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Abstract

We recently presented our Efimov K-theory of Diamonds, proposing a pro-diamond, a large

stable (∞, 1)-category of diamonds D�, and a localization sequence for diamond spectra.

Commensurate with the localization sequence, we now detail four potential applications

of the Efimov K-theory of D�: to emergent time as a pro-emergence (v-stack time) in

a diamond holographic principle using Scholze’s six operations in the ’etale cohomology

of diamonds; to a pro-Generative Adversarial Network and v-stack perceptron; to D�

cryptography; and to diamond nonlocality in perfectoid quantum physics.
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1 Introduction

We recall the motivation for our Efimov K-theory of D� [4]. The goal forthcoming is to

get the lower KEfimov-groups of the diamond spectra to encode the datum of the mixed-

characteristic shtukas and the higher KEfimov-groups to encode the moduli space of mixed-

characteristic localG-shtukas, which is itself a locally spatial diamond [13] [4]. Additionally,

the moduli spaces of shtukas in mixed characteristic live in the category of diamonds.

Studying the isomorphism classes of moduli spaces of shtukas as the higher KEfimov-groups

of diamonds could link diamonds and global Langlands over function fields [4].

In this paper, we propose a diamond holographic principle, a pro-Generative Adversarial

Network and v-stack perceptron, a new model of emergent time (v-stack-time) and con-

densed types, and a diamond version of nonlocality. We construct a diamond version of

2



temporal nonlocality reflecting a temporal multiplicity as a pro-emergence. Using dia-

mond descent, our model is a double emergence, but profinitely many copies of emergence.

We are interested in the relation between diamond descent, the stop mechanism, and the

storage and recollection of profinitely many copies of information in the form of mathemat-

ical impurities as geometric points. We have posited a model of the brain allowing various

mathematical partitions in the form of the profinitely many copies of the diamond structure

[8] with neurons modeled as geometric points as mathematical minerological impurities.

The goal is one of connecting geometrized local Langlands-stacks with emergent time as

a new incarnation of a new reciprocity law. For a more tractable construction, (possibly)

assuming mirror neurons are an imitative representation of (pro)-emergent time, we can

restrict to a reciprocity law between diamond v-stacks and mirror neurons. More specifi-

cally, we will propose an incarnation of pro-temporal emergence from diamond nonlocality,

where local time emerges from condensed sets, and a 2-infomorphism connects temporal

simultaneity with nonlocality.

1.1 Diamond Conjectures

We first recall our main diamond conjectures [4].

Conjecture 1.1.1. There exists a large, stable, presentable (∞, 1)-category of diamonds

D� with spatial descent datum. D� is dualizable. Therefore, the Efimov K-theory is well-

defined.

Conjecture 1.1.2. Let S be a perfectoid space, D� a stable dualizable presentable (∞, 1)-

category, and R a sheaf of E1-ring spectra on S. Let T be a stable compactly generated

(∞, 1)-category and F : CatidemSt → T a localizing invariant that preserves filtered colimits.

Then

• Fcont(Shv(Sn,D�)) ' ΩnFcont(D�).

Conjecture 1.1.3. Let D� be the complex of v-stacks of locally spatial diamonds. Let

D� be the (∞, 1)-category of diamonds. Let Y(R,R+),E = Spa(R,R+) ×SpaFq SpaFq[[t]] be

the relative Fargues-Fontaine curve. Let (Y�S,E) be the diamond relative Fargues-Fontaine

curve. There exists a localization sequence
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Figure 1: Diamond SpdQp = Spa(Qcyclp )/Z×p with geometric point Spa C → D

• K(D�)→ KEfimov(Y�S,E)→ KEfimov(Y(R,R+),E).

Conjecture 1.1.4. D� admits a topological localization, in the sense of Grothendieck-

Rezk-Lurie (∞, 1)-topoi.

Conjecture 1.1.5. There exists a diamond chromatic tower

• D� → ...→ LnD� → Ln−1D� → ...→ L0D�

for Ln a topological localization for KD� the -theory spectrum of the diamond spectrum

representative of the étale cohomology of diamonds.

Conjecture 1.1.6. The (∞, 1)-category of perfectoid diamonds is an (∞, 1)-topos.

1.2 Diamonds

Recall the definition and many incarnations of a diamond.

Definition 1.2.1. ([17] Definition 1.3). Let Perfd be the category of perfectoid spaces.

