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Abstract

It is often claimed that opinions are more likely to be correct if they are held indepen-
dently by many individuals. But what does it mean to hold independent opinions?
To clarify this condition, we distinguish four notions of probabilistic opinion inde-
pendence. Which notion applies depends on environmental factors such as commonly
perceived evidence. More formally, it depends on the causal network that determines
how people interact and form their opinions. In a general theorem, we identify condi-
tions on this network that guarantee the four notions of opinion independence. Our
results have implications for ‘wisdom of crowds’ arguments, as we illustrate with old
and new jury theorems.

1 Introduction

What exactly does it mean for different individuals to hold independent beliefs about
a factual question? And under what circumstances can we expect such independence
of opinions? These questions are difficult to answer because the concept of opinion
independence is not well understood, even though it is crucial in social epistemology.

Opinion independence is of central importance for ‘wisdom of crowds’ arguments
and, more formally, jury theorems. The claim that ‘crowds are wise’ derives from
the idea that decisions based on many opinions are more likely to be correct than
decisions based on a few or just one opinion (e.g. Surowiecki 2004). Much of the
trust in the judgement of large electorates, for instance, is based on the claim that a
judgement is likely to be correct if it is approved by many voters. Similarly, in a court
case a single witness may well be mistaken, but twenty witnesses who all say the same
thing may not, or so the intuition goes. All these arguments assume that the group
aggregates (sufficiently) independent individual opinions. Opinion dependence can
undermine the ‘wisdom of crowds’: if, for instance, most individuals blindly follow
the same ‘opinion leader’, then the majority is no ‘wiser’ than that opinion leader.
Other important forms of harmful opinion dependence are information cascades and
systematic biases. In threatening the ‘wisdom of crowds’, opinion dependence ulti-
mately threatens the epistemic superiority of democratic decision-making bodies and
institutions.
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The importance of opinion independence for ‘wisdom of crowds’ arguments be-
comes explicit in jury theorems. Indeed, such theorems typically make an ‘indepen-
dence’ assumption (as well as an assumption of voter ‘competence’), and they then
conclude that ‘crowds are wiser’ in the technical sense that larger groups are more
likely to be correct in majority than smaller groups or single individuals. But opinion
independence is not only relevant in the aggregative context of the ‘wisdom of crowds’
and jury theorems. It also matters, for instance, when studying the effect of group
deliberation on opinions, regardless of whether any voting or aggregation takes place.
And finally, it is important to carefully define the notion of opinion independence for
the sake of conceptual clarity, quite apart from its relevance elsewhere.

In a first step, we need to distinguish between causal and probabilistic depen-
dence. The former states that the opinions causally affect each other, the latter
that they display probabilistic correlations. Causation is clearly distinct from cor-
relation; yet the two notions are intertwined.1 Indeed, whether and how opinions
are probabilistically dependent is very much determined by causal interconnections
between individuals and their environment. This paper considers four possible no-
tions of probabilistic independence (Sect. 2). It determines in a general theorem
which notion applies, depending on the underlying causal relations between individ-
uals and other relevant factors (Sect. 3). As an application, we finally present two
jury theorems with different independence conditions (Sect. 4).

By identifying the causal foundations of four independence conditions, our anal-
ysis brings to light the implicit causal assumptions of different jury theorems. Such
theorems include Condorcet’s classical jury theorem, its generalization to groups with
heterogeneous competence (see Owen et al. 1989, Dietrich 2008), a jury theorem for
non-binary decision problems presented in List and Goodin 2001, and the jury theo-
rems offered in our companion paper, Dietrich and Spiekermann 2013, and in section
4 below.

Several technical treatments of opinion independence can be found in the liter-
ature on jury theorems; see for instance Boland 1989, Boland et al. 1989, Ladha
1992, 1993, and 1995, Berg 1993, Dietrich and List 2004, Dietrich 2008, Kaniovski
2010 and Dietrich and Spiekermann 2013 (and for jury theorems more generally see
Grofman et al. 1983, Nitzan and Paroush 1984, List and Goodin 2001, Bovens and
Rabinowicz 2006, Romeijn and Atkinson 2011, Hawthorne MS). Opinion dependence
has also been discussed less formally in political philosophy, especially with reference
to epistemic and deliberative democracy. Contributions include Grofman and Feld
1988, Estlund et al. 1989, Estlund 1994 and 2008, Anderson 2006, Vermeule 2009
(Ch. 1), and Spiekermann and Goodin 2012. We approach the problem from a causal
angle, which is crucial for gaining a deeper understanding of independence. To do so,
we draw on causal networks. Causal network reasoning has been employed before in
the context of jury theorems (see Dietrich and List 2004, Dietrich 2008, and Dietrich
and Spiekermann 2013), but a general account of probabilistic independence in terms

1For instance, two phenomena that do not causally affect each other can be correlated because they
have a common cause. Here, we do not commit ourselves to any specific account of causation, and
our formal (network-theoretic) representation of causation is compatible with different metaphysical
accounts.
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of causal interactions is still missing.
Our causal approach highlights the effect of social practices and institutions on

opinion independence, and as such on the epistemic quality of these practices and
institutions. In assuming an external standard of epistemic quality and correctness
we are in line with the correspondence theory of truth and Alvin Goldman’s influential
‘veritism’ approach in social epistemology (Goldman 1999, pp. 59, 79ff.; 2004).

2 Four different independence conditions and their causal
motivations

We assume that some individuals, labelled i = 1, 2, 3, . . . , must form opinions on a
given issue.2 This task might arise in the context of deciding between two alternatives,
such as whether to convict or acquit the defendant in a court trial, whether to predict
that global warming will continue or that it will not, and so on. The opinions may,
for instance, serve as votes in a formal voting procedure, or as inputs or outputs of
group deliberation.

In the simple baseline case, our model involves:

(a) an opinion of each voter, which can take only two possible values (e.g. ‘guilty’
or ‘innocent’, or ‘yes’ or ‘no’, or ‘1’ or ‘0’)

(b) the state (of the world), which represents the objectively correct opinion and
which therefore can take the same two values

(c) the correctness notion, according to which an opinion is either ‘correct’ or ‘in-
correct’ depending on whether or not it matches the state

Since our framework is probabilistic, phenomena—such as opinions and the state—
are outcomes of random variables (with an underlying probability function denoted
Pr). We thus formally consider a random variable x generating the state of the world,
and random variables o1, o2, . . . generating the opinions of individuals 1, 2, . . . . Note
our convention of using bold face letters to denote random variables. In our baseline
case, the state x and the opinions o1, o2, . . . all range over the same binary set (e.g.
the set {‘yes’, ‘no’} or {1, 0}), where an opinion oi is thought of as being correct if
oi = x. All our illustrations will follow this binary baseline case (as does the literature
on jury theorems), but our model is much more general because:

(a) the opinions o1, o2, . . . need not be binary and might, for instance, be sets of
believed propositions (belief sets or judgement sets), numerical estimates (say,
of temperature), or even degrees of belief

(b) the state x need not be binary and might, for instance, be a set of true proposi-
tions, the true temperature, or an objective probability or probability function3

2The total number of individuals does not matter to us. Technically, it may even be taken to be
countably infinite, as in jury theorems.

