment 

(d2, >< d28) 

The manager was 

overwhelmed; It was an 

extreme rainfall. 

(d30)  Stable cause A cause that is perceived as 

temporally persistent (d2,  

>< d31) 

The manager incompetence 

(if deemed persistent); heavy 

rainfall and floods always 

happen. 

(d31)  Unstable cause A cause that is perceived as 

being temporary or rare (d2, 

><d30) 

The manager was 

inexperienced; It has rained a 

lot the past few weeks. 

(d32)  Controllable 

cause 

A cause that is perceived as 

being manipulable (d2, d27, 

 >< d33) 

The manager can learn, rain 

or urbanism (if trust in 

management) 

(d33)  Uncontrollable 

cause 

A cause that is perceived as 

being not manipulable (d2,  

>< d27, ><d32) 

Incompetency (if deemed 

persistent), rain (without trust 

in management) 

(d34)  Causal frame  The way (mostly unconscious) 

in which the individual mind 

conceptualizes a stable causal 

model of their perceived reality 

(d2) 

How floods work 

(d35)  Values Guiding principles in people’s 

life  (d2, d3) 

Individualism, altruism, 

ecologism embodied in 

opinions about flood 

management.  

(d36)  Beliefs Beliefs about what is true or not 

(d2, d5) 

“Urbanism causes floods.” 

(d37)  Norms Rules, either formal or 

informal, that prescribes 

people's behavior (d2, d3).  

The flood directive, cultural 

habits related to the water 

system. 

The added value of perceptual approaches is that it increases the effectiveness 

of management, communication, and training policies (Bradford et al., 2012; 

Buchecker et al., 2013; Slovic, 1987). The biases and the differences in 

perceptions are instructive to the interactions between citizens and decision-

makers, but also between engineers, natural scientists, and economists (Green 

et al., 1991). Investigating different perceptions of a problem means 

overcoming individual biases and allowing a more accurate representation of 

the problem (e.g., Boholm, 2009). Values (d35), Beliefs (d36), and Norms 
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(d37) are concepts part of the Value-Belief-Norm (VBN) model that explain 

people’s behavior concerning environmentalism, along with comparable 

causal attribution terminology (Stern, 2000; Stern et al., 1999). The VBN 

model has gain popularity in explaining people’s behavior in relation to water 

resources and risks as well, reviewed in Roobavannan et al. (2018), and from 

which definitions d35 to d37 are borrowed. 

2.4.4.2 The Hidden Benefits of Relativism in Hydrology 

Regarding the science of hydrology, how would this phenomenological 

perspective on causality relate to the science of hydrology? "Man is the 

measure of all things" allows the coexistence of multiple causal views, i.e., 

relativism, subjectivism, or indeterminism. This is a very contrasting 

viewpoint to the belief in universal laws or the analytical approach of universal 

reasoning (section 2.3.2; 2.4.1). Relativism is therefore disliked in science 

most probably because it opens the way to the first enemy of causality, 

skepticism. Still, it has many hidden advantages.  

First, it is possible to restore the reputation of relativism in science by recalling 

that it is one of the drivers of its evolution. Indeed, relativism prevents science 

from falling into a second enemy of causality, dogmatism, or strict belief in a 

single truth, which is the end of the road for scientific inquiry. To a certain 

extent, all scientific knowledge is relative to time (Sivapalan and Blöschl, 

2017; section 2.4.3.1). As such, the coexistence of competing true beliefs (d5) 

is a necessary condition (d20) for the growth of science (Kuhn, 1962) through 

the progressive refutation of the currently believed hypotheses (Popper, 1959). 

That said, if dogmatism is one dead-end, relativism through the pessimism or 

disenchantment that it engenders might be another one. Like Descartes' 

methodical doubt (section 2.4.2) or Hume's moderate skepticism (section 

2.4.3.1), doubt or uncertainties in hydrology should be considered as the 

starting point for scientific reflection and speculation, not as its end or 

conclusion (e.g., Sivapalan, 2009).  

Accordingly, it is relevant to question the causes that influence our community 

psyche and block us in a pessimistic and disenchanted status quo. While 

referring to the causal attribution terminology, some important paper’s titles 

can be reinterpreted to extract a behavioral insight about hydrological 

disenchantment. Is “Moving beyond heterogeneity and process complexity” 

(McDonnell et al., 2007) moving from uncontrollable, stable, and situational 
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causes (d33, d30, d29) to dispositional and controllable (d28, d32) ones on 

which hydrologists can act? Similarly, is “The secret to ‘doing better 

hydrological science’” (Sivapalan, 2009) just about taking dispositions (d28, 

d32) to move beyond uncertainties perceived as uncontrollable, stable, and 

situational (d33, d30, d29)? Finally, is dilettantism and fragmentation in the 

science of hydrology a stable trait (d28, d30) that cannot be changed or an 

unstable one that requires making efforts (d31, d28) (Klemeš, 1986a)? Hence, 

a recipe for breaking dead-ends and advancing the science of hydrology, or 

individual research, is to internalize these causes into dispositions, instead of 

attributing them to a situation (d29) originated from choices made consciously 

or unconsciously in the past that have reached their limits at this time (d30, 

d33).  

Beyond scientific progress and the mood of perceptions, a certain skepticism 

may be associated with the relative plurality of representations within 

hydrology. It is manifest in hydrological modeling: there is a plurality of 

models, modelers, equifinal parameters, and ultimately a range of outputs that 

pessimistically describe our uncertainty instead of the certainties that a 

scientist wants to provide (Sivapalan, 2009). However, the struggle to 

recognize uncertainties has been difficult in hydrology (see Pappenberger and 

Beven, 2006), but fruitful in many ways. On the one hand, uncertainty turns 

out to be a scientific fact, and the proper characterization of uncertainty is 

knowledge (d6) rather than a lack of knowledge to the extent that it accounts 

for both what-is and what-could-be (d16, d17) and allows making better 

decisions (d2, d27). Moreover, uncertainty could be seen as the characteristic 

traits (d8) of catchments that could be useful to the task of catchment 

classification and comparison (e.g., Wagener et al., 2007; Chapter 4). 

On the other hand, just as in water resource management (section 2.4.4.1), the 

plurality of causal perceptions could be considered as a reservoir of ideo-

diversity, which both enables a more precise vision of reality and guarantees 

the resilience and adaptability of a science. For example, the apparent 

relativism in published articles makes it possible to conduct reviews and meta-

analyses to extract the causes of hydrological concerns (e.g., Srinivasan et al., 

2012). Secondly, different modeling philosophies or beliefs may have 

different merits and be useful in a different context (Hrachowitz and Clark, 

2017). Moreover, relativism offers the opportunity to reason by abduction 

(d14) by building better models by studying alternative structures as 

hypotheses (e.g., Clark et al., 2008, 2011; Fenicia et al., 2011; Gupta et al., 
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2012) that arise from the plurality of what has been increasingly recognized 

over the years as perceptual models. Interestingly, abduction (d14) was 

introduced by the phenomenologist philosopher Peirce (section 2.3.3.2). Its 

explicit acknowledgment is only referred to in recent papers (e.g.,  Baker, 

2017; Harman and Troch, 2014). Finally, imagination (d15) is all relative: the 

creative mind is about portraying an idea (d11) to another scale, such as 

Newton pictorially did with the apple to the astral bodies (Bronowski, 1956), 

or “the faculty of compounding, transposing, augmenting, or diminishing the 

materials [d7, d11] afforded us by the senses and experience [d13]” (Hume, 

1777). 

Hydrologists have also enriched their concepts and perceptions by borrowing 

from other disciplines. Thus, visions of ecohydrology (Eagleson, 2002), 

sociohydrology (Sivapalan et al., 2012), or those of causal inference methods 

(section 2.4.3.2; Chapter 6) have been developed. The case of sociohydrology 

is particularly compelling from a phenomenological point of view. On the one 

hand, sociohydrology recognizes that water resources and the water cycle 

affect the development of human societies, as a source of well-being or threats, 

and that, in turn, human beings influence water resources and the water cycle, 

a fortiori in the Anthropocene era (Montanari et al., 2013; Vogel et al., 2015). 

Perceiving and realizing that humans influence the water cycle may seem 

trivial to many. However, hydrology did not take these coevolutionary 

processes into account in its numerical models (Montanari et al., 2013), nor in 

its perceptual representations of the water cycle (Abbott et al., 2019), and its 

recent recognition is invoked as a new paradigm (Vogel et al., 2015). Thus, 

hydrology has long remained faithful to Aristotle and to a two-thousand-year-

old definition of nature that depicts it as that which has its principle in itself, 

far from technology and human influence (section 2.3.3.1). Sociohydrology  

breaks with this tenacious umbilical cord but does more in terms of 

phenomenological considerations. In seeking to explain and model (d8) in a 

mechanistic way (d9) the bidirectional coupling that exists between human 

perceptions, behavior, and hydrological systems (d7) (Baldassarre et al., 2013; 

Terpstra, 2011), sociohydrology explicitly considers variables representative 

of social perceptions such as values (d35, d2, d3), beliefs (d36, d2, d5), and 

norms (d37, d2, d3) as causes (d1, d7). 

Finally, phenomenology, by recalling that everything is interpreted through 

the prism of an individually or socially biased consciousness, brings science 

and its method out of the stern rails of deduction (d12) and induction (d13). It 
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is not just a philosophical issue. Such biases have provoked a crisis of 

scientific credibility and reproducibility that is mainly felt today and related 

to phenomenology (Saltelli and Funtowicz, 2017). Indeed, just as the causal 

perceptions of everyone, the results of scientific research can be cognitively 

biased due to individual or socio-psychological mechanisms (see Andréassian 

et al., 2010; Nuzzo, 2015; Pfister and Kirchner, 2017). In order to remedy its 

biases (d2, d5) and to pursue the function of objectivity (d6) in its idealistic 

search for universal laws (d3, d10) or its realistic description of facts (d8, d12, 

d13), phenomenology paradoxically proposes to science to assume its part of 

subjectivity and to make science not solely abstract (d11) but be human 

(Bronowski, 1956). This is in that way that truth shall not be only discovered 

but created (section 2.3.2). Along with Hume (1777): 

“Indulge your passion for science, […], but let your science be human, and 

such as may have a direct reference to action and society. Abstruse thought 

and profound researches I prohibit, and will severely punish, by the pensive 

melancholy which they introduce, by the endless uncertainty in which they 

involve you, and by the cold reception which your pretended discoveries shall 

meet with, when communicated. Be a philosopher; but, amidst all your 

philosophy, be still a man”. 

In concrete terms, it is to organize science as a society of individuals with 

respectful interactions among divergent opinions and needs from within its 

body and outside with other social groups (Bronowski, 1956). It is to develop 

some adaptative mechanisms to control individual and collective biases, 

sectorial dogmatism, or on the contrary, the explosion of creativity and the 

dilution of knowledge. Such adaptative mechanisms exist and are 

continuously discussed: the peer review system (Pfister and Kirchner, 2017), 

community platforms (Ceola et al., 2015), transdisciplinarity (Montanari et 

al., 2013), sensing societal needs and promote them with community initiative 

and leadership (Sivapalan and Blöschl, 2017),  the dissemination sciences into 

society (Kirchner, 2017; Lutz et al., 2018), the education of the next 

generation of hydrologist (see Seibert et al., 2013). Thus, a science or 

scientific community is an interacting and externally open system on an equal 

footing with a watershed or water management system. But then, what is a 

system? This is the last step of this evolutionary journey. 
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2.4.5 Systemic Thinking: Hydrology as a Whole 

At the end of the 19th and early 20th century, the Newtonian mechanism and 

Cartesian reductionism were challenged from different scopes. In addition to 

the concerns discussed in section 2.4.2, Poincaré (1908), in “science and 

method”, pointed out that Laplace’s vision of randomness, as a lack of 

knowledge, is insufficient (d21) and that randomness may arise from sensitive 

dependence to initial conditions (i.e., nonlinearity; see section 1.1.2.3, Figure 

1-5) making the world chaotic and unpredictable. He also discussed the issue 

of time reversibility in Newtonian mechanics, which was philosophically 

problematic in terms of causality regarding the principle of priority (d22) and 

physically, regarding the irreversibility of thermodynamical processes. 

Similarly, the Darwinian theory of evolution suggests that motion 

characterizes life (d9), but the Newtonian mechanics were inadequate to 

explain the emergence of complex forms of life and functions such as 

consciousness or voluntary motion. The philosopher Bergson (1858-1941 

A.C.) insisted on the irreversibility of time for living organisms and regarding 

evolution. He has resurrected the final cause (d10) of Aristotle (Bergson, 

1907). At that time, vitalism appeared as an anti-mechanistic philosophical 

trend that asserts that living things rely on independent principles that are non-

physical and with unidirectional time. This is part of a more general 

philosophical trend, holism (Smuts, 1926), suggesting studying a phenomenon 

as an indivisible entity (d8). At the societal level, science became sectorized 

into goal-directed disciplines (d3, d10, section 2.4.4), heavily specialized and 

fragmented in such a way that you cannot understand what your colleague is 

doing in the next office or next floor because of the lack of unifying 

terminology in science, and the lack of universal scientific method (Poincaré, 

1908; Wiener, 1948).  

In this context, three influential trends have made their appearance to offer a 

unified theory and terminology involving system thinking and self-regulated 

systems: cybernetics, the general theory of system, and the theory of nonlinear 

dynamical system (or chaos theory). Whatsoever the trend, systemic thinking 

emphasizes the greater importance of the whole (d8) and its purpose (d10) 

over the parts (d7). The notion of a system as a whole, eventually made of 

interrelated parts but not necessarily, spread like a deluge in hydrology 

(Vemuri and Vemuri, 1970) and all the disciplines of knowledge (see von 

Bertalanffy, 1968). However, the notion of systems took different 

philosophical paths, with different meanings. Hence, a system is most likely 
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perceived differently (d2, d34) for hydrologists having a different background 

(section 2.4.4).  

The first trend, i.e., cybernetics (Wiener, 1948), is inspired by control 

engineers, their guiding systems, and steering engines. Wiener and his 

colleague Rosenblueth realized that the term “feedback” is an essential 

characteristic of all goal-directed motion. They acknowledged the term 

teleology (d3, d10) as “synonymous with purpose controlled by feedback” in 

a taxonomy classifying the behavior of natural events (Rosenblueth et al., 

1943). They build up their theory of systems on the recent advances made in 

thermodynamics, statistical mechanics, and their own development of a theory 

of information that had appeared synchronously in the work of Shannon 

(1948), allowing to account for the irreversibility of time and recognizing 

Bergson’s philosophical argument. They give it the name cybernetics from the 

ancient Greek (kubernetes), meaning steersman, the same etymological origin 

of “governor”, and illustrated the broad applicability concept on several 

topics. This trend is deeply rooted in system engineering and problem-solving. 

The linear theory of hydrologic systems of Dooge (1973), as an engineer 

himself, is imbued with Wiener engineering philosophy (see also Dooge, 

1968) and contains some references to Wiener’s work. To Dooge, as for other 

hydrologists with an engineering background (e.g., Chow et al., 1988), the 

system approach is an empirical black-box approach, an engineering term 

meaning that what is inside the box does not matter, convenient to escape 

hydrological complexity (section 2.4.2, 2.4.3; see also Chapter 1, section 

1.1.1). The relationship between the inputs and the output is what 

characterizes the system (d8), and what allows “system operation” and 

“control”, i.e., applied or operational hydrology (d10, d27). However, Dooge 

was rather a Newtonian mechanicist and determinicist hydrologist. The added 

values of the information theory, its analogy with thermodynamics, and 

pertinence to deal with thermodynamically irreversible processes in 

hydrology is now considered in the emerging debates about causality in 

hydrology (Goodwell et al., 2020; Koutsoyiannis, 2019). 

The second trend is the organismic view in the general system theory of the 

biologist von Bertalanffy (1968). His book included the advances of his work 

that had started in 1920. It extends to a broader scope of Wiener’s cybernetics 

as well as many other system approaches, although not convinced by the 

information theory. He stressed the critical characteristics of an open system, 

that is, to defy the law of thermodynamics by being organized thanks to 
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dissipative mechanisms of exchange of matter and energy with its 

environment (see section 1.1.2.4). The Aristotelean origin of his theory is 

entirely acknowledged (section 2.3.3.1). Besides, Bertalanffy also attributed 

to him the principle of emergence that “the whole [d8] is more than the parts 

[d7]”. He is not a vitalist and believes that emergence could possibly be 

explained by the parts, but that is not the most effective way to address 

knowledge, that should be therefore rethought. Especially in biology, 

understanding an organ without considering its purpose or function is 

meaningless. In that regard, he also reconsidered the final cause (d10) and 

suggested five types of teleological behavior in natural events. The notion of 

equifinality now familiar in hydrology was borrowed by Beven from 

Bertalanffy (Beven, 2006a), and by transitivity, from Aristotle. 

Table 2-5: Teleology (or finality) in natural events adapted from von 

Bertalanffy (1968) 

Label Term Definition Example  

(d38)  Static 

teleology 

A static arrangement 

that seems to be useful 

for a certain "purpose." 

Optimality principle in ecohydrological 

distribution of plant species in 

watersheds (Eagleson, 2002); slopes 

directed to the outlet.  

(d39)  Asymptotic 

teleology 

Asymptotic behavior 

that attains a time 

independent condition.  

A storm basin depletion. 

(d40)  Emergent 

teleology 

A purpose that arises 

from/in the organized 

structure.  

Watershed’s function as a support for 

life, ecosystems, and human systems 

(Kumar, 2007); physical habitat, food 

supply (Sivapalan, 2006); water 

partition, storage, release  (Wagener et 

al., 2007). 

(d41)  Equifinal 

teleology 

Final state that can be 

reached from different 

initial conditions. 

Beven’s equifinality of model space 

(Beven, 2006a); a steady baseflow; 

equifinal flow paths to the outlet.  

(d42)  True 

teleology 

A true anticipated goal. Water laws, directives, or acts;People’s 

behaviors (section 2.4.4.1) 

Besides, Bertalanffy stressed the importance of isomorphism (same form, d8) 

in science and nature, such that a unifying theory of science, or any discipline, 

should look for similar patterns in nature, in the scientific methods, or the 

scientific models. In this respect, isomorphism is, to some extent, the path 

recommended by the hydrological watershed classification (Wagener et al., 

2007) or dimensionality reduction (see section 1.1.2.2). This recent trend in 

hydrology (see section 2.1) presents some analogy with the rise of the general 
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system theory considering the fragmented status of hydrology, the lack of 

unified terminology and knowledge of watershed processes at the macroscale, 

the non-parsimonious nature of physical reductionism, the previous calls for 

holism and synthesis (Blöschl, 2006; Sivapalan, 2003) as well as seeing 

catchment as a self-organized structure, like an organism (Kumar, 2007; 

Sivapalan, 2006). Also, Sivapalan (2006) stresses the interdependent 

importance of patterns (d8), processes (d9), and functions (d10), (d40), with 

the idea that function could be used to constraint patterns and processes. The 

latter reminds the importance of purpose-directedness and Aristotle’s 

definition of randomness as out-of-purpose noise (section 2.3.3.1), but also its 

purpose-relativity (section 2.4.4). In general, the organismic view has spread 

since the ’90s and is now considered as a new blueprint of the functional 

modeling approach relying on thermodynamics (Savenije and Hrachowitz, 

2017). Despite the analogies, the current trend in hydrology is not an extension 

of that launched by von Bertalanffy's general theory of systems but often 

related to a Darwinian worldview by opposition to the traditional Newtonian 

worldview. The term originated from Harte (2002) and was merely defined. 

Harman and Troch (2014) redefined it as an approach that investigates the 

patterns of variation (d8) in populations of hydrologic systems and develops 

theories that explain their mechanism of emergence and coevolution (d9). 

Hence, Darwinian hydrology is not a functional systemic approach to 

modeling, and catchment classification is only a part of it. Since physical 

processes representation is eventually integrated into catchment classification 

frameworks, Darwinian and Newtonian hydrology could be pursued jointly 

(Sivapalan, 2018). 

The third trend is built upon the deterministic chaos introduced by Poincaré 

(1908) and the development of the theory of nonlinear dynamical systems. It 

was made popular when rediscovered by Lorenz (1963) with computer 

simulations and termed chaos theory, emblematically represented by its 

butterfly. Although grounded in Newtonian mechanics, the theoretical 

development focuses on the property of the whole (d8) system by analyzing 

its attractor. The attractor is, such as Lorenz’s butterfly (see Figure 1-4), the 

geometry drawn in the state space (d16) by observing the long-term dynamics 

of the system (d8, d10, d17, d39). This form is characterized in terms of 

geometrical complexity (or dimension) or in terms of sensitivity to initial 

conditions. The theory offers the opportunity of reconstructing a system from 

one single time-series (e.g., Packard et al., 1980; Takens, 1981) and infers its 

complexity and nonlinear behavior as a characteristic trait, namely a chaotic 
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invariant. The theory has been widely applied in hydrology (see Sivakumar, 

2017) and is suggested for catchment classification (Sivakumar and Singh, 

2012). In particular, some causal inference method is also able to reveal weak 

bi-variate causal interaction based on convergent patterns of isomorphism (d8,  

d24) between reconstructed attractors (Sugihara et al., 2012). An extension of 

the method allows addressing the principle of priority (d22) (Ye et al., 2015). 

Despite the challenges in applying the theory to hydrological data 

(Koutsoyiannis, 2006b; Sivakumar, 2000), the theory of nonlinear dynamical 

systems is congruent with systemic thinking and relevant according to the 

progressive recognition of the ubiquity of nonlinearities in catchment 

hydrology (Blöschl and Zehe, 2005; Delforge et al., 2020; Zehe and 

Sivapalan, 2009; see also section 1.1.2.3). 

2.5 Connecting the Dots: Framing Causality 

The evolutionary perspective of causality depicts a concept that was already 

plural and controversial from the starting point chosen in ancient Greece 

(section 2.3). Causality has continued to evolve and branch out over time, 

disconnecting and reconnecting concepts related to causality. Forty-two 

causal concepts were indexed and defined (regrouped in Appendix III). As 

noted in the review, plurality is a source of doubt, and one cannot portray the 

great diversity of causal concepts and leave the room while leaving it lying on 

the floor in pieces. This attempt at a conclusion where humanity has not yet 

come to a definite conclusion is, therefore, a first-person opinion on the 

subject.  

Causality was introduced by Aristotle as an individual reasoning framework, 

aiming to answer “why” questions, i.e., producing the best explanations 

through four sub-questions: “from what”, “into what”, “how”, and “what for”. 

Causality was then progressively reduced to a body of mechanistic laws 

focused on the “how” that govern the real world and could be discovered by 

logic (section 2.4.2). We stopped calling these laws "causal" because of the 

blows to causality by Ockham (section 2.4.1), Hume (section 2.4.3), or Russel 

(1912), and we now call them physical laws, to guard against the tarnished 

reputation of causality. Successively, causality became an abstraction, a 

belief, a perception that is individually or societally constructed (section 

2.4.4), which is a conflicting definition with a scientific mission that is 

supposed to provide objective facts and answers (Kirchner, 2017). 

Nevertheless, causality has never disappeared from our everyday language 
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and came back notably through systemic thinking, reviving the individual 

reasoning framework proposed by Aristotle (section 2.4.5), then in all 

scientific domains relying on different philosophical positions about causality 

(Figure 2-1, section 2.4.2 to 2.4.5).  

The opinion expects to draw up a holistic vision of causality that allows it to 

retain its usefulness and universal character while escaping the highlighted 

epistemological issues. I conceive causality not as a body of established laws, 

not as an analytical framework, but as a system coupled between nature and 

society that aims to produce not ultimately the best but better societally 

acknowledged explanations or knowledge (or the best at a time-point of 

history). Indeed, the distinction is essential as it replaces causality in the 

temporal and evolving frame that has been emphasized, allowing both 

continuous progress in science and in our understanding of causality. A 

conceptual model in Figure 2-3 illustrates this system.  

The model includes a divine world and a world of ideas to remind that 

causality was also historically attached to these worlds through providential 

(section 2.3.1) and transcendental (section 2.3.2, Figure 2-2) causation and 

that such views of causality remain present in society. My intention is not to 

judge anyone's personal beliefs but to point out that these beliefs exist, making 

them perceptions, real within the real world, that a scientist may need to 

account for through a phenomenological approach (section 2.4.4). As a 

scientist, the system of interest is specifically causality in the real world. The 

real world encompasses in a fuzzy way Particulars, i.e.,  objects that can be 

observed (nature, human, society, or coupled system), the individual himself 

and his/her mind, and society. Thus, I gave up on the sharp distinction between 

human and nature since they became less and less separable through time, 

given the human inability to escape himself while observing and its increasing 

influence on nature and its behavior. Within the real world, I deliberately 

chose to place the human mind at the center of the model because everyone 

approaches causality through their individual experience. However, this 

human mind could be seen as well as a collective mind representing a group 

of people that shares the same causal frames and explanations. 
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Figure 2-3: A conceptual and dynamic model of causality as a system 

producing explanations. Explanations can be grounded in different potential 

substrates: the divine world ruling the real world by providence, the world of 

ideas, in reference to Plato, affecting the real world by transcendence, and the 

real world ruled by itself (immanence). Within the real world, three other 

substrates are considered: particulars as concrete and observable objects, a mind 

of an individual or collective agent, and a society defined by its values, beliefs, 

and norms. Particulars A, B, and C become abstract objects or hypotheses in 

mind, where A and B explain another one C. The full abstract representation is 

constructed by the mind following three forms of causal inference or logic 

(induction, deduction, and abduction), or with flexibility using imagination. 

Induction is bidirectional because not neutral and full of hypotheses that should 

be discussed. Abstractions could also be socially inherited from others through 

education and learning. Technique refers to the processes of intervening on 

particulars (engineering or arts), with the eventuality of reinforcing induction 

based on the technology of observations, analytical methods, and hypotheses 

testing. Communication refers to the act of sharing abstractions with the society 

to modify or reinforce the socially constructed abstractions of A, B, and C. 

Societal drivers can influence induction as they provide focus and intentions to 

the individual minds, as well as a structural framework for observation and its 

financing. Particulars representing all investigable objects (in nature or human 

systems) may be affected by or affect society by a bidirectional arrow of wealth 

and hazards, affecting our interest in understanding the real world.  
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Within the mind, explanations are produced to interpret and structure 

Particulars in the real world, to act on them, and to share these explanations 

with others in society. Explanations can be seen as an organization between 

thesis and hypothesis that structure reality into a causal frame (d34). The 

internal mechanism of this causal system producing explanations involves the 

three types of logic plus imagination to produce and reframe abstractions that 

serve as an explanation (Table 2-2, or Appendix III, d11 to d15). Observation 

through induction could be driven by the Aristotelean framework of causation 

with whatsoever focus on one or several causes among the four. Induction is 

also influenced by cognitive biases such as antecedent knowledge, peoples 

individual purpose, or societal drivers that encourage people to investigate and 

discuss particular purposes, e.g., on topics that concern wealth and hazards 

interactions between society and particular objects, values, beliefs, and norms 

(Table 2-4, or Appendix III, d35 to d37). To overcome bias, acting on the real 

world to test, verify or falsify, the suitability, effectiveness, or manipulability 

of our causal frames (Technique in Figure 2-3) and refine induction is the 

crucial driver to reframe and improve explanations. Another driver is 

exchanging with society to share our explanations and enquire about possibly 

better ones. 

Now that this systemic view on causality is depicted, we see its elements, its 

organization, mechanisms, and its end of production better explanations. As 

carrot and stick, causality is both seen as a purpose, an ideal, the goal of 

science, or an end in itself (understanding), and a constrained and organized 

framework relating specific and distinct approaches, philosophy, and tools 

together. From a temporal perspective, causality is threefold: a capital of 

knowledge accumulated and inherited from the past, reinvested as a day-to-

day tool, for its future growth. The opinion can be clarified and refined 

through answers to exciting questions related to epistemological issues 

highlighted in this review. 
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1. What are a causal explanation and its difference from other 

explanations? 

The purpose of the causal system is to propose the best explanation possible 

in our historical time. So far, the best explanation could be the holistic one 

that has most of the traits related to causality (d43, see also Appendix III). 

(d43) Causal explanation: (1) a stable agreement, perception or belief 

emerging from a collective thinking constrained by logic in interaction 

with the real world [d4, d5, d6, d25, d28, d30, d34, d36, d38-42] … (2) 

explaining within the collective context and for a specific purpose [d2, 

d3, d10, d29, d35, d37, d39, d42] the what-is-to-be [d8, d11, d16, d38-

d42] through mechanisms [d1, d9, d19, d24] linked by inference to 

other elements [d7, d12-15], either in space [d23], in time [d22], or both 

and possibly at other scales, in an intelligible but sufficient way [d18, 

d21, d26] … (3) and by virtue of a potential future practical application 

[d2, d3, d10, d17, d27, d32, d41] enabling either testability, 

technological progress or successful control while operating and 

intervening on the real world. 

This holistic definition reflects a community objective. As a result, individual 

scientists partially contribute to the production of a causal explanation through 

their day-to-day objectives. Any partial explanations could be seen as non-

causal but potentially contributing to a causal explanation (e.g., a theory that 

is not tested or not acknowledged by the community, a statistical association 

without an account on the mechanism). There is a continuous range of 

partiality between a partial and a causal explanation, allowing to say that an 

explanation is more causal than another one. Causality is thus relative, 

possibly absolute, through its unanimous acceptance. However, history 

showed us that many scientific propositions judged absolute could become 

wrong or relative (e.g., Newton's Law of Universal Gravitation). 

The definition (d43) allows giving spaces to different ways of doing 

hydrology. The first part (1) stresses the importance of the societal context 

and portrays the states of causality as a consensus. Hence, in doing so, it is 

possible to do hydrology by sensing people's perceptions of water-related 

issues for water management (section 2.4.4.1). It also encourages individual 

scientists to deal and strengthen themselves by dealing with the present plural 

causal views 2.4.4.2), for instance, by doing reviews, meta-analyses or 
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syntheses (e.g., Blöschl, 2013; Srinivasan et al., 2012), or by working with 

multiple hypotheses (Beven, 2012a; Clark et al., 2011). The second part (2) 

portrays the facets of causality following the Aristotelean framework and its 

four causes (section 2.3.3.1). Again, individual hydrologists could invest 

themselves flexibly into such a framework, studying preferentially 

mechanism, lower representative elements, their interrelations, or the whole 

system and its patterns. These are common ways to understand catchment 

systems within the science of hydrology. The third part (3) implies that 

theories or models should be applicable so that our understanding could be 

tested, but also for the practical purpose of operational hydrology.  

2. Are causal explanations real or abstract?  

Causal explanations are abstract by being the product of reasoning (d11), such 

as a hydrological model, a theory, a law. In this sense and at the individual 

level, causality is not discovered but created (Bronwowski, 1956) by the 

mechanism of Figure 2-3. Hence, causality is not reality, and the causal 

explanations, laws, or models do not have any substance in the real world or 

any metaphysical world. This view of the external laws of causality was 

rejected by Russel (1912). If causality does not exist in the real world, it is 

grounded in our minds while not being neither a pure product of our fantasy 

(d15). The connection between reality and our minds are our lived experiences 

where our thoughts interact with the real world (d13). Hence, causality is 

undoubtedly an abstraction. However, if not real, it is allowed to be realistic 

since reality is embedded in causality thanks to our interactions with the real 

world (similarly to Figure 1-4). One could infer some patterns related to 

geomorphology, rainfall, evapotranspiration from the hydrograph (e.g., 

Kirchner, 2009). Streamflow is not a catchment, rainfall, neither 

evapotranspiration. Still, approaching one from another is possible because 

constrained processes bound these hydrological elements. In the same way, 

causality is an output of the mind's logically constrained interactions (d11 to 

d14) with reality and thus captures and channels something about reality. Such 

pieces of reality do not have to take the form of a physical realism (see Beven, 

2002a); they are realistic for their capability to be justified and acknowledged 

as true (d6).  

It is essential to recognize that causality is linked to reality (while not being 

reality) as this cuts short a Manichean debate on the nature of models or 

theories. Yes, all models are wrong; if wrong means abstract in their substance 
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(section 2.4.1). While this is a good reminder for those who confuse reality 

with abstractions of it, it is not a sufficient reason to disengage scientists or 

tarnish their motivations in their quest for realism or truth because it relies on 

a necessary third concept,  causality, that allows models to be right for the 

right reasons (Kirchner, 2006). 

3. Are causal explanations true or consensual? 

As mentioned, a causal explanation can be true in the sense of realistic 

(constrained by logic) and operational. However, a trait of a reasonable and 

logical explanation, a fortiori a causal explanation, is still to be understandable 

(d18) and accepted. The elements related to perceptions, education, and 

communication are not to be neglected in the question of causality and, 

therefore, in hydrology (e.g., Bogaard et al., 2017; Lutz et al., 2018; Seibert et 

al., 2013). The question is: can we speak of a causal theory, model, or 

explanation if it is not acknowledged? Given the proposed foundations for 

causality, the universal trait of causality is no longer linked to its universality 

in the real world but rather to the consensus on the broad applicability and 

explanatory power that a way of understanding has acquired within a 

community. Best scientific explanations have to fully meet the community to 

fully deserve their causal status, and an outstanding paper will fail to attach 

itself to causality if it remains unseen. Then, causality is also the product of a 

social system that also constrains, together with our experiences of particulars, 

what may or may not be judged right to achieve a societal construction of 

causality around a consensus. Sometimes, it is done wrong, as evidenced by 

the Galileo trial and the past vision of geocentrism. Accordingly, a view of 

causality only as a social and subjective construction of reality is dangerous 

and should be balanced with already acknowledged causal explanations, 

experiences, data, and facts. However, hopefully, social interactions and 

dialogues allow correcting individual scientific biases through the sharing and 

mutualization of experience for the sake of truth. Causality should be realistic 

and consensual. With an increasing level of consensus and adequacy with 

reality, we can progressively strengthen the terms causal explanations to 

causal theories, paradigms, or laws. 

At some point in history, a consensus on an explanation may not be reached 

due to a lack of knowledge or philosophical contradictions. Hopefully, the 

causal system has some memory and transcends time by storing and releasing 

explanations later on as a hydrological reservoir. One example of this was the 
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Aristotelian conception of causality that resurfaced in a general theory of the 

system or in a science of hydrology that is relatively more focused on the 

questions of representative elements, patterns, and function (section 2.4.5). 

4. What is the relation between Causality, Complexity, and Uncertainty? 

Rationalism (section 2.4.2) and the principle of sufficient reason (d19) has 

plunged humanity into a deterministic vision of causality, such that causality 

was opposed to uncertainty or randomness (e.g., Koutsoyiannis, 2010). 

However, if uncertainty is recognized as a fact and a subject of study 

(Pappenberger and Beven, 2006), causality applies to it, and uncertainty is no 

longer in direct opposition to causality. One can ask oneself about the causes 

of uncertainties: their source (d7), their form (d8), their propagations (d9), and 

their meaning and purposes (d10) (see also Nearing et al., 2016). 

Hydrology deals with complex systems. If complexity could be described in 

terms of intrinsic properties of systems as nonlinearity, dimension, or lack of 

organization (see sections 1.1.2.2 to 1.1.2.4), another feature and trait of 

complexity is our difficulty to understand resulting in plural and coexisting 

causal views or models (see section 1.1.2.1, Figure 1-2). Epistemic 

uncertainties are inevitable while dealing with complex systems (e.g., 

hydrological, social, or climate system) and will most likely never disappear. 

Their descriptions are beneficial because better models and predictions can be 

achieved with modeling frameworks (e.g., Clark et al., 2008, 2011; Fenicia et 

al., 2011; Gupta et al., 2012) or only better prediction through an ensemble 

model.  

However, plural causal views should not explode, and it is the duty of science 

to limit uncertainties as much as possible, improve data and logic to constraint 

their extent. For that purpose, it appears that scientific disciplines dealing with 

complex systems show a stronger affinity with the concept of causality (Figure 

2-1). In contrast, physics that deals with simple systems and well-controlled 

experiments (e.g., a pendulum) is more easily freed from the concept of 

causality, talking about certainties, and focuses on acknowledged mechanisms 

(d9). Still, on the scale of centuries, the great revolutions of physics are similar 

to changes in systems of reference (Kuhn, 1962), i.e., a reframing of formal 

causes (d8), which, in result, offers a better representation of mechanisms. 
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5. Does Science Make Progress? 

If portraying uncertainties is, in fact, science, we are entitled to wonder if 

science is making progress? A distinction must be made between technical 

progress and progress in terms of understanding. Technical progress is 

manifest and measurable within society. However, progress in terms of 

understanding is more difficult to establish. To a certain extent, technical 

progress may incorporate advances in our understanding, but it also 

incorporates social values, demand and financial capital so that new 

technologies do not always reflect progress in terms of scientific 

understanding. Similarly, we cannot assume either a positive or negative 

correlation between progress in understanding by counting scientific 

communications.  

Today, the way we portray the growth of our understanding is still 

idealistically represented by a growing trend, punctuated by cycles of 

enchantment and disenchantment (Kuhn, 1962; Sivapalan and Blöschl, 2017). 

Until now, does understanding grows, or is it a tacit hypothesis? The idealistic 

growth somehow relies on a transcendental view of causation (section 2.3.2, 

2.4.1, Figure 2-2), such that understanding is a one-way transfer of causality 

from either the world of ideas or the real world to the individual minds. The 

former is questionable and not scientific. The latter is an individual process 

through induction (Figure 2-3), a vision of personal understanding, and thus 

not representative of the growth of understanding within broader groups of 

people such as society or a scientific community. In fact, the only way one can 

really monitor the growth of our understanding is by measuring and tracking 

for a given topic the level of interest and consensus on that topic (Education 

in Figure 2-3, e.g., by doing scientific reviews, bibliometric analysis, text 

mining). In that way, we can actually check if the assumed growth is verified 

and portray cycles of enchantment and disenchantment as periods of 

convergence and divergence of opinions.  

This evolutive perspective on causality suggests that progress in 

understanding is not that linear but subject to complex patterns. Similarly to 

recent visions of the evolution of species, Ideas compete and co-evolve, 

branch and hybridize, gain and lose importance, die, resurrect or explode, such 

as the ideas on causality presented in this review. Some will succeed in 

becoming static by being accepted forever by humanity or a scientific 

community. This is the fulfillment of their causal status. 
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6. Can we rely on a reduced vision of causality? 

Before synthesizing a holistic view of causality, this review showed that 

particular philosophies of causality, whether rational, empirical, 

phenomenological, or systemic, have always enabled the development of 

valuable knowledge, approaches, methods, skills, or technologies. Pursuing 

distinct or reduced definitions of causality is a source of progress by 

contributing to the ideo-diversity and the pursuit of causality from different 

fronts. Each scientist or scientific discipline needs to focus on specific 

objectives, boundaries and limits, a manageable amount of methods, and a 

specific vision of causality to expect to produce an organized scientific output. 

In doing so, both scientists and scientific disciplines are limited. Hydrology 

will never say everything about water, just as biology will never say 

everything about the specificity of living things. Overcoming the limits for the 

sake of a better understanding and management of complex systems is 

essential and a matter of transdisciplinarity (e.g., Abbott et al., 2019; Lall, 

2014; Montanari et al., 2013; Savenije et al., 2014; Vogel et al., 2015; 

Wagener et al., 2010).  

As long as a science is not in a pathological case of fragmentation, it is then 

perfectly acceptable if not recommended for a scientist or a scientific 

community to remain focused on defined trajectories and causal 

preconceptions because this opinion supports that causality is solved a the 

societal level, and only partially solved by lower levels.  

7. Thinking causality: what for? 

If anybody can pursue one's approach to causality, why invest in extensive 

reflections on causality? Figuratively speaking, by borrowing Sivapalan's 

metaphor (2006), scientists and scientific disciplines are like musicians and 

ensembles within an orchestra. If plural and reduced causality projections may 

present a risk of cacophony and some pessimistic sense of fragmentation, 

thinking causality is studying harmony and music theory, a common language 

for musicians allowing them to play and discuss together. This common 

language was the dream of the first theories of systems (section 2.4.5; 

Bertalanffy, 1968; Wiener, 1948) and explicitly focused on causality at the 

origin.   

From an operational perspective, thinking causality means adhering to the fact 
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that a causal view offers better than any other view the possibility of managing 

complex systems, especially those changing (section 2.3.3.3), with some 

chance of success. With the increased difficulty in the tasks related to 

hydrology in the Anthropocene era (e.g., Clifford, 2002; Montanari et al., 

2013), failure can significantly impact people's lives or the environment. To 

be right for the right reason (Kirchner, 2006) is a duty or responsibility that is 

difficult to achieve but one that we must strive for at different levels, as a 

scientist, a community, or a society.  

Importantly, through a social and logical view of causality, which always aims 

at success, the sources of failure may arise not from an error of logic as such 

but from a neglect of social values, beliefs, norms, or perceptions (unless 

ignoring them is an error of logic in itself). Succeeding is indeed just not about 

reasoning the causes and effects (d1), but debating them (d3) to harmonize 

perceptions for a consensus allowing the success of collective action (d2). This 

is the point behind participatory and integrated approaches in hydrology. From 

a phenomenological and social perspective, thinking causality is improving 

your ability to connect with people through exchanges of causal frames. It 

boosts our ability to be understood by adopting a causal language that activates 

the causal frames of others, and our capability to understand. 

Indeed, at the scale of reasoning, inquiring about how other scientific 

disciplines invest causality is a profound source of inspiration and plasticity 

for scientists' minds. Thinking causality gives them open-mindedness,  

resilience, the ability to find innovative solutions and escape dead-ends by 

seeing what needs to be done (see d28 to d33). Investigating several 

approaches, alone or with others, in parallel or in series, is a necessity. For 

example, the literature review showed that physically-based models would 

benefit from being further simplified and from testing the assumptions on 

which they are based. This route is taken notably through empirical methods 

and an empirical philosophy of causality. Conversely, empirical methods 

benefit from being constrained by theoretical principles and from being linked 

to mechanisms. Whatever the approaches, they are complementary and do not 

free themselves from each other. They are destined to converge so that 

between competing theories, perceptions, data, and methods, everything 

converges towards a theory minimizing uncertainty, and that can be called 

causal.  
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On a broad scope, our vision of causality should arguably map to our vision 

of the scientific method given their shared purpose of making better 

explanations. The latter was mainly constructed by confronting the logic of 

deduction with that of induction (see Figure 2-3). This scientific method was 

already a synthesis of rationalistic and empirical visions of causality (sections 

2.4.2 and 2.4.3), a view still commonly used today (e.g., Box, 1976; Dooge, 

1986). However, such a prevailing model dating from the 18th century leaves 

little room for the importance of community and society in the method. It fails 

to include the logic of abduction (d14) allowing to infer from multiple 

hypotheses (Baker, 2017; Harman and Troch, 2014; Peirce, 1960) and does 

not account for the importance or even dominance of societal drivers in our 

conceptualization of the scientific production process (analogous to Abbott et 

al., 2019). Still, Dooge (1986) had concluded about the finding of hydrological 

laws: “Hydrology can establish itself as a science but not without a degree of 

organization [d40] in planning and in thinking that has not been evident 

before now”.  

