
Proof-of-Loss

A Purely Symbolic

Block-Chaining Algorithm

for Monetary Consensus

Mirelo Deugh Ausgam Valis

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

http://creativecommons.org/licenses/by-sa/4.0/

Introduction

What is proof-of-loss?

It is a consensus algorithm based on a chain of transaction blocks,
like Bitcoin or Peercoin. However, it fundamentally differs from
either currency, for using lost spending rights to both reward block
chaining and determine block-chaining odds.

In Bitcoin, each miner sells the conclusion (first confirmation) of
transactions for fees. However, those fees could also be buying
the right to that conclusion during its occurrence. This valid
interpretation is optional since, in Bitcoin, the right to transact is
always created and destroyed in the same block.

Indeed, although transaction rights are the reward for chaining each

block, if only saleable in the same block earning them, they become

redundant, hence irrelevant.

In proof-of-loss, on the contrary, transaction rights are never created
and destroyed in the same block:

• They are only saleable in their creating block’s descendants.

• They must sell before any pending transactions can conclude.

Then, for already existing despite not yet saleable, those rights are
no longer irrelevant.

But what is the right to transact, and how can it sell? If selling
requires pricing, which requires valuing, which requires measuring,
then how is this right measured?

In proof-of-loss, transaction rights are merely the size in bytes of
each transaction allowed to conclude:

• If that conclusion did not yet happen, then those rights remain.

• If it already did, then they have become their loss.

However, this loss is not merely the size in bytes of each concluded
transaction, but rather that size divided among all spendable outputs
from this transaction proportionally to their sizes in bytes. Then:

i

• For being a representation of the same loss, each of those outputs
becomes a “rights output extinction,” or a route.

• As later specified (see section 3 on page 5), the odds of chaining
each block will depend not on the balance of those outputs as in
proof-of-stake, but rather on the loss they represent in bytes.

• As also later specified (see section 4 on page 7), the reward for
chaining each block will be the right to make transactions of a
total size combining:

⋄ The loss represented in that block by all spendable outputs
from paid transactions.

⋄ The loss represented by the route chaining the same block.

Thus, proof-of-loss is a closed or self-referential algorithm, in which
only lost rights can (as themselves) reward block chaining or (as
their loss) determine block-chaining odds. Even so, transaction
volume in bytes can still grow, since the protocol restores those rights
both when lost and each time their loss chains a block.

So the lifecycle of all spending rights is as follows (the solid lines
mean synchrony, and the dotted ones, asynchrony):

Transaction
Sizes in Bytes

OO

Transaction
Conclusions

Represented
Losses (in Bytes)
//Route Sizes

in Bytes

Transaction
Rights (in Bytes)

oo Transaction
Conclusions

vv

Block
Chaining

Block-Chaining
Odds

��

Likewise, the fraction of each previous reward W for sale in the
current block depends exclusively on W and its earning route r, by
always having the smaller size in bytes between:

• The rights not yet surrendered from W.

• The loss represented by r.

ii

For example, as later confirmed (see section 3 on page 4), if r is the
only route of a transaction t, then r’s represented loss is t’s total size
in bytes. Thus:

• Let all transactions have the same size in bytes and a single route.

• Let the first block have a single transaction.

Then, the maximum transaction volume in bytes of the first nine
blocks is as follows (with rewards numbered after their source block
and losses named after their partly consumed reward):

w3 w4 w5 w6

Lossesw1 w2 w3 w4 w5 w6 w7

w0 w1 w2 w3 w4 w5 w6 w7 w8

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 Blocks

w1

w1 w2 w3

w3 w4 w5 w6

w6

Rewards

w2
w3

w4 w5
w6

w7

w4 w7

w5
w6

w8

w7

w8

w9

Where:

1. The route r0 chaining the first block b1 earns the reward w1,
of which the size in bytes restores the rights consumed by the
single transaction t1 (spending r0) in b1 plus those having their
loss l0 (at r0’s funding transaction t0 in the dummy block b0)
represented by r0:

iii

• Again as later specified (see section 8 on page 14), t1’s input
instructs the system to redistribute r0’s collected fees to t1’s
route r1.

• As later confirmed (see section 4 on page 7), w1’s fraction for
sale in the second block b2 has the size in bytes of l0, so b2

has a single transaction t2 of the size in bytes of t1.

• Since no longer spendable, r0 cannot keep representing l0,
nor hence chain any blocks after b1.

2. Then, t1’s route r1 chains b2, thus earning the second reward w2,
of which the size in bytes restores w1’s fraction consumed by the
single transaction t2 (spending r1) in b2 plus the loss l1 (at t1)
represented by r1:

• t2’s input instructs the system to redistribute r1’s collected
fees to t2’s route r2.

• The third block b3 puts for sale equal parts of w1 and w2.

3. For chaining b3, r2 earns the third reward w3, of which the size
in bytes restores the rights partly consumed from w1 and w2 by
the now two transactions t3 and t4 in b3 plus the loss l2 (at t2)
represented by r2:

• t3 spends r2, then t4 funds its route r4 with t3’s one r3.

• t3’s input instructs the system to redistribute r2’s collected
fees to r3, then t4’s one, to redistribute them to r4.

4. For chaining the fourth block b4, r4 earns the fourth reward w4,
of which the size in bytes restores the rights partly consumed
from w2 and w3 by again two transactions t5 and t6 in b4 plus the
loss l4 (at t4) represented by r4:

• t5 spends r4, then t6 funds its route r6 with t5’s one r5.

• t5’s input instructs the system to redistribute r4’s collected
fees to r5, then t6’s one, to redistribute them to r6.

5. And so on.

This way, the maximum transaction volume in bytes of the first 90
blocks is as follows:

iv

Losses

Blocks

Despite seemingly unrealistic, this example perfectly describes a
currency bootstrap scenario. After the bootstrap, transaction volume
in bytes can grow faster or slower or even shrink since:

• A block can contain any number of paid transactions, each with
a different size in bytes and number of routes or inputs.

• As later specified, rewards failing to sell are partly revocable (see
section 4 on page 8) and inheritable (still section 4 on page 8).

• As also later specified (see section 7 on page 13), people can
prevent the currently saleable fraction of any — overpriced —
rewards from selling in their chained blocks.

The use of transaction rights makes proof-of-loss purely symbolic,
meaning the algorithm need not rely on losses external to the block
chain, as proof-of-stake and -work do, but merely on the symbols
representing those losses. Instead of relying on amassed stake or
hashing power to (unprovenly) represent lost wealth, proof-of-loss
relies on the size in bytes of concluded transactions to (provenly)
represent lost spending rights.

This purely symbolic design logically evolves into systemic policies,
like inactivity fees (on page 23), intrinsic checkpoints (on page 26),
and an adaptive monetary policy (on page 27). But not before also
naturally addressing the problems:

• Of a lacking organic block size limit, by making transaction
volume in bytes both economically prioritized (see page 11) and
dependent on its past.

• Of “nothing at stake,” by making the child of a block provenly
chained in parallel inherit both all earned rights and seized fees
in its parent (see page 19).

v

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

1 Block-Chaining Incentives

The coinbase parameter of Bitcoin’s genesis block reads:

The Times 03/Jan/2009 Chancellor on brink of second bailout

for banks

This reference indicates Bitcoin was designed to at least partly
prevent a future global monetary crisis like that of 2008. However,
any such crisis is only the ultimate result of money falsely becoming
its represented wealth,1 hence of a confusion Bitcoin could never
entirely avoid as its proof-of-work incentive model:

1. Makes hashing-power create or collect its monetary reward, of
which it cannot produce the represented wealth.

2. Requires those earnings to be worth more than paid for that
power, so by self-expanding, money becomes indistinguishable
from the wealth thus additionally represented.

Eventually, by eliminating hashing-power mediation, proof-of-stake
would reduce this design problem to its essence. For example, in
Peercoin,2 the reward for chaining each block depends directly on
the size and age of the stake enabling that chaining. This model
can appear to be fair for keeping all its rewards invariable in relative
size, hence by making them purely relative. However, these rewards
could only have such an irrelevant absolute size by being market
prices, which must rather be variable also in relative size. Thus, if
still incompletely variable, the same rewards must eventually cause
recursive increases in wealth inequality.

For example, Peercoin tends to reward people with a newly created
or minted 1% of their block-chaining stake per year. So:

• Let Peercoin be the only form of money for both Bob and Alice.

1 This fact would not prevent some people from likening Bitcoin’s monetary
system to a “decentralized autonomous company” (DAC) as if money could indeed
produce its represented wealth.

2 Also known as Peer-to-Peer Coin or PPCoin, both sharing the acronym PPC,
Peercoin was the first block-chained monetary system to use proof-of-stake.

Page 1 of 76 Block-Chaining Incentives

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

• Let Bob’s income be 100 monetary units or coins per month while
his expenses are 80% of his income.

• Let Alice’s income be 400 coins per month while her expenses
are 50% of her income.

• For simplicity, neither let Bob nor Alice have any savings — which
Alice is more likely to have.

Then, Bob and Alice will be able to stake 20 and 200 coins per month,
respectively, so most likely:

1. Alice’s minted reward will exceed Bob’s by 900%, even though
her income exceeds his by only 300%.

2. In addition to earning an undue proportion of their combined
mintage, Alice will be able to stake this excess reward in the
future, thus increasing it exponentially.

The only way to prevent the resulting price inflation from causing
an increasingly uneconomical wealth transfer from Bob to Alice is
letting a market decide the block-chaining reward, so proof-of-stake
stops raising the following questions:

1. How much newly created money must people be able to earn as
their incentive to engage in block chaining? Is 1% of stake per
year enough? If not, then what about 6%?

2. How can the chosen percentage neither underestimate people’s
greed nor overestimate their willingness to fund uneconomical,
undue rewards through the resulting price inflation?

Still, unless each block-chaining reward consists exclusively of
transaction fees,3 no market could remain its only determinant since
prices are everything a market can determine completely. Hence,
only markets for the product costing those fees can economically
decide that reward, yet what could people exchange in these
markets? What have transaction fees ever priced?

3 In Bitcoin, although transaction fees were always part of the block-chaining
reward, they will not be all of it until mining yields become less than the current
coin precision, by halving each four years from 50 coins in 2009.

Page 2 of 76 Block-Chaining Incentives

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

2 Transaction Rights

The essential purpose of chaining blocks is neither to create nor
even to earn additional money, but only to conclude (first-confirm)
transactions. However, to optimize monetary consensus, people
must always have an incentive to engage in block chaining, even
while having no need to transact. Hence, as concluding their
unowned transactions cannot reward them:

1. These people must have an incentive to chain blocks other than
satisfying anyone’s need for monetary transfers.

2. To never let extrinsic reasons make it fail, this additional
incentive must remain as essential a purpose to block chaining
as concluding those transfers.

Indeed, all spenders whose transactions depend on block chaining
have already an impermanent incentive to chain blocks. Then, how
to make that incentive permanent to each one of them? Only by
requiring each transaction conclusion to be sold, so those offering it
can earn at least what they would pay for a similar offer.

Still, the mere possibility of a transaction conclusion is never
saleable. Thus, if that conclusion must sell before it can occur, then
how could it sell? Only as a right: the right to the same conclusion,
or to transact.4 So people chaining blocks must always be rewarded
with transaction rights instead of transaction fees, and only later sell
those rights for those fees.

4 Except as a right, each transaction conclusion must become indistinguishable
from its product, since only saleable as a concluded transaction — as in Bitcoin —
rather than as merely the right to transact.

Page 3 of 76 Transaction Rights

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

3 Proof-of-Loss

However, despite transaction rights being the only block-chaining
reward left, amassing stake or hashing-power does not require
selling those rights. Instead, it can result from selling actual
wealth — that with purely material utilities. Hence, if amassed
stake or hashing-power can still determine block-chaining rewards,
even by only affecting block-chaining odds, all money thus earned
remains indistinguishable from what it can buy.

For that money to ever be distinguishable from its represented
wealth, block-chaining odds must depend instead on used hence
lost transaction rights, which are then recoverable either by chaining
blocks or paying others for doing so, regardless of amassed stake or
hashing-power. Indeed, money cannot remain decentralized unless
each of its users either keeps it spendable or pays others for doing
so, regardless of this user’s accumulated wealth.

While conversely, since transaction rights (hence block chaining)
depend on money being spendable, any lost such rights (hence the
resulting block-chaining odds) can only take the form of spendable
outputs, each of which is then a route, meaning a “rights output
extinction” r, as follows:

lr = zt ×
zr
Zr

Where:

• lr means r’s represented loss in bytes.

• zt means the total size in bytes of r’s transaction t.

• zr means r’s total size in bytes.

• Zr means the combined size in bytes of all of t’s routes, whether
spent or not — including r.

Indeed, only the size in bytes of each concluded transaction is a
purely symbolic block-chaining resource, by representing nothing
external to the public chain of blocks, including any wealth — which
must remain both external to that chain and optionally private.

Still, this protocol must always:

Page 4 of 76 Proof-of-Loss

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

• Minimize the block-chaining odds of each recently rewarded or
concluded route r, so its owners (who can have concluded it) are
unlikely to monopolize the block-chaining process.

• Reduce these odds proportionally to the rights not surrendered
from those earned in r’s most recently chained or else concluding
block, so r’s owners (who can have concluded it) are unlikely to
monopolize the existing transaction rights.

Additionally, the same protocol must always:

1. Reduce r’s block-chaining odds proportionally to its block depth,
so people are unlikely to monopolize future block chaining by
accumulating spendable outputs.

2. Increase these odds proportionally to the already surrendered
rights from those earned in r’s most recently chained or else
concluding block, so any depthless routes consuming those rights
are unlikely to monopolize the block-chaining process.

Then, r’s block-chaining odds must be:

xr = xg × lr ×

(

lr
Wr

+

((

1−
lr

Wr

)

×
Ws
Wr

))

×

Ws
lr

+ 1

dr

Where:

• xr means r’s difficulty target, which is inversely proportional to
r’s block-chaining difficulty.

• xg means the general difficulty target, which must self-readjust
to maintain a constant block interval.

• lr means r’s represented loss in bytes (as already specified on the
preceding page).

• Wr means the total earned rights in r’s highest chained or else
concluding block.

• Ws means the total surrendered rights from Wr.

