Model-Checking CTL* over
Flat Presburger Counter Systems

Stéphane Demri — Alain Finkel " — Valentin Goranko™ — Govert
van Drimmelen ™

“LSV, ENS Cachan, CNRS, INRIA
61 av. Pdt. Wilson, 94235 Cachan Cedex, France

{demri,finkel}@lsv.ens-cachan.fr

™ Informatics and Mathematical Modelling, Technical Unisigy of Denmark
Richard Petersens Plads, DK-2800 Kgs. Lyngby, Denmark

vigo@imm.dtu.dk

*k

Department of Mathematics, University of Johannesburg
Private Bag X1, Auckland Park 2006, South Africa

{govertvd}@uj.ac.za

ABSTRACT.This paper studies model-checking of fragments and extenisif CTL* on infinite-
state counter systems, where the states are vectors oéistagd the transitions are determined
by means of relations definable within Presburger arithméti general, reachability properties
of counter systems are undecidable, but we have identifiedLaal class of admissible counter
systems (ACS) for which we show that the quantification oattrsgpn CTL* can be simulated
by quantification over tuples of natural numbers, evenyuallowing translation of the whole
Presburger-CTL* into Presburger arithmetic, thereby eliadp effective model checking. We
provide evidence that our results are close to optimal wepect to the class of counter systems
described above.

KEYWORDS: model-checking, infinite-state transition systems, Rmggy arithmetic, CTL* ,
counter systems

DOI:10.3166/JANCL.20.313-34@) 2010 Lavoisier, Paris

*. Supported by CNRS/NRF projects No 15469 and No 19812, RNmjept AVERILES,
ANR projects AVERISS and VERIDYC.

Journal of Applied Non-Classical Logics. Volume 20 — No.G#Q, pages 313 to 342

1. Introduction

Background. Model-checking of infinite-state systems (for a survey &aeKart
et al, 2001)) is a rapidly growing area of formal verification. Hshbeen success-
fully applied to real-time and hybrid systems, concurrerstems, Petri nets, asyn-
chronous communication devices (unbounded FIFO chanivdisjte and unbounded
data structures (counters, queues, lists), control systparameterized systems (net-
works of arbitrary number of processes), etc. The singletinggortant property of
practical interest in infinite-state transition systemstéte reachabilityvhich is often
undecidable in structures with otherwise decidable firdeotheories, such as auto-
matic structures (Khoussain@t al, 1995). Therefore, intensive research has been
devoted to identifying classes of finitely presentable itdistructures with decidable
reachability and related properties.

Transition systems determined by relations definable islRRnger arithmetic pro-
vide a large natural class of infinite-state transitioneyst (Bardiret al., 2005), suit-
able for modeling in various applications such as the TTRdea (embedded sys-
tems) (Bardiret al, 2004), broadcast protocols (Espaetal., 1999), and programs
with pointer variables (Bardiat al., 2006a; Bouajjarét al., 2006; Finkekt al., 2009).
Important cases of such transition systems with computaa@ehability have been
established in (Ibarra, 1978; Fribougg al, 1997; Comornet al, 1998; Finkelet
al., 2000; Finkelket al, 2002). The method of acceleration for computing reackigbil
sets has been developed in (Boigelot, 1998; Leroux, 2008)saimplemented in the
verification tool FAST (Leroux, 2003; Bardiret al, 2004; Bardiret al,, 2006b); see
also the verification tools LASH (Boigelot, 1998) and TReXh¢Achiniet al,, 2001).

Motivation. For practical model-checking, an infinite-state systemtrbespro-
vided with an effective finitary presentation, and in parée, must admit a symbolic
representation of sets of states and transitions. Sucleseptations can be based
on:

— automata (finite, pushdown, on infinite words or trees,)ets in pushdown
graphs (Mulleet al,, 1985), prefix-recognizable graphs (Caucal, 2003), anuhaatic
structures (Blumensatt al., 2004),

— interpretations into sufficiently rich infinite structgrevith respective decid-
able theories, e.g., again, automatic structures (Bluatbret al, 2004) and tree-
interpretable structures (Blumensath, 2002), (Cauc@320

— algebraic equations or operations (Courcelle, 1990), etc

Presburger arithmetic (PrA) is a logical formalism thatisumental in many applica-
tions and it is a particularly appropriate platform for syatibrepresentation of a wide
variety of infinite state systems, such @unter systeméee (Bardiret al,, 2003))

where vectors of integers are subjected to linear transfttoms according to a finite
control graph. These strongly extend counter automataglirl967) and even very
simple examples of counter systems can have notorioudlgudifand unpredictable
behaviour, a witness being the Collatz problem (a.k.a. §racise problem), see
e.g. (Lagarias, 1985). An important and natural class oht&usystems, in which

314

various practical cases of infinite state systems can be lledde.g. broadcast proto-
cols (Finkelet al,, 2002)), are those with #lat control graph, where no control loca-
tion occurs in more than one simple cycle (see (Boigelot31€®monet al., 1998;
Comonet al, 2000; Finkelet al,, 2002; Bardiret al,, 2003; Leroux, 2003; Lerougt
al., 2005; Bardiret al., 2005; Bozgaet al., 2009)). Essential results on verifying safety
and reachability properties on flat counter systems have bbtined in (Comoet
al., 1998; Finkelet al,, 2002). However, until recently such properties had nohbee
considered in the framework of any formal specification leange, and thus a natural
question ariseto identify expressive logical languages in which formadfication
and verification of properties of counter systems can be goted

On the other hand, most of the studies on CThodel checking so far have been
restricted to (unfoldings of) finite transition systemsgdew decidability results for
CTL*-model checking on essentially infinite-state systems amwk (Finkelet al,
1997; Bouajjankt al, 1997). This is particularly surprising since CTls one of the
most known applied non-classical logics among the tempogats. Actually, most
of these results are immediate consequences of strongéisralsout decidable modal
mu-calculus, or even the whole monadic second-order Idg&8Q@) in such systems,
see e.g. (Walukiewicz, 2001). Furthermore, these deditlat@sults typically refer to
the propositional CTL, while model checking of first-order extensions of even much
simpler temporal logics is typically undecidable. That isywit is importanto search
for larger classes of effectively generated infinite statetems (without necessarily
decidable MSO), but in which natural first-order extensioh£TL* have decidable
model-checking problems

Our contribution. In this paper, which is an improved and extended version of
(Demriet al,, 2006), We jointly address both problems described abakwe obtain
a nearly optimal solution of them. Our main contributions tire following:

1) We introduce an extension of CTI(Emersonet al., 1986) over Presburger
arithmetic, i.e., where atomic propositions range ovesBugger-definable sets of
configuration states. We interpret that extension overfairger counter systems (ab-
breviated by PCS), thus proposing a very powerful specifindanguage for such
systems. Presburger counter systems are infinite-statsitiom systems with states
being vectors of integers (counter values) and transitgations definable in Pres-
burger arithmetic. This class of models naturally incluthess counter automata (or
Minsky machines). Presburger counter systems are initegaattwo complementary
ways: they naturally arise in the reachability analysisairtter systems, and on the
other hand they can be viewed as models for symbolic reptatsem of infinite state
transition systems.

2) We identify a class of Presburger counter systems for lwitie local model
checking problem for the Presburger-CTik decidable. These are Presburger counter
systems defined over flat control graphs with arcs labelletldnsition functions de-
fined by Presburger formulae, for which counting iteratiseroevery cycle in the
control graph is Presburger definable. A well-studied casenthe latter condition is
satisfied is when the composition monoids generated by #msition functions over

315

every cycle are finite (see (Finket al,, 2002)).

3) We show that the decidability results described abovsigtein some strong
extensions of the Presburger-CTlLe. with a class of temporal operators defined by
means of constrained queue-content decision diagramsJ@kzD) (see (Bouajjani
etal, 1999)) in a way analogous to Wolper’s Extended temporatifgolper, 1983).

4) We provide evidence that our results are close to optiniidl kespect to the
class of Presburger counter systems described above, Wyrghthat small relaxations
of each of the conditions lead to undecidability. For examply dropping either the
counting iteration property or the flatness condition, widibility is obtained.

