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Abstract 

 

The Born’s rule to interpret the square of wave function as the probability to get a specific 

value in measurement has been accepted as a postulate in foundations of quantum mechanics. 

Although there have been so many attempts at deriving this rule theoretically using different 

approaches such as frequency operator approach, many-world theory, Bayesian probability 

and envariance, literature shows that arguments in each of these methods are circular. In view 

of absence of a convincing theoretical proof, recently some researchers have carried out 

experiments to validate the rule up-to maximum possible accuracy using multi-order 

interference (Sinha et al, Science, 329, 418 [2010]). But, a convincing analytical proof of 

Born’s rule will make us understand the basic process responsible for exact square 

dependency of probability on wave function. In this paper, by generalizing the method of 

calculating probability in common experience into quantum mechanics, we prove the Born’s 

rule for statistical interpretation of wave function. 

© 2017 Science Front Publishers 
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1. INTRODUCTION 

Modern quantum theory is mainly based on two postulates. First, the generalized state 

ψ  of a physical system can be represented by a vector in Hilbert space created by the 

orthogonal unit vectors (or eigen vectors). Each physically possible value of the observable 

represents an independent direction depicted by orthogonal eigen vectors in Hilbert space. 

Generalized state of the physical system can be any vector lying in this space which is a 

superposition of components along these eigen vectors. For example, spin of a system along 
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(say) Z-axis can be a superposition of eigen states for up and down states (
2

h± ). However, upon 

measurement, system returns either up (
2

h+ ) or down (
2

h− ) state as these are the only 

physically possible values. Similarly, when position of a particle trapped in a box is represented 

by a wave, we mean that each position represents an eigen vector in Hilbert space and value of 

wave function represents the projection of sate vector on the corresponding eigen vector. Also 

here, although the generalized state of particle is a mixed state of position eigen vectors, 

measurement of position produces only one value corresponding to only one eigen vector. Then 

the question arises, which one should it be? Whether the probability of selection of a specific 

eigen vector should be proportional to the magnitude of projection of state vector on it ψie  

or should it be magnitude raised to some power n  i.e. 
n

ie ψ . To answer this question; comes 

the Born’s rule in the form of a second postulate of quantum mechanics that assumes n=2. This is 

known as Born’s interpretation of quantum mechanics [1]. Thus, Born’s rule states that the 

probability to get the eigen value ei  in any experiment is given by, 

 

2

)( ψii eeP =                       (1) 

If )(xψ  represents the wave function for position, probability for finding the particle at position 

x is 
2

)(xψ  as it is same as the square of projection of state ψ  on eigen vector x . Since the 

discovery of this rule by Born in 1926, there have been numerous experiments till today to 

validate it. Recently, by observing null result of multi-order interference in three slit experiment, 

Sinha et al [2] have demonstrated that the exponent in expression for probability 
2

ψ  is correct 

up to an accuracy of 10
-2

. These experimental observations assume significance as no convincing 

theoretical proof of this rule has been formulated till date. Initially, Born had proposed this rule 

based on intuition that light quanta and matter must behave in a similar manner and wave 

function might be analogous to electric field. In his Nobel lecture [3], Born stated, “Again an 

idea of Einstein’s gave me the lead. He had tried to make the duality of particles - light quanta or 

photons - and waves comprehensible by interpreting the square of the optical wave amplitudes as 

probability density for the occurrence of photons. This concept could at once be carried over to 

the ψ-function: ψ
2
 ought to represent the probability density for electrons (or other particles).”  

Of course after this remarkable postulate of quantum theory was experimentally 

confirmed, there have been numerous attempts at deriving it. Among these, relative frequency or 

many-worlds [4-6] theory and Bayesian probability [7-9] theory are dominant in literature. 

Arguments in many-worlds theory which claims to derive probability from non-probabilistic 

axioms of quantum theory have been proved to be circular [10-16] because of hidden 

assumptions and preferred basis problem. The subjective Bayesian approach which declares the 

physical state of an object as an epistemic state (state of knowledge of observer) has been 

controversial [17-18] and this approach is not convincing since it cannot explain why Born’s rule 
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which is a law of nature for physical interactions should depend upon knowledge of the observer. 

Quantum mechanics and its rule remains equally valid where no observations are being made by 

us (say in distant galaxies). Zurek’s mechanism of environment assisted invariance (envariance) 

[18-20] is also alleged to be circular by various authors [21-23] because of some fundamental 

assumptions that go into the derivation. 

However in this paper, we prove the Born’s rule for statistical interpretation of quantum 

mechanics by generalizing the method of calculating probability in common experience into 

quantum mechanics.  