Page 5 of 76 Proof-of-Loss

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

• dr means r’s block depth, which is always the depth of r’s
concluding rather than highest chained block.5

This use of transaction rights as the only block-chaining reward
and of their loss as the only factor of block-chaining odds utterly
defines the proof-of-loss protocol. Further specifying this protocol
must never make that definition invalid.

So proof-of-loss alone can distinguish any block-chained money
from its represented wealth, for being the only block-chaining
monetary consensus algorithm ever to prove the loss of something
purely symbolic, which is everything always distinguishable from
any wealth. For the same reason, although every algorithm for
block-chained monetary consensus must assume a proof of loss, only
proof-of-loss can provide it.6 Indeed:

1. No other such algorithm can directly represent what it must
prove was lost — nor then be purely symbolic. For example,
amassed stake or hashing-power could never be the lost wealth
that respectively proof-of-stake or -work must prove.

2. Every loss represented by something other than itself must
be uncertain — since not purely symbolic. For example, in
proof-of-stake or -work, the costs respectively of amassing stake
or hashing-power can always be overvalued.

However, nothing could be uncertain to whom it was proven. So, in
a block-chained monetary system, lost spending rights (represented
by the size in bytes of each concluded transaction divided among
its routes proportionally to their sizes in bytes) are the only possible
form of proof-of-loss.

5 Unlike a block-chaining reward in money, one in rights need not (nor
otherwise could) add to its earning balance by transferring it.

6 Knowingly or not, all other block-chaining consensus algorithms, regardless
of their proof of choice, intend to be forms of proof-of-loss. However, they could
never prove any loss. Instead, they can only prove something that indicates one.

Page 6 of 76 Proof-of-Loss

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

4 Block-Chaining Rewards

To prevent money from falsely becoming its represented wealth, not
only the odds of chaining a block but also the size in bytes of the
resulting reward must depend entirely on lost rights. Otherwise,
these rights could become that reward even without being lost, thus
letting the money buying their loss create more of them — so their
selling would make that money again self-expand. Hence, the same
reward can only be the paid rights:

• Of which the loss enables the block chaining thus rewarded.

• Lost on all transactions buying rights in the chained block.7

Additionally, as either possibility alone would prevent transaction
volume in bytes from ever increasing, the reward for chaining each
block must always combine:

• The paid part of that volume concluded in this block.

• The size in bytes of the loss chaining the same block.

Still, a route must not be able to sell its earned rights in its chained
blocks, or the resulting losses would become its additional rights,
which could recursively become ever more such losses. Likewise, if
any rights currently for sale exceeded their earning loss, then their
market share would not be proportional to that loss, nor hence the
resulting price competition to block-chaining decentralization. Thus,
each reward’s fraction for sale in a subsequent block must always be
the smaller in bytes between that reward’s rights not yet surrendered
and the loss their earning route represents.

However, this policy must also:

• Prevent total existing rights from increasing unnecessarily, which
could make their price fail as a block-chaining incentive.

• Allow them to decrease at most by their possible increase, to
avoid unduly prioritizing either variation.

7 So the size in bytes of all block-chaining rewards must exclude that of any
transactions originated by the system.

Page 7 of 76 Block-Chaining Rewards

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

So, since each block-chaining reward W can later increase total sold
rights by at most its earning loss l, the rights from W that fail to sell
must be revoked at most by l × 2, as follows:

Kc =



















0 if c 6 u

Sc − Bc if c > u and Sc − Bc 6 2l −∑Kh < c

2l −∑Kh < c if c > u and Sc − Bc > 2l −∑Kh < c

Where:

• Kc means W’s rights revoked at the current block height c.

• u means l’s chained block’s height, at which W is unsaleable.8

• Sc (6 l) means W’s fraction for sale at c.

• Bc means Sc ’s rights bought at c.

• Kh < c means W’s rights revoked at each block height h lower
than c. So, for c = u + 3:

∑Kh < c = Ku + 1 + Ku + 2

Finally, to minimize the selling opportunities of any overpriced rights
while maximizing their opportunities to sell at a lower price, the
reward for chaining a block b must inherit any unsold rights failing
to sell in b’s parent p but not revoked, as follows:

Up = Sp −
(

Bp + Kp

)

Where:

• Up means the unsold rights inherited by b’s chaining reward
from p’s one.

• Sp means the rights for sale in p, whether inherited or not by the
reward for chaining b or p from that for chaining their parents.

• Bp means Sp ’s fraction bought in p.

• Kp means Sp ’s fraction revoked in p.

8 As already specified on the previous page, all transaction rights must be
unsaleable in the same block of which they reward the chaining.

Page 8 of 76 Block-Chaining Rewards

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

5 Price Negotiation

In Bitcoin, for not being formally asked, the price miners charge
for transaction rights must remain implicit in paid transaction fees,
which hence:

• Can only be an estimate of this informally charged price.

• Can only be an implicit bid since one on informal asks.

While conversely:

• When spenders overvalue a transaction conclusion — as they are
more likely to do the less they can wait for it — miners cannot
price it lower. Then, transaction costs uneconomically rise.

• When spenders undervalue that conclusion — as they are more
likely to do the more they can wait for it — miners cannot price
it higher. Then, transaction costs uneconomically fall.

So, for the same conclusion always to be priced economically:

• Selling it requires formalizing its asked price, by publicizing
transaction asks.

• Buying it requires formalizing its bid price, by converting every
paid transaction fee from an implicit ask estimate into an explicit
ask payment.

Indeed, only this way people must always negotiate the right to
transact in the market, since:

• To maximize their gains, they must make no asks above a
maximum bid.

• To minimize their wait for transaction conclusions, they must
make no bids below a minimum ask.

Page 9 of 76 Price Negotiation

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

6 Block Chaining

So each paid transaction must inform not the asked fees it pays but
rather its maximum payable ones, or its formal bid on its price. Then,
for each block b to contain a valid combination of bids and asks, its
total asked fees need only not exceed its total bid ones. Hence, b’s
every ask k must collect in b the following fees:

fb = Fb ×
fz
Fz

Where:

• fb means k’s total earned transaction fees in b.

• Fb means the total bid such fees in b, as follows:

Fb =
(

ft1
× zt1

)

+
(

ft2
× zt2

)

+ · · ·+
(

ftn
× ztn

)

Where:

⋄ ft1
, ft2

, . . . , ftn
mean the maximum payable fee per byte for

each of b’s concluded transactions t1, t2, . . . , tn.

⋄ zt1
, zt2

, . . . , ztn
mean the total sizes in bytes of t1, t2, . . . , tn.

• fz means k’s total charged fees in b, as follows:

fz = fk × zb

Where:

⋄ fk means k’s charged fee per byte of transaction rights.

⋄ zb means the size of k’s total sold rights in b, as follows:

zb =
zk
Zk
× Zt

Where:

Page 10 of 76 Block Chaining

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

◆ zk means the total size of k’s rights for sale in b.

◆ Zk means the size of the combined rights for sale in b by
all of b’s asks — including k.

◆ Zt (6 Zk) means the combined size in bytes of all
transactions buying rights in b.

• Fz (6 Fb) means the total fees charged in b, as follows:

Fz = fz1
+ fz2 + · · ·+ fzn

Where fz1
, fz2 , . . . , fzn mean the same as fz on the preceding

page but each calculated for one of b’s asks k1, k2, . . . , kn — again
including k.

However:

1. Older transaction inputs must have priority over newer ones, or
a spend could wait endlessly for its conclusion.

2. Smaller independently concluded losses must take precedence
over larger ones, or it would still be possible to monopolize block
chaining by displacing other people’s losses with corresponding
ones represented in fewer transactions by spendable outputs
belonging to the monopolists.

Thus, to provide a combined incentive to these two required forms
of transaction prioritization, b’s chaining route r must seize the
following fees from Fb:

fr =







f̃b ×Qb if f̃b × Qb 6 Fb

Fb otherwise

Where:

• fr means r’s collected fees in b.

• f̃b means the median fb.9

9 A median is the center of an ordered list k of possibly repeated values. If the
number of those values is odd, then their median is the single value at the center
of k. Otherwise, it is the average of k’s two intermediate values. For example:
• With k = {1, 1, 1, 3, 4}, the median of its values is 1.
• With k = {1, 1, 1, 3, 4, 200}, the median of its values is (1 + 3)÷ 2 = 2.

Page 11 of 76 Block Chaining

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

• Qb means the prioritization quotient, as follows:

Qb =
di
d̃i
×

z̃t
zt

Where:

⋄ di means the average block depth of all inputs to transactions

buying rights in b.10

⋄ d̃i means the median such depth.

⋄ z̃t means the median size in bytes of those transactions.

⋄ zt means the average size in bytes of the same transactions.

This algorithm provides the following benefits:

• By requiring bids and asks in each block to collectively rather
than individually combine:

⋄ It maximizes transaction volume in bytes, for letting some of
those bids or asks conclude respectively below and above any
of their asked or bid prices.

⋄ It maximizes the downward pressure on fees, for making
higher bids pay for lower ones.

• It enforces transaction prioritization with economic incentives,
which are then intrinsic rather than (as in Bitcoin) extrinsic to
the protocol.

10 The average of any values is their sum divided by their number. For example,
if an ordered list k consists of possibly repeated values, then:
• With k = {1, 1, 1, 3, 4}, the average of its values is 10÷ 5 = 2.
• With k = {1, 1, 1, 3, 4, 200}, the average of its values is 210÷ 6 = 35.

Page 12 of 76 Block Chaining

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

7 Transaction Asks

Each transaction ask must be a section of the block in which it earned
its priced rights. Otherwise, those rights would tend to be overpriced,
as they could be repriced lower if necessary. Still:

• Intentionally or not, people can always overprice their earned
rights, even without being able to reprice them lower.

• A falling transaction volume in bytes can also make the same
rights eventually overpriced.

Then, some transaction rights can become unsaleable. So, to avoid
still requiring any blocks to sell them, every block must inform a
(possibly empty) list of block depths corresponding to its excluded
transaction asks. Otherwise, those unsaleable rights could:

• Stop the system.

• Slow block chaining, thus increasing the block interval.

• Weaken the competition between transaction-right sellers, thus
reducing its lowering pressure on fees.

However, why not just prevent enough overpriced rights from selling,
instead of excluding their asks? Because, as a fractional bid cannot
affect which asks its block includes, neither could a fraction of an
ask’s rights for sale in that block do so, or fees would tend to rise.

Finally, as the resulting absence of any asks only makes their saleable
rights formally overpriced, any rights then prevented from selling
must still follow the same rules both of revocation (on page 8) and
inheritance (on page 8) as if rather for sale.

Page 13 of 76 Transaction Asks

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

8 Implicit Transactions

Then, as the source of all fees paid to a rewarded route in each block
is any of this block’s bids, being thus indeterminate unless the same
block has a single bid or ask:

1. This payment must be an implicit transaction transferring those
fees to that route.

2. The total output balance of each paid transaction must equal its
total input balance less its informed bid.

While conversely, spending a rewarded route before it surrendered
all its earned rights must have:

• All its future collected fees implicitly redistributed as instructed
by the transaction input spending it, to prevent the unduly
destruction of money.

• All its currently collected fees also implicitly redistributed as thus
instructed, to prevent any of those fees from paying it with part
of its balance.

Page 14 of 76 Implicit Transactions

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

9 Block Asks

As merely finding a proof of loss requires no block chaining, but
rather just route ownership, after doing so people can immediately
broadcast a block ask informing:

1. The primary proof-of-loss data l capable of becoming that proof
by having its difficulty-matching hash signed,11 containing the
following items:

1.1. The unique identifier of a route r.

1.2. The present moment,12 so each moment requires hashing
another proof of loss.

1.3. The current block height, so blocks at different heights cannot
contain the same proof of loss.

1.4. The current difficulty target for the route with the oldest
not surrendered rights. The only function of this item is to
minimize block re- and pre-chaining odds, by providing each
proof of loss with a strongly correlated context (which results
from all dependencies already specified on pages 5 and 8).13

2. A hash of l not above r’s difficulty target, to minimize the odds
of multiple routes chaining blocks at the same block height.

3. A signature of this hash by the private key to r’s address, to
authenticate r’s proof of loss.

Then, this block ask’s broadcasters can also publicize their network
location as a bids verifiable destination d, so:

• Each unconfirmed transaction can be sent directly to d rather
than unnecessarily broadcast.

• These people can later publicize another such location ask, as
needed if:

⋄ They relocate logically, whether also physically or not.

11 Such as a Peercoin kernel can prove a stake — thus indicating lost wealth —
by having its difficulty-matching hash signed.

12 Possibly the current second as in Peercoin.
13 This context has the same function as Peercoin’s less organic stake modifier.

Page 15 of 76 Block Asks

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

⋄ They broadcast another block ask.

Indeed, to function as a bids verifiable destination, each advertised
location ask must inform:

1. A list of network (possibly IP) addresses, all of which can belong
to the advertiser’s peers who know its location.

2. The proof-of-loss hash L identifying a block ask b.

3. The serial number of this reference to b’s proof of loss, to let
people determine its current validity.

4. A difficulty-free hash N of this location ask c.

5. A signature of N by the same private key signing L in b, to
authenticate c.

This algorithm provides the following benefits:

• To minimize memory consumption and even the complexity of
selecting transaction destinations, people can discard any block
asks informing a present moment not later than the current
block’s creation time, as also the corresponding location asks.

• To prevent memory overflow attacks despite always allowing
alternative destinations to propagate, people receiving different
location asks for the same proof of loss can relay that with the
greatest unrepeated serial number, then discard the others.

• To counter denial of service attacks on the network addresses
informed by current location asks, people can still:

⋄ Broadcast each unconfirmed transaction otherwise destined
only to those addresses (the same ones possibly locating
neither their advertiser nor part of its peers).

⋄ Use any addresses not being attacked to receive other people’s
broadcast candidate spends.

Page 16 of 76 Block Asks

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

10 Transaction Forwarding

However, people broadcasting new location asks will often receive
excess pending transactions. Fortunately, they later will have
all incentives to forward each still pending one to another such
broadcaster, as not doing so:

• Could reduce their future sold rights, by lessening the demand
for transaction conclusions.

• Could reduce their future block-chaining rewards, by decreasing
transaction volume in bytes.

• Could reduce their money’s future value, by extending the wait
for transaction conclusions.