Let Perf be the subcategory of perfectoid spaces of characteristic p. Let Y be a pro-étale

sheaf on Perf. Then Y is a diamond if Y can be written as the quotient X/R with X a

perfectoid space of characteristic p and R a pro-étale equivalence relation R ⊂ X ×X.

Examples of diamonds are the following:
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• Example 1.2.2 [17] [4]. For X = Spa(R,R+), we say Spd(R,R+) = Spa(R,R+)�.

• Example 1.2.3 [17] [4]. The Fargues-Fontaine Curve XFF is a regular noetherian

scheme of Krull dimension 1 which is locally the spectrum of a principal ideal domain.

The set of closed points of XFF is identified with the set of characteristic 0 untilts of

Cb modulo Frobenius. For C an algebraically closed perfectoid field of characteristic

p > 0 and φ the Frobenius automorphism of C we have

– X�FF
∼= (SpdC × SpdQp)/(φ× id).

• Definition 1.2.4 [17] [4]. The diamond equation is

– Y�S,E = S × (SpaOE)�

• Example 1.2.5 [17] [4]. Let D and D′ be diamonds. Then the product sheaf D×�D′

is also a diamond.

• Example 1.2.6 [17][4]. SpdQp = Spd(Qcyclp )/Zxp where Zxp is the profinite group

Gal(Qcyclp /Qp).

• Example 1.2.7 [17][4]. SpdQp ×� SpdQp.

• Example 1.2.8 [17][4]. ShtG,b,{µi}: moduli spaces of mixed-characteristic local G-

shtukas is a locally spatial diamond.

• Example 1.2.9 [17][4]. All Banach-Colmez spaces are diamonds.

• Example 1.2.10 [17][4]. Any closed subset of a diamond is a diamond.

1.3 Spatial V -Sheaves

We now recall the properties of spatial diamonds.

Definition 1.3.1. (Definition 17.3.1). Spatial v-sheaves are a restricted class of diamonds

with |F| well-behaved. A v-sheaf F is spatial if

• 1. F is qcqs (in particular, small), and
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• 2. |F| admits a neighborhood basis consisting of |G|, where G ⊂ F is quasicompact

open.

We say F is locally spatial if it admits a covering by spatial open subsheaves.

Remark 1.3.2. For locally spatial diamonds, we recall the following [13] [4]:

• All diamonds are v-sheaves.

• Spatial diamonds are spatial-v-sheaves.

• If F is quasiseparated, then so is any subsheaf of F . Thus if F is spatial,

then so is any quasicompact open subsheaf.

• (Proposition 17.3.8). If X is a qcqs analytic adic space over SpaZp, then

X� is spatial.

• (Proposition 17.3.4) Let F be a spatial v-sheaf. Then |F| is a spectral

space, and for any perfectoid space X with a map X → F , the map

|X| → |F| is a spectral map.

• (Proposition 17.3.5). Let X be a spectral space, and R ⊂ X×X a spectral

equivalence relation such that each R → X is open and spectral. Then

X/R is a spectral space, and X → X/R is spectral.

• (Theorem 17.3.9). Let F be a spatial v-sheaf. Assume that for all x ∈ |F|,
there is a quasi-pro-étale map Xx → F from a perfectoid space Xx such

that x lies in the image of |Xx| → |F|. Then F is a diamond.

• (Corollary 17.3.7). Let F be a small v-sheaf. Assume there exists a presen-

tation R ⇒ X → F , for R and X spatial v-sheaves (e.g., qcqs perfectoid

spaces), and each R→ X is open. Then F is spatial.

2 Pro-Generative Adversarial Network and V-Stack Percep-

tron

For our first application, we are constructing a pro-GAN as a pro-object in the category

of GANS to categorify embodiment for AI. We then model the perceptron as a v-stack

perceptron. The output of a v-stack perceptron is a condensed set, which is a sheaf of sets

on the pro-’etale site of a point.
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Our pro-formalism is a model of embodied meta-learning which reframes the frame problem

using condensed sets. We propose modeling enactive robots as advanced AI in a profinite

formalism and modeling mirror neurons as imitation/emulation GANs in a mirror game

theory for enactive neurons. Finally, we offer a correspondence between embodied cognition

in our profinite formalism, computability, and a pro-synchronic and diachronic emergence

that is built into the pro-GAN.