Related work. Analyzing the reachability problem for counter systemsas p
ramount for the verification of infinite-state systems, sag @barraet al., 2000)
(reversal-bounded systems), (Corradral,, 1998) (flat systems), (Finket al, 2002)
(flat Presburger transition systems), (Dagtgal., 2003) (discrete timed automata),
see also the decidability of reachability for classes obfQnter systems (Finkedt
al., 2000). It is worth noting that, even though decidabilityndze obtained only at
the cost of making drastic restrictions on counter systeéhesge is a natural class of
counter systems that are sufficiently expressive for modgtlifferent case studies
and for which one may verify the safety properties by meanthefeffective com-
putation of the reachability relation (Finket al, 2002; Bardinet al, 2003; Ler-
oux, 2003; Lerowet al, 2005; Bardinet al,, 2005). For instance, the flattable sys-
tems (Lerowet al., 2005) admit a flat finite unfolding of the control graph wittet
same reachability set. On the logical side, temporal logitls Presburger constraints
have been defined and investigated@egns, 1994; Bouajjanét al, 1995; Bultaret
al., 1997; Comoret al, 2000; Schuelet al., 2004; Demri, 2006; Bruyéret al., 2003),
some of which have quite expressive decidable fragmentsveMer, undecidability
of the reachability problem can be proved for quite restdctounter systems, see
e.g. (Cortier, 2002; Potapov, 2004) while at the same tinng fesv classes of counter
systems are decidable for CTl(see e.g. (Finkeét al, 1997) for one-counter sys-
tems). A logical formalism closer to the one developed iis fhéper is presented
in (Bultan et al, 1997) where an undecidable temporal logic with CTL-likeexap
tors and atomic formulae in Presburger arithmetic is intaztl and the models are
counter systems. The class of models is not restricted éhdacidability does not
hold) but model-checking is performed by a symbolic analgsid an approximation
algorithm. Interestingly, if we restrict ourselves to tlzere temporal operators, it is
open whether our main decidability result can be estaldisiyegiving up functional-
ity. Model checking discrete timed automata with paranseimed CTL is also shown
decidable by translation into Presburger arithmetic irugreet al,, 2003).

Structure and content of the paper.In Section 2 we present preliminary defini-
tions about graphs and Presburger arithmetic. In Sectioe Bitwoduce the class of
Presburger counter systems (PCS) and we present the bigrtahie temporal logic
FOPCTL*(PrA)[n] whose models are transition systems generated from PCS. Ad-
missible PCS are introduced in Section 4 and we recall (widdeility results of the
reachability problem for some classes of PCS. In Sectiore5slvow our main decid-

316

ability result about model-checking admissible countsteys with FOPCTL(PrA)[n].
Section 6 provides undecidability results indicating tbat result in Theorem 20 is
close to optimal.

In Section 7 we show the decidability of model-checking peafs over admissible
PCS even when CQDD-based temporal operators are added tentperal logic.
Section 8 contains concluding remarks and states opengimslykelated to our results.

2. Preliminaries

Graphs, paths, cyclesA labelled graplg = (%, Q, E) is a structure such th&
is a non-empty set. is a non-empty finite alphabet arfd C @ x ¥ x Q. Graphs
with a singleton alphabet are the standard graphs. As uépal,q’) € FE is also

a

denoted byy % ¢/. A pathin G is a sequencey 2% ¢;... == ¢, such that
fori € {0,....,n -1}, ¢ & ¢i,1 is a transition. Acyclein a labelled graph is
a closed path (where the initial and final vertices coincidigh no repeating edges.
A simple cycléds a cycle in which the only repeated vertex is the initialddimal)
vertex. Observe that herein we use notions about cyclesdiftatent from those in
graph theory. Given a path = ¢y 2% ¢; ... “*=3 ¢,, where eachy; € Q, a; € %,
we define thdength of) to be|\| = n. A graph isflatif every cycle in it is a simple
cycle; equivalently, if every vertex occurs in at most oneley

Presburger arithmetic. Presburger arithmetic is the first-order theory PrA of
the structure(N, 4+, <), well-known to be decidable (Presburger, 1929). However,
all results in this paper will still hold in a more generaltsej, based on the struc-
ture (Z, +, <) which is easily seen to be first-order interpretable iffo+, <), and
therefore has a decidable first-order theory, too. For saitylof notation, and with
a benign abuse of terminology, hereafter we will refer to fing-order theory of
(Z,+, <) as Presburger arithmetic, too, and will use the same natafoA, for it.
Given a Presburger formuld(z1, ..., z,) with free variables ik = (x1,...,2,)
anda = (a1,...,a,) € Z", the truth ofA(z1, ..., ,) with respect to the assign-
ment of values to x is denoted bya =p,a A(x). Elements ofZ™ will be usu-
ally denoted bya, b, ¢, ... and vectors of variables will be denoted kyy, z,

t, ..., possibly decorated. A séf C 7Z" is said to bePresburger definabléf
there is a Presburger formuli(x) with free variablesx = (z1,...,z,) such that

X ={a€Z":alpna Ax)}. Forn > 0, A binary relation of dimensiom is a
relationR C Z" x Z". RespectivelyR is Presburger definable iff there is a Presburger
formula A(x, x’) with free variablex = (z1,...,z,) andx’ = (z,...,z.) such
thatR = {(a,a’) € Z" x Z" : a,a’ = A(x,x')}.

DEFINITION 1. — Let f be a partial function fromZ™ to Z™ with domain

dom(f).

— fis atranslationf there exist® € Z" such that for every € dom(f) we have
f(a)=a+b.

317

— fis affineif there exist a matrixA € Z"*™ andb € Z" such that for every
a € dom(f) we havef(a) = Aa+b.
— fis Presburger definabl# the graph off is a Presburger definable relation.

3. Temporal Logics on Presburger Counter Systems

In this section, we introduce Presburger counter systeiha éirst-order extension
of the temporal logic CTEL interpreted over such systems.

3.1. Presburger Counter Systems

The Presburger transition systems defined below are intétte transition sys-
tems that can be finitely described by formulae in Presbuagtimmetic.

When infinite state transition systems arise in the modedfrgpmputational pro-
cesses, there is often a natural factoring of each systeeista a control component
and a memory component, where the set of control statedifposiis typically finite.
We refer to the combined state of the system, containingdbation, the memory
state and the position of the head, aafigurationof the system.

We will be interested in systems where the memory states-alimmensional vec-
tors of integers. In particular, we define systems whererthresition relation on such
vectors may be described by relations definable in Presbargemetic.

DEFINITION 2. — A Presburger counter system (PCS) of dimensids a labelled
graphC = (3, @, d,n), where

— Y is afinite set of Presburger formulae of the forix, x’) wherex andx’ are
tuples ofn variables,

— @ is afinite set of locations,

— 0 C @ x X x @ isthe transition relation.

By convention, prime variables i are intended to be interpreted as the next-state
values of the unprimed variablesin

Given two locations; and¢’, we write A, . (x,x’) to denote the disjunction of
all the formulaeB(x,x’) such that(q, B(x,x’),q¢') € ¢. Thus, without any loss of
generality, we can assume that there is a unique transigtwezn every two control
states. When there is no transition between a pair of statéicounter system, we
introduce one labelled by falsurh.

Thus, a PCS can be regarded as a labelled graph with alphaloiet ofi specific
Presburger formulae.

Figure 1 contains a simple Presburger counter system, autgchwvith an initial
location and final location.

318

Fy(z=2y)N22' =2)V (-Fylz =2y) A2’ =3z +1)

r=x+1

Figure 1. A simple Presburger system

Every PCS = (X, Q,) of dimensiom naturally induces &resburger transition
system (of dimensiom): S¢ = (S, —) whereS = @ x Z" is a set ofconfigurations
and(g,a) — (¢’,a’) iff a,a’ =pra Aq,¢ (x,%x’). As usual—* denotes the reflexive
and transitive closure of the relatier. Whenever{q,a) —* (¢/,a’), we say that
(¢',a’) is reachablefrom (g, a). Without any loss of generality, we can assume that
Q C N, henceS C Z"*!. Depending on the context, the configurationSefwill be
written asa = (q,as, ..., a,) (location encoded in the first elementafor simply
as{q,a) € @ x Z". A configuration pathn C is an infinite path inSc.

We say that:

— Cisfunctional if for all ¢, ¢’, the formulad, . (x, x") defines a partial function.

— afunctional PC$ is acounter automatoyif for all ¢, ¢’, A, . (x,x") defines a
translation.

— afunctional PCSE is affineif for all ¢, ¢’, A, o (x,x’) defines an affine function.

PrRopPOSITION3. — Each of the following properties of Presburger counter sgst
being functional, translation (i.e., a counter automatam)affine, is definable in PrA,
and therefore decidable.

PrROOF4. — Let A(x,x’) be a Presburger formula over the free variabtes=
(1,...,zy) andx’ = (x},...,). Itisimmediate to check that:

— A(x,x’) is functional iff
Fera VXVYVY' (A(x, y) A AX,Y)) = (y = ¥))-

319

— A(x,x’) is a translation iff

FPra /\ FVxVy (A(x,y) = yi = 7 + 2).

i=1

To check whether (x, x’) is affine requires a bit more work. We want to check the
existence of a matriA € Z"*" and a vectob € Z" such that for everg € dom(f)

we havef(a) = Aa + b, where, f(a) is the uniquea’ such thata,a’ = A(x,y).
The solution below is a bit more complex than the straightéod approach. Indeed,
f(0) = b, which allows to defind. A similar reasoning would allow to compute
each column ofA by applyingf to unit elements. However, this is not sufficient since
f is partial and for instanc¢(0) may be undefined. A less straighforward approach
is described below. Here is how this can be done.

— First, note thatlom(f) is Presburger definable by the formalpA(x, y).
— Thereforedom(f) can be defined as a finite union of sets of the form

Si={bi+Mpi1+- -+ A, Pini t Ay, A, €NY

whereb;, p; 1,...,Pin, € Z™ (the basis and the periods). All these integers can be
effectively computed (Ginsburgt al., 1966).

