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Abstract

There is a curious bifurcation in the literature on ground and its logic.
On the one hand, there has been a great deal of work that presumes
that logical complexity invariably yields grounding. So, for instance, it is
widely presumed that any fact stated by a true conjunction is grounded
in those stated by its conjuncts, that any fact stated by a true disjunc-
tion is grounded in that stated by any of its true disjuncts, and that
any fact stated by a true double negation is grounded in that stated by
the doubly-negated formula. This commitment is encapsulated in the
system GG axiomatized and semantically characterized in [deRosset and
Fine, 2023] (following [Fine, 2012]). On the other hand, there has been
a great deal of important formal work on “flatter” theories of ground,
yielding logics very different from GG [Correia, 2010] [Fine, 2016, 2017b].
For instance, these theories identify the fact stated by a self-conjunction
(¢ A\ ¢) with that stated by its conjunct ¢. Since, in these systems, no fact
grounds itself, the “flatter” theories are inconsistent with the principles
of GG. This bifurcation raises the question of whether there is a single
notion of ground suited to fulfill the philosophical ambitions of grounding
enthusiasts. There is, at present, no unified semantic framework employ-
ing a single conception of ground for simultaneously characterizing both
GG and the “flatter” approaches. This paper fills this gap by specifying
such a framework and demonstrating its adequacy.

KEYWORDS: Impure Logic of Ground; Truthmaker Semantics; Logic of
Ground; Ground

There is a curious bifurcation in the literature on ground and its logic. On
the one hand, there has been a great deal of work that presumes that logical
complexity invariably yields grounding. So, for instance, it is widely presumed
that the fact stated by a true conjunction is grounded in those stated by its
conjuncts, that the fact stated by a true disjunction is grounded in that stated
by any of its true disjuncts, and that the fact stated by a true double negation is
grounded in that stated by the doubly-negated formula.! These commitments

1See [Fine, 2012], [McSweeney, 2020], and [Rosen, 2010] for discussion and citations.



are encapsulated in the system GG axiomatized and semantically characterized
in [deRosset and Fine, 2023] (following [Fine, 2012]).

On the other hand, there has been a great deal of important formal work
on “flatter” theories of content, including concomitant explorations of corre-
sponding logics of ground very different from GG. So, for instance, the semantic
approaches of [Correia, 2010] and [Fine, 2016, 2017b] each yield a theory of
content, AC, characterized axiomatically by [Angell, 1989]; see §3 below for a
specification. AC requires, among other things, that we identify the fact stated
by a self-conjunction (¢ A ¢) with that stated by its conjunct ¢. Since, in these
systems, no fact grounds itself, any “flatter” theory implying AC is inconsistent
with the principles of GG. According to GG, conjoining ¢ with itself “raises”
the content of ¢, yielding something new; according to the “flatter” theories, by
contrast, self-conjunction just gives us back the old fact.

So, we have two very different logics of ground, and also two very different
views of the conditions under which sentences are equivalent, in the sense that
they express the same fact.? As it turns out, the semantic approaches cited
above and used to characterize these two different views are also very different,
and neither seems readily adaptable to handle the logic of ground yielded by
the other. So, we have no unified semantic framework suited to treat both the
“raised” approach to content characteristic of GG (with one set of constraints on
contents) and the various “flatter” approaches (with a different set of constraints
on contents).

This bifurcation is regrettable. In particular, the “raised” approach differs
from the extant “flatter” treatments in its interpretation of grounding claims.
This motivates the idea that we do not have a single notion of ground treated
by the disparate logics and challenges the claim that there is a single notion to
treat.? It has even been suggested that the lack of a unified semantic framework
for interpreting claims of ground provides a reason to be skeptical about the
cogency or utility of the idea [Fritz, 2022, p. 327].

To meet the challenges posed by these charges, we would like a single frame-
work, with a single conception of ground, which, given different constraints on
equivalence, yield the different logics of ground. A model for a unified frame-
work of this sort is the now-standard relational possible worlds semantics for
propositional modal logic. There we have a single conception of necessity as

2This intuitive way of expressing the sort of equivalence at issue is potentially misleading,
since the notion of expressing a fact may reasonably taken to be factive: a sentence expresses
a fact only if the sentence is true. In the present context I intend the idea to be taken non-
factively. So, for instance, the “flatter” theories imply that (¢ A ¢) and ¢ are equivalent in
the relevant sense even when ¢ is false. So, in the idiom I indulge in the main text, this claim
can be expressed by saying that (¢ A ¢) and ¢ express the same fact, even when ¢ is false.
Correia [2010] calls this non-factive notion factual equivalence.

3In this connection, [Correia, 2010, 2017] explicitly distinguishes the notions of represen-
tational grounding and worldly grounding. In [Correia, 2010], he draws the distinction by
appeal to the fact that worldly grounding has a more coarse-grained conception of the relata
of the grounding relation. But, as indicated in the main text, the differences between “raised”
and “flatter” treatments cannot be characterized merely by differences in how fine-grained the
relata are supposed to be. The different treatments also involve different conceptions of the
notion of ground itself.



truth at all accessible worlds. Different constraints on accessibility then yield
different modal logics. We are aiming for something similar for the logic of
ground.

This paper offers reason for thinking that such a framework is ready to hand.
For reasons that will become clear, there is no prospect of adapting the “raised”
approach of [deRosset and Fine, 2023] by differently constraining contents so
that we get a “flatter” theory instead of GG. In particular, the conception
of ground specified by deRosset and Fine [2023, D2.1, p. 426] is unsuitable
for a “flatter” treatment, because it encodes a characteristic commitment of the
“raised” approach.* But a small variation on that semantics is more serviceable
for the purpose. As we will see, the variant semantics, featuring a tweaked
conception of ground, yields the logic GG on one set of constraints on contents,
and AC and its associated logic of ground on another. The variant semantics
thus provides a framework that unifies the hitherto bifurcated treatments of
ground in the literature.

We will start (§1) by reviewing the semantics for GG specified by [deRosset
and Fine, 2023]. The variant semantics is then described, and GG’s sound-
ness and completeness are established (§2). This variant semantics appeals to
a single constraint on contents, dubbed (<-MAXIMALITY). The soundness and
completeness results show that, in the framework described, this constraint char-
acterizes GG. Next, we state an alternative set of constraints, inconsistent with
(<-MAXIMALITY) in the framework described, and establish the soundness (§3)
and completeness (§4) of AC on the resulting semantics. Finally (8§5), we show
that the resulting interpretation of ground exactly corresponds to the definition
of ground given by [Correia, 2010] and [Fine, 2012, 2017b]. Thus, we have a
single semantic framework encapsulating a single conception of ground that is
suitable for exactly characterizing the semantic assumptions of our disparate
logics of ground.

1 Original Semantics for GG

Let’s begin by describing the semantics for the impure logic of ground of [deRos-
set and Fine, 2023, §2], which we will call the selection space semantics. We
take as given the familiar idea of a space of conditions, which, intuitively, may
either obtain or fail to obtain. We can pair these conditions into propositions,
or candidate contents for sentences, which comprise both a truth-condition and
a falsity-condition.

We are also given two ways in which conditions may be constructed out of
contents. deRosset and Fine [2023, pp. 421, 425-6] dub these two modes of
construction choice and combination, respectively. They characterize them by
appeal to what, following [Fine, 2017a, p. 637fL.], they call the theory of menus.

4deRosset and Fine [2023, p. 492] assert that their approach “can be modified and ex-
tended” to accommodate a “flatter” theory. But they do not say how, nor do they suggest
a way of capturing both the “flatter” theory and the “raised” theory by employing a single
conception of ground.



To appreciate the idea, consider a typical breakfast menu, offering a choice of
either oatmeal with fruit or eggs with toast. Each of the two options is itself
a combination of items, and the toast might itself comprise a choice between
whole wheat and white toast. Thus, on typical menus, there is a hierarchical
organization of choices and combinations, with the menu itself generally offering,
at the highest level, a choice of options. Clearly, the character of choices on
a menu is, intuitively, disjunctive, since any of the options on offer may be
selected. Likewise, the character of combinations is, intuitively, conjunctive,
since any selection includes all of the items together.

The choice and combination operations in selection space semantics are anal-
ogous operations on finite sequences of contents, with choice providing a seman-
tic analogue of disjunction and combination a semantic analogue of conjunction.
Thus, we may think of the choice of contents v and w (written [v + w]), as a
condition comprising two ways in which it might obtain. So, if the condition
in fact obtains, circumstances must somehow include a selection of one of those
ways in which the condition obtains. Similarly, the combination of v and w
(written [v.w]) may be thought of, intuitively, as a condition whose actual ob-
taining requires that circumstances include both v and w. Since there is, on
this conception, no intuitive difference between a singleton combination and a
singleton choice of a content v, deRosset and Fine [2023] identify them, writing
[v] to denote such a choice/combination. Intuitively, one might think of [v] as
an “a la carte” item. Any non-empty set of conditions, together with choice
and combination operations (denoted ¥ and II, respectively), is a member of
the class of selection spaces that gives selection space semantics its name.

