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Abstract. If a group is modelled as a single Bayesian agent, what should its be-

liefs be? I propose an axiomatic model that connects group beliefs to beliefs of the

group members. The group members may have different information, different prior

beliefs, and even different domains (algebras) within which they hold beliefs, account-

ing for differences in awareness and conceptualisation. As is shown, group beliefs can

incorporate all information spread across individuals without individuals having to

explicitly communicate their information (that may be too complex or personal to

describe, or not describable in principle in the language). The group beliefs derived

here take a simple multiplicative form if people’s information is independent (and a

more complex form if information overlaps arbitrarily). This form contrasts with fa-

miliar linear or geometric opinion pooling and the (Pareto) requirement of respecting

unanimous beliefs. JEL classification: D70, D71

Keywords: Opinion pooling, Bayesianism, axiomatic approach, subjective probability

1 Introduction

Suppose a group is interested in whether a given hypothesis H is true. If every in-

dividual assigns a probability of 70% to H, what probability should the group as

a whole assign to H? Is it exactly 70%, or perhaps more since different persons

have independently confirmed H? The answer, I will show, crucially depends on

the informational states of the individuals. If they have identical information, the

collective has good reasons to adopt people’s unanimous 70% belief, following the

popular (probabilistic) Pareto principle (e.g. Mongin (1995, 1998)). Under informa-

tional asymmetry, by contrast, a possibly much higher or lower collective probability

may be appropriate, and the Pareto principle becomes problematic, or so I argue.

The above question is an instance of the classic opinion pooling/aggregation prob-

lem, with applications for instance in expert panels. In general, the beliefs of different

1 I am very grateful for numerous helpful suggestions by a competent and diligent referee. This

paper is based on my old unpublished paper ‘Opinion Pooling under Asymmetric Information,’ Public

Economics 0407002, EconWPA, 2004. Meanwhile, interesting related results have been obtained

independently by Marcus Pivato in his working paper ‘The Discursive Dilemma and Probabilistic

Judgement Aggregation,’ MPRA Paper 8412, University Library of Munich, Germany, 2008.
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individuals need of course not coincide, and also more than one hypothesis may be

under consideration. The general goal is to merge many individuals’ probability

assignments to certain (exclusive and exhaustive) hypotheses into a single collect-

ive probability assignment to these hypotheses. The literature has proposed different

normative conditions on the aggregation rule, and has derived the class of rules satisfy-

ing these conditions. The two most prominent types of rules are linear and geometric

rules. Denoting by π1, ..., πn and π the individual and collective probability assign-

ments (each assignment being a function that maps hypotheses to probabilities), a

linear rule defines π as being a weighted arithmetic average
∑n
i=1wiπi, and a geomet-

ric rule defines π as being proportional to a weighted geometric average
∏n
i=1 π

wi
i ,

where w1, ..., wn ∈ [0, 1] are fixed weights with sum 1. By contrast, our Bayesian

axioms will lead to what I call multiplicative rules, which define π as g
∏n
i=1 πi, the

product of all (unweighted) individual function πi with some fixed function g. Lin-

ear rules have been characterised (under additional technical assumptions) by the

independence or setwise function property (McConway (1981), Wagner (1982, 1985),

Dietrich and List (2007); see also Lehrer and Wagner (1981)), the marginalisation

property (McConway (1981)), and (in a single-profile context) by the probabilistic

analogue of the Pareto principle (Mongin, (1995, 1998)); and geometric rules fam-

ously satisfy external Bayesianity as defined in Section 6 (e.g. McConway (1978),

Genest (1984), Genest, McConway and Schervish (1986)). Still an excellent reference

for fundamental results on opinion pooling is Genest and Zidek’s (1986) literature

review.

I claim that the classic approach is problematic if, as in this paper, the goal of

opinion pooling is taken to be information aggregation, i.e. if collective beliefs should

incorporate all the information spread asymmetrically over the individuals. The clas-

sic approach is more suitable if the goal is not information aggregation: the goal

might be not epistemic at all (e.g. fair representation), or it might be epistemic yet

with the disagreements between individuals caused not by differences in information

but by differences in interpretation of the same shared body of information.

One might at first suspect that classic pooling functions can account for informa-

tional asymmetries by putting more weight on the beliefs of well-informed individuals.

More concretely, it is often suggested that in a linear and geometric rule (as defined

above) the weights wi of well-informed individuals should be higher. However, as

Genest and Zidek (1986) put it, “expert weights do allow for some discrimination

[...], but in vague, somewhat ill defined ways’ (p. 120), and “no definite indications

can be given concerning the choice or interpretation of the weights’ (p. 118).

To concretely illustrate the difficulty that classic pooling functions have in aggreg-

ating information, consider again the introductory example. Suppose each individual

i’s subjective probability πi(H) = 0.7 is in fact the result of Bayesian conditioning

on some private information. What should the collective belief π(H) be? If the

individuals started from the same prior probability of H, all depends on how this
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prior compares to 0.7: if the prior is below 0.7, say 0.5, then π(H) should intuitively

exceed 0.7 because π(H) should incorporate the pooled information of many individu-

als, where a single individual’s information already suffices to push the probability

of H up from a prior of 0.5 to a posterior of 0.7. By a similar argument, if H has a

common prior above 0.7 then intuitively π(H) < 0.7, and if H has a common prior

of exactly 0.7 then intuitively π(H) = 0.7. If people hold different prior beliefs of

H, some below 0.7 and some above 0.7, then some individuals must have observed

information in favour of H and the others information against H; so, intuitively, π(H)

should be higher than 0.7 if ‘most’ individuals had priors of H below 0.7 (hence, had

information supporting H).

These considerations highlight that knowing just the individuals’ current (i.e.

posterior) opinions π1, ..., πn does not suffice to determine a collective opinion π that

efficiently aggregates private information. But π1, ..., πn are all that classic opinion

pooling takes into account in calculating π. This suggests that one should depart

from the classic framework. As the above example lets one suspect, the collective

opinion π should be sensitive not just to people’s posterior opinions π1, ..., πn but

also their prior opinions.

This paper (which is based on my unpublished paper Dietrich 2004) presents an

axiomatic framework that explicitly models the information states of the individuals.

The axioms lead (in the common prior case) to a unique formula for the collective

probability function; no weights or other parameters are needed to incorporate all

individual information into the collective beliefs. For the reason explained above,

the collective beliefs depend not just on people’s actual (i.e. posterior) beliefs but

also their prior beliefs. This increased individual input is necessary and sufficient to

efficiently aggregate information, which might come as a surprise. In short, knowing

the (complex) content of people’s private information is not needed: knowing people’s

prior-posterior pairs suffices.

As an alternative to our approach, the supra-Bayesian approach might also be

able to aggregate information efficiently; however, despite conceptual elegance, the

approach suffers from some problems, among which practical infeasibility.2

In modelling both individuals and the collective as Bayesian rationals, our findings

are also relevant to the theory of Bayesian aggregation, which aims to merge individual

beliefs/values/preferences satisfying Bayesian rationality conditions (in the sense of

Savage (1954) or Jeffrey (1983)) into equally rational collective ones; for the ex ante

approach, e.g. Seidenfeld et al. (1989), Broome (1990), Schervish et al. (1991) and

2 In the supra-Bayesian approach (introduced by Morris’ (1974) seminal work and extended in a

large literature), collective beliefs are obtained as posterior probabilities (held by the real or vir-

tual ‘supra-Bayesian’) conditional on the observed individual beliefs (treated as random events or

evidence). This presupposes knowing (i) prior probabilities, and (ii) the likelihoods with which the

individuals make probability assignments. It is not clear where these prior probabilities and likeli-

hoods can come from; reaching a compromise or consensus on them might involve a more complex

opinion pooling problem than the original one.
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Mongin (1995, 1998); for the ex post approach, e.g. Hylland and Zeckhauser (1979),

Levi (1990), Hild (1998) and Risse (2001); for an excellent overview, see Risse (2003).

Section 2 presents the axiomatic model and derives the resulting aggregation rule.

Section 3 gives a numerical example. Section 4 identifies our pooling formula as

a form of multiplicative opinion pooling. Sections 5 and 6 address the case of no

common prior. Section 7 analyses the independent-information assumption made so

far. Section 8 generalises the aggregation rule to arbitrary information overlaps.

2 An axiomatic model

Consider a group of persons i = 1, ..., n (n ≥ 2) who need collective beliefs on certain

hypotheses, represented as subsets H of a non-empty set Ω of possible worlds, i.e.

worlds that are possible under the shared information. Throughout I call information

(knowledge, an observation etc.) ‘shared’ if it is held by all group members. Let H be

the set of hypotheses H ⊆ Ω of interest, where H forms a finite or countably infinite

partition of Ω and ∅ /∈ H. So, the hypotheses are mutually exclusive and exhaustive.

A simple but frequent case is a binary problem H = {H,Ω\H}, where H might be

the hypothesis that the defendant in a court trial is guilty. In a non-binary case, H

might contain different hypotheses on the defendant’s extent of guilt.

In practice, the hypotheses on which opinions are formed need not be represented

as subsets of a set of worlds Ω. This representation and indeed the set Ω are needed

only in the present formal framework, so that we can formulate axioms, and introduce

further background objects (events and probability measures) which are needed in the

axioms but do not appear when applying the resulting pooling formulas.

I call an opinion (on H) any function f : H → (0, 1] with
∑
H∈H f(H) = 1

(whereas probability measures are, as usual, defined on σ-algebras of events3); let Π

be the set of all these functions f .

Let each individual i hold an opinion πi ∈ Π, and let the collective also hold

an opinion π ∈ Π. So far, this is entirely classical. Classical opinion pooling would

proceed by placing conditions on how π depends on π1, ..., πn, resulting in a unique

relationship (e.g. π = 1
nπ1 + ... +

1
nπn) or a class of possible relationships (e.g. all

linear relationships).