Then, the only motivation for a location asks broadcaster to neither
conclude nor forward a pending received transaction t would be to
disrupt the system. However:

• There can be additional such broadcasters holding t, who most
likely would still choose to either conclude or forward it.

• People can always:

⋄ Resend t to the broadcasters of new location asks, and even
probe them for t before doing so.

⋄ Broadcast t.

Page 17 of 76 Transaction Forwarding

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

11 Optional Centralization

Always to optimize monetary consensus, people unable or unwilling
to engage in block chaining must be able to sell their loss to those
then willing and independently able to do so. For example, a
route r with a multi-signature address N must be able to lease its
represented loss l to a rather single-signature address route, thus
making it easier or even possible to sign a proof p of l. Indeed,
the block eventually containing p can also include a block-chaining
authorization informing:

1. The price of leasing l as a fraction of r’s total earned fees.

2. The unique identifier of a second route d to receive an implicit
transfer of the remainder.

3. This authorization’s hash signed by the required number of N’s
private keys.

Then, only d’s owners can use r to chain this block, by signing p
with the private key to d’s address. While conversely, from its total
earned fees in each subsequent block, r must collect only the fraction
constituting its lease price, and d only the remainder.

This algorithm provides the following benefits:

• It tends to minimize the proportion of spendable outputs not
engaged in block chaining, or idle. For example, it allows
charging for a multi-signature wallet W by requiring W’s routes
to be leased at most for the remainder of W’s price.

• It lets all money owners control the degree and profitability of
block-chaining centralization, by deciding:

⋄ Whether or not to engage in block chaining.

⋄ Whether or not to lease their eventually idle routes, to whom,
and for which price.

• It lets people prevent any future leasing of their spendable
outputs merely by remitting them to themselves. For example, it
allows W’s users to transfer each route for lease in W to another
(single- or multi-signature) wallet they also control.

Page 18 of 76 Optional Centralization

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

12 Forcibly Serial Chaining

Still, to increase their block-chaining odds or even disrupt the system,
people could publicize different blocks chained by the same route at
the same height,14 thus arbitrarily delaying the consensual selection
of a single chain. To discourage this parallel chaining:

1. The header H of each block b:

1.1. Must contain a section including:

1.1.1. The primary proof-of-loss data (see item 1. on page 15) for
a route r.

1.1.2. b’s transaction ask (see page 13) and transaction-ask
exclusion list (again on page 13).

1.1.3. The hash of b’s parent.

1.1.4. The hash-tree root T of all (explicit) transactions in b.

1.1.5. r’s optional block-chaining authorization (see page 18),
along with all of b’s remaining data not affecting T.

1.2. Can include another block’s header D.

1.3. Must contain b’s authentication, consisting of H’s — which is
then also b’s — hash signed by the private key to either r’s or
r’s authorized route’s address.

2. The mandatory section of D:

2.1. Must have the same block height as b’s parent p.

2.2. Must reward the same route as p does.

3. D must differ from p’s header.

4. If H includes D, then r must inherit p’s total chaining reward
and collect all seized fees in p (see page 11).

This way, to avoid having all their latest earnings in both rights and
fees inherited by others, people will always tend to engage in serial
rather than parallel block chaining.

14 A similar vulnerability affects proof-of-stake, which — unlike proof-of-work —
also needs “nothing at stake” of people’s actual “wealth” (hashing-power).

Page 19 of 76 Forcibly Serial Chaining

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

13 Block Interval

Each proof of loss must inform a moment:

• Not later than the present one, or people could chain blocks in
the future.

• Later than the creation time of its eventually containing block’s
parent, or people could chain blocks in the past.

However, people can always delay broadcasting a block, for example,
to increase their block-chaining reward. Then, to prevent this delay
from slowing the system by reducing total proof-of-loss possible
moments hence total block-chaining odds:

1. The creation time of all blocks must be that of — the only
moment informed by — their contained proof of loss, which it
could not antecede.

2. The block interval must be the delay between the creation rather
than broadcast times of any two consecutive blocks.

This algorithm provides the following benefits:

• It tends to prevent block-interval manipulation, by making each
block’s creation time depend entirely on block-chaining odds.15

• It tends to minimize chain-fork frequency and competing-branch
length while maximizing block-interval resilience, by making
total proof-of-loss possible moments hence total block-chaining
odds proportional simultaneously:

⋄ To any delays in block broadcast or propagation.

⋄ To the age of the oldest current block.

15 Then, as the (purely block-interval adjusted) general difficulty target will
also depend entirely on the same block-chaining odds, the proof-of-loss context
(see item 1.4. on page 15) becomes even harder to manipulate.

Page 20 of 76 Block Interval

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

14 General Difficulty Target

However, to still minimize the block-chaining odds of each recently
rewarded or concluded route (as already specified on page 5), the
longest protocol reduction to those odds must become a proportional
discount applied to the current block’s deviation from its target
creation time. Otherwise, if expanding, this block-interval variation
would tend to restore some of those protocol-reduced odds by raising
the general difficulty target, which at the current block height h
(> 0) must hence be:

xh =































xh− 1 ×











1 +

ib
Ib
− 1

dw











if h > 1

xg otherwise

Where:

• xh means the general difficulty target at h.

• xh− 1 means the general difficulty target at h− 1.

• ib means the actual interval between blocks at h− 1 and h− 2.

• Ib means the target interval between any two consecutive blocks.

• dw means the block depth of the oldest reward not entirely
surrendered by the route that earned it.

• xg means the first general difficulty target.

This algorithm provides the following benefits:

• It tends to discount all deviations from the block target interval
(that affect the general difficulty target) proportionally to the
systemic number of routes, hence to the resilience of systemic
block-chaining odds.

• It tends to exclude all privately chained branches from the
longest chain proportionally to the rate of lost rights publicly
engaged in block chaining, hence to system usage.

Page 21 of 76 General Difficulty Target

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

15 Consensual Chain Selection

Since proof-of-work or -stake must prove a loss they can just indicate,
in both of them:

1. Indication becomes indistinguishable from proving.

2. As much as an event, each proof of an indicative sign must
already be that sign, as which it must also prove what the same
sign — then its proof — indicates.

Hence the need for Bitcoin’s consensually selected chain to represent
not only the most proof-of-work events but also the most work,
and for Peercoin’s one to represent not only the most proof-of-stake
events but also the most stake-age destroyed, as if this way both
could prove the resulting economic losses. While conversely, since
unlike any such indirectly representational consensus algorithms,
proof-of-loss needs no additional proof of loss, its consensually
selected chain only needs to contain the most proof-of-loss events
(the most blocks) during the same time by always targeting the same
block interval,16 being thus merely the longest chain.

16 So, if any of its branches differ in their block-interval target at the same
height, then their number of blocks is no longer comparable unless multiplied in
each of them by the average such target for that branch.

Page 22 of 76 Consensual Chain Selection

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

16 Inactivity Fees

By chaining blocks, people are bearing the costs of maintaining the
system. Hence the need for transaction fees. Indeed, since people
transferring money are actively benefiting from that system, it is only
fair that they refund its maintenance costs. However, money owners
not making transactions are also benefiting from the same system,
despite rather passively. Thus, it is equally fair that they also refund
its maintenance costs, but how?

If a spendable output remains unspent after the loss following it
has reached all that currently represented, then its faster-spent
companions will alone have partly refunded the maintenance costs
of all routes not spent since its block height, so:

• It no longer bears its maintenance costs.

• It becomes inactive.

Then, this route must no longer be spendable unless by paying
additional fees. Otherwise, it could avoid refunding any fees paid to
keep it spendable during its inactivity. Still, how much more money
must people pay to spend an inactive route r?

Each time the loss either following r or the last such time reaches
all that currently represented, r’s missing transaction’s bid must add
to its total owed fees. Hence, to minimize price manipulation, this
repeated increase in r’s owed inactivity fees must be:

ur = f̃t × lr

Where:

• ur means each undivided increase in r’s owed maintenance costs.

• f̃t means the median bid transaction fee per byte in r’s last
indivisible inactivity period.17

• lr means r’s represented loss (as already specified on page 4).

17 A median (see note 9 on page 11) is the most resistant statistic, although
its resistance remains proportional to its data sample, hence to the number of
transaction-fee bids concluded in that period.

Page 23 of 76 Inactivity Fees

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

Finally, for consisting only of sufficiently deferred transaction fees,
all inactivity fees must be both paid and collected as if still buying
the right to transact. Hence, they must always be:

• Paid by a fraction of their incurring transaction’s bid, so this
bid cannot be less than the combined inactivity fees owed by
all inputs to its containing transaction.

• Collected by all the current block’s asks as paying any otherwise
unpaid part of their charged fees.

This algorithm provides the following benefits:

• Even if any balances or transaction histories are secret,18 it
causes all irretrievable balances (all unspent “dust”) eventually
to become publicly spent, then subject to pruning if holding no
rights. Indeed, regardless of balances or transaction histories, a
route r concluded at a block height h will become publicly spent
once all fees currently owed by all routes at h (including r) plus
all since paid by those excluding r correspond at least to h’s total
money supply plus all implicit earnings by r.

• Spending a long-unspent output becomes less likely to cause a
subsequent spike in money velocity, as the total inactivity fees
paid by this route:

⋄ Will have increased proportionally to its total inactivity.

⋄ Will disperse among all the current block’s asks by being part
of each one’s collected bids.

• Trying to increase block-chaining odds by accruing spendable
outputs will cost proportionally to the resulting gains, as the
combined inactivity fees owed by all thus (im-)mobilized routes
will keep often increasing.

• Each pending transaction will eventually expire, once all its
owed inactivity fees have exceeded its bid.

18 In proof-of-loss as in proof-of-stake, block-chaining decentralization requires
a minimum rate and integrity of spendable-output private — hence optionally
secret — ownership. However, unlike in proof-of-stake, in proof-of-loss, this
route-possession privacy can always benefit from optionally secret balances (which
in proof-of-stake exclude stakes) and transaction histories.

Page 24 of 76 Inactivity Fees

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

• To at least regain their paid inactivity fees if not earn additional
ones, people will be more likely to engage in block chaining.

• To increase their competitiveness as transaction-right sellers,
people obtaining unusually large gains from inactivity fees will
tend to reduce — although by less than those excess earnings —
their asked price for the right to transact.

• To reduce their paid inactivity fees, people will tend to:

1. Unify their unspent outputs, thus minimizing the required
size in bytes of the longest chain, by trying to:

⋄ Consolidate their incoming transactions — for example,
with payment channels.

⋄ Avoid fragmenting their balance for other purposes than
spending it.

⋄ Combine their already fragmented earnings that tend to
remain unspent, thus reducing the number of transaction
outputs not subject to pruning.

2. Lend their otherwise unused money, thus letting other people
spend it productively.

Page 25 of 76 Inactivity Fees

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

17 Intrinsic Checkpoints

Chaining a block is voting on its parent as belonging to the longest
chain. Thus, if the combined loss L represented by all spendable
outputs at a block height h no longer exceeds that chaining all
descendants of a block b at h, then L already had the opportunity
to vote or not on b, so b’s descendants:

1. Must represent L’s vote on b as belonging to the longest chain.

2. Must make b unalterable, or a checkpoint, since L’s vote is that
of all spendable outputs at h.

This algorithm provides the following benefits:

• It tends to keep the chain section above the current checkpoint
as lengthy as needed, for making its length proportional both
directly to the total represented loss immediately below it and
inversely to the average loss represented by all its rewarded
routes, hence directly to block-chaining decentralization.

• For a privately chained branch B to then replace its competing
section of the consensually selected chain C, people chaining B
must either:

1. Keep it above the current checkpoint until published, when
it will hence most likely still be shorter than that section.

2. Target only people at least partly unaware of C, by providing
them with a B that:

⋄ Includes as many transactions from C as possible, for
these people to most likely accept B.

⋄ Lacks each transaction t from C that B’s additional ones
must expire by deferring (see page 24), along with any
spends directly or indirectly depending on t.

So B will tend to be rejected.

• It allows pruning the chain section simultaneously below the
current checkpoint and the oldest routes with any rights, money,
or affecting monetary policy or the proof-of-loss context.

• It allows each protocol change (like a younger first block or a
different block target interval) to depend on most blocks above
the current checkpoint voting in its favor.

Page 26 of 76 Intrinsic Checkpoints

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

18 Adaptive Monetary Policy

Not even a decentralized monetary system can operate without a
monetary policy, which hence must be part of its design. Indeed,
there is no decentralized way of defining general rules for creating
or destroying money other than recognizing their necessity. Then,
a decentralized monetary policy must result from its justification,
which in proof-of-loss is as follows:

1. For prices to remain stable, the money supply must always
change proportionally to its demand, thus independently of all
transaction outputs no longer spendable, which cannot represent
people’s current demand for money.

2. Only the number of routes could represent how much money
people currently need since:

• Monetary balances cannot create that demand, for already
being the actual money supply.

• Lost rights cannot do it either, for only demanding enough
money to pay their price in transaction or inactivity fees.

• The number of spendable outputs at each block height
must be at least that of their independent owners, who are
collectively the source of all demand for money.

• Eventually paid inactivity fees will always provide enough
incentive to minimize the number of spendable outputs (as
already specified on page 25).

3. Only still active routes could represent the actual monetary
demand, of which their inactivity can only be the possibility.

Finally, this policy must always:

• Minimize the age of all transaction outputs then determining the
money supply, to keep money creation or destruction as timely
as possible.

• Avoid any extra rewards for concluding those active routes, to
prevent the otherwise earned money from becoming an incentive
to create it.

Page 27 of 76 Adaptive Monetary Policy

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

So, if the total number of monetary units is not that of all active
spendable outputs at the smallest block depth with all its rights
already surrendered, then the money supply must either expand or
contract to make these two numbers coincide. Still:

• The limits to its expansion and contraction must be the same, to
avoid unduly prioritizing either variation.

• For being a monetary cost, its contraction must not exceed all
paid inactivity fees, which are then the only price paid for an
oversupply of money.

Hence, the money supply:

1. Can contract at most by all paid inactivity fees, which must alone
cause this contraction by fractionally disappearing.