The selection space semantics interprets sentences of a propositional lan-
guage with negation, conjunction, and disjunction compositionally, mapping
each sentence to a content, i.e., a pairing of truth- and falsity-conditions. We
take as given an assignment of contents to atomic sentences. The truth-condition
of —¢ is the falsity condition of ¢, and the falsity-condition of —¢ is the “a la
carte” choice/combination of ¢’s content. The truth-condition of a disjunction
is the choice of the contents of the disjuncts, and its falsity-condition is the
combination of the contents of the disjuncts’ negations. Similarly, the truth-
condition of a conjunction is the combination of the contents of the conjuncts,
and its falsity-condition is the choice of the contents of the conjuncts’ negations.
Formally, an interpretation is a function ~ given by an assignment of contents
to atomic sentences that is extended inductively to molecular sentences in the
way just described:

L _‘7(1): (d_)@v[q_s])a
2. (pAY) = ([¢-9],[-¢+—¢]); and
3. (pV) = ([¢+¥],[—¢.~]).

It remains to interpret claims of ground. Here [deRosset and Fine, 2023] ap-
peal to a distinction, standard in the literature on the logic of ground, between
notions of strict ground (<) and weak ground (<). Strict ground is the more fa-
miliar idea, deployed by philosophers across a wide range of areas. Weak ground



is indispensable for logical purposes, but is less familiar and less widely used.
deRosset and Fine [2023] note, however, that their target logic GG requires
that weak ground be specifiable by appeal to strict ground: weak grounds for
¢ are exactly strict grounds for -—¢.> But GG also requires that strict ground
be specifiable by appeal to weak ground: 1,s,... strictly ground ¢ iff they
wrreversibly weakly ground ¢, i.e., they weakly ground ¢, and there are no I
such that ¢, together with T', weakly grounds any of the ;.5

Of course, at most one of these specifications can be designated as a formal
definition of the relevant sort of grounding. deRosset and Fine [2023] choose
to elevate the specification of weak ground by appeal to strict ground to a
definition. That is, they define weak grounds for ¢, in effect, as strict grounds
for =—¢. They then define strict ground directly, by appeal to selection. The
definition is inductive, starting with a notion of immediate selection. So, any
content v is an immediate selection from a choice of contents that includes v,
and the contents v, w,... are, collectively, an immediate selection from their
combination. Immediate selections from the truth-condition of a content are
strict grounds for that content: whenever G is an immediate selection from the
truth condition of v (written vg), G is a strict ground of v. The definition of
strict ground is then rounded out by closing under a series of natural chaining
operations. It is worth stating the definition in full, since it will figure in what
follows. In this definition, <z is used for immediate selection (relative to a
given selection space §), <g for strict selection, and a weak selection claim of
the form G <z v abbreviates (3d)G <z ([v], d):”

Definition 1.1
1. Basis: if G <5 vg, then G <z v;
Ascent: if G <z w and [w] = vg , then G <z v;

Lower Cut: if (G <z v'), and (v') <g v, then (G*) <z v; and

e

Upper Cut: if (G' <z v'), and (v') <z v, then (G') <z v. [deRosset and
Fine, 2023, D2.1, p. 426]

With this definition in hand, we can consider the resulting logic of grounding
claims. deRosset and Fine show that two constraints on selection spaces yield
a class of models for which GG is sound and complete. Thus, those constraints
characterize the semantic presuppositions of GG, given the conception of ground
captured by their definition D1.1. The first constraint we have already encoun-
tered: it says, in effect, that strict ground is irreversible weak ground. Let’s
indicate a connection of partial weak selection in a selection space § using <z:
v <z w iff there is a G such that v,G <z w. This gives us a concise way to
express irreversibility:

5This is their definition (W/S), [deRosset and Fine, 2023, p. 423].

6This is their definition (S/W), [deRosset and Fine, 2023, p. 424].

"In what follows, we will refer to indexed sets using standard notation, writing (z;);<y for
{z;]i <n}. We will almost always omit the subscripted restriction ‘¢ < n’.



Irreversibility G <z v iff G <z v and (Yw € G)v Az w. [deRosset and Fine,
2023, pp. 423-4,426]

The specification of strict ground as irreversible weak ground is a shared
commitment of both GG and the “flatter” theories of ground mentioned above
[Correia, 2010, Fine, 2016, 2017b]. (IRREVERSIBILITY) is needed because it is
not guaranteed by the definitions in [deRosset and Fine, 2023] of selection spaces
and ground on their own. Nothing in those definitions, for instance, prohibits
there being a selection space § in which the singleton choice/combination [v] of
a content v is the truth-condition of v. Then the content v will be an immediate
selection from vg = [v], and hence, by the definitions of both strict and weak
selection, v is both a strict and a weak selection from itself. Since the weak
selection v <z v is obviously reversible, § witnesses a failure of (IRREVERSIBIL-
ITY).

As already noted, the specification of strict ground as irreversible weak
ground is shared with the “flatter” treatments. So (IRREVERSIBILITY) does not
capture a distinctive commitment of GG. Thus, deRosset and Fine [2023] must
impose a further constraint to give a semantics for GG. One distinctive com-
mitment of GG is already captured by the definition of ground offered above.
Given that definition together with the assignment of contents to sentences,
logical complexity of the sort treated invariably yields grounding connections.
For instance, since the content of ¢ is always an immediate selection from its
singleton choice/combination, and that singleton choice/combination is always
the truth-condition of ——¢, the claim that ¢ (strictly) grounds ——¢ is valid.
But GG is also committed to the claim that grounds for a logically complex
sentence must “go through” the contents of its immediate constituents. Every
(strict) ground for ——¢, for instance, must somehow “go through” ¢, in the
sense of being a weak ground for ¢. Thus, ¢ is a kind of maximal strict ground
of =—¢. Similar commitments govern grounds for conjunctions, disjunctions,
and their DeMorgan equivalents. Say that G1,Gs,... are a covering of G iff

G =G1 UG U ... Then this constraint can be encapsulated thus:
Maximality :
1. G <z ([v°.0!....],d) only if there is a covering Gg, G1, ... of G such

that G; <z v%, for each i; and
2. G <z ([v"+v'+...],d) only if there is a non-empty subset w®, w?, . ..
of v0,v!, ... and a covering Gg,G1,... of G such that G; <z w'® for

each i.[deRosset and Fine, 2023, D2.2.2, p. 427]

deRosset and Fine show that GG is sound and complete for the class of
models whose selection spaces satisfy (IRREVERSIBILITY) and (MAXIMALITY)
[deRosset and Fine, 2023, T3.1, T8.6, pp. 429, 489]. Please see [deRosset
and Fine, 2023, §2, pp. 425-7] for a formal specification of the semantics and
[deRosset and Fine, 2023, §3, pp. 427-9] for an explicit specification of the
corresponding system of derivation GG.



2 The Variant Semantics

GG’s characteristic commitments concerning the fineness of grain of contents are
highly controversial. For instance, GG requires that we distinguish the content
of ¢ from each of =—¢, ¢ A ¢, and ¢ V ¢, since ¢ < ¢ is a theorem of GG, but
each of =—¢ < ¢, (¢ A p) < ¢, and (¢ V ¢) < ¢ is inconsistent in GG. Use = to
express ground-theoretic equivalence between formulae, so that ¢ =~ ¢ iff ¢ < ¢
and ¢ < ¢. GG also requires counter-examples to the general ground-theoretic
equivalence of (¢ V (¢ V x)) with ((¢ V¢) V x) [deRosset and Fine, 2023, §9.3].
For, as one might expect from inspection of (MAXIMALITY), GG requires that
a strict ground for (¢ V 1) be either a weak ground for ¢, a weak ground for v,
or split (perhaps non-exclusively) into a weak ground for ¢ and a weak ground
for 1. Also, ¢ and 1 are each required in GG to be strict grounds for their
disjunction. So, if ((¢p V ¢) V) = (¢ V (¢ V v)), then, according to GG, we
have:
((pV) V) < (oV (V)
F(@Vy) <(oV(¥Ve))
FloVvey) < (V)
Fo< (V)

o <.

Since ¢ is arbitrary, we may substitute == for ¢ in this derivation, yielding

(Vv VY) < (- V(P Vey) b W<y B Y <

In GG, however, nothing grounds itself, so ¥y < % is inconsistent. Thus,
GG requires that disjunction not be associative. GG also turns out to re-
quire similar counter-examples to both the associativity of conjunction and
the boolean distribution equivalences (¢ V (¥ A x)) = ((¢ V¢) A (¢ V x)) and
(A (VX)) = (@A) V(PAX)). Moreover, GG allows us to distinguish all in-
stances of ¢ V1 from 1V ¢, though it also allows their general ground-theoretic
equivalence. Similar remarks apply to DeMorgan equivalences. These facts
demonstrate the way in which GG imposes interesting constraints on the indi-
viduation of content. They thereby differentiate the theory of content required
by GG from the “flatter” treatments we have already mentioned, which presup-
pose these ground-theoretic equivalences [Correia, 2010, Fine, 2012, 2017b].
Our aim is to recover the impure logic of ground given by those “flatter”
treatments by revising the constraint on selection spaces imposed by (IRRE-
VERSIBILITY) and (MAXIMALITY). Since (IRREVERSIBILITY) is a commitment
shared between the “raised” conception articulated by GG and the “flatter”
treatments, one might hope that simply revising (MAXIMALITY) would do the
trick. The hope is forlorn. The conception of ground encapsulated in deRosset
and Fine’s [2023] definition of strict selection is itself unsuitable for the “flatter”
treatments. As we saw in §1, on that definition, ¢ invariably strictly (and so
irreversibly) grounds ——¢, and weakly grounds itself. These two commitments
are inconsistent with any of the “flatter” views, which identify the content of
any sentence and its double negation, and maintain that strict ground is irre-
versible weak ground. So, as we saw above, the very conception of ground at



issue incorporates a characteristic commitment of GG. Selection systems can-
not provide the unified semantic framework we are seeking, on the conception
of ground characterized by deRosset and Fine’s D1.1.

