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Abstract

How can the propositional attitudes of several individuals be aggregated into

overall collective propositional attitudes? Although there are large bodies of

work on the aggregation of various special kinds of propositional attitudes,

such as preferences, judgments, probabilities and utilities, the aggregation

of propositional attitudes is seldom studied in full generality. In this pa-

per, we seek to contribute to filling this gap in the literature. We sketch

the ingredients of a general theory of propositional attitude aggregation and

prove two new theorems. Our first theorem simultaneously characterizes

some prominent aggregation rules in the cases of probability, judgment and

preference aggregation, including linear opinion pooling and Arrovian dicta-

torships. Our second theorem abstracts even further from the specific kinds

of attitudes in question and describes the properties of a large class of ag-

gregation rules applicable to a variety of belief-like attitudes. Our approach

integrates some previously disconnected areas of investigation.

1 Introduction

On the Humean picture of rational agency, an agent is a system that has

beliefs and desires about the world and acts in pursuit of its desires in ac-

cordance with its beliefs.2 Beliefs and desires can be modelled as attitudes
1We are grateful to Alan Hayek, Philippe Mongin, Ashley Piggins, John Weymark and

an anonymous referee for comments and suggestions.
2Our account of agency as well as our broad picture of the nature of propositional

attitudes follows List and Pettit (forthcoming). See also Dennett (1987) and Pettit (1993).
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that the agent holds towards certain propositions. In the simplest case, an

agent believes a proposition if it represents the world as being such that the

proposition is true; an agent desires a proposition if it would like the world

to be such that the proposition is true. Many different theoretical models

of propositional attitudes have been developed. In the standard theory of

rational choice in economics, for example, beliefs are represented as proba-

bilities, desires as utilities.3 Alternatively, to give just one other example,

beliefs can be represented as binary (acceptance/rejection) judgments, and

desires as binary (acceptance/rejection) goals or preferences.

In many contexts, individual human beings are not the only agents hold-

ing propositional attitudes. Many collectives also need to form such atti-

tudes, for instance when they are faced with certain joint decisions, or when

they are required to speak with a single voice.4 Legislatures, collegial courts,

juries, multi-member governments, executive boards of companies, expert

panels and groups of scientific collaborators are just a few examples of col-

lectives that are commonly required to form propositional attitudes. They

have to form beliefs on various facts about the world, as well as preferences

on what actions to take. Even groups as large and diverse as the entire

‘demos’ within a democracy are sometimes said to hold beliefs and desires.

How can a group come to hold such attitudes? More specifically, how

can the propositional attitudes of multiple individuals be combined into a

single set of collective such attitudes? The aim of this paper is to investi-

gate this problem of attitude aggregation. Notably, the need to aggregate

propositional attitudes arises not only in the interpersonal contexts of group

decision-making and collective agency just mentioned. It also arises in sev-

3Probability and utility functions are typically cardinal, but preferences, which are also

commonly invoked in economics, are often represented ordinally.
4The most famous variant of this problem is Arrow’s (1951/1963) problem of social

choice, in which the preferences of multiple individuals are to be aggregated into an overall

collective preference. The study of preference aggregation in Arrow’s tradition has recently

been complemented by the study of judgment aggregation (e.g., List and Pettit 2002,

Dietrich 2007a and references below). Both problems can be traced back to Condorcet

(1785). An account of group agency is developed in List and Pettit (forthcoming). There

is also a relevant literature on joint intentions, e.g., Bratman (2007), Gilbert (1989) and

Tuomela (2007).
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eral intrapersonal contexts. When a single agent decides what opinion to

form in light of the opinions of several others, he or she is effectively faced

with a problem of attitude aggregation.5 Furthermore, individual agents

are sometimes conceptualized as composite systems whose overall attitudes

result from the aggregation of the attitudes of its component ‘selves’; this

parallel between intrapersonal and interpersonal attitude aggregation is also

implicit in Plato’s famous analogy between the city and the soul.6 Finally,

an individual agent revising his or her beliefs in the light of new evidence

can also be seen as merging his or her original attitudes with the attitudes

warranted by the new evidence.7 Thus attitude aggregation problems arise

in contexts of social choice, individual deliberation based on the testimony

of others, multiple selves, and belief revision.

While the aggregation of many particular kinds of propositional atti-

tudes has already been investigated in great detail, the problem of attitude

aggregation is seldom addressed in full generality. There are large litera-

tures on the aggregation of preferences, the aggregation of judgments, the

aggregation of probabilities, and the aggregation of utilities,8 but these and

other fields of aggregation theory are surprisingly disconnected from each

other, and we still lack a unified theoretical framework that subsumes them

all. Moreover, there are some kinds of propositional attitudes — for instance,

those represented by ranking functions over propositions9 — whose aggre-

5E.g., Lehrer and Wagner (1981), Pettit (2006), List (2008). We will now refer to an

individual agent as he or she rather than it.
6E.g., Elster (1987), Minsky (1988), Pettit (2003), Plato (360 BC).
7E.g., van Benthem (2008).
8The literature on preference aggregation follows Arrow (1951/1963). On judgment ag-

gregation, see, e.g., List and Pettit (2002), Pauly and van Hees (2006), Dietrich (2007a),

Dietrich and List (2007a), Nehring and Puppe (2008) and surveys in List and Puppe

(2009), List (2009). On probability aggregation, see, e.g., Lehrer and Wagner (1981), Mc-

Conway (1981), Genest and Zidek (1986), Mongin (1995), Dietrich and List (2007b),

Dietrich (2008). Ordinal probability aggregation has been studied by Weymark (1997).

On utility aggregation, see, e.g., Sen (1982), d’Aspremont and Gevers (2002). List and

Pettit (2004) and Dietrich and List (2007a) discuss the relationship between judgment

aggregation and preference aggregation. In a conference talk, Mongin (2005) offered a

comparison of judgment aggregation and probability aggregation.
9For an overview, see Spohn (forthcoming).
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gation has never been studied. We are certainly unable to provide a fully

general theory of propositional attitude aggregation in this paper, but we

hope to sketch some ingredients of such a theory.