2. Can expand at most by all paid inactivity fees, which must alone
cause this expansion by fractionally doubling.

Then, at the current block height c, the systemic monetary surplus
or deficit implicitly transferred to each route r must be:

Vr = Vc ×
Fr
Fc

Where:

• Vr means all money-supply variation transferred to r at c.

• Vc means all money-supply variation at c.

• Fr means all transaction-fee bids designated to r at c.

• Fc means all transaction-fee bids at c.

So money creation or destruction can only happen the first time all
rewarded routes at each block height h have no rights earned at or
below h left. Then, the money supply expands or contracts until its
total number of units becomes that of all active routes at h, although
never by more than all currently paid inactivity fees.

This algorithm provides the following benefits:

Page 28 of 76 Adaptive Monetary Policy

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

• For being then randomly distributed, the proceeds of money
creation will most likely not be an incentive to increase the
number of spendable outputs per transaction.

• The money supply will tend to be always free from its arbitrary
manipulation, which will hardly reward its authors with more
money than it has cost them.

• Changes in monetary demand or even those in the velocity of
money circulation are then unlikely to cause price volatility,
which will tend to originate mostly from changes in:

⋄ The demand for priced items proportionally to their supply.

⋄ The productivity of any processes creating that supply.

• For then resulting only from an increased route activity, all newly
created money will be just profits, instead of also the revenue for
paying mining expenses as in Bitcoin. So none of it will tend to
cause price volatility by being readily spent.

• Transaction fees need no longer transition from complementary
to essential as in Bitcoin, with all associated risks. Instead, they
will always be the primary reward, by at least reaching yet most
likely exceeding — for including inactivity fees — and being more
predictable than all simultaneously created money.

• Monetary policy becomes necessary and adaptive instead of
remaining arbitrary and unresponsive as in Bitcoin, by:

⋄ Targeting the number of all active routes at the smallest block
depth with no rights left.

⋄ Transferring to each currently spendable output a systemic
monetary surplus or deficit proportional and limited to all
inactivity fees then proportionally destined to this route.

So the money supply can grow from a single unit to any size
and back with both its magnitude and allocation being minimally
affected by people’s wealth.

Page 29 of 76 Adaptive Monetary Policy

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

Block Validation Pseudocode

SYNCHRONIZED()
1 if not DECLARED(hc) or not DECLARED(validated)
2 then return false
3 if hc = NIL or validated = NIL

4 then return false
5 return validated and
6 hc > GET_CURRENT_HEIGHT_FROM_PEERS()

VALIDATE_CHAIN()
1 INITIALIZE()
2 label ERROR

3 UNDO_UNCOMMITED_PERSISTS_AND_REMOVES()
4 while ACCEPTING_CANDIDATE_BLOCKS()
5 do b← READ_NEWLY_RECEIVED_BLOCK()
6 if VALID_CANDIDATE_BLOCK(b)
7 then if READ_BLOCK_HEIGHT(b) > hc
8 then VALIDATE_BLOCK(b)
9 else VALIDATE_BRANCH(b)

10 PRUNE_ORPHANED_BRANCHES()

INITIALIZE()
1 global branch_start ← chainer ← collectors ← NIL

2 global concluding_losses ← current_time ← Dq ← Fb ← NIL

3 global Fi ← hc ← highest_start ← hk ← hs ← hw ← Ib ← NIL

4 global implicit_balance ← input_depths ← inputs ← NIL

5 global lessee ← loss_decrease ← loss_height ← Mc ← NIL

6 global Mv ← open_asks ← quorum ← quorum_start ← NIL

7 global transaction_hashes ← validated ← voters ← Xc ← NIL

8 global Xs ← xg ← Zk ← Zt ← NIL

Page 30 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

VALID_CANDIDATE_BLOCK(block)
1 if not VALID_BLOCK_FORMAT(block) or
2 not VALID_BLOCK_HASH(block)
3 then return false
4 SET_GLOBAL_STATE()
5 if READ_BLOCK_TIME(block) > current_time
6 then return false
7 if not NEW_OR_OPTIONAL_BLOCK(block)
8 then return false
9 if READ_BLOCK_HEIGHT(block) = hs

10 then return SET_DUMMY_PARENT(block)
11 return HAS_VALID_PARENT(block)

VALID_BLOCK_HASH(block)
1 N ← GET_HASH(GET_BLOCK_HEADER_DATA(block))
2 return READ_BLOCK_HASH(block) = N

SET_GLOBAL_STATE(block)
1 if NIL = (hs ← RETRIEVE_STARTING_HEIGHT()) or
2 NIL = (hc ← RETRIEVE_CURRENT_HEIGHT()) or
3 NIL = (validated ← RETRIEVE_VALIDATED())
4 then hs ← 1

5 hc ← 0

6 validated ← false
7 Ib ← BLOCK_TARGET_INTERVAL

8 current_time ← GET_CURRENT_TIME()
9 branch_start ← READ_BLOCK_HEIGHT(block)

10 quorum ← false

Page 31 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

NEW_OR_OPTIONAL_BLOCK(block)
1 if hs > (h ← READ_BLOCK_HEIGHT(block))
2 then return false
3 if h = hs
4 then return hs > hc
5 if (h− hc) > 1

6 then if hs > hc
7 then hs ← h
8 hc ← (h− 1)
9 return true

10 return false
11 if RETRIEVE_BLOCK(GET_BLOCK_IDENTIFIER(block)) 6= NIL

12 then return false
13 if IMMUTABLE_HEIGHT(h)
14 then return IMMUTABLE_BLOCK(block)
15 siblings ← RETRIEVE_BLOCKS_AT_HEIGHT(h)
16 r ← READ_CHAINER_IDENTIFIER(block)
17 another ← false
18 for each sibling in siblings
19 do if READ_CHAINER_IDENTIFIER(sibling) = r
20 then if h < hc or another
21 then return false
22 another ← true
23 return true

GET_BLOCK_IDENTIFIER(block)
1 N ← READ_BLOCK_HASH(block)
2 height ← READ_BLOCK_HEIGHT(block)
3 return CREATE_BLOCK_IDENTIFIER(N, height)

Page 32 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

IMMUTABLE_HEIGHT(height)
1 D← RETRIEVE_DUMMY_BLOCK()
2 blocks ← READ_IMMUTABLE_BLOCKS(D)
3 for each Xb in blocks
4 do if height = GET_BLOCK_HEIGHT(Xb)
5 then return true
6 return false

IMMUTABLE_BLOCK(block)
1 D← RETRIEVE_DUMMY_BLOCK()
2 Xb ← GET_BLOCK_IDENTIFIER(block)
3 return EXISTS_IN_LIST(READ_IMMUTABLE_BLOCKS(D), Xb)

SET_DUMMY_PARENT(block)
1 Xb ← GET_BLOCK_IDENTIFIER(block)
2 if NIL 6= (D ← GET_RESTORABLE_DUMMY_FROM_PEERS(Xb))
3 then if VALID_DUMMY_PARENT(D, block)
4 then PERSIST_DUMMY_BLOCK(D)
5 PERSIST_STARTING_HEIGHT(hs)
6 PERSIST_VALIDATED(false)
7 return true
8 return false

Page 33 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

VALID_DUMMY_PARENT(D, block)
1 if not VALID_DUMMY_FORMAT(D) or
2 not VALID_DUMMY_HASH(D)
3 then return false
4 if READ_DUMMY_TIME(D) > READ_BLOCK_TIME(block)
5 then return false
6 if GET_LENGTH(blocks ← READ_IMMUTABLE_BLOCKS(D)) = 0

7 then return false
8 h ← READ_BLOCK_HEIGHT(block)
9 heights ← {}

10 for each Xb in blocks
11 do if h > (height ← GET_BLOCK_HEIGHT(Xb))
12 then return false
13 if height = h and GET_BLOCK_IDENTIFIER(block) 6= Xb
14 then return false
15 ADD_TO_LIST(heights, height)
16 heights ← ORDER_LIST(heights)
17 for each height in heights
18 do if height 6= h
19 then return false
20 h← (h + 1)
21 return true

VALID_DUMMY_HASH(D)
1 N ← GET_HASH(GET_DUMMY_DATA(D))
2 return READ_DUMMY_HASH(D) = N

HAS_VALID_PARENT(block)
1 if NIL = (parent ← RETRIEVE_PARENT(block))
2 then return false
3 time← READ_BLOCK_TIME(block)
4 return READ_BLOCK_TIME(parent) < time

Page 34 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

RETRIEVE_PARENT(block)
1 Xb ← GET_PARENT_IDENTIFIER(block)
2 return RETRIEVE_BLOCK(Xb)

GET_PARENT_IDENTIFIER(block)
1 N ← READ_PARENT_HASH(block)
2 height ← READ_BLOCK_HEIGHT(block)
3 return CREATE_BLOCK_IDENTIFIER(N, height− 1)

VALIDATE_BLOCK(block)
1 if not IMMUTABLE_BLOCK(block)
2 then SET_CHAIN_STATE(block)
3 VALIDATE_BRANCH_LENGTH(block)
4 VALIDATE_CHAINER_ASK(block)
5 VALIDATE_OPTIONAL_HEADER(block)
6 VALIDATE_PROOF-OF-LOSS(block)
7 VALIDATE_LEASE(block)
8 VALIDATE_BLOCK_SIGNATURE(block)
9 VALIDATE_BLOCK_TRANSACTIONS(block)

10 VALIDATE_BLOCK_EARNINGS(block)
11 VALIDATE_GIFT_RIGHTS(block)
12 VALIDATE_CHAIN_PRUNING(block)
13 VALIDATE_CHAIN_STATE(block)
14 UPDATE_CHAIN(block)

SET_CHAIN_STATE(block)
1 parent ← RETRIEVE_PARENT(block)
2 xg ← READ_GENERAL_MAX_HASH(parent)
3 if hs > (hw ← READ_ASKS_LOW(parent))
4 then ERROR(CONFLICTING_ASKS_LOW)
5 if (hs − 1) > (hk ← READ_CHECKPOINT(parent))
6 then ERROR(CONFLICTING_CHECKPOINT)
7 Mc ← READ_MONEY_SUPPLY(parent)
8 Mv ← 0

Page 35 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

ERROR(code)
1 DISPLAY(GET_ERROR_MESSAGE(code))
2 goto ERROR

VALIDATE_BRANCH_LENGTH(block)
1 if branch_start 6 hk
2 then ERROR(BRANCH_NOT_ABOVE_CHECKPOINT)

VALIDATE_CHAINER_ASK(block)
1 if READ_ASKED_FEE_PER_BYTE(block) < 0

2 then ERROR(NEGATIVE_ASK)

VALIDATE_OPTIONAL_HEADER(block)
1 if NIL = (H ← READ_OPTIONAL_HEADER(block))
2 then return
3 if NIL 6= (lease ← READ_HEADER_LEASE(H))
4 then VALIDATE_OPT-HEADER_LEASE(lease, H, block)
5 return
6 parent ← RETRIEVE_PARENT(block)
7 r ← READ_CHAINER_IDENTIFIER(parent)
8 VALIDATE_OPT-HEADER_CHAINER(H, r)
9 output ← GET_CONCLUDED_OUTPUT(r, parent)

10 VALIDATE_OPT-HEADER_IDENTIFIER(H, block, output)

Page 36 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

VALIDATE_OPT-HEADER_LEASE(lease, H, block)
1 VALIDATE_LEASE_PRICE(lease)
2 parent ← RETRIEVE_PARENT(block)
3 r ← READ_CHAINER_IDENTIFIER(parent)
4 if r = (rl ← READ_LESSEE_IDENTIFIER(lease))
5 then ERROR(LEASE_TO_OPTIONAL_SELF)
6 if NIL 6= (output ← GET_CONCLUDED_OUTPUT(rl , parent))
7 then VALIDATE_OPT-HEADER_CHAINER(H, r)
8 VALIDATE_OPT-HEADER_IDENTIFIER(H, block, output)
9 else if not LEASE-ONLY_OPT-HEADER(H)

10 then ERROR(UNNECESSARY_OPT-HEADER_DATA)
11 N ← GET_HASH(GET_LEASE_DATA(lease))
12 if READ_LEASE_HASH(lease) 6= N
13 then ERROR(INVALID_OPT-HEADER_LEASE_HASH)
14 S← GET_LEASE-SIGNING_DATA(lease)
15 output ← GET_CONCLUDED_OUTPUT(r, parent)
16 if not VALID_SIGNATURE(output, N, S)
17 then ERROR(INVALID_OPT-HEADER_LEASE_SIGNATURE)

VALIDATE_LEASE_PRICE(lease)
1 price ← READ_LEASE_PRICE(lease)
2 if price < 0 or price > 1

3 then ERROR(INVALID_LEASE_PRICE)

GET_CONCLUDED_OUTPUT(r, block)
1 h← READ_BLOCK_HEIGHT(block)
2 while hs 6 (h ← (h− 1))
3 do block ← RETRIEVE_PARENT(block)
4 if NIL 6= (output ← GET_OUTPUT(r, block))
5 then return output
6 return NIL

Page 37 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

GET_OUTPUT(r, block)
1 t← GET_TRANSACTION_IDENTIFIER(r)
2 if NIL 6= (transaction ← GET_TRANSACTION(t, block))
3 then n← GET_OUTPUT_INDEX(r)
4 i ← 0

5 for each output in transaction
6 do if n = (i ← (i + 1))
7 then return output
8 return NIL

GET_TRANSACTION(t, block)
1 for each transaction in block
2 do if GET_IDENTIFIER(transaction) = t
3 then return transaction
4 return NIL

GET_IDENTIFIER(transaction)
1 N ← READ_HASH(transaction)
2 time← READ_TIME(transaction)
3 return CREATE_TRANSACTION_IDENTIFIER(N, time)

VALIDATE_OPT-HEADER_CHAINER(H, r)
1 if READ_BLOCK-CHAINER_IDENTIFIER(H) 6= r
2 then ERROR(INVALID_OPT-HEADER_CHAINER)

Page 38 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

VALIDATE_OPT-HEADER_IDENTIFIER(H, block, output)
1 height ← READ_HEADER_HEIGHT(H)
2 if height 6= (READ_BLOCK_HEIGHT(block) − 1)
3 then ERROR(INVALID_OPT-HEADER_HEIGHT)
4 N ← GET_HASH(GET_HEADER_DATA(H))
5 if READ_HEADER_HASH(H) 6= N
6 then ERROR(INVALID_OPT-HEADER_HASH)
7 if N = READ_PARENT_HASH(block)
8 then ERROR(INVALID_OPTIONAL_HEADER)
9 S← GET_HEADER-SIGNING_DATA(H)