This problem can only be solved by starting with a different definition of
selection. Fortunately, there is such a definition in the offing. Recall that weak
and strict ground, in GG, can each be specified in terms of the other. As we
saw, deRosset and Fine elect to take the specification of weak ground in terms
of strict ground as a definition of weak ground: weak grounds for ¢ are defined,
in effect, as strict grounds for =—¢. Strict ground is then defined directly, as
in D1.1. We can do better by following the opposite procedure, defining weak
ground directly, and then defining strict ground as irreversible weak ground.

Suppose we are given a selection space §.

Definition 2.1 The relation <; for § is defined inductively:
1. Basis: G < vg or G < [v] = G <q v;
2. Cut: (G; <1 v%) and (v') <1 v = (Gy) <1 v; and
3. LEVEL: (G; < v) and (v') <1 ([v],d) = (G;) <1 v.

(BAs1s) and (cut) are familiar and straightforward. (LEVEL), by contrast, is
more difficult. It is plausible to think that a weak grounding claim indicates
that the weak grounds of some content v are at or below the explanatory level
of v. What (LEVEL) says, on this way of thinking, is that if some contents
00 vl ... are at or below [v]’s level, we go down a level from v°, v!,... to get
Go,G1, ..., and we go down a level from [v] to get v, then the level of the G’s

will be at or below the level of v. A picture illustrates the idea:

Level (a+1): v, vl > ([v],d)

Level o : GY, G, e > v

Here the dotted arrow represents < ; and the solid arrows represent relations
of immediate selection connecting entities of a given level with entities one level
up. In the context of GG’s specification of weak selections from a content v as
strict selections from the “a la carte” item [v], the definition of <; can be seen
as a way of adapting the original definition of strict selection in D1.1 to yield a
direct definition of weak selection. The immediate selection clause and ASCENT
in D1.1 get bundled into BASIS. The cUT clause in D2.1 is a special case of
LOWER CUT, where the major premise (v') <z v has the form (v;) <z ([w], d),
and so says, in the present context, that (v;) are a weak selection from w. And
LEVEL is a special case of the UPPER CUT clause of D1.1 and the basis case.
Whenever (G;) are immediate, hence strict, selections, respectively, from (v?)
and (v%) are, in turn, a weak selection from ([v], d), application of UPPER CUT
implies that (G;) are a strict selection from ([v],d), and hence a weak selection



from v. In fact, we will show (T2.5) that deRosset and Fine’s original definition
of weak selection and the new definition D1.1 are equivalent in any selection
space. So, the new definition D1.1 of weak selection simply presents the old
relation in a somewhat unfamiliar guise.®

The framework of selection systems, together with the conception of ground
corresponding to this definition of <;, provides the unified approach we seek.
What we will show is that the framework of selection spaces, together with this
conception of ground, can be constrained one way to yield GG, and a different
way to yield the logic of the “flatter” treatments.

We start by showing that there is a single, natural constraint on selection
systems, obtained by strengthening deRosset and Fine’s (MAXIMALITY) con-
straint, that yields the logic GG given the conception of ground corresponding
to D2.1. For this purpose, we will show that the class of selection systems meet-
ing deRosset and Fine’s two constraints is a subclass of the class meeting the
strengthened (MAXIMALITY) constraint, and that, for each selection system in
that class, the two pairs of definitions of strict and weak selection exactly coin-
cide. This immediately implies, via deRosset and Fine’s completeness theorem,
that GG is complete for the class of selection systems meeting the strengthened
maximality constraint; the soundness of GG is straightforwardly established by
a routine induction on derivations in GG.

The relation of strict selection < is (directly) defined as before in D1.1, and,
to prevent confusion, we write G < v (instead of G < v) for (3d)G < ([v], d).
L2.2-T2.5 establish the somewhat surprising equivalence of <; and <, in any
selection system. This vindicates the assertion above that the two definitions of
weak selection present a single underlying phenomenon in two different ways.

The implication in one direction, from the new definition to deRosset and
Fine’s original definition, is straightforward.

Lemma 2.2 G<;v= G <yw.

Proof We prove the result by induction on D2.1.

BAsis: Suppose G < vg. By D1.1:

G <vg =2 G <v=E0 G < ([v],d) = G <y

Suppose instead that G < [v]. By D1.1:

Basis

G« ] == G < (v],d) = G<sv.

cuUT: Suppose (G* <1 v%) and (v?) <; v. By IH, (G* <3 v%) and (v') <3 v. By
D1.1, LOWER CUT, (G%) <3 v.

8The new definition of strict selection, however, is different from deRosset and Fine’s
notion. In particular, the new definition D2.7 of strict selection, unlike D1.1, does not imply
without further constraints that ¢ strictly grounds each of =—¢, (¢ V @), and (¢ A ).



LEVEL: Suppose (G' < v%) and (v%) < ([v],d). By IH, (v*) <5 ([v],d). By
D1.1,Basis, (G < v%). So, by D1.1,uPPER cuT, (G*) < ([v],d), i.e.,
(Gl) SQ v.

To show the implication in the opposite direction, we prove a utility lemma
that shows, in effect, that every strict selection in deRosset and Fine’s sense can
be represented in a convenient normal form. Write G <; v°,...,v%, ... when
there is a covering GY,...,G?%, ... of G such that G <; v°,...,G" < v, .. ..
It is obvious by CuT that, if G <; H and H <; I, then G <4 1.

Write (G*) < (v?) for (G* < vy).

Lemma 2.3 If G < v then there are (u') and (H") such that
G <y (HY) < (u') <4 .

Proof We prove the result by induction on D1.1.

BASIS: Suppose G < vg. Then G <1 G < v <q v.

ASCENT: Suppose G < w and [w] = vg. By IH, G <; (HY) < (u?) <1 w (for
some (H?), (u')). By D2.1,BAsIS and cuT, G <; (H?) < (u®) <1 w <1 v.

<
LOWER CUT: Suppose (G <5 v%) and (v') < v. By IH, (v%) <; (H?) < (u?) <4
v (for some (H7),(u?)). Also by IH, for each i, G* <; (I*) < (zF) <,
([v'],d") (for some (I¥),(z*)). By D2.1,LEVEL, (I*) <; v; and so, by
D2.1,cuT, G* <1 v'. So,

(GY) <1 (v) <4 (HY) < (w?) <5 0.
By D2.1,cuT, (G%) <y (HY) < (v/) <1 v.

UPPER CUT: Suppose (G' < v*) and (v%) < ([v],d). By IH applied to (G* < v?),
for each i, G; <1 (HY); < (u); <y v* (for some (HY);,(u");). By
IH applied to (v) < ([v],d), (v') <1 (I*) < (2%) <1 ([v],d) (for some
(I*), (z%)). So, by D2.1,LEVEL (v') <y (I*) <; v. Putting all of this
together:
(Gi) <1 (HY) < (u¥) <4 (v) <1 (IF) <q v

So, by D2.1,cur, (G*) <1 (HY) < (u¥) <y .
Now we can establish a convenient CUT principle.
Lemma 2.4 If (G' <v') and (v%) <4 ([v],d), then (G%) <4 v.

Proof By L2.3, for each i, G; <1 (HY); < (u%); <y v* (for some (H¥);, (u');).
So, (GY) <1 (HY) < (u¥) <5 (v') <1 ([v],d). By D2.1, cuT and LEVEL,
(HY) <1 v. So, (GY) <1 (HY) <1 .

This permits us to prove that weak selection in deRosset and Fine’s original
sense (<) implies weak selection in the new sense corresponding to D2.1 (<y),
thereby establishing the equivalence of <; and <5 in any selection system.

10



Theorem 2.5 G <; v & G <y 0.

Proof =-: 12.2
<: We prove the result by induction on D1.1:

BASIS: Suppose G < [v]. By D2.1,BAsis, G <; v.

ASCENT: Suppose G < w and [w] = [v]. Then w < [v]. So, by D2.1,
BASIS, w <3 ([v],d). So, by L2.4, G <; v.

LOWER CUT: Suppose (G* <5 v%) and (v') < ([v],d). By IH, (G%) <4
(v') <1 v

UPPER CUT: Suppose (G < v%) and (v') <5 ([v],d). By IH, (v%) <4
([v],d). By L2.4, G <; v.

Following [deRosset and Fine, 2023, D2.2, p. 426], call a selection system a
<-frame iff it meets both (MAXIMALITY) and (IRREVERSIBILITY). The next two
lemmas use L2.5 to straightforwardly establish similar equivalences for the other
grounding operators treated by [deRosset and Fine, 2023] in every <-frame (not:
in every selection system). Write v <1 w for (3H)v, H <y w; v <; w says that
v is a partial, weak selection from w, in the newly defined sense.

Lemma 2.6 Suppose § = (F,3,11) is a <-frame. Then G <z v iff G <1 v and
(Vw € G)v 1 w.

Proof § is a <-frame and thus satisfies (IRREVERSIBILITY):
G <zviff G <y vand (Vw € G)(VH)v, H €5 v.
The result is therefore immediate by T2.5.

Suppose § = (F, X, 1I) is a <-frame. To prevent confusion as we establish a
correspondence between the two definitions of strict selection on hand, we will
now write <, for <z, the original variety of strict selection defined by D1.1. We
offer a new definition of a variety of strict selection relation <;, on which it is
defined as irreversible weak selection:

Definition 2.7 G <; v G <1 v and v A1 w.
The following is then an immediate consequence of 1.2.6:

Lemma 2.8 Suppose § = (F,3,11) is a <-frame, and let <o and <1 be defined
as specified above. Then G <q v iff G <1 v.