This paper has three main sections. In section 2, we informally introduce

the problem of attitude aggregation and explain its generality. In section

3, we present a new theorem which simultaneously characterizes a class of

aggregation rules in the cases of probability, judgment and preference ag-

gregation. And in section 4, we formulate the ingredients of the problem of

attitude aggregation more generally, describing how we can model proposi-

tional attitudes in a way that abstracts from the specific kinds of attitudes

in question and presenting a more general theorem. The paper ends with

some brief concluding remarks.10

2 The problem

As noted in the introduction, propositional attitudes are key concepts in

any theory of rational agency. On the standard Humean picture of rational

agency, an agent is characterized by having both beliefs and desires, which

play certain roles in determining the agent’s actions. On some alternative,

less established pictures, an agent’s attitudes fall into only one category

whose functional role in determining action subsumes that of both beliefs

and desires on the Humean picture.11 There are a variety of theories of

rational agency, which differ in the kinds of propositional attitudes they

ascribe to agents and in their account of the nature of those attitudes.

We can characterize different kinds of propositional attitudes along at

least two dimensions:12 first, their functional role within the agent’s rational

10A small disclaimer may be useful at the outset. Our terminology in this paper is based

on the terminology in social choice theory and in other related branches of aggregation

theory. From the perspective of epistemologists, some of our terminology will therefore

seem somewhat non-standard: e.g., we use the term ‘judgment’ to denote a binary belief-

like attitude and understand the term ‘rational’ in a thin, formal sense.
11For a discussion of some anti-Humean alternatives, see Lewis (1988, 1996), Bradley

and List (forthcoming).
12 In presenting this taxonomy, we follow closely the account of propositional attitudes

developed in List and Pettit (forthcoming).
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performance, e.g., whether they are belief-like or desire-like; and second,

their formal structure, e.g., whether they are binary or admit of degrees.

Propositions can also be represented in more than one way. On a syntactic

approach, they are represented by sentences in a suitable language; on a

semantic one, by sets of possible worlds. But since there exists a partial iso-

morphism between these two approaches, we here set this distinction aside,

focusing instead on the variation in the role and structure of propositional

attitudes.

An agent’s attitude towards a proposition plays the role of a belief if it

is part of the agent’s cognitive representation of what the world is like; it

plays the role of a desire if it is part of the agent’s motivational state as

to what the agent would want the world to be like. A belief-like attitude

towards a proposition captures the degree to which the agent cognitively

represents that proposition as being true or false; a desire-like attitude to-

wards a proposition captures the degree to which the agent is emotively

disposed in favour of or against its truth.13

An agent’s attitude towards a proposition is structurally binary if the

attitude is either on or off, i.e., the agent either takes an affirmative stance

towards the proposition or a non-affirmative one. In the recent literature on

judgment aggregation, binary belief-like attitudes are called judgments.14

According to this terminology, an agent either does or does not judge a

given proposition to be true. There is no such thing as judging to a greater

or lesser extent that the proposition is true. Similarly, binary desire-like

attitudes can be described as goals or, in a non-standard use of language,

categorical preferences — not to be confused with (ordinal) preferences, as

discussed below. On this picture, an agent either does or does not prefer a

particular proposition to be true; the truth of that proposition either is or

is not a goal for the agent.

On the other hand, an agent’s attitude towards a proposition is non-

binary if it admits of degrees, i.e., it can take a number of values, pos-

13As has become common, we distinguish between belief-like and desire-like attitudes

in terms of the different ‘directions of fit’ between the attitudes and the world.
14This terminology was introduced in List and Pettit (2002).
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sibly in between the extremes of full affirmation and full non-affirmation

(and maybe there is not even a theoretical maximum or minimum to the

strength of attitude). Non-binary propositional attitudes can take several

forms. In the standard theory of rational choice, as mentioned above, non-

binary beliefs are typically represented by subjective probability functions,

and non-binary desires by utility functions. Generally, non-binary proposi-

tional attitudes can be represented by suitable real-valued functions whose

properties capture the precise formal structure of the attitudes. If the func-

tions representing the attitudes are unique only up to positive monotonic

transformations — i.e., ‘stretching’, ‘squeezing’ and ‘shifting’ — then we say

that the attitudes are ordinal ; below we introduce an alternative relation-

theoretic representation of ordinal attitudes. By contrast, if the numerical

values of these functions have some significance over and above the order-

ing they induce over the propositions, then we say that the attitudes are

cardinal.

Table 1 summarizes this simple taxonomy of different kinds of proposi-

tional attitudes.15

structure binary non-binary

role ordinal cardinal

belief (cognitive) judgments
ordinal

probabilities

subjective

probabilities

desire (emotive)
goals; categorical

preferences

ordinal

preferences
utilities

Table 1: Different kinds of propositional attitudes

For an agent to count as rational, the agent’s propositional attitudes are

usually required to satisfy certain conditions, which depend on the kinds of

attitudes in question. For example, in the case of binary beliefs (i.e., judg-

ments), full rationality requires truth-functional coherence. So judging that

p, q and p∧q, which corresponds to a well-defined truth-value assignment, is

rational, while judging that p, q and ¬(p∧q), which is incompatible with any

15As noted, this draws on the taxonomy developed in List and Pettit (forthcoming).
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such assignment, is not. In the case of cardinal non-binary beliefs (i.e., sub-

jective probabilities), full rationality requires probabilistic coherence. For

instance, assigning probability 0.5 to p and 0.7 to p ∨ q is probabilistically

coherent and thus rational, while assigning probability 0.5 to p and 0.3 to

p ∨ q is not. Full rationality in the case of ordinal non-binary desires (i.e.,

preferences), to give a final example, requires representability of those de-

sires by an ordering over the relevant propositions. Thus a preference for p

to q to r is rational (with p, q and r mutually exclusive), while a preference

for p to q, for q to r and for r to p, which violates transitivity, is not. These

rationality conditions are just illustrative; we give more formal definitions

in subsequent sections. Any theory of rational agency will have to specify

not only what kinds of propositional attitudes are ascribed to an agent, but

also what the appropriate rationality conditions are.