Suppose the union has sets. Iff is affine, thenf(a) = Aa + b for someA
andb.]’hen foreveryl <i < K andl < j < ny, there is a unique integer vector
cij (= Apj,n,) such that for every. € S; we have that

f(z+Pjn;) — f(2) = cj. (*)

(Indeed:f(z+pj7nj) — f(z) = A(z+pj7nj) +b— (Az—l—f)) = Az—l—AijW +
b—Az—b= Apjmj = cjj.)

The existence of such unique vector can be easily expregsadPbesburger for-
mula and then verified. If false, thehis not affine. If true, therA andb must, in
particular, satisfy the equations:

Apj,nj = f(bi+ pjn,;) — f(bs) foreveryl <i< Kandl <j<mn; (¥x)
Ab; +b = f(b;) foreveryl <i< K. (% % %)

This is a system of linear equations with integer coefficgidat then? + n integer
entries of the matriA and the vectob. To find an integer solution of that system, or
to show that there is none, one can use e.g., the method frapa¢#mitriou, 1981) or
(Boroshet al,, 1976). If there is no integer solution, then such matrix eactor do
not exist, sof is not affine. If there is an integer solution, take any ondgiermines
a matrixA and a vectob.

We can now check that(a) = Aa + b for anya € dom(f). Indeed, using the
equations (*), (**), and (***) we have thaf(a) = f(b; + X;\;pi,;) = f(bi) +
Ej)\jApi_’j = Abl + b + Ej)\jApi_’j = A(bl + Ej)\jpiyj) + b = Aa + b. |

320

3.2. The Temporal Logic FOPCTLE(PrA)

We now define a version FOPCT(PrA) of first-order and past-time extension
of CTL* that is appropriate for reasoning about Presburger tiansitystems. The
name 'FOPCTLE(PrA)’ indicates that FOPCTL(PrA) contains past-time operators,
first-order quantification over integers and its underlytgrmporal logic is CTE. The
logic FOPCTL (PrA) differs from standard CTLwith past mainly in the definition of
atomic formulae. Whereas propositional variables are ustite propositional CTEL,
we will use as atomic formulae in FOPCT(PrA) Presburger definable predicates,
interpreted on the set of configurations.

We introduce a countable set of individual variables, saRVA {yo, y1,y2 - - .},
for quantification over counter values. Elements of VAR astimct from the distin-
guished ones ifxg, 21, . . ., x, } that are free variables, only interpreted by the values
of counters on configurations (the control location beingoeled by the interpreta-
tion of zp). In order to match the dimension of the models where suahditae will
be interpreted, the Presburger definable predicates mustehenatching number of
free variables, thus giving a family of logics FOPCTErA)[n]| parameterized by the
dimensionn > 1. When the dimension is clear from the context, we just refer to
FOPCTL (PrA).

Atomic formulae of FOPCTL(PrA)[n] are Presburger formulae of the fotifx, y)
wherex = xg,xz1,...,2, andy is a vector of variables from VAR, regarded as pa-
rameters.

Formulae of FOPCTL(PrA)[n] are defined as follows:

def _
= 0(xy) [l eAe|Xe|oUp | X | Sp |Ap | Ty,

wherey € VAR andy is a sequence of variables. We shall freely use standare-abbr
viations for the implication=-, the existential path quantifi@r, the always operator
G, and the sometimes operator

The LTL fragment of FOPCTt(PrA), denoted by FOLTL(Pr), consists of for-
mulae of the form eitheE ¢’ or A ¢’ where¢’ has no path quantifiers and no past-
time operators. We define thatrict EF fragmentof FOPCTL*(PrA) as the set of
FOPCTL*(PrA) formulae containing only the temporal operakoF and no nested
occurrences of F. Hence, this fragment has no past-time operators either.

We will give semantics of FOPCTI(PrA) over Presburger transition systems.
The satisfaction relatiof= is parameterized by aenvironmenp that is a map VAR
— Z, in order to interpret the free variables from VAR that ocicuiormulae (the map
p will be omitted when not immediately relevant). For a PCS= (X, Q, J, n) with
Presburger transition systefizy = (S, —), the satisfaction relatiop-* is defined at
positions of configuration pathr as follows, wherer<; denotes the initial part of
up to and including position; the environmenp will be omitted wherever it is not
essential.

321

— i =P 0(x,y) iff w(i), p E 0(x,y) in PrA, wherer (i) provides the interpre-
tation of the variables,, . . . , 2, andp the interpretation for the variablesyn

— 7,1 = piff 7, i [E o,

—miE N iff 1,i = pandr, i ¢,
miEXeiff mi+1FE ¢,

— i | Uy iff there is somej > 4 such thatr,j = ¢ and for eachk, if
i <k <jthenm k| ¢,

- miEXliff i >0andr,i— 1 ¢,

— 7,1 | 8¢’ iff there is somej < i such thatr,j = ¢’ and for eachk, if
j<k<ithenm k | ¢,

— m,1 = A @ iff for every infinite configuration pathr’ such thatr’, = 7<, we
haver’,i | ¢, B

— m,i = 3y iff there is an integern € Z such thatr,i ="V ,» where
ply < m] is the environment obtained fromby forcingy to be interpreted byn.

Past-time operators are known to simplify the expressidrspecifications, see
e.g. (Laroussiniet al,, 2000). Here is an example of formula with a past-time opera-
tor:

AG ($1 = X9 = F71$3 = $4>

The forthcoming translation will treat future-time and pase temporal operators
uniformly.

First-order quantification over counter values allows ustide many interesting
properties in FOPCTL(PrA):

Determinism: For all the configurations reachable from the initial confagion, there
is at most one successor configuration:

AG A\ —FyEX(zi =y) NEX(z; #y)).
0<i<n

Boundedness: The set of configurations reachable from the initial confidion is
finite:
.y’ a6 N\ y<a <y
1<i<n

Increasing chain: On some path the first counter strictly increases at evepy ste

EGIy (y = 1 AX(z1 > y)).

3.3. Model checking problems for FOPCTLPrA)[n|
In the definition of model-checking problems below, the fatae in FOPCTL (PrA)[n)

satisfy that none of the variables in VAR occur out of the gcopa quantification. Of
course, variables related to counter values and locatibios€ inx) occur freely, In

322

that way, we can sometimes omit the environments when irggéng formulae with
all variables in VAR bounded. We will call such formulaemi-closed In that way,
we do not need to specify an environment in the statementbelo

1) LOCAL MODEL CHECKING: Given a PCSC with Presburger transition sys-
tem Sc = (S, —), a configurationg,a) € S, and a semi-closed formula from
FOPCTL (PrA)[n], determine whethet, (¢, a) = ¢, meaning that for every path
such thatr(0) = (g, a), we haver, 0 | ¢.

The dual version of this problem with the existential quicdtion over paths can be
defined in a similar fashion. In the rest of the paper, we oelgl dvith the universal
version but a similar treatment is possible for the exis&mersion, too.

2) GLOBAL MODEL CHECKING: Given a PCS with Presburger transition sys-
temSe = (S,—), and a FOPCTE(PrA)[n] formulay, compute (as a Presburger
formula) the set of configuratiorfssuch that for every path with 7(0) € .S, we have
T, 0 = .

3) VALIDITY CHECKING WITH AN INITIAL CONDITION : Given a PCSC with
Presburger transition systefit = (S, —), a Presburger formuld,(x) and a semi-
closed FOPCTL(PrA)[n| formulay, check whether for every configuratidn, a)
satisfying Ao(x), for every configuration¢’,a’) reachable from(q,a), we have
C.{¢,a") = ¢

Variants of these problems can be defined by consideringlasgss of PCS or
other specification languages.

4. Admissible Presburger Counter Systems

As we will show later, local model checking of FOPCTPrA) over the whole
class of PCSs is highly undecidable (by reduction from tleaméng problem for
nondeterministic Minsky machines (Minsky, 1967; Aleir al., 1994)) even though
reachability can be decided for many classes of counteesystsee e.g. (Ibaret
al., 2000; Comoret al,, 1998; Finkelet al,, 2002; Danget al., 2003). In this section
we introduce a subclass afimissiblePCS in which model checking FOPCT(PrA)
will be proved to be decidable in the next section.

DEFINITION 5. — Given arelationR C Z™ x Z" we define theounting iteration of
R as the relationRcr C Z™ x N x Z" such that{a,i,b) € Rcy iff (a,b) € R*. R
has a Presburger counting iteratibits counting iteration is Presburger definable.

Thecycle relationR* of a cycle in a PCS is obtained by composing the tran-
sition relations on the cycle. According to Section 2, a eyclcan be viewed as

a sequence, ..., t, of transitions of the formt; = ¢; A q; such that forl <

i <a-—1,¢+1 = q, andgs = ¢/,. We define the relatiof®’: as the set of pairs
{{qi,a), {¢},a")) : a,a’ E=p,a Ai(x,x')}. The relationR? is then the composition
R o ... 0 R'«. A cycle has thePresburger counting iteration properifits cycle
relation has a Presburger counting iteration.