Interacting with the scientific community or society, communication and 

teaching skills, making synthesis and reviews, and taking scientific leadership 

are not soft skills for scientists. All processes in Figure 2-3 appear on an equal 

footing. Of course, no one can be involved in all of these tasks, especially not 

at the same time. Causality is once again the concern of a community and a 

society. Even within a society, there are times for everything, e.g., to be more 

synthetic (Blöschl, 2006), to give focus (e.g., Blöschl et al., 2019; Sivapalan, 

2003), to be more rational in our science or communication (Kirchner, 2006, 

2017), to be more empirical (Sivapalan, 2018), or to collect data (Beven et al., 

2020). Indications of what we could do are given in Figure 2-3. We should not 

do “more” of everything all the time. What we should do as a community 

depends on the state of the causal system so that it can be balanced and 

maintain its mission of providing better answers to society without falling into 

pathological cases. 
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2.6 Conclusion 

Our perception of causality keeps evolving, but through the perspective 

brought by its evolutionary journey, constants remain. The interest in 

causality, whether explicit or silent, sustains as a human necessity to 

understand. In ancient Greece, causality was already perceived as a unifying 

ideal to pursue, a framing of how things work that is robustly assessed by 

science and logic, or an agreement achieved within society by communication 

to take actions. It is still valid while looking at the specific concerns of 

hydrology (section 2.1).  In particular, causality was explicitly formalized by 

Aristotle (Falcon, 2019), together with the logic of deduction and induction 

that is the basis of a scientific method rolling on theorization and 

experimentation.  

Through time, causality was reduced to simpler formulations. In the 17th 

century, rationalists focused themselves on processes and deduction as 

hydrologists working on physically-based models. In the 18th century, 

empiricists focused on generalization from observations by induction, as well 

as empirical modelers of hydrological systems. These two Manichean views 

of causality are inseparable in hydrology because models, even if physically-

based, are relying on the inductive logic of calibration, and empirical models 

themselves make assumptions, if only on the representativeness of the data. 

The plurality of models has forced hydrologists to call them perceptual, 

recalling the phenomenological current appearing at the end of the 19th 

century, which reminds us that the object of our scientific investigations is the 

biased and limited perceptions of things and not the things themselves.  

Perceptions are now ubiquitous in hydrology or in water governance based on 

the participatory process that sense perceptions and promote communication 

among stakeholders. Due to the problem of induction stating that wrong 

generalization can happen due to limited experimentation, all causal laws 

became beliefs or perceptions (Hume, 1738) that should be falsified (Popper, 

1959) since experimentation is always limited in space or time. Nowadays, 

empirical methods regain popularity to infer causality and conceptual models 

from data (e.g., Goodwell et al., 2020). Besides, flexible physically-based 

modeling approaches are now comparing different perceptual models to infer 

the best hypothesis, which follows the logic of abduction formalized by the 

phenomenologist Peirce (1960). Sociohydrologists build human-water 

coupled systems based on people’s perceptions (Sivapalan et al., 2012). 
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Causality in science tends to a universal and robust way to harmonize and to 

deal with perceptions instead of revealing single truths as absolute laws. The 

theory of systems itself was introduced to harmonize a fragmented science 

around one reasoning framework that is closely related to Aristotelean notions 

of causality (von Bertalanffy, 1968) that stresses the importance of patterns, 

processes, and functions (similarly to Sivapalan, 2006).  

Regardless of the route taken to investigate causality (physical, empirical, 

perceptual, or systemic), hydrology has evolved fruitfully by taking them 

separately but was, however, perceived as fragmented. The current trend to 

unify our understanding of the hydrological systems seems to connect these 

visions of causality and make them coevolve. In this regard, we propose a 

definition of causal explanations and synthesized model of explanations that 

expands the scientific method further than the sole logic of deduction and 

induction, to account for the social and systemic sides of causality. Causality 

is depicted as an evolving system providing causal explanations within society 

from the logically constrained interactions of our minds with the real world. 

The opinion suggests, therefore, to move away from a widely adopted 

preconception of causality related to deterministic and mechanistic laws. 

Instead, causal explanations are measured as an emerging, robust, and useful 

collective agreement on how systems are conceptualized, including through 

their relevant mechanisms, for a given context and purpose such as control. 
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Chapter 3 Study sites and data 

“It is beyond a doubt that all our knowledge 

begins with experience.” 

Kant 

Abstract 

Next to the city of Rochefort, the Lhomme Karst System (LKS) consists of a 

limestone outcrop located on either side of the Lhomme river on the 

downstream part of its catchment. The Lhomme waters contribute 

continuously to the karstic aquifer's recharge before being returned to the river 

by a Vauclusian resurgence. An extensive network of cave and conduits 

developed in these limestones and one of the largest cave in the system has 

been invested for more than twenty years by a scientific research laboratory, 

i.e., the Rochefort Cave Laboratory (RCL). The thesis uses a few selected 

datasets to develop the case studies covered in the following chapters. Chapter 

4 focuses on three discharge time-series obtained from gauging stations 

located before, inside, and after the LKS, to study karst induced nonlinearity. 

Chapters 5 and 6 use an Electrical Resistivity Tomography (ERT) dataset 

representative of the subsurface epikarst above the cave at RCL. The ERT 

dataset is investigated in order to find spatial patterns based on dynamic 

similarity. Besides, Chapter 6 includes other environmental time-series: 

relative gravimetry monitoring mass changes in the system, 

evapotranspiration and rainfall data, percolation drip discharge data monitored 

from within the cave, and groundwater level data showing high peaks 

whenever the river overflows and floods the cave system. These are used in 

addition to the ERT dataset to develop study cases on causal inference 

between hydrological time-series. 
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3.1 Lhomme Karst System (LKS) 

The Lhomme (or Lomme) Karst System is located in the downstream part of 

the Lhomme river basin in southern Belgium (Figure 3-1). The karst is 

composed of limestone rocks dating from the Givetian period (Middle 

Devonian, around -385 Ma). The system is at an advanced karstification stage, 

with an extensive network of conduits and caves (Bonniver et al., 2013; Hallet 

and Meus, 2011; Michel et al., 2015; Poulain, 2017). The karstic outcrop is 

oriented in the same SW-NE axis as the river. The Lhomme River crosses the 

karst from the confluence between the Lhomme and its tributary, the Wamme 

river (Figure 3-1).  

When the river leaves the karst area, the waters of the karst aquifer are 

discharged into it through a Vauclusian spring, which is the aquifer outlet 

(Appendix VII, Photo VII.1). Along this 7 km strip, the river is perched, which 

means that it is disconnected from the saturated zone and is no draining the 

aquifer. Instead, it is the river water that percolates through the karstic riverbed 

to recharge the Lhomme aquifer. As a result, the system contains two 

underground rivers that flow parallel to each other (see also Delforge et al., 

2017). One is the underground Lhomme, and the other is the underground 

Wamme, as it starts upstream of the confluence from the section of the karstic 

system crossed by the Wamme at the surface. Then, the karst aquifer is 

permanently under the influence of recharge fluxes (𝐼 in Figure 1-1), thus not 

meeting, in addition to the hypothesis of aquifer homogeneity, the hypothesis 

of absence of recharge that would allow inferring the hydrogeological 

properties of the aquifer from the parameters of the B&N model (Eq. 1.5). To 

limit percolation and excessive depletion of the river, the river bed was 

historically paved. Episodically, quick recharge of the karst aquifer also 

occurs during flood events, whenever the discharge at the city of Rochefort 

(station S2, Figure 3-1)  is above 15 m3/s (Poulain, 2017). The karst system is, 

therefore, a natural storm basin (Appendix VII, Photo VII.2). 
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Figure 3-1: Lhomme Karst System (LKS) and the downstream part of the 

Lhomme River Basin  (EPSG: 31370; data source: SPW). After its confluence 

with the Wamme at the city of Jemelle, the Lhomme flows through the LKS for 

~7 km. Along this section, the river is perched, and the Lhomme contributes to 

the karstic aquifer's recharge. During flood events, the Lhomme overflows into 

the cave systems leading to a rapid recharge. The aquifer returns the water back 

to the river at the Eprave Vauclusian spring. S1, S2, and S3 are SPW river 

gauging stations on which the subbasins delineation is based (see section 3.3.1). 

Potential evapotranspiration data (ET, section 3.3.3) are from the PAMESEB 

agrometeorological station of Jemelle. The Rochefort Cave Laboratory (RCL) 

is installed in one of the major caves present in the LKS.  

From the western side to the northwestern part that delimits the karst, the 

system is surrounded by Frasnian shales (Late Devonian, around - 377 Ma). 

This impervious boundary encloses the system and forces the water to resurge 

at the Vauclusian spring. Located on the banks of the Lhomme, the spring 

returns the groundwater to the river and is the only known outlet of the karst 

system. However, the groundwater discharge is problematic to gauge at the 

spring due to its proximity to the Lhomme river. The Lhomme water 

potentially intrudes into the spring area caused by its relatively high discharge 

and water level. The resulting impedance limits the immediate release of the 

spring water into the river. Poulain (2017) performed modeling and gauging 

experiments before and after the confluence of spring discharge into the 
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Lhomme.  He reports an estimate of the average spring discharge of 1.1 m³/s 

for the period 2013-2015 (i.e., 20% of the mean discharge monitored at S2, 

Figure 3-1) with an amplitude of 0.6 m³/s to 3-5 m³/s. On the 12th of October, 

2018, the University of Namur conducted another gauging while the Lhomme 

river discharge was close to zero m³/s due to an unusually dry summer 

(Appendix VII, Photo VII.3). They reported a spring discharge of 0.50 m³/s, 

while the mean daily discharge at S3 (Figure 3-1) was 0.56 m³/s. Hence, the 

Vauclusian spring is the primary source of drought resilience for the river 

system downstream. 

3.2 Rochefort Cave Laboratory (RCL) 

Standing 50 m above and located 300 m south of the Lhomme river (Figure 

3-2), the Rochefort Cave Laboratory (RCL) monitors the Lorette cave from 

both the surface and the inside. The Lorette cave is one of the biggest 

explorable cave within the LKS, with a network of galleries extending over 

500 m along the W-E axis and 200 m in the N-S axis. The eastern part is 

reserved for tourist activities while the central part (Figure 3-2, B) is devoted 

to scientific research since the 90s (Camelbeeck et al., 2012; Quinif et al., 

1997) and was equipped with new instruments since 2013 after the launch of 

the KARAG project (see www.karag.be, and section 1.2.1). On the cave 

surface, a shelter houses a relative superconducting gravimeter (Goodkind, 

1999), monitoring gravity changes (RG, Figure 3-2, B; Appendix VII, Photo 

VII.4, and VII.5). Local gravimeters are sensitive to change in the mass 

distribution above and below the ground. The high resolution of modern 

gravimeters offers the opportunity to close the hydrological mass balance (Eq. 

1.1) and to monitor or model hydrological processes (Figure 1-1), such as 

precipitation, runoff, evapotranspiration, infiltration, groundwater recharge 

and depletion (e.g., Creutzfeldt et al., 2014; Delobbe et al., 2019; Hasan et al., 

2006; Jacob et al., 2008; Van Camp et al., 2016; Watlet et al., 2020). In 

particular, the gravimeter captures the flood peaks that occur when the river 

overflows into the cave system, as well as the groundwater level data (GL in 

Figure 3-2.A) since the water directly flows into the cave where the sensor is 

installed (Appendix VII, Photo VIII.2).  
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Figure 3-2: (A) Location of the Rochefort Cave Laboratory (RCL), and (B) its 

instrumental set-up specifically related to data used in the thesis (section 3.3.3, 

RG: surface relative gravimeter; ERT: Electrical Resistivity Tomography 

profile; P1 to P3: drip discharge percolation monitoring within the cave; RF: 

surface rain gauge). Groundwater level data (GL in A) are those of the cave of 

Nou Maulin water table. Coordinate system: EPSG 31370. Data source: SPW 

(river network, landcover, karst delineation, elevation), and Watlet (2017, cave 

delineation, and instrument coordinates).  

Also, at the surface, a Lufft tipping bucket type rain gauge monitors rainfall, 

and an Electrical Resistivity Tomography (ERT) profile (RF, ERT,  Figure 

3-2, B) was installed to investigate the subsurface above the cave, also known 

as the epikarst. The profile is not flat because it starts from the depression of 

a sinkhole (Appendix VII, Photo VII.6), where the entrance to the cave is 

located. A staircase gives access to the cave entrance from the shelter to enter 

in the Val d’Enfer room where the two drip discharge monitoring devices 

(Kaufmann et al., 2016) are installed (P1, P2, Figure 3-2, B; Appendix VII, 

Photo VII.7). In particular, P1 monitors an active dripping point linked to the 
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presence of a visible fracture on the ceiling of the chamber. Based on dye 

injection at the surface and in-cave tracing, Poulain et al. (2018) identified a 

connection and preferential flow path between the dye injection point and P1. 

The breakthrough curve showed an initial arrival time of 3.75 hours, a 

sustained peak for 80 hours, and a tail lasting up to 120 days. These numbers 

are relative to a diffuse flow. However, sporadic peaks in concentration were 

observed after every rainfall event, reacting after 1.48 hours, peaking after 7.2 

hours, and lasting up to 30 hours on average. P2 monitors a dripping spot 

draining a porous limestone area. The last one, P3, located in the North 

gallery, is a device monitoring slow discharge from drops falling from one 

single stalactite below a massive limestone layer. Within the KARAG project 

framework and the two associated theses (Poulain, 2017; Watlet, 2017), these 

datasets have already been valorized in several publications. They describe 

them in more detail (Poulain et al., 2018; Watlet et al., 2018b, 2020). 

3.3 Thesis Datasets 

A part of the MIGRADAKH project (section 1.2.1) was to gather and 

harmonize the available environmental data and metadata for the LKS. This 

task was carried out during the first two years of the project. Appendix II 

describes the resulting database and metadatabase. The case studies developed 

in the thesis are based on only a small part of the data available in the database. 

This section describes only these relevant subsamples of data.  

3.3.1 Streamflow Time-Series 

Daily streamflow time-series from 2004 up to 2010 (7 years) are obtained 

from hourly discharge data gathered from three gauging stations (S1, S2, and 

S3, Figure 3-1). These belong to the same monitoring network of the Public 

Services of Wallonia (SPW) and are publicly available from their data portal 

(aqualim.environnement.wallonie.be). The S1 station is located just before the 

karst and delineates an upstream basin of 247 km² covered by 70% of forested 

areas. The S2 station, delineating a 424 km² watershed, is located on the 

Lhomme karst system in the Rochefort urban area after the confluence with 

the Wamme river in the city of Jemelle. The third station, S3, is located after 

the karst system and after the Vauclusian spring (Appendix VII, Photo VII.1). 

At this point, the size of the entire catchment is 476 km². 
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Figure 3-3: Flow duration curves for the streamflow data before (S1), inside 

(S2, and after (S3) the LKS (see Figure 3-1). 

Each of the three time-series contains 2,557 daily records averaged from 

hourly data. Their respective flow duration curves (Figure 3-3) highlight the 

water loss during the low flow at station S2 due to percolation through the 

river bed. Indeed, the upstream low flow above 90% (Q90) at S1 is higher than 

the downstream station S2. This effect is no longer observable at S3, where 

the water is returned by the Vauclusian spring. The spring discharges most of 

S3's extreme low flow. In terms of recession, considering S2 (a perched 

stream), and S3 (characterized by a constant inflow‐storage‐discharge 

relationship), the prevailing hypotheses behind recession analysis are certainly 

not valid for these two locations. Hence, the setup of these three consecutive 

stations is particularly suited to study nonlinearities in streamflow recession 

arising from a complex hydrogeological context (e.g., Clark et al., 2009), 

primarily using empirical methods that make no hypotheses on the form of 

nonlinearities, not as Eq. 1.5 does. The three time-series are used for this 

purpose in Chapter 4. 

3.3.2 Electrical Resistivity Tomography (ERT) 

The ERT experiment allowed collecting ERT datasets daily between 2014 and 

2017, which still represents, to the best of the author’s knowledge, the longest, 

high-resolution ERT monitoring experiment conducted in a karst 

environment. The electrodes are permanently installed along a line of 48 

electrodes at 1-meter intervals. The line starts at the bottom of a sinkhole and 

goes all the way to the top of a flat limestone plateau (Figure 3-2, B, Appendix 
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VII, Photo VII.6). Most of the electrodes are permanently buried at shallow 

depth, while the first six electrodes are directly attached to the outcropping 

limestone. Measurements were carried out first via an ALERT system (Kuras 

et al., 2009) and then with a Syscal Pro (Iris Instruments) and include dipole-

dipole and gradients protocols. Data quality was assessed via reciprocal 

measurements. Resistivity models were processed using BERT (Günther et 

al., 2006; Rücker et al., 2006) using a time-lapse inversion scheme with a 

reference model (Figure 3-4.a). For a more detailed presentation of the 

measurements and the inversion aspect, see Watlet et al. (2018b). The dataset 

is also accessible from the supplementary data on a Zenodo repository (Watlet 

et al., 2018a).  

The time-lapse ERT dataset (Figure 3-4) is obtained from dipole-dipole 

arrays. The spatial grid consists of 1558 cells. Each of them is assigned to a 

resistivity time-series defined on 465 daily time-steps defining the temporal 

dimension 𝑁 of the dataset. From 2015-04-13, 389 measurments were 

obtained between 10 and 11 p.m, and therefore integrate most of the rainfall 

occurring on the same day. Before, the measurments were mostly obtained at 

noon (55 of them), and between 0 a.m. and 9 a.m. for the rest of them. 

Different acquisition times can generate dynamic noise that can make causal 

inference more difficult in Chapter 6. Also, several gaps occur throughout the 

dataset (Figure 3-4.d). Such gaps are inherent to field measurements and 

should be accounted for when searching for semi-automated tools to support 

the interpretation of time-lapse ERT results (Chapter 5 and 6).  

This dataset has two main strengths: (i) it images a complex fractured 

limestone area and therefore shows a vast range of resistivity patterns both 

spatially and temporally, and (ii) it is a 2D ERT profile case study, which is 

an advantage when testing several clustering approaches. These two aspects 

seem ideal to explore different clustering methods in the context of identifying 

geological features with distinct hydrological patterns, i.e., hydrofacies. In 

Chapter 5, this objective is pursued by grouping together similar resistivity 

time-series (Figure 3-4.d) using unsupervised time-series clustering methods. 

Clustering will reduce the spatial dimension of the model from 1558 cells to 

a small number of clusters representing hydrofacies. Hence, besides 

hydrofacies detection, it is a task of dimensionality reduction (section 1.1.2.2).  
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Figure 3-4: Time-lapse ERT model of the Rochefort cave subsurface. (a) 

Inverted resistivity 𝜌 for the reference model at day 0. (b) Scatterplot of the 

mean log-resistivity 𝜇[𝑙𝑜𝑔(𝜌)] and standard deviation of log-

resistivity 𝜎[𝑙𝑜𝑔(𝜌)] computed over the 465 days for the 1558 spatial cells. (c) 

Coefficient of variation (𝐶𝑉 = 𝜎(𝜌)/𝜇(𝜌)) of the resistivity computed over the 

465 days. (d) Inverted daily resistivity time-series (log-scale). The red line is 

the mean time-series, with the shaded red areas representing the interquartile 

range. Missing data are left blank. (e) Variance explained by the principal 

component analysis (PCA) of the z-standardized resistivity dataset (see Eq. 

5.1). (f to h) First, second, and third principal components associated with (e). 
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Furthermore, all time-series associated with a hydrofacies can be averaged 

into one single time-series representative of the hydrofacies resistivity 

dynamics. The averaging would yield a reduced set of time-series that could 

be used to investigate the causal relationships in the Lorette cave with causal 

inference methods (Chapter 6). A first visual appreciation of the spatial 

patterns can be appreciated by examining the representations of the dataset 

reporting the coefficient of variation (Figure 3-4.c) and the three first principal 

components (Figure 3-4, f to h). The components result from the principal 

component analysis of the z-standardized data (i.e., a decomposition of the 

correlation matrix) and explain 87.3% of its variance.  

In addition,  Watlet et al., 2018b performed a supervised classification of the 

dataset (Figure 3-5). The classification was based on the resistivity patterns 

(Figure 3-4) while accounting for external information: an in-situ borehole, 

geological observations, and a 3D model from a UAV-based photoscan 

(Triantafyllou et al., 2019) performed in the cave. The interpretation resulted 

in a segmented classification of the model into the eight zones shown in Figure 

3-5. The highly resistive zones under the plateau (Figure 3-4.a) were 

interpreted as low porosity limestone (Figure 3-5, zones D & F). More 

conductive patterns were attributed to either the soil (Figure 3-5, zones A & 

C), the karstified limestone areas (Figure 3-5, zones B & E), or a zone of 

increased fracture intensity with a strong dip in the middle of the image 

(Figure 3-5, zone H). Lastly, zone G presents a low and relatively constant 

resistivity (see Figure 3-4) related to the presence of clayey limestone. The 

classification was limited to the upper model because the experts took into 

account the loss of resolution in the lower part.  

Based on the PCA first component (Figure 3-4.f), the dynamic high resistive 

limestone zone F is correlated with the clayey limestone (Figure 3-5, zone G). 

The other massive limestone zone D (Figure 3-5) is correlated with the rest of 

the model (Figure 3-4, f to h). On the second component (Figure 3-4.g), the 

superficial zones A to C appear more clearly. The porous limestone area E is 

also identifiable in blue tones, as well as a spot of higher conductivity on the 

reference model (Figure 3-4.a), or using the coefficient of variation (Figure 

3-4.c). The patterns of the third component (Figure 3-4.h) are mostly 

redundant with the first one, except for the lower left part of the model. 

However, that area was not considered in Figure 3-4.a since it consists of 

extrapolated resistivity values given that the first electrode is located at the 

origin of the X and Z coordinates.   
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Figure 3-5: Expert-based classification of the time-lapse ERT model from 

Watlet et al. (2018b). (a) Spatial zonation of the groups. (b) Scatterplot of the 

mean log-resistivity 𝜇[𝑙𝑜𝑔(𝜌)], and the standard deviation of log-resistivity 

𝜎[𝑙𝑜𝑔(𝜌)] for the 1558 resistivity time-series. Colors correspond to the groups 

identified in (a). 

3.3.3  Other Time-Series 

Figure 3-6 shows additional environmental time-series considered for causal 

inference in Chapter 6. Potential evapotranspiration data (ET) are 

representative of the PAMESEB station of Jemelle (Figure 3-1). Rainfall data 

(RF), and drip discharge data within the cave (P1 to P3), and relative 

gravimetry (RG), and groundwater level (GL), are those obtained from the 

sensors reported in Figure 3-2 with the same codes. Atmospheric pressure data 

(AP) comes from a barometer associated with the gravimeter (RG).  

ET consists of a daily average of potential hourly evapotranspiration estimated 

with the Penman-Monteith FAO-56 method (Allen et al., 1998) using 

PAMESEB agrometeorological data. Potential evapotranspiration does not 

represent actual evapotranspiration but the evapotranspiration of grass in the 

absence of water stress. Similarly, RF data are a daily average of hourly 

rainfall data. P1, P2, and P3 are daily means of the percolation rate (obtained 

from Watlet et al., 2018a). AP and RG are a daily average of hourly data 

obtained from the ROB. The RG signal is corrected for tidal, atmospheric, 

polar motion effects, and instrumental drift (see Watlet et al., 2020). Note that 

in contrast with Watlet et al. (2020), the hourly gravity measurements are 

linearly corrected considering an admittance (i.e., a linear slope coefficient) 

of -3.3 nm.s-2.hPa-1. This theoretical factor considers the effects resulting from 

changes in the density of the atmosphere (~ -4 nm.s-2.hPa-1) and the density of 

the earth's crust induced by atmospheric pressure (~ 1 nm.s-2.hPa-1). However, 

some linear correlations between RG and AP may be observed, given that this 

factor is theoretical. Hence, Watlet et al. (2020) reported and relied on an 
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actual admittance of -2.95 nm.s-2.hPa-1. Finally, GL is a daily average of 15-

min interval data of water level provided by UNamur. The water level is 

inferred from water pressure and was corrected for atmospheric pressure (by 

UNamur, using another barometer than the one associated with AP). Summary 

statistics for the entire dataset are presented in Table 3-1. 

 

 

Figure 3-6: Environmental daily time-series used in Chapter 6. EP: potential 

evapotranspiration; RF: rainfall; P1 to P3: drip discharge data within the cave; 

AP: atmospheric pressure; RG: relative gravimetry; GL: groundwater level.  
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Table 3-1: Summary statistics of environmental time-series. 

 ET 

[mm] 

RF 

[mm] 

P1 

[L/h] 

P2 

[L/h] 

P3 

[L/h] 

AP 

[hPa] 

RG 

[nm/s2] 

GL 

[m] 

count 1297 1297 718 366 1223 947 948 1084 

mean 2.18 2.01 6.13 1.30 9.06e-04 991.73 3.39 161.86 

std 1.81 4.21 4.33 1.92 1.11e-04 8.63 29.92 1.06 

min 0.03 0 1.05 3.49e-03 6.35e-04 952.74 -66.41 161.04 

5% 0.19 0 1.49 2.52e-02 7.53e-04 976.24 -38.38 161.18 

10% 0.30 0 1.91 4.64e-02 7.76e-04 980.66 -31.99 161.24 

25% 0.67 0 3.00 8.90e-02 8.21e-04 987.18 -21.14 161.41 

50% 1.63 0.10 4.57 0.27 8.99e-04 992.27 -0.19 161.62 

75% 3.30 2.08 8.46 1.73 9.75e-04 997.50 29.89 161.96 

90% 4.97 6.24 12.74 4.20 1.06e-03 1001.51 42.66 162.42 

95% 5.79 10.69 15.33 5.48 1.11e-03 1004.75 47.20 162.87 

max 8.56 53.83 22.66 9.45 1.26e-03 1017.15 127.66 173.67 

 

Regarding the dynamics, the P1 discharge, due to the existence of fast 

preferential flow (see section 3.2; Poulain et al., 2018), exhibits the highest 

rate and reactivity between the three discharge series. As P3 is monitoring a 

stalactite drip discharge, the rate is four orders of magnitude below P1. The 

residual surface relative gravimetry (RG) reflects temporal changes in the 

hydrological mass balance of the cave system. RG integrates water mass 

variations from the surface (~220 m.a.s.l.) according to an acquisition cone 

that extends down to the saturated zone (~150 m.a.s.l.). For the Rochefort cave 

system, this cone has a base with a radius of approximately 750 m. The angle 

effect, in addition to the fact that the gravimeter is installed in a shelter, can 

create an umbrella effect such that rain infiltration can only be detected after 

a certain period. GL is the groundwater level monitored in the cave of Nou 

Maulin. Although piezometric data are available within the Rochefort Cave 

(Poulain, 2017; Watlet et al., 2020), data from the cave of Nou Maulin were 

preferred because more correlated to the gravity signal. Although not apparent 

in Figure 3-6 because of the magnitude of flood peaks, GL presents a 

continuous dynamic, while series in the Lorette cave are intermittent as the 

pressure sensor is not always submerged. GL also captures well the flood 

peaks due to the overflowing of the Lhomme river into the karst system. The 

same peaks are observable and captured in the RG signal. However, the 

relaxation of the gravity signal is slower than the recession of the GL, which 

allowed Watlet et al. (2020) to conclude that the RG response to floods 

includes internal storage in unknown karst voids and to estimate their volume 
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and location. Temporal dependencies and causalities between these time-

series are treated explicitly in Chapter 6, including resistivity time-series 

(section 3.3.2). 
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Chapter 4 Measuring karst-induced nonlinearity 

on river recession dynamics 

“Never acknowledge something for true 

unless you evidently know it as such.” 

Descartes 

Foreword 

I could have quoted the integrality of Descartes' method, as every sentence 

reminds me of the laborious path behind this chapter. Indeed, 

Descartes’method testifies to the difficulty of following your own path of 

reason, a path that has not been taken until then or abandoned for a while. 

Initially, there was no intention to study the dynamics of the Lhomme River 

recession profoundly (section 1.2.1), and I went into the simple methods of 

recession analysis and hydrograph separation to get a general idea of the 

hydrological functioning of the karst river system (section 1.1.1). However, I 

quickly realized that these methods were possibly contraindicated, given the 

violation of their assumptions when applied on a perched stream, 

heterogeneous aquifer with permanent recharge. At the same time, I was 

studying the theory of nonlinear systems (e.g., Figure 1-4). As I learned more 

and more, I had doubts about their application in hydrology, especially with 

strong hypotheses of determinism and thus the absence of noise, time-series 

of infinite length, low dimensionality, or absence of intermittency. Gradually, 

I began to see that the theory of nonlinear systems applied to the case of the 

recession could be a stimulating and compatible case study to overcome the 

parallel doubts that I cultivated concerning recession and nonlinear systems 

theories.  

This path undertaken on doubts was very difficult to clear. I started my 

analyses in summer 2017 and aimed to cover both the subject of recession 

analysis and flow separation. I presented the first poster on the subject in April 

2018 (Delforge et al., 2018). Some of the patterns presented in the poster were 

later found to be non-robust. The remaining one (see Appendix IV) was still 

part of the first version of a paper submitted to Water Resource Research at 
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the end of 2018. As the paper had a major revision for being too cumbersome 

and skeptical about the recession theory, it was completely rewritten from 

scratch and submitted during summer 2019, dropping the section on 

hydrograph separation to focus on the recession analysis and various 

illustration of the potential application of the nonlinear theory to the field of 

recession analysis. The paper experienced a second major revision because, 

although considered attractive, still too scattered and not convincing enough. 

As a result, the latest revision, which was finally accepted (Delforge et al., 

2020) and is adapted in this chapter, has focused on analyzing the nonlinearity 

of the recession, and included a robust sensitivity analysis supporting the 

results together with a more detailed interpretation to relate patterns to 

catchment characteristics (i.e., causality in the sense of Chapter 2). Elements 

withdrawn from the previous version are still mentioned in the perspective of 

the chapter.  

From a philosophical point of view, the chapter questions nonlinearity as an 

indicator of the geomorphological complexity of a watershed (section 1.1.2.3). 

It compares a parametric definition of nonlinearity provided by the B&N 

model (section 1.1.1, Eq. 1.5) with the empirical definition of nonlinearity, 

i.e., the sensitivity to initial conditions, provided by a nearest‐neighbor 

regressor (EDM-Simplex) rooted in the theory of nonlinear dynamical 

systems (Figure 1-4). This is thus a reflection on the form of nonlinearity (d8, 

Appendix III) and the adequacy of the definition with respect to the system's 

perceived complexity (d34, Appendix III). Indeed, since nonlinearity is an 

indicator of a system's organization, it is expected to be more important for a 

complex watershed, i.e., downstream of the karst for the LKS system. Besides, 

recession analysis applies to recession segments that can be interpreted as the 

material cause for the approach (d7, Appendix III). Through sensitivity 

analysis, the paper also analyses the impact of the definition of recession 

segments on the conclusions regarding nonlinearity. In the end, nonlinearity 

does indeed depend on the choice of the definition of nonlinearity (d8) and the 

recession segments (d7). Although nonlinearity is related to the mechanism 

(section 1.1.2.3), the chapter does not discuss the mechanisms in the sense of 

hydrological processes (d9, Appendix III) and argues that the B&N model has 

become empirical (d9→d8) in the context of recession analysis because often 

applied outside the scope of its hypotheses. The final cause (d10, Appendix 

III) is not much discussed in terms of operational purposes because the paper 

is very methodological, and the practical usefulness of the model (EDM-

Simplex) is only demonstrated in terms of the quality of the forecasts.   
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Abstract 

For more than a century, the study of streamflow recession has been 

dominated by seemingly physically-based parametric methods that make 

assumptions on the nonlinear nature of the hydrograph recession. In practice, 

several studies have shown that various degrees of nonlinearity occur in the 

same time-series and that parametric methods can underfit nonlinear recession 

patterns. As a result, these methods are often applied empirically and 

individually to each recession segment instead of modeling all recession 

points. The chapter proposes a parsimonious data‐driven model, EDM‐

Simplex, with two objectives: forecasting recession and characterizing its 

nonlinear behavior. The new model is evaluated through global sensitivity 

analysis (GSA) applied to three distinctive hydrograph series from a 

heterogeneous karstic catchment (section 3.3.1).  

The results show excellent 1‐day‐ahead forecasting performance (median 

Nash and Sutcliffe efficiency > 0.99, Eq. 1.4) for all time-series with four 

recession extraction methods. The sensitivity analysis also showed that 

empirical nonlinearity, that is, sensitivity to initial conditions, is best estimated 

through the absolute forecast performance and its decline over time. This 

indicator leads to different interpretations of nonlinearity compared to 

previous methods but is just as sensitive to the choice of recession extraction 

method. In particular, when forecasts were made for recession segments 

containing early stages of recession or flow anomalies, the upstream recession 

was significantly more linear than the downstream recession hydrographs 

affected by the karst. Consequently, the results support future research to 

interpret observed nonlinearities as a function of the catchment hydrological 

states for better integration of empirical, physical‐based, and operational 

approaches to recession analysis. 
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4.1 Introduction 

River flow integrates the systemic dynamics of the entire watershed. By 

definition, the hydrograph of a river shows the streamflow variation in time, 

shifting between flood and recession periods, depending on whether the 

watershed is under the influence of a rainfall event or not (Figure 4-1). 

Recession analysis methods focus on the decreasing river baseflow in the 

absence of rainfall. Applications of recession analysis include low flow 

forecasting, evaluation of aquifer recharge or other hydrological mass balance 

components, estimation of the aquifer hydraulic properties, water supply 

planning for human needs, evaluation of ecosystems sustainability, the study 

of climate or anthropogenic impact on water resources, water quality 

monitoring, and waste management (Dewandel et al., 2003; Smakhtin, 2001; 

Tallaksen, 1995; Wittenberg and Sivapalan, 1999). 

 

Figure 4-1: Schematic representation of the hydrograph. Source: icons are from 

the noun project (thenounproject.com). 

Baseflow recession is seen as the simplest dynamic process by assuming that 

antecedent rainfall has no longer an influence on the decreasing dynamic of 

streamflow and only depends on its own state. The Brutsaert and Nieber 

(1977) (B&N) model of streamflow recession incorporates this assumption 

explicitly by relying on streamflow as the only variable, with only two 

parameters (− 𝑑𝑄 𝑑𝑡⁄ = 𝑎𝑄𝑏, Eq. 1.5). For more than 40 years, the B&N 

model has been considered as a reference model for the study of the daily 
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streamflow recession. Eq. 1.5 is physically based and related to groundwater 

hydraulic theory, in particular to the storage‐discharge relationship developed 

by Boussinesq (1903), among others (see the reviews of Dewandel et al., 

2003; Troch et al., 2013).  

Boussinesq provided an exact solution of the diffusion equation for an 

unconfined homogenous aquifer sitting on a horizontal impermeable layer, 

which allows inferring hydraulic properties of the aquifer. Boussinesq's 

solution suggests that the storage‐discharge relationship for this idealized 

aquifer follows a nonlinear quadratic form, which corresponds to a value of 𝑏 

= 1.5 (Eq. 1.5). Although some experimental studies report 𝑏 values close to 

1.5 (e.g., Troch et al., 1993; Wittenberg, 1994), others provide observed 𝑏 

values ranging between 1 (i.e., linear recession) and 3 (e.g., Chapman, 1999; 

Wittenberg, 1999). This suggests that field observations are often 

incompatible with the assumptions of Boussinesq groundwater hydraulic 

theory. 

There are many reasons for such variations on the range of the nonlinear 

parameter 𝑏. For example, the early recession is expected to exhibit a higher 

𝑏 exponent (Brutsaert and Nieber, 1977). Another possible answer considers 

the aquifer heterogeneities affecting the saturated hydraulic conductivity. 

Some papers report on these effects, assuming either horizontal or vertical 

anisotropy (Harman and Sivapalan, 2009b; Rupp and Selker, 2005, 2006), 

which result in an increase of the nonlinear behavior. Another reason is that 

streamflow recession is related to spatial heterogeneity of the catchments 

(Troch et al., 2013). Under specific conditions, the subsurface discharge from 

hillslopes follows a linear relationship (Berne et al., 2005; Harman and 

Sivapalan, 2009a). Conceivably, the parallel and additive contribution of 

different linear hillslope subsurface discharges to streamflow could be related 

to the nonlinear exponents of the recession (Clark et al., 2009; Harman et al., 

2009). Biswal and Marani (2010) relate the nonlinear properties of baseflow 

regimes to the morphology of the contributive channel network. Other authors 

observed a seasonal variation of 𝑏 by analyzing individual recession events 

with the B&N model. These variations were attributed to change in the 

catchment evapotranspiration dynamics (Shaw and Riha, 2012), or, from a 

systemic point of view, to the combined effects between evapotranspiration, 

antecedent soil moisture, historical recharge conditions, and catchment 

geomorphological features. It was suggested that low‐flow contributive areas 

vary over time (Karlsen et al., 2019; McMillan et al., 2011; Shaw et al., 2013). 
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Bogaart et al. (2016), based on a comparative analysis of 200 catchments in 

Sweden, found long‐term trends showing an increase in recession 

nonlinearities. They related them mainly to changes in the land cover. 

Presently, the processes and explanatory variables to be included in an 

improved model are not well understood and are not likely to be incorporated 

rapidly in a new generic model as they appear to be generally related to a 

systemic and specific behavior of catchments. Some of the aforementioned 

studies clearly show that the B&N model missed patterns in the nonlinear 

behavior of low‐flow regimes, and this has motivated the sequential, 

piecemeal application of the B&N model to individual segments (Karlsen et 

al., 2019; McMillan et al., 2011; Shaw et al., 2013; Shaw and Riha, 2012). For 

example, Jachens et al. (2020) encourage the application of the B&N 

framework systematically on individual recession segments for the sake of 

consistency. Importantly, all these studies clearly show the limits of the B&N 

parametric framework of low dimensionality for recession analysis. They 

suggest considering low flow as a higher dimensional problem that could be 

analyzed using pattern recognition or models of higher degrees of freedom. 

Moreover, different studies showed that the experimentally optimized B&N 

model parameters are highly sensitive to the recession extraction method, the 

observational error, the choice of the fitting method, and the possibility that 𝑏 

exponents obtained from fitting all recession points (Eq. 1.6) might be 

inconsistent with individual events (Dralle et al., 2017; Roques et al., 2017; 

Stoelzle et al., 2013). In a broader sense, although recognized as the simplest 

dynamic in the hydrograph, the study of streamflow recession is currently 

facing the same challenges as encountered in catchment hydrology at large, 

that is, bridging physical processes, patterns, and functional traits at all scales 

and beyond complexity (McDonnell et al., 2007; Sivapalan, 2006). 

Consequently, it is considered that the use of the B&N model on individual 

recession segments (i.e., by considering the two parameters of Eq. 1.5 times 

the number of recession segments) reduces it to an empirical model that does 

not respect the principle of parsimony (section 2.4.1). 

The objective of this work is to propose a parsimonious and robust empirical 

framework to forecast the nonlinear recession and assess its nonlinearity. The 

method relies on the empirical dynamic modeling (EDM) framework 

(Sugihara, 1994; Sugihara et al., 2012; Sugihara and May, 1990; Ye and 

Sugihara, 2016). EDM is based on the theory of nonlinear dynamic systems, 

commonly referred to as chaos theory (Lorenz, 1963; Takens, 1981). The 



Chapter 4 –Measuring karst-induced nonlinearity on river recession dynamics - 103 - 

 

proposed EDM‐Simplex method (Sugihara and May, 1990) is a nearest‐

neighbor regressor for univariate time-series analysis and forecasting. The 

EDM‐Simplex method is based on the general definition of nonlinearity, 

meaning sensitive dependence on initial conditions. From both operational 

and scientific perspectives, the chapter studies the performance of EDM‐

Simplex's empirical nonlinear predictions, as well as the method robustness to 

its variables and assumptions. For these purposes, global sensitivity analysis 

(GSA) is applied (Cukier et al., 1978; Saltelli et al., 2000, 2007) involving 

various choices of recession extraction methods and EDM‐Simplex 

configurations. The method is applied on three streamflow data sets from three 

successive stations gauging the same river with an expected increase in the 

nonlinear behavior due to the downstream presence of a karstic system 

(section 3.3.1,  and Figure 3-3). The consistency between the parametric B&N 

approach and the empirical EDM-Simplex method is further discussed 

together with the emerging perspective of connecting the dots between 

physical and empirical approaches in hydrograph recession analysis. 

4.2 Theory and Methods 

4.2.1 Overview and Philosophy 

Since it is argued that the B&N approach has become empirical, an alternative 

and more parsimonious empirical approach to the usual B&N analytical 

framework is proposed to assess the nonlinearity of the recession: EDM-

Simplex (Sugihara and May, 1990; Table 4-1). Both approaches are 

deterministic, but B&N is grounded in the mechanistic and parametric 

philosophy, while EDM-Simplex relies on an empirical formulation of 

determinism: recession dynamics will behave as usual under similar 

conditions. Accordingly, with EDM-Simplex, the future recession of 

recession segments is forecast by averaging the future recession of similar 

segments, which are supposed to reflect similar environmental conditions, in 

virtue of the theory of deterministic and nonlinear dynamical systems (Figure 

1-4, and section 4.2.2.1 for details). EDM-Simplex belongs, therefore, to the 

family of nearest-neighbor regressors (section 4.2.2.2 for the detailed 

algorithm).  
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Table 4-1: Comparison between the B&N and the EDM-Simplex approach.  

 B&N EDM-Simplex 

Philosophy Mechanistic determinism 

Recession dynamics will follow the 

groundwater hydraulic theory. 

Empirical determinism 

Recession dynamics will behave as 

usual under similar conditions. 