We are now in a position to formulate the problem of attitude aggre-

gation: How can a combination — called profile — of propositional attitudes

across multiple individuals be aggregated into resulting ‘collective’ proposi-

tional attitudes? In particular, how can this aggregation be performed in

such a way as to ensure the rationality of those collective attitudes? The

answer to this question depends crucially on the kinds of attitudes and ra-

tionality conditions in question, and on how complex the set of propositions

is over which the attitudes are held.

Notoriously, the aggregation of judgments or preferences runs into diffi-

culties when rationality is understood as in our earlier examples and the at-

titudes are held over a set of propositions that is non-trivial in certain ways.

Arrow’s classic impossibility theorem, for instance, shows that when there

are three or more distinct objects of preference, only dictatorial aggregation

rules, where one fixed individual always determines the collective attitudes,

can aggregate rational individual preferences into rational collective ones in

accordance with some minimal conditions.16 The recent impossibility theo-

rems on judgment aggregation establish similar results for the aggregation

of judgments.17

16See Arrow (1951/1963).
17Compare the earlier references.
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The picture is more positive in the case of cardinal non-binary attitudes,

whether belief-like or desire-like. There are some attractive aggregation

rules based on the idea of averaging, which allow the aggregation of rational

individual probability assignments into rational collective ones in accordance

with some plausible conditions, and similarly the aggregation of rational

individual utility assignments into rational collective ones. In the case of

probability assignments — the belief case — those aggregation rules are the

so-called linear pooling rules, as defined formally in the next section. In the

case of utility assignments — the desire case — they are the utilitarian rules

in the conventional sense.18

However, can we go beyond a case-by-case analysis of the aggregation of

particular kinds of propositional attitudes and say something more general

about the aggregation of propositional attitudes which applies to more than

one box within Table 1? Our aim in the next section is to provide a first uni-

fied result about the aggregation of (i) subjective probabilities (i.e., cardinal

non-binary beliefs), (ii) judgments (i.e., binary beliefs), and (iii) preferences

(i.e., ordinal non-binary desires).

3 The first theorem: linear and dictatorial rules

for probability, judgment and preference aggre-

gation

Let X be a set of propositions, represented in some logic or language L, on

which attitudes are to be aggregated from the individual to the collective

level.19 We assume that X is finite, closed under negation and contains at

18The latter require not only the cardinality of attitudes but also their interpersonal

comparability, but we set this issue aside in the present discussion.
19Formally, L is set of all propositions in the logic or language. Propositions in L can

be represented semantically or syntactically. In the semantic case, L consists of subsets

of some set Ω of possible worlds, where L is an algebra, i.e., (i) if p, q ∈ L, then p∩ q ∈ L,

(ii) if p ∈ L, then Ω\p ∈ L, and (iii) ∅ ∈ L. To capture logical interconnections, we define

a subset Y of L to be inconsistent if ∩p∈Y p = ∅. In the syntactic case, L is the set of

sentences of some language which can express at least negation and conjunction, i.e., if

p, q ∈ L, then ¬p, p ∧ q ∈ L. Logical interconnections in L are captured by a notion
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least one contingent proposition.20 The precise content of X depends on the

aggregation problem in question. In one context, an expert panel may need

to form a collective attitude on the proposition ‘Annual CO2 emissions are

above 30000 million metric tons of carbon’ but not on the proposition ‘If CO2

emissions are above this threshold, then the Greenland ice shield will melt’,

while in another context the panel may need to form collective attitudes

on both of these propositions as well as their implication ‘The Greenland

ice shield will melt’. In the latter case, the set X could be expressed as

containing propositions p, p → q, q and their negations. It is perfectly

imaginable that individuals hold attitudes also on some propositions outside

the set X, but these attitudes are not taken into account in the aggregation.

For the purposes of our first theorem, we assume further that the propo-

sitions in X exhibit some non-trivial logical interconnections. By this, we

mean that X has at least one minimal inconsistent subset of three or more

propositions, i.e., an inconsistent subset of that size all of whose proper

subsets are consistent. Practically any interesting set of propositions has

these properties. For instance, if the set X contains propositions p, p → q,

q and their negations, as in the expert-panel example, then the assump-

tions are all met. In particular, the required minimal inconsistent subset is

{p, p→ q,¬q}.

We assume that there are n ≥ 2 individuals, labelled 1, 2, ..., n. Indi-

vidual i’s attitudes on the propositions in X are represented by an attitude

of consistency satisfying some regularity conditions (Dietrich 2007a): any pair {p,¬p} is

inconsistent; supersets of inconsistent sets are inconsistent; the empty set ∅ is consistent

and every consistent set of propositions S has a consistent superset T containing a member

of each pair p,¬p in L; and any conjunction p∧q is logically equivalent with the pair {p, q}.

A set of propositions S entails a proposition q if and only if S ∪ {¬q} is inconsistent. We

use the syntactic notation here, writing ‘p∧q’, ‘¬p’, ‘tautology’, and ‘contradiction’ rather

than ‘p ∩ q’, ‘Ω\p’, ‘Ω’ and ‘∅’, respectively. Other connectives are defined in the usual

way: e.g., p ∨ q stands for ¬(¬p ∧ ¬q), and p→ q for ¬(p ∧ ¬q).
20A proposition is contingent if it is neither a tautology nor a contradiction. Closure

under negation means that if some proposition p is in X, then so is its negation ¬p (more

precisely, a proposition logically equivalent to ¬p, so as to prevent X from having to

contain all of ¬p,¬¬p,¬¬¬p etc.). The set X is often called the agenda, and our non-

triviality condition is an example of an agenda condition (often called non-simplicity).
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function, denoted Ai, which assigns to each proposition p in X a value Ai(p)

in a set of possible values V . For the moment, we focus on two kinds of atti-

tudes: subjective probabilities (cardinal non-binary beliefs) and judgments

(binary beliefs). Below we also consider preferences (ordinal non-binary de-

sires), which we will model differently. In the case of subjective probabilities,

the value set V is the interval [0, 1], and an attitude function is rational if

it is probabilistically coherent, i.e., extendable to a well-defined probability

function on the entire logic or language.21 In the case of judgments, the

value set V is the set {0, 1}, and an attitude function is rational if it is

truth-functionally coherent, i.e., extendable to a well-defined truth-function

on the entire logic or language. Note that truth-functions are special cases

of probability functions restricted to the extremal values 0 and 1.