323

DEFINITION 6. — A PCSC has the Presburger counting iteration propérgvery
cycle in the control graph af has that property.

Observe that if a PC8 has the Presburger counting iteration property, we can
effectively identify the Presburger formula associatethwiach cycle. It is sufficient
to enumerate Presburger formuldéx, i, y) and test whether

vx,x', i (A(x,4,x) =i > 0) A (A(x,0,x") & (x =x'))A
(A(x,i+1,x") & (3" A(x,i,x") A A' (%X, %))

is valid, whereA’(x, y) is the effect of a given cycle. This is an instance of a more
general result from (Leroux, 2006). Indeed, given a Preghudefinable binary re-
lation R C Z™ x Z", it is undecidable to determine whether the transitive and r
flexive closureR* is Presburger-definable too (Leroux, 2006). We also know tha
there exist Presburger counter systems of dimension 1 thabthave the Presburger
counting iteration property (for instance, consider thdatpz; = 2z4). In general,
we expect that determining whether a counter system hassalRger counting iter-
ation is an undecidable problem by extending similar resfutim (Leroux, 2006).
By contrast, given a total affine functiof(z) = Ax + b, by (Boigelot, 1998),
{(x,Ax + b) : x € Z"}* is Presburger-definable iffA™ : n € N} is finite. Fol-
lowing (Finkelet al, 2002),{A™ : n € N} is finite iff {(x,Ax+b) : x € Z"}
has the Presburger counting iteration. Finiteness of theomgenerated fromA has
been also considered in (Emersetral, 1998). Indeed, the broadcast protocols intro-
duced in (Emersoet al,, 1998) use monotone affine transition functions of the form
f(z) = Az + b where{A" : n € N} is also finite. In (Emersoast al, 1998), it is
shown how to compute the least upper bound’®fz) in order to construct coverabil-
ity graphs. Nevertheless, this fact is not used in order topde theexactvalue of
the acceleration.

As pointed out in (Finkett al., 2002) flatnesof the control graph is a key property
enabling the symbolic computation of the reachabilitytieta That property ensures
that there is only a finite number of ‘'schemes’ of configurapaths (see details later
on) in the PCS, and since one can effectively compute Prgsbformulae associated
with cycle relations, we obtain the following.

PROPOSITION7. — (Comonet al, 1998; Finkelet al, 2002) For every flat PCS sat-
isfying the Presburger counting iteration property, onenceffectively compute the
reachability relation—* for the transition systemi; = (S, —) by means of a formula
in Presburger arithmetic.

This proof of this folklore result is quite straightforwarNow, we will provide a

sufficient condition for the Presburger counting iterationperty. First, we need to

recall a few definitions. The transitions in an affine PCS dta@form s =25 ¢

whereA ¢ Z"*™ andb ¢ Z".

A cycle X\ has the finite monoid propertyf the multiplicative monoid ofA , is
finite whereA , = A; --- An and the cycle\ is labelled by the sequence of matrices
Ay AN.

324

DEFINITION 8. — A PCSC has the finite monoid propertfyevery cycle in the control
graph ofC has that property.

Let us remark that our definition of a PCS having the finite mdmpwoperty is
weaker than the one in (Finket al, 2002) in which a PCS has the finite monoid
property if the multiplicative monoid generated fraih the matrices occurring in the
PCS is finite. Our weaker condition is sufficient to obtainfileowing result:

PrRoPOSITION9. — (Finkel et al, 2002; Boigelot, 2003) Every flat and affine PCS
with the finite monoid property has the Presburger countiatation property.

As a corollary of Propositions 7 and 9, the Presburger foardefining the reacha-
bility relation in every flat and affine PCS with the finite mahproperty is effectively
computable. By contrast, observe thatin (Corsbal., 1998), even though flatness is
also assumed, the transition relations are not necesfiaritjional. Hence, the above-
mentioned consequence appear to be incomparable with tineresalt from (Comon
et al,, 1998). Furthermore, the systems defined in Definition 16vee&re more gen-
eral than the ones in (Comean al,, 1998; Bozgaet al,, 2009) since we allow a richer
language on transitions.

Finally, we require functionality of the transition relati, in order to ensure effec-
tive enumeration within Presburger arithmetic of all coanfation paths in the PCS.
That condition is not always necessary and can be relaxedrious ways, but that
will not be discussed in the paper. Let us mention that déditiastill holds true if
the transitions that do not belong to cycles are non-funetio

DEFINITION 10. — Anadmissible Presburger counter system (AGS) flat, func-
tional PCS, that has the Presburger counting iteration @ndp.

In particular, due to Proposition 9, every flat and affine P@8 the finite monoid
property is admissible. As we will see further, relaxing arfythe conditions for
admissibility leads to undecidability, even of the simmachability problem.

In order to conclude this section, it is worth recalling thateleration of a loop is
understood as the computation of the effect of the infindation and to symbolically
represent this effect with a regular language, e.g., withigefistate automaton. The
first reference to acceleration of loops in counter systenusis representation by
formula appeared in the seminal paper (Boigelol., 1994). The authors accelerate
loops of counter systems labelled by an affine functf¢mn) = Az + b whereA is
a diagonal matrix in{0,1}"*" b € Z™ and the domain is given by a set of linear
inequalities. In (Boigelott al, 1994), acceleration is represented by periodic sets
that can be expressed by Presburger formulae. Skice- A, the infinite iteration
can be indeed represented by periodic sets. In (Boigel®8;1Boigelot, 2003), this
result is extended to loops labelled by affine functigiis) = Az + b such that
{A™: n € N} isfinite . A rather more complex but equivalent version isegiwhose
domain is given by a set of linear inequalities (i.e., a donufined by a Presburger
formula without quantifiers and modulo). In (Finketl al, 2002), this is extended to
Presburger-definable domains.

325

5. Model-Checking of FOPCTL*(PrA)[n| on Admissible Counter Systems

Herein, we show decidability of model checking FOPCTErA) over admissible
Presburger counter systems. The main idea behind our deldigleesult is the follow-
ing: in an ACS there are only finitely many ‘path schemas’, alttitough each of these
generates a possibly infinite set of configuration paths;einéiguration paths for each
path schema can be uniformly encoded within Presburgémaeitic by finite vectors
of integer parameters. Thus, the quantification over patlOPCTL (PrA)[n] can
be simulated by quantification over tuples of natural nurepbeventually allowing
translation of FOPCTL(PrA)[n] into PrA.

Throughout this section, le&f = (X, Q,) be an ACS of dimension. Recall
that we also assume that there is at most one transition batary two locations, by
taking the disjunction of all formulae labelling the traimis between every pair of
locations.

5.1. Control paths and configuration paths

DEFINITION 11. — Acontrol pathin C is any infinite path in the graph @f. A path
segmentn C is a single transitiont € § or a simple cycle irC, that we represent as
a finite sequence of locations.path schemin C is a sequencéoy, . . ., o) of path
segments i@ such that:

1) forevery0 < i < k — 1, the last location o&; is the first location of; 1,
2) no single transitiorr; occurs in a cycler; for j > i,

3) the final path segment; is a cycle.

4) fori # j, we haver; # o;.

Cycles in a path schema that are not the final segment arecciaiterior cyclesof the
schema.

The idea behind the definition above is that it allows farmdquedescription of
every control path in the graph 6f Condition (4.) allows to get a concise description.

From now on we fix an enumeration, . . ., Ay, of all the cycles irC and assume
thatM > 0.

In Figure 2, we present an example of an ACS (the transitiorie@figure that are
not labelled are assigned arbitrary functional Presbuigenulae). We give below
examples of control paths, path segments and path scheméte IACS with the
following convention: a simple transition is encoded by & pathe form{q, ¢’) and
a cycle is encoded by a sequerige. . ., ¢’) such thayy = ¢'.

simple cycles: A1 = (¢1, g3, g6, ¢1) (See dotted arrows in Figure 2% = (g4, g5, q4),
A3 = {(q7, q7)

326

Figure 2. A flat counter system

control path: gog2q4¢% (See the bold arrows in Figure 2).

path SegmentS: <q07 Q1>, <q17 g3, 96, q1>i <q47 g5, Q4>l <Q5a 44, Q5>i <Q17 Q3>
valid path schema: {(qo, q1), (q1, g3, 96, 41), (91, 43), (43, G7), (g7, q7)-

invalid path schema: (qo, q1), (91, g3), (g3, g6, 91, 43) (43, 97), (g7, g7) (Condition (2)
in Definition 11 is violated).

Note that the last two path schemas above describe the sartrelquath, but the
latter violates condition 2 of the definition: the singlertsdion (¢, ¢3) also occurs in
a cycle that follows after it{gs, g, ¢1, ¢3)-

Since an ACS is flat and has a finite number of locations, theviiiig holds:

PROPOSITION12. —In every ACS with at most one transition between two loca-
tions, the number of path schemata is boundet¥%y" whereN = |Q| + |§].