We can now specify our new semantics for GG, appealing to a strengthened
maximality principle, defined by appeal to our new strict selection relation <;.

Definition 2.9 A selection space § = (F, X, 1) is a <-frame iff it satisfies

<-maximality
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1. G <y (00t ],d) iff G <1 (v9); and

2. G <1 (W0 + vt +...],d) iff there is a subset (w?) of (v%) such that
G <1 (w?).

It is now straightforward to show that GG is sound and complete for the
new semantics. We first prove a utility lemma, establishing that any <-frame
satisfies a strengthened version of deRosset and Fine’s [2023] (MAXIMALITY)
constraint.

Lemma 2.10 If § is a <-frame, then § satisfies
Strengthened Maximality

1. G < (00l ],d) iff G <o (vY); and

2. G <g (W° + o' +...],d) iff there is a subset (w?) of (v%) such that
G SQ (wj).

Proof Suppose § is a <-frame. It already satisfies (MAXIMALITY). So, we need
only show (1.) and (2.) in the right-to-left direction.

(1.) Suppose G <5 (v%). By D1.1, BasIs, (v') < ([v°.v!....],d). So, by D1.1,
LOWER CUT, (G%) <5 (o0t .. ], d).

(2.) Suppose there is a subset (u’) of (v?) such that G <5 (u?). Then G has a
covering (G7) such that (G7 <, u/). Let v = ([v° +o! +...]). By D1.1,
BASIS, (u/ <3 v). So, by applications of D1.1, LOWER CUT, (G’ <, v).
Also, by D1.1, BAsIS, v <3 v. So, we have (G <5 v) and v,v,--- <g v.
By D1.1, LOWER CUT, (G7) <5 v.

This lemma makes it easy to show that satisfaction of deRosset and Fine’s
constraints on selection spaces implies satisfaction of our new constraint <-
MAXIMALITY.

Lemma 2.11 If § is a <-frame, then it satisfies (<-MAXIMALITY).
Proof 12.10, L2.8, and T2.5.

Now we can define a notion of a model appropriate to our new definition of
ground.

Definition 2.12 A <-frame is a selection space that satisfies (<-MAXIMALITY ),
and a <-model is a quadruple (F,X,I1,~), where = is an interpretation, and
§=(F, X, 1) is a <-frame.

Define truth in a <-model (F;) for grounding claims A < ¢, A < ¢, etc., in the
obvious way, analogously to [deRosset and Fine, 2023, D2.4, p. 427]. Write Fs
for the notion of truth in a model in deRosset and Fine’s semantics. The key
relation between the two semantics is now easy to show:

Lemma 2.13

12



1. Every model MM = (F, %, ®,%) for a language £ is also a < —model for
Z; and

2. for all models M and grounding claims o, M E1 o iff M, 0.

Proof By L2.11, we need only check that 9 F; o iff M Fy; 0. We do this
separately for the four kinds of grounding claims:®

<: Suppose 0 = A < ¢. Then

ME,A<dpo A< ¢2E AN deME,A<o

IN

: Suppose 0 = A < ¢. Then

937’:1A§¢<:’Z§1$&>Z§2$®9ﬁ':2ﬁ§¢

IA

: Suppose 0 = § < ¢. Then

MEL 6 =G0 =1 ¢ (TH)S,H <y ¢ =22 (FH)S, H <o b MEy 6 < ¢

A

: By T2.5,
(*) GH)w,H <y viff GH)w, H <5 v.

Suppose 0 = § < ¢. Then

ME, o0& (3H)S, H <, ¢ and =(31)$,I <, 8 <24 (3H)3, H <o ¢ and ~(30)p, 1 <2 8 = M5 0.

Recall that deRosset and Fine prove that GG is complete for their original
semantics [deRosset and Fine, 2023, T8.6, p. 489]. We can use that result,
together with L2.13 to prove the completeness of GG for our variant semantics.
Write S Ey T to indicate that, for every <-model M, if (Vo € S)M F; o, then
FreT)ME .

Theorem 2.14 (Completeness) If SF, T, then S T.

Proof Suppose S I/ T. By deRosset and Fine’s completeness theorem [deRosset
and Fine, 2023, T8.6, p. 489], there is a model M such that M Fo S, but, for
each 7 € T M 7. By L2.13, 91 witnesses that Sy T.

9 Strict partial ground is indicated by <. ¢ is a strict partial ground of ¥ iff ¢ < v, but
Ao
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Soundness is easily proved by a routine induction on the length of derivations,
omitted here. So, GG is sound and complete for our variant semantics.

One feature of the variant semantics bears mention. As we have seen, deRos-
set and Fine’s [2023] treatment distributes the characteristic commitments of
GG between one of the two constraints on selection systems and the definition
of ground. By contrast, the variant semantics encapsulates the characteristic
commitments of GG into a single constraint, <-MAXIMALITY. It thus brings the
characteristic commitments of GG into clearer view.

3 The System AC, Semantics for AC, and Sound-
ness

The previous section showed that GG is sound and complete for the class of
<-models. Semantically, the fineness of grain for contents required by <-models
is enforced by the (<-MAXIMALITY) constraint. We now turn to the question
of whether the “flatter” logics of ground that presuppose AC can be captured,
semantically, by replacing that constraint with some alternative. If they can,
then we have the semantic framework we seek.

We start by characterizing AC and a corresponding semantics. Previously,
we used ~ to express ground-theoretic equivalence. Abusing notation, let us
now use = to express the claim that formulae are equivalent, so that ¢ =~ 1
says, intuitively, that ¢ and i express the same fact, or, alternatively, that for
it to be the case that ¢ is for it to be the case that ¢ and vice versa [Dorr,
2016].1% Angell’s theory AC can be characterized by the following axioms and
rules:!!

10Given that full, weak ground is reflexive, if ¢ and 1 are equivalent, then it will follow that
they are mutual full, weak grounds of one another. A failure of ground-theoretic equivalence
would show that the two sentences are not equivalent. So, the intuitive interpretation of
X as expressing equivalence entails its prior interpretation as expressing ground-theoretic
equivalence. It turns out that the converse entailment also holds, on the interpretation of
ground that accompanies Angell’s theory of equivalence; see below.

1 This axiomatization is stated in [Fine, 2016], following [Angell, 1989).
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The System AC:

INVOL Fé~ -9

IDEM(A) Fo=(dN)

COMMUT(A) Flony) = (P Ad)
ASSOC(A) F@A@Ax) = ((9AYP) AX)
IDEM(V) Fo= (Vo)

COMMUT(V) F(oVy)~(PVe)

ASSOC(V) F@Vv@Vvx) =((eVy)Vx)
DM(-A) F (e A) = (mg V)
DM(-V) Fo(e V) = (mp A—y)

DISTRIB(A/V)  F (A (VX)) = (¢ A)V(dAX))

DISTRIB(V/A) F (VW AX) = ((6V)A (VX))

SYMM prRYEYP=P

TRANS prY,YrxEY =X
SUB(A) prYPE(pAX) = (W AX)
SUB(V) prPpE(pVX)= (P VX)

Intuitively, AC requires the identification of the contents of sentences that
have the same disjunctive normal forms. This requires fewer identifications of
content than, for instance, a boolean approach, which requires the identification
of any tautologically equivalent sentences. For example, AC allows us to deny
¢ ~ ¢V (¢ AN). The boolean approach, by contrast, would require it, since
o< ¢V (p A1) is a tautology. But AC also requires the identification of the
contents of sentences in cases in which GG demands their distinctness. For
instance, AC requires the equivalence of ¢ and ——¢, while, as we have seen, GG
demands that the second sentence express the result of “raising” the content of
¢ to yield something new. So, the conception of content characterized by AC is
much “flatter” than that required by GG, though not nearly as “flat” as that
required by a boolean approach.

We define the notion of an Angellic frame (an A-frame) in a way similar to
the notion of a <-frame, but replacing STRENGTHENED MAXIMALITY with four
constraints. The first is:

Commutativity + Unipolarity: [(a1,c1).(az.ca). -] = [(b1,¢1).(ba.c2). -]
if {a1,a9,...} = {b1,ba,...}; and [(a1,¢1) + (az.ca) + -] = [(b1,c1) +
(b2.62)+"'] if {al,ag,...} = {bl,bg,...}.

Intuitively, (COMMUTATIVITY + UNIPOLARITY) (or (C+U) for short) says that
the choice and combination operations on contents are blind to order, repeti-
tions, and falsity conditions. (c4u) thus permits the definition of choice and
combination operations on conditions, rather than contents, where [a.ag. - -]
is the combination, for any (b;), of ((a1,b1),(a2,b2),...), and, similarly, for
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[a1 + az + -+ -]. The other three constraints on Angellic frames are then:'2
(Involution): [a] = q;

(Associativity): [a.[b.c]] = [[a.b].c] and [a + [b+ c]] = [[a + ] + ¢]; and
(Distribution): [a + [b.c]] = [[a + b].[a + ¢]] and [a.[b + ¢]] = [[a.b] + [a.c]].

The notion of an interpretation ~ for a language .# has already been defined
in §1. An Angellic model (A-model) is then a quadruple (F,X,1I,~), where
~ is an interpretation, and § = (F,X, 1) is an A-frame. Sentences ¢ and 1)
are equivalent when they have the same truth-condition: ¢ = 1 is true in an
A-model iff 5@9 = @@. ¢ = is valid iff it is true in every A-model.