As already said, an n-tuple of attitude functions across individuals is

called a profile. We are looking for an aggregation rule, denoted F , which

assigns to each admissible profile (A1, A2, ..., An) a collective attitude func-

tion A = F (A1, A2, ..., An). Let us introduce four conditions that such an

aggregation rule might be expected to satisfy:

Universal domain. F accepts as admissible inputs all possible profiles of

rational individual attitude functions.

Collective rationality. F generates as its outputs rational collective atti-

tude functions.

Independence. F generates the collective attitude on each proposition p

in the set X as a function of individual attitudes on p.

To state the final condition, we say that an attitude function is compatible

with the implication p → q if the attitude function can be extended to a

probability or truth-function such that the value 1 is assigned to p→ q.

21Formally, Ai is rational if there exists a function Pr : L → R such that, for every

proposition p in X, Pr(p) = Ai(p), and Pr satisfies the axioms of probability theory, i.e.,

(i) Pr(p) ≥ 0 for every p ∈ L; (ii) Pr(p) = 1 for every tautology p ∈ L; and (iii) Pr(p∨ q)

= Pr(p) + Pr(q) whenever p and q are mutually inconsistent.
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Implication preservation. For all propositions p and q in the setX and all

admissible profiles, if all individuals’ attitude functions are compatible with

the implication p → q, then so is the collective attitude function generated

by F .

While the requirements of universal domain and collective rationality are

intuitively plausible, the main defence of independence is the democratic idea

that the collective attitude on each proposition should be determined by the

individuals’ attitudes on it. This reflects a local notion of democratic aggre-

gation, which underlies, for example, majority voting and other systems of

direct democracy. Under a more holistic notion, by contrast, the collective

attitude on a proposition p might also be influenced by individual attitudes

on other propositions deemed relevant to p, e.g., on ‘premises’ or ‘reasons’

for p.22 In many contexts, independence also turns out to be necessary for

avoiding various forms of manipulability of an aggregation rule.23

The idea underlying implication-preservation is also intuitive: if all in-

dividuals’ attitudes are compatible with some conditional proposition, for

example that if there is an increase in CO2 emissions, there will also be a

temperature increase, then the collective attitudes should not be incompati-

ble with it. Since the conditional p→ q need not be among the propositions

in X (even when p and q are in X), the statement of implication preser-

vation is formulated not in terms of the assignment of an attitude of 1 to

p→ q, but in terms of compatibility with this assignment.

Obviously, the precise meaning of the conditions — particularly univer-

sal domain and collective rationality — depends on whether the value set of

the attitude functions is the interval [0, 1] or just the set {0, 1}. In either

case, however, the four conditions characterize a very particular class of ag-

gregation rules. To state a general result, which applies to both subjective

probabilities and judgments, call an aggregation rule linear if there exist

non-negative weights w1, w2, ..., wn summing to 1 such that, for every profile

(A1, A2, ..., An) of rational individual attitude functions and every proposi-

22On holistic aggregation, see, e.g., List and Pettit (2006), Dietrich (2007b).
23On ‘agenda’ and ‘strategic’ manipulability, see Dietrich (2006) and Dietrich and List

(2007c), respectively.
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tion p in the set X, the collective attitude on p is the weighted average of

the individual attitudes on it, i.e.,

A(p) = w1A1(p) +w2A2(p) + ...+wnAn(p).

Theorem 1. An aggregation rule satisfies universal domain, collective ratio-

nality, independence and implication preservation if and only if it is linear.

This theorem has radically different implications in the non-binary and

binary cases. In the non-binary case of subjective probabilities, it is easy

to see that every combination of weights w1, w2, ..., wn gives rise to a lin-

ear aggregation rule, which satisfies the theorem’s conditions. The weighted

average of several coherent probability assignments is still a coherent prob-

ability assignment.

Implication 1. The probability aggregation rules satisfying the four con-

ditions are precisely the linear rules defined for all possible combinations

of weights. In particular, any combination of weights w1, w2, ..., wn defines

such a rule.24

In the binary case of judgments, by contrast, it is no longer true that

every combination of weights w1, w2, ..., wn gives rise to a well-defined linear

aggregation rule. In particular, unless all weight is assigned to a single

individual, the average of the individual attitudes is not generally restricted

to the extremal values 0 and 1, even in the presence of this restriction at the

individual level. In other words, the well-defined linear rules in the binary

case are all of a special form: they are dictatorial, i.e., one individual i has

weight 1 while all others have weight 0.

Implication 2. The judgment aggregation rules satisfying the four condi-

tions are precisely the dictatorial rules, which are the only well-defined linear

rules in this case.

24This implication generalizes a classic result by McConway (1981); see also Lehrer and

Wagner (1981). For a more technical account, see Dietrich and List (2007b).
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Theorem 1 and implications 1 and 2 are of particular interest in relation

to the recent literatures on probabilistic opinion pooling and judgment ag-

gregation, respectively. Linear rules have gained particular prominence in

recent debates on how to reconcile disagreements between epistemic peers.25

The main rules proposed in this context, namely splitting the difference,

sticking to one’s own opinion (applicable only under the individual delib-

eration interpretation of attitude aggregation) and deferring to another in-

dividual’s opinion, are all instances of linear rules. On the other hand, the

recent literature on judgment aggregation is replete with characterizations of

dictatorial rules.26 It is therefore illuminating to see that both linear prob-

ability aggregation rules and dictatorial judgment aggregation rules can be

characterized using the same conditions.

Can we extend this unified characterization further? In particular, does

theorem 1 have any implication for the aggregation of preferences as well?