PROOF13. — The number of path segments is boundedlybound on the number
of simple cycles}-|| (bound on the number of simple transitions). Hence, the rarmb
of path schemata is bounded by". |

Hereafter, we suppose that there B¢ 1 path schemas i@. A path schema with
at least one interior cycle corresponds to infinitely marffedent control paths, since
any interior cycle in the schema may be repeated an arbitwamber of times on the

327

control path. The number of repetitions of a given cycle imatol path is called the
cycle counbf that cycle. Thus, every control path is completely chmazed by its
underlying path schema and the cycle counts for its intesioles. The next definition
formalizes this idea.

DEFINITION 14. —Let the ACSC have M > 0 cycles andP path schemas. A
cycle count vector is a tuple{ci,...,cy) € NM wherec, represents the cycle
count for the cycle\,. A control path description is a paira = (p, c¢) wherep €
{1,..., P} denotes the path schemais the cycle count vector for the control path
being described;; > 0 for every interior cycle\, and¢; = 0 for any cycle); in C
which is not interior in the path schema Hereafter a control path description, may
be written agp, c1, . . ., car). We writeag for the path schema associated with control
path descriptionu.

Note that in the definition aboveis simply the identifier of the control patky.
The following is immediate from the flatness condition on ACS

PROPOSITION15. —For every control path in an ACS, there is a unique control
path description.

So, we can encode control paths by tuples of positive integ@fithout risk of
confusion, we identify every control path with its desdopt For example, in the
system on Figure 2, the description of the control path ¢s (g6 q1q3)>¢% with under-

lying path scheméqo, q1), (41,43, g6, q1), (q1, 43), (43, 47), (47, q7), labelled byl, is
(1,(3,0,0)).

Every configuration path in an ACS is uniquely described ey dhir («, (¢, a))
whereaq is its control path andg, a) is the initial configuration. Conversely, due to
the functionality ofC, every such paita, (¢, a)) with location ofa corresponding to
the first location of the path schemg, describes a unique path in the configuration
graph starting afg, a), and progressing according to the transitions of the cop#ii
«. Note, however, that such a path may terminate and therefiifiee considered as a
configuration path.

In the example on Figure 2, from the control pagl.¢4¢¥ and the initial config-
uration withxz = 3, we obtain the configuration path

(q0,3)(q2,4)(q4,8){q7, 7)*.

5.2. Encoding the configurations along a path by a Presburger fouta

In this section we construct a Presburger formula that xdescribes the config-
uration path associated with a control path and initial gurfition. As a corollary of
Theorem 16 below, we obtain Proposition 7.

328

THEOREM16. — Given an ACS of dimensionn with M > 0 cycles, one can
compute a Presburger formulBathConfig. (v, x,i,y) such that for alle € NM+1
ae 72" meNandb e zZ"t!:

a,a,m,b |= PathConfige(v,x,1,y)

iff o is a valid control path description and the™ configuration of the configuration
path{«,a) isb (v, x andy are variable sequences arids a variable).

PROOF17. — Sketch: First, when a cycle has the Presburger counting iteration
property, we writep, (x, y, x') to denote the Presburger formula encoding its counting
iteration relation. In that case, there is also a Presbumyenula A, (x, k, x’) that
expresses that’ is obtained fronx by following & transitions along the cycle

Now, we will construct a formul®athConfig in accordance with the requirements
of the theorem.

First, let P be the number of path schemaglinWe consider each path schema
individually, constructing a formul&chemaConfig, (v, x,4,y) such that for ale €
NM+1 a ¢ Z"*! (encoding a configuration)p € N andb € Z"*! it is the case
thata,a,m, b |= SchemaConfig,(v,x,1,y) iff a is a control path description, the
path schema of the control pathis p, and them™ configuration of the configuration
path{«,a) is b. Then our desired formulBathConfig will be the disjunction over
all SchemaConfig, wherep is a path schema in the system.

To defineSchemaConfigfor a fixed path schema, we proceed as follows. Sup-
pose(oy, ..., o) is the sequence of segmentgiranda is a control path with path
schemap. Along the unique (if it exists) configuration path inducegd d starting
with configurationa, we will identify somelandmark positionsandlandmark con-
figurations for each segment; (where0 < j < k) we would like to identify the
positiont; € N and the configuratiow; € Z"! immediately before the segment
is traversed (or entered for the first time, if the segmentdigcie).

The landmarks associated with segmenare the initial positiort, = 0 and the
initial configurationwg = a.

We defines; to be the number of positions in the configuration path thaicaw-
ered by segment;. If segment; is a single transition then the number of positions
covered by that segmentlis Otherwise, the segmenj is some interior cycle,, with
|\ | transitions in the cycle. Recall that the number of timescyde)\, is traversed
in the control path described by is given by the cycle count,.. Then, the total
number of positions in the configuration path covered by gwrents; is v, |A.|.

Formally:
— if o; is a transition(q, A(x,x'), ¢') thenk,; <" 1,

L def
— if o is a cycle), thens; = v,.|\,|.

Having defined: ;, we can now state that our landmark positiongill thus satisfy
the following constraintsty = 0 andt; . =t; + «; for0 < j < k.

329

Next, we consider the landmark configuration that corredpda each landmark
position. We would like to describe in a uniform way thoseftgurations that appear
while a specific segment is traversed. So, for the segmgnwe define a Presburger
formula SegmentConfig;(x,i,y) such that for alla € Z"t, m € N, andb €
7"+ it is the case thas, m,b = SegmentConfig;(x,i,y) iff the location of the
configuratiora appears as one of the locationsin and the configuratioh is reached
from configuratiora afterm transitions, according to the transition(s)gt

When segment; is just a single transition, we defirfgmentConfig; using the
transition relation. Otherwise, if the segment is a simplde;, we use the correspond-
ing counting iteration relation.

Formally, we defin&sSegmentConfigas follows:
— if o, is a transitiont = (¢, A(x,x’),¢’) then

SegmentConfig;(x,i,y) = xo=qAN((i=0Ax=y)V(i=1ANAxY))),

— if o; is a simple cycle\ then

SegmentConfig;(x,i,y) = Ax(x,i,y).

We define the string of quantifiers
EristLandmarks dto, ..., g, Iwe, ..., IWk

and define the formula

LandmarkConstraints = (to =0Awp =x)

k—1

/\ [(tj+1 = tj + Kj) A SegmentConfig;(w;, kj, Wit1)].

j=0
If the configuration path is infinite, we are assured that $aictimarks exist, hence the
formula that claims their existence will be true. Conveystl ensure that the path in
the Presburger transition system will be infinite, we willend the formula to confirm
the existence of configurations in all positions after ts landmark:

CheckInfinite e Vit(ty <t — 3z SegmentConfig, (x,t — tx, z)).

The final part of our construction &chemaConfigis to include a subformula that
checks for the occurrence of a given configuration at a giwsitipn of the configura-
tion path. We have to take some care to check whether positoours in a segment
before the final cycle segment is entered, or inside the fydéc

k—1
CheckConfig & /\ [(t; <ini<tjr1) — SegmentConfig;(wj,i—t;,y)]
§=0
A[(tr < i) — SegmentConfig, (Wi, i — tg,y)].

330

The above formulae are now combined to give the configurati@aking formula for
path schema

SchemaConfigv, x,i,y) ef (& =p)A
EzistLandmarks|LandmarkConstraints A CheckInfinite A CheckConfig].

Finally we have:

M
PathConfig(v,x,1,y) def \/ PathConfig,(v,x,i,y).
p=1

We define two auxiliary formulae that will be used in the fallag proof. Firstly,
we can check that a pafwv, x) denotes a valid configuration path, by checking that
the initial configuration of the path is correct and that théhgs infinite:

ValidPath (v,x) < PathConfige(v,x,0,x) A Vi > 03zPathConfige (v, X, i, 2)

Secondly, for two configuration paths denoted(lbyx) and(v’,y) we would like to
express that the paths agree on all configurations up to aheding position:. To
this end, we construct the formula

CommonPathPrefiz(v,x,v',y,i) def

Vj > 0[j <i = Vz(PathConfig.(v,x,j,2z) < PathConfig(v',y,j,2))],

This formula will be used when quantifying over paths witkrdical finite past.

5.3. A decision procedure to verify an admissible counter system

We are now ready to show that model-checking FOPGQPLA)[n] can be reduced
to satisfiability in Presburger arithmetic.

THEOREM 18. — Given an AC& of dimensiom with Presburger transition system
Se = (S, —), for every semi-closed FOPCT(PrA)[n] formulay, one can compute
a Presburger formulad, (x) such that for everyg,a) € Sc, (¢,a) E Ay (x) iff
C, (¢, a) = ¢ (no need for environment singeis semi-closed).

PROOF19. — We show that, given an AQS for every FOPCTE(PrA)[n| formula
¢, one can define a Presburger formilgv, x, i); ¢) with free variabless, x, i such
thato,a, m = T'((v, x,1); o) iff for the configuration pathr with control pathe and
initial configurationa, we have thatr, m = ¢, if such configuration path exists.