Model The B&N approach 

−𝑑𝑄 𝑑𝑡⁄ = 𝑎𝑄𝑏 

Or in the log-log form: 

log (−
𝑑𝑄

𝑑𝑡
) = log(𝑎) + 𝑏 log(𝑄) 

EDM-Simplex  

nearest-neighbor regressor 

forecasting the future of recession 

segments based on the future of 

similar recession segments. 

Nonlinearity The nonlinear exponent 𝑏  Sensitive dependence to initial 

conditions: 

- performance decay for a 

predictive horizon 𝑡𝑝; 

- the length of recession segment 

𝑚 (or embedding dimension); 

- number of nearest neighbor 

segments 𝑘; 

Other 

parameters 

The recession constant 𝑎 See Table 4-3 

Recession 

extraction 

methods 

Section 4.2.3 

BRU, EDM, VOG, KIR 

Section 4.2.3 

BRU, EDM VOG, KIR  

(+ a truncation parameter ℎ, Table 

4-3 and Table 4-4) 

The theory of nonlinear dynamical systems has been extensively applied to 

streamflow records (reviewed in Sivakumar, 2017). Besides, several studies 

demonstrate the applicability and good performance of regressors based on 

approximation from the local neighborhood on the forecasting of daily 

streamflow hydrographs (e.g., Islam and Sivakumar, 2002; Kember et al., 

1993; Khatibi et al., 2012). However, none have been specifically applied to 

predict and study recession dynamics alone, especially under the light of the 

theory of nonlinear dynamical system. Yet, applying the chaos theory to entire 

streamflow series to infer chaotic properties is challenging due to the high 

dimensionality of hydrograph dynamics, the presence of intermittent 

processes, the shortness of time-series, and the presence of noise (see 

Koutsoyiannis, 2006b; Sivakumar, 2017). Indeed, applied to the prediction of 

floods, a nearest-neighbor regressor forecasting the future of flood events 

from the future of similar flood events is likely to perform poorly because the 

dynamic is forced by an exogeneous, random, or high dimensional variable, 

i.e., rainfall. 
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Regarding recession only, it is assumed that recession, while not chaotic in the 

sense of apparent randomness, is a nonlinear, recurrent, and low dimensional 

process, less noisy and uncertain than the flood hydrograph, and therefore 

congruent with the theory of nonlinear dynamic systems. Recession is no 

longer considered as the sustained decreasing streamflow but as the low‐

dimensional, deterministic, and recurrent part of the hydrograph. 

The modeling philosophy is the following. One can imagine the dynamic of a 

river as the one of a reservoir irregularly disturbed by a stochastic component 

such as rainfall but whose intrinsic dynamics tend toward more determinism 

as recession progresses and the influence of rainfall diminishes. This image is 

not so far from that of a ball revolving in an irregular bowl (watershed) 

naturally attracted by the lowest point, where an unpredictable hand (rainfall) 

would prevent it from reaching its focus (Figure 4-2). In either view, system 

disturbances are expected to be relatively unpredictable, dynamically 

complex, and followed by a relatively simpler motion when a purely 

deterministic dynamic takes over, a dynamic guided by the physical and stable 

structure or organization of the system. Focusing on recession allows inferring 

about “the bowl,” that is, catchment geomorphology and organization, with 

fewer concerns about the rainfall‐runoff response that is either random or of 

much higher dimensionality and for which EDM‐Simplex may not be a right 

tool or would demand much longer time-series (see also Figure 1-5, section 

1.1.2.3 and 1.1.2.4).  

Accordingly, EDM-Simplex assumes stationarity, not in the statistical sense, 

but rather a structural one that assumes that the unknown set of dynamical 

equations remains unchanged, including its parameters (Kantz and Schreiber, 

2003). Pictorially, the shape of the bowl has to remain constant (Figure 4-2).  

Pragmatically, there are methodological considerations to be discussed. In 

general, the forecasting performance of the EDM-Simplex model is used as a 

basis for inferring geomorphological complexity. The performance metric is 

the Nash and Sutcliffe (1970) efficiency (𝑁𝑆𝐸, Eq. 1.4).  
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Figure 4-2: Modelling philosophy behind an empirical, deterministic, and 

nonlinear philosophy for streamflow recession analysis. Recession is seen as 

the deterministic part of the streamflow hydrograph. While streamflow is under 

the influence of rainfall (the hand), its dynamic trajectory is unpredictable 

because rainfall is random. As the influence of rain diminishes, i.e., during 

recession periods, the trajectory taken by the hydrograph becomes more and 

more deterministic and reflects the characteristics of the geomorphology (the 

bowl), whatsoever its shape, i.e., with no physical assumptions. Accordingly, a 

nearest-neighbor empirical model such as EDM-Simplex can be used to assess 

the nonlinearity of recession induced by the geomorphology. Furthermore, 

EDM-Simplex can extract deterministic points in the hydrograph where 

trajectories are consistent and provide good forecasts, that are, expectedly, 

recession points. Source: icons are from the noun project (thenounproject.com).  

Hypothetically, three EDM-Simplex parameters relate to the observed 

dynamics' nonlinearity or complexity (Table 4-1): the time to prediction 𝑡𝑝, 

the length of recession segments in days 𝑚 (or embedding dimension), and 

the number of necessary similar recession segments 𝑘. As highlighted by 

Lorenz (1963), nonlinear dynamics exhibit a higher prediction decay through 

time. Hence, reporting the EDM‐Simplex 𝑁𝑆𝐸 performance decay against the 

prediction horizon 𝑡𝑝 is a way to measure nonlinearity. According to the 

theory (section 4.2.2.1), the dimension of a system, i.e., its complexity (section 

1.1.2.2), can be approached by the parameter 𝑚, which in our case translates 

the length of the recession segments. Intuitively, the more complex the 

geomorphology of the watershed, the more days of recession (e.g., 1, 2, or 3 

days) should be considered for optimal 𝑁𝑆𝐸 performance based on similar 

segments. Finally, the number of nearest neighbors 𝑘 is potentially a gateway 

to assess nonlinearity empirically. It is assumed that the more nonlinear the 

dynamic is, the better the prediction will be by considering the close 

neighborhood, that is, a reduced number of nearest neighbors. A reduced set 

of neighbors is supposed to capture better environmental conditions' 
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specificity, which matters if the dynamic is nonlinear. Still, Sugihara and May 

(1990) suggest using at least 𝑘 = 𝑚 + 1 to close the dynamic according to its 

dimension. These 𝑚 + 1 neighbors are called a simplex, which gives the name 

to the original algorithm. EDM-Simplex is an ensemble model relying on 

bootstrapping. Accordingly, the size of the bootstrap samples 𝐿 is supposed to 

have an influence on 𝑘, as it will affect the density of nearest-neighbor 

recession segments in the analysis.  

Thus, potentially, 𝑡𝑝, 𝑚, and 𝑘 are related to the nonlinearity of a process. For 

an actual case such as recession, this would be related if these parameters are 

sensitive while investigating different recession hydrographs associated with 

catchment showing different hydrogeomorphological properties. If they are 

sensitive, they are allowed to be used as indicators of nonlinear or complex 

behavior. Given the number of EDM-Simplex, they might be a preferred set-

up of parameter to apply EDM-Simplex. Although less related to nonlinearity, 

other parameters and factors involved in the EDM-Simplex algorithm (such 

as 𝐿 and others; section 4.2.2.2) may also affect the outcome and turns to be 

important. Furthermore, the results may be influenced by the recession 

extraction methods that spot the points that will be forecast by the algorithm, 

as it is the case for the B&N framework (e.g., Stoelzle et al., 2013). Hence, 

various recession extraction methods are considered in this issue (section 

4.2.3), including one that involves EDM-Simplex and its philosophy (Figure 

4-2, see also Appendix V). In total, the parameters of the EDM-Simplex 

algorithm and the recession extraction methods are all subject to a robust 

global sensitivity analysis (section 4.2.4) to demonstrate the use of EDM-

Simplex for the analysis of recession nonlinearity, its predictive capabilities, 

and to define recommendations for future applications. The predictions are 

applied to the three stations in the Lhomme streamflow dataset (section 3.3.1). 

The Lhomme catchment is a very heterogeneous watershed offering the 

opportunity to relate the complexity of the watershed to non-linear recession 

patterns (section 3.1). 

4.2.2 EDM-Simplex Model 

4.2.2.1 Takens’s Embedding Theorem 

The theory of nonlinear dynamical systems applied to univariate time-series 

analysis (Kantz and Schreiber, 2003) commonly relies on Takens's  (1981) 

embedding theorem, which suggests that the dynamic of a system represented 
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by its state space 𝑀 can be reconstructed into a pseudo state space 𝑀𝑋 based 

on one single time-series 𝑋𝑡 and its lagged coordinates: 

𝑀𝑋(𝜏, 𝑚) = {𝑋𝑡, 𝑋𝑡−𝜏, … , 𝑋𝑡−(𝑚−1)𝜏} 𝐸𝑞. 4.1 

where 𝑚 is the embedding dimension and 𝜏 the embedding delay. 𝑀 is the 𝐷‐

dimensional space reporting the states of a system with respect to the 𝐷 

explanatory variables driving its trajectory. Nonlinear deterministic systems 

draw unique and recurrent trajectories, meaning that the dynamic revisits 

closely the same portion of the state space. Accordingly, the trajectories 

delineate a confined state space, that is, a basin of attraction whose geometry 

is called an attractor (see Figure 1-4). The reconstructed attractor 𝑀𝑋 from a 

single variable endogenous to 𝑀 is a proxy to investigate the dynamical 

complexity, the dimension, and the nonlinear properties of the original 

attractor 𝑀. Takens's theorem further relates the system dimension  𝐷 to the 

reconstructed dimension 𝑚 by the following inequality: 𝑚 >  2𝐷 will always 

yield to a faithful reconstruction in the absence of noise. Still, 𝑚 can be smaller 

than 2𝐷. It depends on the geometrical complexity of the reconstructed 

trajectories. 

The theorem assumptions hold for low‐dimensional deterministic systems. 

The deterministic hypothesis ensures a bidirectional and one‐to‐one map 

between the states of a system and a single variable trajectory. As for an 

ordinary differential equation, since the trajectory of a single variable depends 

on the other variables (system state), the delayed embedding aims at retrieving 

the system states from the trajectory of one of these variables. In practice, a 

reconstructed attractor gathers the pseudo-states, which are not physical states 

of the system, but qualitatively allow to estimate when the system is in similar 

states and to capture the patterns of its trajectories. It is these principles that 

allow us to make the hypothesis that two segments or trajectories of similar 

recession reflect two similar hydrological states of a watershed.  

In hydrology, the idea behind embedding is also similar to the concept of 

“doing hydrology backward” (Kirchner, 2009), which consists of 

reconstructing the mass balance components from streamflow records 

regarding catchment as simple dynamical systems. In particular, the recession 

plot (Brutsaert and Nieber, 1977) reporting streamflow recession against its 

derivative (Eq. 1.5) is an alternative embedding strategy (Packard et al., 1980). 

The B&N model (Eq. 1.5), however, assumes that recession dynamics can be 
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captured in two dimensions. Hence, investigating 𝑚 through Simplex 

forecasting hypothetically offers the opportunity to investigate this 

assumption. 

4.2.2.2 Forecasting Algorithm 

Relying on state space reconstruction (Eq. 4.1), the EDM‐Simplex algorithm 

(Sugihara and May, 1990), as all forecasting methods in the EDM framework 

(Sugihara, 1994; Sugihara et al., 2012; Ye and Sugihara, 2016), is a nearest‐

neighbor regressor performing data‐based forecasts. EDM‐Simplex is specific 

to univariate time-series forecasting and is based on local approximations 

involving a minimal set of nearest neighbors. Figure 4-3 shows the flowchart 

of the EDM‐Simplex algorithm.  

For a time-series 𝑋𝑡, EDM-Simplex outputs a matrix of forecast �̂�𝑅𝐸𝐹+𝑡𝑝, 

where 𝑅𝐸𝐹 are the user‐defined time indices of reference and 𝑡𝑝 the time to 

prediction. In this study case, 𝑋𝑡 represents a daily streamflow series of length 

𝑁. The reference indices 𝑅𝐸𝐹 are the hydrograph points 𝑡𝑝 time-steps before 

the forecasted recession points. The recession points are identified using a 

recession extraction method (see section 4.2.3). 𝑋𝑡 is first embedded in 𝑀𝑋 

using Takens's theorem (Eq. 4.1). Since the recession analysis considers 

continuous segments of daily recession, 𝑋𝑡 represents a daily streamflow 

series of length 𝑁, 𝜏 is assumed to be 1, and 𝑀𝑋 is, therefore, a trajectory 

matrix of dimension (𝑁 −  𝑚 +  1 ×  𝑚). EDM‐Simplex iterates through 

the 𝑁𝑅𝐸𝐹 single reconstructed states denoted �̇�𝑖 to represent a single row 

{𝑥𝑖, 𝑥𝑖−1, … , 𝑥𝑖 − (𝑚 − 1)} or state of 𝑀𝑋,𝑅𝐸𝐹. Every single state �̇�𝑖 yields to 

𝑁𝑆𝐴𝑀 forecasts 𝑥𝑖+𝑡𝑝 using nearest‐neighbor distance‐weighted regression on 

𝑁𝑆𝐴𝑀 bootstrapped samples 𝑀𝑋,𝐿 of size 𝐿. Therefore, �̂�𝑅𝐸𝐹+𝑡𝑝 has a 

dimension of (𝑁𝑅𝐸𝐹  ×  𝑁𝑆𝐴𝑀). Each set of 𝐿 distinct states in 𝑀𝑋,𝐿 is sampled 

from 𝑀𝑋,𝐿𝐼𝐵, a subset of 𝑀𝑋 constrained by the user‐defined time indices 𝐿𝐼𝐵, 

in which EDM‐Simplex ensures to exclude a window defined by the 𝑡𝑤 input 

around the index 𝑖 of the state of reference. The time exclusion window 𝑡𝑤 is 

the Theiler (1986) window, which allows excluding from the library points 

that would be neighboring due to their temporal proximity. This control 

mechanism prevents EDM‐Simplex from behaving as a moving‐average filter 

that finds its predictive potential in the autocorrelated structure of the time-

series and, therefore, could confuse a recurrent deterministic process with a 
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stochastic process. In the case of recession modeling, 𝑡𝑤 can force recession 

points to be forecasted from other recession limbs, other seasons or years. 

 

Figure 4-3: EDM‐Simplex algorithm flowchart. User‐defined inputs tested in 

the global sensitivity analysis are shown in blue and defined in Table 4-3. 

To perform a single forecast 𝑥𝑖+𝑡𝑝, EDM-Simplex computes the Euclidean 

distance between �̇�𝑖 and the library sample 𝑀𝑋,𝐿 in order to retrieve a set of 𝑘 

nearest‐neighbor states denoted {�̇�𝑑,1, �̇�𝑑,2, … , �̇�𝑑,𝑘} and their respective 

distance {𝑑1, 𝑑2, … , 𝑑𝑘}. Then, Simplex identifies the states in 𝑀𝑋 that are 𝑡𝑝 

time step ahead of the neighbors. Their first undelayed coordinates 

{𝑥𝑑,1+𝑡𝑝, … , 𝑥𝑑,𝑘+𝑡𝑝} are averaged to produce the forecast 𝑥𝑖+𝑡𝑝. The 

averaging uses exponential weight 𝑤𝑗 based on the distances: 

𝑤𝑗 = exp (−
𝑑𝑗

𝑚𝑖𝑛{𝑑1, … , 𝑑𝑘}
) 𝐸𝑞. 4.2 
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Each weight is then divided by the sum of all weights so that they sum up to 

1. Altogether, the user‐defined inputs are summarized in Table 4-3 and section 

4.2.4, as they are part of the sensitivity analysis. 

The EDM‐Simplex model outputs a matrix of 𝑁𝑆𝐴𝑀 forecasts of the 𝑁𝑅𝐸𝐹 

observed recession values and the median forecast. Hence, Simplex is an 

ensemble forecasting method.  

4.2.3 Recession Extraction Methods 

In this study, four recession extraction methods were used to label the 

recession points forecasted by EDM‐Simplex. The recession segments were 

extracted using a series of heuristic rules reported in Table 4-2. The BRU 

(Brutsaert, 2008), the KIR (Kirchner, 2009), and the VOG (Vogel and Kroll, 

1992) were implemented based on Stoelzle et al. (2013) and are conventional 

recession extraction methods. The EDM method is a new method proposed to 

extract recession points via EDM-Simplex based on the philosophy that 

recession points are the deterministic points of the hydrograph that are easily 

forecasted (Figure 4-2). All recession extraction methods were applied to label 

the raw daily data points, as they are intended to be forecasted as such using 

EDM‐Simplex. Our implementation differs from that by Stoelzle et al. (2013) 

who applied a preprocessing of streamflow values by considering 𝑄𝑡  =

 (𝑄𝑡 + 𝑄𝑡−1)/2 to keep the timing right against 𝑑𝑄𝑡/𝑑𝑡 =  𝑄𝑡  −  𝑄𝑡−1 while 

using the B&N framework (Eq. 1.5). 

The BRU procedure discards the early and late parts of the recession segments 

and imposes that the recession rate should be decreasing through time. The 

KIR method is the simplest one and considers extracting all negative 𝑑𝑄𝑡/𝑑𝑡 

as 𝑄𝑡  −  𝑄𝑡−1. Our implementation was slightly modified by considering an 

exclusion criterion for the first 3 days of the decreasing limb for consistency 

regarding the other methods and the forecasting purposes. The reasons are 

further motivated in section 4.2.4. The VOG method first applies a 3‐day 

moving‐average filter. Then, minimal segments of 10 days are selected. Other 

rules involve the exclusion of the first 30% recession points and a maximum 

recession rate set to 30%. 
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Table 4-2: Main criteria to extract recessions from streamflow data (adapted 

from Stoelzle et al., 2013). 

Recession 

extraction 

method 

Criterion Minimum 

recession 

length 

[days] 

Excluding 

exterior parts 

of recession 

segment 

Excluding recession 

segments depending 

on anomalous 

streamflow 

trajectories 

BRU 𝑑𝑄𝑡 𝑑𝑡⁄ < 0  6-7 first 3-4 days, 

last 2 days 

𝑑𝑄𝑡+1 𝑑𝑡⁄ > 𝑑𝑄𝑡 𝑑𝑡⁄   

EDM EDM-Simplex 

residuals 𝜀 

log(𝜀2 𝑄𝑡⁄ ) <  𝑇 * 

2 First 3 days Auto 

KIR 𝑑𝑄𝑡 𝑑𝑡⁄ < 0  - First 3 days - 

VOG Decreasing 3-day 

moving average 

10 First 30 % > 30 % 

* Threshold value 𝑇 

The EDM recession extraction method relies on EDM‐Simplex (section 4.2.2) 

forecasting performance to identify recession points and automatically discard 

anomalous recession behavior (see Appendix V for an illustrated example). 

The EDM‐Simplex model must be capable of targeting recession points that 

are dominated by underground baseflow discharge because it is considered as 

the simplest dynamics in the hydrograph. This viewpoint is consistent with the 

modeling paradigm adopted in this study that considers recession as the 

deterministic part of the hydrograph (section 4.2.1, Figure 4-2). Aksoy and 

Wittenberg (2011) used a similar idea to identify recession points, but based 

on the B&N model (Eq. 1.5) and relying on the Boussinesq's assumption that 

the nonlinear exponent 𝑏 is equal to 1.5.  

Here, the criterion is related to an error function log(𝜀2 𝑄𝑡⁄ ), where 𝜀2 are the 

squared residuals calculated using the median predicted values. Balancing the 

error with the observed discharge 𝑄𝑡 in the denominator allows extracting 

recession points for higher flows. In this application, the EDM‐Simplex model 

was used to predict all hydrograph points and compute the error. The 

embedding dimension 𝑚 =  2 was selected because of its analogy with the 

dimension of the 𝑄𝑡 versus 𝑑𝑄𝑡/𝑑𝑡 recession plot. A prediction horizon 𝑡𝑝 of 

0 days was selected since the purpose is the extraction of recession points and 

not the prediction of future values. The library of potential nearest‐neighbor 

states 𝐿 was indexed on decreasing streamflow values such that EDM‐
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Simplex was forced to perform poorly on increasing streamflow values. The 

sample size 𝐿 was selected as 250 with a number of bootstrap samples 𝑁𝑆𝐴𝑀 

equal to 500 samples and the Theiler window 𝑡𝑤 of 10 days. The error 

threshold value 𝑇 was set according to the 20th percentile of the distribution of 

log(𝜀2 𝑄𝑡⁄ ), respectively −10.7, −10.1 and −10.3 for S1, S2, and S3. For the 

given thresholds, both the mean and median of ε were found close to 0, 

indicating an unbiased model. The resulting points were postprocessed to 

fulfill the criteria of Table 4-2. First, the minimum recession length of 2 days 

was set to filter out the number of points that would be considered as recession 

points by chance, due to their excellent but fortuitous goodness of fit. Such a 

low value also allows having results that contrast with the BRU and VOG 

methods, which consider at the beginning very long recession segments. 

Second, all recession points that were not in the KIR set of recession points 

were dismissed, such that all points in the EDM method were preceded by at 

least 3 days of decreasing streamflow, again, for reasons that are further 

developed in section 4.2.4. 

4.2.4 Global Sensitivity Analysis (GSA) and Sampling 

Distributions 

A high‐dimension variance decomposition‐based GSA (Cukier et al., 1978; 

Saltelli et al., 2000, 2007) was performed to identify the most sensitive EDM‐

Simplex inputs that provide the best set‐up to forecast recession points. The 

GSA also identifies the most relevant factors to interpret the complexity and 

the sensitive dependence to initial conditions of recession dynamics (section 

4.2.1).  

The study relies on the sensitivity analysis method of Sobol’ (1990), which 

samples the factors and decomposes the variance of the outputs into first‐order 

indices (𝑆𝑖) and total‐order indices (𝑆𝑇𝑖). The first‐order indices depict each 

factor's marginal contribution, while the total‐order indices refer to the factor's 

total effect on the variance, including higher‐order interactions with the other 

factors (Saltelli et al., 2007). Hence, the Sobol' method is particularly suited 

to highlight nonlinear interactions between the input factors of a model. The 

magnitude of these interactions can be assessed by subtracting the first‐order 

from total‐order indices (Cukier et al., 1978).  

In our case, the modeling output is given by the goodness of fit of the forecast 

prediction quantified by the Nash and Sutcliffe (1970) efficiency (𝑁𝑆𝐸, Eq. 
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1.4) objective function. The decomposed variance is then the variance of the 

NSE forecasting performances given by all EDM‐Simplex input factor 

combinations, the Sobol' input samples, repeated for all three stations S1, S2, 

and S3 (Figure 3-1 and Figure 3-3). Gupta and Razavi (2018) have recently 

pointed out that GSAs applied to performance measures may not reflect the 

true sensitivity of a parametric model, which is per se independent of the 

observed outputs, but rather identify the most important input factors for 

calibration. Still, in this context, we rely on a data‐driven model. The output 

of interest is the forecast performance, identifiability, and changes in 

sensitivity between application cases (Sugihara and May, 1990). 

Table 4-3 (and Figure 4-3) shows the EDM‐Simplex inputs selected for the 

GSA sampling strategy.  

Table 4-3: Sampling distributions of the EDM-Simplex parameters for global 

sensitivity analysis. 

Symbol Description Distrib. Values/Bounds 

𝜏 Simplex Embedding delay 

(Eq. 4.1) 

Fixed 1 day 

𝑚 Simplex Embedding 

dimension (Eq.4.1) 

Discrete  [1, 2, 3] 

𝑡𝑝 Simplex prediction horizon Discrete  [1, 2, 3] days 

𝑘𝑛 Set the number of nearest-

neighbor states 𝑘 such that 

𝑘 = 𝑚 + 𝑘𝑛 

Discrete  [1, 2, 3, 4] 

𝐿 Bootstrap sample size Discrete  [10, 50, 100, 150, 200, 250, 350, 

450] 

𝑡𝑤 Theiler window of exclusion Discrete [3, 10, 50, 90] 

𝑁𝑆𝐴𝑀 Number of bootstrap samples Discrete [100,101, …, 1000] 

𝐿𝐼𝐵 Indices 𝑗 defining the library 

of potential nearest-neighbor 

states �̇�𝑗 

Fixed 𝑗 = {𝑡 |𝑑𝑄𝑡 𝑑𝑡⁄ <

 0, … , 𝑑𝑄𝑡+𝑡𝑝 𝑑𝑡⁄ < 0}  

𝑅𝐸𝐹 Indices of states or reference 

�̇�𝑖 such that Simplex 

forecasts are made at  𝑅𝐸𝐹 +

𝑡𝑝 

Discrete  [BRU-𝑡𝑝,  EDM-𝑡𝑝, KIR-𝑡𝑝, 

VOG-𝑡𝑝] 

with truncation of the segment 

head by ℎ 

ℎ Defines the size of the 

truncation of the head of 

recession segments 

Discrete [0,1,2,3,4] 
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For non-constant (not fixed) factors, all sampling distributions were discrete 

uniform. The embedding delay was considered constant and equal to 1 day 

since this scale is typical in daily recession analysis. Accordingly, recession 

points were forecasted using nearest‐neighboring states �̇�𝑗 representing 

continuous hydrograph segments of length given by the embedding dimension 

𝑚. The latter varied between 1 and 3 days, which was considered sufficiently 

large given the expected low dimensionality of the recession dynamics. 

Besides, EDM‐Simplex is more flexible than the usual linear regression 

performed with the B&N framework (Eq. 1.5) since it performs local 

approximations, allowing modeling nonlinear patterns in the given dimension 

𝑚.  

The prediction horizon 𝑡𝑝 was kept below 4 days so that the algorithm remains 

limited to the prediction of the recession from reference states that are part of 

the same decreasing limb (see criteria in Table 4-2). The additional number of 

nearest‐neighbor states 𝑘𝑛 was set between 1 and 4. The actual number of 

nearest‐neighbor states 𝑘 =  𝑚 + 𝑘𝑛 varied between 2 and 7. Given the 7‐

year span of the data set, the last value assumes that similar and recurrent 

recession points have a return period of 1 year. So effectively, 𝑘𝑛  =  [1,4] 

explores values between the default value of 1 (Sugihara and May, 1990) and 

the maximum return period allowed by the testing data set. The bootstrap 

sample size 𝐿 ranged between 10 and 450 with an increasing increment. This 

last value of 𝐿 remains lower than the minimum size of the library of potential 

nearest‐neighbor states 𝐿𝐼𝐵 considered in the sensitivity analysis, which is 

798 points without considering the exclusion window of Theiler 𝑡𝑤. 

Preliminary testing suggested convergence in less than 𝐿 =  200 samples 

generally, so the range is deemed sufficient to represent the variation of this 

factor. The minimal value of 3 days for 𝑡𝑤 ensured that the point being 

forecasted will not be selected in the library 𝐿 considering the maximal 

prediction horizon 𝑡𝑝 of 3 days, neither points included in the reference states 

�̇�𝑖 = {𝑥𝑖, 𝑥𝑖−1, 𝑥𝑖−2}  considering an embedding dimension 𝑚 of 3.  

With a larger 𝑡𝑤 of 10 days, forecasts will consider nearest‐neighbor states 

from distinct recession segments. The value of 50 days excluded 101 days 

such that neighboring states were picked out of the seasonal scale. Similarly, 

𝑡𝑤 = 90 days excluded a half year. Given the seasonal variations in average 

flows, the closest neighbors are likely to be selected from different years. The 

number of bootstrap samples 𝑁𝑆𝐴𝑀 was obtained from a continuous uniform 
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distribution and further rounded to an integer. The selected range is broad, 

between 100 and 1000, since there is no a priori on the value of 𝑁𝑆𝐴𝑀 to 

achieve robust forecasts. 

To perform EDM‐Simplex forecasts on recession segments only, a careful 

indexing strategy is required while defining the three last inputs (𝐿𝐼𝐵, 𝑅𝐸𝐹, 

and ℎ). For 𝐿𝐼𝐵, it is necessary that the future of the potential closest 

neighboring states {�̇�𝑑,1, �̇�𝑑,2, … , �̇�𝑑,𝑘} undergo the recession process up to the 

forecast horizon 𝑡𝑝. Otherwise, EDM‐Simplex will eventually output 

forecasts that are not strictly decreasing. Therefore, 𝐿𝐼𝐵 identifies the 

potential nearest‐neighbor states �̇�𝑗 through the time indices 𝑗 as the set of time 

indices 𝑡 satisfying the first condition {𝑡 |𝑑𝑄𝑡/𝑑𝑡 <  0, … , 𝑑𝑄𝑡+𝑡𝑝/𝑑𝑡 <  0}. 

Thus, this condition was used to define the 𝐿𝐼𝐵. Stronger conditions were not 

deemed necessary since the closest neighbor states are automatically 

identified using Euclidean distance.  

Regarding 𝑅𝐸𝐹, the indexing strategy was more complicated. Indeed, 

forecasting recession points from recession points is particularly challenging 

for high 𝑡𝑝 and 𝑚 due to the shortness of recession segments. For that reason, 

an additional input ℎ, which truncates the head of recession segments, i.e., 

early recession states, was considered in the sensitivity analysis. The indexing 

problem is illustrated in Table 4-4. The extreme case of 𝑡𝑝 =  3 and 𝑚 =  3 

is considered for a hypothetical hydrograph segment of 11 days. The segment 

has a decreasing part of 8 days and a recession part of 5 days while excluding 

the three decreasing days (criteria in Table 4-2). For an ℎ value of 0, all points 

labeled as recession are predicted. The 𝑅𝐸𝐹 input is simply defined by a 

translation of 𝑡𝑝 time steps ahead. Reference states would be decreasing, but 

not especially recession states, and the embedding 𝑀𝑋 may include 

reconstructed states of non monotonically decreasing sequences. This scenario 

is potentially problematic at different levels. First, the fact that recession 

points are forecasted from states under the influence of rainfall is not in phase 

with the paradigm that recession states are only functions of previous 

recession states. Second, this effect only occurs for high 𝑚 and 𝑡𝑝, and its 

magnitude is supposed to be dependent on the recession extraction method 

constraint about minimal segment length. With ℎ =  2, the embedding 

includes decreasing points exclusively, still, potentially under the influence of 

rainfall or some interflow components.  
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Table 4-4: Example of indexing of reference states 𝑅𝐸𝐹 based on the 

truncation input ℎ illustrated with a prediction horizon 𝑡𝑝 of 3 and an 

embedding dimension 𝑚 of 3. 

 

time t 0 1 2 3 4 5 6 7 8 9 10 

Example 

𝑄𝑡  5.0 6.0 7.0 6.7 6.3 6.0 5.7 5.4 5.1 4.9 4.6 

is decreasing - - - 1 1 1 1 1 1 1 1 

is recession point - - - - - - 1 1 1 1 1 

𝒉= 0 

is reference point - - - 1 1 1 1 1 - - - 

is embedded - 1 1 1 1 1 1 1 - - - 

is predicted - - - - - - 1 1 1 1 1 

𝒉= 2 

is reference point - - - - - 1 1 1 - - - 

is embedded - - - 1 1 1 1 1 - - - 

is predicted - - - - - - - - 1 1 1 

𝒉= 4 

is reference point - - - - - - - 1 - - - 

is embedded - - - - - 1 1 1 - - - 

is predicted - - - - - - - - - - 1 

As long as ℎ rises, recession points are increasingly exclusively predicted 

from recession points. However, the number of predicted points decreases 

accordingly, and recession segments with a length of ℎ or less are completely 

eroded. Furthermore, high ℎ values focus the analysis on particularly long 

events and, therefore, on potentially extremely low flow values that are not 

best suited to be studied with a regressor based on local approximations. For 

these reasons, the inclusion of parameter ℎ in the sensitivity analysis is 

justified to discuss performance and the traits related to the complexity and 

nonlinearity of recession dynamics. Input ℎ must be set independently of 𝑚 

and 𝑡𝑝, so that ℎ determines the number of points predicted for a given 

recession method, which means that the same processes are forecasted and 

interpreted regardless of the selected prediction horizon or dimension. The 

value of ℎ was limited to 4 because with higher values, the number of 

predicted recession points was too low. 

The Sobol' GSA method requires a number of simulations (input samples) of 

𝑁 =  𝑀 (2𝑖 + 2), where 𝑀 is a replication factor typically between 512 and 

2048 and 𝑖 is the number of input factors considered. In this case, for 𝑖= 8 

variable inputs a number of 𝑁= 36864 simulations were performed at the 
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University of Florida high‐performance computer. The Sobol' sampling and 

calculation of indexes from the outputs were performed with the SIMLAB 

v2.2.1 software (Saltelli, 2004).  

4.3 Results 

4.3.1 Recession Extraction 

The statistics resulting from the recession extraction methods (Table 4-2) are 

compared in Table 4-5. The BRU method leads to the smallest number of 

points and segments due to its stricter criteria. BRU points and segments are 

unequally shared between stations compared to the other methods. The BRU 

method captures flows with a higher decreasing rate. The EDM method also 

tends to provide short segments. On average, the EDM method captures 

recession points having the lower mean 𝑄𝑡 and, consequently, the lower 

recession rate. The KIR method captures the highest number of points and 

segments of varying lengths that likely include various kinds of flow aside 

baseflow. The VOG method provides the most extended recession segments. 

For each recession extraction method and station in Table 4-5, Figure 4-4 

reports the corresponding recession plot of log(𝑄𝑡) against log(− 𝑑𝑄𝑡 𝑑𝑡⁄ ), 

with 𝑑𝑄𝑡 𝑑𝑡⁄ = 𝑄𝑡 − 𝑄𝑡−1 (Eq. 1.6; Table 4-1). In particular, the EDM 

method extracts recession points yielding a dense and closer recession plot on 

which patterns are more clearly visible. For comparison with the EDM‐

Simplex approach, the nonlinear exponent 𝑏 of the B&N model (Eq. 1.5) is 

reported using three acknowledged recession fitting methods: the ordinary 

least squares (Vogel and Kroll, 1992), the lower envelope (Brutsaert, 2008) 

that involves a quantile regression such that 5% of the recession points are 

below the regression line, and a standard error weighted regression (Kirchner, 

2009). The last one consists of regrouping recession points into bins of various 

sizes and fits the regression line on the bins' means using weights relative to 

the bins' inverse standard error (Stoelzle et al., 2013).  
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Table 4-5: Comparison of recession extraction methods 

Extract. BRU EDM KIR VOG 

Station S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 

Count 

points 57 88 100 192 199 196 798 852 866 224 239 248 

segments 33 41 44 79 85 80 177 186 185 24 25 26 

Segment length 

min 1 1 1 1 1 1 1 1 1 7 7 7 

mean 1.7 2.1 2.3 2.4 2.3 2.5 4.5 4.6 4.7 9.3 9.6 9.5 

max 5 9 8 7 7 7 27 30 30 20 22 22 

𝑸𝒕 [m³.s-1] 

min 0.58 0.19 0.99 0.39 0.28 1.00 0.35 0.17 0.94 0.47 0.28 0.95 

mean 2.65 4.25 5.04 2.24 2.59 3.22 3.10 3.68 5.01 3.00 3.39 4.53 

max 7.46 14.1 15.7 11.7 10.9 12.9 11.8 17.8 24.2 7.23 10.7 14.5 

-𝒅𝑸𝒕/𝒅𝒕 [m³.s-1] 

min 1.46 3.68 3.09 1.99 2.04 2.31 2.31 5.71 5.45 1.29 2.35 2.69 

mean 0.31 0.63 0.64 0.19 0.25 0.26 0.29 0.45 0.55 0.25 0.34 0.40 

max 0.03 0.03 0.02 <10-2 <10-2 <10-2 <10-2 <10-2 <10-2 <10-2 <10-2 <10-2 

Apart from the weighted method applied to the low number of recession points 

provided by the BRU extraction method, all combinations agree on a 𝑏(S3)  >

 𝑏(S1)  >  𝑏(S2) ranking of nonlinear exponents. Based on this framework, 

the streamflow series exhibiting the most linear recession is S2. As S2 is a 

perched section of the stream, one can assume that the B&N model captures 

the leakage through the permeable river bed, with a Darcian linear‐dominant 

process governing S2 recession. Also, S3 exhibits a higher 𝑏 exponent. This 

bias appears mostly due to the minimal flow ensured by the Vauclusian spring 

(~1 m3/s) that truncates the points for low flows. 
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Figure 4-4: Recession plots associated with the recession extraction methods 

(Table 4-2) for the three stations S1, S2, and S3.The recession point cloud is 

fitted using the Brutsaert and Nieber (1977) model (Eq. 1.5) using three 

recession fitting methods: the ordinary least squares (Vogel and Kroll, 1992), 

the lower envelope (Brutsaert, 2008), and the standard error weighted method 

(Kirchner, 2009) based on the implementation of Stoelzle et al. (2013). The 

resulting nonlinear exponents 𝑏 (Eq. 1.5) are reported. All combinations agree 

on a b(S3) > b(S1) > b(S2) ranking of nonlinear exponents suggesting that S2 

is the most linear pattern. 
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4.3.2 EDM-Simplex GSA 

Figure 4-5 presents the result of the Sobol' GSA indices. The most important 

factors influencing the forecasting performance are 𝑅𝐸𝐹, ℎ, 𝑡𝑝, 𝐿, and 𝑚 by 

order of importance. The high importance of 𝑅𝐸𝐹 and ℎ suggests that 

recession forecasting is highly sensitive to the recession extraction method.  

 

Figure 4-5: First‐ and total‐order indexes of Sobol' sensitivity analysis and their 

differences. 

Globally, the upstream station S1 is found less sensitive to the prediction 

horizon 𝑡𝑝, the embedding dimension m, the size of the library 𝐿. Thus, S1 

recession dynamics are less complex and less sensitive to initial conditions 

than S2 and S3. Still, the important differences between the first‐order (𝑆𝑖) 

and total‐order (𝑆𝑇𝑖) indices suggest that higher‐order interactions are 

occurring between the factors. The sums of the first‐order indices ∑𝑆𝑖 are 0.46, 

0.48, and 0.42 respectively for S1, S2, and S3. These values stand below the 

model additivity threshold of ∑𝑆𝑖 = 0.6 proposed by (Cukier et al., 1978), 

suggesting that the EDM‐Simplex model output with the studied configuration 

(Table 4-3) cannot be considered additive and is dominated by input factor 

interactions. As a result, if the forecasting performance is sensitive to 𝑅𝐸𝐹 

and ℎ, the inference about the nonlinear behavior through 𝑡𝑝 or 𝑚 is sensitive 

as well because of the revealed interactions. Therefore, the results below will 

be reported in relation to the inputs 𝑅𝐸𝐹 and ℎ and for a value of 𝐿 greater 

than 200, guaranteeing convergence of the results. Inputs of near‐zero 

importance, 𝑘𝑛, 𝑡𝑤, and 𝑁𝑆𝐴𝑀, are not discussed as they do not affect the 

variance of the prediction performance. 
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The variability of the EDM‐Simplex performance for each 𝑅𝐸𝐹 and ℎ 

combination is represented by the cumulative likelihood of the 𝑁𝑆𝐸 obtained 

from the Sobol' simulations (Figure 4-6). In general, the method performance 

is very good (𝑁𝑆𝐸 > 0.9) except for the BRU method, especially for h between 

2 and 4, and the EDM method with ℎ =  4. These cases are those of small 

numbers of predicted points, respectively 9, 4, and 1 for the most affected case 

BRU‐S1 and 5 for EDM‐S2 (Table 4-5). In other cases, the increase in ℎ, 

especially from low ℎ, has gradually improved forecasting skills. This 

observation is in line with the idea that the process becomes increasingly 

deterministic as the recession progresses. The BRU segments, regardless of ℎ, 

are the least predictable because they are less numerous and recurrent in the 

hydrograph. The EDM extraction method presents the best forecasting 

performance, not surprisingly, since the points were extracted using the same 

model and following the performance logic. However, the forecasts remain 

accurate regardless of the EDM‐Simplex configuration used, most notably 

regarding the sensitive parameters 𝑡𝑝 and 𝑚. The extraction methods having 

less strict criteria, namely, VOG and a fortiori KIR, also present excellent 

forecasting skills. For these methods, S1 appears as being more predictable in 

general, especially when ℎ is low (i.e., while considering the early part of 

recession segments). This finding supports the hypothesis that the early stages 

of the recession, potentially interflows, are more indicative of the 

geomorphological complexity of the watershed. 

Figure 4-7 allows us to study further the particular effects of the prediction 

horizon 𝑡𝑝 (Figure 4-7.a) and the embedding dimension 𝑚 (Figure 4-7.b) for 

the value of ℎ =  1. Regarding 𝑡𝑝, all median forecasting skills for a 𝑡𝑝 of 1 

day have an excellent 𝑁𝑆𝐸 value of >0.99. For each method 𝑅𝐸𝐹 and stations 

S1, S2, and S3, the results exhibit a statistically significant decrease in the 

median 𝑁𝑆𝐸 to a unit increment of 𝑡𝑝. Hence, 𝑡𝑝 is indeed an important factor 

related to sensitivity to initial conditions, that is, nonlinearity. Between 

stations, S1 exhibits in general (All REF) a slighter decrease such that the 

median NSE values for 𝑡𝑝 higher than 1 day are significantly higher than the 

corresponding values attached to S2 and S3. This is not the case of BRU, either 

due to the criterion imposed by the method (Table 4-2) to the higher average 

recession rate or as an artifact due to the low and unequal number of recession 

points (Table 4-5). This is not the case of EDM either because S3 has higher 

median prediction skills and the slightest decrease of the median with respect 

to 𝑡𝑝. Potentially, this pattern can be explained by the fact that the EDM 

method essentially captures low flows (Table 4-5). In the case of S3, these 
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flows are mainly under the influence of the Vauclusian resurgence that 

stabilizes the recession rate (Figure 3-1 and Figure 4-4 - EDM vs. S3), which 

consequently appears to be less sensitive to initial conditions. With the KIR 

and VOG methods that extract higher flows (Table 4-5), the general pattern 

(All REF) holds, with S1 having the less sensitive dynamics to initial 

conditions. 

 

Figure 4-6: Cumulative likelihood of EDM‐Simplex Nash and Sutcliffe 

efficiency (𝑁𝑆𝐸, Eq. 1.4) per recession extraction method and truncation 

parameter ℎ for the three stations S1, S2, and S3. The number of values for each 

curve is between 𝑛 =  669 and 𝑛 =  712.The columns refer to the recession 

extraction methods (Table 4-2), and the rows to the recession segment 

truncation parameter ℎ (Table 4-3 and Table 4-4). The library length input 𝐿 is 

filtered to be higher than 200 to ensure that EDM‐Simplex has converged. The 

S1 cumulative distribution for the BRU recession extraction method and ℎ =
 4 is missing due to an insufficient number of predictions to calculate 𝑁𝑆𝐸. 
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Figure 4-7: Global sensitivity to the (a) prediction horizon and (b) embedding 

dimension. The boxplot reports the statistics of NSE forecasting performance. 