This semantics is sound and complete for AC. It is useful to note some basic
facts concerning the interaction of the interpretation function and the choice
and combination operations:

Lemma 3.1 For any A-model (F,3,11,7),

INVOL)

1. 56 "= (9o, 9a).
2. For ® € {+, .},
[v© w] () [w® v];

— —17 (0+U)

e BAY)] 'S ve 0 (@AY),] = [ve © [64] = [vs © [de-Vs]l; and

wo@Ve)] = veo GV V)] = [ve © [¢ + )] = [vg © [de + Yol

3. (pN)g = [0.9)] ‘L [fo.Pa) and (¢ V ) = [¢ + ¢] ‘L pg + V).

L3.1 gives us structural information that makes it easy to prove the sound-
ness of AC for the class of A-models by a straightforward induction on deriva-
tions in AC.

Lemma 3.2 (Soundness) If b ¢ =~ 1, then ¢ = 1) is valid.

4 Completeness of AC

AC is also complete for the space of A-models in the sense that - ¢ ~ 1) if ¢ =
is true in every A-model.'®> Completeness could be shown, as in [Fine, 2016]
by directly constructing a canonical A-model in which ¢ ~ 1 is true iff it is a
theorem of AC. Here, for the sake of brevity, we instead show how, given a model
of the semantics of [Fine, 2016], to construct a corresponding A-model in which
exactly the same equivalence claims are true. We then use the completeness
of Fine’s semantics for AC to establish the completeness of the selection space

12 (ASSOCIATIVITY) and (DISTRIBUTION) have infinitary analogues, but for present purposes,
the weaker, finitary versions suffice.
13This is a weak completeness result. See n. 14 below.
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semantics described in §3. This procedure has the added benefit of showing
how the models of Fine’s semantics are systematically related to A-models. In
particular, it enables us to see how Fine’s models can be thought of as a special
case of A-models, and thus of selection-spaces more generally.

Let’s begin by recapitulating Fine’s semantics. A statespace is a pair (S, C),
where S is nonempty and

1. Cisapartial order on S, i.e., C is reflexive, transitive, and anti-symmetric;
and

2. Every subset of S has a C-least upper bound.

Use lowercase letters r, s, and ¢ (perhaps with superscripts or subscripts) for
members of S, and a, b, and ¢ for subsets of S. Intuitively, a state s is a part
of a state t when part of what it is for ¢ to obtain is that s obtains. Thus, if ¢
is a state in which a certain house A in prehistoric Sumeria is a red house, part
of what it is for ¢ to obtain is for the state r in which A is red to obtain. By
contrast, the obtaining of state r’ in which either tea is expensive in China or
it is not is presumably no part of what it is for ¢ to obtain, since t’s obtaining,
intuitively, has nothing to do with the price of tea in China. The least upper
bound of a set of states a is, intuitively, the state whose obtaining involves
the obtaining of exactly the states in @ and no more. Thus, we might think
of the least upper bound of a as the state-theoretic analogue of conjunction.
The requirement that every set of states has a least upper bound can then be
understood as the apparently benign commitment that every set of states has
such a conjunction. Fine [2016, p. 205] calls this analogue of conjunction the
fusion of the states. Unlike a conjunction of sentences, however, fusions are not
generally uniquely decomposable. The fusion, for instance, of r, s, and ¢ has a
decomposition into r and the fusion of s and t, and another decomposition into
t and the fusion of r and s.

We can now define analogues, in Fine’s semantics, for the choice and com-
bination operations in selection-space semantics. In fact, these operations will
serve, in effect, as the choice and combination operations of an A-model we will
define, corresponding to a given model of Fine’s semantics. For any a C S write
| | a for the least upper bound of a, and, if {s!,s%,...} C S, write s'Us?U... for

| [{s!,s2,...}. Define two operations on sets {a',a?,...} of subsets a',a?, ...
of S, and a unary operation on subsets a of S:
Definition 4.1

1. (ata®. - ) ={stus?U...|(s" € a))};

2. (at+a*+---)=atUd®U...; and

3. The complete, convex closure [a]’ of a is {t|(Is € a)s Tt C | |a}.
I often omit parentheses for (al.a.---) and (a' + a? + ---) for readability. I
also omit the superscript ’ from [a]" when it will not result in any confusion.
So, for instance, in a convenient abuse of notation, we write [a'.a?. - - -] for the
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complete, convex closure of (al.a?.---). Our strategy will be to show that the

closure of (a'.a?.---), denoted either [(a'.a®.---)]" or [al.a®.---], can serve as

the combination of a',a?,... in an appropriately defined A-model, and, simi-
larly, for + and choice; see D4.12.

For the moment, however, we will focus on understanding Fine’s semantics.
We carry out that task by establishing results L4.2-T4.9. It is important to bear
in mind in our discussion of these results that ‘+’ and ‘.” are used to indicate
the operations in Fine’s statespace semantics defined above, rather than choice
or combination in some selection space.

We first note some structural principles governing the interaction of our
operations. It will often be convenient to appeal to the fact that | |a is the least
upper bound of a, so that, if ¢ bounds a, then | |a C ¢t. We will abbreviate our
appeal by saying that | |a C ¢ by leastness. Thus, | |a C | |b whenever a C b by
leastness.

Lemma 4.2 (Associativity of | |) | |[{|]a',||a? ...} =](at +a®+--+).

Proof Tt is enough to show that every bound of {| |a,| |a?,...} is a bound of
(a* + a® + --+), and vice versa. Suppose that ¢ bounds {| |a!,| |a?,...}. For
each i, | |a® bounds a’. So, t bounds (a! + a® + ---). Suppose, then, that ¢
bounds a' + a? + - --. By leastness, (| |a’ C t). So, t bounds {| |a,| |a?,...}.

Say that a is complete iff, for every non-empty subset b of a, | |b € a.
Complete sets of states are closed under fusion. Say that a is convez if whenever
there are r, s, and ¢ such that r,t € a and r C s C ¢, s is also in a. Convex sets
of states contain no “gaps”: any state between two states in the set is also in
the set. So, if we have three states r, s, and ¢, the set {r Us,t} may turn out to
be incomplete because it does not contain its own fusion r LI sLIt. If we were to
throw the fusion in, then we get the set {r U s,¢,7 U s t}. Now, this new set
may turn out to be non-convex if it does not contain s LI t, which lies between
t and r U s U¢. The next two lemmas justify calling [a] the “complete, convex”
closure of a, as we did in D4.1.

Lemma 4.3 [a] is complete and convex. [Fine, 2017a, L1, p. 648]

Proof The result is trivial if a = (). For completeness, suppose s', s2,--- € [al,
so that (' C s’ C | ]a), for some (#) C a. | |a bounds {s!,s?,...}, so, by
leastness, | |{s',s2,...} C | Ja. Also, t' T | |{s!,s? ...}, so | J{s',s% ...}
[a]. For convexity, suppose s',s? € [a] and s' C ¢ C s2. Then (3’ € a)t’' C s!
tCs?C | ]a. So, s € [a].

I m

Lemma 4.4 If a is complete and convez, then [a] = a.

Proof Suppose a is complete and convex. If a = ), then there are no ¢ € a, so
[a] = 0. Suppose s € a. Then s C s C | |a, so s € [a]. Suppose s € [a]. Then
t C s C | ]a for some t € a. Since a is complete and non-empty, | |a € a. So,
since a is convex, s € a.
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The following utility lemma, due to Fine [2016, pp. 207-8], is helpful for
proving identity claims among closures of subsets of S.

| iff (i) Ja = |]b; (ii) (Vs € a)(3t € b)t T s; and (iii)

Lemma 4.5 [a] = [b
(Vt € b)(Is € a)s C ¢.

Proof =: Suppose [a] = [b]. If a = 0, then [a] = 0 = [b], so b = 0, and
(i)-(iil) are trivially true. Suppose both a and b are non-empty. Then
Lla € [a] = [b], and so | |a C | |b. By symmetry, | |b T |]a, so, by
anti-symmetry of C, | |a = | | b, establishing (i). Suppose s € [a] = [b].
Then (3t € b)t C s C | |b, establishing (ii) and (by symmetry) (iii).

<: Suppose (i)-(iii) are each true. Suppose s € [a]. Then (It € a)t C s C
-

Llfa] € |J[6]- By (2), 3t' € [b]t’ C ¢ C s, and we already have s
So, s € [b]. The result follows by symmetry.

The next two lemmas establish that our two operations are associative and
idempotent when applied to non-empty subsets of states.

Lemma 4.6

1. Ifa',a?, ... are each non-empty, then | |(a*.a®. ) =|](a' +a®+---).

2. | Ja=L]la].
3 L(at) + 2] 4 ) = (et +a? ).
4. Ifat,a®, ... are each non-empty, then | |(a*.a®.---) = | {|]a', | ]a?,...}.

Proof

1. Suppose a',a?,... are each non-empty. It is enough to show that every

bound of (a'.a?.--+) also bounds (a! + a® + - - -) and vice versa. Suppose
t bounds (a'.a?.---), and that s € a, for some i. Then, because each of
(a?) is non-empty, s C s' U s? -+ Usi(= s)U..., for some (s/) such
that (s’ € a’). So, since t bounds (at.a®.---), s C st Us?U--- Ct. So
t bounds (a' + a? + ---). Suppose, then, that ¢t bounds (a! +a®+ ---).
Consider any (s*) where (s° € a?). Since {s',s%,...} C (a' +a® +---),
st Us?U --- Ct by leastness. So, ¢t bounds (a'.a?.---).