3In fact, the state and the opinions may be two different kinds of objects, i.e. range over a different
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(c) the notion of correctness of opinions need not be binary, that is, there may be
multiple degrees of objective correctness (rightness, goodness, etc.4)

For instance, a temperature estimate (the opinion) is correct to a degree given by its
proximity to the true temperature (the state). Also, in a presumably more contro-
versial application, subjective probabilities (the opinion) are correct to the extent to
which they resemble the objective or ‘rational’ probabilities (the state).5 In general,
the variables o1, o2, . . . thus range over an arbitrary set of possible opinions, and
the state x ranges over an arbitrary set of possible states. We do not yet formalize
the correctness notion, as it is not needed to analyse opinion dependence, but only
to state jury theorems.6

The simplest independence assumption one might come up with refrains from
conditionalizing on any background information:

Unconditional Independence (UI): The opinions o1, o2, . . . are uncondition-
ally independent

Counterexamples to UI are easily constructed. In short, since opinions are typically
(indeed, hopefully) correlated with the state, they are usually correlated with each
other. To see, for instance, why the first two individuals (jurors) in our court trial
example presumably hold positively correlated rather than independent opinions, note
that a ‘guilty’ opinion of juror 1 typically raises the probability of a ‘guilty’ opinion of
juror 2—formally, Pr(o2 = ‘guilty’|o1 = ‘guilty’) > Pr(o2 = ‘guilty’)—because juror
1’s ‘guilty’ opinion raises the probability that the state is that of a guilty defendant
(assuming juror 1 is competent), which in turn raises the probability that juror 2
holds a ‘guilty’ opinion (assuming juror 2 is competent). This is a clear violation of
UI, which would have required that opinions are of no informational relevance to each
other.

Note that this argument implicitly assumes that the state x has a causal effect
on each opinion, as indicated in Figure 1. In this (and all following) plots, only
two opinions are shown for simplicity. The arrows represent causal relationships,
pointing from the causing variable to the affected variable. In Figure 1 the opinions
are probabilistically dependent due to their common cause x.

sets—which is philosophically natural since an opinion differs conceptually from its truth-making fact,
i.e. the state. For instance, the opinion could be ‘guilty’ or ‘innocent’, and the state could be the
fact of what exactly the defendant did on 7 January 2010.

4Different notions of objectivity are compatible with that assumption, as long as the fact about the
correct opinion is not determined by the actual opinions of people. This excludes procedural notions
of correctness, where an opinion is correct if and because it matches the opinion that arose collectively
by applying an appropriate procedure. It also excludes constructivist notions of correctness where
an opinion’s correctness is constitutively determined by the opinions of the agents.

5The literature on jury theorems rarely considers more than two opinions and has perhaps never
considered more than two correctness levels. List and Goodin (2001) use many opinions but only two
correctness levels (where exactly one opinion is correct and all others are incorrect without further
refinement).

6A formalization could include a set S of possible ‘correctness levels’ (e.g. the set {‘correct’,
‘incorrect’} for a binary correctness notion) and a function mapping each opinion-state pair (o, x) to
the correctness level (in S) of opinion o in state x.
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Figure 1: The state is a direct cause of the opinions.

That UI is easily violated should not surprise scholars familiar with the Condorcet
Jury Theorem, given that this theorem does not assume that opinions are uncon-
ditionally independent but (usually) that they are state-conditionally independent.
What is more surprising is that UI does hold in some circumstances, but we post-
pone this issue for now and turn to the more classical state-conditional notion of
independence:

State-Conditional Independence (SI): The opinions o1, o2, . . . are indepen-
dent conditional on the state x

This conditional notion of independence7 is the basis of Condorcet’s classical jury
theorem (e.g. Grofman et al. 1983), which can be summarized as follows (see Sect.
4 for details). Suppose a group performs a majority vote between two alternatives
of which exactly one is correct. The correct alternative corresponds to our state x,
and the votes to our opinions o1, o2, . . . . Condorcet’s jury theorem states that if
SI holds and, moreover, if in each state voters are (homogeneously) more often right
than wrong, then the probability of a correct majority outcome increases in (odd)
group size and converges to one.8

State-Conditional Independence says that once we know the state of the world
the opinions do not contain any additional information about each other. The earlier

7Conditional independence is defined like independence but with probabilities replaced by condi-
tional probabilities. More precisely, as long as x is discrete (e.g. binary), independence conditional
on x by definition means that for every value x which x may take (with positive probability) there
is independence under the conditional probability function Pr(·|x). Without discreteness restriction,
the opinions are independent conditional on x if they are independent under the conditional proba-
bility measure Pr(·|x) for all values x that the random variable x may take, except possibly from a
set of values of x that occurs with zero probability. (The clause ‘except . . . ’ appears for technical
reasons related to the general mathematical definition of conditional probabilities, which takes care
of the case in which x takes some or even all of its values with zero probability. We spare the reader
the technicalities.)

8Some statements of Condorcet’s classical jury theorem use an unconditional independence condi-
tion, but only in one of two quite different senses. Either a different framework is used, in which the
state is not a random variable but takes a given value, e.g. the value ‘guilty’ (as a result, all prob-
abilities are implicitly posterior probabilities given this state, so that the independence is implicitly
state-conditional). Or unconditional independence is assumed not of the opinions themselves, but
of the events of correct, i.e. state-matching, opinions (which makes the assumption more plausible,
although a convincing causal-network-theoretic justification is missing).
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objection to UI—namely that the opinions of some of the people tell us something
about what the state is likely to be, and hence about what other people are likely to
believe—does not work against SI because we cannot learn anything new about the
state if we have already conditionalized on it. The state plays the role of a common
cause of the opinions. If the state is indeed the only common cause, SI is in line
with Reichenbach’s (1956, pp. 159–60) famous Common Cause Principle, which is
often understood roughly as follows: any correlation between phenomena which do
not causally affect each other is fully explained by common causes. In other words:

Common Cause Principle (stated informally): Phenomena which do not
causally affect each other are probabilistically independent conditional on their
common causes

While the Common Cause Principle at first sight supports SI, it can be turned against
SI once we consider other causal networks in which x is not the only common cause
of the opinions. Consider for instance the network in Figure 2.