The results are presented for 𝐿 greater than 200 and ℎ =  1 (Table 4-3; Table 

4-4). The first row, All REF, represents the average behavior of all recession 

extraction methods of Table 4-2 with the number of samples per box statistics 

ranging between 889 and 961. Each successive row presents the results for a 

specific recession extraction method with the number of samples per box 

statistics ranging between 163 and 307. Letters 𝑎, 𝑏, and 𝑐 discriminate groups 

of statistically significant different medians (𝛼 =  0.05) (McGill et al., 1978). 
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The embedding dimension 𝑚 is less important in explaining 𝑁𝑆𝐸's variance, 

as shown by the larger boxes and their weak separability into distinct groups, 

𝑎, 𝑏, and 𝑐, of significantly different medians. This corroborates the GSA 

results (Figure 4-5). Hence, interpreting 𝑚 requires caution. Still, 𝑚 =  2 

produces better forecasts in general. As shown in Figure 4-5, 𝑚 is somewhat 

more influential at station S2. Figure 4-7 confirms it by showing that the S2 

forecasting performance is inferior with 𝑚 =  1. In general, S1 has higher 

predictability with 𝑚 =  1 compared to the other stations, indicating a lesser 

complexity. 

4.4 Discussion and Perspectives 

Although EDM‐Simplex allies parsimony and some degree of interpretability, 

at the moment, our empirical approach does not fully replace the physically-

based ones relying on parametric equations because sensitivity to initial 

conditions is not directly interpretable physically. Most likely, substantial 

advances should be made by (1) hypothesis testing, (2) alternative data 

crossing, (3) catchment comparison, and (4) model evaluation. These four 

perspectives are discussed in the next ending sections and are generally 

associated with an analytical framework for nonlinear time-series analysis, 

recently applied to hydrological case studies (e.g., Huffaker et al., 2016; 

Medina et al., 2019). Hopefully, these will allow connecting the EDM 

framework closer to the operational goal of recession analysis (i.e., the 

estimation of mass balance components or the study of climate or 

anthropogenic impact on water resources), beyond the forecasting purpose of 

this initial work. 

4.4.1 On Hypothesis Testing 

Based on the results from this work, for an adequate use of the B&N model 

(i.e., where and when the hypotheses of a Boussinesq's aquifer are applicable), 

the EDM‐Simplex should show high predictability and a low decrease in the 

forecasting skills over time. Since this predictability and decrease are likely to 

depend on the recession extraction method, the most critical point in order to 

use EDM‐Simplex consistently, or in general for making advances in 

recession analysis, is that extraction methods must be able to capture segments 

of hydrographs that correspond to the baseflow discharged by the aquifer. This 

becomes an important step to connect the dots between empirical and 

physically-based recession approaches, as discussed below. EDM‐Simplex 
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can also bring consistency between different empirical approaches. For 

example, if 𝑚 =  1 yields the best forecasting performance for a particular 

river, this would indicate that the recession is mostly a function of time and 

that the empirical characterization of 𝑄𝑡 as a function of time, that is, the 

master recession curve (e.g., Lamb and Beven, 1997), would also be justified 

for studying the behavior of the recession in that case. 

In addition, proper inference about recession dynamics requires testing for the 

stationary hypothesis. In theory, EDM‐Simplex assumes structural 

stationarity (section 4.2.1) and may perform poorly in a study case with 

noticeable climatic or anthropogenic impact on water resources (e.g., Bogaart 

et al., 2016). In such cases, the inadequacy of EDM‐Simplex can be leveraged 

to assess empirically if a hydrograph series is under changing conditions. 

Assuming that change implies that the past is no longer a good basis to predict 

the future and vice versa, constraining the 𝐿𝐼𝐵 and the 𝑅𝐸𝐹 input such that 

one maps the past and the other the future, EDM‐Simplex should perform 

significantly worse compared to an unconstrained model, allowing EDM‐

Simplex to select neighbor states closer in time. Such a nonparametric test of 

stationarity is analogous to the cross‐prediction test suggested by Schreiber 

(1997). 

4.4.2 On the Use of Alternative Data 

In our study case, the use of additional data or conceptual knowledge 

indicative of the catchment hydrogeology greatly helped in the interpretation 

of the results of the empirical approach. Still, the data were not directly 

incorporated in the suggested framework that is designed for univariate time-

series analysis. Given that the predictability was already high, the use of 

alternative data, such as rainfall and evapotranspiration data, piezometric 

levels, and on‐site tracing tests, will most beneficially improve the targeting 

of actual baseflow recession points. If our proposed EDM recession extraction 

method (Table 4-2, Appendix V) was set up on ancillary criteria, such 

alternative data could greatly help in configuring EDM‐Simplex to retrieve 

actual recession points compatible with a hydrological definition of baseflow 

as underground discharge. As the proposed EDM recession extraction method 

has the advantage of also retrieving short recession segments, by interpolating 

these short segments, one can estimate the proportion of baseflow in the 

hydrograph, that is, a baseflow index. Still, as EDM‐Simplex is a univariate 

empirical method, it cannot be used to estimate baseflow under runoff or 
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interflow conditions. Its multivariate counterpart called Convergent Cross 

Mapping (CCM) (Sugihara et al., 2012), can be used and adapted to explore 

empirically and beyond existing rough multivariate interpolation schemes the 

case of baseflow separation. Another option is to use a multivariate embedding 

approach (Deyle and Sugihara, 2011) instead of Takens's embedding (Eq. 

4.1), for instance, an actual state space of discharge, piezometric levels, and 

evapotranspiration data. In general, these perspectives should be tested first in 

a non-karstic watershed to avoid the problem of substantial hidden 

heterogeneity and the presence of additional flow components routed by the 

karst conduits. However, if the reconstruction of the state space includes data 

other than streamflow, special attention should be paid to the issue of noise, 

as noise interferes with the detection of the nearest‐neighboring states. A first 

step would be to consider smoothed data or seasonal trends in 

evapotranspiration or groundwater variations. 

4.4.3 On Catchment Comparison 

In the hypothesis that recession extraction methods offer the opportunity to 

compare recession dynamics consistently (see section 4.4.2), EDM‐Simplex 

can be introduced in the catchment comparison framework based on its 

capability to test hypotheses (see section 4.4.1). An interesting aspect would 

be to explore further the evolution of recession sensitivity to initial conditions 

across scales. In this study case, it is observed that at a small scale, the 

increasing size of the catchment yields an increase of recession sensitivity to 

initial conditions due to the presence of a karst system. However, one cannot 

hypothesize that the sensitivity increases monotonically with the catchment 

area. Indeed, complexity never explodes in nature. Thus, it is expected that at 

a given scale, catchment organization reduces the complexity of the dynamic 

into a simpler one, that is, exhibiting less prediction decay through time. These 

potential applications provide an opportunity to use EDM‐Simplex in a 

catchment comparison framework based on nonlinear dynamics concepts 

(e.g., Sivakumar and Singh, 2012) while keeping the focus on the recession or 

the decreasing limbs of the hydrograph as a workaround to major challenges 

when applied to the full streamflow series (Koutsoyiannis, 2006b). However, 

given the high performance of EDM‐Simplex forecasting, the influence of 

instrumental and environmental noise during the recession on nonlinearity 

estimation should be further studied. 
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4.4.4 On Model Evaluation 

The EDM‐Simplex algorithm was first introduced to distinguish chaotic 

determinism from randomness. In time-series analysis, models are 

traditionally evaluated by checking the residual distribution and their linear 

autocorrelation (Box et al., 2008). Regardless of the model type used to 

forecast the recession or other important hydrological dynamics, EDM‐

Simplex can be used to forecast the residuals and check if there remains any 

low‐dimensional deterministic pattern. This could be done by reporting the 

model performance against increasing sample size 𝐿. If an increasing trend up 

to a significant performance is found, it would indicate that the model used 

for recession forecasting includes nonlinear time‐dependent errors, thus 

opening a perspective for model improvement even if the residuals pass the 

usual tests for randomness and the absence of linear autocorrelation (Ljung 

and Box, 1978). The test can be done using various embedding dimension 𝑚, 

especially if EDM‐Simplex is used, considering that one cannot extract 

dynamic patterns and diagnose the residuals with the same configurations. 

4.5 Conclusion 

The EDM‐Simplex model (Sugihara and May, 1990) was suggested as an 

empirical and parsimonious way to forecast recession dynamics and infer the 

nonlinear behavior of the recession from the sensitivity of forecasting 

performances to initial conditions. The model was tested with GSA on three 

hydrograph time-series (S1, S2, and S3) of the Lhomme river (Belgium) being 

respectively located before, inside, and after a karst system. The GSA results 

showed that the forecasting skills are excellent regarding the 1‐day‐ahead 

forecasts. The median NSE was above 0.99 for all time-series, regardless of 

the recession extraction methods identifying the hydrograph points being 

forecasted. In virtue of parsimony, the good performance of EDM‐Simplex 

discourages the use of forecasting methods of unnecessary complexity to the 

case of recession modeling without justification. The GSA further highlighted 

that the prediction horizon, defined from 1 to 3 days, is the most important 

factor related to sensitivity to initial conditions. It is expected that the more 

nonlinear the recession dynamics are, the more the forecasting performance 

will decrease with the prediction horizon. However, the absolute forecasting 

skills at a horizon of 2 and 3 days and the decreasing rate in performance were 

also sensitive to the factors ruling the recession extraction methods. In 

particular, the results suggested that recession extraction methods that 
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consider some transient flows or the early stage of recession with less strict 

criteria on the exclusion of abnormal recession rates allowed to discriminate 

better the upstream recession processes from the ones being more nonlinear 

as affected by the presence of the karst system. In contrast, this increase in 

nonlinearity as the catchment size includes the karstic area was not observed 

with the B&N (Brutsaert and Nieber, 1977) parametric model on all recession 

points. The latter showed that station S2 located in the karstic system has the 

most linear dynamics, potentially, as section S2 of the river is perched and 

subject to Darcian percolation flows. Given that both models gave different 

but interpretable outcomes, the complimentary use of parametric methods is 

not discouraged as long as their parameters are reasoned empirically when and 

where they should. 

In general, the relativity of recession nonlinearity to the recession extraction 

method is a shared concern in recession analysis (Stoelzle et al., 2013). This 

variability is a blessing in disguise and should be investigated, especially if 

the catchment recession dynamics is considered as a multiple reservoirs 

problem (e.g., Clark et al., 2009; Harman et al., 2009) that could eventually 

become disconnected from the river channel (Biswal and Marani, 2010). In 

that matter, empirical approaches are more suited since their scopes extend 

beyond the ones of the current physically-based parametric approaches, 

inherently limited by their static physical assumptions on processes and 

catchment geomorphology. On the other hand, empirical results are difficult 

to interpret physically without a priori information on catchment 

hydrogeology. Thus, the confrontation of empirical evidence with physical 

assumptions will undoubtedly pave the way for future advances in recession 

analysis to the point where they will eventually meet by relating time‐variant 

nonlinear patterns to catchment hydrological states and corresponding 

processes. Such progress would also bring the empirical framework closer to 

recession analysis's operational objectives, beyond the forecasting objective 

explored and achieved in this article. For this purpose, our perspectives 

suggest how the EDM‐Simplex model or its variants could be involved in this 

challenge.  

At this point, the results support the use of EDM-Simplex as a parsimonious 

and performant forecasting tool. Secondly, as EDM-Simplex has proven to be 

robust in measuring the nonlinearity induced by the karst system, the method 

provides an indicator of recession nonlinearity that better corresponds to the 

geomorphological and hydrological complexity of the system. This indicator 
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can guide modelers towards a conceptual model that considers the relative 

complexity of the system or in a watershed comparison framework to reveal 

the spatial patterns of complexity and organization at larger scales.   
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Chapter 5 Time-series clustering approaches for 

the dimension reduction of a real 

time-lapse electrical resistivity dataset 

“There is a difficulty about the part and the whole [... it] is to know 

if the whole and the part form unity or plurality, and how they are 

one or more, and if they are many, how many?” 

Aristotle 

Foreword 

Before the thesis, I had not yet had the opportunity to develop an expertise on 

ERT datasets (section 3.3.2). It was not the primary objective of 

MIGRADAKH (section 1.2.1) to develop one or study in-depth the 

dimensional reduction of an ERT dataset. I valued the dataset for its temporal 

length and the spatial information it contains, but its large size posed a 

problem for applying causal inference methods. Naturally, I wanted to group 

the time-series using a clustering method. At first, I had a feeling that this task 

would be solved quickly, within a few days, allowing finding out which 

method to use. While investigating the literature on clustering and post-

processing of ERT datasets, I realized that the task was not trivial. The 

literature proposes a few specific applications rather than methodological and 

transversal reviews. Therefore, I decided to look into the issue with the 

collaboration and support of Arnaud Watlet and Olivier Kaufmann (UMons). 

The first article was submitted in October 2019 to the Journal of Applied 

Geophysics. In November 2020, the article is accepted and about to be 

published under the title: “Time-series clustering approaches for subsurface 

zonation and hydrofacies detection using a real time-lapse electrical 

resistivity dataset”. 

Regarding causality (Chapter 2), this chapter has in fact found its rightful 

place in this document. Finding spatiotemporal patterns is mainly related to 

the formal cause (d8, see Appendix III) because clustering is a task of 

organization (section 1.1.2.4). Clustering is an empirical approach (section 

2.4.3) grouping time-series based on their similarities following the logic of 
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induction (d13). While clustering, asking about the appropriate number of 

clusters is the question of finding the right number of material causes (d7), 

that we call here hydrofacies. This number aims at being right in the sense of 

parsimony (d18). This number is also a measure of the system’s complexity 

by reflecting its dimension (section 1.1.2.2).  

In particular, the first question in the chapter is “which algorithm should I 

used?”. This issue is related to the formal cause (d8) that deals with how things 

associate and organize themselves. It is also related to the mechanisms (d9) of 

the method and not the system's physical mechanism. Arguably, the method 

should be consistent with the system's physical mechanisms, but this issue is 

not studied because our approach is empirical and based on generic clustering 

tools. The second question is “should the clusters be contiguous in space, such 

as geological materials?”. This question is directly related to the physical 

meaning (d10) of hydrofacies as material causes (d7) and Hume’s principle of 

contiguity (d23). A third question is about the time-series representation of 

resistivity series prior to the clustering, another way to question the material 

causes and their meaning (d7,d10). A final question is directly related to the 

problem of induction (section 2.4.3). It is asked, “how long should be the ERT 

dataset to have a robust and time-invariant clustering output?”. In 

philosophical terms, the question is related to the concepts of actuality, what 

is capable of being seen (d16), and potentiality, what is capable of being built 

(d17). The paper is methodological and entirely empirical. It shows the results 

for various ways of doing clustering.  

In general, without constraining clustering with a long enough dataset or other 

complementary datasets (d16), including physical constraints or taking into 

account mechanisms (i.e., the efficient causes, d9), or with a more precise 

definition or practical utility of hydrofacies (d7 thought with d10 in mind), the 

paper concludes that the potentialities (d17) are too important. There is a risk 

for scientists to fall into the problem of induction and provide non-robust 

abstractions (d11) with these methods. Too many causal visions relate to 

complexity in the sense of difficult to understand (section 1.1.2.1, Figure 1-2).  

It instills a pessimistic feeling of relativism or uncertainty through all the 

potentialities that are uncovered (section 2.4.4). However, as pointed out in 

Chapter 2, acknowledging uncertainty as a fact and a property of complex 

systems is crucial for understanding. It is also the necessary (d20) step paving 

the way for scientific progress. It highlights the disposition (d28) to be taken 

for the next applications to limit and constrain uncertainties.  
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Abstract 

One main application of electrical resistivity tomography (ERT) is the non-

invasive detection of geological or hydrological structures in the shallow 

subsurface. This chapter investigates the capability of time-series clustering 

to retrieve such features on real time-lapse ERT datasets considering three 

aspects: (1) the comparison between three clustering algorithms k-means, 

hierarchical agglomerative clustering (HAC), and Gaussian Mixture Model 

(GMM), including the question of the optimal choice of cluster number and 

the identification of resistivity series whose classification is uncertain, (2) the 

effect of adding a spatial constraint in clustering, and (3) the robustness of the 

approaches to various representations of resistivity values and the number of 

time-steps involved in the clustering. The real time-lapse ERT dataset is 

obtained from a profile installed on the top of the Rochefort cave in Belgium. 

It consists of resistivity time-series defined over 465 days and associated with 

1558 cells of the 2D ERT models derived from a time-lapse inversion. The 

clustering results are appreciated using clustering validation indices and 

further confronted with the expert-based structural model of the site.  

The three clustering algorithms provide similar spatial patterns on the 

standardized data and reveal correlated resistivity time-series. Some clusters 

remain spatially split and regroup time-series with a wide range of mean 

resistivity, suggesting different geological units within these groups. 

Clustering on the raw resistivity time-series may also appear inconsistent as 

the averaged resistivity series per cluster are highly correlated, thus missing 

the hydrological and functional traits of the subsurface elements. On 

standardized data, applying a constraint to retrieve spatially tied clusters 

increases the number of clusters. The grouped series are more homogeneous 

in terms of mean resistivity due to their spatial proximity, but some 

inconsistencies remain. Applying the clustering to various time-series 

representations allows gaining confidence about the redundant spatial 

patterns. However, the patterns obtained from the full standardized dataset 

cannot be reproduced from continuous sub-samples up to 100 days, but well 

from less than 20 samples picked randomly over the 465 days. These results 

show the critical impact of serial correlations in the clustering process and 

suggest to monitor the surface systems in a wide range of environmental 

conditions. Accordingly, our study highlights the importance of time-variable 

parameters in identifying structural facies and hydrofacies with ERT while 

demonstrating the strength of long-term monitoring.  
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5.1 Introduction 

The electrical resistivity of surface soil varies with the mineralogical 

composition of soil and rocks, temperature, the water content, and its solute 

composition. Electrical resistivity tomography (ERT) is a technique 

commonly used in geosciences that aims to capture these variations. ERT 

relies on electrodes, a current injection scheme, and the inversion of an 

associated resistivity model to map the resistivity of the shallow subsurface, 

either in two or three dimensions, and derive geological and hydrological 

interpretations (Banton et al., 1997; Samouëlian et al., 2005). Time-lapse ERT 

extends to an additional dimension by using repeated current injections over 

time, allowing the retrieval of temporal variation of resistivities.  For their 

capabilities of generating a large amount of spatialized data at low cost, time-

lapse ERT has been increasingly used in the near-surface geophysics 

community to investigate subsurface geology or hydrogeological processes 

(Barker and Moore, 1998; Kuras et al., 2009; Singha et al., 2015). 

The visual or computer-assisted interpretation of inverted resistivity models 

remains challenging as the inversion procedure often relies on smoothness 

constraints, producing fuzzy patterns rather than a clear representation of 

subsoil heterogeneities (e.g., Günther et al., 2006; Loke and Barker, 1996). 

Besides, the resolution decreases, or the uncertainties of the inversion image 

increase as a function of the distance to the electrodes (e.g., Hermans and 

Irving, 2017). Accordingly, the improvement of the ERT models is 

approached from different angles. The first one focuses on the inversion 

procedure itself, for instance, by considering adaptable constraints to produce 

sharper results (Fiandaca et al., 2015; Nguyen et al., 2016). A second option, 

detailed in the next paragraph, is to apply post-inversion processing to enhance 

the interpretability of the model outputs. Other refinements may come from 

crossing strategies and datasets: the joint inversion of multivariate geophysical 

data (Doetsch et al., 2010; Infante et al., 2010) or the definition of an ensemble 

model either from a distribution of inversion parameters (Audebert et al., 

2014) or from multiple electrode configurations (Ishola et al., 2015). Similarly 

to Paasche and Tronicke (2007), post-inversion approaches can be coupled 

with the inversion strategies by an iterative procedure (Doetsch et al., 2010; 

Elwaseif and Slater, 2012; Infante et al., 2010; Singh et al., 2018; Zhou et al., 

2014) and be part in a fully automated way of an integrated ERT monitoring 

and modeling environment (e.g., Wilkinson et al., 2019). 
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In particular, post-inversion approaches can be defined in a mutually non-

exclusive way, according to different aspects. Some papers target the 

detection and zonation of static features such as geological boundaries or 

structures (Caterina et al., 2013; Chambers et al., 2012, 2013; Doetsch et al., 

2010; Hsu et al., 2010; Kutbay and Hardalaç, 2017; de Pasquale et al., 2019; 

Xu et al., 2017), defects in covered landfill (Genelle et al., 2012), buried 

archeological objects or cavities (Elwaseif and Slater, 2010, 2012). Feature 

detection can also be improved on multivariate models or datasets (Di 

Giuseppe et al., 2014, 2018; see also Paasche et al., 2006). Other applications 

cover dynamic processes: mapping of the water or leachate infiltration front 

(Audebert et al., 2014; Scaini et al., 2017), the tracking of tracer’s motion 

(Ward et al., 2016), or groundwater level monitoring (Chambers et al., 2015). 

In any of these applications, the underlying algorithms can be summarized 

into the three following types: (1) gradient edge detection, (2) object 

segmentation into two groups (binarization), or more through (3) 

unsupervised classification, i.e., clustering. Clustering algorithms have some 

merits compared to other techniques. Ward et al. (2014) mentioned that 

gradient edge detection methods are limited since the steepest gradients are 

not always concurrent with geological interfaces, especially given the 

smoothness-constrained inversion and the lack of resolution at depth in ERT 

images. Gradient edge detection is also applied in contexts where the substrate 

is typically organized in successive horizontal layers. As such, the 

applicability of this algorithm is challenged for anisotropic heterogeneous 

environments such as karst systems. Compared to segmentation algorithms 

that divide models into two subgroups, clustering algorithms have the 

advantage of not limiting the number of groups that can be defined according 

to their distinct resistive behavior, which on the other hand, raises the problem 

of the optimal choice of the number of clusters. 

Overall, a few distinct clustering algorithms have been applied: fuzzy c-means 

(Chambers et al., 2015; Kutbay and Hardalaç, 2017; Paasche et al., 2006; 

Paasche and Tronicke, 2007; Singh et al., 2018; Ward et al., 2014),  k-means 

(Audebert et al., 2014; Di Giuseppe et al., 2014, 2018; Ishola et al., 2015; 

Scaini et al., 2017), Gaussian Mixture Models, GMM (Doetsch et al., 2010), 

and Hierarchical Agglomerative Clustering, HAC (Genelle et al., 2012; Xu et 

al., 2017). The fuzzy c-means, k-means, and GMM algorithms belong to the 

family of iterative relocation clustering algorithms. The fuzzy c-means and 

GMM are similar because they yield to probabilistic clusters, also termed soft 
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or fuzzy clusters, meaning that an item may be assigned to several clusters 

with a given probability. On the contrary, k-means is a hard or crisp clustering 

algorithm according to which each item is assigned to a single group. HAC is 

another hard clustering algorithm based on a nested structure represented by 

a dendrogram. 

Notwithstanding the availability of these advanced clustering techniques, 

methodological issues remain when applying clustering to real-world ERT 

datasets. Fuzzy c-means, for instance, was applied as a fuzzy algorithm to deal 

with the uncertainties brought by the smoothness of non-time-lapse ERT 

models (Ward et al., 2014). It is, however, not clear how such algorithms 

would work with time-lapse datasets. Further, Genelle et al. (2012) and Xu et 

al. (2017) used the HAC method to cluster for the first time ERT time-series 

of a time-lapse 2D dataset made of respectively 6 and 20 time-steps. 

Nevertheless, their study did not address critical issues such as the impact of 

alternative clustering algorithms on clustering results, the selection of the 

optimal number of clusters, or the evaluation of either the robustness or the 

uncertainties in clustering results. Also, Ward et al. (2014) suggested 

considering the local neighborhood and spatial constraints in clustering 

processes, an issue, which still needs to be further analyzed. 

The chapter focuses on the post-inversion clustering of ERT time-lapse 

datasets to extract and delineate spatially homogeneous features based on their 

resistivity patterns and address the above-mentioned concerns. The term 

hydrofacies, as discussed here, denotes spatial zones of similar patterns in 

their mean inverted resistivity, standard deviation, and correlation, assuming 

that they encompass common lithology and synchronous hydrological 

response at a daily time resolution. In particular, the chapter covers (1) the 

comparison and parametrization of three candidate clustering algorithms (k-

means, GMM, and HAC) while addressing the question of the optimal number 

of clusters and the evaluation of the clustering results, and (2) the pertinence 

of including spatially explicit information in the clustering task. Finally, we 

discuss (3) the robustness of the clustering outputs to various representations 

of the resistivity data, whether or not log-scaled, normalized, differenced, 

decomposed, as well as the impact of the time span of the ERT model on the 

clustering outputs. The analysis is based on a 2D-ERT dataset collected over 

a 465 days time-domain (section 3.3.2, Figure 3-4) at the RCL study site 

(section 3.2, Figure 3-2). To further encourage reproducibility and reusability, 
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programming aspects exclusively relies on Scikit-learn (Pedregosa et al., 

2011), an open-source Python package for machine learning. 

5.2 Theory and Methods 

5.2.1 Time-Series Clustering (TSC) 

Clustering consists of grouping high dimensional data into fewer classes based 

on groups’ inner similarities and groups’ outer dissimilarities. In particular, 

time-series clustering (TSC) aims at grouping individual time-series together 

(Liao, 2005). TSC can be challenging due to the high dimensionality of time 

datasets: (𝑀, 𝑁) where 𝑀 is the number of time-series (samples) and 𝑁 the 

number of time steps (features). Averaging clusters reduces the 

dimensionality to (𝑘, 𝑁) where 𝑘 is the final number of clusters. A clustering 

algorithm defines clusters and their members based on criteria involving 

distance or similarity measures. In machine learning, clustering is also defined 

as unsupervised classification since there are no predefined labeled groups 

that could serve as a basis for training. 

Due to the combined effect of data structure and dimensionality, the diversity 

of fields of application, the different clustering purposes, and the nature of 

hunted patterns, a wide variety of TSC approaches are found in the literature 

(Aghabozorgi et al., 2015; Liao, 2005). These are, for the most part, declined 

under three aspects: 

1. a time-series representation, which denotes any transformation of the time-

series reducing the dimension of the dataset before the clustering; 

2. a clustering algorithm relying on a distance measure; 

3. an evaluation technique. 

A prior reduction of the dataset dimensionality has several advantages: 

diminution of the memory consumption and speed-up of the clustering 

algorithm, noise reduction, and the harmonization of time-series data of 

unequal length or resolution into a dataset where an equal number of features 

characterize each sample time-series. If no prior reduction is applied, we refer 

to the raw-data-based approach (Liao, 2005). As far as TSC is concerned in 

this study, ERT series are univariate, real-valued, uniformly sampled, and 

smoothed (due to inversion smoothing constraint), of equal length, and 

relatively short. For these reasons, raw-data-based approaches are considered 
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until section 5.3.3, where dimension reduction is tested. Still, raw TSC usually 

involves a scale transformation. The z-standardization is used in the vast 

majority of cases and applied to each of the 𝑀 samples, i.e., the individual 

time-series 𝑋𝑖 : 

𝑋𝑧,𝑖 =
𝑋𝑖 − 𝜇(𝑋𝑖)

𝜎(𝑋𝑖)
,  𝑖 ∈ [1, 𝑀] 𝐸𝑞. 5.1 

where 𝜇(𝑋𝑖) and 𝜎(𝑋𝑖) stand for the mean and standard deviation estimates 

for 𝑋𝑖.  

Then, in section 5.3.3, four time-series representations, each of them either 

applied to the resistivity or the log-resistivity, are used: the raw data without 

transformation, the z-standardized data (Eq. 5.1), the differenced data 

(𝑋𝑖(𝑡) − 𝑋𝑖(𝑡 − 1)) followed by z-standardization (Eq.5.1), and the 

decomposed data using principal component analysis (PCA, see Figure 3-4, 

section 3.3.2) on the z-standardized data (Eq. 5.1). The prior z-standardization 

of data or other scaling methods are very common while performing TSC. 

However, the scaling may not be necessary in this case since time-series are 

all representative of the same physical variable, i.e., resistivity. Differencing 

removes the seasonal variation of the mean resistivity and will most likely 

result in a clustering that is more sensitive to the synchronous response of 

daily variations. Removing seasonality is motivated as it may dominate the 

signal and produces a cluster based on their common seasonal patterns while 

being non-correlated in other frequencies. However, one cannot exclusively 

consider differentiated data because it can be assumed that a hydrofacies must 

group series with similar seasonal patterns. By decomposing the covariance 

matrix of the dataset, PCA reduces its dimension from 𝑁 to several orthogonal 

components that explain most of the variance of the dataset (Figure 3-4, e to 

h). Since PCA is applied to the z-standardized data, the covariance matrix is 

equivalent to the correlation matrix, and the PCA reveals correlation patterns 

in the time-series across space while removing the noise that may influence 

the clustering. 

5.2.2 Clustering Algorithms 

There are no strict restrictions on the use of conventional clustering algorithms 

for the specific case of TSC. However, it is common to have distance functions 

modified according to the purpose of clustering. Two cases arise depending 
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on whether the aim is to group synchronous and linearly correlated series 

(similarity in time) or whether the procedure must rely on elastic measures of 

distance tolerant to some distortions or asynchronies (similarity in shape). 

This paper focuses on the first case, i.e., the similarity in time compliant with 

our definition of hydrofacies. The similarity in time relies usually on using 

Euclidean distances, squared Euclidean distances, or correlation-based 

distance. On a z-standardized dataset (Eq. 5.1), the correlation coefficient 

𝑅𝑋𝑖𝑋𝑗
 between two time-series is related to their squared Euclidean distance 

𝑑𝑋𝑧,𝑖𝑋𝑧,𝑗

2  such that 𝑅𝑋𝑖𝑋𝑗
= 1 − 𝑑𝑋𝑧,𝑖𝑋𝑧,𝑗

2 2𝑁⁄ . Despite the introduction of new 

distance metrics, Euclidean-based distances remain the simplest and one of 

the most competitive options (Keogh and Kasetty, 2003).  

An extensive and non-exclusive taxonomy describes clustering 

algorithms (Tan et al., 2019). An important distinction is based on the 

clustering structure. If the algorithm produces an independent partition of 𝑘 

clusters, it is called a partitional algorithm. On the other hand, if clustering 

produces a tangled structure of groups and subgroups, it is referred to as 

hierarchical, although it is possible to retrieve a partition of 𝑘 clusters based 

on a cut-off distance. Another dichotomy is based on the hard (or crisp) or 

probabilistic (or soft, fuzzy) nature of the partition. Hard clustering labels each 

object 𝑖 to one unique cluster, while probabilistic clustering defines a 

probability of membership. Another type of clustering algorithms is 

prototype-based or center-based clustering. These algorithms partition objects 

based on their distance from the centroid of the cluster and, for these reasons, 

tend to produce convex clusters centered on the mean. In the 2D example of 

Figure 5-1, clusters A and C are convex since they could be averaged to a 

characteristic element, the centroid that belongs to the cluster. Cluster A has a 

spherical covariance matrix, while C has an anisotropic covariance matrix. On 

the reverse, cluster B is concave, and the centroid is no longer a reliable 

prototype. In general, concave clusters are extracted using methods that 

consider the local neighborhoods and densities around each sample (e.g., 

section 5.2.2.2). It allows extracting dense clusters regardless of their 

structural arrangement. However, these approaches are challenged in the case 

of an ERT model given smoothness constraints and the subsequent lack of 

sharp variations in resistivity. 

This study relies on three prototype-based clustering algorithms so that the 

resistivity series can be averaged into a mean representative series per cluster. 
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These are k-means, hierarchical agglomerative clustering (HAC), and 

Gaussian Mixture Models (GMM). The k-means algorithm is partitional, hard, 

and tends to produce convex spherical clusters. HAC is hierarchical and hard. 

The covariance structure of the clusters depends on the distance metric and 

the constraints applied to the agglomeration. Finally, GMM is partitional, 

probabilistic, and not tight to a spherical covariance. The Python Scikit-learn 

library (Pedregosa et al., 2011) provides all the clustering algorithm used in 

this study. 

 

Figure 5-1: Example of three different cluster distributions in two dimensions. 

Cluster A is convex and spherical. Cluster B is concave. Cluster C is convex 

and anisotropic. 

5.2.2.1 K-Means 

The k-means algorithm is the most used clustering method (Berkhin, 2006). It 

is a partitioning relocation clustering algorithm based on the principle of 

finding a partition 𝐶 of 𝑘 clusters by  minimizing the sum of squared Euclidean 

distances between each object 𝑖 belonging to a cluster 𝑐 ∈ 𝐶 with respect to 

the cluster centroid 𝜇𝑐. The objective function to minimize is then: 

𝜙 = ∑ min
𝑐∈𝐶

∥ 𝑖 − 𝜇𝑐 ∥2

𝑖∈𝑀

 𝐸𝑞. 5.2 
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The original k-means algorithm is referred to as Lloyd’s algorithm and 

consists of a simple series of repeated steps: 

1. 𝑘 clusters centers 𝜇𝑐 are randomly sampled given a uniform 

probability; 

2. Each object 𝑖 is assigned to the cluster closest center; 

3. 𝜙 is computed with respect to 𝜇𝑐; 

4. A new 𝜇𝑐   is obtained by averaging cluster members. 

Steps 2 to 4 are repeated until 𝜙 is stable. The k-means algorithm tends to 

produce convex clusters of equal variances across the feature space, i.e., 

spherical clusters as cluster A in Figure 5-1. The cluster prototype is the 

centroid 𝜇𝑐. Due to the random initialization of cluster centers (step 1), a few 

repetitions of the full process (steps 1 to 4) are usually required to avoid 

convergence to suboptimal results. The best clustering partition, i.e., with 

minimal 𝜙, is kept. Depending on the dataset, k-means may remain unstable 

and yield non-deterministic outputs. This study relies on Scikit-learn’s 

implementation of the k-means++ algorithm (Arthur and Vassilvitskii, 2007). 

The k-means++ implementation improves the speed and accuracy of the 

original k-means by modifying the randomized initialization scheme (step 1). 

The idea is to spread initial centers allocation. The first center is still sampled 

given uniform probability distribution, while the subsequent centers are 

sampled given probability densities inversely proportional to the distance to 

previously defined centers.  

5.2.2.2 Hierarchical Agglomerative Clustering (HAC) 

Hierarchical Agglomerative Clustering (HAC) differs from k-means as it 

provides a nested structure of the clustering through a dendrogram. HAC uses 

a bottom-up approach: it starts from individual samples 𝑖 and merges them 

into branches based on their proximity until one cluster remains. Clusters are 

progressively merged based on their relative proximity. The proximity is 

defined by linkage methods defining the distance between clusters. This study 

focuses on the Ward linkage method (Ward, 1963) that minimizes the sum of 

squared differences within all clusters, likewise Eq. 5.2. Hence, the output is 

quite similar to that of k-means and tends to produce convex clusters of equal 

covariances (Figure 5-1, cluster A), which could be averaged into a cluster 

prototype, i.e., the centroid. Unlike k-means, which relies on random 
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initializations of cluster centers, HAC’s outputs are stable and do not require 

several iterations. 

A particularity of the Scikit-learn’s implementation lies in the opportunity of 

constraining the merging of branches by providing a connectivity 

matrix (Abraham et al., 2014). Such a matrix is binary of square 

shape (𝑀,  𝑀), where 𝑀 is the number of samples and distinguishes 

connected objects from disconnected objects so that two branches can be 

merged only if spatially connected objects exist between them. This 

functionality could be used to retrieve non-convex or non-spherical clusters in 

the 𝑁-dimensional feature space such as Cluster B and C in Figure 5-1. 

Usually, the connectivity matrix is computed using a nearest-neighbor 

approach. In this case, the connectivity matrix is built from the mesh of the 

ERT model. Two cells are connected if they share an edge. This capability is 

used in section 5.3.2 as a spatial constraint in order to retrieve spatially 

homogeneous clusters. 

5.2.2.3 Gaussian Mixture Model (GMM) 

Gaussian Mixture Models (GMMs) aim at modeling a dataset as a linear 

mixture of 𝑘 Gaussian distributions defined in the 𝑁-dimensional feature 

space (Berkhin, 2006). Multivariate Gaussian models are related to the 

Mahalanobis distance that evaluates samples' distance to a given distribution 

(Gallego et al., 2013). As a probabilistic algorithm, the clustering is soft so 

that each object 𝑖 has a probability of belonging to each cluster. For a given 

object, these probabilities sum up to one. GMM requires as input the number 

of clusters 𝑘 and relies on the expectation-maximization algorithm (Dempster 

et al., 1977) to find an optimal clustering. Expectation-maximization is closely 

related to the k-means algorithm as it involves iterative relocations: the 

starting point is a random initialization of 𝑘 Gaussian distributions that are 

iteratively reallocated by updating the GMM parameters, i.e., the mixture 𝑘 

weights, the 𝑘 mean vector of dimension 𝑁, and the 𝑘 𝑁𝑥𝑁 covariance matrix. 

Doing so, GMM maximizes the overall likelihood 𝐿 that each object belongs 

to the Gaussian mixture.  

By default, the Scikit-learn implementation of GMM uses the same 

initialization strategy as k-means++ (section 5.2.2.1) and automatically assign 

each sample to the most likely group. GMM is non-deterministic and different 

realizations may give different outcomes due to the random 
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initialization.  Different types of covariance matrix exist. Choosing a spherical 

type will add the constraint that the variance in each of the 𝑁 dimensions 

should be approximately equal. As a result, GMM would yield probabilistic 

convex spherical clusters, similarly to what would be expected from the k-

means and Ward-HAC methods. In this context, GMM is used with no 

constraints on the covariance so that each cluster may have its specific 

covariance matrix, and GMM may retrieve anisotropic convex clusters such 

as Cluster C in Figure 5-1.  

5.2.3 Clustering Evaluation 

The evaluation of clustering is difficult as it is an unsupervised classification 

meaning that ground-truth labels are usually not available. However, the 

literature suggests different clustering validation indices aiming at providing 

both (1) a statistical evaluation of the clusters to measure how well their 

members are tight and separated from the other clusters and (2) comparing 

two different partitions in terms of similarity. Both kinds of indices are used 

in this study. They are all implemented within the Scikit-learn library. 

5.2.3.1 Silhouette Index (SI) 

Silhouettes were introduced to measure how well an object belongs to its own 

cluster and as a tool to objectify the choice of the number of clusters 𝑘 in 

partitioning algorithms such as k-means (Rousseeuw, 1987). For an object 𝑖 

part of the 𝑀 samples, a Silhouette value 𝑆(𝑖) relies on the mean intra-cluster 

distance 𝑎𝑖 and the mean nearest-cluster distance 𝑏𝑖: 

𝑆(𝑖)  =  
𝑏𝑖 − 𝑎𝑖

max{𝑎𝑖,  𝑏𝑖}
,  𝑖 ∈ [1,  𝑀] 𝐸𝑞. 5.3 

𝑆(𝑖) ranges from -1 to 1 and renders the degree of membership of the object 

to its cluster. A negative value suggests that the object is assigned to the wrong 

cluster and stand for an outlier. By averaging Silhouette values, an overall 

Silhouette index (𝑆𝐼) can be computed to render the clustering quality: 

𝑆𝐼 =  
1

𝑀
∑ 𝑆

𝑖

(𝑖),  𝑖 ∈ [1,  𝑀] 𝐸𝑞. 5.4 
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Typically, 𝑘 is chosen in such a way that 𝑆𝐼 is maximum. A comparative 

analysis of 30 validation indices reports SI as the best index on various 

synthetic datasets and in the top tier on real datasets (Arbelaitz et al., 2013). 

However, 𝑆𝐼 tends to endorse clustering that produces convex clusters, such 

as k-means or HAC, and may be inappropriate if the algorithm allows the 

retrieval of anisotropic or concave clusters. This case may happen with GMM 

or the HAC algorithm if constrained with a connectivity matrix.  

5.2.3.2 Information Criteria 

The number of components using GMMs are usually not optimized using the 

Silhouette index but based on information criteria relying on the log-

likelihood of the GMM and accounting for the number of free parameters in 

the model. For this purpose, the Akaike Information Criterion 𝐴𝐼𝐶 (Akaike, 

1974) and the Bayesian Information Criterion 𝐵𝐼𝐶 (Schwarz, 1978) are usual: 

𝐴𝐼𝐶 =  −2log(𝐿) + 2𝑑 𝐸𝑞. 5.5 

𝐵𝐼𝐶 =  −2log(𝐿) + 𝑑log(𝑀) 𝐸𝑞. 5.6 

where log(𝐿) is the log-likelihood, 𝑀 the number of samples and 𝑑 is the 

number of degrees of freedom related to the model. The degrees of freedom 𝑑 

is given by summing the covariance, mean, and mixing weights free 

parameters. With no constraint on the covariance, the number of covariance 

free parameters are given by the half of the number off-diagonal elements and 

the number of diagonal elements, i.e.,  𝑘𝑁(𝑁 + 1)/2, where 𝑁 is the number 

of time-steps in the case of TSC. The number of mean parameters is given by 

𝑘𝑁 since the mean vector is of dimension 𝑁. At last, the number of weight 

parameters is given by 𝑘 − 1 since 𝑘 − 1 parameters are sufficient to describe 

the mixture weights as they sum up to one. Unlike 𝑆𝐼, 𝐴𝐼𝐶 or 𝐵𝐼𝐶 should be 

minimal for an optimal 𝑘. 