2. Suppose ¢’ bounds a. By leastness, | Ja C ¢. Suppose s € [a], so that
t C s C|]a, for some ¢t € a. Then s C | |a C ¢, so ¢’ bounds [a].
Conversely, since a C [a], any bound ¢’ of [a] also bounds a.

Ll +fa? ) 2 LU a2y 2Lt e} 2 | (et a2 ).
4. Suppose a',a?,... are each non-empty.

|_|(a1.a2,-..) gl_l(a1+a2—|-...) e |_|{|_|a1,|_|a2,...}
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Lemma 4.7 (Associativity and Idempotence)

1. [[a'].[a?]. -] = [at.a®.---].

] =a

[ah.a2. - [bLb2 et ] ] = [ahaa?. - L2

S &N
)
4
IS
+

la' +a®+- + [P+ 02+ ][+ 4]+ ] = et a4

b1+b2+...+cl+02+...}.
7. [a.[b.c]] = [[a.b].c].
8 la+[b+c]]=][a+b+c.

Proof (4) is trivial, since (a +a + ---) = a. Since [b1.b%. -] =

[(bLB2. )]

has the form [b], (5) follows from (1) and L4.2 (Associativity of | ]). Similarly,
(6) follows from (2) and the associativity of the set-union operation. (7) follows
from (5) and the commutativity of | |, and (8) from (6) by the commutativity

of of | | and set-union. We prove each of (1), (2), and (3) by L4.5.

1. Suppose that a’ = 0, for some i. Then [a’] = 0 = [[a'].[a?].---

[at.a®.---]. Suppose, then, that a',a?,

(®: Ulla'-[a?). -] "= U(la") o). ) "= U(la") + 0] + -+
(L46(3)) |—|(a1 ta2y--) (1:4:6(1) U(a1_a2_ ) (14.6(2)) I_l[al a2

ii): Suppose s € al.a2.~~~.Thenshastheformsll_ISQI_l...
(ii): Suppose s € (]

(s* € [a']). So, for each i, (Ft' € a')t' C s E

).

{t',¢2,...} for some t',¢? ... such that (' € a
ttut?U .- Cs. So, thereisat/ =t Ut?U --- € (at
that ¢’ C s.

(iii): Suppose s € (a*.a®.---). Then s has the form stus?u...

. are each non-empty.

0

where

So, s bounds
By leastness,
--+) such

where

(st € a'). For each i, since a’ C [a'], s' € [a’]. So, s=st Us?- - €

([a'].[a®].--+) and s C s.

(i) Ul + [a2) + -] " (o) + a2+ ) "7 (ot +a+ )

(14.6(2))
| Jlo* +a® +-

(ii): Suppose s € [a'], for some i. By construction, there is a t € a’ such

that ¢t C s.
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(iii): Suppose s € a, for some i. Since a’ C [a], s € [a']. s C s.

(i): Suppose t bounds a. Then, for any set {s',s? ...} C a, t bounds
{s',s?,...}. By leastness, s* Us?LJ --- C ¢, so t bounds (a.a.---).
Suppose t bounds (a.a. -+ ), and let s € a. Then sC sUslU--- Ct,
so t bounds a.

(ii): Suppose s € a. Then s=sUslU --- € (a.a....), and s C s.

(iii): Suppose s € (a.a....). Then there are s',s%--- C a such that
s=s'Us?U....S0,s' €caand s' CstUs?l - =s.

Now we can prove the requisite distributivity laws.

Lemma 4.8 (Distributivity) If a,b, and ¢ are each non-empty, then

1. Ja+[b.c]] = [[a+b].]la+ d]]; and

2. la.[b+ c]] = [[a.b] + [a.c]].

Proof We prove both results by L4.5.

1. Suppose a,b, and ¢ are each non-empty.

(i): Tt’s easy to see that by L4.6 and 14.2 (Associativity of | |), | |[e +
[b.c]] = J(a+(b+c)). Similarly, | |[[a+b].[a+c]] = | ((a+b)+ (a+c)).
But (a+(b+¢))=(a+b+c)=((a+b)+ (a+c)).

(ii): Suppose s’ € (a + [b.c]). Suppose s’ € a.
s'€a=s € (atd),(atc) = s € [a+b], [a+c] = ' = s'Us" € ([a+b].[a+(])

=>@Ft=5s¢e(a+b.lat+d)tCs.

Suppose, instead, that s’ ¢ a, and so s’ € [b.c|. Then there are s* € b
and s¢ € csuch that s’ Us® C 8. s® € b= s® € (a+b) = s® € [a+].
Similarly, s € [a + c]. So, there is a t(= s® U s°) € ([a + b].[a + ¢])
such that ¢t C s’.

(iii): Suppose s € ([a + bl.[a + ¢]). Then there are s; € [a + b] and
sl € [a+ c] such that s = sj Us.. So, (3s® € (a +b))s® C s, and
(35¢ € (a+¢))s® C s.. Suppose s® € a. Then s* € (a + [b.c]) =
(3t(= s%) € (a+ [b.d))t C s, C s Us. = s. Similarly, if s¢ € a,
then we’re done. Suppose, then, that s® € b and s¢ € ¢. Then
sP LU s¢ € (b.e) C [b.] C (a+ [b.c]). Since s, U s, bounds {s},s.}, it
also bounds {s®, s}, and so, by leastness, s’ LI s° C s} L s, = s.

2. Suppose a, b, and ¢ are each non-empty.

(i): Similar to (1)(i).
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(ii): Suppose s € (a.[b+ ¢]). Then there are s* € a and s, € [b+ ¢ such
that s = s* U s,. Since s, € [b+ c], for some s® € (b+c¢), s* C sj.
By symmetry, we may (wlog) assume s” € b. Then s LI s® € [a.b] C
([a.b] + [a.c]). Also, s bounds {s%, 5"}, so, by leastness, 5% LI s* C s.

(iii): Suppose s € ([a.b] + [a.c]). By symmetry, we may (wlog) assume
s € [a.b]. Then, for some 5* € a and s® € b, s* U s’ C s. Also,
s €bC(b+c) C[b+c. So, there is a t = 5% U s®, such that
te(a.lb+c])and tC s.

With these preliminaries concerning features of statespaces out of the way,
we can now specify Fine’s notion of a model for a language .Z. A Fine-model
(F-model) 9t for a language .Z is a triple (S, C, |-|), where (S, C) is a statespace,
and | - | takes every atomic sentence of .Z to a pair (a,b) of non-empty subsets
of S. If |¢| = (a,b), then I denote a by ¢g (with no bars over the top or on the
sides) and b by ¢o. Intuitively, ¢g is the set of verifiers for ¢, that is, the set
of states in which ¢ is true. Similarly, ¢ is, intuitively, the set of falsifiers for
¢. Recursively extend | - | to molecular sentences:

L [=¢| = (¢, 9a);
2. [p A = ((9a-Ya), (9o + ¥o)); and
3. [ A= (9 +Va), (de-Yo))-

On this definition, the falsifiers for ¢ are exactly the verifiers for —¢. Notice
that there is no requirement that the set of verifiers or falsifiers for a sentence
be closed. Still, Fine’s semantics ultimately interprets equivalence by appeal to
the closures of semantic values. Sentences ¢ and 1 are equivalent when their
respective sets of verifiers have the same complete, convex closure: ¢ = 1 is true
in an F-model iff [¢g] = [¢g] [Fine, 2016, pp. 208, 210]. When we construct
an A-model (which is, recall, a certain kind of selection-space model) from a
given F-model, we will assign to ¢ a pair comprising the closures of ¢’s verifiers
and falsifiers, respectively. We will define choice and combination using the
operations + and . defined in D4.1 above. We will then see that the resulting
function is an interpretation in the sense defined in §1 above. So, for instance,
the assigning the closure of the set of (¢ A)’s verifiers as that sentence’s truth
condition turns out to be equivalent to assigning the combination, in the defined
sense, of the contents of ¢ and .

Fine [2016, T23, p. 216] proves that F-models are weakly complete for AC:

Theorem 4.9 (F-Completeness) If ¢ ~ 1 is true in every F-model, then
oyt

14This is a weak completeness result. By contrast, AC is strongly complete for the class of
F-models iff, if every F-model in which every member of a set S of equivalence claims is true
is also a model in which ¢ & 1) is true, then ¢ ~ 9 is derivable from S in AC. The question of
whether AC is strongly complete for the class of F-models (and so, by L4.15 below, the class
of A-models) is an interesting open problem.
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We will show how, given an arbitrary F-model 91 for a language .Z, to construct
an A-model (F™' L7 17 -M) in which the very same equivalences ¢ =~ 1
are true. Let’s suppose for the remainder of the section that we have fixed a
arbitrary F-model 9 = (S,C,| - |). Recall that ¢g is the truth-condition for
atomic ¢: a non-empty subset of the set of states S in the statespace of 9. We
start by defining, for every sentence ¢ of %, a function ~ mapping sentences to
pairs of subsets of S. The mapping ~ will turn out to be our interpretation in
the A-model we are defining, and, as we said above, it will become clear that it
meets requirements specified in §1 for being an interpretation in selection space
semantics. To make this easy to see, we define ~ to mirror the specification of
the extension of a selection-space semantics interpretation:

Definition 4.10
1. (E = ([(b@}? [¢@])7 fOT atomic (b,’
2. _‘7925 = ((563 [Q_SGB]):

3. (¢ AY) = ([9g Y], [ + Ye)); and

4. (@ V) = ([9e + Yol [de-1e]).