We defin€l” recursively onp as follows:

331

T((v,x,i);0(x,y)) < Vz[PathConfig (v,x, ,2) = 0(z,y));
T((v,%,1); =) = ~T((v,%,); 0);

T((v,x,i); 0 A¢") E T((v,x,i);0) AT((v,x,i);¢');

T((v, %) Xp) = F[(G =i+ 1) AT((v,%,5); 0)];

T((v.x,i)Ug) (G > i AT(v,x,5),¢) AVRG < k < j =
T((v,x, k),)]));

T((v,x,0);X"'9) ©i > 0A3j[(i = j + 1) AT(v,x,4,9)];

T((v,x,i);08¢') € 3((j < i ATy, 0)5¢) AVRG < k < i =
T((v.x, k);9)]));

T((v,x,i);A¢) Y v y[CommonPathPrefix, x, v, y,i) = T((v',y,i): o)];

T((v,xi):3y 9) E 3y T((v, x i) 9).
The formulad,, (x) is defined as follows:

A, (%) €V v(ValidPath (v, x) = T((v,x,0): ¢)).

Note that, for a fixed ACS, the size éf,(x) is linear in the size ofp. However,
when the ACS is not fixed, presently we have no way to measersite ofA,(x)
in function of the size of the ACS. Indeed, we have no measaréhe size of the
Presburger formulae witnessing the Presburger coungnation property.

THEOREM 20. — The following problems for FOPCTIPrA) restricted to ACSs
are decidable: local model checking, global model checkiadidity checking with
an initial configuration.

PROOF21. — Indeed, in order to decide the local model checking lgrabit is suf-
ficient to check whethefy, a) = A(x) holds true where the Presburger formulgx)

is computed from the proof of Theorem 18. Global model chaglian be solved
by computing precisely the formuld(x) and testing Presburger validity. Finally, by
Proposition 7, there is a Presburger formdléx, x’) computing the reachability re-
lation in the configuration graph of some ACS. In order to sakalidity checking by
an initial condition4,(x), it is sufficient to check Presburger validity of the formula
Vx,x' (Ap(x) N A'(x,x") = A(X')). []

Theorem 20 can be extended to systems and temporal logibstlsat PrA is
replaced by any decidable extensiBnA™* of PrA, closed under first-order quan-
tification and Boolean operators, obtained by adding newlipates. The notion of
Presburger counter system is extended by allowing transifebelled by elements of
PrA*. Similarly, FOPCTI(PrA™) is obtained from FOPCTLPrA) by allowing

332

atomic formulae fronPrA™. The model-checking problems for FOPCTPrA™)
are defined as for FOPCTI[PrA). Finally, the notions of counting iteration property
and admissible counter systems are defined Rith ™ instead of PrA.

THEOREM22. — The following problems for FOPCT(PrA™) restricted to ACSs
are decidable: local model checking, global model checkiatjdity checking with an
initial configuration.

6. Testing the boundaries of decidable model checking in Psburger counter
systems

Here we give some results and examples indicating that uitri@ Theorem 20
is close to optimal. Before that, call a P@#&cewise-affinezhenever each transition
is labelled by a disjunction of expressions of the fdtfr) A x’ = Ax + b.

PrROPOSITION23. — The reachability problem is not decidable in any of the faHo
ing classes:

1) all flat affine PCSs;
2) all affine PCSs with the finite monoid property (even causati¢omata);
3) all flat piecewise-affine PCSs with a single location.

PrROOF24. —

(1) Follows from results in (Cortier, 2002) about very basimtrol graphs but
having cycles without the Presburger counting iteratiapgrty.

(2) Follows from undecidability of the halting problem for ihdky ma-
chines (Minsky, 1967).

(3) Follows from (Minsky, 1967), too. As a matter of fact, arzgunter automaton
can be encoded as a flat piecewise-affine PCS with a singlédoeg. Indeed, sup-
pose that =t ¢’ is a transition in the counter automaton with the integfesp.

n'] attached tay [resp. ¢'], then the unique transition in the piecewise-affine PCS is
(I[):n/\wg:n’/\;v/:w-ﬁ-l)\/...

of the formqq qo- There is an obvious correspondence be-
tween the transitions in the original counter automatontaachumber of disjuncts in
the Presburger formula labelling the unique transition. |

To show how close to optimal our class of ACSs is, we give belowndecidabil-
ity result for a fixed PCE,, that is almost an ACS, but not flat. It is obtained from
an ACS by only adding a reset transition while preservingRhesburger counting
iteration property and functionality (see Figure 3).

C, is of dimension 4, with counters;, o andzs, =g is the additional counter
representing the location, and “id” denotes the identityction on the counters;, -
andxs.

333

xf=x1+1 xh=x9+1 xh =x3+1

Figure 3. Almost an admissible counter system

THEOREM25. — Local model-checking o, with FOLTL(Pr)3] is ¥i-hard
(highly undecidable).

PROOF26. — The proof is by reducing the recurrence problem for dehinistic
2-counter machines that is showij-hard in (Aluret al, 1994). A nondeterministic
2-counter machin@/ consists of two counter§; andCs, and a sequence af > 1
instructions. Thé-th instruction is written as one of the following:

k : C; :=C; + 1, gotok; or gotoks.
k :if C; = 0then gotdk, elseC; := C; — 1; gotok; or gotoks.

We represent the configurations df by triples (¢1,co,l) wherel < [< n,
c1 > 0andes > 0. A computation of is a finite sequence of related configurations,
starting with the initial configuratiofD, 0, 1) (location encoded as last element). The
recurrence problem can be stated as the existence of artéréi@cution that passes
through the instruction 1 infinitely often. We shall buildarulap of FOLTL(Pr)[3]
such thatM visits 1 infinitely often iff (g2, (0,0,1)) &= . The formulay is of the
form

E(GF(zs=1)A N Gpj),
1<k<n

where ¢ encodes thé-th instruction. For instance, thie-th instruction ‘C; :=
C1 + 1; gotok; or gotoks” is encoded by

Yy, z (1 =y N xa=2 AN 23 =k A X(z9 =0)) =
increase C;
X(=(X(z0 = 0)) U (X(w0 = 0) A 71 =g+ 1 Aws =2 A (23 = ki V 23 = ko).
Other instructions can be encoded similarly. |

It is worth mentioning tha€,, can be simulated by an ACS (‘flattened’) in a sense
preserving the reachability sets, and therefore the &fdragment of FOLTL(P1}B]
has a decidable local model-checking problemdgpr

334

Furthermore, by using the idea in the proof of Theorem 25 are show that
FOLTL(PrA)[3] has an undecidable local model-checking problem for the B&S
scribed in Figure 4 (that is flat, has the Presburger couritigmgtion but is not func-
tional) with variablesr, x5, 3, andz, representing the location, whefe denotes
the truth constant.

T

This PCS has a unique transition that accepts any updates afainterse,, a2
andzs. Hence, any sequenté— {qo} x Z3 is an infinite configuration path of this
PCS. By way of example, as done above khth instruction ‘C; := C; + 1; gotok,
or gotok,” is encoded by

Vyz(xi=y AN axa=2z A z3=k) =

X($1:y+1/\$2:Z/\($3:k1\/1173:k2)).

7. Decidable Extension of FOPCTL (PrA)[n] with CQDD Patterns

We present below an extension of FOPCTRrA)[n] for which model-checking
over ACS can still be encoded into Presburger satisfiability

In (Wolper, 1983) Wolper extends linear-time temporal togrL to an extended
temporal logic that has the same expressive power as Bitdhhata. In this section,
we similarly extend the set of path formulae from FOPC{RrA)[n] by allowing
temporal operators defined by another class of language@esenamely the CQDD
(constrained queue-content decision diagrafBouajjaniet al,, 1999). This formal-
ism has been introduced for symbolically representing iitefisets of configurations
in FIFO automata — our use of CQDD is different. Non-reguagluages can be de-
fined with CQDD; moreover, the model-checking problem fot.lAugmented with
operators defined from CQDD is undecidable (Deetral., 2009), unlike the exten-
sion with regular languages (Wolper, 1983). The proof of thault is inspired from
the undecidability proof of propositional dynamic logid{P) augmented with pro-
grams over the context-free languagél - as - at : n > 0} (see (Harekt al, 2000,
Chapter 9)). This context-free language can be easily rézed by a CQDD. By
contrast, we show that the model-checking problem for FOPCHrA)[n] extended
with CQDD-based operators is decidable over ACS. Decidglid regained due to
the flatness restriction in CQDD. Hence, in this section wensbvidence that we can
take advantage of flatness both in modeislin formulae.

Before introducing the formal definition for CQDDs, let usmtien that CQDD
are finite-state automata attached to Presburger forminédgptovide constraints on

335

the number of times transitions are taken. Moreover, thedyitig graphs of CQDDs
is flat by definition.