5.2.3.3 Adjusted Mutual Information (AMI) 

Based on the information theory, the adjusted mutual information (𝐴𝑀𝐼) 

is used to measure the similarity between two partitions, or the classification 

performance if one partition is considered as ground truth data. Another 

application is consensus clustering, which aims at identifying a more robust 

partition from an ensemble of different clustering algorithms’ outputs based 
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on their degree of agreement (Monti et al., 2003; Vinh and Epps, 2009). In 

this chapter, 𝐴𝑀𝐼 is used to compare the similarity of two clustering partitions 

with and without spatial connectivity constraint (section 5.3.2), the outcomes 

of different time-series representations, or the clustering's robustness derived 

from subsamples instead from the whole dataset (section 5.3.3). 𝐴𝑀𝐼 is an 

adjusted measure of similarity. Adjustment in clustering comparison is needed 

to account for the expected similarity score of randomness, which may vary 

according to the number of clusters 𝑘. It allows having a similarity score 

ranging from 0 to 1, with 0 corresponding to the score of random labeling and 

1 reflecting a perfect agreement between two clustering outputs. Scikit-learn’s 

implementation of AMI relies on Vinh et al. (2010). Considering two 

clustering partitions vector 𝐔 and 𝐕: 

𝐴𝑀𝐼(𝐔, 𝐕) =
𝐼(𝐔, 𝐕) − 𝔼{𝐼(𝐔, 𝐕)}

max{𝐻(𝐔), 𝐻(𝐕)))} − 𝔼{𝐼(𝐔, 𝐕)}
 𝐸𝑞. 5.7 

where 𝐻(𝐔) and 𝐻(𝐕) are the information entropy of the given partition, 

and 𝐼(𝐔, 𝐕) is the mutual information between both partitions.  The expected 

mutual information for randomness is 𝔼{𝐼(𝐔, 𝐕)} based on random partitions 

preserving the number of clusters 𝑘 and the number of members in each 

cluster. In general, 𝐴𝑀𝐼 has the advantage that its score remains unchanged in 

case of permutations of the cluster labels. It is particularly useful for 

comparing agreement between two partitions since one object may belong to 

two respective clusters that are similar but most likely labeled differently. 

5.3 Results 

5.3.1 Comparison of Clustering Algorithms 

This first section compares k-means, HAC with Ward’s linkage method, and 

GMM. The clustering algorithms are applied to the z-standardized (Eq. 5.1) 

resistivity time-series (Figure 3-4, d). The appropriate number of clusters 𝑘 is 

studied by relying on the Silhouette Index (𝑆𝐼, Eq. 5.4) for k-means, HAC, 

and GMM. Regarding GMM, the optimal number of clusters is also 

appreciated using the 𝐴𝐼𝐶 and the 𝐵𝐼𝐶 criteria (Eq. 5.5 and 5.6).  The results 

are reported in Figure 5-2.  The higher SI yield to the preferred 𝑘. On the 

contrary, the lowers 𝐴𝐼𝐶 or 𝐵𝐼𝐶 indicate the preferred 𝑘 for GMM.  Since 

GMM and k-means presents a risk of non-deterministic outputs due to random 

initialization, their related curves are represented with error bars relative to 2 
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standard deviations resulting from 20 runs of the clustering algorithm. Each 

run involves 20 random initializations for both algorithms to select the best 

model (see sections 5.2.2.1 and 5.2.2.3). As suggested by the small error bars, 

the k-means clustering appears stable. In contrast, the GMM model is 

relatively unstable for 𝑘=6 and above with respect to the 𝑆𝐼 value. This is not 

the case regarding the 𝐴𝐼𝐶 or 𝐵𝐼𝐶. Hence, the GMM is likely to generate 

different patterns, although they have a similar log-likelihood 𝐿. 

 

Figure 5-2: Comparison of clustering validation indices for different numbers 

of clusters and clustering algorithms. The Silhouette index (𝑆𝐼) is reported for 

the k-means, HAC, and GMM models in black or grey with respect to the left 

axis. The blue and red lines report on both the right axes the Akaike Information 

Criterion (𝐴𝐼𝐶) and the Bayesian Information Criterion (𝐵𝐼𝐶) obtained for the 

GMM models. Regarding k-means and GMM, the error bars represent 2 

standard deviations across 20 runs, each of them including 20 random 

initializations. 

In general, 𝑆𝐼 values are relatively low (<0.4), indicating weak compactness 

and low separability, as expected from a smooth dataset. Still, all indices agree 

that the optimal number of clusters 𝑘 is 2, except GMM-AIC (red), suggesting 

𝑘 between 3 and 5.  As a second-best, a 𝑘 value of 6 appears for the HAC and 

the k-means method, which may be geologically relevant given the different 

lithologies described in Figure 3-5. The k-means algorithm is stable since 

almost no deviation in the 𝑆𝐼 is observed. For comparison, the clustering for 

𝑘 values of 2, 4, and 6 are visualized spatially in Figure 5-3. Cells with white 

edges are those having a negative Silhouette value (𝑆(𝑖), Eq. 5.3). Since GMM 

is unstable (Figure 5-2, GMM-SI), the spatial patterns represented in the figure 
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are the product of one single realization and is subject to changes across runs. 

This is particularly the case of GMM with 𝑘=6 (Figure 5-3.i), for which the 

displayed patterns were intentionally selected to depict a pattern that differs 

from the one retrieved by k-means and HAC (Figure 5-3, g and h). 

 

Figure 5-3: Comparison of the spatial clustering patterns for 𝑘=2, 4, and 6. The 

figure columns refer to the three clustering algorithms applied to the time-lapse 

ERT dataset: k-means, HAC, and GMM. The rows represent different choices 

regarding the number of cluster 𝑘. 𝑆𝐼 is the corresponding average Silhouette 

index associated with the partition. The white edges correspond to negative 𝑆(𝑖) 

values (Eq. 5.3) indicating potentially misclassified cells. 

Even if some group attribution may differ with GMM (e.g., Figure 5-3.f), the 

spatial patterns of zonation are generally similar regardless of the method. In 

general, the patterns of Figure 5-3 match well with the one highlighted by the 

PCA decomposition (Figure 3-4, f to h). With 𝑘 = 2, the green cluster is 

representative of the slope’s subsurface (mostly clayey limestone, Figure 3-5, 

zone G) plus an additional inclusion below the plateau matching roughly the 

dense limestone group F in Figure 3-5. The green cluster is divided into two 

parts, pink and green, once 𝑘 = 4 (Figure 5-3, d and e), except with GMM that 

instead identified the top part of the slope (Figure 5-3.f, Figure 3-5, zone C). 

Another split occurs with the corresponding blue cluster. The top surface 

appears as being dynamically related to the deeper low resistivity area in the 

fractured zone (see Figure 3-4.a and Figure 3-5). With 𝑘=6, the slope’s 

surface appears as a cluster on its own (violet) in all cases. As an additional 
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comparison with Figure 3-5, the k-means and HAC outputs (Figure 5-3, g and 

h) present a horizontal division of the plateau into two clusters. The identified 

red cluster suggests that different dynamics occur at the surface of the 

fractured area and above the dense limestone area (Figure 3-5, zone F), as 

visible on the PCA first and third components (Figure 3-4, f and h). The red 

cluster of the GMM clustering (Figure 5-3.i) is more in phase with Figure 3-5 

as it separates the soil surface from the underlying bedrock. In the next 

sections, HAC will be exclusively considered because it is similar but 

computationally faster than k-means and does not have stability issues such as 

GMM. 

In contrast with Figure 5-3, Figure 5-4 reports the 𝑘=6 HAC clustering applied 

on the log-resistivity inverted data: the z-standardized log-resistivity for the 

first column (Figure 5-4.a.x) and the raw log-resistivity for the second one 

(Figure 5-4.b.x). Applying HAC on the z-standardized resistivity (Figure 

5-3.h) or the z-standardized log-resistivity (Figure 5-4.a.1) provides spatially 

similar clusters on this long term dataset. It means that the log-transformation 

does not alter much the correlation between time-series. Figure 5-4.a.3 reports 

the averaged raw log-resistivity time-series. They have distinct dynamical 

patterns, especially for the delay and magnitude of resistivity declines that 

occur during fall. The pink and the green cluster (Figure 5-4.a.3) are less 

responsive to variation in resistivity over time and were regrouped together in 

the 𝑘=2 partition in Figure 5-3. Figure 5-4.a.2 shows that, however, some 

clusters (e.g., lime green, blue, or turquoise) are spread over the entire 

statistical space defined by the mean log-resistivity and its standard deviation. 

Hence, if such a cluster gathers correlated series, it most likely groups 

different geological materials together, thus, different hydrofacies, which 

encourage to consider raw log-resistivity as well for more consistency. 

Nevertheless, clustering on the raw log-resistivity alone yields to the 

quantization of the ERT models into iso log-resistivity clusters. This is most 

visible on the statistical scatterplot of Figure 5-4.b.2. In other words, the 

clustering of the full dataset of 465 days is roughly equivalent to the clustering 

of the mean of the 1558 log-resistivity series. The profile is quantized 

following the order of magnitude of the average resistivity. No information 

about the dynamical nature of resistivity is leveraged to define the clusters. 

Consequently, the clustering produces averaged time-series (Figure 5-4.b.3) 

that are highly correlated, hence, poorly representative of the subsurface 

system's hydrological states. However, some spatial zones are of interest, such 
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as the spatial red node within the turquoise cluster below the plateau that map 

to the porous limestone area of lower resistivity compared to the surrounding 

denser limestone (Figure 3-4.a, Figure 3-5., zone E). Besides, if some spatially 

organized patterns are consistent in both approaches, this is not the case of the 

pink cluster of Figure 5-4.a.1 that should instead be eventually broken up into 

a lower and upper part (Figure 5-4.b.1). Indeed, while spatially tied, the pink 

cluster presents a wide range of mean log-resistivity.   

 

Figure 5-4: Diagnostic plot for HAC clustering (𝑘=6). (a) On the z-

standardized inverted log-resistivity data. (b) On the inverted log-resistivity 

data. The first row shows the spatial representation of the clustering partition 

with the cells having negative 𝑆(𝑖) values (Eq. 5.3) displayed with white edges; 

the second one their distribution in the scatterplot of the mean log-

resistivity 𝜇[𝑙𝑜𝑔(𝜌)] versus its standard deviation 𝜎[𝑙𝑜𝑔(𝜌)] for each of the 

1558 ERT series ; the third one shows the averaged log-resistivity time-series 

per clusters. 
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Ideally, an adequate clustering method for the recovery of hydrofacies should 

leverage both information about the correlated dynamics from the z-

standardized data and the raw resistivity. For instance, this could be done 

either by considering the raw log-resistivity in the clustering processes with 

some weighting scheme or by defining a posteriori a consensus clustering (see 

Monti et al., 2003) between a.1 and b.1 in Figure 5-4. Such methods were not 

developed because of the inability to validate or identify the number of 

clusters with such a dual approach that involves a wide range of potential 

compromises. This opportunity would rather be investigated using virtual 

experiments, which falls beyond the scope of this study. Notwithstanding, 

Figure 5-4 portrays the clustering results in a way that allows a fine diagnostic 

of the outcome and, eventually, a supervised reclassification of the groups 

when intra-cluster resistivity ranges are too broad. 

5.3.2 Spatially Constrained Clustering 

To mitigate the inconsistencies brought by the wide ranges of mean log-

resistivity and standard deviation (Figure 5-4.a.2) within clusters, a first 

possibility is to disjoint those that are spatially (Figure 5-4.a.1) or statistically 

(Figure 5-4.a.2) split. Another possibility is to spatially constrain the 

clustering by providing a spatial connectivity matrix to the HAC algorithm 

(see section 5.2.2.2). The constraint will increase the number of the cluster 

over six, up to the point that the partition is both spatially and dynamically 

consistent in terms of correlation. The process of selecting the appropriate 

number of clusters 𝑘 with the Silhouette Index (𝑆𝐼, Eq. 5.4) is repeated in 

Figure 5-5.a using HAC on the z-standardized log-resistivity data. 

Respectively, the blue and the orange curves report the 𝑆𝐼 with and without 

the use of the spatial connectivity constraint. The 𝐴𝑀𝐼 similarity (Eq. 5.7) 

between the two approaches is given by the green curve. Above 𝑘=6, a first 

local optimum appears at 9 clusters. With 𝑘=9, the spatial organization of 

patterns (Figure 5-5.c.) is comparable to what is seen in Figure 5-3 or Figure 

5-4, but the top slope, here in violet (zone C in Figure 3-5), has merged with 

a wider fractured area (Figure 3-5, zone H). The latter is poorly defined as 

being fully characterized by negative 𝑆𝐼 values (Figure 5-5.c. white edges). 

This means that the dynamics found in this area are more similar to those of 

other clusters, mainly the turquoise one in Figure 5-5.c if compared to Figure 

5-3 or Figure 5-4. 
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Figure 5-5: Selection of the number of clusters for the HAC method with 

connectivity constraint. (a) Silhouette Index (𝑆𝐼, Eq. 5.4) for the HAC with 

connectivity constraint (blue), without it (orange), and their similarity (green) 

given by the  Adjusted Mutual Information (𝐴𝑀𝐼, Eq. 5.7). (b) HAC with 

connectivity constraint and 𝑘=17 clusters. (c) HAC with connectivity constraint 

and 𝑘=9. (d) Scatterplot of the mean log-resistivity 𝜇[𝑙𝑜𝑔(𝜌)] versus its 

standard deviation 𝜎[𝑙𝑜𝑔(𝜌)] for the clustering presented in (b). Cells with 

negative Silhouette values in (b) and (c) are showed with white edges. 

Further apart, a better optimum is found around 17 clusters (Figure 5-5.a), 

which coincides with a small peak in the 𝐴𝑀𝐼, and equivalent 𝑆𝐼 in both 

clustering approaches. Thus, we have interpreted this point as a 

methodologically consistent number of clusters. Above 19 clusters, the 𝑆𝐼 

with connectivity constraint drops to 0.2. With 𝑘=17 (Figure 5-5.b), the main 

former spatial patterns remain recognizable with the notable difference that a 

second horizon appears in the plateau, as in Figure 3-5 (zone B) or Figure 

5-3.i. Another difference is that the pink cluster of Figure 5-5.c has been split 

into two parts. Besides, the spatial constraint has the effect of restoring more 

consistent groups in terms of average resistivity and standard deviation 

(Figure 5-5.d). A part of this consistency is, however, explained by spatial 

smoothness constraint in the inversion scheme. Finally, 𝑘=17 results in the 

presence of many small clusters, mainly in uncertain areas (see Figure 5-3.h 

and Figure 5-4.a.1) at the bottom of the slope or above the fractured area. 

However, if the smaller groups and those located relatively far from the 

surface electrodes are ignored, the partition would provide about ten spatially 

distinct groups that are geophysically interpretable, similarly to Figure 3-5. 
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Still, it appears that the more conductive porous limestone area (Figure 3-5, 

zone E) does not appear even with many clusters as high as 17. 

5.3.3 Sensitivity and Robustness of Clustering Partitions 

Figure 5-6 shows clustering applied to various time-series representations that 

are or not log-scaled, normalized, differenced, or decomposed (section 5.2.1). 

The first block (a to h) applies HAC with 𝑘 set to 6 clusters while the second 

one (i to p) considers 9 clusters with a spatial connectivity constraint. Within 

each block, the two rows represent the choice to work either on the resistivity 

(Ω.m) or its log-transformation. Then, the clustering is applied, respectively 

to the columns of Figure 5-6, on these raw datasets (Raw data), the z-

standardized (Eq. 5.1) ones (Z-std data), their first order differences followed 

by a z-standardization (Diff & Z-std data), and finally on the five first 

components of the PCA decomposition of the z-standardized data. Each 

labeled pair of figures represent the Silhouette index (𝑆𝐼, Eq. 5.4) as a function 

of the number of clusters 𝑘, and below it, the spatial patterns on the bottom 

related to 𝑘=6 or 9, whether a spatial connectivity constraint is considered or 

not, in phase with Figure 5-4.a and Figure 5-5.c. Although the selected 𝑘 is 

not always a local optimum, which varies across time-series representation, 

arbitrarily fixing the number of clusters allows comparing the similarity of 

partitions with the Adjusted Mutual Information (𝐴𝑀𝐼, Eq. 5.7). The 

references are the clustering applied on the z-standardized log-resistivity (b 

and j), which therefore have an 𝐴𝑀𝐼 of 1. An 𝐴𝑀𝐼 of zero reflects the score 

of two random partitions. In Figure 5-6, an 𝐴𝑀𝐼 reaching 0.7 shows 

comparable spatial patterns with the reference. Of course, visual differences 

in the top of the model and closer to the electrodes have much more impact on 

the 𝐴𝑀𝐼 score due to the variable resolution of the grid. 

The new representation based on differencing (Diff & Z-std) produces 

interesting cluster distributions in terms of spatial patterns. Without spatial 

constraint, the clusters are nevertheless mostly continuous. The massive 

limestone area on the right of the fractured area (Figure 3-5, zone F) does not 

appear. The differencing removes the seasonal variation of the resistivity (see 

Figure 5-4.a.3), making this spot more synchronous with the rest of the 

limestone area below the plateau. The zone is, however, identified when the 

connectivity constraint is applied. Another interesting cluster is the banana-

shaped one below the slope surface corresponding to the area of clayey 
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limestone (G in Figure 3-5). The shape maps well with the ones retrieved from 

raw resistivity data (a, e, i, m), indicating a consistent cluster. 

 

Figure 5-6: HAC clustering applied to various time-series representation. (a to 

h) With 𝑘 = 6 and (i to p) with 𝑘 = 9 clusters and a spatial connectivity 

constraint. Time-series representations considered for the clustering are either 

the resistivity or the log-resistivity as raw data (column one), z-standardized 

data (column two), differenced, and z-standardized data (column 3), and 

decomposed z-standardized data into 5 PCA components. Each label (a to p) 

shows the Silhouette variation according to the number of cluster 𝑘 and the 

spatial patterns of clusters for the 𝑘 indicated by the vertical dashed line in the 

Silhouette plot.  

Regarding the application of the PCA (Z-std & PCA5), the clustering produces 

similar clusters compared to the reference, except for (d), but the value of 6 

clusters does not seem appropriate given its sub-optimal 𝑆𝐼. Otherwise, not 

much information is lost from the decomposition, and this option could be 

considered for reducing the computational requirement of the clustering task.  
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Yet, all clustering tasks shown in Figure 5-6 are applied to the full time-span 

of the dataset, 465 days. Another aspect of sensitivity is related to the question: 

how much information (i.e., days) is necessary to retrieve the clustering 

partitions of Figure 5-6? The question is addressed in Figure 5-7 with HAC 

clustering applied with and without connectivity constraint on the log-

resistivity data and its four representations shown in Figure 5-6. The selected 

days are sampled according to two strategies. The first one (a and c) picks 

random but different (without replacement) ERT samples meaning that the 

samples could be spread over the full time-span of 465 days. The other 

strategy (b and d) picks continuous samples (i.e., consecutive days). For each 

given size, the sampling is repeated 50 times. The 𝐴𝑀𝐼 is computed between 

each of the 50 clustering outputs and the partition obtained with the same time-

series representation on the full time-span of 465 days (Figure 5-6, a to d and 

i to l).  

 

Figure 5-7: Convergence of HAC clustering partitions for various 

representations of log-resistivity data with increasing size of the sample sets. 

𝐴𝑀𝐼 (Eq. 5.7) is computed between every 50 runs of clustering on the sample 

sets and the partition retrieved on the full dataset of 465 days: (a) with random 

samples (𝑘=6); (b) with continuous samples (𝑘=6); (c) with random samples 

and with connectivity constraint (𝑘=9); (d) with continuous samples and with 

connectivity constraint (𝑘=9). The curve presents the mean and the 2 standard 

deviation bands for each representation of Figure 8 (Raw, Z-std, Diff & Z-std, 

Z-std & PCA5). 
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According to the random sampling strategy (Figure 5-7, a and c), the 

clustering applied on samples of the raw log-resistivity (blue) provides stable 

𝐴𝑀𝐼 across the range of sampling sizes (2 to 100 days). Compared to the full 

dataset, similar clustering partitions with high 𝐴𝑀𝐼 ≅ 0.7 are obtained even 

on small sample sets, with or without connectivity constraints. It means that 

there is not much added-value of a long time-span when the clustering of raw 

resistivity is performed. Therefore, it does not matter much if the sample sets 

are continuous or not. Regarding the clustering on the z-standardized data 

(orange) and decomposed data (red), the convergence of the 𝐴𝑀𝐼 mostly 

occurs with samples sets below 20 days with 𝑘=6 and without connectivity 

constraints. The decomposed data (red) has a lower convergence limit (~ 0.6) 

compared to the z-standardized data (orange). This is because of the unstable 

465 days patterns retrieved with PCA (Figure 5-6, d), which was the reference 

for computing the 𝐴𝑀𝐼. Convergence is faster and occurs mostly between 10 

days when the clustering is applied with 𝑘=9 and a connectivity constraint 

(Figure 5-7.c). However, there is a drop in the 𝐴𝑀𝐼 limit when the clustering 

is applied on continuous sample sets (Figure 5-7, b and d), and 𝐴𝑀𝐼 does not 

exceed 0.5 even with a time-span as significant as three months. Since it is not 

the case with random sampling (Figure 5-7, a and c), one may conclude that 

the clustering applied on the full dataset is mostly based on seasonal variation, 

as shown in Figure 5-4.a.3. This behavior is different for the differenced 

dataset (green) as the seasonal variation is removed by the differencing. 

Consequently, with random sampling (Figure 5-7, a and c), it converges less 

rapidly and to a lower 𝐴𝑀𝐼 compared to the z-standardized (orange) and the 

decomposed (red) dataset. The loss of 𝐴𝑀𝐼 is also lower when it comes to 

continuous sampling (Figure 5-7, b and d). 

Regarding the continuous sampling strategy, the drop of 𝐴𝑀𝐼 for the z-

standardized dataset (orange) and the decomposed ones (red) may raise 

several concerns related to the geophysical investigation and the methodology 

for recovering hydrofacies from correlated dynamics. Indeed, Figure 5-8 

shows the different clustering partitions obtained from four different 

continuous periods of 20 days. The spatial patterns substantially deviate from 

the usual one retrieved on the full dataset. On the one hand, it may suggest 

that the patterns retrieved on the z-standardized are not robust unless applied 

on a long term ERT dataset covering at least a year, given the daily 

measurement strategy and the seasonal patterns shown in the data (Figure 

5-4.a.3). On the other hand, the results simply reflect changes through time in 
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dynamically correlated features across space, which may include changes in 

the optimal number of clusters. 

 

Figure 5-8: HAC clustering (𝑘=6) applied to four continuous samples of 20 

days of log-resistivity. (a to d) shows the results from four different starting 

days with the Silhouette index (𝑆𝐼, Eq. 5.4) reported in parenthesis. The 

negative Silhouette values (𝑆(𝑖), Eq. 5.3) are displayed in with white edges. 

From that point of view, hydrofacies may change over time according to the 

hydrological states of the systems, water distribution, and the patterns of 

hydrological connectivity. The result of Figure 5-8 may portray some of these 

changes. However, this chapter’s focus is generally speaking on the 

robustness of clustering methods, and no attempt was made to engage in 

premature hydrological interpretation. Instead, the point is to underline the 

sensitivity of the method and the need to develop more robust methods for the 

clustering of hydrofacies, for instance, by considering the raw resistivity or 

other geophysical data in the process. Finally, it is worth recalling that the 

difficulty of the clustering task in this particular case is linked to the karstic 

site's complexity. The retrieval of coherent groups may be more comfortable 

in a less heterogeneous environment. 
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5.4 Conclusion 

Nowadays, computer-assisted vision is increasingly used to extract and 

delineate geological and hydrological features, sometimes referred to as litho 

or hydrofacies, from ERT models. While early studies provided applications 

for non-time-lapse ERT models, applications to time-lapse models are still 

underrepresented. On short time-lapse models (< 20 days), Genelle et al. 

(2012) and Xu et al. (2017) developed the first applications based on time-

series clustering (TSC), assuming that these structures can be extracted based 

on the similarities observed in the time dynamics of resistivity. The basic 

clustering principles were introduced, together with three clustering 

evaluation metrics and one clustering similarity metric. Using a 465 days time-

lapse ERT model of 1558 cells acquired from the surface of a heterogeneous 

karstic environment (Watlet et al., 2018b, 2018a), this chapter studies: (1) the 

comparison between the three clustering algorithms k-means, hierarchical 

agglomerative clustering (HAC), and Gaussian Mixture Model (GMM), 

including the question of the optimal choice of cluster number and the 

identification of potentially misclassified spatial cells, (2) the effect of adding 

a spatial constraint in clustering, and (3) the robustness of the clustering 

outputs to various representations of the resistivity data as well as the impact 

of the number of days considered in the ERT model for the clustering task. 

Specifically, applied to 1558 z-standardized resistivity series of 465 days, the 

three candidate algorithms produce similar spatial patterns that highlight 

temporarily correlated areas across space. Six clusters were considered based 

on our clustering evaluation metrics. However, such clusters may be spatially 

split and may include cells with substantial differences in their mean raw 

resistivity or standard deviation. Hence, clustering based on the correlation of 

resistivity series obtained from z-standardized data may retrieve geologically 

inconsistent groups. Alternatively, clustering on the raw resistivity time-series 

is dominated by their mean resistivity. Accordingly, the retrieved clusters 

depict iso-resistivity areas, but their averaged temporal dynamics are all 

correlated, and nothing is learned about the specific dynamic property of the 

subsurface elements. This, therefore, encourages to work on the standardized 

resistivity while checking the raw resistivity distribution within clusters. 

In the second part, the HAC specificity of adding a spatial constraint was 

considered such that clusters are spatially tied into one feature. The constraint 

had the expected effect of increasing the suggested number of clusters to 9 or 
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17. With 9, one of the clusters would have needed to be separated for 

consistency. With 17, the expected patterns are well represented by about ten 

clusters. The remaining clusters were either relatively small or distant from 

the electrodes, thus deserving less consideration. The results were more 

consistent in their raw resistivity and standard deviation while applied on the 

z-standardized data due to the spatial proximity of the cells, but some raw 

resistivity patterns are not always revealed from correlation patterns.  

In the last section, HAC with and without connectivity constraint was applied 

to 8 different time-series representations where the resistivity is, or not, 

logarithmically scaled, standardized, differenced, or dimensionally reduced 

with principal component analysis. The major differences in spatial patterns 

remained between the raw resistivity and the other representations revealing 

correlated areas. The redundancy of patterns across the different 

representations creates confidence in the patterns that are restituted. However, 

the sensitivity analysis based on smaller sample sets showed that these 

patterns are associated with the seasonal dynamics of resistivity and cannot be 

retrieved from the standardized data even with continuous sample sets of 100 

days. It also shows how much interpretation can vary between a single ERT 

survey and time-lapse experiments and from one short-term time-lapse survey 

to another. Still, less than 20 days are necessary to retrieve the long-term 

patterns if they are not continuous but randomly picked in the model. This last 

result may encourage long-term ERT monitoring of at least one year to 

retrieve robust clusters. It may also depict the temporal variability of water 

distribution, hydrological processes, and so hydrofacies if they are identified 

from short-term correlated resistivity. 

In general, the results encourage to perform clustering of time-lapse ERT 

models with various numbers of clusters, various time-series representations, 

and various sample sets to gain confidence from redundancies between the 

resulting patterns. Redundancies, as cluster evaluation indices, support 

decision making. Shortly, more robust clustering methods for the 

identification and zonation of hydrofacies and lithofacies will benefit from 

integrating both the information about raw resistivity and temporal dynamic 

similarity, and eventually other geophysical datasets (e.g., Di Giuseppe et al., 

2014, 2018; Paasche et al., 2006). Regarding the algorithms, HAC was 

particularly interesting for its versatility. Besides its ability to constraint 

spatially the clustering, HAC can be applied with any distance metrics. If HAC 

does not account directly for the uncertainty in the clustering such as GMM, 
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such uncertainty may be computed from bootstrap samples in the particular 

case of time-lapse ERT datasets. In that spirit, HAC is used to generate 

consensus clustering that may already be helpful to create a final clustering 

from several clustering partitions (Monti et al., 2003). Further guidelines will 

most likely be fruitfully developed in combination with synthetic experiments 

combining resistivity and hydrological modeling since the main difficulty of 

clustering is its unsupervised nature and the difficulty of appreciating the 

validity of the outcomes. 
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Chapter 6 Inferring karst hydrology from time-

series using causal inference methods 

“That a few Original Ideas may be made to signify a great 

number of Effects and Actions, it is necessary they be variously 

combined together: And to the end their use be permanent and 

universal, these Combinations must be made by Rule, and with 

wise Contrivance.”  

Berkeley 

Foreword 

This chapter covers the central theme addressed by the MIGRADAKH project 

(section 1.2.1), namely causal inference from time-series. As previously 

reported, the illogicalities of the initially chosen method, Convergent Cross 

Mapping (CCM, Sugihara et al. 2012), led me to believe that the initial 

assumptions (or beliefs) in the thesis proposal were ill-founded. From this 

disillusion, I sought to understand complexity (section 1.1) and wanted to 

broaden the framework and definition of causality (Chapter 2). Without 

abandoning time-series analysis, I explored causality from the perspective of 

identifying patterns of complexity through nonlinear time-series analysis 

(Chapter 4) and spatial patterns of dynamic similarity (Chapter 5). 

Meanwhile, I have refined my expertise and understanding of causal inference 

methods. In March 2018, I visited Prof. Ray Huffaker from the University of 

Florida that has developed a framework for causal inference based on the 

extraction of deterministic components of time-series using relying on CCM 

(Huffaker et al., 2017). In June 2019, we developed a Python version of the 

CCM algorithm with Dr. Olivier de Viron at the University of  La Rochelle. I 

also turned to other methods and applied them with other students and 

researchers (Brulein, 2019; Delforge et al., 2019; Got, 2019; de Viron et al., 

2019). The analysis presented at the AGU fall metings 2019 (de Viron et al., 

2019) is currently extended in a paper entitled Causal relationships in the 

climate system submitted to the Journal of Climate. Its content, however, does 

not fall in the scope of this thesis. This chapter is a much more detailed version 

and expansion of the analyses presented at the general assembly of the 
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European Geoscience Union 2019 (Delforge et al., 2019). This content is 

undoubtedly one of the most detailed introductions to applied causal inference 

in hydrology, showing these methods' potential, the variability between 

methods, and the critical necessity to think about their hypotheses, parameters, 

and input data. Selected materials focused on hydrological connectivity from 

this chapter will be wrapped into a paper to be submitted in a scientific journal. 

Regarding causality, causal inference methods relate to the formal cause (d8, 

Appendix III) by portraying the account of what is to be in terms of constant 

conjunctions (d24, d30) and reporting a system's organization in a causal 

graph, model, or frame (d34). However, we expect these methods to bring to 

light interactions and dependencies that result from existing processes, i.e., 

cause-effect relationships (d1, d9). The most commonly used method for 

causal inference remains the linear correlation. With time-series analysis, the 

cross-correlation function relies on the principle of priority (d22). Similarly, 

CCM is also a bivariate method, but it considers nonlinear dependencies 

between time-series (d8, d24). CCM evaluates them using a nearest-neighbor 

regressor such as EDM-Simplex (Chapter 4). Beyond dependencies and their 

predictive skills, CCM relies on the principle of convergence to assess 

causality. The convergence criterion is an original and optimistic 

instrumentalization (d27, d32) of the problem of induction (section 2.4.3) to 

infer causality. It tells us that our understanding of causality, if causality there 

is, should increase with more data. It is also a kind of asymptotic teleology 

(d39). Causality could then be measured through an observed increase in the 

prediction skills (or in robustness, such as in Chapter 5, Figure 5-7). However, 

if convergence is necessary and potentially sufficient to claim that two 

variables belong to the same dynamical system, it is not sufficient to claim a 

direct cause-effect relationship or a hydrological connection. Indeed, CCM 

does not consider Reichenbach’s principle and common drivers (d26, 

Appendix III). That is why this chapter also investigates methods that do, 

using conditional independence as a criterion for causality (Runge et al., 

2019a). The chapter shows that the most sophisticated method is the most 

robust in virtual experiments (d17). However, on real and incomplete datasets 

(d16), it lacks robustness and shows hardly interpretable results, in which case 

relying on simpler – and, therefore, potentially inadequate - methods could 

bring more inference power following the logic of parsimony (d18). 
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Abstract 

The chapter focuses on detecting causal relations in complex 

hydrogeophyiscal systems, in this case, karstic systems. The objective is to 

compare four causal detection methods: two bivariate methods, the linear 

cross-correlation function (CCF) and the nonlinear convergent cross-mapping 

(CCM), and two multivariate frameworks based on conditional independence. 

The first one relies on partial correlations (ParCorr), the second one on 

conditional mutual information (CMI). The methods are applied using three 

levels of analysis: (1) a virtual experiment involving two disconnected 

hydrological reservoirs, hence not causally related, but both forced by 

effective precipitation data;  (2) a case study focused on the detection of 

connected preferential flows between the surface and cave percolation in the 

Rochefort cave system; (3) a case study focused on the general functioning of 

the system including relative gravimetry data.  

The virtual experiment (1) recommends using bivariate methods of 

differenced data to better spot time-dependencies between hydrological 

variables. Multivariate methods should be applied to the raw (not differenced) 

data. Compared to ParCorr, the same experiment suggests that CMI is the most 

robust method to identify effective hydrological connections, as it detects no 

spurious link between the two reservoirs. CMI was, however, not robust on 

the real hydrological datasets (2 and 3), possibly due to dynamic artifacts in 

the Electrical Resistivity Tomography (ERT) model of the subsurface (in case 

2) and relatively short time-series overlap due to missing data (in both cases). 

ParCorr and CCM showed more intuitive causal structures and a higher 

agreement level in the causal links. They allowed spotting fewer causal 

associations than the conventional CCF approach that detects ubiquitous 

causal associations due to the global forcing of meteorological variables. 

Encouragingly, they spotted strong associations between surface resistivity 

patterns and cave drip discharge (2), where the effective connectivity was 

confirmed by dye tracing. Whatever the method and the experiment, spurious 

links are often recovered, and the possibility of constraining the direction of 

causal links was investigated. The first real case (2) showed that constraining 

had not much effect on ParCorr results beyond the constraint, while CMI 

remained unstable. In case 3, the constraint allows retrieving systematic time-

dependencies of atmospheric pressure effects on relative gravimetry both with 

ParCorr and CMI.  
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In conclusion, other causal inference methods beyond CCF are recommended 

as they outcome a more intelligible causal structure by focusing on fewer 

causal links. Although virtually and theoretically the most robust, CMI may 

not be suitable for short hydrological time series of variable quality or data 

generated or corrected by a model. Importantly, p-values do not relate to the 

probability of causal associations. The results vary substantially with different 

hypotheses materialized in datasets, methods, parameters, or user constraints. 

Accordingly, multiple approaches are encouraged for a better inference and 

confidence in the results when some links are found redundant. Any 

approaches should be transparent and justified in their context because, while 

empirical, they remain based on methodological and user assumptions. 
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6.1 Introduction 

Modeling in hydrology is predominantly based on a hypothetico-deductive or 

physically-based approach (section 2.3.3.2, and 2.4.2). The hydrology of a 

system is derived by combining structural data (e.g., topography, pedology, 

geology), meteorological data (e.g., rainfall, evapotranspiration), mechanisms 

representing hydrological processes, and, if available, calibration data. An 

ideal model is supposed to reveal water distribution, flow paths, and velocities 

within the system. While this approach could also be applied to karst systems 

(Hartmann et al., 2014; see also Figure 1-3), physically-based models impose 

strong and unverified assumptions on karst systems that are complex to 

understand (section 1.1.2, 1.2.2.1). Bakalowicz (2005) reminds the limits of 

relying upon structural data to characterize their hydrological functioning. In 

many cases, the structure and heterogeneity of a karst system remain hidden. 

They are not sufficiently characterized to deduce processes, including fast 

preferential flows resulting in the high hydrological responsivity of karst 

systems.  

As a result, karst investigation often relies on a panel of functional and 

empirical approaches (see Bakalowicz, 2005), in particular, time-series 

analysis. Cross-correlation analyses are the most common, frequently 

combined with spectral or wavelet analysis (Angelini, 1997; Bailly-Comte et 

al., 2008; Kadić et al., 2018; Labat et al., 2000; Larocque et al., 1998; 

Mathevet et al., 2004; Mayaud et al., 2014; Ollivier et al., 2015; Padilla and 

Pulido-Bosch, 1995; Schuler et al., 2020; Tagne and Dowling, 2018). 

Bivariate cross-correlation analyses are particularly suited to identify and 

detect the occurrence of rapid preferential flows in karst systems. Peak-to-

peak times could be interpreted as causal delays. However, peaks in 

correlograms may reflect superimposed processes. The system's general 

lumped behavior, such as the rainfall-spring discharge relationship, may not 

represent the actual flow path and hydrological connections within the system.  

Retrieving connectivity from bivariate time-series analysis is not trivial given 

that meteorological forcing acts as a confounding exogenous factor making 

endogenous hydrological variables all temporally related. Hence, as for 

correlation, cross-correlation does not imply causation. Linear time-

dependencies assume linear processes and are consequently not sufficient to 
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infer causation. They also do not remove the effect of the common causes 

(section 2.4.3.2, d26 in Appendix III).  

Modern causal inference methods now include either or both nonlinear 

approaches and multivariate frameworks that account for common causes to 

infer causation from time-series (e.g., Granger, 1969; Hlaváčková-Schindler 

et al., 2007; Runge et al., 2019a; Schreiber, 2000; Sugihara et al., 2012). They 

have evolved from the linear cross-correlation function to nonlinear and 

multivariate frameworks for causal discovery and are gaining popularity in 

Earth Sciences (e.g., Goodwell et al., 2020; Meyfroidt, 2016; Runge et al., 

2019b; see also Figure 2-1; Appendix I). 

Recently, hydrological studies have focused on these methods to infer 

hydrological connectivity (Rinderer et al., 2018; Sendrowski and Passalacqua, 

2017; and section 2.4.3.2). In particular, Rinderer et al. (2018) distinguish 

three types of connectivity: (1) the static and structural connectivity, which 

highlights fully potential paths for water flows from geomorphology; (2) the 

functional one, which could be derived from hydrological data and their 

bivariate time-dependencies, (3) and the effective connectivity, which is 

supposed to reveal actual flow path within the system, possibly from tracing 

test or more advanced causal inference methods.  

In this chapter, four causal inference methods, as a combination of 

linear/nonlinear and bivariate/multivariate methods, are selected and 

compared. Three different cases allow discussing the potential of causal 

inference method to unravel effective connectivity and distinguish it from the 

functional patterns of connectivity. The first case study illustrates and 

evaluates these methods' potential by considering a model with two 

disconnected reservoirs, responding in parallel to effective precipitation. 

Hence, the two reservoirs present functional patterns of connectivity but are 

not effectively connected. The methods are applied in order to check if they 

are able to report this absence of effective connection. The next two cases 

apply to the Rochefort cave datasets. Focused on vadose zone preferential 

flows, the first one aims to relate subsurface resistivity patterns (section 3.3.2; 

Chapter 5) above the cave to drip discharge dynamics within the cave, 

including rainfall and potential evapotranspiration in the analysis (section 

3.3.3; Figure 3-6). Drip discharge data are monitored locally in three locations 

within the cave (section 3.2; Figure 3-2). Previous dye tracing tests have 

revealed fast preferential flow between the surface a particular spot in the cave 
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(P1, Figure 3-2), making it a good study case to assess if causal inference 

methods may detect the effective connection. The last case is a complementary 

study focused on how causal inference methods depict the system’s general 

and functional behavior. In particular, the causes of the mass balance in the 

cave system (monitored by relative gravimetry data) are inferred and 

discussed considering other variables: two drip discharge time-series, and the 

potential drivers of gravity: atmospheric pressure, rainfall, evapotranspiration, 

and groundwater level (Figure 3-6). 

6.2 Theory and Methods 

6.2.1 Causal Inference Methods 

The selected methods apply to the time-domain (see Runge et al., 2019 for a 

broader review) and investigate causal relationships between time-series over 

a time window defined by a maximum time delay 𝑑𝑚𝑎𝑥. Therefore, they do 

not investigate causal relationships beyond this delay and may be 

inappropriate when the processes under study substantially alter the frequency 

of the dynamics between the driving variable and the response variable. Most 

hydrological processes act as a low-pass filter. The water's multiple paths and 

their difference in flow velocity characterize the dispersivity of porous and 

heterogeneous environments. The dispersivity is supposed to be lower in a 

karstic environment if one considers only the highly responsive preferential 

flows within fractures, conduits, or macropores (e.g., Hartmann et al., 2014). 

The causal inference methods will be applied to discover such fast flow 

occurring within a few days in a karstic vadose zone and causal relationships 

in the general karst system monitored by gravimetry. 

Four methods of causal inference are used: (1) the Cross-Correlation Function 

(CCF), (2) the Convergent Cross-Mapping (CCM) method, (3) the PCMCI-

Partial Correlation method (ParCorr), and (4) the PCMCI-Conditional Mutual 

Information method (CMI). They are all based on the principle of priority of 

the cause (d22 in Appendix III). It means that the cause must occur before its 

consequence. Formally, addressing causality is identifying a robust 

association between a response variable 𝑌𝑡 and a time delay 𝑑 of its potential 

driver 𝑋𝑡−𝑑. Delays provide a time-asymmetry such that causal interactions 

can be reported in the form of a graphical model or Directed Acyclic Graph 

(DAG) (Pearl, 2000; Spirtes et al., 1993) with arrows linking driving variables 

to their responses variables (see Figure 6-1, similarly to Figure 1-1). 
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Figure 6-1: Example of incorrect DAG showing a spurious link 𝑋𝑡 → 𝑌𝑡  due 

to a missing common driving variable 𝑍𝑡. 𝑋𝑡 is seemingly causing 𝑌𝑡 because 

𝑋𝑡 systematically responds before 𝑌𝑡 to 𝑍𝑡 . 

The methods vary according to two criteria: (1) whether they are suitable for 

detecting linear or nonlinear causal dependencies, and (2) whether they 

provide a bivariate or multivariate analytical framework (Table 6-1). 

Table 6-1: Classification of selected causal inference frameworks. 

 Bivariate Multivariate 

Linear Cross-Correlation Function  

(CCF) 

PCMCI - Partial Correlation 

(ParCorr) 

Nonlinear Convergent Cross Mapping 

(CCM) 

PCMCI – Conditional Mutual 

Information (CMI) 

When faced with hydrological data, the question arises as to whether a linear 

or nonlinear method should be chosen. On the one hand, the hydrological 

response to effective precipitation is expected to be sensitive to the system's 

initial conditions (e.g., its water content and distribution), which suggest 

considering nonlinear methods. On the other hand, one expects that nonlinear 

relationships remain mostly monotonous, allowing linear thinking, e.g., the 

more rain, the more percolation. Linear methods are in phase with this linear 

thinking. They have the advantage of telling what change is expected in one 

quantity while changing another quantity, which is very interpretable.  