Bear in mind that [v+w+- - -] indicates an application of the operation of Fine’s
statespace semantics defined in D4.1: the closure of the union of v, w,.... It is
not meant here to indicate a choice in some selection space, though we will soon
see that it can do double duty as such a choice in a space, defined in D4.12,
which satisfies (C+U). Similar remarks apply to [v.w.---].

A simple induction on complexity of formulae, using 1.4.3, easily confirms
that, for any formula ¢, ¢g and ¢g are each complete and convex. So, L4.4
applies: ¢g = [dg] and ¢ = [ps]. Also, for all ¢, L4.7(1) applies:

[¢0-Va] = [[de]-Wa]).
[¢e-Ps] = [[de]- s,
[9e + Va] = [[0a] + [Ve]], and
(6o +va] = [[¢a] + [Yell.

So, a simple induction on complexity of formulas shows that, if we think of ¢g,
as the truth condition for ¢, then ~ identifies the truth condition for ¢ with the
closure of the set of its verifiers:

Lemma 4.11 [¢g] = ¢g and [ps] = .

We are now ready to define our selection space and corresponding A-model
(FP 3P oy,

Definition 4.12 The A-structure corresponding to 9 is the quadruple (F™, X T ~2)
where

1. F™ is the set of all complete, convex closures of subsets of S;
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1 2, o1 2 . .
) Em(«al,bl),(az,bQ),...>):{ [a'+a*+---], ifa',a®, ... are each non-empty; and

0, otherwise;

3. T (((al, b1, (a2, b2), ...)) = { [[Zil.aQ. - Z:Z;;Z}j;é;. are each non-empty; and
4. TP(0) = 0;
5. I (0) = {LI0};

6. 1™ ({(a,b))) = ¥¥'(((a,)))) = [a]'; and

7-$m==(W@YJ¢eYLJbTawﬂwC¢-

We will show that the A-structure corresponding to 90 is a model. (F™ %7 T17)
is clearly a selection system, since ™ and IT™ are defined on all sequences of
members of F™, and converge on singletons.

We need to show that the A-structure corresponding to 997 meets the four
constraints for a selection space to be an A-frame. We first show that it meets
(c+u).

Lemma 4.13 If(al) (b7), thenﬂm(((a ch), (a?,c?),...)) = I (b, ¢, (d2,d?), ...))
and Zm(« ) a? € ) >) = (<(b17d1)7(b27d2),"'>)

Proof Suppose (a') = (b7). Suppose (a’) = (). Then ™ ({(a', c'), (a?, ¢?),...)) =

0 = SU((O1, ), (7, &), -.)) and TP ({(al, 1), (a2, 2), .)) = {110} = TP ({1, V), (2, @2), .)).
Suppose, 1nstead that (a*) is non-empty. Suppose a’ = (), for some i. Then
SM({(al,eh), (a2, ¢?),..)) = 0 = (b1, d"), (b2, d?),...)) and T (((a', 1), (a®, ?), ...)) =
0= Him(<(b1 dl) (b2 d2) ). I {(at, et), (a2, ¢?), ...) is a singleton <(a1,cl)),

then (a’) = (b) = {a}, for some a, and L4.7(3) and (4) imply the result. By
symmetry, we are also done if ((b%,d"),b?,d?),...) is a singleton. So, assume that

neither ((a',c!), (a?,c?),...) nor ((b!, dl),bQ,d2) ..) is a singleton, and that (a?)

are each non-empty. Then II™*({(a',c"), (a?, ), ...)) = [a'.a®....]". Now, since

(a*) = (b7), a® has the form {a},al,...,a?,d3,...}, where aij =V for all j, k;.

Suppose ¢ € (a'.a®.---), so that ¢ has the form s' Us*U..., where (s € a'),

for all i. Then (s*) has the form {si, s}, ... s?,s3,...}, where i, €ap, =V

for all j, k;. Since, for all j, b/ (e F™) is complete, s] L sy L--- € b7. So,

c:|_|{sl,s2 3= |_|{31752,.. 52,83, }

(L4.2)

= (sUssU .. )U(sTUs L .. UL ) e (bhbP -0

By symmetry, if ¢ € (b'.b%.---), then ¢ € (at.a®.---). So, (at.a®.---) =
(br.v%.---) = [at.a®. -] = [bLb% -], A similar argument shows [a' + a® +
..}’:[b1+b2+...]/.

—m . .
¢ is clearly an interpretation, and can be extended to molecular sentences
in the way specified in §1. Moreover, by L.4.13 the A-structure corresponding to

24



I satisfies (C+U). So we can define the choice [a' +a®+ - - -] and combination
[at.a?.-- -] operations on conditions (a') (rather than contents, i.e., pairs of such
conditions) as previously specified in §3 just below the statement of (Cc+U). A

routine induction on the complexity of formulas then yields
79jl — 79jz —
Lemma 4.14 ¢, = ¢g and ¢5 = ¢o

Thus, by L4.11, the interpretation of any sentence ¢ in our A-structure can
be obtained either directly, by just taking the closures of the sets of verifiers
and falsifiers for ¢ in the original F-model, or inductively, by building them in
the way specified in §1, using the choice and combination operations defined in
D4.12.

Notice that, if (a’) are each non-empty, then [a'.a®.---] = [a*.a®. -] and
[at+a%+---] = [a' +a®+---]". So, if (a’) are each non-empty, we can, without
ambiguity, drop the superscript /, and simply regard the choice [a! 4+ a® + - - -]
and the combination [a'.a?.---] as the complete, convex closures, respectively,
of (a' +a®+---) and (at.a®. ).

We now have everything we need to show that the A-structure we have
defined from our given F-model meets the remaining constraints (INVOLUTION),
(ASSOCIATIVITY), and (DISTRIBUTION) for being an A-model, and that the F-
model and the A-structure countenance exactly the same equivalences among
sentences.

Lemma 4.15 The A-structure (F™, X™ TI7 ) corresponding to MM is an
A-model, and ¢ ~ ) is true in MM iff it is true in (F7, L7 I -,

Proof (C+U): 14.11

(Involution): If a = (), [a] = 0. Suppose, then, that a is non-empty. Then,

since for all a € F™, q is complete and convex, [a] = [a] "=’

(Associativity): Suppose at least one of a,b, and ¢ is empty. Then [a.[b.c]] =
0 = [[a.b].c], and [a + [b+ ¢]] = 0 = [[a + b] + ¢]. Suppose, then, that a,b,
and ¢ are each non-empty. L4.7(7) and (8) imply the result.

(Distribution): As in the previous case, the result is trivial when a, b, or ¢ is

empty. If a,b, and ¢ are each non-empty, then 1.4.8 implies the result.
(L4.11) T

- 4.13) <IN —Mm
Finally, ¢ ~ 1 is true in M < [pg] = (] B ¢g = e & b = Vg &
¢ = 1) is true in the A-structure corresponding to 9.

Completeness follows straightforwardly.

Theorem 4.16 (Completeness) If ¢ ~ i is true in every A-model, then
o~

Proof T4.9 and L4.15.
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Given the fairly straightforward construction in D4.12 of a selection-space
from an F-model, it is plausible to regard the statespace semantics for AC as
presenting in simplified form a special case of the selection space semantics: the
class of F-models offers a simplified specification of the class of selection-space
models given by D4.12. In this sense, we may regard the statespace semantics for
AC as a special case of selection-space semantics. This result is unsurprising: of
course we can constrain choice and combination so they behave the way that the
corresponding relations in Fine’s semantics do, yielding the “flatter” conception
of content required by AC.

We will now establish a more surprising result: the conception of ground
we defined above (D2.1) in the context of <-models automatically corresponds
exactly, in any A-frame, to the completely different definition of ground deployed
in the “flatter” treatments [Correia, 2010, Fine, 2017b]. This suggests that the
“flatter” conception of ground specifies exactly the same idea as the “raised”
conception, with the differences in extension in the two treatments completely
explained by differences in the individuation of content.

5 “Flatter” Ground

As T have indicated, the Angellic conception of content pairs naturally with a
certain view of ground which defines ground in terms of disjunction, conjunction,
and equivalence. For convenience, we will confine ourselves to finitary grounding
claims, with only finite numbers of sentences appearing on the LHS of any
grounding claim. Then, on this view, ¢!, ¢2,...,¢" < @ iff (P AP%A. .. ")V =~
¢, that is, iff the conjunction is a disjunctive part of ¢.'> The notions of weak
partial ground (=), strict partial ground (<), and strict full ground (<) are
defined in terms of < in the standard way:

1 = ¢ iff there is a x such that ¥, x < ¢;

Y < ¢ iff v X ¢ and ¢ A ; and
A< ¢iff A< ¢and (V6 € A)§ < ¢ (for finite A).

This is the view of ground (on an Angellic conception of content) that is char-
acterized semantically in [Fine, 2017b] and semantically and axiomatically in
[Correia, 2010]. Astonishingly, so long as equivalence is a logical notion, then
ground, on this conception, also turns out to be a logical notion [Fine, 2017b,
p. 686]. We now verify that the interpretation of < in A-models exactly corre-
sponds to this view of ground.