2.1 Simple case: common prior beliefs and a common belief domain

Before stating the axiomatic approach in full generality (that is, before allowing

individuals to hold different prior beliefs defined within different domains of events),

3Any opinion uniquely extends to a probability measure defined on the σ-algebra σ(H) generated

by H, and so we lose nothing by pooling opinions defined on H rather than probability measures

defined on σ(H). By definition, opinions never assign zero probability to any hypothesis; this is

mainly for technical convenience.
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I sketch the approach in the simple base-line case. Suppose for the moment that any

individual i’s opinion πi : H→ (0, 1] is given by

πi(H) = P (H|Ei) for all H ∈ H,

where for now P is a common prior probability measure (defined on an appropriate

σ-algebra over Ω, for instance the power set P(Ω)), and where Ei ⊆ Ω is individual i’s

private information with P (Ei) > 0. Suppose further that people hold independent

information: E1, ..., En are independent conditional on any hypothesis H ∈ H.4 We

would like to calculate a group opinion π. This group opinion should include all

information spread over the individuals, i.e.,

π(H) = P (H|E1 ∩ ... ∩En) for all H ∈ H (1)

(where one easily checks that (1) is well-defined, i.e., that P (E1 ∩ ...∩En) > 0). One

approach would be to ask all individuals i to ‘tell’ their private experience Ei, so that

the group could simply gather all experiences and calculate the conditional probabil-

ities (1). But this procedure may be unrealistic, as personal experience may be very

complex and hard-to-communicate in normal language and limited time. (Another

problem, which we currently assume away by using a common belief domain, is that

person i’s experience Ei may be an event of which the other persons have no prior

beliefs, or even no awareness or conceptualisation; asymmetries in awareness or con-

ceptualisation might indeed explain why different people make different experiences.)

Assuming that private evidence cannot (or is not) communicated, can the beliefs

in (1) be calculated at all? The following derivation gives a positive answer. Consider

a hypothesis H ∈ H and the belief π(H) as defined by (1). Applying Bayes’ rule and

then our independence assumption,

π(H) =
P (H)P (E1 ∩ ... ∩En|H)∑

H′∈H P (H
′)P (E1 ∩ ... ∩En|H ′)

=
P (H)P (E1|H) · · ·P (En|H)∑

H′∈H P (H
′)P (E1|H ′) · · ·P (En|H ′)

.

4Why do I assume that information is independent conditional on any hypothesis rather than

unconditionally? Unconditional independence would be implausible. Suppose for instance that the

information of individuals 1 and 2 both strongly correlate with the same hypothesis H in H. (In

a jury trial, the jurors 1 and 2 might each observe patterns in the defendant’s behaviour which

strongly point towards the hypothesis of guilt.) Then E1 and E2 are usually not independent but

positively correlated (P (E2|E1) > P (E2)), because learning E1 raises the probability of H , which

in turn raises that of E2. More generally, since the evidences E1, ..., En tell something about the

hypotheses, learning some of the Eis leads to revised probabilities of the hypotheses, which leads

to revised probabilities of the other Eis. In short, the Eis are non-independent because they are

mutually relevant via their relevance to hypotheses in H. This argument for non-independence is

blocked once we condition on a hypothesis: conditional on a given hypothesis being true, evidences

are not relevant to (i.e., do not bring new information about) hypotheses. If all existing probabilistic

dependence between evidences goes ‘via’ the hypotheses, then conditioning on a hypothesis eliminates

all sources of dependence, and the evidences become conditionally independent. Our (conditional)

independence assumption is analysed again below.
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In the numerator and the denominator, each factor of type P (Ei|H) can be rewritten

according to

P (Ei|H) =
P (H|Ei)P (Ei)

P (H)
=
πi(H)P (Ei)

P (H)
.

Substituting this expression, we obtain

π(H) =
P (H)π1(H)P (E1)P (H) · · πn(H)P (En)P (H)

∑
H′∈H P (H

′)π1(H
′)P (E1)

P (H′) · · · πn(H
′)P (En)

P (H′)

=
π1(H) · · ·πn(H)/P (H)n−1∑

H′∈H π1(H
′) · · ·πn(H ′)/P (H ′)n−1

.

Interestingly, any private information Ei has dropped out altogether, so that the

collective opinion π can be calculated solely on the basis of the revealed individual

opinions π1, ..., πn (and the fixed prior). Put differently, each individual information

Ei has been incorporated without disclosing it. In short, denoting by p the prior

opinion P |H (i.e., the restriction of P to the hypotheses of interest), we have shown

that

π ∝ π1 · · ·πn/p
n−1.

Here and throughout, I call functions f, g : H → R proportional, written f ∝ g, if

there exists a constant k �= 0 such that f(H) = kg(H) for all H ∈ H.

2.2 General case: possibly distinct prior beliefs and belief domains

After this preliminary analysis, let us start afresh, this time in full generality, and

stating all assumptions as explicit axioms. Recall that we consider individual opinions

π1, ..., πn ∈ Π and a collective opinion π ∈ Π. The further elements introduced in the

preliminary Section 2.1 (namely, P,E1, ..., En) are now re-introduced in their general

and official form. For each person i there is (without having to be revealed):

• an event Ei ⊆ Ω, i’s personal information;

• a (‘prior’) probability measure Pi representing i’s beliefs based on the shared

information (hence prior to observing Ei). Pi need not assign a probability to all

events in P(Ω); rather, Pi is defined on some σ-algebra Ai ⊆ P(Ω), containing

the events on which i holds beliefs (whereas on other events i may lack beliefs,

or even lack awareness or conceptualisation). But Ai should contain at least Ei
and all hypotheses in H, where Pi(Ei) > 0 and Pi(H) > 0 for all H ∈ H. The

restriction of i’s prior belief Pi to H is called i’s prior opinion. It is denoted by

pi (∈ Π) and given by pi(H) = Pi(H) for all H ∈ H.

These model resources allow us to state a standard rationality condition:
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Individual Bayesian Rationality (IBR) πi(H) = Pi(H|Ei) for each person i and

hypothesis H ∈ H.5

A person i’s belief domain Ai may fail to contain another person j’s observation

Ej , and this for (at least) two reasons. First, the fact that j but not i observed Ej
may be due precisely to j having subjectively conceptualised Ej but i not having

done so; juror j in a trial may be the only juror to observe the suspicious smile on

the defendant’s face because the other jurors i do not even know what a suspicious

smile would be like. Second, j’s information Ej may be so detailed and complex that

prior to j observing it, it belonged not even to j’s own belief domain, let alone to i’s;

that is, it was only while observing Ej that person j extended his prior beliefs to a

larger domain Aj containing Ej.

Following the paradigm of social choice theory, I treat the collective as a separ-

ate virtual agent with its own beliefs. While this agent is typically a construction

(i.e. there needn’t exist any real individual holding these beliefs), the social choice

paradigm requires it to be as rational as any real individual.6 ‘Rationality’ refers to

different things in different contexts (e.g. to transitivity of preferences in Arrovian

preference aggregation, to von-Neumann-Morgenstern rationality in Harsanyi’s The-

orem on group preferences over lotteries, to logical consistency in judgment aggreg-

ation, and so on). In the present context, it naturally refers to Bayesian rationality.

To formulate this, I suppose that there is

• a (‘prior’) probability measure P , representing collective beliefs based on people’s

shared information (hence not on their private information E1, ..., En). P is

defined on some σ-algebra A ⊆ P(Ω), the domain of the collective beliefs,

which contains at least all private evidences E1, ..., En and all H ∈ H, where

P (E1 ∩ ... ∩ En) > 0 and P (H) > 0 for all H ∈ H. The restriction of the

collective prior belief P to H is called the collective prior opinion; it is denoted

by p (∈ Π) and given by p(H) = P (H) for all H ∈ H.

A, P and p are the collective counterparts of Ai, Pi and pi. The collective coun-

terpart of (IBR) is:

Collective Bayesian Rationality (CBR) π(H) = P (H|E1 ∩ ... ∩ En) for each

hypothesis H ∈ H.

5The conditional probability Pi(H|Ei) is well-defined because Ei,H ∈ Ai and Pi(Ei) > 0. Our

assumptions also take care that all other conditional probabilities used in this paper are well-defined.
6The collective agent should be rational notably because it forms the basis for collective actions

and decisions.
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Condition (CBR) requires the collective opinion π to incorporate all information

spread over people: the shared information (contained in the prior P ) and all personal

information (contained in E1, ..., En).

While we have ensured, via (CBR), that the collective opinion uses all evidence

scattered across individuals, we have done nothing so far to constrain the collective

prior probability measure P (which underlies π). Indeed, P may so far be totally

disconnected from the individual prior probability measures P1, ..., Pn (which underlie

π1, ..., πn). The next condition does something to connect P to P1, ..., Pn. More

precisely, the condition ties the likelihood that the collective assigns to the various

individual evidences E1, ..., En to the individuals’ own likelihood assessments:

Accept People’s Likelihood Assessments (APLA) For all persons i and hypo-

theses H ∈ H, P (Ei|H) = Pi(Ei|H).

This principle requires the collective to take over i’s own interpretation of i’s in-

formation Ei as given by i’s likelihood assignments Pi(Ei|H), H ∈ H. To motivate

this condition, let me first explain the context in a little more detail. In statistics,

the information that data contain on given hypotheses (as opposed to prior beliefs

on these hypotheses) is usually taken to be summarised in the data’s likelihood func-

tion, which maps any hypothesis to the data’s probability given this hypothesis. For

instance, the information on humidity contained in a temperature measurement of

20 degrees Celsius is given by the mapping that assigns to each potential humidity

level the probability that temperature is 20 degrees Celsius given this humidity level.