Nonlinear methods do not tell anything about the nature of the relationship, 

which could be, in fact, linear (see 1.1.2.3). For these reasons, both types of 

methods are considered. 
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A multivariate framework allows the common cause principle (d26 in 

Appendix III) to be taken into account, thus eliminating spurious causal 

interactions arising from confounding. Indeed, with the sole basis of the 

principle of priority, causal inference methods may identify spurious 

associations, such that 𝑋𝑡−𝑑 → 𝑌𝑡, when both variables are not directly 

causally related but share a common driver 𝑍𝑡. This pathological case is 

illustrated in Figure 6-1. 

Generally speaking, not considering an explanatory variable in the causal 

analysis may result in an incorrect DAG. Consequently, causal inference 

methods rely on the hypothesis of causal sufficiency, i.e., measured variables 

include all the common causes (Reichenbach, 1956; Runge, 2018a). 

Paradoxically, causal sufficiency favors the quest for data with the best spatial 

and temporal coverage and resolution. However, causal inference methods 

remain impractical on such data sets because they are subject to the curse of 

dimensionality and limited computational resources (Runge et al., 2019a). 

Causal sufficiency must be approached rather parsimoniously and include a 

dataset that is representative of the emerging and dominant patterns in the 

system, which can be obtained from a high-resolution dataset using dimension 

reduction approaches (e.g., Chapter 5). 

6.2.1.1 Cross-Correlation Function (CCF) 

The cross-correlation function (CCF) is the most common method to analyze 

linear time-dependencies and address causality, including for karst systems 

(e.g., Bailly-Comte et al., 2008; Mathevet et al., 2004; Ollivier et al., 2015; 

Schuler et al., 2020; Tagne and Dowling, 2018; Watlet et al., 2018b). For a 

driving variable 𝑋𝑡 and a response variable 𝑌𝑡, causality is inferred by 

computing the cross-correlation function (CCF) and from the principle of 

priority of the cause (d22 in Appendix III). For a window of absolute delays 

[0, 𝑑𝑚𝑎𝑥] with 𝑑𝑚𝑎𝑥 ≥  0, Pearson’s correlation coefficient 𝜌 is computed 

between the response and the delayed driver on their overlapping domain: 

𝐶𝐶𝐹(𝑑) = 𝜌(𝑋𝑡−𝑑 , 𝑌𝑡) 𝐸𝑞. 6.1 

with 𝑑 ∈ [0, 𝑑𝑚𝑎𝑥].  
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Pearson’s 𝜌 between two time-series 𝑋𝑡 and 𝑌𝑡 is the ratio between their 

covariance and the product of their standard deviations: 

𝜌(𝑋𝑡 , 𝑌𝑡) =
𝑐𝑜𝑣(𝑋𝑡 , 𝑌𝑡)

𝜎𝑋𝜎𝑌
 𝐸𝑞. 6.2 

The 𝜌 coefficient is a standardized measure of linear dependencies that can be 

interpreted as the slope of a linear regression between the two z-standardized 

variables (Eq. 5.1).  Accordingly, 𝜌 is ranging between -1 and 1, meaning 

respectively perfectly anti-correlated or correlated. A 𝜌 of zero indicates the 

absence of linear dependencies. The significance of the hypothesis that 𝜌 is 

different from zero is usually assessed analytically through a Student’s-t test 

reporting a p-value. The p-value estimates the probability that 𝜌 is the output 

of an uncorrelated process. The p-value is sensitive to the number of 

overlapping samples such that more samples are required to have a significant 

p-value if |𝜌| is low. For a significance level 𝛼, significant relationships have 

p-value lower than 𝛼. In this chapter, significant correlations and their causal 

delay 𝑑 are reported in a DAG. The case of 𝑑 = 0 does not allow to infer a 

direction for the causal relationship and are reported with bidirected arrows. 

In general, CCF is symmetric if computed between [−𝑑𝑚𝑎𝑥, 𝑑𝑚𝑎𝑥] but the 

sign of 𝜌 allows to interpret the results and conclude if there is a transfer of 

water. 

6.2.1.2 Convergent Cross Mapping (CCM) 

Convergent Cross Mapping (CCM) is a causal inference method rooted in 

nonlinear dynamical systems theory. It allows detecting weak nonlinear 

associations between two time-series (Sugihara et al., 2012). CCM is part of 

the Empirical Dynamic Modeling (EDM) framework and is a bivariate 

extension of the EDM-Simplex algorithm (section 4.2.2). Hence, CCM 

similarly relies on Takens’s embedding theorem (see Figure 1-4, Eq. 4.1). To 

address whether 𝑋𝑡 causes 𝑌𝑡, the response variable 𝑌𝑡 is first embedded using 

Takens’s state space reconstruction. The optimal embedding parameters (𝑚 

and 𝜏, see also Table 4-3) for 𝑌𝑡 can be selected by optimizing the EDM-

Simplex forecasting skills (Sugihara and May, 1990). From the optimal 

reconstructed state space 𝑀𝑌 of 𝑌𝑡, CCM makes forecast of 𝑋𝑡 based on 

reference time indices using practically the same workflow as presented in 

Figure 4-3. The difference in CCM is that the nearest-neighbor states for the 

times of reference found in 𝑀𝑌, that are {�̇�𝑑,1, �̇�𝑑,2, … , �̇�𝑑,𝑘}, are mapped onto 
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𝑋𝑡 based on their time indices. Afterward, the forecast of 𝑋𝑡 follows the same 

procedure. The difference is portrayed in Figure 6-2.  

 

Figure 6-2: EDM‐CCM algorithm flowchart. EDM-CCM is an extension of the 

EDM-Simplex algorithm allowing to make bivariate forecast and test for 

causality between a response variable 𝑌𝑡 and its driver 𝑋𝑡. The difference with 

the EDM-Simplex algorithm (Figure 4-3) is displayed in red. User‐defined 

inputs are the same and described in Table 4-3.  

The CCM philosophy may seem counter-intuitive. Indeed, the predictive 

arrow is opposite to the causal arrow being tested: if 𝑋𝑡 causes 𝑌𝑡, predictions 

are made from 𝑌𝑡 to 𝑋𝑡. The theory of nonlinear dynamical systems justifies 

this strategy. If 𝑋𝑡 is driving 𝑌𝑡, 𝑀𝑌 contains the information about the states 

of 𝑋𝑡 (Figure 1-4). Nearest neighbors in 𝑀𝑌 should identify when the system’s 

state is relatively similar to the reference state. Then, these nearest-neighbor 

time-indices obtained from 𝑌𝑡 (that are remote in time) are also a good basis 

for predicting points in 𝑋𝑡 from the state of 𝑋𝑡 at the same time-indices. This 

is true if and only if both variables belong to the same dynamical system. In 

other words, CCM goes beyond linear correlation by checking if two variables 
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behave consistently when the system is under the same state. This account of 

state dependency makes the method nonlinear, and the state of the system is 

assumed to be well represented by the pseudo-states found in the embedded 

reconstruction 𝑀𝑌 of the response variable 𝑌𝑡.  

In the original CCM paper (Sugihara et al., 2012), forecast skills are assessed 

with the mean Pearson’s correlation coefficient 𝜌 (Eq. 6.2) of the 𝑁𝑆𝐴𝑀 

forecast vector and a prediction horizon 𝑡𝑝 of 0, i.e., without delay. To identify 

a causal relationship 𝑋𝑡 → 𝑌𝑡, Sugihara et al. (2012) relies on the principle of 

convergence, meaning that CCM-averaged forecast skills of 𝑋𝑡 should 

increase with larger sample sizes 𝐿. With an increasing 𝐿, nearest-neighbor 

states on 𝑌𝑡 are supposed to be more and more relevant, which should increase 

the forecast skills of 𝑋𝑡. In practice, forecast skills do not increase indefinitely 

but up to a plateau. This is due to noise or to the general fact that closer 

nearest-neighbor does not improve the forecast substantially above a given 𝐿. 

For weak nonlinear causal associations, CCM yield an asymmetric pattern of 

convergence, such that convergence is only observed for the case where 𝑋𝑡 →

𝑌𝑡, that is 𝑌𝑡  predicts 𝑋𝑡. The asymmetry of convergence is, therefore, an 

interesting pattern for distinguishing the cause from the effect.  

However, in this chapter, convergence will not be considered as a sufficient 

criterion for several reasons. First, if the forecast skills 𝜌 are high and 

significant for a given length 𝐿, it is fair to assume that they have converged 

or being in the process of converging. Secondly, Sugihara et al. (2012) explain 

that convergence can be observed in both ways (𝑌𝑡 CCM-predict 𝑋𝑡 and 𝑋𝑡 

CCM-predict 𝑌𝑡) for a unidirectional causal relationship 𝑋𝑡 → 𝑌𝑡 in case of 

strong statistical dependency between variables. Locally, hydrological 

variables exhibit such strong coupling due to the general forcing of 

precipitation and evapotranspiration. Finally, the maximum mean 𝜌 obtained 

with the highest 𝐿 may depend on the time-series noise properties, which may 

be substantially different in this case that combines data from various sources 

and sensors, including an ERT model. Hence, this variability makes the 

asymmetric predictive skills pattern at 𝑡𝑝 = 0 a potential misleading source 

to infer the direction of the arrow of causation.  

Instead, to deal with strong coupling, Ye et al. (2015) suggested varying the 

prediction horizon 𝑡𝑝 to discriminate the driver from the response based on 

the principle of priority of the cause (d22 in Appendix III). Cross-map skills 

are supposed to increase while forecasting the past of 𝑋𝑡 from 𝑌𝑡 if they are 
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causally related. This is illustrated in Figure 6-3 for a bivariate linear model 

such that 𝑌𝑡 = 0.2𝑌𝑡−1 + 0.2𝑋𝑡−2 + 0.2𝜀 where 𝑋𝑡 and 𝜀 are standard 

Gaussian noise. The black curves shows that the predictive skills of 𝑌𝑡 predicts 

𝑋𝑡+𝑡𝑝 are high for a negative 𝑡𝑝. Hence, 𝑋𝑡 CCM-causes 𝑌𝑡. This is not the 

case when 𝑋𝑡 predicts 𝑌𝑡 (gray curves). Predictive skills are higher for a 

positive delay 𝑡𝑝. This time asymmetry is assumed to be a better indicator 

than the convergence to infer the direction of the arrow of causation.  

 

Figure 6-3: Example of CCM on a linear stochastic model 𝑌𝑡 = 0.2𝑌𝑡−1 +
0.2𝑋𝑡−2 + 0.2𝜀 with a univariate causal relationship 𝑋𝑡−2 → 𝑌𝑡. CCM skill 𝜌 is 

the mean Pearson correlation between the 𝑁𝑆𝐴𝑀 = 100 predicted vectors of 

length 𝐿 = 100 and the corresponding true values. A time-delayed causal 

interaction is revealed if significant predictive skills are sustained at least over 

a window of 𝑚 while predicting (xmap) the past (𝑡𝑝 ≤ 0) of the driving 

variable from the response variable.  

Since the actual causal delay 𝑑 is 2, Figure 6-3 also shows the effect of 

changing the embedding dimension 𝑚 = 2 to 𝑚 = 3 for an embedding delay 

𝜏 of  1 (Eq. 4.1). The actual nonlinear (or linear) dependencies are sustained 

over 𝑚 − 1 spurious delays. To avoid this effect, the continuous segments of 

significant dependencies should be truncated by 𝑚 − 1 to draw a DAG from 

CCM dependencies. In doing so, only 𝑡𝑝 = −2 would be considered as a 

causal delay for the DAG of Figure 6-3.  

The significance of the mean CCM skills 𝜌 is also assessed through a 

Student’s-t test. In the case where significant negative 𝜌 values are reported, 

they are ignored since they have no meaning.  
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Regarding the other CCM parameters (Table 4-3), all analyses in this chapter 

rely on an embedding dimension of 2, a delay 𝜏 of 1 day. The number of 

nearest neighbors is the simplex 𝑘 = 𝑚 + 1, and the Theiler window 𝑡𝑤 is 10 

days. All points that overlaps between the time-series are predicted (𝑅𝐸𝐹) 100 

times (𝑁𝑆𝐴𝑀).  

6.2.1.3 PCMCI Algorithm: ParCorr and CMI 

The PCMCI algorithm is described in Runge et al., 2019a, and implemented 

in the Tigramite Python package for causal time-series analysis (version 4.1 

in this case). PCMCI is a 2-step procedure: PC, named after its authors (Peter 

Spirtes and Clark Glymour, 1991), and MCI standing for Momentary 

Conditional Independence.  

In general, considering a multivariate time-series process 𝑿𝒕 = {𝑋𝑡
1, … , 𝑋𝑡

𝑝
} of 

𝑝 time-series,  PCMCI allows recovering a DAG (e.g., Figure 6-1) based on 

conditional independence. Conditioning allows removing the effect of 

potential common causes (d26 in Appendix III). A delayed time-series 𝑋𝑡−𝑑
𝑖 , 

with 𝑖 ∈ {1, … , 𝑝}, is assumed not to cause itself or another one 𝑋𝑡
𝑗
, with  𝑗 ∈

{1, … , 𝑝}, if they are independent conditionally to the past of the process 𝑿𝒕
−, 

excluding 𝑋𝑡−𝑑
𝑖 : 

𝑋𝑡−𝑑
𝑖 ↛  𝑋𝑡

𝑗
 ⟺  𝑋𝑡−𝑑

𝑖 ⫫ 𝑋𝑡
𝑗

 ∣  𝑿𝒕
−  ∖  {𝑋𝑡−𝑑

𝑖 } 𝐸𝑞. 6.3 

Hence, causal relationships are identified based on the rejection of conditional 

independence. For instance, the times-series 𝑋𝑡 and 𝑌𝑡 of Figure 6-1 are not 

directly causally related given that 𝑋𝑡−(𝑑2−𝑑1) ⫫ 𝑌𝑡  ∣ 𝑍𝑡
−, if 𝑋𝑡 and 𝑌𝑡 have no 

self-dependencies.  

The Full Conditional Independence algorithm (FullCI) is entirely based on Eq. 

6.3. However, FullCI suffers from the curse of dimensionality if the 

conditioning involves too many variables in the set  𝑿𝒕
− (see Runge et al., 

2019a). Hence, the purpose of the prior PC step is to estimate first the potential 

parents �̂�(𝑋𝑡
𝑗
) for each variable 𝑋𝑡

𝑗
. Tigramite relies by default on the PC1 

iterative procedure. Initially, all potential parents are considered as �̂�(𝑋𝑡
𝑗
) =

𝑿𝒕
−. In the first step, all the parents that are unconditionally independent with  

𝑋𝑡
𝑗
 are removed, and the parent presenting the strongest dependencies is 
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identified. In the second one, the parents that are independent to 𝑋𝑡
𝑗
 

conditionally to the strongest parent of step one are removed, and a second 

parent with the highest conditional dependence is identified as an additional 

condition for step three. The operation is repeated considering a 1-by-1 

increasing number of conditions up to a point there are no more conditions to 

test in �̂�(𝑋𝑡
𝑗
). Then, the MCI second step starts and tests for conditional 

independence on the dimensionally reduced sets of parents resulting from PC1, 

such that: 

𝑋𝑡−𝑑
𝑖 ↛  𝑋𝑡

𝑗
 ⟺  𝑋𝑡−𝑑

𝑖 ⫫ 𝑋𝑡
𝑗

 ∣  �̂�(𝑋𝑡
𝑗
) ∖  {𝑋𝑡−𝑑

𝑖 }, �̂�(𝑋𝑡−𝑑
𝑖 ) 𝐸𝑞. 6.4 

The test is conditioned both to the parent of the response �̂�(𝑋𝑡
𝑗
) ∖ {𝑋𝑡−𝑑

𝑖 }, 

and the time-shifted parents of the potential driver �̂�(𝑋𝑡−𝑑
𝑖 ) to account for 

autocorrelation and to have a better estimate of the causal strength. Resulting 

from the MCI step, links where conditional independence cannot be rejected 

are considered as true causal parents, i.e., causally inferred sufficient causes. 

These links are reported in the DAG.  

PCMCI flexibly allows us to consider different conditional independence 

tests: a linear method by assessing Partial Correlations (ParCorr) and a 

nonlinear one relying on Conditional Mutual Information (CMI). Both are 

used respectively as a linear and nonlinear multivariate framework for causal 

inference (Table 6-1).  

Partial correlations are Pearson’s correlations (Eq. 6.2) between 𝑋𝑡−𝑑
𝑖  and the 

residuals of multivariate linear regression model of 𝑋𝑡
𝑗
 against its conditions, 

for instance, �̂�(𝑋𝑡
𝑗
) ∖  {𝑋𝑡−𝑑

𝑖 }, �̂�(𝑋𝑡−𝑑
𝑖 ). The linear model is fit using ordinary 

least square regression. The partial correlation significance is estimated with 

a Student’s t-test (see 6.2.1.1), accounting for the increased degrees of 

freedom when necessary. This framework is very similar to the popular 

Granger causality (GC, see 2.4.3.2), which is based on vector autoregressive 

models (Granger, 1969). However, PCMCI-ParCorr differs from the usual GC 

in three aspects: (1) GC does not rely on the PCMCI procedure and, thus, 

suffers from the curse of dimensionality; (2) GC does not report 

contemporaneous dependencies (𝑑 = 0); and (3) GC relies on a F-test, testing 

if including a potential driver 𝑋𝑡−𝑑
𝑖  in the multivariate model of 𝑋𝑡

𝑗
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significantly reduces the variance of residuals. In karst hydrology, very few 

applications involve partial correlations (e.g., Kadić et al., 2018).  

In contrast, CMI can be seen as a multivariate extension of the transfer entropy 

method (Schreiber, 2000). In the information theory, CMI or 𝐼𝑋,𝑌|𝑍 as the 

mutual information  between two variables 𝑋𝑡 and 𝑌𝑡 conditioned to 𝑍𝑡, is 

defined as: 

𝐼𝑋,𝑌|𝑍 = ∫ ∫ ∫  𝑝(𝑥, 𝑦, 𝑧) log
𝑝(𝑥, 𝑦|𝑧)

𝑝(𝑥|𝑧)𝑝(𝑦|𝑧)
𝑑𝑥𝑑𝑦𝑑𝑧 

𝐻𝑋𝑍 + 𝐻𝑌𝑍 − 𝐻𝑍 − 𝐻𝑋𝑌𝑍

 , or 𝐸𝑞. 6.5 

where 𝐻 is the Shannon entropy (Shannon, 1948). If 𝐼𝑋,𝑌|𝑍 = 0, 𝑋𝑡 and 𝑌𝑡 are 

conditionally independent to 𝑍𝑡, and, therefore, not directly causally related, 

given that the probability densities are correctly estimated. For this purpose, 

Tigramite offers three different methods: Gaussian Process and Distance 

Correlation (GPDC); a 𝑘 nearest neighbor estimator (CMIknn); and an 

estimator based on kernel measures of CMI (RCOT). The author recommends 

using the most general conditional independence test, CMIknn, where 

multiplicative noise is expected, as in hydrology (e.g., Rodriguez‐Iturbe et al., 

1991), and where the sample size is smaller than 1000, which is the case in 

this study. CMIknn is, therefore, considered. The latter relies on a nearest-

neighbor CMI estimator (Frenzel and Pompe, 2007; Vejmelka and Paluš, 

2008) combined with a local permutation scheme as a nonparametric test for 

conditional independence (see Runge, 2018b).  

Besides the maximum lag 𝑑𝑚𝑎𝑥, PCMCI requires other arguments. The PC 

stage retrieves parents according to a regularization parameter 𝛼𝑃𝐶 ranging 

between 0 and 1. The higher 𝛼𝑃𝐶, the higher the number of parents, with 

𝛼𝑃𝐶 = 1 corresponding to the FullCI algorithm. If 𝛼𝑃𝐶 is too low, true parents 

might be missing. If 𝛼𝑃𝐶 is too high, the MCI step may retrieve spurious 

results due to the curse of dimensionality. When the ParCorr conditional 

independence test is selected, Tigramite allows optimizing 𝛼𝑃𝐶 while 

minimizing the Akaike Information Criterion (AIC, Eq.5.5). In this chapter, 

this feature is used to generate the ParCorr DAG. For CMI, the recommended 

values of 𝛼𝑃𝐶 = 0.2 will be used (Runge et al., 2019a). The CMIknn further 

relies on a parameter defining the size of the neighborhood, 𝑘𝐶𝑀𝐼. The latter 

mostly act as a smoothing parameter regarding the CMI, and should not be too 

small (Runge, 2018b; Runge et al., 2019a). A final significance could be 
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adjusted to control the number of positive links. This chapter considers the 

standard significance threshold for the p-values: 0.05, 0.01, and 0.001. 

In addition to the delay 𝑑𝑚𝑎𝑥, and the hypothesis of causal sufficiency (i.e., 

all common cause should be included), PCMCI relies on other hypotheses 

(discussed in Runge, 2018a): faithfulness, the Causal Markov condition; the 

absence of contemporaneous causal effects; stationarity; and the hypothesis 

and parameters of the underlying independent test. Faithfulness means that 

independence faithfully represents the absence of causality. Since PCMCI 

relies on conditional independence, some noise should remain while 

conditioning on the parents. Hence, as a consequence of faithfulness, time-

series should not be strictly deterministically related to their parents. The 

causal Markov condition implies that conditioning on the parents of a variable 

makes it independent of all variables, including the parents of its parents (i.e., 

parents are sufficient causes).  

The absence of contemporaneous effects is necessary to infer the direction of 

causality in virtue of the principle of priority. However, Tigramite allows 

reporting the contemporaneous dependencies. Similarly to CCF and CCM, 

this study reports them as bidirected straight arrows in the DAG. Regarding 

stationarity, it should be regarded not as the stationarity of statistical moment 

and spectrum of individual time-series but, more generally, as Eq. 6.3 and 6.4 

being true for all time indices 𝑡. This hypothesis could be violated, for 

instance, if a new hydrologically connected path has developed being the 

experiment due to erosion, change in the land cover, or geomorphology. More 

obviously, the hypothesis is violated by the presence of no data in the dataset. 

However, Tigramite allows for handling no data automatically. The algorithm 

dismisses all time slices of samples where missing values occur in any variable 

for all lags up to 2𝑑𝑚𝑎𝑥. This feature will considerably reduce the size of the 

dataset for the real case study in this chapter but ensures that the causal test is 

always applied for the same time slices to avoid bias.  
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6.2.2 Study Cases 

6.2.2.1 Virtual Experiment 

This section describes a virtual case in order to become accustomed to the 

methods. A low dimensional, intelligible, and virtual hydrological experiment 

reproduces the problem of Figure 6-1 with two disconnected hydrological 

reservoirs (Figure 6-4). The confounding variable  is the effective 

precipitation 𝑃𝑒𝑓𝑓, expressed in mm, which represents the net flux of 

precipitation 𝑃 minus evapotranspiration 𝐸𝑇. In this case, 𝑃𝑒𝑓𝑓 is the only 

variable obtained from real daily monitored data: precipitation data at the RCL 

and the Penman-Monteith potential evapotranspiration data (Figure 3-6).  

The conditionally independent variables (same as 𝑋𝑡 and 𝑌𝑡 in Figure 6-1) are 

the discharge 𝑄𝐴 and 𝑄𝐵 of two disconnected reservoirs 𝐴 and 𝐵. Both 

reservoirs take as input a net inflow term 𝐼𝐴 and 𝐼𝐵 resulting from a linear 

transfer functions 𝐻𝐴 and 𝐻𝐵 (or unit hydrograph) applied to a noisy effective 

precipitation input. Adding some noise in the model is mandatory to solve 

causality based on the independence of residuals with the PCMCI method. A 

multiplicative noise term is preferred as hydrological variables are most often 

characterized by multiplicative noise (e.g., Rodriguez‐Iturbe et al., 1991). 

Then, the inflow terms are expressed as: 

𝐼𝑅 =  𝐻𝑅 ∗ (𝑃𝑒𝑓𝑓 + 𝜀𝑅𝑃𝑒𝑓𝑓) 𝐸𝑞. 6.6 

where 𝑅 is the reservoir name (A or B), the ∗ symbol denotes the convolution. 

Each reservoir will integrate a 𝑃𝑒𝑓𝑓 + 𝜀𝑅𝑃𝑒𝑓𝑓 amount of effective 

precipitation. The term 𝜀𝑅 is a Gaussian noise term, different for each reservoir 

but following the same normal law 𝜀𝑅 = 𝒩(0, 𝜎2) of zero mean and varying 

standard deviations 𝜎. In the experiment, the standard deviation 𝜎 varies based 

by a noise level factor linearly ranging by steps of 0.05 between 0.05 and 0.25 

times the standard deviation of 𝑃𝑒𝑓𝑓. Multiplying 𝜀𝑅 by 𝑃𝑒𝑓𝑓 ensures that the 

difference in the reservoirs inflows is potentially higher for extreme effective 

precipitations, mostly high rainfall events. For reservoir A and B, the unit 

transfer functions are respectively 𝐻𝐴 = [0.7,0.2,0.1] and 𝐻𝐵 =

[0.1, 0.8, 0.1]. 𝐻𝐴 and 𝐻𝐵 are the 3-day length window of convolution applied 

forwardly to the noisy effective precipitation attached to each reservoir. 

Hence, the reservoir A mainly responds to 𝑃𝑒𝑓𝑓 one time-lag before B, which 
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introduces a risk of a spurious causal association from A to B, as in Figure 

6-1.  

 

Figure 6-4: Conceptual and mathematical model for the virtual experiment. 

precipitation 𝑃𝑒𝑓𝑓 is the initial effective precipitation. With 𝑅 the reservoir 

name, either 𝐴 or 𝐵, 𝑃𝑒𝑓𝑓,𝑅 is the noisy effective precipitation for rerservoir 𝑅 

that is turned into an infiltration input 𝐼𝑅 by applying a linear transfert function 

𝐻𝑅. 𝑆𝑅 is the time-variable reservoir storage, with an output discharge 𝑄𝑅 

following a nonlinear storage-discharge relationship  (Eq. 1.2).  

Both reservoirs have a general nonlinear storage-discharge relationship 𝑄 =

𝑘𝑆𝑒 (Eq. 1.2). Regarding the recession constant 𝑘 and the nonlinear exponent 

𝑒, three parametric scenarios are considered in Table 6-2. The first scenario 

considers the same parameters for the two reservoirs. The second one 

attributes a lower nonlinear exponent to reservoir B, which leads to a slower 

recession compared with the previous scenario. The last one set up a lower 

recession constant but exhibits faster recession due to a higher nonlinear 

exponent for reservoir B (see Figure 6-5). 
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Table 6-2: Parametric scenario for the virtual experiment. 

Model: 𝑸 = 𝒌𝑺𝒆  Recession constant 𝒌  Nonlinear exponent 𝒆 

Reservoir  A B  A B 

Scenario 1  0.01 0.01  1.5 1.5 

Scenario 2  0.01 0.01  1.5 1.2 

Scenario 3  0.01 0.005  1.2 1.5 

The synthetic dataset is obtained through numerical integration (using an 

Lsoda solver built in the odint function of the SciPy Python package) of the 

continuity equation 𝑑𝑆𝑅 𝑑𝑡⁄ = 𝐼𝑅 − 𝑄𝑅, ensuring that 𝑆𝑅 ≥ 0. Within the 

model, the storage 𝑆𝑅(𝑡 + 1) is computed considering 𝐼𝑅(𝑡), which, therefore, 

introduces an additional lag between 𝑄𝑅 and 𝑃𝑒𝑓𝑓. The model considers a 

warming-up stage of two years (2014, 2015) starting from initial conditions 

𝑆𝐴 = 𝑆𝐵 = 30 mm. The final time-series have a length of 730 days 

corresponding to the years 2016 and 2017. Time-series for the three scenarios 

are shown in Figure 6-5 for the purely deterministic case of a noise level of 0. 

All the causal inference analysis considers the three variables 𝑃𝑒𝑓𝑓, 𝑄𝐴, and 

𝑄𝐵 with a maximum causal delay 𝑑𝑚𝑎𝑥 of 5 days, i.e., 1 step beyond the span 

of causal interactions. All time-series present intermittent periods where the 

discharge is null.   
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Figure 6-5: Synthetic flow series for the virtual experiment for each scenario 

in Table 6-2 without noise. 

6.2.2.2 Hydrological Connectivity in the Vadose Zone 

The first real application studies the time-dependencies between resistivity 

dynamical patterns and drip discharge data (P1, P2, P3, Figure 3-6). This is a 

case focused on hydrological connectivity, where we expect to reveal 

preferential flow paths with causal inference methods. Such a path or effective 

connection exists between P1 and the surface (Poulain et al., 2018; section 

3.2).  

Resistivity patterns are averaged time-series of the clusters shown in Figure 

5-6.f (or Figure 5-3.h). The 6 clusters are the optimal clustering of raw 

resistivity series grouping linearly correlated series (considering 𝑆𝐼 in Figure 

5-6.f). Their spatial distribution is similar to that of the groups obtained from 

the z-standardized log-resistivity data, the dynamics of which are shown in 

Figure 5-4 with a logarithmic scale. Since resistivity dynamics may not 
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include all common causes of percolation dynamics, precipitation and 

evapotranspiration data are included in the analysis. In doing so, the 

assumption of causal sufficiency is expected to be fulfilled for the multivariate 

causal analyses. 

The maximum causal delay 𝑑𝑚𝑎𝑥 is set to 5 days, covering the span of flood 

peaks in P1 (Poulain et al., 2018; section 3.2). The bivariate methods (CCF 

and CCM) are applied between all pairs of time-series. Many of these time-

dependencies are expected to be causally spurious since the common causes 

are not taken into account. They will, however, indicate potential flow paths 

or functional connectivity.  

Regarding the multivariate analysis, two scenarios are considered. The first 

one applies PCMCI without constraint on the parents, such that causality is 

solved entirely by the algorithm. The second one applies some constraint on 

the parent selection procedure: (1) ET and rainfall RF have no parents and are 

just considered as exogenous variables forcing the system; (2) resistivity 

series cannot have a drip discharge series as parents; (3) a drip discharge series 

cannot have another drip discharge series as parents (but its own past well). 

Hence such conditions impose a causal frame such that:  

- internal variables of the system (resistivity) and their output (discharge) 

cannot influence the input driver (precipitation, evapotranspiration);  

- internal variables (resistivity) can interact together;  

- output (discharge) cannot interact with the internal variables. Otherwise, 

they would be input. Also, all outputs are causally independent as the 

product of its own system.  

This scheme is consistent with conventional perceptual models of 

hydrological systems (e.g., Figure 1-1) and is considered in the eventuality 

that spurious DAG structure may arise from conditioning on an irrelevant 

variable (as suggested by Rinderer et al., 2018). Whether constrained or not, 

the time-slice considered in the analyses are the same. Hence, differences in 

the results cannot be imputed to the fact that the system is investigated at 

different periods.  
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6.2.2.3 Drivers of the Mass Balance 

The second real application studies the system behavior holistically by 

including relative gravimetry measurements in the causal analysis (RG, Figure 

3-6). P1 and P3 series are kept, but resistivity data and P2 are dropped due to 

their short time-domain and the high number of missing data. To consider all 

common causes of  RG, the analysis includes potential evapotranspiration 

(EP), rainfall (RF), atmospheric pressure (RG). It is expected that P1 and P3 

should not have much effect on gravity conditionally to the other variables 

except if their dynamics are representative of processes transferring water 

inside or outside the acquisition cone characterizing the scope of the 

gravimeter (section 3.3.3). 

Similarly to the previous case, the delay will remain 5 days. The bivariate 

methods (CCF and CCM) are applied between all pairs of time-series, and the 

multivariate methods include a case where the parents are constrained. The 

conditions are: 1) ET, RF, and AP have no parents and are just considered as 

exogeneous meteorological variables forcing the system; 2) P1 and P3 do not 

have RG and GL as parents and cannot influence each other; 3) GL cannot be 

conditioned on RG. Hence, RG is the only variable that can have any parent.  

6.3 Results 

6.3.1 Virtual Experiment 

Figure 6-6 reports the lagged dependencies regarding the spurious causal link 

𝑄𝐴 → 𝑄𝐵 for all the causal inference methods applied to the synthetic dataset 

(Figure 6-5) with a multiplicative noise level factor of 0.15. A complete 

account of lagged dependencies is reported in Appendix VI (Figure VI.1 to 

VI.8).  
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Figure 6-6: Time-dependencies measuring the delayed effect of 𝑄𝐴 on 𝑄𝐵 

obtained with the four methods of Table 6-1 on the 3 scenarios of Table 6-2 

considering a noise level factor of 0.15. The CMI method is applied with a 𝑘𝐶𝑀𝐼 

parameter of 20. Significant lagged dependencies are marked with a star symbol 

(p-val < 0.01). Both the raw data (raw) and their first order difference (diff) are 

considered to measure temporal dependencies. 

Bivariate methods do not prevent the detection of significant, however 

spurious, causal associations between 𝑄𝐴  and 𝑄𝐵. This is expected since 

bivariate approaches do not account for the principle of the common cause 

(d26 in Appendix III). On the raw data, CCF and CCM both present sustained 

time-dependencies either due to the shared seasonal patterns in the data, which 

may be seen as a common cause or to the long memory of reservoirs. These 

effects are removed while considering the differenced data (Figure 6-6, c and 

d), and both methods offer a better screening of the actual dependencies 

resulting from the model. CCM shows an additional significant dependence at 

a lag of 3 days that should not be considered (see Figure 6-3).  
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Regarding the multivariate approaches, only CMI applied to raw data does not 

detect any spurious relationship between 𝑄𝐴 and 𝑄𝐵 whatsoever the modeling 

scenario. Hence, considering the common cause 𝑃𝑒𝑓𝑓 allows retrieving a 

correct DAG structure. ParCorr does not. However, it could if the p-value 

threshold is adjusted to make absolute partial correlation non-significant 

below 0.2. Supplementary information (Appendix VI, Figure VI.9) shows that 

ParCorr is sensitive to the model's noise level when the noise factor is low. In 

such a case, the correct DAG structure cannot be retrieved with a higher 

significance threshold. The CMI method appears less sensitive to noise. 

However, a higher 𝑘𝐶𝑀𝐼, seems to identify the correct DAG slightly more 

often (see Appendix VI, Figure VI.11 and VI.12). Otherwise, increasing 𝑘𝐶𝑀𝐼 

has mostly the effect of smoothing and lowering the CMI value. These 

findings are in phase with what has been reported regarding the 𝑘𝐶𝑀𝐼 

parameter (Runge, 2018b; Runge et al., 2019a). As shown in Figure 6-6 (g 

and h), applying either the ParCorr or the CMI method on the differenced data 

never retrieves the correct DAG structure (Appendix VI, Figure VI.10, and 

VI.13). 

As a result, bivariate methods (CCF, CCM) will be applied to the real dataset 

considering their first-order difference to better screen time-dependencies. 

Conversely, the multivariate methods (ParCorr, CMI) will be applied to the 

raw data. The 𝑘𝐶𝑀𝐼 will be varied to verify the robustness of PCMCI-CMI 

outputs.  

6.3.2 Hydrological Connectivity in the Vadose Zone 

Figure 6-7 shows the bivariate linear dependencies obtained with the CCF 

methods. The CCF method is reporting many potential linear causal 

associations (see Appendix VI, Figure VI.14 for more details). If causality is 

hard to infer from such a diagram, the results make sense in general. A typical 

pattern is that the sign of time-dependencies tends to flip after a few delays. 

The reason is the common forcing of RF and the fact that dry periods come 

after the rain. Considering low delays, ET is positively related to the resistivity 

patterns, mostly at the surface (R1, R3). ET is negatively correlated with P1 

only, which is known to drain fast flow from the surface through the epikarst. 

All variables are dependent on RF, the main confounding factor, but R0, 

associated with a dense limestone area, depends to a lesser extent. R4, the 

anomalous resistivity pattern, has a positive correlation. R0 and R4 put apart, 
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the quartet R1, R2, R3, and R5 exhibit strong positive and contemporaneous 

correlations together. 

P1, P2, and P3 also are instantaneously related. P1 and P2 have strong 

dependencies with all resistivity patterns, but inconsistent and positive 

correlations are reported with the anomalous resistivity series R4. P3 seems 

rather dependents on R5 (slope),  R2 (mostly limestone matrix), which makes 

sense since P3 is most likely draining the matrix's delayed flow.  

 

Figure 6-7: Graph of CCF cross-dependencies. Contemporaneous 

dependencies are represented by a bidirected straight arrow. Delayed 

dependencies are shown using directed curved arrows. All delays 𝑑 are 

displayed in the middle of its corresponding arrow. The color of arrows maps 

to CCF dependencies (Eq.6.2). Solid and dash-dotted arrows represent 

respectively significant dependencies with p-value < 0.001 and < 0.01. 

Variables are: evapotranspiration (ET), rainfall (RF), clustered resistivity time-

series (R0: turquoise; R1: lime green; R2: blue; R3: pink; R4: red; R5: violet)), 

and drip discharge data in the Rochefort Cave (P1 to P3).  
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Figure 6-8 shows the bivariate nonlinear dependencies obtained with the CCM 

methods (see Appendix VI, Figure VI.15). Compared to CCF, the results are 

more intelligible since fewer links are reported. However, the nature of the 

dependencies is unknown and could be appreciated in view of CCF results 

(Figure 6-7).  

 

Figure 6-8: Graph of CCM cross-dependencies. Contemporaneous 

dependencies are represented by a bidirected straight arrow. Delayed 

dependencies are shown using directed curved arrows. All delays 𝑑 are 

displayed in the middle of its corresponding arrow. The color of arrows maps 

to CCM dependencies. Solid and dash-dotted arrows represent respectively 

significant dependencies with p-value < 0.001 and < 0.01. For a link to be 

reported in the DAG, the dependency on the next time delay must also be 

significant (see Figure 6-3). Variables are: evapotranspiration (ET), rainfall 

(RF), clustered resistivity time-series (R0: turquoise; R1: lime green; R2: blue; 

R3: pink; R4: red; R5: violet), and drip discharge data in the Rochefort Cave 

(P1 to P3).  
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With respect to drip discharge data, P2 is now exclusively related to R5, and 

P3 has no dependencies on resistivity patterns. P1 is CCM-related to R3 and 

the adjacent surface resistivity patterns R5, but also R2, which is somewhat 

representative of the limestone matrix resistivity. Compared to CCF, CCM 

supports the particular conclusion of preferential flows occurring between the 

surface and P1. 

Similarly to CCM, ParCorr cross-dependencies (Figure 6-9.A) also reveal a 

significant link between R5 and P2, while P1 is associated with R1, R2, R3, 

and R5. The rainfall RF remains significantly related to P1, suggesting that 

resistivity patterns are not sufficient causes of P1. In Figure 6-9.A, no 

constraint is applied to the parents. Hence, for instance, ET or RF may have 

resistivity or drip discharge series as parents, which could be considered as 

irrelevant. Figure 6-9.B provides the results while a restriction is applied to 

some links. In doing so, P1 becomes only dependent on R1, and RF. 

Considering other clusters of resistivity, supplementary information (Figure 

VI.16) shows that P1 remains the main discharge series related to resistivity 

patterns when the DAG is unconstrained. With constraint, P1 remains related 

to one resistivity series; however, different in each case.  
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Figure 6-9: Graph of ParCorr cross-dependencies. (A) Unconstrained graph; 

and (B) constrained as follows: (1) ET and RF have no parents and are 

considered as exogenous variables; (2) resistivity series cannot have a drip 

discharge series as parents; (3) a drip discharge series cannot have drip 

discharge series as parents except itself. A bidirected straight arrow represents 

contemporaneous dependencies. Delayed dependencies are shown using 

directed curved arrows. All delays 𝑑 are displayed in the middle of its 

corresponding arrow. The color of arrows maps to ParCorr dependencies. Solid 

and dash-dotted arrows represent respectively significant dependencies with p-

value < 0.001 and < 0.01. Variables are: evapotranspiration (ET), rainfall (RF), 

subsurface clustered resistivity time-series (R0: turquoise; R1: lime green; R2: 

blue; R3: pink; R4: red; R5: violet), and drip discharge data in the Rochefort 

Cave (P1 to P3). 

Finally, Figure 6-10 shows the results for CMI independence tests considering 

a 𝑘𝐶𝑀𝐼 of 20 (A.1 and B.1) and 25 (A.2 and B.2). A.1 and A.2 apply CMI 

without constraint on the parents, while B1 and B2 do. In contrast with the 

previous graphs, Figure 6-10 also includes dependencies with a significant 

level of 0.05 (dotted arrow). The unconstrained graphs (A.1 et A.2) present 

several arrows pointing upwards (e.g., 𝑃3 → 𝑅2 or 𝑃1 → 𝐸𝑇 in A.1), which 

was not the case for the unconstrained ParCorr (Figure 6-9). Such upwards 

processes seem irrelevant. They do not appear in the constrained graphs (B.1 

and B.2) since the constraint does not allow it. However, the irrelevancy of 

the results is further confirmed by the lack of robustness of the DAG while 

changing the 𝑘𝐶𝑀𝐼 parameter from 20 to 25 (from A.1 to A.2 and B.1 to B.2). 

Further variation of the 𝑘𝐶𝑀𝐼 confirmed the lack of robustness of CMI 

estimated with CMIknn on this dataset (Appendix VI, Figure VI.17). 
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Figure 6-10: Graph of CMI cross-dependencies. (A) Unconstrained graph; and 

(B) constrained as follows: (1) ET and RF have no parents and are considered 

as exogenous variables; (2) resistivity series cannot have a drip discharge series 

as parents; (3) a drip discharge series cannot have drip discharge series as 

parents except itself. A.1 and B.1 uses a 𝑘𝐶𝑀𝐼 of 20. A.2 and B.2 uses a 𝑘𝐶𝑀𝐼 of 

25. A bidirected straight arrow represents contemporaneous dependencies. 

Delayed dependencies are shown using directed curved arrows.  All delays 𝑑 

are displayed in the middle of its corresponding arrow. The color of arrows 

maps to CMI dependencies. Solid, dash-dotted, and dotted arrows represent 

respectively significant dependencies with p-value < 0.001,  < 0.01, and < 0.05. 

Variables are: evapotranspiration (ET), rainfall (RF), subsurface clustered 

resistivity time-series (R0: turquoise; R1: lime green; R2: blue; R3: pink; R4: 

red; R5: violet ), and drip discharge data in the Rochefort Cave (P1 to P3).  
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6.3.3 Drivers of the Mass Balance 

Figure 6-11 shows the DAG obtained with the different methods and 

scenarios. With respect to CCF and CCM, the detailed time-dependencies are 

reported in Appendix VI (Figure VI.18, VI.19). Complementarily, Figure 

VI.20 shows the unconstrained and constrained CMI scenarios (Figure 6-11, 

E and F) for various 𝑘𝐶𝑀𝐼. 