A CQDDis a structured = (3, S, So, E, I, A(y1, .. .,ym), F') such that:

— Y is afinite set of symbols (the alphabet),

— Sis afinite set of states,

— Sp C Sis the set of initial states,

— FC S x X xSisasetof transitions of cardinality and(S, X, E) is flat,
— F C Sisasetof final (or accepting) states,

— lis a bijection fromE to {1, ..., m},

— A(y1,...,ym) is a Presburger formula.

ay

An accepting runfor the worde = agaias...a,_; iS a sequencey — ¢, =
g ... 75 g, such that

— qo € So, qx € F (the standard acceptance conditions for finite-state aattmyn

— foreveryi € {0,...,k — 1}, (qi,ai,qiv1) € E,

- ni,...,nm = A(y1,...,ym) in Presburger arithmetic, where eaeh is
the number of occurrences of the transitiort (i) in the sequence (alternatively,
(n1,...,nn) is the Parikh image of).

The wordo is also said to be accepted by the automatonWe write L(.A) to
denote the set of words accepted.ty

Figure 4 presents a CQDD with its constraint on the numbeco@igences (each
transition is related to a unique letter and to a unique tégian the constraint).

C
qo b qu d q2 Ya + Ye = Ye

Figure 4. ACQDD

Let A = (%,8, 80, E, 1, A(y1,...,ym), F) be a CQDD with the letters fror
linearly ordered:a; < ... < ai. The extension EFOPCTIPr)[n] of the logic
FOPCTL*(PrA)[n] consists in considering formulae of the fotA{¢1, ..., ¢,,) de-
fined as follows:

—mi = A(pr,. .., o) iff eithere € L(A),
or there is a finite word,;, a;, . .. a;, € L(A) such that for every < j <n, m,i+

G =1 ¢

336

Thus,,i = A(¢1,...,¢,) holds when a finite pattern induced frdng.A) sat-
isfies the respective arguments on the suffix path startimg foositioni. Note the
correspondence between the letteys. . . , ax and the arguments,, ..., ¢,. These
automata-based operators are defined like those in (WdIp88) except that the lan-
guages of finite words we consider are not exactly the retparguages. Of the regular
languages only the bounded ones are allowed, and some torexanguages can
be obviously defined.

For instance, in EFOPCTI(Pr)[n] we can state that there is a path and some
m # 0 such thatp; holds true at then first positions, therp, holds true at then
next positions and then neithef nor ¢, holds true forever. It is known that ETL
is more expressive that LTL (Wolper, 1983) and this resuitldde lifted between
FOPCTL (PrA)[n] and EFOPCTLE(Pr)[n]. However, at the present moment, we do
not have a formal proof of this. Theorem 18 can be extendedtidyiag CQDD-based
operators.

THEOREM27. — Given an AC% of dimensiom with Presburger transition system
Se = (S, —), for every EFOPCTL(Pr)[n] formulay, one can compute a Presburger
formula A, (x) such that for everyg, a) € S, (¢,a) = A, (x) iff C, (g, a) = ¢.

PROOF28. — First, one can show that any language recognized by alC@[Ran

be recognized by an ACS augmented with an alphabet. In suithed ACS, the

.. A(x,x/),a ’ .
transitions between control states are of the fgrm——— ¢’ wherea is a letter

from a finite alphabet. Any transitioh= ¢ % ¢’ in the CQDD is translated in the

enriched ACS by a transition of the forn““="""% ¢/ wherez, is a variable at-
tached to the transition To any final state of the CQDD, we associate the transition

S Gnew the CQDD havingn distinct transitions ang,,.., being a new
control state. There is a natural correspondence betweeadtepting runs of the
CQDD and paths in the enriched ACS from initial states apg,. In that way, the
final constraint4d(y1, . . ., ym) ON them transitions can be simulated in some ACS by
increasing théth counter whenever thigh transition is visited in the accepting run and
checking the final constraint amounts to adding a final ttemmsivith identity func-
tion and domain precisely the values of the counters saigi(y1, . . ., ¥). Hence,
the proof technique from Theorem 16 can be used again. Tipitlae following
formulae can be defined in Presburger Arithmetic:

— By replacing valid control paths with accepting runs, ¢hés a formula
PathConfiga(v,i,j) stating that theth transition of the accepting runis a,.

— The formulalLength(v,1) states that the accepting rurhasl transitions.

— The formulaAccepting Run(v) states that encodes an accepting run. Typi-
cally, we also use a path schema (starting from an initis&ytand a cycle count vector
which is possible because of the flat structuredof

Once these formulae are defined, it remains to defifier, x, i); A(¢1, ..., dx)) as
follows (we omit the obvious case where L(A)):

AV, 1, AcceptingRun(v') A Length(v', 1)\

337

(Il=0)wW1<i <, /\ PathConfiga(v',i',c) = T({(v,x,i+i'—1); ¢.)).

Then, the formulal, (x) can be defined as in the proof of Theorem 18. |

As a corollary, local model-checking problem for EFOPCTRr)[n] over ACS is
decidable.

COROLLARY 29. —The following problems for EFOPCT[Pr)[n] are decidable:
local model checking, global model checking, validity ¢eg with an initial config-
uration.

8. Concluding Remarks

In this paper we have established decidability of varioudeh@hecking problems
for FOPCTL*(PrA) and related CTt-like languages over Presburger arithmetic on
a class of counter systems, by translation into Presburgbneetic. Indeed, encod-
ing quantification over paths can be performed by quantifinaiver tuples of natural
numbers. Hence, we have improved the decidability bounftarynodel-checking
ACS with CTL*-like languages. The decidability of model-checking isrently
open on extensions with fixed-point operators (e.g., Prgsiou-calculus) or monadic
second-order quantification over ACS.

Another direction for further work is to analyze and extendHer the class of
ACS. For instance, giving up the functionality assumptiont@nsitions that do not
belong to a cycle preserves decidability, while it is operethler giving up the full
functionality assumption still preserves decidabilitytie absence of first-order quan-
tification. Similarly, the complexity of local model chealg ACS with quantifier-free
Presburger transition formulae over FOPCTRrA) is not fully characterized.

There are several related questions that have at leastetioabrinterest, which
we have no addressed in the paper. For instance, how are itfiguration graphs
of ACSs placed relative to Caucal’s hierarchy (Caucal, 280R is not difficult to
construct examples of ACS, like the one shown in Figure 3 wiinfiguration graphs
which are not pushdown graphs (Mulkgral,, 1985). In the ACS displayed in Figure 5
the transitions frong- to g3 andq, are only enabled when= 0. Itis easy to see that
the configuration graph generated from the initial staté, 0,0) has infinitely many
non-isomorphic ends, and therefore, by Muller-Schup@stem (Mulleret al., 1985)
it is not a pushdown graph.

We currently do not know whether all ACS generate prefix-geizable configura-
tion graphs, or any graphs from higher levels of Caucal'sanhy. Of course, decid-
ability of MSO in a configuration graph does not imply decitigbof FOPCTL* (PrA),
but it could suggest further strengthening of the resulteéncurrent paper.

Finally, the results in this paper can be extended to nonisgilple counter sys-
tems, which are behaviorally equivalent in a suitable sém$eCSs. Typically, such

338

q1

Figure 5. A simple ACS with a non-pushdown graph and non-terminatatgsp

equivalence can be achieved Hiattening of the control graph. Extensions of the
scope of model checking methods for FOPCTIRrA) by means of flatability and
other bisimulation equivalences to ACSs will be studied gequel paper.

9. References

Alur R., Henzinger T., “A really temporal logic"Journal of the Association for Computing
Machinery vol. 41, num. 1, pp. 181-204, 1994.

Annichini A., Bouajjani A., Sighireanu M., “TReX: a tool farachablity analysis of complex
systems”CAV'01, vol. 2102 ofLecture Notes in Computer Scien&pringer, pp. 368-372,
2001.

Bardin S., Finkel A., Leroux J., “FASTer Acceleration of Goer Automata in Practice”,
TACAS’04 vol. 2988 ofLecture Notes in Computer Scien&pringer, pp. 576-590, March,
2004.

Bardin S., Finkel A., Leroux J., Petrucci L., “FAST: Fast &teration of Symbolic Transition
Systems”CAV’'03 vol. 2725 ofLecture Notes in Computer Scien&pringer, pp. 118-121,
2003.

Bardin S., Finkel A., Leroux J., Schnoebelen P., “Flat aa@lon in symbolic model checking”,
ATVA'05 vol. 3707 ofLecture Notes in Computer Scien&pringer, pp. 474-488, 2005.

Bardin S., Finkel A., Lozes E., Sangnier A., “From Pointest®yns to Counter Systems Using
Shape Analysis"AVIS'06 2006a.

Bardin S., Leroux J., Point G., “FAST Extended Relea§s\/'06, vol. 4144 ofLecture Notes
in Computer Scien¢eSpringer, pp. 63-66, 2006b.

339

Blumensath A., “Axiomatising Tree-Interpretable Strue!, Proceedings of the 19th An-
nual Symposium on Theoretical Aspects of Computer Sci&Si&GS) Springer-Verlag,
pp. 596-607, 2002.

Blumensath A., Gradel E., “Finite Presentations of Infil8teuctures: Automata and Interpre-
tations”, Theory of Computing Systepwsl. 37, pp. 641 — 674, 2004.