In our case, the information contained in individual i’s evidence Ei is summarised in

Ei’s likelihood function, mapping any hypothesis H to Ei’s probability given H. But

how large exactly is Ei’s probability given H? For instance, how probable is it that

the defendant in a trial has a particular facial expression (Ei) given the hypothesis

that he is guilty (H)? The answer may be far from trivial, as one might come up

with various different interpretations of the same observation. Condition (APLA)

requires that the answer that the collective gives matches the answer that the indi-

vidual who observed the evidence gives; that is, P (Ei|H) = Pi(Ei|H). What is the

motivation behind identifying P (Ei|H) with Pi(Ei|H)? Why not also take other per-

sons’ interpretations of Ei into account by defining P (Ei|H) as some compromise of

P1(Ei|H), ..., Pn(Ei|H)? First, for reasons explained above, the persons j �= imay not

even hold beliefs on the unobserved event Ei (i.e., Ei �∈ Aj), in which case Pj(Ei|H)

is simply undefined. Second, assuming that the persons j �= i do hold such beliefs

(i.e., Ei ∈ Aj), a ‘likelihood compromise’ could only be formed after each person j

reveals Pj(Ei|H); which in turn supposes that first i communicates his informational

basis Ei in all detail to the rest of the group. This is not only at odds with the

present approach, but may also be infeasible: given the possible complexity of Ei
and the limitations of language, time, i’s ability to describe Ei, j’s (j �= i) ability to

understand Ei, and so on, j could probably learn at most some approximation Ẽi of
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Ei, and so j could at most provide j’s likelihood of Ẽi, which only approximates j’s

likelihood of the true Ei (Pj(Ẽi|H) ≈ Pj(Ei|H)).

The next assumption is not a normative condition but rather an assumption on the

environment: individuals receive independent information. This assumption will be

analysed (and relaxed) in later sections; see footnote 4 above for first considerations.

For now, I only mention that it is strong but very common. It is analogous to

(i) independence assumptions on private information/types in Bayesian games, (ii)

the independence condition in the literature on the Condorcet Jury Theorem (see

Dietrich 2008 for a critique of the condition), (iii) the Parental Markov Condition in

the theory of Bayesian networks (interpreting the true hypothesis in H as the parent

of each information Ei in a Bayesian network; see Pearl 2000), and (iv) Fitelson’s

(2001) condition of confirmational independence.

Independent Information (Ind) For each hypothesis H ∈ H, the personal obser-

vations E1, ..., En are independent conditional on H.7

I am ready to state the theorem. Recall that pi, πi is the pair of person i’s prior

and posterior opinion, and p, π is the pair of the collective prior and posterior opinion.

Theorem 1 Suppose individuals satisfy (IBR), information satisfies (Ind), and the

collective satisfies (CBR) and (APLA). Then the collective opinion π is proportional

to the collective prior opinion times all individual posterior-to-prior ratios:

π ∝ p
π1
p1
· · ·
πn
pn
.

Proof. Suppose (IBR), (CBR), (APLA) and (Ind) hold. For all H in H,

π(H) = P (H|E1 ∩ ... ∩En) by (CBR)

=
P (E1 ∩ ... ∩En|H)p(H)

P (E1 ∩ ... ∩En)
by Bayes’ rule

= kP (E1 ∩ ... ∩En|H)p(H) for a constant k �= 0

= kP (E1|H) · · ·P (En|H)p(H) by (Ind)

= kP1(E1|H) · · ·Pn(En|H)p(H) by (APLA)

= k
P1(H|E1)P1(E1)

p1(H)
· · ·
Pn(H|En)Pn(En)

pn(H)
p(H) by Bayes’ rule

= k′
P1(H|E1)

p1(H)
· · ·
Pn(H|En)

pn(H)
p(H) for a constant k′ �= 0

= k′
π1(H)

p1(H)
· · ·
πn(H)

pn(H)
p(H) by (IBR). �

Three important remarks are due.

7As usual, by ‘independence’ of events I mean full independence, not just pairwise independence.
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1. As promised, the collective opinion π is calculated without people having

to communicate their arbitrarily complex informational bases Ei or their likelihoods

P (Ei|H), H ∈ H. In practice, all persons i submit their prior-posterior pairs pi, πi (or

just their ratios πi/pi), and then the collective opinion π is calculated. So, compared

to standard opinion pooling, we additionally require submission of prior opinions

p1, ..., pn, a complication that enables the incorporation of the individual information

E1, ..., En into the collective opinion.

2. Theorem 1’s formula does not fully solve the aggregation problem since we do

not yet know how to determine the collective prior opinion p. Strategies to choose

p are presented in Sections 5 and 6. In practice, there is an alternative to having

to choose p: one might use an approximation of Theorem 1’s formula, defining the

collective opinion as

πapprox ∝
π1
p1
· · ·

πn
pn

, (2)

the product of all posterior-to-prior ratios. When and why can πapprox count as a

good approximation of Theorem 1’s formula? Let me give some heuristic arguments.8

Often, the function π1
p1
· · · πnpn varies considerably, i.e., assigns very different values to

the hypotheses H in H. Intuitively, this is because pooled information is often strong

evidence for or against certain hypotheses. More formally, if sufficiently many of

the individual ratios πipi vary at least moderately, the product π1p1 · · ·
πn
pn

varies strongly

(provided that the individual variations do not systematically cancel each other out).9

Whenever the variation of π1p1 · · ·
πn
pn

is strong enough to ‘outweigh’ that of p (assuming

p should not vary very much), the function π1
p1
· · · πnpn varies roughly like pπ1p1 · · ·

πn
pn
;

and hence, the opinions πapprox and π (obtained by normalising the two functions so

as to each sum to one) are roughly similar.

3. Assume a unanimous posterior agreement π1 = ... = πn (as in the intro-

duction’s example). Then only in special cases does π equal π1 = ... = πn, which

shows that the unanimity/Pareto principle often required in standard opinion pool-

ing is problematic under informational asymmetries. One such special case is that

π1 = ... = πn = p1 = ... = pn = p, so that none of the personal observations E1, ..., En
confirms or disconfirms any hypothesis, i.e., in essence, there is no informational

asymmetry.

An important special case of Theorem 1 is that where people have managed to

agree on how to interpret their shared information, i.e. where they hold a common

prior opinion:

Common Prior (CP) p1 = ... = pn = p (i.e., the prior probability measures

P1, ..., Pn, P agree on all hypotheses in H, though perhaps not elsewhere).

8 I owe these thoughts to the helpful referee.
9 If for instance most individual ratios peak at the same hypothesis (say, if most jurors believe the

defendant is guilty) then the product of ratios is likely to strongly peak at this hypothesis.
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Corollary 1 Under the assumptions of Theorem 1 and (CP), the collective opinion

π is given by

π ∝ π1 · · ·πn/p
n−1
1 .

Let me make three remarks on this corollary.

1. The corollary’s formula differs in an important respect from Theorem 1’s

formula: the parameter p has been eliminated, and so the collective opinion π is fully

determined by the individual prior and posterior opinions. By contrast, if (CP) fails,

i.e. if the group didn’t manage to agree on how to interpret the shared information,

Theorem 1’s formula does not fully solve the aggregation problem, as we need a way

to determine the collective prior p (see Sections 5 and 6).

2. Condition (CP) can in fact be seen as the conjunction of two conditions. The

first (descriptive) condition is that p1 = ... = pn, i.e. all persons i submit the same

prior opinion. The second (normative) condition is that the unanimity (or Pareto)

principle holds for the prior opinions, i.e. if all submit the same prior opinion, this

becomes the collective prior opinion. Applying a unanimity condition to prior opinions

is far less problematic than doing so for the posterior opinions π1, ..., πn, π, because

prior opinions contain no informational asymmetry.

3. According to a prominent view, held notably by Harsanyi, any inter-personal

differences in beliefs between rational agents stem from different information (in

a suitably general sense of this word), never from different prior beliefs.10 If this

view is correct, and if each opinion pi indeed incorporates no information except

the shared one which does not depend on i, then the pis must be identical. So,

Harsanyi’s view places us in the comfortable position of being able to assume (CP).

Harsanyi’s view is based on modelling all experiences — including early ones in life

and perhaps prenatal ones — as information shaping beliefs via Bayesian conditioning.

If we think of i’s private information Ei as containing all such experiences, then the

events Ei (and the underlying space Ω) inevitably become highly complex. While

this by itself poses no problem (since E1, ..., En need not be revealed), at least one

difficulty arises. Even if Harsanyi were fundamentally right, people will in practice

often not agree on a common prior opinion, if only because they do not ‘remember’ the

common prior opinion that they used to hold at the prenatal stage. I personally do

not share Harsanyi’s view. I believe in the possibility of genuinely non-information-

driven disagreements, and hence in the possibility that p1, ..., pn differ in spite of

incorporating the same (shared) information.11

10 I am grateful to the referee for raising this issue.
11Harsanyi’s claim is true nearly by definition if the notion of ‘information’ is purely technical and if

the claim is taken to be one about mathematically representing different probability measures as being

obtained by conditioning from a common probability measure (defined on a suitably extended algebra

of events). Under a so-extended notion of ‘information’, the whole process of personal deliberation

needed to form one’s beliefs and to interpret one’s information constitutes another large piece of

(‘meta-’)information. The current paper’s notion of ‘information’ is not of this abstract kind. It

11



4. Instead of interpreting Ei as reflecting all of i’s personal information, one

might re-interpret Ei as reflecting only that part of i’s personal information which i

has incorporated rationally into his opinion (in the sense of Bayesian conditioning).