Figure 2: Multiple direct common causes of opinions.

Here the opinions have two common causes, the state x and another cause c, which
could be a factor like weather or room temperature. SI can now fail in much the
same way as UI. Suppose for instance that the variable ‘weather’ has an effect on
each juror in a court trial: the sunnier the weather is, the more the jurors see the
good in the defendant, and hence the more they are inclined to form the opinion that
the defendant is innocent. Now, even after having conditionalized on the state of the
world that the defendant is innocent, the opinions of the jurors are informative about
each other, this time due to the common cause of weather; for instance, an opinion
‘innocent’ by the first juror increases the probability that the weather is sunny and
hence the probability that the second juror has the opinion ‘innocent’ too. In other
words, the opinions are not state-conditionally independent but state-conditionally
positively correlated, namely due to the other common cause (‘weather’) on which SI
fails to conditionalize.

To avoid this problem we suggest replacing SI by a notion of independence which
conditionalizes on all common causes of the opinions. By doing so we ‘control’ for
all factors that causally affect more than one opinion, eliminating the dependence
induced by such common factors. To state such a condition formally, let us extend the
formal framework, which so far consists just of the state x and the opinions o1, o2, . . . .
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Now we consider these and any number of additional random variables (representing
phenomena which are directly or indirectly causally related to the opinions), and we
consider a causal network over the variables. Formally, a causal network over some
variables is a so-called directed acyclic graph over these variables, that is, a set of
directed arrows between pairs of variables (representing causal relevance) such that
there is no directed cycle of arrows.9 Figures 1 or 2 were examples of how the network
might look.

Figure 3: The state is an indirect common cause of opinions.

Figure 3 is yet another example. Here, the state causally affects a variable c, which is
interpretable as evidence (e.g. fingerprints, witness reports, etc.) and which in turn
influences each opinion. Individuals are thus affected by the state only indirectly, via
the ‘trace’ the state leaves in the form of c. The additional variables (such as the
variable c in Figs. 2 and 3) may be binary or multi-valued. For instance, the variable
‘weather’ may take the values ‘sunny’, ‘cloudy’, ‘rainy’ and so on; and the variable
‘body of evidence’ may take several forms as well. Some variables (such as ‘room
temperature’) might even range over a continuum of values.

In the causal network, a variable a is said to be a direct cause of another variable
b (and b a direct effect of a) if there is an arrow pointing from a towards b (‘a→ b’).
Further, a is a cause of b (and b an effect of a) if there is a directed path from a
to b, that is, a sequence of two or more variables starting with a and ending with b
such that each of these variables (excepting from the last) directly causes the next
one. For instance, in Figure 3 the state x directly causes c, and indirectly causes the
opinions. Generally, when we use the verb ‘cause’ we refer only to causal contribution;
no sufficiency or necessity is implied.10

A variable is a common cause (effect) of some variables if it is a cause (effect)
of each of them. By a ‘common cause’ simpliciter we mean a common cause of (two
or more) opinions. In all figures, such common causes are shown in grey. While in
Figures 1–3 all causes of opinions are common causes, Figure 4 contains four private
causes of opinions; they causally affect just one opinion.
Note also that in Figure 4 some of the causes of opinions (namely, c2, c4, and c6)

9For thorough discussions of causal networks, see Pearl 2000, Ch. 1.
10More precisely, each variable (i.e. the probabilities of its values) is affected by its direct causes.

Our network is a macroscopic simplification of the world and we do not take a stance as to whether
the world is fundamentally governed by probabilistic or deterministic processes.
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Figure 4: Private and common causes of opinions.

are non-evidential: they are not related to the state. Although this might be viewed
as ‘irrational’, individuals are often influenced by non-evidential causes such as room
temperature (a common non-evidential cause) or the quality of one’s sleep last night
(a private non-evidential cause).

Let us write χ (Greek ‘chi’) for the family of all common causes. In Figure 1
χ consists just of the state x; in Figures 2 and 3 it consists of x and c; and in
Figure 4 of x, c3, and c4. In general, χ is a compound random variable with as
many parts as there are common causes of opinions.11 We are now ready to state a
new independence assumption, which is a direct application of the Common Cause
Principle:

Common-Cause-Conditional Independence (CI): The opinions o1, o2, . . .
are independent conditional on the common causes χ

This independence assumption may seem the most appealing one. It is backed by the
Common Cause Principle and, more generally, by probabilistic theories of causality.
With CI, the independence of opinions is guaranteed as long as the opinions do not
causally affect each other. It has, however, a weakness in the context of jury theorems
and ‘wisdom of crowds’ arguments. The problem with CI is not so much that it is not
sufficiently justified—CI is perhaps the most justifiable independence assumption—
but rather that CI (like UI) is a premiss which does not easily lend itself to arguments
that ‘crowds are wise(r)’. Let us now explain this subtle point informally; in section
4 we work it out more formally.

It is important to first realize that what ultimately matters in a jury theorem is not
independence of the opinions simpliciter. The typical reasoning is that a group whose
members are independently more likely to get it right will quite probably get it right
in majority. This reasoning involves independence of the events of holding correct
opinions, not independence of the opinions (or votes) themselves.12 Now, indepen-

11The range of χ is the Cartesian product of the ranges of the common causes of opinions.
12The kind of aggregative conclusion that independence of opinions simpliciter lends itself to is
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dence of the opinions implies independence of the correct opinion events once we have
conditionalized on the state x. It is easy to see why: conditional on the state being x,
if the opinions o1, o2, . . . are independent then so are the events that o1 matches x, o2

matches x, and so on. In other words, the assumption of State-Conditional Indepen-
dence implies what is needed, namely (conditional) independence of the correctness
events. Similarly, if it so happens that the state x features among the common causes
χ—as it does indeed in all of the above Figures 1 to 4—Common-Cause-Conditional
Independence also implies (conditional) independence of the correctness events. But
there are plausible situations in which the state x is not a common cause. Figure 5
is one such case.

Figure 5: The state is not a cause of opinions.

Here the common cause c affects both the state and the opinions. As a plausible
example, imagine a homicide case in which the jurors learn that the defendant has
bought cyanide (represented by c). This fact is a common cause of the opinions of
the jurors, who take murder (and guilt) to be more likely if the defendant has bought
cyanide in advance. Since having bought cyanide facilitates poisoning, the purchase
causally affects not just the opinions but also whether the murder takes place; hence
the network of Figure 5. Note that state x is not a cause of any opinions.