151n the limit case in which there is only one occurrence of any sentence ¢’ on the LHS,
we exploit the fact that the grounding claim ¢’ < ¢ is identical to the claim ¢’, ¢’ < ¢, and,
applying the previous truth condition, ¢/ < ¢ iff (¢’ A@d') Vo= ¢ iff ¢' V¢~ ¢ iff ¢ itself is
a disjunctive part of ¢. In the further limit case in which there are no sentences on the LHS
of <, we appeal to a “null fact” O, which is an identity element for conjunction: for all ¢,
(ON@)~¢. Then D0 < @ if OV ¢ = ¢.
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We start by reviewing how to capture the definition of weak ground in terms
of disjunctive parthood. Intuitively, A is a disjunctive part of B when there
is some C' such that the truth-condition for (A Vv C) is the truth-condition for
B. In an A-model, we would characterize the idea by appeal to choice. If a
and ¢ are conditions, then a is a disjunctive part of ¢ just in case [a + b] = ¢,
for some b. Then, for any content (a,d), (a,d) is a disjunctive part of (c,e)
iff a is a disjunctive part of c. Similarly, we can define a correlative notion of
conjunctive part: a condition a is a conjunctive part of ¢ iff [a.b] = ¢, for some
condition b, and (a, d) is a conjunctive part of (¢, e) iff a is a conjunctive part of
c. It conveniently turns out that, given the four constraints on A-models, the
quantification over conditions b in these definitions are dispensable.

Lemma 5.1 [Correia, 2010, pp. 265-6]
1. [a+bl=c=la+=c
2. [a.b] =c=la.c] =¢, and
3. [lab)l+c=c=[lac+c]=c
Proof
1. Suppose
(%) [a+0b] =c.

(ll\\UL [ c+u AESUL

| = e+ o 2 (la+b]+a+d)] "= fatbta+d] = fatatd] 2
[a+[ +0]] = fa+d).

2. Similar to (1).
3. Suppose
(+) [[ab]+ ¢ =c

2)

¢ 2 [lab] +c "= fla+ o+ 2 [la+dd "= lac] +[ed]) =
[a.c] + [e]] "= [[a.c] + ).

An immediate corollary of L5.1 is that (3b)[a + b] = ¢ iff [a + ¢] = ¢, (Tb)[a.b] =
¢ iff [a.c] = ¢, and (3b)[[a.b] + ¢] = ¢ iff [[a.c] + ¢] = ¢. So, for A-models,
disjunctive parthood, conjunctive parthood, and being a conjunctive part of
some disjunctive part can be all be defined without quantification.

We can now show that, in every A-frame, <; corresponds to the view of
ground we have described. In what follows, L3.1 is generally assumed, so that
we can move back and forth between use of + and . for operations on sequences
of contents and their correlative use for operations on sequences of conditions,
and we will write a < b (where a is a condition) whenever any content (a,c)
whose truth-condition is @ is an immediate selection from b.
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Lemma 5.2 Let § = (F,%, 1) be an A-frame. Then v',v% ... 0" < v =
[tv? ]+ vg] = ve.

Proof We prove the result by induction on <;.

Basis) Suppose v',v?, -+ < vg. There are two cases:
( -
o = [vt.v2.---]: Then vg (rrer) [vg] (2 [vg + vg) (supp-) [[otw? -]+ ).
This argument handles the case in which (v!,v?%,...) = (v) and the
case in which (v!,v2,...) = 0.
vg=[w+w'+---] and v ,'02, - : Then vg "= [ve] 2 [vg +
ve] “E [w+w' 4] + ] w [0 +w+w' 4] + vg] =
[lw+fw+w' +-- ]| +vg] RE2 [w+ve]+vs] "= fw+[ve +vs]] =
[w + [ve]) "= [w + vs]
Suppose, now, that v!,v2, -+ < [v] "2 vg. Since [v] L’ [vg] "=’ vy, the

argument above estabhshes the result.

(Cut): Since we are restricting ourselves to the finitary grounding claims, it is
enough to prove the result when the application of (cUT) has a single mi-
nor premise. Suppose, then, that w', w?, - <; w and w,v?, - < .

By IH, [[w!.w?.- ] + wg] = wg and [[wotw? -]+ v@] = vg. Then
(assoc) (supp.)

ve " [wol? ] tvg] "= (w0l w2 ) oe] ([t ]
we).[vg v - []+v @] S lwt w? Lo g lwe [y 03 T+

ve] "= [[[wha - vt wat ok 4og] (2wl vt
[wola? ] +vg] "= wlaw ot [waete? ] ug]) TE
[[wlaw?. - wlo? ]+ vg]

(Level): Suppose ((wz) < vy) and (v¥) <q ([v],b). By IH, [[pl0?. -]+ [v]] =

[v] "= [[ote?. -]+ vg] = vg. By the argument in the case of (BASIS),

[[wiws. -]+ vE] = vl. So, by the argument in the case of (CUT),

[wiwg. - wfws. ] +vg] = vg.

We can now show that, in any A-model, the relevant disjunctive part relation
is just our old friend <j:

Theorem 5.3 [[vt.02%. ] +vg] = vg & vl 02, <y 0.

Proof 15.2 establishes the right-to-left direction. Suppose that [[vl.v2.---] +

vg] = Ve Then [vl V3] K vg. [olad ] K vg = (ta?0],b) <4 v,
and v! v c ot 2 ] = vt? o <y (te?]0b), for all b So, by
(cur), vt §1 v.

It follows immediately from T5.3 and L5.1 that we can define the other ground-
ing relations in terms of choice and combination:

Corollary 5.4
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1. (a,b) =21 (¢,d) iff [[a.c] + ] = ¢;
2. (a,b) <1 (¢,d) iff [[a.c] + ] = ¢, but [[c.a] + a] # a; and
3. (a', b2)? (a%,0%),--- < (¢,d) iff [[at.a®....]+ ] = c and, for all a*, [[c.a’] +

a'l # a'.
Clearly, we can express corresponding claims using the object language expres-
sions V, A, and ~: ¢, ¢?,--- < Y iff (P AP A...) V) ~ah, ¢ < o iff
(GAD) Vo~ o, ete.

Finally, a second corollary of T5.3 is that there is no difference between

v’s having a weak selection w',w?,..., and its having an immediate selection
[whaw?. -]
Corollary 5.5 w!,w?, - <; v iff [whw?. -] < vg.

This corollary illustrates the extreme “flatness” of the structure of selection
according to the Angellic theory of content: every selection from v is at most a
single level down.

So, a single framework, employing a single conception of ground, can capture
a “raised” conception of content encapsulated in GG when it is constrained by
(<-MAXIMALITY), and can also capture the much “flatter” conception of content
encapsulated in AC when it is constrained by (C+U),(INVOLUTION), (ASSOCIATIVITY ),
and (DISTRIBUTION).

It is worth dwelling on a few notable features of the results. First, of course,
we have a general framework appealing to a single underlying conception of
ground and yielding different logics of ground. So, the existence of these natural,
but incompatible logics of ground provides no reason to doubt the cogency or
univocality of a generic notion of ground, rather than indicating theoretical
disputes over the individuation of content.

The cost is that the underlying conception of ground is, it seems, somewhat
less natural and familiar than the alternative conceptions appropriate to GG
and AC, respectively. deRosset and Fine’s definition of strict ground in terms
of selection (D1.1), is highly natural, specifying the notion inductively by giv-
ing a very natural basis case and closing under various fairly familiar chaining
operations. By contrast, the alternative definition (D2.1) directly defines the
relatively unfamiliar notion of weak ground. Despite the unfamiliarity of the
idea, the notion is central to the logic of ground. It also has interesting non-
technical applications.'  Fine [2012, pp. 52-3] contends that weak ground
is more fundamental than strict ground, despite its relative unfamiliarity. New
support for this contention is provided by the fact that articulating a conception
of ground that covers both “raised” and “flatter” logics requires taking weak
ground to be more fundamental.

It must be admitted, however, that the notion of weak ground specified in
D2.1 is less intuitive than both the specification of strict ground in [deRosset
and Fine, 2023] and the specification of weak ground in the “flatter” treatments

16See, for instance, [deRosset and Linnebo, forthcoming].
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[Correia, 2010, Fine, 2017b]. This feature is familiar from other efforts in mathe-
matics to generalize an idea to cover a wider range of cases. It is standard to find
that generalization requires appealing to the less familiar and intuitive of two
ways of specifying the notion to be generalized. The present study demonstrates
that the logic of ground fits this general pattern.

There are a large number of competing views concerning the conditions un-
der which sentences are equivalent. A familiar intensionalist view, for instance,
holds that cointensional sentences express the same fact [Jackson, 1998]. A
slightly more liberal view, booleanism, identifies boolean equivalents, but allows
inequivalences among other cointensional claims [Bacon, 2019]. Booleanism al-
lows some hyperintensionality, but it allows less than the Angellic view captured
by A-models. A Dorric view, on which only the equivalence of A and —=—A is
required [Dorr, 2016], allows still more hyperintensionality. We have already
seen that GG requires distinctions among contents disallowed by each of these
views. Finally, there is a russellian view on which no logically complex sentence
is equivalent to any other logically complex sentence, unless there is a content-
and structure-preserving mapping from the atomic sentences of one to the con-
stituents of the other.!'” Obviously, many other views could be formulated.'®
We have shown that a single semantic framework, with a single conception of
ground, can be adapted to yield the two denizens of this zoo for which a formal
treatment of grounding claims has been suggested. It is not clear that it can
be adapted to yield the others, nor is it clear what logic of ground these others
might yield. But our results so far indicate reason for optimism on this score.
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