Then (IBR) becomes true by definition. All not rationally incorporated personal

information is then simply thrown away, i.e., not included in collective beliefs.12

3 A numerical example for a simple case

Consider the simple case of a binary problem H = {H,Ω\H} (H and Ω\H might

mean that the defendant in a court trial is guilty resp. innocent, and persons might

be jurors). Suppose Common Prior (CP), i.e. p1 = ... = pn = p. By Theorem 1 (that

is, by its corollary), the collective posterior of H is given by

πH
πH1 · · ·π

H
n /(p

H)n−1

πH1 · · ·π
H
n /(p

H)n−1 + (1− πH1 ) · · · (1− π
H
n )/(1− p

H)n−1

=
1

1 + (1/πH1 − 1) · · · (1/π
H
n − 1)/(1/p

H − 1)n−1
,

(3)

where pH := p(H), πH := π(H) and πHi := πi(H). For the case of only n = 2

individuals, in which the formula (3) for the collective posterior reduces to

πH =
πH1 π

H
2 /p

H

πH1 π
H
2 /p

H + (1− πH1 )(1− π
H
2 )/(1− p

H)

=
1

1 + (1/πH1 − 1)(1/π
H
2 − 1)/(1/p

H − 1)
,

Table 1 contains the values of the collective belief πH for all possible combinations of

values of pH , πH1 , π
H
2 in the grid {0.1, 0.25, 0.5, 0.75, 0.9}.13 Note how drastically the

group belief πH depends on the prior pH . By shifting pH below (above) the individual

posteriors πHi , the group belief πH quickly approaches 1 (0). The interpretation is

that if the posteriors πHi are all to the same side of the prior, then the evidences

is a substantive notion, under which it is possible that two opinions incorporate no (or the same)

information and yet differ. If however Harsanyi’s claim is taken to be not just about mathematical

representability but about the psychological reality of rational agents, then the claim is problematic.

Many experiences in life (such as hearing a sound for the first time) have a content that was not

previously conceptualized by the agent, hence cannot belong to the algebra within which the agent

previously held beliefs. So the agent’s new beliefs after the experience cannot stem from updating the

old beliefs by Bayesian conditioning on this event. The topic of non-informational belief formation

goes beyond this paper (but will be developed in the paper ‘A reason-based theory of rational belief’

with Christian List).
12 Instead of throwing this information away, one might ask people to incorporate it (in some

non-Bayesian ways, unfortunately) in the submitted prior opinions. This removes the informational

symmetry underlying the submitted prior opinions, which in turn affects the interpretation and

plausibility of the analysis of later sections.
13The entries are rounded results if three decimal digits are reported, and exact results else.
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pH :

0.1 0.25 0.5 0.75 0.9

0.1, 0.1 0.1 .036 .012 .004 .001

0.25, 0.1 0.25 0.1 .036 .012 .004

0.25, 0.25 0.5 0.25 0.1 .036 .012

0.5, 0.1 0.5 0.25 0.1 .036 .012

0.5, 0.25 0.75 0.5 0.25 0.1 .036

0.5, 0.5 0.9 0.75 0.5 0.25 0.1

0.75, 0.1 0.75 0.5 0.25 0.1 .036

πH1 , π
H
2 : 0.75, 0.25 0.9 0.75 0.5 0.25 0.1

0.75, 0.5 0.964 0.9 0.75 0.5 0.25

0.75, 0.75 0.988 0.964 0.9 0.75 0.5

0.9, 0.1 0.9 0.75 0.5 0.25 0.1

0.9, 0.25 0.964 0.9 0.75 0.5 0.25

0.9, 0.5 0.988 0.964 0.9 0.75 0.5

0.9, 0.75 0.996 0.988 0.964 0.9 0.75

0.9, 0.9 0.999 0.996 0.988 0.964 0.9

Table 1: Collective probability πH = π(H) in dependence of the common prior

pH = p(H) and the individual posteriors πHi = πi(H), for a group of size n = 2.

Ei all point into the same direction, so that their conjunction points even more into

that direction. But if the prior pH is somewhere in the middle of the posteriors

πHi , the group belief πH may be moderate. The interpretation is that if some of the

posteriors πHi are above the prior and others are below the prior, then the evidences Ei
point into different directions, and their conjunction need not strongly point into any

direction. The above formula for the group belief πH shows that it strictly increases

as a function of each individual belief πHi , but strictly decreases as a function of the

prior belief pH . But how can one make sense of the group posterior πH depending

negatively on the prior pH? How could more prior support for H possibly reduce H’s

posterior probability? The answer is that by increasing the prior pH while keeping

the individual posteriors πHi fixed one implicitly reduces the support that each of the

evidences Ei gives to H; as a result, the collective posterior of H falls, intuitively

because the reduced evidential support for H overcompensates the increased prior

support.

4 Multiplicative opinion pooling

If we treat the prior opinions p1, ..., pn, p as fixed parameters, the pooling formula

of Theorem 1 depends just on π1, ..., πn, hence defines a classic pooling function

F : Πn → Π. Specifically, this pooling function is given by π = g ·π1 · · ·πn where g is

13



a fixed function on H given by g ∝ p/(p1 · · · pn) (and in particular as g ∝ p1−n under

Common Prior (CP)). So, our axioms lead to what one might call a multiplicative

opinion pool. Formally, a (classic) opinion pool F : Πn → Π is multiplicative if it is

given by

F (π1, ..., πn) = g · π1 · · ·πn for all π1, ..., πn ∈ Π,

for some fixed function g : H → (0,∞). The simplest multiplicative rule is that in

which g is a constant function, so that

F (π1, ..., πn) ∝ π1 · · ·πn for all π1, ..., πn ∈ Π.

Note how multiplicative opinion pools differ from the more common linear and geo-

metric opinion pools; these arise from different axiomatic systems that do not make

information explicit.

In fact, our axioms not only imply that pooling is multiplicative: they characterise

multiplicative pooling if H is finite because every multiplicative rule can be obtained

from suitable priors p1, ..., pn, p ∈ Π.
14

5 Choosing the collective prior p when there is no com-

mon prior

If the interpretation of the shared information is controversial and hence (CP) fails,

the group needs to determine the collective prior p in Theorem 1’s formula. At least

three strategies are imaginable. First, one might define p as a uniform or maximum-

entropy prior if available. Second, someone, not necessarily a group member, may

be appointed to choose p, either by drawing on his own prior beliefs, or by taking

inspiration from the submitted priors p1, ..., pn, or by using statistical estimation

techniques if available. These two solutions have obvious limitations, including some

ad-hoc-ness and a lack of democracy. A third alternative is to replace p by F (p1, ..., pn)

and thus define the collective opinion by

π ∝
π1
p1
· · ·
πn
pn
F (p1, ..., pn), (4)

where F : Πn → Π is a standard opinion pool. Note that F is used here not to

aggregate people’s actual (posterior) opinions π1, ..., πn but to aggregate their prior

opinions p1, ..., pn, namely into a ‘compromise prior’. At first sight, one may wonder

what is gained by formula (4) compared to the standard approach of defining π =

F (π1, ..., πn) without having to care about priors p1, ..., pn. Does formula (4) not just

shift the classic aggregation problem — pooling π1, ..., πn into π — towards an equally

14For any multiplicative rule F : Πn → Π, say generated by the function g, if we (for instance)

take p1, ..., pn, p to be all identical and proportional to g−1/(n−1), then g ∝ p/(p1 · · · pn), and hence

the multiplicative rule generated by g coincides with that arising in Theorem 1.
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complex aggregation problem about priors — pooling p1, ..., pn into p? In an important

respect, pooling p1, ..., pn is simpler than pooling π1, ..., πn: unlike π1, ..., πn, the prior

opinions p1, ..., pn involve no informational asymmetry since each pi is based on the

same (shared) information.15 Hence any disagreement between p1, ..., pn is due solely

to different interpretations of that same body of information. This may facilitate

the choice of F . For instance, aggregation may be guided by the unanimity/Pareto

principle (which is problematic under informational asymmetry, as we have seen).

Further, aggregation may place equal weights on each of the priors p1, ..., pn (whereas

pooling π1, ..., πn may involve the difficult and vague exercise of assigning more weight

to better informed people). The literature’s two most prominent types of opinion

pools F : Πn → Π are

linear opinion pools: F (p1, ..., pn) = w1p1 + ...+wnpn,

geometric opinion pools: F (p1, ..., pn) ∝ p
w1
1 · · · pwnn ,

with weights w1, ..., wi ∈ [0, 1] that add up to 1 (where in the geometric pool the

factor of proportionality is chosen such that
∑
H∈H F (p1, ..., pn)(H) = 1). If F is a

linear resp. geometric opinion pool, our pooling formula (4) becomes

π =
π1
p1
· · ·
πn
pn
(w1p1 + ...+wnpn) (5)

resp. π ∝
π1
p1
· · ·
πn
pn
pw11 · · · pwnn =

π1

p1−w11

· · ·
πn

p1−wnn

. (6)

How should the weights w1, ..., wn be chosen in practice? In general, unequal weights

may be justified either by different information states or by different competence,

i.e. ability to interpret information. The former reason does not apply here, since

p1, ..., pn are by definition based on the same (shared) information. If, in addition,

differences of competence are either inexistent, or unknown, or not to be taken into

account for reasons of procedural fairness, then equal weights w1 = ... = wn = 1/n

are justified, so that our pooling formula becomes

π =
1

n

π1
p1
· · ·
πn
pn
(p1 + ...+ pn) (7)

resp. π ∝
π1

p
1−1/n
1

· · ·
πn

p
1−1/n
n

, (8)

which is parameter-free, hence uniquely solves the aggregation problem.

6 External and internal Bayesianity

I now give an argument in defence of defining F in (4) as a geometric (or more

generally, externally Bayesian) opinion pool, hence in defence of our pooling formulae

15One might even argue that, while pooling p1, ..., pn into p is possible without using extra in-

formation (due to the informational symmetry), pooling π1, ..., πn into π is impossible without extra

information (such as p1, ..., pn).
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(6) and (8). Note first that in (4) π is a function of the vector (p1, π1..., pn, πn) ∈

(Π×Π)n = Π2n, containing every person’s prior and posterior.

Definition 1 A generalised opinion pool (‘GOP’) or generalised probability aggreg-

ation rule is a function G : Π2n → Π.

Unlike a standard opinion pool F : Πn → Π, a GOP G also takes as inputs the pis,

i.e. people’s interpretations of the shared information. As shown above, our axioms

imply that a GOP G should take the form (4), i.e. the form

G(p1, π1, ..., pn, πn) ∝
π1
p1
· · ·
πn
pn
F (p1, ..., pn) (9)

where F : Πn → Π is a standard opinion pool that merges the priors p1, ..., pn.