Our route towards such an implication is less direct than our routes in the

previous cases. While it is also possible to represent preferences by attitude

functions, which are unique only up to positive monotonic transformations,

a more elegant representation employs binary relations. Suppose that an

agent holds preferences on some set of objects K. Since the focus of the

present paper is on propositional attitudes, we assume that the objects of

preferences are also propositions, but the set K could in principle be any set

of objects: candidates, policy options, states of affairs etc. We assume that

K has at least three, but finitely many, elements. We represent an agent’s

preferences on K — for simplicity, we assume they are strict — by a binary

relation ≻ on K, where p ≻ q is interpreted to mean that the agent prefers p

to q. The preference relation ≻ is rational just in case it satisfies the axioms

of strict preferences.27

Let us now construct a special set of propositions X consisting of all

binary ranking propositions of the form ‘p ≻ q’, where p and q are distinct

elements of K. We call a set of binary ranking propositions consistent if

25E.g., Elga (2007). Earlier contributions include Lehrer and Wagner (1981).
26See the earlier references.
27For all p, q, r in K, (i) if p ≻ q then not q ≻ p (asymmetry), (ii) if p ≻ q and q ≻ r,

then p ≻ r (transitivity), and (iii) if p �= q, then either p ≻ q or q ≻ p (connectedness).
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it respects the axioms of strict preferences. For example, the set {‘p ≻ q’,

‘q ≻ r’} (where p, q and r are distinct elements of K) is consistent, while the

set {‘p ≻ q’, ‘q ≻ r’, ‘r ≻ p’} is not. A preference relation ≻ on K can then

be reexpressed as a binary attitude function A on X, where A(‘p ≻ q’) = 1

if p ≻ q, and A(‘p ≻ q’) = 0 otherwise. The preference relation ≻ is rational

if and only if the attitude function A is truth-functionally coherent relative

to the axioms on strict preferences.

To apply theorem 1, we begin by observing that, since K has three or

more elements, the set X we have constructed has a minimal inconsistent

subset of three or more propositions and thereby meets the assumption re-

quired for the application of theorem 1. For instance, if p, q and r are three

distinct elements of K, then a minimal inconsistent subset of X of size 3 is

the set {‘p ≻ q’, ‘q ≻ r’, ‘r ≻ p’}. Moreover, the four conditions of theorem

1 can be restated as conditions on preference aggregation rules. Universal

domain and collective rationality correspond to their namesakes in Arrow’s

classic theorem on preference aggregation. Independence corresponds to

the independence of irrelevant alternatives, whereby the collective prefer-

ence over any pair of propositions p and q in K depends only on individual

preferences over this pair. Implication preservation, finally, strengthens the

Pareto principle, according to which any unanimous individual preference

for p over q should be preserved collectively.28 We obtain the following result

as an immediate implication of theorem 1, via implication 2:

Implication 3. The preference aggregation rules satisfying the four condi-

tions are precisely the dictatorial rules.

Setting aside the strengthening of the Pareto principle, this result lies in

the close vicinity of Arrow’s theorem.29 Theorem 1 thus provides a unified

result by which we can characterize not only linear probability aggregation

28To see why the Pareto principle follows from implication preservation, note that a

preference for p over q is equivalent to an attitude of 1 on ‘p ≻ q’, and hence to a value

of 1 given to the implication ‘¬(p ≻ q) → (p ≻ q)’ by any truth-function extending the

attitude function.
29For an exact match of Arrow’s theorem, see Dietrich and List (2007a).
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and dictatorial judgment aggregation, but also Arrovian dictatorial prefer-

ence aggregation using the same conditions.

Before generalizing this picture further, it is worth noting that our initial

assumption for the applicability of theorem 1 — namely thatX has a minimal

inconsistent subset of three or more propositions — is logically tight: it is not

only sufficient for the theorem but also necessary.30 Whenever X violates

this assumption — i.e., all its minimal inconsistent subsets are of size at most

two — there do exist aggregation rules that satisfy all of the theorem’s con-

ditions and yet are not linear or dictatorial. In the probabilistic case, those

rules are somewhat complicated to construct, but in the case of judgment

and preference aggregation, they include majority rule.31 Thus our theorem

offers a dual characterization: first, it characterizes the class of aggregation

rules satisfying the theorem’s conditions; and secondly, it characterizes the

sets of propositions X for which this characterization of aggregation rules

holds.

4 The second theorem: systematic rules more gen-

erally

In the previous section, we have offered a first unified result on three seem-

ingly disparate aggregation problems: probability aggregation, judgment

aggregation and preference aggregation. Can we obtain an even more gen-

eral result, which abstracts further from the specific kinds of attitudes in

question? In this section, we present a first result which applies to a very

general class of belief-like attitudes, including not only judgments and sub-

jective probabilities, but also non-binary truth-value assignments, fuzzy and

vague truth-value assignments and ranking functions.

As before, X is the set of propositions on which attitudes are to be

30Assuming n ≥ 3.
31For an explicit construction in the probabilistic case, see Dietrich and List (2007b).

In the binary case, majority voting has the required properties when n is odd, i.e., there

cannot be majority ties. For general group size, one can use majority voting among any

non-singleton subgroup with odd size.
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held, and an attitude function Ai assigns to each proposition p in X a value

Ai(p) in some set of possible values V . Again, the rationality conditions

on attitude functions depend on the kinds of attitudes in question. While

in the previous section we defined the rationality of an attitude function

in terms of its extendability to a probability or truth-function, depending

on whether the attitudes are subjective probabilities or judgments, we now

define rationality more abstractly in terms of extendability to a so-called

valuation function. This is a function, denoted f , which assigns to each

proposition p in the logic or language L a value f(p) in the value set V ,

subject to some relevant constraints. The precise constraints can take a

number of different forms — the constraints on probability or truth-functions

being special cases. But minimally, it must be possible to arrange the values

within V in some complete or partial order of strength, denoted ≥ and

bounded below by some minimal element vmin, such that the admissible

valuation functions respect that order of strength:32

(i) For any admissible valuation function f and any propositions p and

q in L, if p logically entails q, the value of q must be at least as great

as that of p, i.e., f(q) ≥ f(p).