Boigelot B., Symbolic methods for exploring infinite stafgases, PhD thesis, Université de
Liege, 1998.

Boigelot B., “On iterating linear transformations overogaoizable set of integersTheoretical
Computer Sciencevol. 309, num. 1-3, pp. 413-468, 2003.

Boigelot B., Wolper P., “Symbolic Verification with PeriadBets”,CAV'94 vol. 818 ofLecture
Notes in Computer Scienc8pringer, pp. 55-67, 1994.

Borosh I., Treybig L., “Bounds on positive integral solutsoof linear diophantine equations”, ,
vol. 55, pp. 299-304, 1976.

Bouajjani A., Bozga M., Habermehl P., losif R., Moro P., \@ijri., “Programs with lists are
counter automata’CAV’06, vol. 4144 ofLecture Notes in Computer Sciencgpringer,
pp. 517-531, 2006.

Bouajjani A., Echahed R., Habermehl P., “On the verificapooblem of nonregular properties
for nonregular processed’|CS'95 pp. 123-133, 1995.

Bouajjani A., Esparza J., Maler O., “Reachability Analysi$ushdown Automata: Application
to Model Checking”CONCUR’'97 vol. 1243 ofLNCS Springer, pp. 135-150, 1997.

Bouajjani A., Habermehl P., “Symbolic Reachability Anatysf FIFO-channel systems with
nonregular sets of configurationsTheoretical Computer Scienceol. 221, num. 1-2,
pp. 211-250, 1999.

Bozga M., losif R., Lakhnech Y., “Flat parametric countetamata”’, Fundamenta Informati-
cae vol. 91, num. 2, pp. 275-303, 2009.

Bruyéere V., Dall’Olio E., Raskin J., “Durations, ParametModel-Checking in Timed Au-
tomata with Presburger ArithmeticSTACS'03 vol. 2607 ofLecture Notes in Computer
ScienceSpringer, pp. 687-698, 2003.

Bultan T., Gerber R., Pugh W., “Symbolic model checking difnite state systems using Pres-
burger arithmetic”,CAV’'97, vol. 1254 ofLecture Notes in Computer Sciencgpringer,
pp. 400-411, 1997.

Burkart O., Caucal D., Moller F., Steffen B., “Verificatiofi infinite structures.”Handbook of
Process AlgebrgElsevier, pp. 545-623, 2001.

Caucal D., “On infinite transition graphs having a decidabtmadic theory”Theoretical Com-
puter Sciencevol. 290, pp. 79-115, 2003.

Cemns K., “Deciding Properties of Integral Relational Autoatai CALP, vol. 820 ofLecture
Notes in Computer Scienc8pringer, pp. 35-46, 1994.

Comon H., Cortier V., “Flatness is not a weaknesS$L'0Q vol. 1862 ofLecture Notes in
Computer Sciencéspringer, pp. 262—-276, 2000.

340

Comon H., Jurski Y., “Multiple counters automata, safetplgsis and Presburger analysis”,
CAV’'98 vol. 1427 ofLecture Notes in Computer Scien&pringer, pp. 268-279, 1998.

Cortier V., “About the Decision of Reachability for RegisMachines” Theoretical Informatics
and Applicationsvol. 36, num. 4, pp. 341-358, 2002.

Courcelle B., “Graph rewriting: An algebraic and logic apach”,in J. V. Leeuwen (ed.lland-
book of Theoretical Computer Science, Volume B, Formal teai®l semantigsElsevier,
pp. 193-242, 1990.

Dang Z., Pietro P. S., Kemmerer R., “Presburger LivenesHid&tion of Discrete Timed Au-
tomata”, Theoretical Computer Scienceol. 299, pp. 413-438, 2003.

Demri S., “LTL over integer periodicity constraintsTheoretical Computer Scienceol. 360,
num. 1-3, pp. 96-123, 2006.

Demri S., Finkel A., Goranko V., van Drimmelen G., “Towardsiadel-checker for counter sys-
tems”, Proceedings of the 4th International Symposium on Autothig@ehnology for Veri-
fication and Analysis (ATVA’06Yol. 4218 ofLecture Notes in Computer Scien&pringer,
pp. 493-507, 2006.

Demri S., Gastin P.Modern Applications of Automata Theorljsc Research Monographs,
World Scientific, chapter Specification and VerificationngsTemporal Logics, 2009. To
appear.

Emerson A., Halpern J., “Sometimes' and 'Not Never’ retési on branching versus Lin-
ear time temporal logic”Journal of the Association for Computing Machinexpl. 33,
pp. 151-178, 1986.

Emerson A., Namjoshi K., “On Model Checking for Non-Detenistic Infinite-State Systems”,
LICS'9§ IEEE, pp. 70-80, 1998.

Esparza J., Finkel A., Mayr R., “On the verification of broasicprotocols”LICS'99, pp. 352—
359, 1999.

Finkel A., Leroux J., “How to compose Presburger accelensti Applications to broadcast pro-
tocols”, FST&TCS’02 vol. 2256 ofLecture Notes in Computer Scien&pringer, pp. 145—
156, 2002.

Finkel A., Lozes E., Sangnier A., “Towards Model-Checkingpdtams with Lists”,Infinity
in Logic and Computationvol. 5489 ofLecture Notes in Atrtificial Intelligen¢eSpringer,
2009. To appear.

Finkel A., Sutre G., “Decidability of reachability problenfor classes of two counters au-
tomata”, STACS'00Qvol. 2256 ofLecture Notes in Computer Sciencpringer, pp. 346—
357, 2000.

Finkel A., Willems B., Wolper P., “A Direct Symbolic Approhdo Model Checking Pushdown
Systems (Extended Abstract)NFINITY’97, vol. 9 of ENTCS Elsevier Science, 1997.

Fribourg L., Olsén H., “Proving safety properties of infenitate systems by compilation into
Presburger arithmetic’CONCUR’97 vol. 1243 ofLecture Notes in Computer Science
Springer, pp. 213-227, 1997.

Ginsburg S., Spanier E., “Semigroups, Presburger formanddanguages'Pacific Journal of
Mathematicsvol. 16, num. 2, pp. 285-296, 1966.

341

Harel D., Kozen D., Tiuryn JDynamic Logi¢ MIT Press, 2000.

Ibarra O., “Reversal-bounded multicounter machines aait tfecision problems”Journal of
the Association for Computing Machinemol. 25, num. 1, pp. 116-133, 1978.

Ibarra O., Su J., Dang Z., Bultan T., Kemmerer A., “Counterchlaes: Decidable Proper-
ties and Applications to Verification Problem$V]FCS’0Q vol. 1893 ofLecture Notes in
Computer Sciengespringer, pp. 426-435, 2000.

Khoussainov B., Nerode A., “Automatic presentations oficres”,Logic and Computation
Complexityvol. 1995 ofLecture Notes in Computer Scien&pringer, Berlin, pp. 367-392,
1995.

Lagarias J., “Th&z-+1 problem and its generalizations’he American Mathematical Monthly
vol. 92, num. 1, pp. 3-23, 1985.

Laroussinie F., Schnoebelen P., “Specification in CTL + Rasterification in CTL”, Informa-
tion and Computationwvol. 156, pp. 236—263, 2000.

Leroux J., Algorithmique de la vérification des systemes mpmteurs. Approximation et ac-
célération. Implémentation de I'outil FAST., PhD thesis|¥de Cachan, France, 2003.

Leroux J., Regular acceleration for number decision diagtaechnical Report num. 1385-06,
LABRI, January, 2006.

Leroux J., Sutre G., “Flat counter systems are everywhefT'VA'05 vol. 3707 ofLecture
Notes in Computer Scienc8pringer, pp. 489-503, 2005.

Minsky M., Computation, Finite and Infinite MachineBrentice Hall, 1967.

Muller D., Schupp P., “The theory of ends, pushdown automatad second-order logic”,
Theoretical Computer Scienceol. 37, pp. 51-75, 1985.

Papadimitriou C., “On the Complexity of Integer ProgramgiinJACM vol. 28, num. 4,
pp. 765-768, 1981.

Potapov I., “From Post Systems to the Reachability Problemlatrix Semigroups and Mul-
ticounter Automata’DLT’04, vol. 3340 ofLecture Notes in Computer Scien&pringer,
pp. 345-356, 2004.

Presburger M., “Uber die Vollstandigkeit eines gewissest@ys der Arithmetik ganzer Zahlen,
in welchem die Addition als einzige Operation hervorttit€omptes Rendus du premier
congrés de mathématiciens des Pays Slaves, Warspaw2—101, 1929.

Schuele T., Schneider K., “Global vs. Local Model CheckidgComparison of Verification
Techniques for Infinite State SystemSEFM'04 |IEEE, pp. 67-76, 2004.

Walukiewicz 1., “Pushdown processes: games and modelkaigc Information and Compu-
tation, vol. 164, num. 2, pp. 234—263, 2001.

Wolper P., “Temporal logic can be more expressiveformation and Computatigrnvol. 56,
pp. 72-99, 1983.

342