From a Bayesian perspective, two natural conditions may be imposed on a GOP,

to be called external and internal Bayesianity. The former is an analogue of the

equally-named classic condition for standard opinion pools F : it should not matter

whether information arrives before or after pooling, i.e. pooling should commute

with Bayesian updating. Formally, for every opinion p ∈ Π and (likelihood) function

l : H→ (0, 1] the (updated) opinion pl ∈ Π is defined by

pl(H) :=
l(H)p(H)∑

H′∈H l(H
′)p(H ′)

, in short pl ∝ lp. (10)

Here, l is interpreted as a likelihood function P (E|.) for some observation E, so that

pl is a posterior probability. A standard opinion pool F : Πn → Π is called externally

Bayesian if

F (pl1, ..., p
l
n) = F (p1, ..., pn)

l

for every profile (p1, ..., pn) ∈ Π
n and (likelihood) function l : H → (0, 1] (Madansky

(1964)). In particular, geometric opinion pools are externally Bayesian. An analogous

concept can be defined for GOPs:

Definition 2 A GOP G : Π2n → Π is called externally Bayesian if

G(pl1, π
l
1, ..., p

l
n, π

l
n) = G(p1, π1, ..., pn, πn)

l

for every profile (p1, π1, ..., pn, πn) ∈ Π2n and (likelihood) function l : H→ (0, 1].

On the left hand side of this equation not only all posteriors are updated (πli),

but also all priors (pli), because the incoming information is observed by everybody,

hence part of the shared information, hence contained in the priors.

While external Bayesianity requires that it be irrelevant whether pooling happens

before or after updating, a different question is whether it matters who in the group

has observed a given information. Internal Bayesianity requires that it be irrelevant

whether every or just a single person obtains a given information:

16



Definition 3 A GOP G : Π2n → Π is called internally Bayesian if, for each person

i,

G(p1, π1, ..., pi−1, πi−1, pi, π
l
i, pi+1, πi+1, ..., pn, πn) = G(p

l
1, π

l
1, ..., p

l
n, π

l
n)

for every profile (p1, π1, ..., pn, πn) ∈ Π
2n and (likelihood) function l : H→ (0, 1].

On the left hand side of this equation, i’s prior is not updated (pi, not pli), be-

cause the incoming information, being observed just by person i, is not part of the

shared information, hence not reflected in any prior. Internal Bayesianity is based on

the idea that the collective probabilities should incorporate all information available

somewhere in the group, whether it is held by a single or every person. External and

internal Bayesianity together imply that, for each person i,

G(p1, π1, ..., pi−1, πi−1, pi, π
l
i, pi+1, πi+1, ..., pn, πn) = G(p1, π1, ..., pn, πn)

l

for every profile (p1, π1, ..., pn, πn) ∈ Π2n and (likelihood) function l : H→ (0, 1].

It turns out that, if a GOP G takes the form (9), then external and internal

Bayesianity are in fact equivalent, and equivalent to external Bayesianity of F :

Theorem 2 If a generalised opinion pool G : Π2n → Π has the form (9) where

F : Πn → Π is any opinion pool, the following conditions are equivalent:

(i) G is externally Bayesian;

(ii) G is internally Bayesian;

(iii) F is externally Bayesian.

So, if one desires G to be externally or internally Bayesian, one is bound to use an

externally Bayesian opinion pool F in our pooling formula (9), for instance a geometric

opinion pool F , which leads to pooling formula (6), hence to (8) in the equal-weight

case. There also exist more complex (non-geometric) externally Bayesian opinion

pools F, characterised in full generality by Genest, McConway, and Schervish (1986,

Theorem 2.5), but geometric ones become the only solutions if |H| ≥ 3 and F has

some additional properties (see Genest, McConway, and Schervish (1986), Corollary

4.5).

Proof. I show that (i) is equivalent with each of (ii) and (iii). By (9),

G(pl1, π
l
1, ..., p

l
n, π

l
n) ∝

πl1
pl1
· · ·
πln
pln
F (pl1, ..., p

l
n),

and hence by (10)

G(pl1, π
l
1, ..., p

l
n, π

l
n) ∝

lπ1
lp1

· · ·
lπn
lpn

F (pl1, ..., p
l
n) =

π1
p1
· · ·
πn
pn
F (pl1, ..., p

l
n). (11)

On the other hand, again by (9) and (10),

G(p1, π1, ..., pn, πn)
l ∝ l

π1
p1
· · ·
πn
pn
F (p1, ..., pn) ∝

π1
p1
· · ·
πn
pn
F (p1, ..., pn)

l. (12)
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Relations (11) and (12) together immediately imply that G is externally Bayesian if

and only if F is externally Bayesian. Further, again by (9) and (10),

G(p1, π1, ..., pi−1, πi−1, pi, π
l
i, pi+1, πi+1, ..., pn, πn) ∝ l

π1
p1
· · ·
πn
pn
F (p1, ..., pn)

∝
π1
p1
· · ·
πn
pn
F (p1, ..., pn)

l.

This together with (11) implies that G is internally Bayesian if and only it F is

externally Bayesian. �

7 When is information independent, when not?

Let us go back to Theorem 1’s assumption of Independent Information (Ind). This

assumption is often a useful idealisation, even in situations where it fails. But what

exactly are these real situations where (Ind) fails? An important source for failure is

what I call subgroup information, that is, information held by more than one but less

than all persons. I will prove that, under certain conditions, (Ind) holds if and only

if there is no subgroup information.

By a person i’s observation set I mean, informally, the (possibly quite enormous)

collection of i’s relevant observations/items of information. Formally, one may define

i’s observation set as a set Oi of non-empty observations O ⊆ Ω.16 In the case of

a jury faced with hypotheses about the defendant’s guilt, i’s observation set might

include the observations ‘an insecure smile on the defendant’s face’, ‘the defendant’s

fingerprint near the crime scene’, ‘two contradictory statements by witness x’, etc.

observations of
person 1 only

observations of
person 2 only

shared
observations

observations of
person 1 only

observations of

person 2 only

shared
observations

observations of
person 3 only

! !

Figure 1: Observation sets in a group of n = 2 perons (no subgroup information),

and a group of n = 3 persons (with subgroup information marked by "!")

Figure 1 shows observation sets, not sets of possible worlds A ⊆ Ω. These two

concepts are in fact opposed to each other: the larger the observation set, the smal-

ler the corresponding set of worlds (in which the observations hold); the union of

16An observation made by every person is represented by the sure event O = Ω, because Ω is

interpreted as containing the worlds that are possible under shared information. Formally, O ∈

O1 ∩ ... ∩On implies O = Ω.
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observation sets compares to the intersection of the sets of worlds. Formally, to an

observation set O corresponds the set of worlds ∩O∈OO ⊆ Ω (interpreted as Ω if

O = ∅). Thus i’s information Ei equals

Ei =
⋂

O∈Oi\(O1∩...∩On)

O,

the intersection of all of i’s observations except from any shared one; by footnote 16,

this actually reduces to

Ei =
⋂

O∈Oi

O.

Here is the problem. Consider any observation contained in the observation sets

of more than one but less than all persons i — something impossible in groups of size

n = 2 but possible in larger groups, as illustrated by the ‘!’ fields in Figure 1. This

observation is not part of the shared information, but of the personal information Ei of

many individuals i. Such subgroup information typically creates positive correlations

between the Eis in question. As a stylised example, consider a jury of n = 3 jurors

faced with the hypothesis of guilt of the defendant (H). All jurors have read the charge

(shared information), and moreover juror 1 has listened to the first witness report and

observed the defendant’s nervousness (E1), juror 2 has listened to the second witness

report and observed the defendant’s smiles (E2), and juror 3 has listened to both

witness reports and had a private chat with the defendant (E3). Note the subgroup

information of jurors 1 and 3, and that of jurors 2 and 3, which typically causes E3
to be positively correlated with E1 and with E2. By contrast, individuals 1 and 2

together have no subgroup information. This situation is depicted in Figure 1 on the

right.

To formally clarify the relationship between subgroup information and independ-

ence violation, some preparation is needed.

Definition 4 A subgroup is a non-empty subset M of the group N := {1, ..., n}. A

subgroup is proper if it contains more than one but less than all persons.

To formalise the notion of subgroup information, suppose that to each subgroupM

there is a non-empty event EM ⊆ Ω,M ’s exclusively shared information, representing

all information held by each of and only the persons in M , where by assumption:

• Ei =
⋂
{i}⊆M⊆N E

M for all persons i (as i has observed thoseEM with i ∈M);17

• EN = Ω (as any world ω ∈ Ω is assumed possible under the shared information);

17Why not rather assume that Ei =
⋂
{i}⊆M�N E

M , as Ei should not contain information held by

everybody? In fact, both assumption are equivalent since by EN = Ω an additional intersection with

EN has no effect.
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• each EM belongs to A, the domain of the probability measure P (which holds

in particular if A contains all subsets of Ω).

For instance, the ‘!’ fields in Figure 1 (right) represent the observation sets cor-

responding to E{1,3} and E{2,3}. EM is interpretable as the intersection

⋂

O∈(∩i∈MOi)\(∪i/∈MOi)

O

of all observations O contained in each of the observation sets Oi, i ∈M, but in none

of the observation setsOi, i /∈M (where this intersection isΩ if (∩i∈MOi)\(∪i/∈MOi) =

∅).

What we have to exclude is that a proper subgroup M exclusively shares inform-

ation; in other words, EM must be the no-information event Ω:

No Subgroup Information (NoSI) Every proper subgroup M has no exclusively

shared information, i.e. EM = Ω (or, more generally, P (EM) = 118).

This condition is empty if there are just n = 2 individuals, it requires E{1,2} =

E{1,3} = E{2,3} = Ω if n = 3, and it requires the ‘!’ fields in Figure 1 to be empty.