2.1 D� Cryptography

For our second application, we propose that post-quantum cryptography is a diamond

cryptography in locally spatial diamonds providing multi-level fortification. Recall that

spatial v-sheaves are a restricted class of diamonds with |F| well-behaved. The idea is that

encryption is in the geometric points Spa(C)→ D and profinitely many copies of Spa(C)

and decryption is in the fiber term of the localization sequence

• K(D�)→ KEfimov(Y�S,E)→ KEfimov(Y(R,R+),E).

We recall the diamond functor.

Definition 2.1.1. (Diamond functor (6.4 [10])). There is a diamond functor

• {analytic pre-adic spaces/SpaZp} → {diamonds}

• X → X�

which forgets the structure morphism to SpaZp, but retains topological information.

Conjecture 2.1.2. We consider diamond cryptography as follows. Data is multi-encrypted

as a geometric point Spa(C)→ D with its multiple descriptions from its multiple quasi-pro-

étale covers X → D. Recall a geometric point is a mathematical impurity and cannot be

seen directly, but only upon its pull back through a quasi-pro-étale cover X → D, resulting

in profinitely many copies of SpaC [17]. The decryption is in the Efimov K-theory of

diamonds, which can take two forms. One is in the fiber term of the localization sequence

• K(D�)→ KEfimov(Y�S,E)→ KEfimov(Y(R,R+),E).

The second we take KEfimov of the gluing-construction v-stacks [16].

1By taking KEfimov of the gluing-construction v-stacks, we mean to take diamond equivalence relations
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Figure 2: Diamonds Gluing to v-Stacks.1

2.1.1 D�-multiclass classification and Chromatic Types

Conjecture 2.1.1.1. We are currently constructing a chromatic tower over a temporal

logic for the AI problem and therein creating a new notion of condensed types and chromatic

types [7]. 2

Conjecture 2.1.1.2. In parallel, we propose the categorification of multiclass classifica-

tion. The idea is the following. Mirror neurons are modeled as locally spatial diamonds, in

particular as objects in D� the (∞, 1)-category of diamonds. Then, topological localization

supervenes tensor network connectivity, in passing to the full reflective sub-(∞, 1)-category,

where objects and morphisms have reflections in the category, which more properly mimic

mirror neurons modeled after diamonds. Bousfield localization supervenes the joint scarcity

and high connectivity properties of high dimensional expander graphs. We can then con-

template the moduli spaces of equivalences in terms of the category of sheaves, which is

itself a reflective subcategory and a Grothendieck topos [?]. Passing to large∞-categories,

multiclass classification could proceed K-theoretically via Efimov K-theory groups using

our Efimov K-theory of diamonds formalism.

Remark 2.1.1.3. Recall that we are constructing an (∞, 1)-site on D� and extending

topological localization to D�, where equivalence classes of topological localizations are in

bijection with Grothendieck topologies on (∞, 1)-categories C [?]. We provide a small scale

of Y�S,E to get v-stacks, analogous to taking pro-étale equivalence relations to get diamonds, from which we

consider the moduli spaces of v-stacks.
2A condensed type is a topological space regarded up to a condensed weak equivalence. A chromatic

type is a topological space regarded up to a chromatic convergence weak equivalence.
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model of the localization formalism using Bousefield localization particular to triangulated

categories in [8].

Scholze’s six operations are foundational to our construction of this (∞, 1)-site, in the

following sense. The six operations live in the derived categories of sheaves and derived

categories are the ∞-categorical localization of the category of chain complexes at the

class of quasi-isomorphisms [9]. The derived categories D(A) of abelian categories A are

an important class of examples of triangulated categories. They are homotopy categories

of stable (∞, 1)-categories of chain complexes in A [9].

Example 2.1.1.4. We take a simple case and consider neuronal connection in terms of tri-

angulated categories, as explained in [23]. Ignoring higher morphisms, we can “flatten” any

(∞, 1)-category C into a 1-category ho(C) called its homotopy category. If C is also stable,

a triangulated structure captures the additional structure canonically existing on ho(C).

This additional structure takes the form of an invertible suspension functor and a collec-

tion of sequences called distinguished triangles, which behave like shadows of homotopy

(co)fibre sequences in stable (∞, 1)-categories [23].

So neuronally, everything is working via cofiber sequences, hence the appropriate introduc-

tion of our KEfimovD� formalism.

3 Diamond Holographic Principle

For our third application, the goal is to construct a diamond formulation of the holographic

principle [7] using the adjoint pairs in Scholze’s six operations for the étale cohomology of

spatial diamonds [13] and the profinite condition of locally spatial diamonds, to replace

Anti de-Sitter space and conformal field theory, respectively. Recall that spatial v-sheaves

are a restricted class of diamonds with |F| well-behaved. Entropy is then encoded in the

Efimov K-theory of the v-stack.