10 if not VALID_SIGNATURE(output, N, S)
11 then ERROR(INVALID_OPT-HEADER_SIGNATURE)

Page 39 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

VALIDATE_PROOF-OF-LOSS(block)
1 h ← height ← READ_BLOCK_HEIGHT(block)
2 r ← READ_CHAINER_IDENTIFIER(b← block)
3 descending ← {}
4 chainer ← bw ← Xb ← NIL

5 bi ← 0

6 implicit_balance ← false
7 while chainer = NIL and hs 6 (h ← (h− 1))
8 do if Xb 6= NIL

9 then ADD_TO_LIST(descending, Xb)
10 Xb ← GET_PARENT_IDENTIFIER(child ← b)
11 b← RETRIEVE_BLOCK(Xb)
12 if GET_INPUT(r, b) 6= NIL

13 then ERROR(TRANSFERRED_CHAINER)
14 if READ_CHAINER_IDENTIFIER(b) = r and bw = NIL

15 then bw ← b
16 if not implicit_balance
17 then bi ← GET_IMPLICIT_BALANCE(r, b, child)
18 chainer ← GET_OUTPUT(r, b)
19 if chainer = NIL

20 then ERROR(NONEXISTENT_CHAINER)
21 if bw = NIL

22 then bw ← b
23 be ← GET_EXPLICIT_BALANCE(chainer)
24 lr ← GET_ROUTE_LOSS(r, b)
25 ascending ← REVERT_LIST(descending)
26 VALIDATE_ROUTE(be, bi, lr, ascending)
27 Wr ← GET_REWARD(bw, NIL, lr, false)
28 dw ← (height − READ_BLOCK_HEIGHT(bw))
29 dr ← (height − READ_BLOCK_HEIGHT(b))
30 xr ← GET_MAX_HASH(Wr, lr, dr, dw)
31 VALIDATE_PROOF-OF-LOSS_HASH(block, xr)

Page 40 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

GET_INPUT(r, block)
1 for each transaction in block
2 do for each input in transaction
3 do if GET_ROUTE_IDENTIFIER(input) = r
4 then return input
5 return NIL

GET_ROUTE_IDENTIFIER(input)
1 N ← READ_TRANSACTION_HASH(input)
2 time← READ_TRANSACTION_TIME(input)
3 t← CREATE_TRANSACTION_IDENTIFIER(N, time)
4 n← READ_OUTPUT_INDEX(input)
5 return CREATE_ROUTE_IDENTIFIER(t, n)

GET_IMPLICIT_BALANCE(r, block, child)
1 earnings ← READ_EARNINGS_PER_OUTPUT(block)
2 rw ← GET_PROXY_CHAINER(block)
3 rl ← GET_PROXY_LESSEE(block)
4 seized ← HAS_TWO_HEADERS(child)
5 for each output_quota in earnings
6 do if r = (rq ← READ_EARNER_IDENTIFIER(output_quota))
7 then implicit_balance ← true
8 if seized and (rq = rw or rq = rl)
9 then return 0

10 return READ_OUTPUT_EARNINGS(output_quota)
11 return 0

GET_PROXY_CHAINER(r, block)
1 r ← READ_CHAINER_IDENTIFIER(block)
2 return GET_LAST_PROXY(r, block)

Page 41 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

GET_LAST_PROXY(r, block)
1 while NIL 6= (input ← GET_INPUT(r, block))
2 do if NIL = (r ← GET_PROXY_IDENTIFIER(r, block))
3 then ERROR(MISSING_PROXY_ROUTE)
4 return r

GET_PROXY_IDENTIFIER(r, block)
1 p← GET_BLOCK_PROXIES(block)
2 return READ_PROXY_IDENTIFIER(p, r)

GET_BLOCK_PROXIES(block)
1 Xb ← GET_BLOCK_IDENTIFIER(block)
2 if NIL = (p ← RETRIEVE_PROXY_MAP(Xb))
3 then p← CREATE_PROXY_MAP(block)
4 PERSIST_PROXY_MAP(Xb , p)
5 return p

CREATE_PROXY_MAP(block)
1 p← CREATE_EMPTY_PROXY_MAP()
2 for each transaction in block
3 do for each input in transaction
4 do if NIL 6= (n← READ_PROXY-ROUTE_INDEX(input))
5 then SET_PROXY(p, n, input, transaction)
6 return p

Page 42 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

SET_PROXY(p, n, input, transaction)
1 r ← GET_ROUTE_IDENTIFIER(input)
2 t← GET_IDENTIFIER(transaction)
3 i ← 0

4 for each output in transaction
5 do if n = (i ← (i + 1))
6 then if READ_EXPLICIT_BALANCE(output) = 0

7 then ERROR(PROVABLY_UNSPENDABLE_PROXY)
8 rp ← CREATE_ROUTE_IDENTIFIER(t, n)
9 WRITE_PROXY_IDENTIFIER(p, r, rp)

10 return
11 ERROR(NONEXISTENT_PROXY_ROUTE)

GET_PROXY_LESSEE(r, block)
1 if NIL 6= (lease ← READ_LEASE(block))
2 then r ← READ_LESSEE_IDENTIFIER(lease)
3 return GET_LAST_PROXY(r, block)
4 return NIL

GET_EXPLICIT_BALANCE(output)
1 if 0 = (be ← READ_EXPLICIT_BALANCE(output))
2 then ERROR(PROVABLY_UNSPENDABLE_OUTPUT)
3 return be

GET_ROUTE_LOSS(r, block)
1 t← GET_TRANSACTION_IDENTIFIER(r)
2 transaction ← GET_TRANSACTION(t, block)
3 n← GET_OUTPUT_INDEX(r)
4 return GET_LOSS(n, transaction)

Page 43 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

GET_LOSS(n, transaction)
1 zt ← GET_SIZE_IN_BYTES(transaction)
2 zr ← Zr ← i ← 0

3 for each output in transaction
4 do i← (i + 1)
5 if READ_EXPLICIT_BALANCE(output) > 0

6 then Zr ← (Zr + (z← GET_SIZE_IN_BYTES(output)))
7 if n = i
8 then zr ← z
9 return zt × (zr ÷ Zr)

VALIDATE_ROUTE(be, bi, lr, ascending)
1 if GET_INACTIVITY_FEES(lr, ascending) > (be + bi)
2 then ERROR(SPENT_OUTPUT)

GET_INACTIVITY_FEES(lr, ascending)
1 losses ← Ft ← 0

2 bids ← {}
3 for each Xb in ascending
4 do block ← RETRIEVE_BLOCK(Xb)
5 Lc ← READ_CURRENT_LOSS(block)
6 for each transaction in block
7 do losses ← (losses + GET_SIZE_IN_BYTES(transaction))
8 ft ← READ_BID_FEE_PER_BYTE(transaction)
9 ADD_TO_LIST(bids, ft)

10 if losses > Lc
11 then Ft ← (Ft + GET_MEDIAN(bids))
12 losses ← 0

13 bids ← {}
14 return Ft × lr

Page 44 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

GET_MEDIAN(list)
1 list← ORDER_LIST(list)
2 remainder ← ((length ← GET_LENGTH(list)) mod 2)
3 start ← (TRIM_TO_INTEGER(length ÷ 2) + remainder)
4 start ← (LISTS_FIRST_INDEX + (start − 1))
5 if remainder = 1

6 then return READ_ELEMENT(list, start)
7 e1 ← READ_ELEMENT(list, start)
8 e2 ← READ_ELEMENT(list, start + 1)
9 return (e1 + e2)÷ 2

GET_REWARD(block, child, lr, seizing)
1 if child 6= NIL

2 then if HAS_TWO_HEADERS(child)
3 then return 0

4 if READ_BLOCK_HEIGHT(block) > hs
5 then parent ← RETRIEVE_PARENT(block)
6 if seizing and HAS_TWO_HEADERS(block)
7 then l ← GET_CHAINER_LOSS(parent)
8 Wr ← GET_REWARD(parent, NIL, l, true)
9 else Wr ← READ_GIFT_RIGHTS(parent)

10 else D ← RETRIEVE_DUMMY_BLOCK()
11 if seizing and HAS_TWO_HEADERS(block)
12 then Wr ← READ_DUMMY_REWARD(D)
13 else Wr ← READ_DUMMY_GIFT_RIGHTS(D)
14 for each transaction in block
15 do Wr ← (Wr + GET_SIZE_IN_BYTES(transaction))
16 return Wr + lr

Page 45 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

GET_CHAINER_LOSS(block)
1 r ← READ_CHAINER_IDENTIFIER(block)
2 t← GET_TRANSACTION_IDENTIFIER(r)
3 h ← READ_BLOCK_HEIGHT(b← block)
4 transaction ← NIL

5 while transaction = NIL and hs 6 (h ← (h− 1))
6 do b← RETRIEVE_PARENT(b)
7 transaction ← GET_TRANSACTION(t, b)
8 if transaction 6= NIL

9 then loss_height ← READ_BLOCK_HEIGHT(b)
10 n← GET_OUTPUT_INDEX(r)
11 return GET_LOSS(n, transaction)
12 D ← RETRIEVE_DUMMY_BLOCK()
13 Xb ← GET_BLOCK_IDENTIFIER(block)
14 if NIL = (lr ← READ_CHAINER_LOSS(D, Xb))
15 then ERROR(MISSING_CHAINER_LOSS)
16 if NIL = (loss_height ← READ_LOSS_HEIGHT(D, Xb))
17 then ERROR(MISSING_CHAINER-LOSS_HEIGHT)
18 return lr

GET_MAX_HASH(Wr, lr, dr, dw)
1 if Wr < (Ws ← (dw × lr))
2 then Ws ←Wr
3 m1 ← ((lr ÷Wr) + ((1− (lr ÷Wr))× (Ws ÷Wr)))
4 m2 ← (((Ws ÷ lr) + 1)÷ dr)
5 return xg × lr ×m1 ×m2

VALIDATE_PROOF-OF-LOSS_HASH(block, xr)
1 VALIDATE_PROOF-OF-LOSS_CONTEXT(block)
2 N ← GET_HASH(GET_PROOF-OF-LOSS_DATA(block))
3 if READ_PROOF-OF-LOSS_HASH(block) 6= N
4 then ERROR(INVALID_PROOF-OF-LOSS_HASH)
5 if N > xr
6 then ERROR(LOW_PROOF-OF-LOSS_DIFFICULTY)

Page 46 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

VALIDATE_PROOF-OF-LOSS_CONTEXT(block)
1 h ← height ← READ_BLOCK_HEIGHT(b← block)
2 while hw 6 (h ← (h− 1))
3 do b← RETRIEVE_PARENT(b)
4 lr ← GET_CHAINER_LOSS(b)
5 dr ← (height − loss_height)
6 r ← READ_CHAINER_IDENTIFIER(b)
7 rw ← NIL

8 b← block
9 while rw 6= r

10 do b← RETRIEVE_PARENT(b)
11 rw ← READ_CHAINER_IDENTIFIER(b)
12 Wr ← GET_REWARD(b, NIL, lr, false)
13 dw ← (height − READ_BLOCK_HEIGHT(b))
14 xc ← GET_MAX_HASH(Wr, lr, dr, dw)
15 if READ_PROOF-OF-LOSS_CONTEXT(block) 6= xc
16 then ERROR(INVALID_PROOF-OF-LOSS_CONTEXT)

Page 47 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

VALIDATE_LEASE(block)
1 if (lessee ← NIL) = (lease ← READ_LEASE(block))
2 then return
3 VALIDATE_LEASE_PRICE(lease)
4 r ← READ_LESSEE_IDENTIFIER(lease)
5 if r = READ_CHAINER_IDENTIFIER(block)
6 then ERROR(LEASE_TO_SELF)
7 h ← READ_BLOCK_HEIGHT(block)
8 descending ← {}
9 Xb ← NIL

10 bi ← 0

11 implicit_balance ← false
12 while lessee = NIL and hs 6 (h ← (h− 1))
13 do if Xb 6= NIL

14 then ADD_TO_LIST(descending, Xb)
15 Xb ← GET_PARENT_IDENTIFIER(child ← block)
16 block ← RETRIEVE_BLOCK(Xb)
17 if GET_INPUT(r, block) 6= NIL

18 then ERROR(TRANSFERRED_LESSEE)
19 if not implicit_balance
20 then bi ← GET_IMPLICIT_BALANCE(r, block, child)
21 lessee ← GET_OUTPUT(r, block)
22 if lessee = NIL

23 then ERROR(NONEXISTENT_LESSEE)
24 be ← GET_EXPLICIT_BALANCE(lessee)
25 lr ← GET_ROUTE_LOSS(r, block)
26 ascending ← REVERT_LIST(descending)
27 VALIDATE_ROUTE(be, bi, lr, ascending)
28 N ← GET_HASH(GET_LEASE_DATA(lease))
29 if READ_LEASE_HASH(lease) 6= N
30 then ERROR(INVALID_LEASE_HASH)
31 S← GET_LEASE-SIGNING_DATA(lease)
32 if not VALID_SIGNATURE(chainer, N, S)
33 then ERROR(INVALID_LEASE_SIGNATURE)

Page 48 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

VALIDATE_BLOCK_SIGNATURE(block)
1 if NIL = (output ← lessee)
2 then output ← chainer
3 H ← READ_HEADER(block)
4 N ← GET_HASH(GET_HEADER_DATA(H))
5 if READ_HEADER_HASH(H) 6= N
6 then ERROR(INVALID_BLOCK_HASH)
7 S← GET_HEADER-SIGNING_DATA(H)
8 if not VALID_SIGNATURE(output, N, S)
9 then ERROR(INVALID_BLOCK_SIGNATURE)

VALIDATE_BLOCK_TRANSACTIONS(block)
1 Zt ← loss_decrease ← Fb ← Fi ← 0

2 FORGET_ROUTE_EARNINGS()
3 inputs ← {}
4 input_depths ← {}
5 concluding_losses ← {}
6 transaction_hashes ← {}
7 collectors ← {}
8 for each transaction in block
9 do VALIDATE_TRANSACTION(transaction, block)