Finally, consider the following independence assumption:

(Ind∗) The events EM , ∅ �= M ⊆ N, are (P -)independent conditional on each

H ∈ H.

(Ind∗) is a more generally acceptable condition than (Ind) in that the EMs, unlike

the Eis, are based on non-overlapping observation sets. Indeed, a subgroup M ’s

exclusively shared information EM , by the very meaning of ‘exclusively’, represents

different observations than any other subgroup’s exclusively shared information.19

Theorem 3 Assume (Ind∗). Then:

(a) Independent Information (Ind) is equivalent to No Subgroup Information (NoSI);

(b) specifically, if EM �= Ω for proper subgroup M , then conditional on at least one

H ∈ H the personal observations Ei, i ∈ M, are pairwise positively correlated

(i.e. P (Ei ∩Ej|H) > P (Ei|H)P (Ej|H) for any two distinct i, j ∈M).

18 ‘P (EM) = 1’ is equivalent to ‘EM = Ω’ in the natural case that only the empty event in A

has zero probability. Strictly speaking, ‘EM = Ω’ means ‘no information’ while ‘P (EM) = 1’ means

‘essentially no information’. I am grateful to the referee for suggesting to require ‘P (EM) = 1’

instead of ‘EM = Ω’, thereby making it possible to state Theorem 3 without assuming that only the

empty event in A has zero probability.
19 (Ind∗) holds if the observations in O1 ∪ ... ∪On are mutually (conditionally) independent.
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Proof. Suppose (Ind*). I prove part (a); the proof includes a proof of part (b).

(i) First, assume (NoSI). Each event E{i} coincides with Ei up to a set of prob-

ability zero, because

Ei =
⋂

{i}⊆M⊆N

EM = E{i}
⋂



⋂

{i}⊆M⊆N&|M|≥2

EM



 ,

in which P
(⋂

{i}⊆M⊆N&|M |≥2E
M
)
= 1 by (NoSI). So, as the events E{1}, ..., E{n}

are independent conditional on any H ∈ H by (Ind∗), also the events E1, ..., En are

independent conditional on any H ∈ H.

(ii) Now assume (NoSI) is violated, and let M∗ be a proper subgroup with

P (EM
∗
) < 1. I show that the events Ei, i ∈ M∗, are pairwise positively correl-

ated conditional on at least one H ∈ H (which proves part (b) and also completes

the proof of part (a) since E1, ..., En are then not independent conditional on that

H). Consider any distinct i, j ∈ M∗. By P (EM
∗
) < 1 there exists an H ∈ H with

P (EM
∗
|H) < 1. Since Ei =

⋂
{i}⊆M⊆N E

M and using (Ind∗), we have

P (Ei|H) =
∏

{i}⊆M⊆N

P (EM |H).

The analogous argument for j yields

P (Ej|H) =
∏

{j}⊆M⊆N

P (EM |H).

So,

P (Ei|H)P (Ej|H) =




∏

{i}⊆M⊆N

P (EM |H)



×




∏

{j}⊆M⊆N

P (EM |H)



 . (13)

Further, we have

Ei ∩Ej =




⋂

{i}⊆M⊆N

EM




⋂



⋂

{j}⊆M⊆N

EM





=




⋂

{i}⊆M⊆N

EM




⋂



⋂

{j}⊆M⊆N\{i}

EM



 .

So, by (Ind∗),

P (Ei ∩Ej |H) =




∏

{i}⊆M⊆N

P (EM |H)



×




∏

{j}⊆M⊆N\{i}

P (EM |H)



 . (14)
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The relations (13) and (14) together entail

P (Ei ∩Ej|H) > P (Ei|H)P (Ej|H),

because expression (13) equals expression (14) multiplied with the factor

∏

{i,j}⊆M⊆N

P (EM |H),

which is smaller than 1 since it contains the term P (EM
∗
|H) < 1. �

8 Opinion pooling in the presence of subgroup informa-

tion

One may always try to ‘remove’ subgroup information through active information

sharing prior to aggregation: all proper subgroups with exclusively shared information

communicate this information to the rest of the group. In Figure 1, the observations in

each ‘!’ field are communicated to the third person, and in the above jury example the

subgroups {1, 3} and {2, 3} communicate the exact content of the first resp. second

witness report to the third juror. Having thus removed any subgroup information,

(NoSI) and hence (in view of Theorem 3) Independent Information (Ind) hold, so

that opinion pooling can proceed along the lines of Sections 2-5.

But suppose now that such information sharing is not feasible, e.g. due to the

complexity of subgroup information. Then (NoSI) fails, and hence (Ind) fails, so

that we need to modify our pooling formula. It is at first not obvious whether and

how one can generalise Theorem 1 to arbitrary information overlaps, i.e. whether

and how collective opinions can incorporate all information spread around the group.

The generalisation is possible, as will be seen. Roughly speaking, we have to replace

Theorem 1’s axioms of Individual Bayesian Rationality (IBR) and Independent In-

formation (Ind) by corresponding axioms based on subgroups rather than individuals.

Theorem 1’s two other axioms, (APLA) and (CP), will not anymore appear explicitly,

but are build implicitly into the model, as explained in a moment. The adapted ax-

ioms will again lead to a unique collective opinion π, calculated in a somewhat more

complicated way than in Theorem 1.

First, let me state the new model ingredients, and compare them to the earlier

ingredients. As before, we have a non-empty set of possible worlds Ω, partitioned into

a countable set H of non-empty hypotheses H. While Theorem 1’s model contained

for every individual i a personal information Ei ⊆ Ω, now for every subgroupM there

is a non-empty event EM ⊆ Ω, M ’s exclusively shared information, representing all

information held by each of and only the persons in M . By assumption, EN = Ω,

reflecting that any world ω ∈ Ω is possible under the shared information. From these
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events EM we can define each individual i’s information as

Ei =
⋂

{i}⊆M⊆N

EM ,

representing all information held at least by person i.

The earlier model contained every individual i’s (prior) belief Pi; this is not any-

more needed here. Instead, I only assume a single probability measure P , defined

on some σ-algebra A ⊆ P(Ω) containing each EM and each hypothesis H ∈ H. We

interpret P as capturing common prior beliefs.20 This assumption of common prior

beliefs is a simplification; it for instance implies that conditions such as (CP) and

(APLA) above are built into the model, and hence will not have to appear explicitly.

Recall further that in Theorem 1’s model (in its common prior version) people

provide individual opinions π1, ..., πn (reflecting ‘individually shared’ information) and

a common prior opinion p (reflecting the group’s shared information). So, technically,

the earlier model contained the opinions π1, ..., πn, p reflecting the shared information

of the improper subgroups {1}, ..., {n}, N , respectively. Our new model adds to this

the opinions reflecting the shared information of certain proper subgroups M ⊆ N .

More precisely, in the new model at least those (proper or improper) subgroup which

exclusively share information will need to provide an opinion. Formally, let M be a

set of subgroups, containing at least those (proper or improper) subgroups M ⊆ N

with exclusively shared information, i.e. with EM �= Ω. Without loss of generality,

let N ∈M.21 Each subgroupM inM submits an opinion πM ∈ Π, representingM ’s

probability assignments based on M ’s shared information (shared information need

not be exclusively shared, i.e. may be known to other persons too; see Definition

5 below). Theorem 1’s model (in the common prior version) is the special case

that M = {{1}, ..., {n}, N} (= {M : M is an improper subgroup}) with π{1} =

π1, ..., π{n} = πn, πN = p. In the last section’s jury example with n = 3 individuals,

we may put

M = {{1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}

because {1, 2} has no exclusively shared information.

In practice, in addition to every individual i with {i} ∈ M submitting an opinion

π{i}, every non-singleton subgroup M ∈M will have to ‘sit together’, find out about

the information it shares, and come up with an opinion πM based on this shared

information.

The technique to calculate the (collective) opinion π ∈ Π from the submitted

subgroup opinions πM ,M ∈M, is recursive. Let me first illustrate it by an example.

20More precisely, I do not mean to assume that every individual i holds a belief on all events in

A. Rather i holds beliefs (at least) on a sub-σ-algebra of A containing all hypotheses in H and those

events EM for which i ∈M . i’s beliefs on this sub-σ-algebra are given by P .
21One may always define M as containing all subgroups, but in practice this maximal choice

adds unnecessary steps to the recursive pooling procedure introduced below. The minimal choice is

M = {M : ∅ �=M � N and EM �= Ω} ∪ {N}.
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Example. As in the last section’s jury example, let there be n = 3 individuals and

letM = {{1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}. So, functions π{1}, π{2}, π{3}, π{1,3}, π{2,3}
and π{1,2,3} are submitted. The recursion works as follows, where I use a slightly sim-

plified version of the later notation and give only informal justifications.

• First, merge π{1,3} and π{2,3} into a function π{1,3},{2,3} that combines {1, 3}’s

shared information and {2, 3}’s shared information. One may apply Corollary

1’s formula:

π{1,3},{2,3} ∝ π{1,3}π{2,3}/π{1,2,3}.

(To see why π{1,2,3} can play the role of the prior opinion p in Corollary 1, recall

that p there represents the information shared by all individual opinions. The

information shared by the opinions π{1,3} and π{2,3} is the information held by

[1 and 3] and by [2 and 3]. This is equivalent to the information held by 1 and

2 and 3, i.e. the information expressed in π{1,2,3}.)

• Next, define π{1,2} as π{1,2,3}, because the subgroup {1, 2} does not exclusively

share any information and hence shares the same information as the larger

group {1, 2, 3}.

• Next, merge π{1} and π{2} into a function π{1},{2} that combines {1}’s and {2}’s

information. One may apply Corollary 1’s formula:

π{1},{2} ∝ π{1}π{2}/π{1,2}.

(Why can π{1,2} play the role of p in Corollary 1, i.e. why does π{1,2} express

the information shared by π{1} and π{2}? The information shared by π{1} and

π{3} is the information held by 1 and by 2, i.e. the information expressed in

π{1,2}.)