Whenever the state x is not a common cause, CI does not conditionalize on it, and
therefore does not lend itself to jury-theorem-type arguments about the probability
of majority correctness. In response, let us add the state into the conditionalization,
just as Condorcet’s jury theorem conditionalizes on the state by using SI rather than
UI. So, we have to conditionalize on all common causes plus the state. But what
does this mean? Following Dietrich 2008 and Dietrich and Spiekermann 2013, the
decision problem faced by the group can be conceptualized as being a description
of two things: first, the fact to find out about, conceptualized as the state of the
world; and, second, the circumstances (environment) in which people form opinions,
conceptualized as the common causes influencing the opinions. By conditionalizing
on the decision problem, we include the state by default (thus making sure that
not only the opinions but, as a consequence, also the events of correct opinions are
independent).

different and less relevant. One might for instance reason that a group of jurors who are independently
more likely to express the opinion ‘innocent’ will quite probably hold this opinion in majority. But
what matters is less the probability of an ‘innocent’ majority than that of a correct majority.
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Formally, let us write π for the decision problem defined as a family containing
the state x and all common causes. Clearly, the problem π reduces to the common
causes χ if the state is a common cause (as in Figs. 1–4). In general π is isomorphic to
the state-circumstances pair (x,χ).13 We are now in a position to state our final inde-
pendence condition (introduced as ‘New Independence’ in Dietrich and Spiekermann
2013):

Problem-Conditional Independence (PI): The opinions o1, o2, . . . are in-
dependent conditional on the problem π

This assumption is put to work in a jury theorem presented in section 4.

3 The causal foundation of each independence condition:
a general theorem

While the last section has given informal causal motivations for the four indepen-
dence conditions, this section turns to a formal result. The result gives us precise
sufficient (and in fact essentially necessary) conditions on causal interconnections for
each independence condition to hold. Given this result, once we know the individuals’
causal environment we can infer which kinds of opinion independence should (not) be
assumed. And if a social planner can design the environment, he can do so to induce
the kind of independence he aims for.

To be able to infer probabilistic features from causal interconnections, one must
assume that probabilities are compatible with the causal network. What such com-
patibility amounts to has been settled precisely in the theory of causal (and Bayesian)
networks (e.g. Pearl 2000). Formally, probabilities (more precisely: the joint prob-
ability distribution of the variables) are compatible with the causal network if the
so-called Parental Markov Condition holds: any variable in the network is indepen-
dent of its non-effects14 conditional on its direct causes. For instance, in Figure 1
opinion o1 is independent of opinion o2 conditional on the direct cause x; in Figure
2, o1 is independent of o2 given its direct causes x and c; in Figure 3, o1 is indepen-
dent of both o2 and x conditional on the only direct cause c; and so on. Note the
importance of causal independence between the opinions for (probabilistic) opinion
independence: if o1 had a causal effect on o2 then the Markov Condition would not
imply that o1 is conditionally independent of o2.

The following theorem gives causal conditions for our last two independence con-
ditions; the first two conditions are dealt with by a corollary below.

Theorem 1:15

Suppose probabilities are compatible with the causal network, and no opinion is

13This pair contains the state twice if the state is among the common causes, but such a redundancy
poses no problem.

14With the non-effects of a variable a we mean the variables which are not effects of a (and differ
from a).

15Kai Spiekermann would like to emphasize that this and all other formal results are the work of
Franz Dietrich.
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a cause of any other opinion. Then:
(a) Common-Cause-Conditional Independence holds
(b) Problem-Conditional Independence holds if the state is not a common effect

of variables each of which is, or privately causes, a different opinion

Part (a) is an instance of the Principle of Common Cause and as such should come
as no surprise to specialists.16 Part (b) settles the question of how the state should
(not) be causally related to the opinions for independence to be preserved after con-
ditionalizing also on the state (in addition to the common causes). The condition
stated in part (b) requires that none of the following three cases obtains: (i) two (or
more) opinions cause the state (as in Fig. 6a); (ii) private causes of two (or more)
opinions cause the state (as in Fig. 6b); (iii) an opinion and a private cause of a
different opinion cause the state.

Figure 6 gives counterexamples in which the state x is such a common effect.

Figure 6: Violations of the condition for Problem-Conditional Independence.

In 6a we see a causal setup where the state is a common effect of the opinions. A causal
structure like 6a arises if the opinions influence the state. For instance, the prediction
of a bank run might cause the bank run. Though interesting and sometimes very real,
such cases violate one of the core assumptions of many theories of social epistemology
(at least among those committed to a veritistic approach): the assumption that an
independently fixed fact determines correctness. ‘Self-fulfilling prophecies’ are ruled
out.

In Figure 6b, by contrast, the state is a common effect of private causes of opin-
ions. To show the relevance of such a setup, we need a more complex example.
Suppose an intelligence agency observes two different subjects in different parts of
the town. The agency knows from reliable sources that if and only if both subject
1 leaves the house at noon (c1) and subject 2 leaves the house at noon (c2), the
two subjects will have a conspiratorial meeting (x). One agent observes subject 1,
another subject 2, and for security reasons they cannot directly communicate with
each other. Both agents form opinions on whether the meeting will take place. Each
agent’s opinion is influenced only by his own observation (either c1 or c2), so that

16We none the less present a formal proof of part (a), given that standard renderings of the Common
Cause Principle are often less general than our application in that they focus on (in)dependence
between only two random variables and often assume that there is only one common cause. We
allow several opinions and common causes.
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these two causes influence both the opinions and the state. This example shows that
6b is a plausible causal setup, but, again, the condition in clause (b) of Theorem 1
is violated and Problem-Conditional Independence should not be assumed. Indeed,
PI is intuitively violated: conditional on the state, we can infer something about an
agent’s opinion if we learn about other opinions. For instance, if we know that the
conspiratorial meeting does not take place (we conditionalize on x being ‘no meet-
ing’) and we learn that agent 1 believes that the meeting will take place, we can infer
that subject 1 has left the house. But since there is no meeting, we also infer that
subject 2 stays at home and that agent 2 holds the corresponding opinion. We have
learned something about 2’s opinion from 1’s opinion, a violation of PI. A plausible
notion of opinion independence in cases like 6a and 6b must not conditionalize on
the state. Therefore, only Common-Cause-Conditional Independence and hence—as
there are no common causes—Unconditional Independence hold. Thus, even though
Unconditional Independence looks prima facie implausible, it can hold, somewhat
surprisingly, in common-cause-free setups.