(ii) For any admissible valuation function f and any propositions p and q

in L, if q has the minimal value, i.e., f(q) = vmin, the disjunction p∨q

has the same value as p, i.e., f(p ∨ q) = f(p).

(iii) For any value v in V , any non-tautological proposition p in L and any

proposition q in L that entails p but is not equivalent to p, there exists

an admissible valuation function f such that f(p) = v and f(q) =

vmin.
33

32A partial ordering ≥ on V is a reflexive, transitive and anti-symmetric binary relation.

A minimal element with respect to ≥ is an element vmin ∈ V such that, for all v ∈ V ,

v ≥ vmin.
33The notion of ‘admissible’ valuation functions can be formally captured by the set of

all such functions; call it F . Conditions (i) to (iii) contain minimal requirements on the

functions contained in F . In particular, (i) and (ii) require each f in F to have certain

properties, and (iii) requires F to be at least minimally rich, i.e., to contain at least certain

functions f from L to V .
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In the familiar cases of probability theory and classical logic, the value

sets are the interval [0, 1] and the set {0, 1}, respectively; the ordering on

V is the usual order on the numbers, with minimal element vmin = 0, i.e.,

zero probability or falsehood; and the admissible valuation functions are the

probability functions and truth-functions, respectively.34 Below we discuss

further examples.

In this general framework, as already indicated, an attitude function Ai

is rational if it is extendable to an admissible valuation function.35 It is

easy to see that this definition reduces to the special cases of probabilistic

coherence or truth-functional coherence when the admissible valuation func-

tions are precisely the probability functions or truth-functions. As before,

we are looking for an aggregation rule F which assigns to each admissible

profile (A1, A2, ..., An) a collective attitude function A = F (A1, A2, ..., An).

In particular, we impose the following conditions on such a function:

Universal domain. As before.

Collective rationality. As before.

Independence. As before.

Consensus preservation. If all individuals submit the same attitude func-

tion to the aggregation rule, then this attitude function is also the collec-

tive one, i.e., F (A,A, ..., A) = A for every admissible unanimous profile

(A,A, ..., A).

34Probability and truth-functions satisfy property (i) because the probability or truth-

value of propositions decreases (weakly) in their logical strength. They satisfy (ii) because

the probability or truth-value of a proposition does not change by adding a disjunct that

has zero probability or is false. They satisfy (iii) because there are enough degrees of

freedom in how probabilities or truth-values can be assigned.
35Of course, this is to be understood as a thin, formal notion of rationality. Our model

allows the analysis of more demanding notions of rationality as well, by imposing additional

constraints on rational attitude functions or by requiring extendability to an admissible

valuation function satisfying some additional requirements. We here focus on the simplest

case.

17



The following result holds. Call an aggregation rule systematic if there

exists some propositionwise decision criterion d which maps each n-tuple

of values v1, v2, ..., vn in V to a single value v = d(v1, v2, ..., vn) such that,

for every profile (A1, A2, ..., An) of rational individual attitude functions and

every proposition p in the set X, the collective attitude on p is determined

by applying the decision criterion d to the individual attitudes on p, i.e.,

A(p) = d(A1(p), A2(p), ..., An(p)).

Examples of propositionwise decision criteria are various possible averaging

criteria as in the case of linear rules.

Theorem 2. Assuming the propositions in the set X exhibit sufficiently rich

logical interconnections, every aggregation rule satisfying universal domain,

collective rationality, independence and consensus preservation is system-

atic.36

What do we mean by sufficiently rich logical interconnections? It is not

enough for the theorem to require, as in the earlier results, that X has

a minimal inconsistent subset of three or more propositions. Instead, we

require, more strongly, that the propositions in X are path-connected : for

any pair of propositions p and q in X, it is possible to ‘reach’ q from p via a

sequence of pairwise conditional entailments.37 Examples of path-connected

sets are the set containing propositions p, q, p∧q, p∨q and their negations as

well as the set of binary ranking propositions over three or more objects as

defined in the previous section. Moreover, any subset of the logic or language

L that is closed under conjunction or disjunction is path-connected.38

36This theorem generalizes earlier results in the binary cases of abstract aggregation

(Nehring and Puppe 2002, Dokow and Holzman forthcoming) and judgment aggregation

(Dietrich and List 2007a).
37Formally, there exists a sequence of propositions p1, p2, ..., pk ∈ X with p1 = p and

pk = q such that, for each j, {pj} ∪ Y logically entails pj+1, where Y is some subset of X

consistent with each of pj and ¬pj+1. This condition was first introduced in an abstract

aggregation setting by Nehring and Puppe (2002) under the name total blockedness.
38Assuming that the subset contains more than two propositions and that tautologies

and contradictions are removed from it.
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Theorem 2 basically tells us that, in the general case, any aggregation

function satisfying the theorem’s four conditions is definable in terms of a

single propositionwise decision criterion.39 Linear or dictatorial rules, as

discussed in the previous section, are of course special cases of such rules.

How general is the present theorem? As we have already noted, prob-

ability functions and truth-functions are instances of valuation functions,

and thus the theorem covers the cases of probability and judgment aggre-

gation. Other important examples of valuation functions are non-binary

truth-functions, fuzzy or vague truth-functions, and ranking functions. Non-

binary truth-functions take values in the set V = {0, 1, ..., T − 1}, where T

is the number of possible truth-values, and are defined as in T -valued logic.