• Finally, merge π{1},{2} and π{3} into the function π = π{1},{2},{3} that combines

{1}’s, {2}’s and {3}’s information. Again, one may apply Corollary 1’s formula:

π = π{1},{2},{3} ∝ π{1},{2}π{3}/π{1,3},{2,3}.

(Why can π{1,3},{2,3} play the role of p in Corollary 1, i.e. why does π{1,3},{2,3}
represent the information shared by π{1},{2} and π{3}? The information shared

by π{1},{2} and π{3} is the information held by [1 or 2] and by 3. This is precisely

the information held by [1 and 3] or by [2 and 3], i.e. the information expressed

in π{1,3},{2,3}.)

Now I come to the formal treatment. Recall that i’s information Ei is given by

Ei =
⋂

{i}⊆M⊆N

EM ,

i.e. i knows precisely the conjunction of what the subgroups containing i exclusively

share. This generalises as follows to:
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Definition 5 A subgroup M ’s shared information is defined as

EM :=
⋂

M⊆M ′⊆N

EM
′

(the conjunction of all information exclusively shared by some supergroup of M).

EM represents what is known to at least all members of M — as opposed to M ’s

exclusively shared information EM , known exactly all members of M . Taking the

case of a singleton subgroup M = {i}, the event E{i} coincides with Ei. Also, note

that

P (EM) > 0 and P (EM) > 0 for each subgroup M

because

P (EM), P (EM) ≥ P




⋂

∅ �=M ′⊆N

EM
′



 = P (E1 ∩ ... ∩En) > 0.

The following condition translates Individual Bayesian Rationality (IBR) to sub-

groups in M:

Subgroup Bayesian Rationality (SBR) πM(H) = P (H|EM) for every subgroup

M ∈M and hypothesis H ∈ H.

As in Theorem 1, we would like the collective opinion to satisfy Collective Bayesian

Rationality (CBR); that is, we require that

π(H) = P (H|E1 ∩ ... ∩En) for each hypothesis H ∈ H,

a condition that may be rewritten in several equivalent ways since (by Definition 5)

E1 ∩ ... ∩En = E{1} ∩ ... ∩E{n} =
⋂

∅ �=M⊆N

EM =
⋂

∅ �=M⊆N

EM .

As a technical tool to construct collective opinion π satisfying (CBR), I need to

introduce opinions of abstract individuals.

Definition 6 An abstract individual is a non-empty set A of subgroups M ; its order

is order(A) := min{|M | :M ∈ A}, the size of a smallest subgroup in A.

The opinions π{1,3},{2,3}, π{1},{2}, ... defined in the example above are in fact the

opinions of the abstract individuals {{1, 3}, {2, 3}}, {{1}, {2}}, ... More generally, I

interpret an abstract individual A as a hypothetical agent who knows the shared

information of any subgroupM ∈ A (and no more). For instance, A = {{1, 3}, {2, 3}}

knows {1, 3}’s shared information and {2, 3}’s shared information. A’s information

is thus given by
⋂
M∈AEM . To get a concrete idea, note that the abstract agent

A = {{1, 3}, {2, 3}} knows
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• at least as much as the abstract agent {{1, 3}}, who knows all information that

1 and 3 share (but no information that 2 and 3 share exclusively);

• at least as much as the abstract agent {{1, 2, 3}}, who knows all information

that 1, 2 and 3 share (but no information that 1 and 3 share exclusively or that

2 and 3 share exclusively);

• at most as much as the abstract agent {{1}, {2}, {3}}, who knows all that 1 or 2

or 3 knows (and hence all that two or three of these individuals know together).

I will calculate for each abstract individual A an opinion πA ∈ Π that reflects

precisely A’s information ∩M∈AEM , i.e. that satisfies

πA(H) = P

(

H

∣∣∣∣∣

⋂

M∈A

EM

)

for each H ∈ H. (15)

Specifically, I calculate πA by backward recursion over order(A): πA is calculated

first for order(A) = n, then for order(A) = n − 1, ..., then for order(A) = 1. This

finally yields π, since by (CBR) and (15)

π = P (.|E{1} ∩ ... ∩E{n}) = πA

where A is the abstract individual {{1}, {2}, ..., {n}} of order 1. In the recursive

construction, the main steps are to calculate from opinions πA and πA∗ of abstract

individuals A and A∗ the opinion πA∪A∗ of the abstract individual A ∪ A∗ whose

information combines the information of A and A∗. To derive πA∪A∗ from πA and

πA∗ , I generalise the formula of Theorem 1 to (two) abstract individuals. To do so,

the notion of shared information is crucial. What information do A and A∗ share?

They share precisely the information held by the abstract individual

A ∨A∗ := {M ∪M∗ :M ∈ A and M∗ ∈ A∗}.

The reason is: the information A and A∗ share is precisely the information that A

knows and A∗ knows, i.e. that some subgroup in A shares and some subgroup in A∗

shares, i.e. that some union M ∪M∗ with M ∈ A and M∗ ∈ A∗ shares. So, when

combining opinions πA and πA∗ , A∨A
∗’s opinion πA∨A∗ plays the role of the common

prior p in Theorem 1. More precisely, the crucial result on how to combine opinions

of abstract individuals states as follows (and is proved later):

Lemma 1 Assume (Ind∗). Consider abstract individuals B and C, form the abstract

individuals B ∨C and B ∪C. If πB, πC , πB∨C are opinions in Π given by (15), then

• there is an opinion in Π proportional to πBπC/πB∨C,
22

22Equivalently, the sum
∑

H∈H

πB(H)πC(H)/πB∨C(H) is finite. Indeed, a function f from H to

(0,∞) (such as πBπC/πB∨C) can be normalised to a function with sum 1 if and only if f has a finite

sum.
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• this opinion is the function πB∪C given by (15).

The formula in Lemma 1 guides us in assigning opinions to abstract individuals.

The assignment is recursive, with another nested recursion in ‘Case 2’:

Definition 7 Define the opinions πA ∈ Π of abstract individual A by the following

backward recursion on order(A):

• Assume order(A) = n. Then A = {N}. Define πA := πN .

• Assume order(A) = k < n and assume πA′ is already defined for order(A
′) > k.

Case 1: |A| = 1. Then A = {M}. If M ∈ M, define πA = πM . If M /∈ M,

consider the abstract individual A′ := {M∪{i} : i /∈M} containing all subgroups

with exactly one person added to M (interpretation: A and A′ have the same

information by M /∈M) and define πA := πA′ (where πA′ is already defined by

order(A′) = k + 1).

Case 2: |A| > 1. Define πA by another recursion on |{M ∈ A : |M | = k}|, the

number of subgroups in A of size k:

◦ Assume |{M ∈ A : |M | = k}| = 1. Then A = {M} ∪ A∗, where |M | = k

and order(A∗) > k. Define πA by πA ∝ π{M}πA∗/π{M}∨A∗ (where π{M}
is already defined in case 1, and πA∗ and π{M}∨A∗ are already defined by

order(A∗) > k and order({M} ∨A∗) > k).

◦ Assume |{M ∈ A : |M | = k}| = l > 1 and assume πA∗ is already defined

for all the A∗ such that |{M ∈ A∗ : |M | = k}| < l (and order(A∗) = k).

Then A = {M} ∪ A∗ with |M | = k and |{M∗ ∈ A∗ : |M∗| = k}| = l − 1.

Define πA by πA ∝ π{M}πA∗/π{M}∨A∗ (where π{M} is already defined in

case 1, πA∗ is already defined by |{M
∗ ∈ A∗ : |M∗| = k}| = l − 1, and

π{M}∨A∗ is already defined by order({M} ∨A
∗) > k).

On the last recursion step we reach the opinions πA of abstract individuals of

order 1, hence in particular the opinion of A = {{1}, ..., {n}}, and this is the desired

opinion that incorporates the group’s full information:

Theorem 4 If subgroups satisfy (SBR), information satisfies (Ind∗), and the collect-

ive satisfies (CBR), then the collective opinion π is given by π{{1},...,{n}}, the (recurs-

ively calculated) opinion of the abstract individual {{1}, ..., {n}}.

The procedure needed to obtain the collective opinion π (= π{{1},...,{n}}) may

have a high complexity.23 How practically feasible is it? One should distinguish two

separate tasks: (i) first, each subgroup M in M has to form and submit an opinion

23 I am grateful to the referee for drawing my attention to this point.
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πM ; (ii) subsequently, the collective opinion π has to be derived algorithmically from

the various subgroup opinions. Let me comment on each task.

Whether task (i) is feasible in practice depends crucially on the number and size

of subgroups in M, which in turn depends on how information is distributed across

people. In the worst case, every subgroup exclusively shares information. Here,M =

P(N)\{∅} and |M| = 2n−1, and the task becomes infeasible already for moderately

large n. On the other hand, the task seems more feasible in situations where only

relatively few subgroups exclusively share information. Suppose for instance that,

when pooling expert opinions relative to certain hypotheses about climate change,

only the following subgroups exclusively share information: each single expert, i.e.

each singleton subgroup {i} ⊆ N ; a group of physicistsM1 ⊆ N ; a group of biologists

M2 ⊆ N ; and a group of meteorologists M3 ⊆ N . Then we may define M as

{{1}, {2}, ..., {n},M1,M2,M3,N}, so that only |M| = n + 4 opinions have to be

formed and submitted.

Task (ii) involves an algorithm with a nested recursion; the overall number of steps

grows more than exponentially in n.24 So, for large n, task (ii) poses a feasibility

problem — even if |M| is small, i.e., if task (i) seems feasible. There is however

an escape to this problem if M contains only relatively small proper subgroups. Let

m := maxM∈M\{N} |M | denote the maximal size that subgroups inM can have (apart

from the improper subgroup N). A quick inspection of the algorithm in Definition 7

shows that its backward recursion (which assigns opinions πA to abstract agents A) is

trivial until it reaches abstract agents of order m: all abstract agents of order k > m

get assigned the opinion πA = πN . So a shortcut is possible: define πA as πN for all

abstract agents A with order(A) > m, and start the backward recursion with those

abstract agents A with order(A) = m.