10 N ← GET_HASH-TREE_ROOT(transaction_hashes)
11 if READ_TRANSACTIONS_HASH-TREE_ROOT(block) 6= N
12 then ERROR(INVALID_TRANSACTIONS_HASH-TREE_ROOT)
13 parent ← RETRIEVE_PARENT(block)
14 Lc ← READ_CURRENT_LOSS(parent)
15 if READ_CURRENT_LOSS(block) 6= (Lc + (Zt − loss_decrease))
16 then ERROR(INVALID_CURRENT_LOSS)

Page 49 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

VALIDATE_TRANSACTION(transaction, block)
1 VALIDATE_TRANSACTION_FORMAT(transaction)
2 VALIDATE_TRANSACTION_IDENTIFIER(transaction, block)
3 Bt ← Be ← Bi ← Fr ← 0

4 for each output in transaction
5 do Bt ← (Bt + GET_OUTPUT_BALANCE(output))
6 SET_PROXY_BALANCES(transaction, block)
7 height ← READ_BLOCK_HEIGHT(block)
8 for each input in transaction
9 do b← block

10 r ← GET_ROUTE_IDENTIFIER(input)
11 descending ← {}
12 Xb ← NIL

13 while NIL = (output ← GET_OUTPUT(r, b))
14 do if Xb 6= NIL

15 then ADD_TO_LIST(descending, Xb)
16 Xb ← GET_PARENT_IDENTIFIER(b)
17 b← RETRIEVE_BLOCK(Xb)
18 Be ← (Be + (be ← GET_EXPLICIT_BALANCE(output)))
19 Bi ← (Bi + (bi ← GET_PROXY_BALANCE(r, b)))
20 lr ← GET_ROUTE_LOSS(r, b)
21 ascending ← REVERT_LIST(descending)
22 Fr ← (Fr + (fr ← GET_INACTIVITY_FEES(lr, ascending)))
23 VALIDATE_INPUT(input, be, bi, fr, output, transaction)
24 loss_decrease ← (loss_decrease + lr)
25 if 0 < (dr ← (height − READ_BLOCK_HEIGHT(b)))
26 then ADD_TO_LIST(input_depths, dr)
27 VALIDATE_BID(transaction, Bt, Be, Bi, Fr)

Page 50 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

VALIDATE_TRANSACTION_IDENTIFIER(transaction, block)
1 N ← GET_HASH(GET_TRANSACTION_DATA(transaction))
2 if READ_HASH(transaction) 6= N
3 then ERROR(INVALID_TRANSACTION_HASH)
4 if EXISTS_IN_LIST(transaction_hashes, N)
5 then ERROR(DUPLICATE_TRANSACTION_HASH)
6 ADD_TO_LIST(transaction_hashes, N)
7 time ← READ_TIME(transaction)
8 if time > READ_BLOCK_TIME(block)
9 then ERROR(LATE_TRANSACTION)

10 for each input in transaction
11 do if time < READ_TRANSACTION_TIME(input)
12 then ERROR(EARLY_TRANSACTION)
13 t← CREATE_TRANSACTION_IDENTIFIER(N, time)
14 h ← READ_BLOCK_HEIGHT(block)
15 while hs 6 (h ← (h− 1))
16 do block ← RETRIEVE_PARENT(block)
17 if time > READ_BLOCK_TIME(block)
18 then return
19 if GET_TRANSACTION(t, block) 6= NIL

20 then ERROR(DUPLICATE_TRANSACTION)

GET_OUTPUT_BALANCE(output)
1 if 0 > (be ← READ_EXPLICIT_BALANCE(output))
2 then ERROR(NEGATIVE_OUTPUT_BALANCE)
3 if PROVABLY_UNSPENDABLE(output)
4 then if be > 0

5 then ERROR(ILLEGAL_MONEY_DESTRUCTION)
6 else if be = 0

7 then ERROR(NULL_SPENDABLE_BALANCE)
8 return be

Page 51 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

SET_PROXY_BALANCES(transaction, block)
1 for each input in transaction
2 do r← GET_ROUTE_IDENTIFIER(input)
3 if 0 < (bi ← GET_ROUTE_BALANCE(r, block))
4 then SET_BALANCES(input, bi, block)

GET_ROUTE_BALANCE(r, block)
1 hp ← ((h ← READ_BLOCK_HEIGHT(block)) − 1)
2 bi ← bs ← 0

3 implicit_balance ← false
4 while NIL = (output ← GET_OUTPUT(r, block))
5 do if hs > (h ← (h− 1))
6 then ERROR(NONEXISTENT_OUTPUT)
7 block ← RETRIEVE_PARENT(child ← block)
8 if GET_INPUT(r, block) 6= NIL

9 then ERROR(TRANSFERRED_OUTPUT)
10 if h = hp
11 then bs ← GET_SEIZED_BALANCE(r, block, child)
12 if not implicit_balance
13 then bi ← GET_IMPLICIT_BALANCE(r, block, child)
14 return bi + bs

Page 52 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

GET_SEIZED_BALANCE(r, block, child)
1 if not HAS_TWO_HEADERS(child) or
2 0 = (ratio ← GET_SEIZING_RATIO(r, child))
3 then return 0

4 earnings ← READ_EARNINGS_PER_OUTPUT(block)
5 bs ← 0

6 rw ← GET_PROXY_CHAINER(block)
7 rl ← GET_PROXY_LESSEE(block)
8 for each output_quota in earnings
9 do rq ← READ_EARNER_IDENTIFIER(output_quota)

10 if rq = rw or rq = rl
11 then bi ← READ_OUTPUT_EARNINGS(output_quota)
12 bs ← (bs + (bi × ratio))
13 if bi > 0 and GET_INPUT(rq, child) = NIL

14 then SET_ROUTE_BALANCE(rq, 0)
15 return bs

GET_SEIZING_RATIO(r, block)
1 ratio ← 1

2 if NIL 6= (lease ← READ_LEASE(block))
3 then ratio ← READ_LEASE_PRICE(lease)
4 if r = READ_LESSEE_IDENTIFIER(lease)
5 then return 1− ratio
6 if r = READ_CHAINER_IDENTIFIER(block)
7 then return ratio
8 return 0

SET_ROUTE_BALANCE(r, bi)
1 MEMORIZE_ROUTE_EARNINGS(r, bi)
2 if not EXISTS_IN_LIST(collectors, r)
3 then ADD_TO_LIST(collectors, r)

Page 53 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

SET_BALANCES(input, bi, block)
1 r ← GET_ROUTE_IDENTIFIER(input)
2 SET_ROUTE_EARNINGS(r, bi)
3 rp ← GET_PROXY_IDENTIFIER(r, block)
4 while rp 6= NIL and rp 6= r

5 do SET_ROUTE_EARNINGS(rp, bi)
6 if NIL 6= (input ← GET_INPUT(r ← rp, block))
7 then rp ← GET_PROXY_IDENTIFIER(r, block)
8 else if not EXISTS_IN_LIST(collectors, rp)
9 then ADD_TO_LIST(collectors, rp)

SET_ROUTE_EARNINGS(r, bi)
1 if NIL 6= (v ← RECALL_ROUTE_EARNINGS(r))
2 then bi ← (bi + v)
3 MEMORIZE_ROUTE_EARNINGS(r, bi)

GET_PROXY_BALANCE(r, block)
1 if GET_PROXY_IDENTIFIER(r, block) = NIL and
2 NIL 6= (bi ← RECALL_ROUTE_EARNINGS(r))
3 then return bi
4 return 0

VALIDATE_INPUT(input, be, bi, fr, output, transaction)
1 if fr > (be + bi)
2 then ERROR(SPENT_INPUT)
3 N ← READ_HASH(transaction)
4 S← GET_TRANSACTION-SIGNING_DATA(input, transaction)
5 if not VALID_SIGNATURE(output, N, S)
6 then ERROR(INVALID_TRANSACTION_SIGNATURE)
7 r ← GET_ROUTE_IDENTIFIER(input)
8 if EXISTS_IN_LIST(inputs, r)
9 then ERROR(DUPLICATE_INPUT)

10 ADD_TO_LIST(inputs, r)

Page 54 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

VALIDATE_BID(transaction, Bt, Be, Bi, Fr)
1 if Bt = 0

2 then ERROR(ROUTELESS_TRANSACTION)
3 ft ← READ_BID_FEE_PER_BYTE(transaction)
4 zt ← GET_SIZE_IN_BYTES(transaction)
5 if Fr > (bid ← (ft × zt))
6 then ERROR(LOW_BID)
7 if (Bt + bid) 6= (Be + Bi)
8 then ERROR(INEXACT_SPENDING)
9 Fb ← (Fb + bid)

10 Zt ← (Zt + zt)
11 ADD_TO_LIST(concluding_losses, zt)
12 Fi ← (Fi + Fr)

VALIDATE_BLOCK_EARNINGS(block)
1 Zk ← 0

2 FORGET_FAILING_TO_SELL()
3 asks ← GET_ASKS(block)
4 if Zt > Zk
5 then ERROR(UNAUTHORIZED_LOSSES)
6 Fz ← 0

7 for each ask in asks
8 do if NIL 6= (zk ← READ_SOURCE_REWARD(ask))
9 then k← GET_SOURCE_IDENTIFIER(ask)

10 zb ← ((zk ÷ Zk)× Zt)
11 MEMORIZE_FAILING_TO_SELL(k, zk − zb)
12 zb ← ((READ_RIGHTS_FOR_SALE(ask) ÷ Zk)× Zt)
13 fk ← READ_ASKED_FEES(ask)
14 WRITE_CHARGED_FEES(ask, fz ← (fk × zb))
15 Fz ← (Fz + fz)
16 if Fb < Fz
17 then ERROR(UNPAID_FEES)
18 APPLY_PRIORITIZATION(asks, block, Fz)
19 APPLY_MONETARY_POLICY(asks, block)
20 VALIDATE_EARNINGS(block, asks)

Page 55 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

GET_ASKS(block)
1 hp ← ((h ← READ_BLOCK_HEIGHT(b← block)) − 1)
2 asks ← {}
3 open_asks ← {}
4 blocks ← {}
5 FORGET_REVOKED_RIGHTS()
6 FORGET_CONCLUDED_LOSSES()
7 Xb ← NIL

8 while hw 6 (h ← (h− 1))
9 do if Xb 6= NIL

10 then ADD_TO_LIST(blocks, Xb)
11 Xb ← GET_PARENT_IDENTIFIER(child ← b)
12 b← RETRIEVE_BLOCK(Xb)
13 lr ← GET_CHAINER_LOSS(b)
14 Wr ← GET_REWARD(b, child, lr, true)
15 if Wr > (Ws ← ((hp − h)× lr))
16 then if lr < (zk ← (Wr −Ws))
17 then zk ← lr
18 r ← READ_CHAINER_IDENTIFIER(b)
19 k← CREATE_ASK_IDENTIFIER(h, r)
20 SET_REVOKED_RIGHTS(k, blocks)
21 MEMORIZE_CONCLUDED_LOSS(r, lr)
22 ADD_TO_LIST(open_asks, k)
23 ADD_ASKS(b, zk, block, asks)
24 return asks

SET_REVOKED_RIGHTS(k, blocks)
1 Wk ← 0

2 for each Xb in blocks
3 do b← RETRIEVE_BLOCK(Xb)
4 if NIL 6= (wk ← READ_REVOKED_RIGHTS(b, k))
5 then Wk ← (Wk + wk)
6 MEMORIZE_REVOKED_RIGHTS(k, Wk)

Page 56 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

ADD_ASKS(b, zk, block, asks)
1 h ← READ_BLOCK_HEIGHT(b)
2 r ← READ_CHAINER_IDENTIFIER(b)
3 if EXISTS_IN_LIST(READ_EXCLUDED_ASK_HEIGHTS(block), h)
4 then k← CREATE_ASK_IDENTIFIER(h, r)
5 MEMORIZE_FAILING_TO_SELL(k, zk)
6 return
7 fk ← READ_ASKED_FEE_PER_BYTE(b)
8 Zk ← (Zk + (zs ← zk))
9 if NIL 6= (lease ← READ_LEASE(b))

10 then rl ← READ_LESSEE_IDENTIFIER(lease)
11 rp ← GET_PROXY(rl , block, h)
12 SET_BALANCE(rp, block)
13 k← CREATE_ASK_IDENTIFIER(h, rp)
14 zs ← (zk × (price ← READ_PRICE(lease)))
15 ask ← CREATE_ASK(k, fk, zk × (1− price), NIL, r)
16 ADD_TO_LIST(asks, ask)
17 rp ← GET_PROXY(r, block, h)
18 SET_BALANCE(rp, block)
19 k← CREATE_ASK_IDENTIFIER(h, rp)
20 ask ← CREATE_ASK(k, fk, zs, zk, r)
21 ADD_TO_LIST(asks, ask)

GET_PROXY(r, block, height)
1 h ← READ_BLOCK_HEIGHT(b← block)
2 descending ← {}
3 while height 6 (h ← (h− 1))
4 do Xb ← GET_PARENT_IDENTIFIER(b)
5 ADD_TO_LIST(descending, Xb)
6 b← RETRIEVE_BLOCK(Xb)
7 ascending ← REVERT_LIST(descending)
8 for each Xb in ascending
9 do b← RETRIEVE_BLOCK(Xb)

10 r ← GET_LAST_PROXY(r, b)
11 return GET_LAST_PROXY(r, block)

Page 57 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

SET_BALANCE(r, block)
1 if RECALL_ROUTE_EARNINGS(r) = NIL

2 then bi ← GET_ROUTE_BALANCE(r, block)
3 SET_ROUTE_BALANCE(r, bi)

CREATE_ASK(k, fk, zs, zk, r)
1 ask ← CREATE_EMPTY_ASK()
2 WRITE_ASK_IDENTIFIER(ask, k)
3 WRITE_ASKED_FEES(ask, fk)
4 WRITE_RIGHTS_FOR_SALE(ask, zs)
5 WRITE_SOURCE_REWARD(ask, zk)
6 WRITE_OWNER_IDENTIFIER(ask, r)
7 WRITE_CHARGED_FEES(ask, NIL)
8 WRITE_EARNINGS(ask, NIL)
9 return ask