 

2.  PROOF OF BORN’S RULE 

 

Let us consider a basket containing total 12 balls out of which 4 are red balls, 4 are 

yellow balls and 4 are green. If we randomly pick a single ball from the basket, then the 

probability that it is red is (4/12). In this case, the probability of a particular outcome is 

calculated by the ratio of contribution of constituent part (i.e. number of red balls) to the total 

contributions in the system (i.e. total number of balls of any color). This method of calculating 

the probability becomes successful because in this case, total characteristic of the system is 

scalar addition of the contributions of its constituent parts. For example if we increase the 

number of red balls, total number of colored balls also increases in a linear manner with the 

scalar value of the changing contribution. However, suppose the color painted on the balls is 

such a chemical that when they are placed side by side, they react with each other and all the 

balls become colorless or some different color. Then, of course the probability of getting a red 

ball will not be (4/12). Thus the common method of calculating the probability fails because the 

scalar like dependence of the total on its parts is destroyed. So, we can state the generalized law 

of probability as,  

“In any selection, the ratio of constituent part to the total value can be taken as a 

probability only when the total system is expressed as scalar sum of the contributions of its 

constituent parts”. 

Now, we apply the above generalized law of probability to quantum mechanics. 

Suppose the wave function of a quantum mechanical system is ψ . It can be represented as a 

generalized state vector ψ  in Hilbert space generated by the components along orthogonal 

eigen vectors. Thus ψ  is a vector sum of the components along each eigen vector. As shown in 

Fig.1, if i
th

 eigen vector is ie , then projection OA  of state ψ  on ie  is calculated by 

applying projection operator on  ψ . Thus,  

ψii eeOA =                      (2) 

And  ........2211 ++==∑ ψψψψ eeeeee
i

ii          (3) 
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Fig. 1    Hilbert space analysis in which perpendiculars (like AB) are drawn from tips of 

components along eigen vectors to the normalized general state of the system ψ  to know the 

contributions (like OB) along the direction of ψ   

 

Since eigen vectors are not collinear (they are orthogonal), total is NOT equal to the scalar sum 

of magnitudes of constituent parts i.e. 

........21 ++≠ ψψψ ee  

Because of this failure, as per the generalized law of probability formulated earlier, in case of 

selection,  
ψ

ψ1e
 cannot represent the probability.  

However, to express Eq. (3) as a scalar sum of individual parts, let us calculate the contribution 

of each component vector along the direction of ψ . 

For example, contribution of vector OA  along OP is OB   i.e. projection of OA  on  ψ . Thus, 

OAOB ψψ=  

Using Eq. (2) in above expression,  

ψψψ ii eeOB =  



Biswaranjan Dikshit             Journal for Foundations and Applications of Physics, vol. 4, No. 1 (2017) 

28 
 

Or                  
2

ψψ ieOB =  

Now, total system vector is given by sum of contributions of each component along same 

direction ψ . Thus,  

...........
2

2

2

1

2

++==∑ ψψψψψψψ eee
i

i     (4) 

Since each term on left and right hand side of above equation are pointing along same direction 

(i.e. collinear), we can ignore the directions and write the magnitudes only. Taking magnitude of 

ψ  as 1 (for normalized wave function), we get, 

...........1
2

2

2

1

2

++=== ∑ ψψψ eeesystemTotal
i

i     (5) 

Thus, in Eq. (5) we have expressed the total system as a scalar sum of the contributions of 

constituent parts. So, as per the generalized law of probability formulated earlier, we can say 

that, the magnitude of probability of getting eigen value ei  in a selection is given by, 

2

)( ψii eeP =                       (6) 

If )(xψ  is wave function in position space, )(xψ  is same as the magnitude of projection of 

state ψ  on eigen vector x  i.e. ψψ xx =)( . So,  

2
)()( xxP ψ=                        (7) 

Thus, the Born’s law which had been taken as a postulate of quantum theory for statistical 

interpretation of wave function can be proved by application of classical law of probability and 

the exponent in Eq. (6) is found to be exactly two. So, there is no more need to carry out 

experiments like the recently reported one [2] to confirm the absolute correctness of this 

exponent.  

 

3.  CONCLUSION 

     

    Since the days of formulations of quantum mechanics, the Born’s rule to interpret the square 

of wave function as the probability to get a specific value in any measurement has been accepted 

as a fundamental postulate. Although there have been many attempts till date to derive this rule 

theoretically, all of these methods have been proved circular in literature [10-18, 21-23]. In 

absence of a convincing theoretical proof for Born’s rule, importance of experiments to validate 

the rule up-to maximum possible accuracy has become significant and one such experimental 

result was reported recently [2]. However, in this paper, by generalizing the method of 

calculating probability in common experience into quantum mechanics, we have proved the 

Born’s rule for statistical interpretation of wave function. We find that the probability becomes 
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exactly the square of wave function because the general state of the system is made up of 

orthogonal components along eigen vectors in Hilbert space while the probability is applicable 

only when the total system is expressed as a scalar sum of individual contributions.  
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