Even if both tasks (i) and (ii) turn out to be practically feasible, the very choice

of M (before starting task (i)) may pose another high-complexity problem. Suppose

M is chosen by surveying all subgroups one by one to find out which ones exclus-

ively share information (each subgroup might be asked to ‘sit together’ and look for

potential information overlaps). Since there are 2n− 1 subgroups in total, this would

become infeasible already for moderately large n. However, no such problem arises

if M can be specified without performing an explicit subgroup-by-subgroup examin-

ation. For instance, M might be specified by a social planner who knows from the

start that certain subgroups (say, those containing experts from different fields) do

not exclusively share any information, while the other subgroups might exclusively

share information.

Turning now to the proof, I first show Lemma 1 and then Theorem 4.

Proof of Lemma 1. Assume (Ind∗). Let B,C be abstract individuals, and πB, πC ,

24 In the algorithm, for each abstract agent A an opinion πA is calculated. There are 22
n−1 − 1

abstract agents in total. Hence, 22
n−1 − 1 opinions have to be calculated.
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πB∨C , πB∪C ∈ Π. Suppose πB, πC , πB∨C satisfy (15). For all abstract individuals A,

put

A := {M ⊆ N :M ′ ⊆M for some M ′ ∈ A},

the set of supergroups of subgroups in A. By (15), πB∨C = P (.|
⋂
M∈B∨C EM), where

by Definition 5

⋂

M∈B∨C

EM =
⋂

M∈B∨C

⋂

M⊆M ′⊆N

EM
′
=

⋂

M∈B∨C

EM .

So,

πB∨C = P (.|E) with E :=
⋂

M∈B∨C

EM . (16)

Analogously, by (15), πB = P (.|
⋂
M∈B EM), where by Definition 5

⋂

M∈B

EM =
⋂

M∈B

⋂

M⊆M ′⊆N

EM
′
=
⋂

M∈B

EM = EB ∩E

with EB :=
⋂
M∈B\B∨C E

M . So πB = P (.|EB ∩E), and hence by Bayes’ rule

πB ∝ P (.|E)P (EB|. ∩E). (17)

By an analogous argument for C, we have

πC ∝ P (.|E)P (EC |. ∩E), (18)

where EC :=
⋂
M∈C\B∨C E

M . By (16), (17) and (18) we have

πBπC/πB∨C ∝ [P (.|E)P (EB|. ∩E)] [P (.|E)P (EC |. ∩E)] /P (.|E)

= P (.|E)P (EB|. ∩E)P (EC |. ∩E). (19)

Note that each of EB, EC , E is an intersection of a set of events of type EM , where the

three sets of EMs (corresponding to EB, EC , E, respectively) are pairwise disjoint.

So, as by (Ind*) all EMs are independent conditional on any H ∈ H, so are the events

EB, EC , E. Consider an H ∈ H. As EB, EC , E are independent given H, the events

EB, EC are independent given H ∩E. So

P (EB|. ∩E)P (EC |. ∩E) = P (EB ∩EC |. ∩E).

Substituting this into (19) and then applying Bayes’ rule, we obtain

πBπC/πB∨C ∝ P (.|E)P (EB ∩EC |. ∩E) ∝ P (.|EB ∩EC ∩E) ∈ Π.

Now suppose πB∪C = P (.|EB ∩EC ∩E). We may rewrite EB ∩EC ∩E as

⋂

M∈B∪C

EM =
⋂

M∈B∪C

⋂

M⊆M ′⊆N

EM =
⋂

M∈B∪C

EM ,
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and hence πB∪C equals P (.|
⋂
M∈B∪C EM), i.e. satisfies (15). �

Proof of Theorem 4. Assume (SBR) and (Ind∗). By backward induction on the

order of A I show that each abstract individual A has opinion πA satisfying (15). This

in particular implies that {{1}, ..., {n}} has opinion

π{{1},...,{n}}(H) = P (H|E1 ∩ ... ∩En) for each H ∈ H,

so that under (CBR) we have π = π{{1},...,{n}}, as desired.

Denote by A the set of abstract individuals A. The recursion proceeds as follows.

• If order(A) = n, then A = {N}, and by definition πA = πN . So by (SBR)

πA = P (.|EN) = P (.|
⋂
M∈AEM), as desired.

• Now let order(A) = k < n, and assume (15) holds for all A′ ∈ A with

order(A′) > k. I have to show that πA = P (.|
⋂
M∈AEM).

Case 1: |A| = 1. Then A = {M} with |M | = k. If M ∈ M, then by definition

πA = πM , so by (SBR) πA = P (.|EM) = P (.|
⋂
M ′∈AEM ′), as desired. Now as-

sumeM /∈M. Then by definition πA = πA′ with A
′ := {M∪{i} : i /∈M}. Since

order(A′) = k + 1, the induction hypothesis yields πA′ = P (.|
⋂
M ′∈A′ EM ′),

hence πA = P (.|
⋂
M ′∈A′ EM ′). So I have to show that

⋂
M ′∈A′ EM ′ = EM . By

Definition 5,

EM =
⋂

M⊆M ′⊆N

EM
′
= EM

⋂





⋂

M ′∈A′




⋂

M ′⊆M ′′⊆N

EM
′′









.

In this, EM = Ω (by M /∈ M) and
⋂
M ′⊆M ′′⊆N E

M ′′
= EM ′ (by Definition 5).

So EM =
⋂
M ′∈A′ EM ′ , as desired.

Case 2: |A| > 1. I show πA = P
(
.
∣∣⋂

M∈AEM
)
by induction on the number

|{M ∈ A : |M | = k}| of subgroups in A of size k.

◦ Let |{M ∈ A : |M | = k}| = 1. Then A = {M} ∪ A∗ with |M | = k and

order(A∗) > k. Then πA was defined as the function in Π proportional

to π{M}πA∗/π{M}∨A∗ ; let me show that (i) such a function does indeed

exists and (ii) satisfies (15), as desired. Now, π{M} satisfies (15) by Case

1, and πA∗ and π{M}∨A∗ satisfy (15) by order(A∗) > k and order({M} ∨

A∗) > k (and the k-induction hypothesis). So, by Lemma 1, the function

π{M}πA∗/π{M}∨A∗ is proportional to a function in Π, so that πA is well-

defined. Also by Lemma 1, this function πA satisfies (15), as desired.

◦ Let |{M ∈ A : |M | = k}| = l > 1, and assume A∗ satisfies (15) whenever

|{M ∈ A∗ : |M | = k}| < l (and order(A∗) = k). By definition, πA ∝

π{M}πA∗/π{M}∨A∗ , where A = {M} ∪ A
∗ with |M | = k and |{M∗ ∈ A∗ :
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|M∗| = k}| = l − 1. Again, we have to show that πA is well-defined (i.e.

that Π indeed contains a function proportional to π{M}πA∗/π{M}∨A∗) and

satisfies (15). π{M} satisfies (15) by Case 1, πA∗ satisfies (15) by |{M∗ ∈

A∗ : |M∗| = k}| = l − 1 (and the l-induction hypothesis), and π{M}∨A∗

satisfies (15) by order({M} ∨ A∗) > k (and the k-induction hypothesis).

So, by Lemma 1, πA is well-defined and satisfies (15). �

9 Conclusion

The above model interprets opinion pooling as information pooling: collective opin-

ions should build in the group’s entire information, be it shared or personal. According

to the pooling formulae I obtained, collective opinions should account for informa-

tional asymmetries not by taking a standard weighted (linear or geometric) average

of the individual opinions with higher weight assigned to better informed individuals

but by incorporating people’s prior opinions in addition to their actual (i.e. posterior)

opinions. In practice, people have either to agree on a common prior opinion p, i.e.

on how to interpret the shared information, or they have to submit their possibly

diverging prior opinions p1, ..., pn. Based on simple axioms, Theorem 1 shows how to

aggregate the (prior and posterior) opinions into a collective opinion. The formula

defines a multiplicative opinion pool: the collective opinion π is the product of the

individual opinions π1, ..., πn and a function g (which depends on prior opinions).

More precisely, Theorem 1 suggests that, based on individual opinions π1, ..., πn,

the collective opinion π should be defined by

π ∝ π1 · · ·πn/p
n−1

if people agree on a common prior p, and by

π ∝
π1
p1
· · ·
πn
pn
F (p1, ..., pn) (20)

if people have arbitrary priors p1, ..., pn, where F is a standard opinion pool. I have

suggested that F should be anonymous (i.e. symmetric in its arguments) because

the prior opinions it pools are based on the same (shared) information, giving no

individual an informational superiority. More specifically, I have suggested to define

F as unweighted geometric pooling, because this generates appealing properties shown

in Theorem 2. This choice of F gives collective opinion the form

π ∝
π1

p
1−1/n
1

· · ·
πn

p
1−1/n
n

.

Fortunately, not much depends on how we choose F in the pooling formula (20)

if — as is frequently the case — π1
p1
· · · πnpn dominates F (p1, ..., pn) (i.e., if the function

π1
p1
· · · πnpn varies far more than the function F (p1, ..., pn) for ‘reasonable’ choices of F ).
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In such cases, one might in practice refrain from choosing F and simply define the

collective opinion as

π ∝
π1
p1
· · ·
πn
pn

,

a particularly elegant pooling formula.

A crucial axiom underlying these pooling formulas is that personal information

is independent. By Theorem 3, independence is threatened by the possibility of

subgroup information, i.e. of information held by more than one but less than all

individuals. Theorem 4 therefore generalises the aggregation rule to arbitrary in-

formation distributions (allowing for subgroup information). The generalisation is

unique, but assumes that each subgroup with subgroup information agrees on how

to interpret this information, a kind of common prior assumption. Dropping this

assumption would have gone beyond the scope of this paper, but it might be an

interesting route for future research.
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