Linearly, RG is mostly affected positively by GL, instantaneously but also at 

lag 1. AP presents correlations with RG at lags 0 and 1, suggesting that the 

pressure effect is imperfectly removed. However, AP is negatively correlated 

with RF. Thus entirely removing the atmospheric effect by a linear regression 

will probably remove some information about rainfall. Rainfall presents a 

negative correlation at lag 0 and a positive one at lag 1. Such delay could be 

explained by the fact that RF influences GL mostly with a lag of 1 day, or 

potentially considering slow flows and the necessary time for the water to 

percolate down to the gravimeter's scope in the first few meters. RG has 

positive linear dependencies with P1 (lag 0 and 1) and P3 (lag 0). As it is 

observed in Figure 6-7, the sign of significant time-dependencies frequently 

switches after some duration.  

CCM nonlinear dependencies usually do not consider these further lagged 

dependencies. Regarding RG, it is no longer dependent on P1. The lag-1 RG-

RF relationship is no longer significant, and a closer look at Figure VI.19 

suggests that it is RG causing RF. RG remains highly related to GL, and, to a 

lesser extent, to AP.  
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Figure 6-11: Graph of cross-dependencies. (A) CCF; (B) CCM; (C) Unconstrained PCMI-

ParCorr; (D) Constrained PCMI-ParCorr; (E) Unconstrained CMI with 𝑘𝐶𝑀𝐼 = 30; (F) 

Constrained CMI with 𝑘𝐶𝑀𝐼 = 30. Variables are: evapotranspiration (ET), rainfall (RF), 

groundwater level (GL), relative gravimetry (RG), atmospheric pressure (AP), and drip 

discharge data (P1, P3). A bidirected straight arrow represents contemporaneous 

dependencies, curved arrows for delayed. All delays 𝑑 are displayed in the middle of its 

corresponding arrow. The color of arrows maps to the color bar scaling the time-

dependencies. Solid, dash-dotted, and dotted arrows represent respectively significant 

dependencies with p-value < 0.001,  < 0.01 (and < 0.05 for D, E, and F only). 
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Regarding ParCorr dependencies, most of the links are consistent with those 

revealed by CCM. They are also consistent between the constrained and 

unconstrained analysis (C and D), considering that some links cannot occur in 

the constrained graph (e.g., between meteorological variables, ET, RF, and 

AP). The unconstrained graph presents a few strange links, such as P1 causing 

RF at lag 3 or GL at lag 5. Regarding RG, it is still related to GL and AP. The 

direct influence of RF on RG disappears in the constrained graph (D). The 

drip discharge data negatively impact gravity (P3 at lag 4 in C, P1 at lag 4 in 

D) and potentially represent some flows leaving the system.  

Regarding CMI, the graphs on this longer dataset seem less erratic than those 

obtained in the previous study case. Nevertheless, they remain sensitive to 

𝑘𝐶𝑀𝐼, especially regarding the link of low significance, that sometimes are 

found strange and spurious (e.g., RG→RF, GL→ET in Figure 6-11 E). On the 

unconstrained graphs, some links are systematically obtained. CMI detects the 

link between P1 and RF, which was not the case in the previous section, and 

further encourage the idea of P1 draining fast preferential flows. Links 

between RF and ET, as well as RF and AP, are stable. However, no link seems 

stable regarding RG. This is not the case on the constrained graph, and AP is 

the only variable that causes RG consistently. CMI does not detect the strong 

relationship that is supported by the other methods between RG and GL. 

In general, RG responds to GL, AP, and RF. P1 and P3 have a positive 

influence that disappears while considering ParCorr. This is consistent since 

they are internal variables of the system, and water transfer within the 

gravimeter's scope should have a small impact on gravity variations. 

6.4 Discussions 

6.4.1 On the Robustness of CMI 

An important question is: why was the most promising PCMCI-CMI method 

the less robust method on the real study cases? A possible answer is the lack 

of data, since excluding the short time-series of P2 and resistivities provided 

robust significant links. Another possibility is the nature of data, resistivity 

series comes from a smooth inverted model, and the method would be 

sensitive due to the difficulties of extracting resistivity patterns (Chapter 5).  
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Despite the sensitivity of the method to the 𝑘𝐶𝑀𝐼 parameter, it is also possible 

to consider that some values are preferable to others from a hydrological point 

of view. The aim of 𝑘𝐶𝑀𝐼, which define the size of the neighborhood, is to 

capture the state of the systems in a meaningful way into probability densities 

(Eq. 6.5). The densities are most likely affected, for a hydrological system, by 

the rainfall patterns in terms of frequency, intensity, duration of rainfall, and 

conversely, the length of dry periods. Therefore, a meaningful 𝑘𝐶𝑀𝐼 would be 

dependent to the time-resolution and would be case-specific. More insight 

may come from further virtual experiments conducted, for instance, with a 

stochastic rainfall generator allowing to generate many rainfall patterns and 

relate them to the selection of 𝑘𝐶𝑀𝐼 and the necessary length of the dataset to 

ensure meaningful outcomes. However, as CMI has high computational 

requirements using a nearest-neighbor estimator (CMIknn), this should be 

conducted on a high-performance computer. With the same computing 

facilities, it would also be possible to select a DAG based on cross-validation 

or model evaluation, as it is done for ParCorr. Indeed, such DAGs are models, 

not just graphical models.   

6.4.2 Causality, Physics and Effective Connectivity  

Empirical causality is inferred from dynamics, and it is essential to remind 

that such an approach gives no physical meaning to the variable quantities. 

For instance, some links between P1, P3, and RG or GL have been reported. 

Such links cannot be interpreted as physical causation as a few litters of water 

may not influence RG or GL. Empirically, they may, because their dynamics 

are potentially representative of processes occurring at a larger scale. 

Consequently, it is delicate to claim effective hydrological connectivity 

between the two monitored dynamics. In other terms, connectivity patterns by 

such methods may remain attached to functional, while being more likely 

related to effective connectivity, following Rinderer et al. (2018) terminology.  

That being said, it is the practitioner's responsibility to advocate for a 

functional and representative causal relationship representing the system's 

general behavior or for an effective connection. In our case, empirical 

causality was consistent with the dye tracing test done in situ and the 

geological features of the site (Poulain et al., 2018; Watlet et al., 2018b). 

Hence, effective connectivity between the surface and P1 is the best 

hypothesis, but not obtained from the single scope of time-series analysis. The 

advantage of time-series analysis over dye tracing is its ability to study the 
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dynamics over a longer time-span and the time-variant and state-dependent 

connectivity patterns. Hence, a perspective is to apply causal inference 

between different seasons or antecedent hydrological conditions and compare 

the retrieved patterns to test if effective connectivity detected with dye tracing 

remains while the system is at different stages. This perspective is related to 

the question: should DAG be static or dynamic? In general, the effect of 

intermittent dynamics, which are intermittent causal relationships, was not 

covered in this chapter. The virtual experiment suggests that it is possible to 

apply these methods when processes are intermittent, and real cases have 

included daily precipitation data. 

6.4.3 On Potentially Spurious Causal Associations 

The previous section reports a first cause of spurious causal associations, 

which would be semantic, i.e., mistaking a representative and functional 

causal association with an effective and physical causal association, such as 

the one revealed by a tracer. Regarding effective connectivity, retrieving 

causality empirically from a hydrological system is problematic due to the 

general forcing of meteorological variables. Most variables respond 

synchronously to these inputs such that the direction of causality cannot be 

inferred from the principle of priority of cause (see zero lag bidirected straight 

arrows in all graphs). Regarding asynchronous time-dependencies, they tend 

to be ubiquitous and thus motivates the reliance on state dependencies 

methods such as CCM or the use of a multivariate framework for causal 

discovery for the focus they bring on a reduced set of dependencies. 

Otherwise, in a multivariate framework, spurious causal associations may 

arise from violating the hypotheses underlying the causal inference method. 

In this case (Runge, 2018a), they are causal sufficiency, faithfulness, the 

causal Markov condition, the absence of contemporaneous dependencies, 

stationarity, and hypothesis and user-defined parameters behinds the 

independence test (section 6.2.1.3). Bivariate methods do not consider the 

principle of the common cause, but multivariate methods may not fulfill causal 

sufficiency. Fulfilling causal sufficiency is not trivial. Usually, hydrological 

data are either missing or high dimensional and remotely sensed 

spatiotemporal datasets. As the ERT dataset, such datasets should priorly be 

dimensionally reduced into a few representative variables, which open the 

perspective to study causal inference method in parallel of dimension 

reduction methods (e.g., Chapter 5; Appendix VI, Figure VI.16). More 
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generally, modeling artifacts, when data are inferred or corrected with a 

model, could result in spurious links, as it may be the case with the ERT 

dataset (see, for instance, causal dipoles forming in Appendix VI, Figure 

VI.17, A.2, A.3). Another possibility is that such time-series are too 

deterministically related and violate the faithfulness hypothesis when a 

nonlinear test is considered. When different sensors directly measure data, 

they may have different precisions and error models, either driven by dynamic 

or instrumental noise. Noise structure is expected to interfere with the causal 

inference problem since conditioning rapidly removes shared trends and 

harmonics in the signal. As a result, one could work on noise reduction or 

noise harmonization between the time-series to make the analysis more robust, 

keeping in mind that noise is mandatory in a conditional independence 

framework.  

Nonstationarity is also a potential cause of spurious DAG. Nonstationarity 

(i.e., Eq. 6.3 and 6.4 being true for all time indices 𝑡) could be the result of 

failing to causal sufficiency (Runge, 2018a). Problematically, nonstationarity 

could be the result of land cover or geomorphological change. Such structural 

changes are not easily tractable and turned into a time-series to be included in 

the analysis. In that regard, testing nonstationarity on individual time-series 

with nonlinear state space methods for cross-prediction allows us to test if the 

state dependencies remain consistent through time (Schreiber, 1997; see also 

4.4.1).  

6.4.4 On Constraining Causality 

Spurious associations may negatively affect the results by conditioning on 

irrelevant parents. For this reason, it was suggested to constrain the causal 

parents in order to increase the reliability of causal graphs. However, this task 

is delicate. First, the method loses a part of its empirical status by forcing some 

hypotheses. Secondly, while section 6.4.3 accounts for the reasons for true 

spuriousness, it is above all the experimenter's judgment that qualifies a 

relationship as spurious. If this judgment is erroneous, constraining would be 

counter-productive. There is also a risk of falling into a similar version of the 

paradox of inquiry: if causality is known, there is no need to discover it; if 

causality is not known, there are no clues as to where and how to search.  

If one considers constraining, the task is to advocate for conceptual models of 

the system that are justified. In this case, the meteorological forcing variables 
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(rainfall, potential evapotranspiration, atmospheric pressure) were considered 

as causally independent variables to better depict their direct effects on each 

internal variable and output. They could not be conditioned on the internal 

variable of the system as well. Nonetheless, some studies consider a causal 

effect of soil moisture on precipitation (Salvucci et al., 2002; Tuttle and 

Salvucci, 2017; Wang et al., 2018), which is legitimate considering the 

hydrological cycle. Again, this is a question of representativity versus what is 

physically possible. In our case, resistivity patterns at the surface were causing 

precipitation with the CCM method. They may indeed be functionally 

representative of soil moisture patterns at a larger scale, possibly influencing 

rainfall patterns when precipitation is convective, but certainly not as a 

physical cause. Arguably, it is neither a direct cause of rainfall but a transitive 

one through its influence on real evapotranspiration.  

Outputs as drip discharges in the first real experiment (section 6.2.2.2) were 

causally independent but remained conditioned on their past values. The past 

self-conditioning of drip discharge data makes sense since they are the 

physical outputs of reservoirs exhibiting autoregressive patterns. However, 

the past self-conditioning of gravity raises more questions, depending on how 

the system is framed. If one thinks of relative gravimetry (RG) as an eye on 

the hydrological mass balance, it is not supposed to cause itself physically. 

The autoregressive pattern of gravity is instead imputed to the autoregressive 

behavior of the monitored water reservoirs.  

Besides, the theory of nonlinear dynamical system tells us that all the causes 

are embedded in the trajectory of one single variable (section 4.2.2.1). Hence, 

conditioning gravity on its past potentially hides the effect of other causes 

embedded in its own trajectory. However, not to do so would have been to 

neglect Wiener-Granger's definition of causality, i.e., causes are supposed to 

bring more information on the trajectory of a variable than its past. Granger 

was an econometrician, a field where it makes sense. Financial time-series 

have an autoregressive and self-driven behavior, with growth favoring growth 

and recession favoring recession, however responding to exogenous shocks. 

Wiener was the father of cybernetics, which relates to the study of navigation 

systems. Controlled navigation is following a self-driven trajectory that also 

responds to new information as exogenous shocks. The two researchers 

certainly had little concern about connectivity and the possibility of physical 

interactions since stock markets guarantee the interactions between the 

variables, as sensors and electronic circuits regarding cybernetics. Knowing 
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this, hydrologists have the opportunity to develop and explore alternative 

definitions of causality that are more appropriate to their purpose and 

discipline (section 2.5). 

In practice, the constraint did not make much difference when using ParCorr 

in the first experiment (section 6.2.2.2) and did not affect the instability of 

CMIknn. In the second real experiment (6.2.2.3), the constraint has the effect 

of revealing time-dependencies between RG and the atmospheric pressure AP 

both using ParCorr and CMIknn with various 𝑘𝐶𝑀𝐼. Such delayed causal effect 

can be hypothetically explained as a delayed effect of atmospheric pressure 

on Earth crust or as the result of spatiotemporal patterns of atmospheric 

pressure at a larger scale since the AP signal provide a local correction while 

the gravimeter capture atmospheric pressure on a broader area (see Watlet et 

al., 2020).  

6.5 Conclusion 

Four causal inference methods were tested on hydrological datasets. The first 

two are bivariate methods: the Cross-Correlation Function (CCF) and 

Convergent Cross Mapping (CCM), analyzing respectively linear and 

nonlinear time-dependencies between two variables. The last two are 

multivariate, and both involve the PCMCI algorithm with different 

conditional independence tests: the linear partial correlation test (ParCorr) 

based on a multivariate linear model and the nonlinear Conditional Mutual 

Information (CMI) test using a nearest-neighbor estimator of CMI. Three 

study cases were proposed: (1) a virtual experiment with two parallel 

nonlinear hydrological reservoirs fed by a linear transfer function applied to 

effective precipitation; (2) a case study involving potential evapotranspiration, 

rainfall, clustered resistivity patterns in the subsurface above the Rochefort 

Cave, and drip discharge in the Rochefort Cave; and (3) a similar dataset, not 

considering resistivity patterns, but atmospheric pressure data, groundwater 

level, and relative gravimetry data.  

The virtual experiment showed that bivariate methods are best applied on 

differenced data to identify causal time-dependencies. Bivariate methods, 

however, cannot make the difference between functional connectivity due to 

the common forcing of reservoirs and effective connectivity. On the other 

hand, multivariate methods could make this difference by considering the raw 

(i.e., not differenced) data. Compared to ParCorr, PCMCI-CMI is 
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theoretically the most reliable test to retrieve effective causal interactions 

empirically.  

On the two real study cases, however, CMI provided less robust and 

interpretable results. CCF renders linear associations among variables and is 

therefore interpretable, but these associations are ubiquitous, and therefore, no 

preferential flow or general functioning of the systems arises. CCM and 

PCMCI-ParCorr matched well with each other’s and allowed identifying P1 

has a preferential flow path and explaining the relative gravimetry 

measurements. ParCorr did not output many irrelevant interactions while 

being unconstrained. Showing much lesser interactions allows focusing on 

important relationships in the system and is, therefore, more informative than 

the usual CCF method. In particular, the discussions cover four aspects: (1) 

the problem of the robustness of the CMI method applied to real data; (2) the 

need to discuss and confront empirical causality with physical causation and 

tangible proofs of effective connectivity;  (3) the potential reasons for the 

occurrence of spurious causal links; (4) the conceptual problems of 

constraining and forcing variables that are causal or not in the analysis. 

In real cases, there is always a risk of spurious causal associations, i.e., a 

functional link but not an effective one, because the hypotheses behind the 

methods cannot be adequately controlled. Since results vary substantially 

across the datasets, methods, and hypotheses, single p-values do not relate to 

the probability of causal associations. Concerning causal inference methods, 

their number is progressively increasing, input data can be selected and 

arranged in many ways, the causal graph possibly constrained following 

different logics, and some methods may be sensitive depending on the study 

case. Accordingly, the use of one single method reporting significant 

associations is discouraged, especially without sensitivity analysis, the testing 

of various scenarios, the introspection of the underlying hypothesis of the 

causal inference method, and interpretations on the conceptual framing of the 

system and its potential causal mechanisms.  
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Chapter 7 General conclusion 

“Reading furnishes the mind only with materials of knowledge; 

it is thinking that makes what we read ours.”  

John Locke 

The initial intention behind the Ph.D. project was to capitalize on the recent 

advances in time-series analysis to draw a better understanding of karst 

systems, in particular, the Lhomme Karst System (LKS), in Belgium (section 

1.2.1, Chapter 3). In practice, the thesis capitalized on the recent advances in 

the understanding of the LKS (Poulain, 2017; Watlet, 2017) to answer the 

question: what does it take to understand complex hydrological systems from 

empirical time-series analysis?  

To that regard, the introduction postulates that complexity first depends on the 

observer, his or her ability to observe, and how he or she seeks to interpret a 

hydrological system (section 1.1 and 1.1.2.1). Complexity can also depend on 

the system's inherent characteristics, but that these characteristics are difficult 

to separate from the way the observer sees things. These are dimensionality, 

i.e., the number of variables driving the system (section 1.1.2.2), the nature of 

the mechanisms between the variables (section 1.1.2.3), and organization, 

which gives an idea of how the variables and mechanisms are ordered as a 

whole (section 1.1.2.4). From these points of view, a system could be 

considered complex in a non-mutually exclusive way if it has high 

dimensionality, presents nonlinear mechanics (sensitive dependence to initial 

conditions), and is disorganized. The thesis explores these four topics in its 

chapters. 

7.1 What Does it Take to Understand? 

Chapter 2 explores the general question of what does it take to understand? 

The question is addressed by portraying the historical evolution of the concept 

of causality and mirroring it to epistemological concerns or philosophies in 

the science of hydrology. Undoubtedly, history has given us many 

perspectives on how to estimate what is true or not, causal or not, since the 

chosen starting point in Ancient Greece (section 2.3). Causality is subject to 
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many concerns: is it a perception, a true belief, and, if true, to which account 

(section 2.3.2)?; how to deal with causality with the problem of 

nonstationarity or change (section 2.3.3.3), which relates to the problem of 

induction (section 2.4.3.1)?; the concerns related to the problem of universals 

and the realism of models (section 2.4.1). Different frameworks have been 

proposed to deal with causality: the initial one of Aristotle (section 2.3.3), the 

rationalist framework focused on deduction and mechanism (section 2.4.2), 

the empirical one inferring causality from data (section 2.4.3), the perceptual 

one inferring causality from people (section 2.4.4), and the systemic one that 

makes a synthesis of the former causal frameworks that goes back to Aristotle 

and emphasizes the importance of the whole (section 2.4.5).  

Chapter 2 concludes with a unifying philosophical framework that suggests 

that what is causal arises from the convergence of these perspectives into a 

stable community consensus constrained by logic (section 2.5). Causality is 

not an abstract product of our imagination nor reality. Causality is resulting 

from the interactions of our concepts and logic with the real world, which 

allows it to be realistic without being real or purely abstract. This philosophy 

is a vital and positive state of mind allowing proactive research on causality 

since it suggests that not all models are wrong (in contrast with Box, 1976) if 

they aim at causality instead of reality. Causality aims at understanding, so the 

usefulness of a model is not sufficient to call it right, in the sense of causal, 

but necessary as it has to prove its connection to the real world. To be 

completely causal, the nature of a causal explanation, on which there is 

consensus, must also take into account how the system is conceptualized. 

Conceptualization involves making this judgment about the elements to be 

taken into account (solving dimensionality), the processes that relate them 

together (solving mechanisms), to form a whole system (solving 

organization), for a given context and purpose that provides a frame, 

inherently limited, but necessary to justify and evaluate the proposed 

causality. This view is close to the systemic and Aristotelean philosophy of 

causality.  

The daily objective of a scientist is not always to provide causal explanations, 

for example, with causal models, but more often to provide elements of 

explanations in a narrower framework that can contribute to the construction 

of causal explanations at the community level. It is in this spirit that the 

following chapters contribute to causality.   
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7.2 Causality from Nonlinear Patterns 

Chapter 4 develops a method that relies on empirical (section 2.4.3) and 

univariate time-series analysis to assess river recession dynamics' complexity, 

with complexity attached to nonlinearity (sections 1.1.2.3 and 4.1). Since the 

river hydrograph is the output of a catchment system, the approach is systemic 

(section 2.4.5), as it is assumed that complexity is a trait of the whole system. 

The proposed method, EDM-Simplex (section 4.2.1), is a nonlinear empirical 

model that forecasts recession segments' future from the future of similar 

recession segments. The decay of the forecasting performance with the 

prediction horizon (1, 2, and 3 days ahead), while remaining very good (Figure 

4-6), was found to be a robust indicator of an empirical definition of 

nonlinearity, that is, sensitive dependence to initial conditions. The method 

was tested on three hydrological series from gauging stations located before, 

inside, and after the karst system (S1, S2, S3 in Figure 3-1 and Figure 3-3). 

EDM-Simplex allows showing that the nonlinearity of recession tends to 

increase from upstream to downstream due to the karst system (Figure 4-5). 

This increasing trend is not obtained with the conventional method based on 

the parametric model of Brutsaert and Niebert (B&N, Eq. 1.5), where 

nonlinearities were ranked as S2 < S1 < S3 (Figure 4-2). 

As a result, the study shows the importance of framing the analysis with 

methods and definitions, and most valuably, in considering different ways to 

do it. The B&N is not wrong nor less suited; what it captures is a trend. Hence, 

it looks at the dynamic at a different scale, which inevitably changes causality. 

The percolation through the karstic riverbed is the dominant process at S2. It 

can explain the relative linearity of S2 retrieved with the B&N method. 

However, trends do not capture the dynamic in detail. EDM-Simplex does and 

reveals that complexity is increasing, which is valuable information for 

modelers looking for a fit representation of the system, further than dominant 

processes. In that sense, EDM-Simplex is superior to B&N but does not allow 

identifying trends.  

Also, depending on the definition of recession points or segments, the EDM-

Simplex results may change, which is not a sign of lack of robustness, but the 

simple evidence that a system does not have the same sensitivity according to 

its states. For instance, nonlinearity was lower for the downstream station of 

Eprave (S3) compared to the nonlinearity within the karst (S2) when EDM-

Simplex forecast recession points representative of low flow (Figure 4-7).  
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This result highlights the importance of the Vauclusian spring during low 

flow, and that S3 is therefore not following the patterns of upstream recession. 

All these examples support the view that the full conceptualization of a system 

arises from combining methods, definitions, and purposes. A global 

understanding and consensus arise when particular behaviors have found an 

explanation in their context, including our prior conceptual understanding of 

the system (section 2.5). If empirical and systemic approaches do not highlight 

the exact processes involved in causality, such experiments suggest their 

implicit existence, a necessary step before their explicit representation.  

7.3 Causality from Dynamic Similarity and 

Dimension Reduction 

Chapter 5 investigates causality or “complexity reduction” through the 

dimension reduction and the extraction of spatiotemporal patterns 

(hydrofacies) from an Electrical Resistivity Tomography (ERT) model of the 

subsurface (section 3.3.2) at the Rochefort Cave Laboratory (RCL, section 

3.2). Methods of time-series clustering (TSC) are increasingly popular for this 

task, which relates to causality from three points of view. First, the high 

dimensionality of ERT model, a spatial mesh of 1558 cells times 465 days, in 

this case, makes it difficult to understand (sections 1.1.2.2 and 2.4.2). 

Secondly, the exercise of extracting emergent patterns relates to the systemic 

perspective of investigating the forms of organization (sections 1.1.2.4 and 

2.4.5). Thirdly, TSC is mostly empirical (section 2.4.3), given that the 

clustering involves averaging time-series together based on their dynamic 

similarity (i.e., correlation). The dynamic similarity is what possibly and 

empirically defines hydrofacies, that are, from the perceptual point of view, 

lithological features showing subject to similar hydrological forcing and 

processes. Confronting both definitions allows judging if the clustering makes 

sense from the perceptual understanding and physical knowledge of the 

system (section 2.4.4, Figure 3-5). Chapter 5 examines various grouping 

algorithms from the literature, time-series representations, and another subtle 

nuance in the definition of hydrofacies: whether or not they should be spatially 

contiguous since contiguity is a feature of causality (d23 in Appendix III). 

Inevitably, the results show differences between the combinations (e.g., 

Figure 5-6) since each approach maps to another definition of hydrofacies. 

However, some patterns are redundant and in phase with the perceptual model, 

which leads us to consider them consensually as hydrofacies. However, the 



Chapter 7 – General conclusion - 205 - 

 

patterns obtained from the full dataset are not retrievable when TSC is applied 

to shorter time samples (Figure 5-7).  This result shows that hydrofacies are 

particularly hard to generalize for small ERT time-spans, i.e., the problem of 

induction (section 2.4.3.1). Technically, it is possible to define a clustering 

method based on consensus among various approaches, which could fasten 

the convergence to a stable model. Another option is to consider other 

geophysical datasets in the clustering.  

In the end, Chapter 5 is a study that promotes understanding of TSC methods 

and awareness of their limitations, starting from a very generic definition of 

hydrofacies, which provides broad guidance to practitioners. As is the case 

with causality, clearer guidance can be given to goal-oriented studies on a 

particular hydrological or geophysical purpose, not for the only sake of 

clustering. In such cases, the definition of hydrofacies takes on a more precise 

meaning and offers a better roadmap. For example, in Chapter 6, which relies 

on a clustered ERT dataset, the spatial constraint of contiguity was not 

preferred over the idea of having groups that are as uncorrelated as possible. 

If hydrofacies should exist more generically as a universal concept (section 

2.4.1), it is up to the community to refine its definition by asking, for example, 

some relevant and interrelated questions: why hydrofacies are useful as such?; 

what patterns characterize them? in which domain of the ERT signal 

spectrum?; how they emerge from the mechanism of hydrological processes?; 

should they be contiguous, and are they allowed to change over time? 

Answering these questions paves the way to the method, as a way to frame 

causality.  

7.4 Causality from Time-Dependencies 

Chapter 6 assesses the ability of causal inference methods to remove 

complexity by inferring from times-series the organization of a system in the 

form of a causal graph, or Directed Acyclic Graph (DAG). The approaches 

are empirical (section 2.4.3). Significant time-dependencies could be seen as 

Hume’s principle of constant conjunction (d24 in Appendix III). Besides, the 

methods rely either or both on Hume’s principle of priority of the cause over 

its effect (d22) and the principle of the common cause (d26) to dismiss 

dependencies resulting from a shared driver. The approach is also systemic 

(section 2.4.5) since causal inference methods should be applied on a set of 

hydrological series representative of all the dominant spatiotemporal patterns 
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found in the system. The DAG reports the temporal links between variables, 

a way to depicts the organization of the system.  

If causality remains widely assessed with the cross-correlation function 

(CCF), Chapter 6 shows that the CCF method produces ubiquitous causal 

links in a hydrological system due to the general forcing of meteorological 

variables. CCF thus depicts a complex system, high dimensional (section 

1.1.2.2), and disorganized (section 1.1.2.4), that is, therefore, difficult to 

understand (section 1.1.2.1), but still interpretable because the method is 

linear (section 1.1.2.3). The Convergent Cross-Mapping bivariate method 

(CCM, section 6.2.1.2) that looks for nonlinear state-dependencies between 

two variables pictures more parsimonious DAG with fewer links. They are 

more understandable in that sense while being less interpretable on the nature 

of the dependence as a nonlinear method. Encouragingly, the CCM supports 

hydrological connections and preferential flow between the surface and 

percolation in Rochefort's cave, where such a link has been revealed by a dye 

tracing test. However, spurious links could arise since CCM does not consider 

the principle of the common cause.  

The multivariate framework tests for conditional independence (PCMCI, 

section 6.2.1.3) and takes into account the principle of the common cause, 

using either the partial correlation (ParCorr) or the conditional mutual 

information (CMI), respectively, as a linear and nonlinear test. ParCorr also 

supports the occurrence of preferential flow in the cave while showing some 

differences with CCM. In contrast, the CMI test does not provide robust 

results and interpretable links in the real case studies that were considered. 

The structure of the DAGs varies erratically, depending on the parameters 

chosen to estimate the CMI, and produces too many alternatives to judge them 

understandable and trustable (section 1.1.2.1, e.g., Figure 1-2). Possibly, this 

unsatisfying outcome may be due to a lack of data or modeling artifact. 

However, CMI is theoretically the most robust method as it takes into account 

the common cause and does not make a hypothesis on the mechanism, whether 

linear or not, and its robustness was verified in a virtual hydrological 

experiment (section 6.2.2.1).  

In general, nonstationarity, missing important variables, the lack of data in 

quantity or quality, noise structure, modeling artifacts, the way spatiotemporal 

patterns are extracted from a dataset, the reliance on the wrong method, or 

possibly dynamic and causal intermittency, may alter a DAG and explain the 
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occurrence of spurious links. These topics could be studied more in-depth, 

based on virtual hydrological experiments. With multivariate methods, a 

spurious link may have negative feedback. The time-dependencies of the 

spurious driver are removed from the response variable while it should not. 

From this fact, combined with the idea the causes of spurious links are hardly 

identifiable or manageable in real case studies, Chapter 6 justifies the 

constraint of possible causal connections based on what links are conceptually 

or physically acceptable (as Rinderer et al., 2018). Doing so is a way to 

account for Hume’s contiguity criterion that the cause and its effects should 

coexist in a domain that allows interaction (d23). It is also in phase with the 

idea that Hume’s mysterious necessary connection (d25), or the proper 

justification of our beliefs (section 2.3.2, d6), is an account of the mechanism 

(section 2.4.3.2). Lastly, it is consistent with the idea that causality in the broad 

sense integrates prior knowledge to improve its understanding and that 

causality emerges from the constraining potentialities to one single 

representation (section 2.5).  

Still, there is a fine line between constraining a method because of its 

limitations for the sake of reliability and constraining empirical facts to our 

own causal perceptions of reality (section 2.4.4). Causal inference from time-

series is potentially a powerful approach, but not a magic wand to reveal 

causal interactions. It remains a modeling approach requiring a modeling 

philosophy that should be proactively debated. This philosophy must go hand 

in hand with an ethic. Chapter 6 shows that, for any pair of variables, there is 

likely to be today a combination of methods and data manipulation that would 

lead to the conclusion of a significant association. Hence, p-values do not 

make causal claims. It is, therefore, the responsibility of the scientist to use 

several methods, hypotheses, parameters, and data arrangements that could 

make sense and to report the variability of the results, and to conclude, beyond 

empirical induction (d13), following the logic of abduction (d14), i.e., the 

inference to the best hypothesis. Generally, confidence in the results for 

specific causal links increases with the redundancies between the approaches 

(as for Chapter 5), their robustness, the fitness-of-purpose of the causal 

inference method for the study case, and the consistencies when confronting 

the results to the perceptual or scientific knowledge of the system. If 

substantial inconsistencies between empirical methods and perceptions 

remain, this is good news rather than disillusionment, as science is on the 

verge of progressing either by fixing its method or revisiting its perception. 
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7.5 Causality from Empirical Time-Series Analysis 

Ultimately, what does it take to understand complex hydrological systems 

based on empirical time-series analysis? First, the thesis proposal advanced 

the idea that a nonlinear causal inference method was needed to unravel the 

causality of a hydrological system (section 1.2.1). The reflections and 

experimentation during the Ph.D. quickly shifted to the idea that there was a 

need to go further and broadened the question by proposing a philosophical 

framework (Chapter 2). Two case studies based on empirical time series 

analysis were proposed, although not directly based on causal inference 

methods (Chapter 4 and 5). They nevertheless aim at a better causal 

understanding of complex hydrological systems. Finally, a detailed study of 

causal inference methods on hydrological data revealed their potential and 

limitations. From the rich experiences of the thesis, one may conclude that the 

following elements are necessary to understand complex hydrological systems 

from time-series analysis. 

Data – It is undoubtedly the most obvious point since there is no empirical 

analysis without data. In terms of causality, the thesis shows the importance 

of having access to the set of explanatory variables in order to be able to infer 

the causality of a system. Ideally, a global data network should be built, 

combining data from remote sensing and field observatories, using 

standardized acquisition and documentation methods. Hydrologists have 

always suffered from the lack of observability of hydrological systems. While 

still far from ideal, technological advances and developing community 

impulses suggest that hydrology will move closer to this ideal in the years to 

come (Beven et al., 2020; Sivapalan and Blöschl, 2017). 

Computing power – Alongside technological progress in data acquisition, 

computing power is essential. Nonlinear data-based methods that make the 

least assumptions about dynamics or probability distributions generally make 

use of nonparametric testing based on bootstrapping or data shuffling (Chapter 

4, Chapter 6). These approaches required a high computation and 

parallelization, even on relatively small sets of variables and daily resolution. 

Since it is argued that the sensitivity of the causal inference method should be 

tested, the use of high-performance computing very quickly becomes a 

necessity for those who engage in causal inference with these methods.  
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Willingness to understand - Today, empirical methods are still often 

regarded as methods that precisely allow us to abstain from the causal 

understanding of a system. These empirical methods aim at the most precise 

possible operational predictions. The term "cause" is no longer used, but rather 

"predictor". However, in a changing system, these operational models can 

quickly become obsolete if they are not based on causal variables and some 

understanding of the mechanism. This thesis demonstrates that approaching 

causality from an empirical perspective is feasible in many ways, but what is 

needed first and foremost is a willingness to understand. It involves studying 

empirical methods and questioning how they fit into the philosophy of 

empirical causality. It involves studying the data, manipulating them, and 

asking the question cause or predictor? 

Clear purpose – Solving causality to solve causality can quickly become a 

slippery slope for an analyst who forgets where he or she wants to sail to. 

Causality is certainly easier to resolve when we remember why we want to 

resolve it, based on an established and precise research question. The 

objectives bring focus, relevant concepts, and scope to evaluate the results. 

For instance, Chapters 5 and 6 test methods and raise awareness of their 

limitations and potential to the hydrogeological community. They lack 

finality, as the thesis aims to resolve causality, so to speak, which leads to 

plural results and a sense of pessimism. However, if the objective was, for 

example, to predict drip discharge patterns in a causally consistent manner, 

many combinations of clustering models and causal models could have been 

excluded if an objective function had constrained the whole process.  

Getting to know and organizing the data – No empirical method is a 

magical device that eats data to spit out causality. Certainly less than 

physically-based models, causal inference methods nevertheless make 

assumptions, mainly about dynamics, e.g., whether it is stationary or not, 

intermittent or continuous, linear or not, deterministic or stochastic. Testing 

these hypotheses on univariate time series is an excellent way to become 

familiar with the data (e.g., Chapter 4), as well as decomposing and visualizing 

data. Exploratory data analysis allows one to consider how to pre-process the 

data before causal inference. It aims at making choices and solving the 

questions of the appropriate temporal or spectral domain for the analysis, 

knowing which data should or should not be considered, removing 

redundancies to get rid of excessive dimensionality, and extracting 
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spatiotemporal patterns that are relevant and as exhaustive as possible in the 

data set (e.g., Chapter 5). 

Causal inference methods – Exploratory data analysis and purpose may 

orient to the choice of a causal inference method. Nevertheless, several 

methods can be used, each for a legitimate reason, the last being that we may 

not know which one is the most suitable. This thesis investigated methods that 

seek short-term lagged dependencies between variables. Other methods in the 

literature attempt to resolve contemporaneous dependencies or to infer 

causality from the spectral domain. Given that hydrological processes coexist 

on various time scales, the latter is also of particular interest. To some extent, 

many empirical models can be suited for causal inference since it is about 

looking for predictability while removing or controlling the effect of potential 

shared drivers, but we expect them to remain simple.  

Balancing constraints and flexibility – It has been argued that causality 

emerges from practical, logical, and social constraints, but not from 

dogmatism. Causality also arises from the convergence of different 

approaches and perspectives towards the same generalization. We expect that 

this generalization remains a robust and tool for various purposes. In general, 

all chapters valued varying the perspective, the methods, or their parameters. 

Similarly, in an empirical study case, it goes without saying that if clear-cut 

choices, even if motivated, are made along the way, the analysis will logically 

lead to a single result. The empirical analysis's sensitivity needs to be tested, 

especially since the thesis has shown that they are potentially sensitive. It is 

up to the empirical modeler to define alternatives throughout the entire 

workflow, be it in the objective, its evaluation function, the definition of 

concepts, the way data is organized, the methods of causal inference, their 

parameters, or the user's constraints on potential causal links. This analysis 

must be judged on the extent of what is possible and reasonable because the 

robustness of an approach must not be validated or refuted based on 

meaningless alternatives. It follows the same logic of uncertainty and 

sensitivity analysis of physically-based models. However, with empirical 

approaches, this is quite an art because the choices to be made with an 

empirical approach are often case-specific, thus, empirical, and not easily 

related to the environment and its physical mechanism. It is possible to find 

guidelines for empirical methods in the literature, but these have not been 

thought out or suggested for a hydrological problem. It takes time, and often 

a community, to build expertise around new empirical methods in their 
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scientific domain. Virtual experiments may help develop guidance, with the 

risk that guidance may not apply in real cases (Chapter 6). 

Building a case for science – Whatsoever comes out in empirical causal 

analysis is not causality as a whole (Chapter 2). At best, it is an organized 

representation of a system (Chapter 4, 5, 6), which, in the case of the causal 

inference method (Chapter 6), reports the system organization as the structure 

of causal associations between variables. For an association to become 

causality, it will be necessary to cross-reference points of view and build a 

case for the exposed causal relationships. While varying empirical approaches 

and making them more robust may help, this cannot ultimately be done by 

empirical time series analysis alone. At some point, we will always expect a 

causal claim a comment on the mechanism or consistency with physically-

based models. One will also expect a claim to be verified with field 

experiments to the extent that it is possible. Whatever the means of adding 

evidence to the case, the empirical modelers may not have it in their skill set. 

Also, the strength of empirical modelers is the broad applicability of their 

knowledge and skills. However, with new study cases and different systems, 

their expertise and knowledge of the system behavior diminish, as the 

familiarity with the scientific literature or data type. This is even more true as 

soon as they move to another scientific field or research question. For all these 

reasons, the empirical modeler benefits from networking and allying with 

researchers that are willing to enter in a win-win relationship trading skills, 

knowledge, and vantage points, and perhaps, more fruitfully from the very 

beginning of the causal inference process that had just been described. More 

than a group of people, causality is a community challenge. All these elements 

mentioned above in this roadmap guide a modeler. These empirical discovery 

tips are generalizable for a community. Since causality is about extrapolable 

generalization, this thesis has inferred a consistent frame of Causality from 

empirical time-series analysis while inferring the hydrological system's 

causality from time-series is under progress. 
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Appendix I. Causality in science: a bibliometric 

analysis 

Causality was introduced in science by Aristotle as a proper way to provide 

an explanation. In the 18th century, Leibniz argued that anything in the real 

world could not occur with a sufficient reason or cause. Not much later, the 

skeptical conclusion of the philosopher David Hume showed that causality 

could not be demonstrated [1]. What we see, as we see it, is, at best, only a 

constant association between two observations that we call cause and effect.  

In 1912, the philosopher and mathematician Bertrand Russel argued that 

reference to the law of causality had almost disappeared from science; 

however, surviving among philosophers like a relic of the past [2]. Is this 

gradual disappearance of causality still undergoing? Today, three centuries 

after Hume and one after Russell, what is the status of causality in science? 

To address this question, this note conducts a bibliometric analysis of the 

SCOPUS scientific literature database. We report statistics for 33 scientific 

areas about the uses in title, abstract, and keywords within scientific articles 

of the words: causality, causative, causal, and causation. The statistics cover 

the general interest in causality per domain and the current trends computed 

for the period 1999-2019. 

Methodology 

To measure the trend in the use of words related to causality in scientific 

articles, it is essential to account relatively for the trend in the publication of 

scientific articles. Indeed, a positive trend in the references to causality could 

be simply the reflection of the increase of scientific publications. Hence, for a 

given scientific area (AREA), two research equations should be performed. 

The first one focuses on causality related words: 

TITLE-ABS-KEY(causal OR causality OR causative OR causation) 

AND SUBJAREA(AREA) AND DOCTYPE(ar) AND (PUBYEAR > 

1998 AND PUBYEAR < 2020) 

The term "cause" was avoided because of its broad meaning, and we preferred 

to refer to the specific four terms. The command DOCTYPE(ar) allows us to 

retrieve scientific articles only, and PUBYEAR allows us to constraint the 



- 242 - Appendix I 

publication period between 1999 and 2019. The second request focuses on the 

retrieval of all publication in the scientific area (AREA) for that same period: 

SUBJAREA(AREA) AND DOCTYPE(ar) AND (PUBYEAR > 1998 

AND PUBYEAR < 2020) 

Each request is arranged to get the count of publication per year. A general 

interest can be computed by dividing the number of publications related to 

causality by the total number of publications for every year. Least square 

fitting of a linear model allows computing a trend in this general interest and 

its significance for the 20 years (p-value). 