Fuzzy or vague truth-functions take values in the interval V = [0, 1] and

are defined as in fuzzy logic or a suitable semantics for vagueness.40 Rank-

ing functions, as defined by Spohn (forthcoming), take values in the set

V = {0, 1, ...} ∪ {∞} of non-negative integers together with infinity. The

rank of a proposition p can be interpreted as a degree of rejectability or

disbelief, and the order ≥ is thus defined as the reverse of the natural order,

leading to the minimal value vmin = ∞.41 To give an example in which

the order ≥ is incomplete, let the set of values V have four elements: vmin

(‘rejectable’), vmax (‘acceptable’), u (‘undecidable out of conflicting infor-

mation’) and u′ (‘undecidable out of conflicting intuition’). Let ≥ be the

partial order on V that ranks vmin below all other values and vmax above all

39 In the special case of probabilities or judgments, the theorem’s path-connectedness

assumption on X is not only sufficient for the result but also necessary, i.e., in its absence,

there exist non-systematic rules satisfying the theorem’s conditions. In the binary case,

see also Nehring and Puppe (2002).
40 If L is a propositional logic or language with ¬ and ∧ as its only connectives, a T -

valued truth-function is usually defined as a function f : L → {0, 1, ..., T − 1} satisfying

f(p∧p) = min{f(p), f(q)} and f(¬p) = T −f(p), and a fuzzy truth-function as a function

f : L→ [0, 1] satisfying f(p ∧ p) = min{f(p), f(q)} and f(¬p) = 1− f(p). In both cases,

the order ≥ on V is the usual one.
41A ranking function gives tautologies maximal rank 0, contradictions rank ∞, and

disjunctions p∨ q the minimum of the ranks of p and q (with ‘minimum’ understood here

in terms of the natural order). Ranking functions are particularly useful in belief revision

theory, since it is possible to define conditional ranks as well as unconditional ones.
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other values while leaving u and u′ unranked relative to each other. Let a

valuation function be simply any function from L to V = {vmin, vmax, u, u
′}

satisfying conditions (i) and (ii) above. For instance, the proposition ‘it

will rain’ may be deemed undecidable out of conflicting information (u), the

proposition ‘a party in the rain is fun’ may be deemed undecidable out of

conflicting intuition (u′), the conjunction ‘it will rain and a party in the rain

is fun’ may be deemed rejectable (vmin) and the corresponding disjunction

acceptable (vmax).
42

In each of these cases, our theorem implies that, when the rationality

of propositional attitudes is defined in terms of extendability to a valuation

function with the specified properties, the only aggregation rules satisfying

universal domain, collective rationality, independence and consensus preser-

vation (for a set of propositions X with sufficiently rich interconnections)

are the systematic rules.

5 Concluding remarks

After presenting a taxonomy of different kinds of propositional attitudes —

in terms of their role and structure — we have formulated the problem of

propositional attitude aggregation as follows. There is a set of propositions

on which attitudes are to be held, represented in some suitable logic or lan-

guage. An agent’s attitudes are usually represented by an attitude function,

which assigns to each proposition in that set a particular value from some set

of possible values. The value assigned to a proposition could be its truth-

42Some notable exceptions of functions violating our conditions for valuation functions

above are capacity functions and Dempster-Shafer belief and plausibility functions (Demp-

ster 1967; Shafer 1976). Such functions are vaguely described as being non-additive vari-

ants of probability functions. More precisely, they resemble probability functions in that

they take values in the interval [0, 1], assign a value of 0 to contradictions and a value

of 1 to tautologies, and are monotonic (i.e., they satisfy (i)), but crucially the value of

disjunctions p ∨ q of mutually exclusive disjuncts may differ from the sum of values of p

and q. For instance, someone may assign value 0 to the proposition that it will rain on

Monday and also to the proposition that it will rain on Tuesday, but a positive value to

the proposition that it will rain on either Monday or Tuesday. This may cause a violation

of our condition (ii) on valuation functions.
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value, probability value or some other measure of its acceptability or re-

jectability. An agent’s attitudes are deemed rational if the attitude function

representing them is extendable to a well-defined valuation function on the

entire logic or language. Important special cases of such valuation functions

are truth-functions and probability functions. An aggregation rule, finally,

maps each admissible combination of individual attitude functions to a re-

sulting collective attitude function. Aggregation rules can be axiomatically

characterized in terms of certain conditions; we have here considered only

on a few examples of such conditions, namely universal domain, collective

rationality, independence, and implication or consensus preservation.

To illustrate our approach, we have proved two new theorems. The

first theorem simultaneously characterizes linear and dictatorial aggrega-

tion rules in the important cases of probability, judgment and preference

aggregation and thus offers a first step towards integrating the literatures

on probabilistic opinion pooling, judgment aggregation and Arrovian pref-

erence aggregation. It is illuminating to see that such seemingly disparate

things as splitting-the-difference in probabilistic opinion pooling and dicta-

torships in preference aggregation can be axiomatically characterized using

the same conditions. The second theorem abstracts even further from the

specific kinds of attitudes in question and describes a large class of aggrega-

tion rules — the systematic rules — applicable to a wide variety of belief-like

attitudes.

Of course, one may wish to generalize these results further, by studying

an even broader variety of propositional attitudes and considering aggre-

gation rules other than systematic, linear or dictatorial ones. The present

results, however, are only meant to be illustrative of our more general ap-

proach. We hope that this paper will not only establish the ingredients of a

general theory of propositional attitude aggregation, but also open up new

avenues for further research.
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A Appendix: Proofs

The notation is as introduced above. The proofs presented here are formu-

lated for the case that propositions are represented syntactically, but the

proofs in the semantic case are very similar (and, if anything, simpler; for

example, Lemma 1 becomes unnecessary).

Theorem 1 is derived from two earlier results of ours.

Proof of theorem 1. (1) First, consider a linear rule. Obviously, the

rule satisfies independence and universal domain. In the binary case, we

have already explained that linear rules are dictatorial, which implies that

implication preservation and collective rationality are satisfied as well. In the

probabilistic case, collective rationality and implication preservation follow

from the fact that a weighted average of probability functions on L is again

a probability function.

(2) Conversely, suppose a rule F satisfies all four conditions. In the

case of binary attitudes, these conditions become equivalent to those in an

earlier impossibility theorem;43 and by this theorem F is dictatorial; so F is

linear (with all weight assigned to the dictator). In the case of probabilistic

attitudes, our four conditions become equivalent to conditions of another

43Dietrich and List (2008).
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earlier theorem after some translation work,44 and by this theorem F is

linear. �

Our proof of theorem 2 is self-contained and builds on the following

lemmas.

Lemma 1 Every valuation function f : L→ V satisfies f(p) = f(q) for all

logically equivalent p, q in L.