Recall the diamond functor [17] and proposition.

Definition 3.1 Diamond functor. (6.4 [10]). There is a diamond functor {analytic adic

spaces/Zp} → {diamonds}.
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Proposition 3.2. ([10] Proposition 6.11). For an analytic adic space X/Zp, the diamond

functor

• X� : S ∈ Perf → {S#/Zp untilts of S plus map S# → X}

defines a locally spatial diamond. There are canonical equivalences

• |X| ' |X�| and Xét ' X�ét.

For X perfectoid, X� ' Xb.

Proposition 3.3. ([10] Proposition 17.3.4) Let F be a and for any perfectoid space X

with a map X → F , the map |X| → |F| is a spectral map.

Remark 3.4. The six operations formalism is apropos to the holographic principal. In-

formally, the six operations formalism is, in a sense, a higher cohomological analogue of

the ADS/CFT duality [?]. The six operations formalism is a formalization of aspects of

Verdier duality, which is the refinement of Poincaré duality from ordinary cohomology to

abelian sheaf cohomology [?].

Moreover, v-stacks are highly holographic in a certain sense in their encoding of profinitely

many copies of data that is already multiple on two fronts. 3

Conjecture 3.5. The goal is to generalize the distinction between ”separable” and ”en-

tangled”. Recall, geometric points are morphisms of schemes. Recall, a Barwise-Seligman

infomorphism is an adjoint pair [?]. We extend this idea to construct a 2-infomorphism

using the two adjoint pairs

• f∗ and Rf∗

• and Rf! and Rf !.

Thus, the grand correspondence is Dét(X,Λ) which consists precisely of étale sheaves of

Λ-modules on Xét for X a small v-stack [13].

Recall the six operations for the étale cohomology of spatial diamonds.

Terminology.

3Recall, a v-stack is a 2-sheaf, which is a sheaf that takes values in categories rather than sets.
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Fix a prime p. Let X be an analytic adic space on which p is toplogically nilpo-

tent. To X was associate an étale site Xét. Let Λ be a ring such that nΛ = 0

for some n prime to p. There exists a left-completed derived category Dét(X,Λ)

of étale sheaves of Λ-modules on Xét. Let Perfd be the category of perfectoid

spaces and Perf be the subcategory of perfectoid spaces of characteristic p [13].

Consider the v-topology on Perf 4.

Definition 3.6. ([13] Definition 1.7). Let X be a small v-stack, and consider the site Xv of

all perfectoid spaces over X, with the v-topology. Define the full subcategory Dét(X,Λ) ⊂
D(Xv,Λ) as consisting of all A ∈ D(Xv,Λ) such that for all (equivalently, one surjective)

map f : Y → X from a locally spatial diamond Y , f∗A lies in D̂(Yét,Λ).

Dét(X,Λ) contains the following six operations.

• Derived Tensor Product. -
⊗L

Λ - : Dét(X,Λ)×Dét(X,Λ)→ Dét(X,Λ).

• Internal Hom. RHomΛ(−,−) : Dét(X,Λ)op ×Dét(X,Λ)→ Dét(X,Λ).

• For any map f : Y → X of small v-stacks, a pullback functor f∗ : Dét(X,Λ) →
Dét(Y,Λ).

• For any map f : Y → X of small v-stacks, a pushforward functor Rf∗ : Dét(Y,Λ)→
Dét(X,Λ).

• For any map f : Y → X of small v-stacks that is compactifiable, representable

in locally spatial diamonds, and with dim.trg f < ∞ functor Rf! : Dét(Y,Λ) →
Dét(X,Λ).

• For any map f : Y → X of small v-stacks that is compactifiable, representable in

locally spatial diamonds, and with dim.trg f < ∞, a functor Rf ! : Dét(X,Λ) →
Dét(Y,Λ).

4The v-topology, where a cover {fi : Xi → X} consists of any maps Xi → X such that for any

quasicompact open subset U ⊂ X, there are finitely many indices i and quasicompact open subsets Ui ⊂ Xi

such that the Ui jointly cover U [13]
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Recall that for any small v-stack Y , we have defined the full subcategory Dét(Y,Λ) ⊂
D(Yv,Λ).