Although Theorem 1 seems to deal only with two of our independence conditions
(CI and PI), an immediate corollary of part (a) gives us causal conditions for our
other two independence conditions:

Corollary:
Suppose probabilities are compatible with the causal network, and no opinion is
a cause of any other opinion. Then:
(a) State-Conditional Independence holds if only the state is a common cause
(b) Unconditional Independence holds if there are no common causes at all

Notice how strong the causal conditions for SI and UI are. Among the above figures,
only Figure 1 satisfies the condition for SI that the state is the only common cause,
and only Figures 6a and 6b satisfy the ‘no common cause’ condition for UI. It might
surprise that there exist plausible causal interconnections for which UI holds. Figure
6b is such a plausible network, as discussed above.

4 Jury theorem applications

We have claimed informally that those of our independence assumptions which con-
ditionalize (at least) on the state—namely, SI and PI— can be used in jury theorems,
that is, formal ‘wisdom of crowds’ arguments. The present section substantiates this
claim by stating two simple jury theorems, namely Condorcet’s classical jury theo-
rem, which is based on SI, and a new jury theorem, which is based on PI. Another
jury theorem based on PI is given in our companion paper Dietrich and Spiekermann
2013.

To state jury theorems, we first need to enrich our formal framework by an addi-
tional ingredient: the notion of correctness of opinions. We assume that there are only
two correctness levels—‘correct’ or ‘incorrect’—where exactly one opinion is correct
in any given state. It is easiest to also think of only two possible states—for instance,
‘guilty’ or ‘innocent’—and only two possible opinions (but, strictly speaking, this
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binaryness is not required).
Formally, for each state x let some opinion ox be specified as the ‘correct’ opinion

in state x. We write Ri for the event that i’s opinion is correct, that is, the event
that oi = ox. Jury theorems are concerned with the event that a majority of the
group is correct, that is, that more than half of the correctness events R1, . . . , Rn
hold. The question is how this probability of ‘group wisdom’ depends on the group
size n (which we assume to always be odd, to avoid ties under majority voting17).

Jury theorems typically assume that the correctness events R1, R2, . . . are inde-
pendent in some sense. However, causal reasoning of the sort presented above leads
to independence of the opinions o1, o2, . . ., rather than the correctness events. A key
issue therefore is whether opinion independence (in one of our four senses) implies
correctness independence (in the same sense).

The answer is negative for UI and CI. For instance, perfectly independent opinions
(satisfying UI) may lead to correlated correctness events. As an illustration, consider
independent opinions taking the value 1 or 0 with equal probabilities: Pr(oi = 1) =
Pr(oi = 0) = 1

2 for all agents i. Let the state be fully determined by the first two
opinions such that it is 1 if o1 = o2 = 1 and 0 otherwise. (This could be the case in
causal environments like those of Fig. 6.) Then R1 and R2 are negatively correlated
rather than independent: Pr(R1 ∩R2) < Pr(R1) Pr(R2). The reason is that

Pr(R1 ∩R2) = Pr(o1 = o2 = 1) + Pr(o1 = o2 = 0) =
1

4
+

1

4
=

1

2
Pr(R1) = Pr(o1 = o2 = 1) + Pr(o1 = o2 = 0) + Pr(o1 = 0 6= o2)

=
1

4
+

1

4
+

1

4
=

3

4
Pr(R2) = Pr(o1 = o2 = 1) + Pr(o1 = o2 = 0) + Pr(o2 = 0 6= o1)

=
1

4
+

1

4
+

1

4
=

3

4

where of course 1
2 <

3
4 ×

3
4 = 9

16 .
By contrast, the answer is positive for SI and PI, and more generally for any form

of independence which conditionalizes at least on the state. Let us state this fact
formally (the proof is trivial):

Proposition 1:
For any family ρ of random variables containing x (e.g. for ρ = x or ρ = π),
if the opinions o1, o2, . . . are independent conditional on ρ, then so are the
correctness events R1, R2, . . .

This fact is a key to the two jury theorems to be stated now. The first theorem
combines SI with Condorcet’s classical competence assumption:

Classical Competence: There is a parameter p in (1
2 , 1) such that for every

state x the conditional correctness probability Pr(Ri|x) is p for all individuals

17As usual, our two theorems can be generalized to possibly even group size n by assuming that
ties are broken by tossing a fair coin.
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This assumption states that in each given state the voters all have the same correctness
probability of more than 1

2 and less than 1.19 Combined with SI (and Proposition 1),
we may thus compare the correctness events R1, R2, . . . with independent tosses of
the same coin biased towards the truth. This metaphor provides an intuition for the
classical jury theorem:

Theorem 2:
Under the assumptions SI and Classical Competence, the probability of a correct
majority opinion strictly increases in group size and converges to one

We now turn to a new jury theorem based on the assumption of problem- (rather
than state-) conditional independence. For each value π of the problem π we consider
the voter’s problem-specific correctness probability, Pr(Ri|π), which is interpretable
either as a measure of how ‘easy’ this problem is (for agents like i) or as the voter’s
competence on problem π (see Dietrich 2008 and Dietrich and Spiekermann 2013).
Intuitively, when the problem is easy, the evidence and the circumstances are truth-
conducive. Conversely, when the problem is hard, the evidence is misleading. For
an extreme example of misleading evidence, assume all witnesses in a court trial lie,
falsely claiming the defendant is innocent, so that the problem-specific probability of
the correct ‘guilty’ opinion approaches zero. In the real world some problems π are
undeniably ‘hard’ in the sense that Pr(Ri|π) < 1

2—just consider the previous court
example. As another example of a hard problem due to misleading evidence, suppose
a team of doctors is asked to assess whether a woman is pregnant. They perform a
pregnancy test, which gives a rare false negative result. As for more realistic cases,
imagine voting on a factual question related to a complex and controversial public
policy issue, such as the use of genetically modified crops, bank bailouts, energy
policy, etc. Sometimes such issues are dominated by misleading evidence, rendering
the problem hard.

The existence of ‘hard’ problems need not undermine the plausibility of Classical
Competence, since hard problems might be less frequent than easy problems, so that
on average over all problems a voter might still be more often right than wrong for
each state x—so that Pr(Ri|x) exceeds 1

2 for all states x. But the Classical Compe-
tence assumption is of little use when combined with Problem-Specific Independence,
since these assumptions do not imply a jury-theorem-like conclusion that ‘crowds are
wise(r)’. We need a different competence assumption, which features the problem-
specific (rather than state-specific) correctness probability Pr(Ri|π). How might such
a competence assumption look like? It would be inappropriate to assume that the

18This condition (and the resulting Theorem 2) can be generalized by allowing p to depend on the
state x.