Proof. Let f be a valuation function and let p, q in L be logically equiva-

lent. As q entails p and p entails q, and by property (i) of valuation functions,

f(p) ≥ f(q) and f(q) ≥ f(p); so, by anti-symmetry of ≥, f(p) = f(q). �

Lemma 2 For every valuation function f and all p1, ..., pk in L (k ≥ 1) if

f(p1) = ... = f(pk) = vmin then f(p1 ∨ ... ∨ pk) = vmin.

Proof. Let f be a valuation function. The proof is by induction on k. For

k = 1 the claim is obvious. Now suppose the claim holds for k, and consider

p1, ...., pk+1 in L such that f(p1) = ... = f(pk+1) = vmin. By induction

hypothesis, f(p1 ∨ ... ∨ pk) = vmin, and hence by one of our assumptions on

valuation functions

f(p1 ∨ ... ∨ pk+1) = f((p1 ∨ ... ∨ pk) ∨ pk+1) = f(pk+1) = vmin. �

Lemma 3 Let an aggregation rule F satisfy universal domain, indepen-

dence and unanimity preservation. For all p in X, all v in V , and all pro-

files (A1, ..., An) of rational attitude functions, if A1(p) = ... = An(p) = v

then F (A1, ..., An)(p) = v.

Proof. Let F be as specified, consider any p in X and any (A1, ..., An) in

the universal domain, and assume that A1(p) = ... = An(p). The (universal)

44The result is the second theorem in Dietrich and List (2007b). An expositional differ-

ence is that in Dietrich and List (2007b) we aggregate probability measures defined not

on X but on a full algebra that corresponds to the present set L. In turn, the conditions

we use there (independence etc.) quantify only over the members of X . The linearity

conclusion obtained there carries over to the present framework, as can be verified.
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domain of F also contains the unanimous profile (A1, ..., A1). Applying

independence and then unanimity preservation, we have F (A1, ..., An)(p) =

F (A1, ..., A1)(p) = A1(p). �

Lemma 4 Let an aggregation rule F satisfy universal domain, collective

rationality, independence and unanimity preservation. For all p, q in X, if

p conditionally entails q, then Dp ≤ Dq, where Dp,Dq : V
n → V are (by

independence, existent) local decision rules for p and q, respectively.

Proof. Let F be as specified, and let p in X conditionally entail q in X,

say in virtue of Y ⊆ X. Let (v1, ..., vn) in V
n. We show that Dp(v1, ..., vn) ≤

Dq(v1, ..., vn).

Check that q∨(¬∧y∈Y y) is not a tautology and that [¬p∧q∧(∧y∈Y y)]∨

[¬ ∧y∈Y y] entails it without being equivalent to it. So, by property (iii) of

valuation functions, there are valuation functions f1, ..., fn such that, for all

i,

fi(q ∨ (¬ ∧y∈Y y)) = vi and fi([¬p ∧ q ∧ (∧y∈Y y)] ∨ [¬ ∧y∈Y y]) = vmin.

Consider any individual i. By property (i) of valuation functions, it follows

that

fi(¬p ∧ q ∧ (∧y∈Y y)) ≤ vmin,

fi(r ∧ [¬ ∧y∈Y y]) ≤ fi(¬ ∧y∈Y y) ≤ vmin for all r in L,

fi(y) ≤ vmin for all y in Y ,

and hence, as vmin is minimal,

fi(¬p ∧ q ∧ (∧y∈Y y)) = vmin,

fi(r ∧ [¬ ∧y∈Y y]) = fi(¬ ∧y∈Y y) = vmin for all r in L,

fi(¬y) = vmin for all y in Y .

The first two of these three equation lines imply (using Lemma 1 and one
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of our assumptions on valuation functions) that

fi(p) = fi([p ∧ (∧y∈Y y)] ∨ [p ∧ (¬ ∧y∈Y y)])

= fi(p ∧ (∧y∈Y y)) = vi,

fi(q) = fi([p ∧ (∧y∈Y y))] ∨ [¬p ∧ q ∧ (∧y∈Y y))] ∨ [q ∧ ¬ ∧y∈Y y])

= fi([p ∧ (∧y∈Y y))] ∨ [¬p ∧ q ∧ (∧y∈Y y))])

= fi(p ∧ (∧y∈Y y))) = vi.

Define Ai : X → V as fi|X , the restriction of fi to X. By universal domain,

the profile (A1, ..., An) is in the domain of F . As we have just shown,

Ai(p) = Ai(q) = vi for all individuals i = 1, ..., n.

So, letting A denote the output attitude function F (A1, ..., An) and f : L→

V a (by collective rationality existent) extension of A to a valuation function,

we have

f(p) = Dp(v1, ..., vn) and f(q) = Dq(v1, ..., vn).

Further, for each y in Y we have shown that Ai(¬y) = vmin for all i, so that

by Lemma 3 A(¬y) = vmin, i.e., f(¬y) = vmin. So f(∨y∈Y ¬y) = vmin by

Lemma 2, i.e., f(¬ ∧y∈Y y) = vmin by Lemma 1. Hence, by property (i)

of valuation functions, f(r ∧ (¬ ∧y∈Y y)) = vmin for all r in L. So, using

another one of our assumptions on valuation functions and then Lemma 1,

f(r ∧ (∧y∈Y y)) = f([r ∧ (∧y∈Y y)] ∨ [r ∧ (¬ ∧y∈Y y)]) = f(r) for all r in L.

In particular,

f(p ∧ (∧y∈Y y)) = f(p) and f(q ∧ (∧y∈Y y)) = f(q).

So, by property (i) of valuation functions and as p ∧ (∧y∈Y y) entails q ∧

(∧y∈Y y), we have f(p) ≤ f(q), i.e., Dp(v1, ..., vn) ≤ Dq(v1, ..., vn). �

Proof of Theorem 2. Let the aggregation rule satisfy all four conditions.

The last lemma tells us that, for all p, q inX, we haveDp ≥ Dq andDq ≥ Dp,

and hence Dp = Dq as ≥ is anti-symmetric. �
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