Table I.1 reports all the subject areas that are investigated. The four-letter 

codes are subject areas that are defined within SCOPUS. The codes with an 

asterisk were defined by specific research equations. ALL denotes the request 

when no subject areas are mentioned. The two-letter codes HS, LS, PS, and 

SS are general requests over the scientific domain obtained with the OR 

operator (e.g., for Health sciences HS, SUBJAREA(MEDI OR NURS OR 

VETE OR DENT OR HEAL OR MULT)). HYDRO was not included in the 

definition of physical science PS. To identify studies related to hydrological 

sciences HYDRO, the research equation was modified to include the 

command SRCTITLE(hydro* OR water) such that only articles from a source 

name including the prefix "hydro" or the word "water" are retrieved. The 

subject areas in SCOPUS are not mutually exclusive. 
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Table I.1: Scientific subject area, domain and related code 

DOMAIN SUBJECT AREA CODE 

Life Sciences Agricultural and Biological Sciences AGRI 

All Sciences All sciences ALL* 

Social Sciences Arts and Humanities ARTS 

Life Sciences Biochemistry, Genetics and Molecular Biology BIOC 

Social Sciences Business, Management and Accounting BUSI 

Physical Sciences Chemical Engineering CENG 

Physical Sciences Chemistry CHEM 

Physical Sciences Computer Sciences COMP 

Social Sciences Decision Sciences DECI 

Health Sciences Dentistry DENT 

Physical Sciences Earth and Planetary Sciences EART 

Social Sciences Economics, Econometrics, and Finance ECON 

Physical Sciences Energy ENER 

Physical Sciences Engineering ENGI 

Physical Sciences Environmental Sciences ENVI 

Health Sciences Health Professions HEAL 

Health Sciences All health sciences HS* 

Physical Sciences Hydrological sciences HYDRO* 

Life Sciences Immunology and Microbiology IMMU 

Life Sciences All life sciences LS* 

Physical Sciences Materials Science MATE 

Physical Sciences Mathematics MATH 

Health Sciences Medicine MEDI 

Health Sciences Multidisciplinary MULT 

Life Sciences Neurosciences NEUR 

Health Sciences Nursing NURS 

Life Sciences Pharmacology, Toxicology, and Pharmaceutics PHAR 

Physical Sciences Physics and Astronomy PHYS 

Physical Sciences All physical sciences PS* 

Social Sciences Psychology PSYC 

Social Sciences Social Sciences SOCI 

Social Sciences ALL social sciences SS* 

Health Sciences Veterinary VETE 

*Defined by user    

Results 

Table I.2 shows the results of the bibliometric analysis per subject area (Table 

I.1). The results are sorted by the average percentage of causality related 

papers per year, which denotes a general interest or affinity in the use of 

causality related terms in the title, abstract, and keywords of articles. Besides, 

Figure I.1 reports the trends for all publication (ALL), and each scientific 
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domain: social sciences (SS), health sciences (HS), life sciences (LS), and 

physical sciences (PS). 

Table I.2: Result of the bibliometric analysis per subject area (see Table I.1) 

Subject  

Area 

Averaged 

nbr of 

publication 

per year 

Averaged nbr 

of causality 

related 

publications 

per year 

Averaged 

percentage of 

causality 

related 

publications 

per year 

Trend in 

causality 

related 

paper (% 

per year) 

Trend 

 p-value 

ECON 27629 557 1.76 0.094 5.00E-12 

PSYC 38651 610 1.53 0.021 1.84E-08 

IMMU 50692 684 1.28 0.054 9.97E-16 

VETE 16043 203 1.20 0.046 3.74E-10 

NEUR 43495 545 1.15 0.067 3.41E-16 

SS 217637 2479 1.05 0.038 4.57E-16 

BUSI 40165 453 0.98 0.069 3.16E-14 

MEDI 407902 4099 0.97 0.027 3.66E-17 

HS 475558 4709 0.95 0.027 6.97E-16 

ARTS 54031 509 0.90 0.020 1.23E-05 

SOCI 120708 1150 0.88 0.027 4.88E-14 

DECI 13961 133 0.86 0.042 1.89E-10 

MULT 29297 311 0.85 0.058 8.40E-10 

LS 400600 3389 0.79 0.034 5.13E-17 

AGRI 139693 1142 0.76 0.026 3.71E-12 

BIOC 208402 1658 0.74 0.037 1.30E-14 

NURS 27582 197 0.71 0.006 2.45E-01* 

ALL 1504271 9556 0.60 0.020 1.85E-18 

HEAL 18369 108 0.57 0.011 7.78E-05 

ENVI 88603 494 0.52 0.015 6.88E-10 

PHAR 55327 288 0.49 0.019 8.76E-13 

DENT 10026 49 0.48 0.003 2.17E-01* 

COMP 86817 388 0.43 0.008 3.45E-05 

MATH 89035 353 0.37 0.014 3.44E-11 

EART 75232 245 0.31 0.009 1.05E-08 

PS 729356 1856 0.24 0.009 1.23E-14 

HYDRO 10398 22 0.20 0.006 6.62E-04 

ENER 44622 113 0.19 0.019 2.35E-11 

ENGI 238856 444 0.17 0.006 3.29E-11 

PHYS 195776 308 0.15 0.004 5.97E-06 

CENG 80092 71 0.08 0.005 5.36E-11 

CHEM 169589 123 0.07 0.004 2.02E-11 

MATE 167026 70 0.04 0.001 4.71E-05 

*Not significant 
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Figure I.1: Trends in causality related terms in the titles, keywords, and 

abstracts of scientific articles (1999-2019) for all SCOPUS articles (ALL), 

social sciences (SS), health sciences (HS), life sciences (LS), and physical 

sciences (PS).  

Discussion 

What is noteworthy in Table I.2 is the two general trends. First, the use of 

causal vocabulary increased in all disciplines during the past 20 years. 

Secondly, the use of causality terms in a discipline seems to be positively 

correlated with the complexity of the systems studied by that discipline, in that 

order: social sciences health sciences, life sciences, physical sciences (see also 

Figure I.1).  

Hence, Social sciences dominate the ranking, strongly supported by 

publications in Economics, Econometrics, and Finance (ECON), that exhibit 

the strongest interest and the highest trend. This illustrates the strong 

motivation to understand markets and the rules that govern them by the 

invisible hand of Adam Smith. This strong interest can be traced back to the 

pioneering work of economist and Nobel laureate Granger and its work to 

assess causality from time series using vector autoregressive models [3]. From 

that perspective, causality is defined by the predictive power of a past and 

prior variable, the cause, over a present one, the effect. The interest in 
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causality in social sciences is also supported by studies in psychology. This 

causal perspective is quite different from considering that causality is 

perceived differently by individuals in phase with Hume's conclusions [1]. 

Psychological studies are therefore usually based or rooted in the causal 

attribution theory, i.e., on how individuals attribute causes of events to 

people's behaviors or to their external environment. The causal attribution 

theory goes back to Michotte, Heider, or Kelley [4–6], and has percolated 

more broadly in social sciences (SOCI) as causal attribution may depend on 

socio-cultural factors. It further studies cognitive biases, which are also of 

interest to address scientific biases. 

Health Sciences (SS) shows the second rank in their interest in causality, 

primarily dominated by publication related to the vast subject area of medicine 

(MEDI). The interest of medicine in causality has been proven since 

Hippocrates in Ancient Greece, who is credited with laying the foundation of 

modern etiology in medicine, the study of the causes of diseases.  Since then, 

in medicine, all diseases shall have a natural cause and not a religious or 

mystical one. This influence is also perceived in immunology and 

microbiology (IMMU), which are classified within life sciences (LS). 

Neurosciences is a particular domain were time-series analysis techniques, 

such as Granger causality, are often applied to understand neuronal stimuli, 

but it is also deeply related to the question of free will and consciousness, that 

are central philosophical concepts in the causality debate [7]. 

Life sciences occupy third place overall. After IMMU, Agricultural and 

Biological Sciences (AGRI), followed by biochemistry, genetics, and 

molecular Biology (BIOC), are above average in the use of the term associated 

with causality. Causality was indeed reintroduced by Wright that had 

developed one of the first applications of causal graphs on agrometeorological 

variables [8]. The biologist Bertalanffy introduced his general system theory 

based on an Aristotelean definition of causality [9]. It enriched causality from 

the simple notion of the prior cause, as a complex system should also have a 

form of organization that fits a purpose, i.e., a final cause. Since then, two 

kinds of causality are acknowledged based on the notion of control. Bottom-

up causality refers to an explanation from the control of the parts on the whole, 

while top-down causality explains the control of the whole system on its parts. 

The general system theory has also influenced social sciences or any discipline 

that relates to systems that have components with different functions and 
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exhibit organization, emergent properties, stability, or resilience in its form or 

function.  

Still, Pharmacology, Toxicology, and Pharmaceutics (PHAR) are below the 

averaged. The same holds for most of the physical science disciplines (PS) at 

the bottom of Table I.2, eventually because they are more focused on a linear 

scheme of causation: the action-reaction paradigm. It may also reflect this 

attitude of retreat behind facts, the scientific method, the logic of reasoning, 

the very one that pushed Russell to banish causality from science, and that is 

best pictured by the words of Newton: “I frame no hypothesis”. It must be 

noticed that this reluctant attitude in providing causal explanations may be 

inherited from history since Descartes advocated for rationalism in response 

to the dogmatic prosecution of Galileo by the religious instances, further 

encouraged by Hume and its conclusion that causality is not purely rational. 

A final potential reason on the disinclination to use causality related terms in 

PS, is perhaps the tautology that exists between the word “physical” and 

“causal”. It is indeed redundant to speak of a physical causal relationship. In 

most case, what is implicitly meant with a physical relationship is a causal 

relationship, and causality is an unnecessary duplicate of physics.  

Within PS, environmental sciences (ENVI) are the top referrer to the causal 

terminology as it treats with more complex systems, relies on more uncertain 

physics, and may have been influenced more profoundly by AGRI. Despite a 

relative reluctance in speaking openly about causality, Mathematics, 

Computer Sciences, Engineering, or Physics, provided significant advances in 

the study of causality. This is notably the case of Wiener's work, which 

proposed a systemic vision of science, cybernetics [10], inspired by guidance, 

steering, and navigation systems in engineering (i.e., guided with purpose), 

based on information theory developed in parallel by Shannon [11] and whose 

mathematics and terminology are close to those used in statistical mechanics 

and thermodynamics (e.g., information entropy). His theory was integrated 

into Bertalanffy’s general system theory. Besides, Wiener's definition of 

causality based on predictability [12] was the one considered by Granger in 

his linear vector autoregressive framework for causality [3]. In the meantime, 

plenty of methods have been developed for causal inference that may be 

applied many fields, based on the pioneering work of Wright on the 

probabilistic causal graph [13]–[15], or on the Weiner-Granger time-series 

analysis framework by accommodating it to nonlinear dynamics [16], [17]. 

The theory of nonlinear dynamical systems or chaos theory introduced by the 
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mathematician Poincarré also laid to the development of recent causal 

inference techniques from time-series [18]. 

Conclusion 

This note analyzed the occurrence of causality related terms (causality, causal, 

causative, and causation) in the most vital parts of scientific articles to convey 

messages: titles, keywords, and abstracts. The bibliometric analysis is based 

on the SCOPUS database and on 33 scientific domains or subject areas (sub-

domains). The terms are observed on average in 0.6 % of scientific 

publications. All scientific areas exhibit a positive trend in the usage of 

causality related terms along the past 20 years, on average of + 0.02% per 

year, indicating a potential come-back of causality in the vocabulary of 

sciences. In general, scientific domains that study complex systems (e.g., 

Social Sciences, Health Sciences, Life sciences) use more frequently such 

terminology (respectively, on average 1.05%, 0.95%, 0.79% with a trend of 

+0.038%, +0.027%; +0.034% per year). The usage is relatively timorous in 

Physical sciences (0.24% with a trend of +0.009% per year), especially 

disciplines studying simple mechanics based on the action-reaction paradigm, 

despite the critical developments that were made in mathematics, computer 

sciences, or engineering to address causal inference.  
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Appendix II. MIGRADAKH database description 

The MIGRADAKH database consists of time series data, typically time and 

value paired observations sampled at a fixed frequency, delivered in text 

format following a set of fixed rules regarding: files naming, files structure, 

number format,  missing values, as well as conventions about date, time 

(UTC+0) and frequencies. The encoding is programmatically assisted and 

provides control to assert that file structure is correct, together with a 

systematic check of values to report either abnormal values or duplicated 

entries. In addition, each time-series data is associated with a description in a 

SQL metadatabase. The metadatabase follows a simplified structure of the 

WaterML 2 data model. It allows describing, for each time series, the observed 

property, the type of sensors, the sampled medium, on-site interventions, the 

people or institution involved at each step of the data generation procedure, 

and more detailed descriptions of the data generation process and its quality. 

Therefore, the metadata ware gathered from available information are 

provisional, unequal, and need full validation.  

MIGRADAKH database consists of a CSV file database, 1 per time-series, a 

SQL metadatabase, and a pdf catalog allowing to have a quick look at the 

time-series, the location of its sensor, and summary statistics. The CSV files 

and the SQL metadatabase are archived at UCLouvain. The file database 

respect the following file naming convention: 

OP_FREQ_XXXXXX_YYYYYY_INST_PLVL_ID.csv 

where, 

- OP is a two-digit code for the observed property; 

- FREQ is a three-digit code for the sampling frequency; 

- XXXXXX is a six-digit X lambert coordinate; 

- YYYYYY is a six-digit Y lambert coordinate; 

- INST is a three-digit code for the data provider; 

- PLVL is a two-digit code for the product level; 

The metadatabase contains 19 different observed properties aligned with the 

same unit reference, as shown in Table II.1. 
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Table II.1: MIGRADAKH metadatabase observed properties 

Code Description Unit 

SD Stream discharge, cubic meters per second m^3/sec 

SL Stream water level above DNG datum m 

AT Temperature, air, degrees Celsius deg C 

SR Total solar radiation, watts per square meter W/m^2 

WS Wind speed in meter per second m/sec 

RH Relative humidity, percent % 

GL 
Groundwater level elevation above DNG datum, corrected for 

barometric pressure, meter 
m 

RF Precipitation in millimeter mm 

RG Relative gravity, nanometer per square second nm/s^2 

WT Temperature, water, degrees Celsius deg C 

AP Atmospheric pressure, hecto pascals hPa 

WP Water pressure, hecto pascals hPa 

ST Temperature, soil surface, celcius degree deg C 

DT Temperature, deep soil, degrees Celcius deg C 

ET Potential evapotranspiration, millimeter mm 

DD Cave drip water discharge, Liter per hours L/h 

VW Volumetric water content, L^3 of water per L^3 of soil - 

ER Electrical resistivity, ohm meter Ohm.m 

WC water electrical conductivity, millisiemens per centimeter  mS/cm 

The sampling frequency is always a fixed frequency following Python Pandas 

convention for frequency string (https://pandas.pydata.org/pandas-

docs/stable/user_guide/timeseries.html). If the data sent by the provider is 

monitored at unequal frequencies, the sampling frequency is either the highest 

sampling frequency or a lower frequency if the data was resampled.  

Data provider codes are DG2 (SPW-Direction générale opérationnelle 2), 

DG3, (SPW- Direction général opérationnelle 3), ORB (Observatoire Royale 

de Belgique), PMB (PAMESEB asbl), UMO (Université de Mons) and UNA 

(Université de Namur). Table II.2 provides a summary of the 

database/metadatabase content by providers and observed properties. The 

database and metadatabase contents describe 123 time-series and 49 

monitoring features. Regarding UMO, only the mean time series of the 

Electrical Resistivity Tomography data was encoded, but the full dataset is 

available from online repositories (see Watlet et al., 2018a). Regarding ORB, 

the RG data were provided by Arnaud Watlet. These are corrected with the 

pressure effect with an admittance of -3.3 nm.s-2.hPa-1. The product level code 

is referenced in the next table: 
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Table II.2: Summary of MIGRADAKH database per observed properties and 

providers 

 DG2 DG3 ORB PMB UMO UNA 

AP      1 

AT    1  1 

DD     4  

DT    1   

ER     1  

ET    1   

GL      24 

RF 2  1 1   

RG   2    

RH    1   

SD 2 6    4 

SL 2 6     

SR    1   

ST    1   

VW     3  

WC      13 

WP      13 

WS    1   

WT  6    24 
       

Table II.3: MIGRADAKH database product-level code 

Code Description 

A0 Measured and automatically stored 

A1 Measured and automatically stored after validation routine 

AX A product, unknown level 

B0 Validated original measurements 

B1 
Validated resampled measurements with no attempts to fill missing 

values using an interpolation method 

B2 
Validated resampled measurements containing interpolated missing 

values 

BX B product, unknown level 

C0 Uncalibrated simulated data 

C1 Calibrated simulated data 

C2 Inversed modeled data 

C0 C product, unknown level 
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Appendix III. Chapter II List of Indexed Definitions  

Table III.1: Causality-related definitions indexed in Chapter 2.  

Index Definition  Reference 

d1 

Something or someone that produces an effect, result, 

or conditions (cause-effect relationships, e.g., heavy 

rainfall causes floods). 

Merriam-Webster's 

Learner's Dictionary 

d2 

A reason for doing or feeling something (perceptual 

causes, e.g., floods prevent someone from building in 

risky areas). 

Merriam-Webster's 

Learner's Dictionary 

d3 

Something (such as an organization, belief, idea, or 

goal) that a group or people support or fight for 

(teleological causes, e.g., flood risks should be 

reduced in the future). 

Merriam-Webster's 

Learner's Dictionary 

d4 (knowledge is) perception. 
Plato’s Theaetetus; 

Chappell, 2019. 

d5 (knowledge is) true belief. 
Plato’s Theaetetus; 

Chappell, 2019. 

d6 (knowledge is) justified true belief. 
Plato’s Theaetetus; 

Chappell, 2019. 

d7 
Material cause: “that out of which”, e.g., the bronze 

of a statue. 

Aristotle’s Physics; 

Falcon, 2019; 

Shields, 2008. 

d8 
Formal cause: “the form”, “the account of what-is-to-

be”, e.g., the shape of the statue. 

Aristotle’s Physics; 

Falcon, 2019; 

Shields, 2008. 

d9 

Efficient cause: “the primary source of the change or 

rest”, e.g., the sculptor, the art of bronze-casting the 

statue. 

Aristotle’s Physics; 

Falcon, 2019; 

Shields, 2008. 

d10 
Final cause: “the end, that for the sake of which a 

thing is done”, e.g., art, representing someone, for a 

buyer. 

Aristotle’s Physics; 

Falcon, 2019; 

Shields, 2008. 

d11 

Abstraction: An abstract mental object on which we 

reason, e.g., a reservoir in a model, the concept of 

rain, an equation. 

Personal definition 

d12 

Deduction: inference in which a new abstraction 

(thesis, d11) about particulars follows necessarily 

from prior general or universal abstractions 

(hypotheses), e.g., since rain falls, the ground will be 

wet. 

Personal definition 
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Table III.1 (next-1): Causality-related definitions indexed in Chapter 2.  

Index Definition  Reference 

d13 

Induction: inference of a generalized abstraction 

(d11) from the sensory observation of particular 

instances in the real world, e.g., rain is always 

followed by the ground being wet; the fact that rain 

precipitates; what rain itself is in general, an 

empirical equation. 

Personal definition 

d14 

Abduction: inference to the most likely general and 

universal premises associated with a conclusion 

generalized from particular instances, e.g., the ground 

is wet, it must have rained. 

Personal definition; 

Peirce, 1960. 

d15 

Imagination: the mental ability to create abstractions 

not exclusively based on sensed particular instances, 

e.g., an equation; a virtual abstract reservoir; an 

elephant watering the ground. 

Personal definition 

d16 

Actuality (entelecheia or energeia): what is capable 

of being seen, the account of what is seen, e.g., the 

statue of bronze, the artisan crafting the statue, data; 

Aristotle’s Physics 

and Metaphysics; 

Cohen, 2016; 

Marmodoro, 2018. 

d17 

Potentiality (dunamis) or dispositionality: what is 

capable of being built, the capacity to be in a different 

state, the account of what-could-be, e.g., a sword of 

bronze, forecasts. 

Aristotle’s Physics 

and Metaphysics; 

Cohen, 2016; 

Marmodoro, 2018. 

d18 
Principle of parsimony, or Ockham's razor: one 

should not multiply reasons without necessity. 
Baker, 2016. 

d19 Principle of sufficient reason: everything has a cause. 
Leibniz; 

Melamed and Lin, 

2018. 

d20 

Necessary cause: a cause/reason/condition that is 

always involved in the realization/observation of an 

event/state; 

Melamed and Lin, 

2018. 

d21 

Sufficient cause: a cause/reason/condition or a set of 

it that always implies the realization/observation of 

an event/state. 

Melamed and Lin, 

2018. 

d22 
Principle of priority: the cause occurs before the 

effect, e.g., rainfall occurs before flood peaks. 
Hume (1738, 1748). 

d23 

Principle of contiguity: the cause and effect are 

contiguous in time and space, e.g., the observed 

rainfall and flood peaks are closely related in space 

and time. 

Hume (1738, 1748). 
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Table III.1 (next-2): Causality-related definitions indexed in Chapter 2. 

Index Definition  Reference 

d24 

Principle of constant conjunction: the occurrence of the 

cause systematically implies the occurrence of the 

effect [under the same conditions], e.g., similar rainfall 

always implies the observation of similar flow peaks 

under similar conditions. 

Hume (1738, 

1748). 

d25 

Necessary connection: the additional principle that is 

necessary to avoid being deceived by the first three, 

e.g., we cannot know ultimately if rain causes flood 

peaks, but we can speculate infinitely deeper and 

deeper on overland flow, subsurface flow, hydrological 

connectivity, etc. 

Hume (1738, 

1748). 

d26 

Principle of the common cause: constant conjunction 

(d24) is either the product of causal interrelation or the 

result of shared driving variables. 

Reichenbach , 

1956. 

d27 
Manipulable cause: handling devices to manipulate the 

effects. 
Woodward, 2016. 

d28 

Dispositional cause: a cause that is attributed internally 

to one’s personal trait (d2, >< d29), e.g., the manager is 

incompetent. 

Heider, 1958; 

Kelley, 1973; 

Weiner et al., 

1987. 

d29 

Situational cause: a cause that is attributed externally 

to the environment (d2, >< d28), e.g., the manager was 

overwhelmed; It was an extreme rainfall. 

Heider, 1958; 

Kelley, 1973; 

Weiner et al., 

1987. 

d30 

Stable cause: a cause that is perceived as temporally 

persistent (d2, >< d31), e.g., the manager incompetence 

(if deemed persistent); heavy rainfall and floods always 

happen. 

Heider, 1958; 

Kelley, 1973; 

Weiner et al., 

1987. 

d31 

Unstable cause: a cause that is perceived as being 

temporary or rare (d2, ><d30), e.g., the manager was 

inexperienced; It has rained a lot the past few weeks. 

Heider, 1958; 

Kelley, 1973; 

Weiner et al., 

1987. 

d32 

Controllable cause: a cause that is perceived as being 

manipulable (d2, d27, >< d33), e.g., the manager can 

learn, rain or urbanism (if trust in management). 

Heider, 1958; 

Kelley, 1973; 

Weiner et al., 

1987. 

d33 

Uncontrollable cause: a cause that is perceived as 

being not manipulable (d2, >< d27, >< d32), e.g., 

incompetency (if deemed persistent), rain (without trust 

in management). 

Heider, 1958; 

Kelley, 1973; 

Weiner et al., 

1987. 
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Table III.1 (next-3): Causality-related definitions indexed in Chapter 2. 

Index Definition  Reference 

d34 

Causal frame: the way (mostly unconscious) in 

which the individual mind conceptualizes a stable 

causal model of their perceived reality (d2), e.g., 

how floods work. 

Chong and 

Druckman, 2007; 

Lakoff, 2010; 

Tversky and 

Kahneman, 1981. 

d35 

Values: guiding principles in people’s life  (d2,d3), 

e.g., individualism, altruism, ecologism embodied in 

opinions about flood management. 

Stern, 2000; Stern et 

al., 1999; 

Roobavannan et al., 

2018. 

d36 
Beliefs: beliefs about what is true or not (d2, d5), 

e.g., “urbanism causes floods.” 

Stern, 2000; Stern et 

al., 1999; 

Roobavannan et al., 

2018. 

d37 

Norms: rules, either formal or informal, that 

prescribes people's behavior (d2, d3), e.g., the flood 

directive, cultural habits related to the water system. 

Stern, 2000; Stern et 

al., 1999; 

Roobavannan et al., 

2018. 

d38 

Static teleology: a static arrangement that seems to 

be useful for a certain "purpose", e.g., optimality 

principle in ecohydrological distribution of plant 

species in watersheds (Eagleson, 2002); slopes 

directed to the outlet. 

von Bertalanffy, 

1968. 

d39 

Asymptotic teleology: asymptotic behavior that 

attains a time-independent condition, e.g., a storm 

basin depletion. 

von Bertalanffy, 

1968. 

d40 

Emergent teleology: a purpose that arises from/in 

the organized structure, e.g., watershed’s function as 

a support for life, ecosystems, and human systems 

(Kumar, 2007); physical habitat, food supply 

(Sivapalan, 2006); water partition, storage, release  

(Wagener et al., 2007). 

von Bertalanffy, 

1968. 

d41 

Equifinal teleology: a final state that can be reached 

from different initial conditions, e.g., Beven’s 

equifinality of model space (Beven, 2006a); a steady 

baseflow; equifinal flow paths to the outlet. 

von Bertalanffy, 

1968. 

d42 
True teleology: a true anticipated goal, e.g., water 

laws, directives, or acts; people’s behaviors. 

von Bertalanffy, 

1968. 
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Table III.1 (next-4): Causality-related definitions indexed in Chapter 2. 

Index Definition  Reference 

d43 

Causal explanation: a stable agreement, perception or 

belief emerging from a collective thinking constrained by 

logic in interaction with the real world [d4, d5, d6, d25, 

d28, d30, d34, d36, d38-42] explaining within the 

collective context and for a specific purpose [d2, d3, d10, 

d29, d35, d37, d39, d42] the what-is-to-be [d8, d11, d16, 

d38-d42] through mechanisms [d1, d9, d19, d24] linked 

by inference to other elements [d7, d12-15], either in 

space [d23], in time [d22], or both and possibly at other 

scales, in an intelligible but sufficient way [d18, d21, d26] 

and by virtue of a potential future practical application 

[d2, d3, d10, d17, d27, d32, d41] enabling either 

testability, technological progress or successful control 

while operating and intervening on the real world. 

Personal 

definition 
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Appendix IV. Cross-Predictive Patterns in 

Hydrograph Separation 

The Eckhardt filter is a popular linear method for hydrograph separation into 

quickflow and baseflow [1]. For a streamflow time series 𝑄𝑡, its baseflow 

component 𝐵𝑡 is obtained using a recursive filter depending on both 𝑄𝑡 and 

𝐵𝑡−1: 

𝐵𝑡 =  
(1−𝐵𝐹𝐼𝑚𝑎𝑥)𝛼𝐵𝑡−1+(1−𝛼)𝐵𝐹𝐼𝑚𝑎𝑥𝑄𝑡

1−𝛼𝐵𝐹𝐼𝑚𝑎𝑥
, subject to 𝐵𝑡 ≤ 𝑄𝑡   

where 𝛼 is the recession constant for a linear recession following 𝑄𝑡 = 𝑄0𝛼𝑡, 

and 𝐵𝐹𝐼𝑚𝑎𝑥 is the maximum baseflow index, i.e., the long-term mean 

proportion of baseflow in the streamflow. A quickflow component 𝐴𝑡 is 

simply obtained considering that 𝐴𝑡 = 𝑄𝑡 − 𝐵𝑡. The 𝛼 parameter can be 

estimated from recession analysis. However, the 𝐵𝐹𝐼𝑚𝑎𝑥 is harder to estimate 

based on hydrograph time-series analysis. In practice, rough guidelines exist 

based on dominant catchment geology, rough estimates can be obtained from 

percentile statistic,  or one has to get involved in time-consuming and sporadic 

tracing tests. The effect of these two parameters on the baseflow separation is 

illustrated in Figure IV.1 (with 𝐵𝐹𝐼𝑚𝑎𝑥 denoted as 𝛽).  

 

Figure IV.1: Illustrated effects of the recession constant 𝛼 and the maximum 

baseflow index 𝛽 on the output of hydrograph separation using the Eckhardt 

filter.  

Before focusing exclusively on recession analysis, the initial work related to 

Chapter 4 also investigated hydrograph separation with the Eckhardt filter. 

Using synthetic streamflow series, the analysis revealed interesting cross-
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predictive patterns between 𝐴𝑡 and 𝐵𝑡 that depends on the 𝐵𝐹𝐼𝑚𝑎𝑥 parameter 

and could therefore be used for the parametrization of the Eckhardt filter 

(Figure IV.2.A). Instantaneous cross-prediction were made with the bivariate 

extension of the EDM-Simplex algorithm, also known as Convergent Cross 

Mapping [2], from reconstructed Eckhardt quickflow 𝐴𝑡 to its corresponding 

Eckhardt baseflow series 𝐵𝑡 with an embedding dimension of 3. Five virtual 

streamflow series of constant 𝛼 and known 𝐵𝐹𝐼𝑚𝑎𝑥 ranging between 0.32 to 

0.82 were decomposed into 30 baseflow series using linearly increasing 

𝐵𝐹𝐼𝑚𝑎𝑥 from 0.1 to 0.97. The results of the virtual experiment (Figure IV.2.A) 

exhibit a clearly discernible pattern:  whenever the Eckhardt 𝐵𝐹𝐼𝑚𝑎𝑥  

parameter is close to the value obtained from the model generating the 

synthetic series, prediction skills from quickflow to baseflow tends to be 

minimum. On the real Lhomme dataset (section S1, S2, S3), a initial decay of 

forecasting skills is observed up to a point that could be suggested as a proper 

𝐵𝐹𝐼𝑚𝑎𝑥 (Figure IV.2.B), considering the patterns of Figure IV.2.A. However, 

no strong rebound of predictive skill is observed, as in Figure IV.2.A, and the 

patterns in Figure IV.2.B are rather assimilable to a kneel.  

Although these patterns are interesting and, I believe, correlate with the actual 

baseflow index, the analysis was not included in the published version of the 

paper or chapter 4 because: (1)  considering both recession analysis and 

hydrograph separation with virtual and real experiments made the paper 

cumbersome, (2) the idea of combining a nonlinear method for parameterizing 

a linear filter is somewhat far-fetched, and (3) the patterns did not find enough 

explanatory elements to enlighten their form.  

[1]  Eckhardt, K. « How to Construct Recursive Digital Filters for Baseflow Separation ». 

Hydrological Processes 19, no 2 (2005): 507-15. https://doi.org/10.1002/hyp.5675.  
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Figure IV.2: Eckhardt baseflow prediction skills from Eckhardt quickflow 

applied to (A) synthetic streamflow - Each color corresponds to a virtual series 

defined by its known baseflow index (𝐵𝐹𝐼). Actual BFI from the model are 

reported on the X-axis, allowing to relate the prediction skills pattern across the 

range of 𝐵𝐹𝐼𝑚𝑎𝑥 to the original value. -; (B) to the Lhomme dataset. Each color 

corresponds a Lhomme river gauging station ordered from upstream to 

downstream: S1(lime), S2 (pink), S3 (violet). For each subplot, colored band 

represents 3 standard deviations of CCM prediction skills. 
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Appendix V. Example of Empirical Recession 

Extraction 

Figure V.1 illustrates how recession points can be identified based on EDM-

Simplex self-predictions for station S3. The hyper-parametrization of EDM-

Simplex is different from the final one presented in section 4.2.3. For instance, 

Figure V.1 considers a prediction horizon 𝑡𝑝 of 1 day, instead of 0 days, 

explaining the higher error threshold (around -6 instead of -10). The 

underlying logic and philosophy of extraction remain the same: recession 

points are the most deterministic and most self-predictive points in the 

hydrograph. Therefore, the method extract recession points as hydrograph 

points with the best median self-predictive skills, i.e., those lying on the 

identity line in Figure V.1.a. In practice, the point are extracted using a 

threshold value on the error function log (𝜀2/𝑄) where 𝜀 are the residuals 

between the observed 𝑄 and the median EDM-Simplex prediction. Dividing 

by 𝑄 allows to be more tolerant for high 𝑄 values, that are early recession 

points presenting a more uncertain dynamic. The threshold is set at -6 six such 

that recession points correspond to an unbiased model, meaning that the 

Esperance of residuals �̂�[𝜀] should be around zero (Figure V.1.b). To avoid 

remaining anomalies or isolated recession points, a post-processing criterion 

is used to keep recession segments of minimum 2 days. The results for the 

first two years are shown in Figure V.1.c.  
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Figure V.1: Empirical recession extraction for station S3 using EDM-Simplex: 

(a) Scatterplot of the median EDM-Simplex prediction at 𝑡 + 1 applied on the 

full S3 time series. Errors are represented using the logarithm of the squared 

residuals 𝜀2 divided by 𝑄. Deterministic recession points are expected to fit on 

the identity line with low errors (blue points); (b) Error threshold versus the 

mean and median of residuals sampled below the threshold. The final threshold 

is selected so that the EDM model for recession is unbiased both on raw data 

(raw) and on segments of a minimum length of 2 days (filter) ; (c) Results of 

the extraction on the first two years of S3 (blue points) for the segments of a 

minimal length of at least 2 days. The color under the streamflow curve map to 

the color bar of (a) and represents the inherent uncertainties associated with 

recession.  
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Appendix VI. Chapter 6 Supplementary Figures 

A. Virtual experiment 

 

Figure VI.1: Time-dependencies for the CCF method on raw data with a noise 

level factor of 0.15 

 

Figure VI.2: Time-dependencies for the CCF method on differenced data with 

a noise level factor of 0.15 



- 268 - Appendix VI 

 

Figure VI.3: Time-dependencies for the CCM method on raw data with a noise 

level factor of 0.15. CCM was applied with an embedding dimension of 2, an 

embedding delay of 1, and a library length of 200. 

 

Figure VI.4: Time-dependencies for the CCM method on differenced data with 

a noise level factor of 0.15. CCM was applied with an embedding dimension of 

2, an embedding delay of 1, and a library length of 200.  
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Figure VI.5: Time-dependencies for the ParCorr method on raw data with a 

noise level factor of 0.15. 

 

Figure VI.6: Time-dependencies for the ParCorr method on differenced data 

with a noise level factor of 0.15. 
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Figure VI.7: Time-dependencies for the CMI method on raw data with a noise 

level factor of 0.15 and a 𝑘𝐶𝑀𝐼 of 20. 

 

Figure VI.8: Time-dependencies for the CMI method on differenced data with 

a noise level factor of 0.15 and a 𝑘𝐶𝑀𝐼 of 20. 
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Figure VI.9: Influence of noise level on ParCorr resulting DAG of cross-

dependencies. The individual plots (a to o) indicate the significant causal 

relationship (p-val < 0.01) using directional arrows whose color corresponds to 

the value of the partial correlation. Causal delays are annotated next to each 

arrow. ParCorr is applied to each raw dataset corresponding to the scenarios of 

Table 6-2 (columns) for different multiplicative noise factors (rows). 
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Figure VI.10: Directed Acyclic Graph of ParCorr cross-dependencies. The 

individual plots (a to o) indicate the significant causal relationship (p-val < 

0.01) using directional arrows whose color corresponds to the value of the 

partial correlation. Causal delays are annotated next to each arrow. ParCorr is 

applied to each differenced dataset corresponding to the scenarios of Table 6-2 

(columns) for different multiplicative noise factors (rows). 
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Figure VI.11: Directed Acyclic Graph of CMI cross-dependencies with a 𝑘𝐶𝑀𝐼 

parameter equal to 5. The individual plots (a to o) indicate the significant causal 

relationship (p-val < 0.01) using directional arrows whose color corresponds to 

the value of the partial correlation. Causal delays are annotated next to each 

arrow. The CMI test is applied to each raw dataset corresponding to the 

scenarios of Table 6-2 (columns) for different multiplicative noise factors 

(rows). 
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Figure VI.12: Directed Acyclic Graph of CMI cross-dependencies with a 𝑘𝐶𝑀𝐼 

parameter equal to 20. The individual plots (a to o) indicate the significant 

causal relationship (p-val < 0.01) using directional arrows whose color 

corresponds to the value of the partial correlation. Causal delays are annotated 

next to each arrow. The CMI test is applied to each raw dataset corresponding 

to the scenarios of Table 6-2 (columns) for different multiplicative noise factors 

(rows). 
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Figure VI.13: Directed Acyclic Graph of CMI cross-dependencies with a 𝑘𝐶𝑀𝐼 

parameter equal to 20. The individual plots (a to o) indicate the significant 

causal relationship (p-val < 0.01) using directional arrows whose color 

corresponds to the value of the partial correlation. Causal delays are annotated 

next to each arrow. The CMI test is applied to each differenced dataset 

corresponding to the scenarios of Table 6-2 (columns) for different 

multiplicative noise factors (rows). 
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B. Hydrological Connectivity in the Vadose Zone 

 

Figure VI.14: CCF dependencies between all variables. All x-axis report the 

delay 𝑑 and all y-axis the CCF Pearson correlation values. Red stars, orange 

squares, and green triangle reports respectively p-values below 0.001, 0.01, 

0.05. Titles 𝑋𝑡 → 𝑌𝑡 indicates which variable is the delayed potential driver (𝑋𝑡) 

and the response variable (𝑌𝑡).  
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Figure VI.15: CCM dependencies between all variables. All x-axis report the 

delay 𝑑 and all y-axis the CCM Pearson correlation values. Red stars, orange 

squares, and green triangle reports respectively p-values below 0.001, 0.01, 

0.05. Titles 𝑋𝑡 → 𝑌𝑡 indicates which variable is the delayed potential driver (𝑋𝑡) 

and the response variable (𝑌𝑡). CCM was applied with an embedding dimension 

of 2, an embedding delay of 1, and a library length of 100. 
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Figure VI.16: Graph of ParCorr cross-dependencies. (A.x) Unconstrained 

graph; and (B.x) constrained as follows: (1) ET and RF have no parents and are 

considered as exogeneous variables; (2) resistivity series cannot have a drip 

discharge series as parents; (3) a drip discharge series cannot have drip 

discharge series as parents except itself. Contemporaneous dependencies are 

represented by a bidirected straight arrow, delayed dependencies with curved 

arrows. All delays 𝑑 are displayed in the middle of its corresponding arrow. 

The color of arrows maps to ParCorr dependencies. Solid and dash-dotted 

arrows represent respectively significant dependencies with p-value < 0.001 

and < 0.01. Variables are: evapotranspiration (ET), rainfall (RF), subsurface 

clustered resistivity time-series, and drip discharge data in the Rochefort Cave 

(P1 to P3). Resistivity clusters for A.1 and B.1 are those of Figure 5-6.n and 

their spatial extent of are displayed in the background using the same color 

palette. Resistivity clusters A.2 and B.2 are those from the expert classification 

of Figure 3-5 using the same color palette. 
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Figure VI.17: Graph of CMI cross-dependencies … 
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(A.x) Unconstrained graph; and (B.X) constrained as follows: (1) ET and RF 

have no parents and are just considered as exogeneous variables; (2) resistivity 

series cannot have a drip discharge series as parents; (3) a drip discharge series 

cannot have drip discharge series as parents except itself. Top row (A.1, B.1), 

middle row (A.2, B.2) and bottom row (A.3, B.3) uses respectively  a 𝑘𝐶𝑀𝐼 of 

15, 30, and 35. Contemporaneous dependencies are represented by a bidirected 

straight arrow. Delayed dependencies are shown using directed curved arrows. 

All corresponding delays 𝑑 are displayed in the middle of its corresponding 

arrow. The color of arrows maps to CMI dependencies. Solid, dash-dotted, and 

dotted arrows represent respectively significant dependencies with p-value < 

0.001,  < 0.01, and < 0.05. Variables are: evapotranspiration (ET), rainfall (RF), 

subsurface clustered resistivity time-series (R0 to R5), and drip discharge data 

in the Rochefort Cave (P1 to P3). Resistivity clusters are those of Figure 5-6.f 

and their spatial extent of are displayed in the background using the same color 

palette. 
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C. Drivers of the Mass Balance 

 

Figure VI.18:: CCF dependencies between all variables. All x-axis report the 

delay 𝑑 and all y-axis the CCF Pearson correlation values. Red stars, orange 

squares, and green triangle reports respectively p-values below 0.001, 0.01, 

0.05. Titles 𝑋𝑡 → 𝑌𝑡 indicates which variable is the delayed potential driver (𝑋𝑡) 

and the response variable (𝑌𝑡).  
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Figure VI.19: CCM dependencies between all variables. All x-axis report the 

delay 𝑑 and all y-axis the CCM Pearson correlation values. Red stars, orange 

squares, and green triangle reports respectively p-values below 0.001, 0.01, 

0.05. Titles 𝑋𝑡 → 𝑌𝑡 indicates which variable is the delayed potential driver (𝑋𝑡) 

and the response variable (𝑌𝑡). CCM was applied with an embedding dimension 

of 2, an embedding delay of 1, and a library length of 100. 
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Figure VI.20: Graph of cross-dependencies … 
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(A.x) unconstrained graphs; (B.x) Constrained graphs CCM.; From the top row 

(A.1, B.1) to the bottom row (A.4, B.4), 𝑘𝐶𝑀𝐼 varies as follows: 15, 20, 25, and 

35. Variables are evapotranspiration (ET), rainfall (RF), groundwater level 

(GL), relative gravimetry (RG), atmospheric pressure (AP), and drip discharge 

data (P1, P3). Contemporaneous dependencies are represented by a bidirected 

straight arrow. Delayed dependencies are shown using directed curved arrows. 

All corresponding delays d are displayed in the middle of its corresponding 

arrow. The color of arrows maps to the color bar scaling the time-dependencies. 

Solid, dash-dotted, and dotted arrows represent respectively significant 

dependencies with p-value < 0.001,  < 0.01, and < 0.05. 
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Appendix VII.  Pictures 

 

Photo VII.1: The Vauclusian spring of Eprave (forefront) returning water to 

the Lhomme River (background).  Source: KARAG (www.karag.be) 

 

Photo VII.2: The Lhomme River (forefront) overflowing into the Nou Maulin 

cave (background) and flooding the cave system at Rochefort. Source: KARAG 

(www.karag.be) 
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Photo VII.3: The Lhomme River, just upstream to the Vauclusian spring of 

Eprave, with almost no flow on the 12th of October, 2018, after a warm summer. 

Source: UNamur (Gaëtan Rochez, Amaël Poulain).  

 

 

Photo VII.4: Shelter housing the relative superconducting gravimeter at the 

entrance of the Rochefort Cave Laboratory. Source: ROB (Michel Van Camp).  
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Photo VII.5: The relative superconducting gravimeter, with its shelter. Source: 

UCLouvain (Damien Delforge).  

 

Photo VII.6: The staircase installed in the doline to access the cave (left). The 

Electrical Resistivity Tomography (ERT) profile of 48 electrodes starts 

vertically at the bottom next to the staircase (visible on the left) and progresses 

to the surface where it becomes horizontal (right). Source: ORB (Michel Van 

Camp).  
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Photo VII.7: Drip discharge monitoring device within the cave (P1). Source: 

UCLouvain (Sebastien François).  

 