19Our statement of Classical Competence assumes that the conditional probability Pr(Ri|x) is
defined for all states x, i.e. that each state x occurs with non-zero probability. This excludes that
the state has a continuous distribution. Analogously, our statement of the Easy/Hard Dichotomy
below assumes that all problems π occur with non-zero probability. Both conditions could easily be
stated without this restriction, drawing on the generalized definition of conditional probabilities.
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problem-specific (rather than state-specific) correctness probability Pr(Ri|π) exceeds
1
2 for all problems π, since a specific problem may be ‘hard’, as explained.

We now introduce a problem-specific variant of the Classical Competence assump-
tion which does not state that the problem-specific correctness probability Pr(Ri|π)
always equals some fixed parameter p in (1

2 , 1). Rather, we allow this probability to
be below 1

2 for some ‘hard’ problems π. Apart from this, we keep our assumption
simple and close to the classical assumption. Indeed, just as in the classical assump-
tion the competence parameter p does not depend on the voter or the state, so in the
following assumption all voters are equally competent, all ‘easy’ problems are equally
easy, and all ‘hard’ problems are equally hard:

Easy/Hard Dichotomy: There is a parameter p in (1
2 , 1) such that for every

problem π the conditional correctness probability Pr(Ri|π) is: (a) either p for all
individuals i (we then call π an ‘easy ’ problem); or (b) 1− p for all individuals i
(we then call π a ‘hard ’ problem)20

Note that this assumption is silent on how many problems are easy or hard. In the ex-
treme case that all problems are easy, we obtain Classical Competence—but this case
is by no means plausible. The following jury theorem reaches a substantially different
conclusion than the classical theorem, since the probability of a correct majority does
not converge to one but to the proportion (probability) of easy problems:

Theorem 3.
Under the assumptions PI and Easy/Hard Dichotomy, the probability of a correct
majority opinion converges to Pr(π is easy) as the group size increases, and is:
(a) strictly increasing if Pr(π is easy) > Pr(π is hard)
(b) strictly decreasing if Pr(π is easy) < Pr(π is hard)
(c) constant if Pr(π is easy) = Pr(π is hard) (= 1

2)

By clause (a), ‘larger groups are wiser’ as long as the problem is more often easy than
difficult. The latter assumption about the problem can be defended by a stability
argument: if more problems are hard than easy, that is, if the voter is more often
wrong than right (and if as usual only two opinions, say, ‘yes’ or ‘no’, are possible),
then as soon as a voter realizes this (through observing her frequent failures) the voter
can systematically reverse each opinion, thereby making herself more often right than
wrong.

The fragility of ‘wisdom of crowds’ arguments is illustrated by the fact that The-
orem 3 would not survive the following tempting generalization of the assumption of
Easy/Hard Dichotomy. Suppose instead of requiring that the correctness probability
on a problem is either p ∈ (1

2 , 1) (for an easy problem) or 1 − p ∈ (0, 1
2) (for a hard

problem) one merely requires that this probability is either p ∈ (1
2 , 1) or q ∈ (0, 1

2)
where q may differ from 1 − p, that is, where p and q may have different distances
to the midpoint 1

2 . In such cases clauses (a)–(c) of Theorem 3 fail to follow, so that
larger crowds may be less ‘wise’, even if most problems are easy.

20This condition (and the resulting Theorem 3) could be generalized by allowing p to depend on
the state x contained in π.
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5 Conclusion

The widespread conceptual confusion about the notion of opinion independence has
hindered progress in assessing whether and when ‘crowds are wise’, and it explains the
disagreements in social epistemology about whether jury theorems have any relevance.
Understanding causal interrelations is indispensable for a proper analysis of opinion
independence.

Our paper distinguishes between four notions of independence, as summarized in
Table 1.

Table 1: Different notions of independence.
explicit state-conditionalization?

yes no

explicit common- yes PI CI
cause-conditionalization? no SI UI

The table highlights our two dimensions of categorization. To make a notion of
independence realistic, the conditionalization has to include the common causes; to
make it suitable for jury theorems—that is, formal ‘wisdom of crowds’ arguments—
the conditionalization has to include the state of the world, as illustrated in section
4 by two jury theorems.

State-Conditional Independence is the commonly used notion in orthodox state-
ments of Condorcet’s jury theorem. Common-Cause-Conditional Independence is
most generally defensible from the perspective of the theory of causal networks: it
applies always as long as the opinions do not causally affect each other. Problem-
Conditional Independence resembles Common-Cause-Conditional Independence, ex-
cept that it conditionalizes on the state of the world even when the state does not
feature among the common causes. Unconditional Independence is the simplest form
of independence. If the literature ignores this condition, it is probably because most
scholars take it to be obviously false; but surprisingly we find plausible causal setups
in which this independence assumption is justified.

Theorem 1 and its corollary give formal causal-network-theoretic foundations for
each of the four independence assumptions. These results suggest that the causal con-
ditions for the classical State-Conditional Independence assumption are quite special
and of limited real-world significance. One will usually have to go beyond classical
independence to make sound arguments in support of the ‘wisdom of crowds’.

Much further work is needed to develop the causal approach. We leave it as
a future challenge to develop new jury theorems for the aggregation of non-binary
opinions, such as judgement sets or degrees of belief.21

21We benefited from many constructive comments provided by our colleagues from the LSE Choice
Group. We would also like to thank three anonymous referees for their helpful advice.
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Appendix: Proofs

We now prove our main result (Theorem 1) and the two jury theorems presented as
applications (Theorems 2 and 3).

Proof of Theorem 1 :
Assume that probabilities are compatible with causal interconnections (in the sense
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of the Parental Markov Condition) and no opinion is a cause of another opinion.
We first prove part (a) and then part (b). The informal idea in both proofs is
that dependence between opinions can only arise if information can travel along a
path in the network without the path being ‘blocked’ by the variables on which
one conditionalizes. The formal definition of ‘blocking’ (or ‘d-separating’) and the
theorem whereby such blocking implies conditional independence are borrowed from
the theory of causal networks, where they play a central role. Throughout we write
C for the set of common causes.