GET_SOURCE_IDENTIFIER(ask)
1 h← GET_HEIGHT(READ_ASK_IDENTIFIER(ask))
2 r ← READ_OWNER_IDENTIFIER(ask)
3 return CREATE_ASK_IDENTIFIER(h, r)

Page 58 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

APPLY_PRIORITIZATION(asks, block, Fz)
1 seized ← 0

2 if Fz > 0

3 then earnings ← {}
4 for each ask in asks
5 do if NIL 6= (zk ← READ_SOURCE_REWARD(ask))
6 then zb ← ((zk ÷ Zk)× Zt)
7 fz ← (READ_ASKED_FEES(ask) × zb)
8 ADD_TO_LIST(earnings, Fb × (fz ÷ Fz))
9 priority ← GET_PRIORITIZATION_QUOTIENT()

10 seized ← (GET_MEDIAN(earnings) × priority)
11 if seized > Fb
12 then seized ← Fb
13 remnant ← (Fb − seized)
14 for each ask in asks
15 do fz ← READ_CHARGED_FEES(ask)
16 WRITE_EARNINGS(ask, remnant × (fz ÷ Fz))
17 h ← READ_BLOCK_HEIGHT(block)
18 r ← READ_CHAINER_IDENTIFIER(block)
19 fs ← seized
20 if NIL 6= (lease ← READ_LEASE(block))
21 then rl ← READ_LESSEE_IDENTIFIER(lease)
22 rp ← GET_LAST_PROXY(rl , block)
23 SET_BALANCE(rp, block)
24 k← CREATE_ASK_IDENTIFIER(h, rp)
25 ask ← CREATE_ASK(k, NIL, NIL, NIL, NIL)
26 fs ← (seized× (price ← READ_PRICE(lease)))
27 WRITE_EARNINGS(ask, seized× (1− price))
28 ADD_TO_LIST(asks, ask)
29 rp ← GET_LAST_PROXY(r, block)
30 SET_BALANCE(rp, block)
31 k← CREATE_ASK_IDENTIFIER(h, rp)
32 ask ← CREATE_ASK(k, NIL, NIL, NIL, NIL)
33 WRITE_EARNINGS(ask, fs)
34 ADD_TO_LIST(asks, ask)

Page 59 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

GET_PRIORITIZATION_QUOTIENT()
1 average_depth ← GET_AVERAGE(input_depths)
2 median_depth ← GET_MEDIAN(input_depths)
3 depth_quotient ← (average_depth ÷median_depth)
4 average_loss ← GET_AVERAGE(concluding_losses)
5 median_loss ← GET_MEDIAN(concluding_losses)
6 loss_quotient ← (median_loss÷ average_loss)
7 return depth_quotient × loss_quotient

GET_AVERAGE(list)
1 return GET_SUM(list)÷ GET_LENGTH(list)

APPLY_MONETARY_POLICY(asks, block)
1 if Mc = (target ← GET_MONETARY_TARGET(block))
2 then return
3 if 0 < (Mv ← (target −Mc))
4 then if Mv > Fi
5 then Mv ← Fi
6 else if 0 > (Fi + Mv)
7 then Mv ← (0− Fi)
8 for each ask in asks
9 do fb ← READ_EARNINGS(ask)

10 WRITE_EARNINGS(ask, fb + (Mv × (fb ÷ Fb)))

Page 60 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

GET_MONETARY_TARGET(block)
1 if hw = hs
2 then return Mc
3 h ← READ_BLOCK_HEIGHT(block)
4 losses ← Lc ← 0

5 descending ← {}
6 hm ← (hw − 1)
7 while h > hw or losses < Lc
8 do if h = hs
9 then ERROR(CONFLICTING_LOSSES)

10 Xb ← GET_PARENT_IDENTIFIER(block)
11 block ← RETRIEVE_BLOCK(Xb)
12 if hw > (h ← (h− 1))
13 then if h = hm
14 then Lc ← READ_CURRENT_LOSS(block)
15 ADD_TO_LIST(descending, Xb)
16 for each transaction in block
17 do zt ← GET_SIZE_IN_BYTES(transaction)
18 losses ← (losses + zt)
19 ascending ← REVERT_LIST(descending)
20 return GET_LENGTH(GET_ROUTES(ascending))

GET_ROUTES(ascending)
1 routes ← {}
2 for each Xb in ascending
3 do block ← RETRIEVE_BLOCK(Xb)
4 for each transaction in block
5 do ADD_ROUTES(routes, transaction)
6 DROP_ROUTES(routes, transaction)
7 return routes

Page 61 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

ADD_ROUTES(routes, transaction)
1 t← GET_IDENTIFIER(transaction)
2 n← 0

3 for each output in transaction
4 do n← (n + 1)
5 if READ_EXPLICIT_BALANCE(output) > 0

6 then r← CREATE_ROUTE_IDENTIFIER(t, n)
7 ADD_TO_LIST(routes, r)

DROP_ROUTES(routes, transaction)
1 for each input in transaction
2 do r← GET_ROUTE_IDENTIFIER(input)
3 if EXISTS_IN_LIST(routes, r)
4 then DROP_FROM_LIST(routes, r)

VALIDATE_EARNINGS(block, asks)
1 proxy_asks ← GET_PROXY_ASKS(asks, block)
2 earnings ← READ_EARNINGS_PER_OUTPUT(block)
3 if GET_LENGTH(earnings) 6= GET_LENGTH(proxy_asks)
4 then ERROR(INVALID_COLLECTORS_NUMBER)
5 for each ask in proxy_asks
6 do VALIDATE_OUTPUT_EARNINGS(earnings, ask)

Page 62 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

GET_PROXY_ASKS(asks, block)
1 FORGET_PROXY_ASKS()
2 for each ask in asks
3 do SET_PROXY_ASK(ask)
4 proxy_asks ← {}
5 for each ask in asks
6 do r ← GET_EARNER_IDENTIFIER(ask)
7 if not INCLUDED_PROXY_ASK(r, proxy_asks) and
8 NIL 6= (proxy ← RECALL_PROXY_ASK(r))
9 then ADD_TO_LIST(proxy_asks, proxy)

10 h ← READ_BLOCK_HEIGHT(block)
11 for each r in collectors
12 do k← CREATE_ASK_IDENTIFIER(h, r)
13 ask ← CREATE_ASK(k, NIL, NIL, NIL, NIL)
14 WRITE_EARNINGS(ask, RECALL_ROUTE_EARNINGS(r))
15 ADD_TO_LIST(proxy_asks, ask)
16 return proxy_asks

SET_PROXY_ASK(ask)
1 if 0 = (fb ← READ_EARNINGS(ask))
2 then return
3 r ← GET_EARNER_IDENTIFIER(ask)
4 if NIL = (proxy ← RECALL_PROXY_ASK(r))
5 then if NIL 6= (bi ← RECALL_ROUTE_EARNINGS(r))
6 then WRITE_EARNINGS(ask, fb + bi)
7 if EXISTS_IN_LIST(collectors, r)
8 then DROP_FROM_LIST(collectors, r)
9 MEMORIZE_PROXY_ASK(r, ask)

10 return
11 WRITE_EARNINGS(proxy, fb + READ_EARNINGS(proxy))

GET_EARNER_IDENTIFIER(ask)
1 k← READ_ASK_IDENTIFIER(ask)
2 return GET_ASKER(k)

Page 63 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

INCLUDED_PROXY_ASK(r, proxy_asks)
1 for each ask in proxy_asks
2 do if GET_EARNER_IDENTIFIER(ask) = r
3 then return true
4 return false

VALIDATE_OUTPUT_EARNINGS(earnings, ask)
1 r ← GET_EARNER_IDENTIFIER(ask)
2 fb ← READ_EARNINGS(ask)
3 for each output_quota in earnings
4 do if READ_EARNER_IDENTIFIER(output_quota) = r and
5 READ_OUTPUT_EARNINGS(output_quota) = fb
6 then return
7 ERROR(INVALID_OUTPUT_EARNINGS)

VALIDATE_GIFT_RIGHTS(block)
1 Wg ← 0

2 for each k in open_asks
3 do wu ← RECALL_FAILING_TO_SELL(k)
4 Wk ← RECALL_REVOKED_RIGHTS(k)
5 l ← RECALL_CONCLUDED_LOSS(GET_ASKER(k))
6 if wu < (wk ← ((2× l)−Wk))
7 then wk ← wu
8 Wg ← (Wg + (wu −wk))
9 VALIDATE_REVOKED_RIGHTS(k, wk, block)

10 if READ_GIFT_RIGHTS(block) 6= Wg
11 then ERROR(INVALID_GIFT_RIGHTS)

VALIDATE_REVOKED_RIGHTS(k, wk, block)
1 if wk = 0

2 then wk ← NIL

3 if READ_REVOKED_RIGHTS(block, k) 6= wk
4 then ERROR(INVALID_REVOKED_RIGHTS)

Page 64 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

VALIDATE_CHAIN_PRUNING(block)
1 SET_PRUNING_STATE(block)
2 votes ← {}
3 quorum_start ← hs
4 for each Xb in voters
5 do b← RETRIEVE_BLOCK(Xb)
6 ADD_PRUNING_VOTE(votes, b)
7 if quorum ← (GET_LENGTH(votes) > GET_QUORUM())
8 then quorum_start ← GET_QUORUM_START(votes)
9 if quorum_start > hs and validated

10 then Dq ← CREATE_DUMMY_BLOCK(block)
11 else if quorum_start = hs
12 then VALIDATE_HIGHEST_VOTER(block)
13 else ERROR(CONFLICTING_QUORUM_START)
14 VALIDATE_DUMMY_IDENTIFIER(block)
15 VALIDATE_PRUNING_VOTE(block)

Page 65 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

SET_PRUNING_STATE(block)
1 Dq ← RETRIEVE_DUMMY_BLOCK()
2 voters ← {}
3 if hk < (highest_start ← hs)
4 then return
5 if validated and
6 hk < GET_BLOCK_HEIGHT(READ_HIGHEST_VOTER(Dq))
7 then return
8 h ← READ_BLOCK_HEIGHT(block)
9 descending ← {}

10 while hs 6 (h ← (h− 1))
11 do Xs ← GET_PARENT_IDENTIFIER(block)
12 block ← RETRIEVE_BLOCK(Xs)
13 if h > hk
14 then ADD_TO_LIST(voters, Xs)
15 else if h = hk
16 then highest_start ← GET_START(block)
17 if highest_start = hs
18 then return
19 Xc ← Xs
20 else ADD_TO_LIST(descending, Xs)
21 routes ← GET_ROUTES(REVERT_LIST(descending))
22 SET_HIGHEST_START(routes, descending)

Page 66 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

GET_START(block)
1 if hs > (height ← (READ_CHECKPOINT(block) + 1))
2 then ERROR(CONFLICTING_CHECKPOINT_START)
3 if hs > (asks_low← READ_ASKS_LOW(block))
4 then ERROR(CONFLICTING_ASKS-LOW_START)
5 if height = hs or asks_low = hs
6 then return hs
7 h ← READ_BLOCK_HEIGHT(block)
8 hm ← (asks_low− 1)
9 losses ← Lc ← 0

10 while h > asks_low or losses < Lc
11 do if h = hs
12 then ERROR(CONFLICTING_MONEY-TARGET_START)
13 block ← RETRIEVE_PARENT(block)
14 if asks_low > (h ← (h− 1))
15 then if h = hm
16 then Lc ← READ_CURRENT_LOSS(block)
17 for each transaction in block
18 do zt ← GET_SIZE_IN_BYTES(transaction)
19 losses ← (losses + zt)
20 if h < height
21 then return h
22 return height

SET_HIGHEST_START(routes, blocks)
1 h ← (hk − 1)
2 descending ← {}
3 ascending ← {}
4 child ← NIL

5 for each Xb in blocks
6 do block ← RETRIEVE_BLOCK(Xb)
7 ADD_TO_LIST(descending, Xb)
8 SET_START(routes, block, child, descending, ascending, h)
9 ascending ← REVERT_LIST(descending)

10 child ← block

Page 67 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

SET_START(routes, block, child, descending, ascending, height)
1 if highest_start 6 (h ← READ_BLOCK_HEIGHT(block))
2 then return
3 for each r in routes
4 do if ROUTE(r, block, child, descending, ascending, height)
5 then highest_start ← h
6 return

ROUTE(r, block, child, descending, ascending, height)
1 if CHAINER_OR_LESSEE(r, block, ascending)
2 then h ← READ_BLOCK_HEIGHT(block)
3 lr ← GET_CHAINER_LOSS(block)
4 Wr ← GET_REWARD(block, child, lr, true)
5 return ((height − h)× lr) < Wr
6 if NIL = (output ← GET_OUTPUT(r, block))
7 then return false
8 br ← GET_BALANCE(r, output, descending)
9 lr ← GET_ROUTE_LOSS(r, block)

10 return (br − GET_INACTIVITY_FEES(lr, ascending)) > 0

CHAINER_OR_LESSEE(rp, block, ascending)
1 r ← READ_CHAINER_IDENTIFIER(block)
2 if rp = GET_LAST_IDENTIFIER(r, block, ascending)
3 then return true
4 if NIL = (lease ← READ_LEASE(block))
5 then return false
6 r ← READ_LESSEE_IDENTIFIER(lease)
7 return rp = GET_LAST_IDENTIFIER(r, block, ascending)

GET_LAST_IDENTIFIER(r, block, ascending)
1 r ← GET_LAST_PROXY(r, block)
2 for each Xb in ascending
3 do block ← RETRIEVE_BLOCK(Xb)
4 r← GET_LAST_PROXY(r, block)
5 return r

Page 68 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

GET_BALANCE(r, output, descending)
1 be ← READ_EXPLICIT_BALANCE(output)
2 for each Xb in descending
3 do block ← RETRIEVE_BLOCK(Xb)
4 earnings ← READ_EARNINGS_PER_OUTPUT(block)
5 for each output_quota in earnings
6 do if READ_EARNER_IDENTIFIER(output_quota) = r
7 then bi ← READ_OUTPUT_EARNINGS(output_quota)
8 return be + bi
9 return be

ADD_PRUNING_VOTE(votes, block)
1 if NIL = (Xb ← READ_VOTED_START(block))
2 then if NIL 6= (lease ← READ_LEASE(block))
3 then Xb ← READ_PRE-VOTED_START(lease)
4 if Xb 6= NIL