Proof of part (a): We have to show that the opinions are independent conditional
on C. By the ‘blocking theorem’ in the theory of causal networks (e.g. Pearl 2000,
Theorem 1.2.4) it suffices to show that C blocks every path from an opinion to another
opinion, in the usual technical sense that for any such path

(i) either the path contains a chain ‘a→ b→ c’ or fork ‘a← b→ c’ such that b
is in C

(ii) or the path contains a collider ‘a → b ← c’ such that b is not in C and does
not cause any variable in C

To show this, consider any path from an opinion oi to another opinion oj . Call the
path (a1,a2, . . . , am), where m (≥ 2) is the number of variables in the path and
a1 = oi and am = oj . By definition of a path, any two neighbours at,at+1 are
connected by an arrow, of the form ‘at → at+1’ or ‘at ← at+1’.

Case 1 : the arrow between a1 and a2 points towards a2 (‘a1 → a2’). It is impossible
that between all neighbouring variables at,at+1 the arrow points towards at+1, since
otherwise oi would be a cause of oj . Let at be the earliest variable in the path such
that an arrow points from at+1 to at. Notice the collider ‘at−1 → at ← at+1’. It is
impossible that at is in C or causes a variable in C, since otherwise oi (which causes
at) would cause other opinions. Therefore C blocks the path via clause (ii).

Case 2 : the arrow between a1 and a2 points towards a1 (‘a1 ← a2’). It is impossible
that between all neighbouring variables at,at+1 the arrow points towards at, since
otherwise oj would be a cause of oi. Let at be the earliest variable in the path such
that an arrow points from at to at+1. Notice the fork ‘at−1 ← at → at+1’.

Subcase 2.1 : at ∈ C. Then C blocks the path via clause (i).

Subcase 2.2 : at 6∈ C. Then at (which already causes oi) cannot also cause oj . So
we do not have a chain ‘at → at+1 → . . . → am’. Choose as as the earliest variable
among at,at+1, . . . , am−1 such that the arrow between as and as+1 points towards
as. Note the collider ‘as−1 → as ← as+1’. The variable as neither belongs to C nor
causes a member of C, since otherwise the variable at (which causes as) would belong
to C. Therefore C blocks the path via clause (ii).

Proof of part (b): Now suppose that x is not a common effect of any opinions or private
causes thereof. We have to show that the opinions are independent conditional on
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{x}∪C. Again by the ‘blocking theorem’ (e.g. Pearl 2000, Theorem 1.2.4), it suffices
to show that {x} ∪ C blocks every path from an opinion to another opinion, that is,
that for every such path

(i*) either the path contains a chain ‘a→ b→ c’ or fork ‘a← b→ c’ such that b
is in {x} ∪ C

(ii*) or the path contains a collider ‘a → b ← c’ such that b is not in {x} ∪ C and
does not cause any variable in {x} ∪ C

Consider any path (a1, . . . , am) from an opinion oi (= a1) to another opinion oj
(= am).

Case 1 : the arrow between a1 and a2 points towards a2 (‘a1 → a2’). Construct a
collider ‘at−1 → at ← at+1’ as in Case 1 of part (a). Again, at neither is in C nor
causes a variable in C.

Subcase 1.1 : at neither is x nor causes x. Then, in summary, at neither belongs to
{x} ∪ C nor causes a variable in {x} ∪ C. So, {x} ∪ C blocks the path via clause (ii*).

Subcase 1.2 : at is x or causes x. We cannot have arrows ‘at ← at+1 ← . . . ← am’,
since otherwise at, and hence x, would be a common effect of the opinions a1 (= oi)
and am (= oj). Let as be the earliest variable among at,at+1, . . . , am−1 with an
arrow ‘as → as+1’. Note the fork ‘as−1 ← as → as+1’ (see Fig. A.1).

Figure A.1: The path in Subcase 1.2.

Subsubcase 1.2.1 : as ∈ C. Then we are done as {x} ∪ C blocks the path via clause
(i*).

Subsubcase 1.2.2 : as 6∈ C. Then we do not have arrows ‘as → as+1 → . . . → am’,
since firstly as does not commonly cause the opinion am (= oj) and another opinion
because as 6∈ C, and secondly as does not privately cause the opinion am because
otherwise at, and hence x, would be a common effect of two variables (namely oi and
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as) which are or privately cause distinct opinions. Given that we do not have arrows
‘as → as+1 → . . .→ am’, there must be a variable ar among as+1, . . . , am−1 with a
collider ‘ar−1 → ar ← ar+1’. Let ar be the last such variable among as+1, . . . , am−1.

Figure A.2: The path in Subsubcase 1.2.2.

Note that we either have arrows ‘ar ← . . .← am’ or arrows ‘ar ← . . .← ap → . . .→
am’ for some r < p < m (see Fig. A.2). We may assume without loss of generality
that in the second case ap does not belong to C, since otherwise {x} ∪ C would block
the path via clause (i*). Now,

(*) ar does not belong to C (hence, does not cause a member of C)

In the case of ‘ar ← . . .← am’ this is because otherwise the opinion am (= oj) would
cause another opinion, and in the case of ‘ar ← . . . ← ap → . . . → am’ it is because
otherwise ap would belong to C. Notice further that ar is an effect either of the
opinion am = oj (in the case of ‘ar ← . . .← am’) or of a private cause of this opinion
(in case of ‘ar ← . . .← ap → . . .→ am’). From this it follows that

(**) ar is not x and does not cause x

as otherwise x would be a common effect of on the one hand (via ar) the opinion oj
or a private cause thereof, and on the other hand (via at) the opinion oi (= a1). By
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(*) and (**), ar neither belongs to {x} ∪ C nor causes a member of {x} ∪ C. So, the
path is blocked via clause (ii*).

Case 2 : the arrow between a1 and a2 points towards a1 (‘a1 ← a2’). Construct the
fork ‘at−1 ← at → at+1’ as in Case 2 of part (a).

Subcase 2.1 : at ∈ {x} ∪ C. Then C blocks the path via clause (i*).

Subcase 2.2 : at 6∈ {x} ∪ C. Since in particular at 6∈ C, we can construct a collider
‘as−1 → as ← as+1’ as in Subcase 2.2 of part (a) (see Fig. A.3), and again as neither
belongs to C nor causes a member of C.

Figure A.3: The path in Subcase 2.2.

Subsubcase 2.2.1 : as neither is nor causes x. Then, in summary, as neither is in nor
causes a variable of {x} ∪ C, and hence {x} ∪ C blocks the path via clause (ii*).