5 then ADD_TO_LIST(votes, GET_BLOCK_HEIGHT(Xb))

GET_QUORUM()
1 return TRIM_TO_INTEGER(GET_LENGTH(voters) ÷ 2) + 1

GET_QUORUM_START(votes)
1 return TRIM_TO_INTEGER(GET_MEDIAN(votes))

Page 69 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

CREATE_DUMMY_BLOCK(block)
1 D ← CREATE_EMPTY_DUMMY_BLOCK()
2 b← RETRIEVE_BLOCK(Xc)
3 while quorum_start 6 (h ← READ_BLOCK_HEIGHT(b))
4 do D ← SET_IMMUTABLE_BLOCK(D, b)
5 b← RETRIEVE_PARENT(b)
6 if h = quorum_start
7 then SET_DUMMY_DATA(D, b, block)
8 N ← GET_HASH(GET_DUMMY_DATA(D))
9 WRITE_DUMMY_HASH(D, N)

10 return D

SET_IMMUTABLE_BLOCK(D, block)
1 Xb ← GET_BLOCK_IDENTIFIER(block)
2 lr ← GET_CHAINER_LOSS(block)
3 if loss_height < quorum_start
4 then WRITE_CHAINER_LOSS(D, Xb, lr)
5 WRITE_LOSS_HEIGHT(D, Xb, loss_height)
6 WRITE_IMMUTABLE_BLOCK(D, Xb)

SET_DUMMY_DATA(D, b, block)
1 lr ← GET_CHAINER_LOSS(b)
2 WRITE_DUMMY_REWARD(D, GET_REWARD(b, NIL, lr, true))
3 WRITE_DUMMY_GIFT_RIGHTS(D, READ_GIFT_RIGHTS(b))
4 WRITE_DUMMY_CURRENT_LOSS(D, READ_CURRENT_LOSS(b))
5 WRITE_DUMMY_TIME(D, READ_BLOCK_TIME(b))
6 WRITE_HIGHEST_VOTER(D, GET_PARENT_IDENTIFIER(block))

VALIDATE_HIGHEST_VOTER(block)
1 Xb ← GET_PARENT_IDENTIFIER(block)
2 if READ_HIGHEST_VOTER(Dq) 6= Xb
3 then ERROR(CONFLICTING_HIGHEST_VOTER)

Page 70 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

VALIDATE_DUMMY_IDENTIFIER(block)
1 Xb ← READ_DUMMY_IDENTIFIER(block)
2 if not quorum
3 then if Xb 6= NIL

4 then ERROR(ILLEGAL_DUMMY_REFERENCE)
5 return
6 N ← READ_DUMMY_HASH(Dq)
7 if Xb 6= CREATE_BLOCK_IDENTIFIER(N, quorum_start − 1)
8 then ERROR(INVALID_DUMMY_IDENTIFIER)

VALIDATE_PRUNING_VOTE(block)
1 if NIL = (Xb ← GET_PRUNING_VOTE(block)) or
2 (not validated and not quorum)
3 then return
4 if NIL = (b← RETRIEVE_BLOCK(Xb))
5 then ERROR(NONEXISTENT_VOTED_START)
6 h← READ_BLOCK_HEIGHT(b)
7 if h 6 quorum_start or h > highest_start
8 then ERROR(ILLEGAL_VOTED_START)

GET_PRUNING_VOTE(block)
1 Xb ← READ_VOTED_START(block)
2 if NIL 6= (lease ← READ_LEASE(block))
3 then chainer_vote ← (Xb 6= NIL)
4 Xb ← READ_PRE-VOTED_START(lease)
5 if Xb 6= NIL and chainer_vote
6 then ERROR(DOUBLE_PRUNING_VOTE)
7 return Xb

VALIDATE_CHAIN_STATE(block)
1 VALIDATE_GENERAL_MAX_HASH(block)
2 VALIDATE_ASKS_LOW(block)
3 VALIDATE_CHECKPOINT(block)
4 VALIDATE_MONEY_SUPPLY(block)

Page 71 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

VALIDATE_GENERAL_MAX_HASH(block)
1 tb ← READ_BLOCK_TIME(block)
2 tp ← READ_BLOCK_TIME(RETRIEVE_PARENT(block))
3 ib ← (tb − tp)
4 dw ← (READ_BLOCK_HEIGHT(block) − hw)
5 N ← (xg × (1 + (((ib ÷ Ib)− 1)÷ dw)))
6 if READ_GENERAL_MAX_HASH(block) 6= N
7 then ERROR(INVALID_GENERAL_DIFFICULTY_TARGET)

VALIDATE_ASKS_LOW(block)
1 h← low← height ← READ_BLOCK_HEIGHT(b← block)
2 while hw 6 (h ← (h− 1))
3 do b← RETRIEVE_PARENT(child ← b)
4 lr ← GET_CHAINER_LOSS(b)
5 Wr ← GET_REWARD(b, child, lr, true)
6 if ((height − h)× lr) < Wr
7 then low← h
8 if READ_ASKS_LOW(block) 6= low
9 then ERROR(INVALID_ASKS_LOW)

VALIDATE_CHECKPOINT(block)
1 h ← READ_BLOCK_HEIGHT(b← block)
2 Lw ← 0

3 while h > hs
4 do Lw ← (Lw + GET_CHAINER_LOSS(b))
5 if hs 6 (h ← (h− 1))
6 then b← RETRIEVE_PARENT(b)
7 Lc ← READ_CURRENT_LOSS(b)
8 else D ← RETRIEVE_DUMMY_BLOCK()
9 Lc ← READ_DUMMY_CURRENT_LOSS(D)

10 if Lw > Lc
11 then if READ_CHECKPOINT(block) 6= h
12 then ERROR(INVALID_CHECKPOINT)
13 return
14 ERROR(MISSING_CHECKPOINT)

Page 72 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

VALIDATE_MONEY_SUPPLY(block)
1 if READ_MONEY_SUPPLY(block) 6= (Mc + Mv)
2 then ERROR(INVALID_MONEY_SUPPLY)

UPDATE_CHAIN(block)
1 UPDATE_GLOBAL_STATE(block)
2 PERSIST_BLOCK(GET_BLOCK_IDENTIFIER(block), block)
3 if READ_BLOCK_HEIGHT(block) > hc
4 then COMMIT()

UPDATE_GLOBAL_STATE(block)
1 UPDATE_CURRENT_HEIGHT(block)
2 UPDATE_STARTING_HEIGHT()

UPDATE_CURRENT_HEIGHT(block)
1 if READ_BLOCK_HEIGHT(block) > hc
2 then PERSIST_CURRENT_HEIGHT(hc + 1)

UPDATE_STARTING_HEIGHT()
1 if not quorum
2 then return
3 if quorum_start > hs
4 then if RETRIEVE_PRECEDING_START() 6= hs
5 then UPDATE_PRECEDING_START()
6 PERSIST_DUMMY_BLOCK(Dq)
7 PERSIST_STARTING_HEIGHT(quorum_start)
8 return
9 PERSIST_VALIDATED(true)

Page 73 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

UPDATE_PRECEDING_START()
1 if NIL 6= (D ← RETRIEVE_PREVIOUS_DUMMY())
2 then ARCHIVE_PREVIOUS_DUMMY(hs, D)
3 b← RETRIEVE_BLOCK(Xs)
4 while NIL 6= (b← RETRIEVE_PARENT(b))
5 do PRUNE_BLOCK(b, true)
6 D← RETRIEVE_DUMMY_BLOCK()
7 PERSIST_PREVIOUS_DUMMY(D)
8 PERSIST_PRECEDING_START(hs)

PRUNE_BLOCK(block, archive)
1 if archive
2 then ARCHIVE_BLOCK(hs, block)
3 Xb ← GET_BLOCK_IDENTIFIER(block)
4 REMOVE_BLOCK(Xb)
5 REMOVE_PROXY_MAP(Xb)

VALIDATE_BRANCH(block)
1 if validated
2 then VALIDATE_BRANCH_START(block)
3 VALIDATE_BLOCK(block)
4 while READ_BLOCK_HEIGHT(block) < hc
5 do if NIL = (block ← GET_CANDIDATE_CHILD(block))
6 then ERROR(INCOMPLETE_BRANCH)
7 VALIDATE_BLOCK(block)

VALIDATE_BRANCH_START(block)
1 D← RETRIEVE_DUMMY_BLOCK()
2 h← GET_BLOCK_HEIGHT(READ_HIGHEST_VOTER(D))
3 if READ_BLOCK_HEIGHT(block) > h
4 then return
5 if not RESTORE_PREVIOUS_DUMMY()
6 then ERROR(BRANCH_NOT_ABOVE_PRUNING_VOTERS)
7 VALIDATE_BRANCH_START(block)

Page 74 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

RESTORE_PREVIOUS_DUMMY()
1 if NIL = (start ← RETRIEVE_PRECEDING_START())
2 then return false
3 if start < hs
4 then D← RETRIEVE_PREVIOUS_DUMMY()
5 PERSIST_DUMMY_BLOCK(D)
6 PERSIST_STARTING_HEIGHT(hs ← start)
7 return true
8 return false

GET_CANDIDATE_CHILD(block)
1 Xb ← GET_BLOCK_IDENTIFIER(block)
2 if NIL = (child ← GET_CHILD_FROM_PEERS(Xb))
3 then return NIL

4 if not VALID_BLOCK_FORMAT(child) or
5 not VALID_BLOCK_HASH(child) or
6 current_time < (time ← READ_BLOCK_TIME(child))
7 then return NIL

8 h ← READ_BLOCK_HEIGHT(child)
9 N ← READ_PARENT_HASH(child)

10 if READ_BLOCK_HEIGHT(block) = (h− 1) and
11 READ_BLOCK_HASH(block) = N and
12 READ_BLOCK_TIME(block) < time
13 then return child
14 return NIL

Page 75 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

Proof-of-Loss Mirelo Deugh Ausgam Valis cba

PRUNE_ORPHANED_BRANCHES()
1 h ← hc
2 pruned ← false
3 pruning ← true
4 while pruning
5 do siblings ← RETRIEVE_BLOCKS_AT_HEIGHT(h ← (h− 1))
6 pruning ← false
7 for each sibling in siblings
8 do if not HAS_CHILDREN(sibling)
9 then PRUNE_BLOCK(sibling, false)

10 pruned ← pruning ← true
11 if pruned
12 then COMMIT()

HAS_CHILDREN(block)
1 h← READ_BLOCK_HEIGHT(block)
2 siblings ← RETRIEVE_BLOCKS_AT_HEIGHT(h + 1)
3 N ← READ_BLOCK_HASH(block)
4 for each sibling in siblings
5 do if READ_PARENT_HASH(sibling) = N
6 then return true
7 return false

Page 76 of 76 Block Validation Pseudocode

http://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Block-Chaining Incentives
	Transaction Rights
	Proof-of-Loss
	Block-Chaining Rewards
	Price Negotiation
	Block Chaining
	Transaction Asks
	Implicit Transactions
	Block Asks
	Transaction Forwarding
	Optional Centralization
	Forcibly Serial Chaining
	Block Interval
	General Difficulty Target
	Consensual Chain Selection
	Inactivity Fees
	Intrinsic Checkpoints
	Adaptive Monetary Policy
	Block Validation Pseudocode
	Synchronized
	Validate Chain
	Initialize
	Valid Candidate Block
	Valid Block Hash
	Set Global State
	New or Optional Block
	Get Block Identifier
	Immutable Height
	Immutable Block
	Set Dummy Parent
	Valid Dummy Parent
	Valid Dummy Hash
	Has Valid Parent
	Retrieve Parent
	Get Parent Identifier

	Validate Block
	Set Chain State
	Error

	Validate Branch Length
	Validate Chainer Ask
	Validate Optional Header
	Validate Opt-Header Lease
	Validate Lease Price
	Get Concluded Output
	Get Output
	Get Transaction
	Get Identifier
	Validate Opt-Header Chainer
	Validate Opt-Header Identifier

	Validate Proof-of-Loss
	Get Input
	Get Route Identifier
	Get Implicit Balance
	Get Proxy Chainer
	Get Last Proxy
	Get Proxy Identifier
	Get Block Proxies
	Create Proxy Map
	Set Proxy
	Get Proxy Lessee
	Get Explicit Balance
	Get Route Loss
	Get Loss
	Validate Route
	Get Inactivity Fees
	Get Median
	Get Reward
	Get Chainer Loss
	Get Max Hash
	Validate Proof-of-Loss Hash
	Validate Proof-of-Loss Context

	Validate Lease
	Validate Block Signature
	Validate Block Transactions
	Validate Transaction
	Validate Transaction Identifier
	Get Output Balance
	Set Proxy Balances
	Get Route Balance
	Get Seized Balance
	Get Seizing Ratio
	Set Route Balance
	Set Balances
	Set Route Earnings
	Get Proxy Balance
	Validate Input
	Validate Bid

	Validate Block Earnings
	Get Asks
	Set Revoked Rights
	Add Asks
	Get Proxy
	Set Balance
	Create Ask
	Get Source Identifier
	Apply Prioritization
	Get Prioritization Quotient
	Get Average
	Apply Monetary Policy
	Get Monetary Target
	Get Routes
	Add Routes
	Drop Routes
	Validate Earnings
	Get Proxy Asks
	Set Proxy Ask
	Get Earner Identifier
	Included Proxy Ask
	Validate Output Earnings

	Validate Gift Rights
	Validate Revoked Rights

	Validate Chain Pruning
	Set Pruning State
	Get Start
	Set Highest Start
	Set Start
	Route
	Chainer or Lessee
	Get Last Identifier
	Get Balance
	Add Pruning Vote
	Get Quorum
	Get Quorum Start
	Create Dummy Block
	Set Immutable Block
	Set Dummy Data
	Validate Highest Voter
	Validate Dummy Identifier
	Validate Pruning Vote
	Get Pruning Vote

	Validate Chain State
	Validate General Max Hash
	Validate Asks Low
	Validate Checkpoint
	Validate Money Supply

	Update Chain
	Update Global State
	Update Current Height
	Update Starting Height
	Update Preceding Start
	Prune Block

	Validate Branch
	Validate Branch Start
	Restore Previous Dummy
	Get Candidate Child

	Prune Orphaned Branches
	Has Children