Subsubcase 2.2.2 : as is or causes x. We cannot have arrows ‘as ← as+1 ← . . .← am’,
since otherwise x would be a common effect (via as) of the opinion oj (= am) and
the private cause at of the opinion o1 (= a1). If we have arrows ‘as ← . . . ← aq →
. . . → am’ for some s < q < m, then aq must be in C since otherwise aq would be a
private cause of the opinion am (= oj) so that x would be a common effect of the
private causes aq and at; and since ‘aq−1 ← aq → aq+1’ is a fork with aq ∈ C we
are done by clause (i*). Now assume the remaining case that we neither have arrows
‘as ← . . . ← am’ nor arrows ‘as ← . . . ← aq → . . . → am’. There must be a variable
ar among as+1, . . . ,am−1 such that we have a collider ‘ar−1 → ar ← ar+1’. Choose
ar to be the latest variable among as+1, . . . , am−1 with the collider property.

Note that we either have arrows ‘ar ← . . . ← am’ or arrows ‘ar ← . . . ← ap →
. . . → am’ for some r < p < m (see Figure A.4). We may assume without loss of
generality that in the second case ap 6∈ C, as otherwise we would be done by clause
(i*). Then

(***) ar does not belong to C (so, does not cause a member of C)

In the case of arrows ‘ar ← . . .← am’ the reason for (***) is that otherwise the opinion
am (= oj) would cause another opinion; and in the case of arrows ‘ar ← . . .← ap →
. . .→ am’ the reason is that otherwise ap would belong to C. Note further that ar is
caused either by the opinion am = oj (in the case of arrows ‘ar ← . . . ← am’) or by
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Figure A.4: The path in Subsubcase 2.2.2.

a private cause of this opinion (in case of arrows ‘ar ← . . . ← ap → . . . → am’). It
follows that

(****) ar is not x and does not cause x

since otherwise x would be a common effect firstly (via ar) of the opinion oj or a
private cause thereof, and secondly (via as) of the private cause at of the opinion oi
(= a1). By (***) and (****), ar does not belong to or cause a member of {x} ∪ C.
So, the path is blocked via clause (ii*). �

Although the classical jury theorem is of course well known, we give a proof of it
because of our more general framework (which allows for more than two states and
opinions).

Proof of Theorem 2 :
Assume SI and Classical Competence. Let Mn be the event that a majority of the
opinions is correct in the group of size n. For simplicity, we assume that the set of
possible states is countable and each possible state occurs with non-zero probability.
(The proof generalizes easily to an arbitrary set of possible states, by essentially
replacing sums by Lebesgue integrals.)
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Conditional on any possible state x, the events R1, . . . , Rn have independent
probabilities of p; so the probability that exactly k of these events hold is

(
n
k

)
pk(1−

p)n−k, whence the probability that a majority of the events hold is

βn,p ≡ Pr(Mn|x) =

n∑
k=(n+1)/2

(
n

k

)
pk(1− p)n−k

The unconditional probability of a correct majority can be expressed as

Pr(Mn) =
∑
x

Pr(Mn|x) Pr(x)

=
∑

βn,p Pr(x) = βn,p
∑
x

Pr(x) = βn,p

So, it suffices to show that βn,p is strictly increasing in (odd) n and converging to 1.
First, βn,p is strictly increasing in (odd) n because p ∈ (1

2 , 1) and the coefficient
βn,p satisfies the following well-known recursion formula:

βn+2,p = βn,p + (2p− 1)

(
n
n+1

2

)
[p(1− p)]

n+1
2

(e.g. Grofman et al. 1983).
Second, βn,p → 1 as n → ∞, by the following argument. Recall that βn,p is

the probability that the sum of n independent and identically distributed Bernoulli-
variables (which are 1 with probability p > 1

2) belongs to the interval
(
n
2 , n

]
. Equiva-

lently, βn,p is the probability that 1
n times this sum, that is, the correctness frequency,

belongs to the interval (1
2 , 1]. This probability converges to 1 because by the law of

large numbers the correctness frequency converges to p (∈ (1
2 , 1)) with probability

one. �

Finally, we prove our new jury theorem.

Proof of Theorem 3 :
Assume PI and Easy/Hard Dichotomy, and let p be the value in (1

2 , 1) specified in
the latter assumption. Again, let Mn be the probability of a majority for the correct
opinion in the group of (odd) size n. For simplicity, let there be only countably many
possible problems, where each problem occurs with positive probability. (The proof
generalizes easily to an arbitrary set of possible problems.) Let Πeasy resp. Πhard be
the set of easy resp. hard problems. Let peasy be the probability that the problem is
easy (i.e. belongs to Πeasy).

1. We first calculate the probability of majority correctness conditional on the prob-
lem.

Conditional on any given problem π in Πeasy, the events R1, . . . , Rn have inde-
pendent probabilities of p, so that, just as in the proof of Theorem 2, the probability
that a majority of these events hold is given by the coefficient

Pr(Mn|π) = βn,p ≡
n∑

k=(n+1)/2

(
n

k

)
pk(1− p)n−k
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By contrast, conditional on any given problem π in Πhard, the events R1, . . . , Rn have
independent probabilities of 1 − p, and the events of incorrect opinions R1, . . . , Rn
have independent probabilities of p; so the probability of a majority of incorrect
opinions is βn,p, and hence, the probability of a majority of correct opinions is one
minus that probability, that is,

Pr(Mn|π) = 1− βn,p.

2. We now calculate the unconditional probability of majority correctness. First, we
write

Pr(Mn) =
∑
π

Pr(Mn|π) Pr(π)

=
∑

π∈Πeasy

Pr(Mn|π) Pr(π) +
∑

π∈Πhard

Pr(Mn|π) Pr(π)

By part 1, it follows that

Pr(Mn) =
∑

π∈Πeasy

βn,p Pr(π) +
∑

π∈Πhard

(1− βn,p) Pr(π)

= βn,p
∑

π∈Πeasy

Pr(π) + (1− βn,p)
∑

π∈Πhard

Pr(π)

= βn,ppeasy + (1− βn,p)(1− peasy)

= βn,ppeasy + 1− βn,p − peasy + βn,ppeasy

= βn,p(2peasy − 1) + 1− peasy

3. We can finally prove the theorem’s conclusions. In the last expression for Pr(Mn),
the only term which depends on n is βn,p. As in the proof of Theorem 2, βn,p is
strictly increasing in (odd) n and converges to 1. First, since βn,p → 1, we have

Pr(Mn)→ 1× (2peasy − 1) + 1− peasy = peasy

Second, since βn,p is strictly increasing, Pr(Mn) is strictly increasing if 2peasy−1 > 0,
that is, peasy >

1
2 , or equivalently Pr(π is easy) > Pr(π is hard). Analogously, Pr(Mn)

is strictly decreasing if 2peasy − 1 < 0, that is, Pr(π is easy) < Pr(π is hard). And
Pr(Mn) is constant if 2peasy − 1 = 0, that is, Pr(π is easy) = Pr(π is hard). �
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