Lemma 3.7. ([13] Lemma 17.1). There is a (natural) presentable stable ∞-category

Dét(Y,Λ) whose homotopy category is Dét(Y,Λ). More precisely, the ∞-derived category

D(Yv,Λ) of Λ-modules on Yv is a presentable stable ∞-category, and Dét(Y,Λ) is a full

presentable stable ∞-subcategory closed under all colimits.

Remark 3.8. Recall, any spatial v-sheaf is a spectral space ([17] Proposition 17.3.4).

To get the entanglement property, we are reformatting the separability condition as a

combination of the qcqs condition of the v-sheaf F and the non uniqueness of the generic

point as the failure of the sober property.

Recall the definition of a spectral space.

Definition 3.9. ([17] Definition 2.3.4). A topological space T is spectral if the following

equivalent conditions are satisfied.

• 1. T ' SpecR for some ring R.

• 2. T ' lim
←
Ti where {Ti} is an inverse system of finite T0-spaces. 5

• 3. T is quasicompact 6 and sober. 7

Recall the holographic principle.

Definition 3.10 [7]. The holographic principle is basically a claim about how much

information can be transported from A to B while keeping A and B distinct (quantum

language: not entangled). Our idea is: exactly as much information as can be transported

using two particular adjoint pairs. Otherwise, the ability to distinguish between A and B

collapses.

The question becomes the following:

5T0 means that given any two distinct points, there exists an open set which contains exactly one of

them.
6There exists a basis of quasi-compact opens of T which is stable under finite intersection
7Every irreducible closed subset has a unique generic point.
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Question 3.11. What does it mean to say the ability to distinguish them collapses? What

is this more general idea of entanglement or non-separability or super-correlation, given

there are no ontic primitives?

There exists a kind of sparseness that is required to tell A and B apart, which in physics

becomes an idea of ”weakly interacting” or just touching briefly along a boundary, a vague

idea, with only a negative definition. Clearly, we need some idea of ”transport” between

distinguishable entities or states to talk about a time reference frame. We develop this

using the adjoint pair f∗ and Rf∗.

All Hilbert spaces of the same dimension, for example, are isomorphic. So qubits A and B

are in a sense ”equivalent”. The question is the following:

Question 3.12. Can we talk about A’s state independently of B’s state? If their joint

state is separable, we can, but if it’s entangled, we cannot.

So we need to know more than that their H-spaces are equivalent. We need to know

something about their joint state within the tensor product of their H-spaces. We develop

this idea using the derived tensor product -
⊗L

Λ- and the internal Hom. RHomΛ(−,−).

The question becomes:

Question 3.13. How do we generalize the idea of a ”joint state”? How do we generalize

the distinction between ”separable” and ”entangled”?

Definition 3.14. The definition of entanglement is if |AB >= |A > |B >, the joint state

|AB > is separable. Otherwise it is entangled [7].

Being in a separable joint state is very peculiar. Unitary evolution entangles states. Be-

ing in a separable state means that A and B are barely interacting. Even a very weak

interaction will eventually entangle them.

We develop this using the second adjoint pair Rf! and Rf !.
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Figure 3: Diamond Holographic Principal in Six Operations for the Étale Cohomology of

Spatial Diamonds on ∗proét.

3.0.1 Diamond Coupling

To modify a holographic correspondence, we introduce in Table 1 our new dictionary

relating holography coupling and pro-emergence with v-stacks.

To complete the dictionary, we need to construct the six operations in a condensed setting,

and link diamond profiniteness with nonlocality, diamond descent, and diamond localiza-

tion.

4 Pro-emergence and Temporal Plurivocity

For our fourth application, we construct a pro-emergence reflecting a temporal plurivocity.

The glowing interrogatory driving our construction of pro-emergence is the question of

how do we construct a reciprocity law of emergent time? Specifically, how can we construct

a reciprocity law of pro-emergence? What is immediate is the further question of what

formalism is immediate to and consummating of the question, and could potentially connect

Fargues’ geometrization of the local Langlands with a Grand Unified Theory of physics?
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Table 1: Diamond Dictionary of Holographic Correspondence and Pro-Emergence

Holography Coupling Diamonds and Pro-Emergence

Collapse/decoherence Pro-‘etale Site/Localization

Weak Coupling Perturbation Tilting + p-divisible formal group laws; kernels are

pn-torsions; torsion in global Langlands

Strong Coupling incarnations of Spa(C)→ D

Coupling Strength pro-emergence; v-stack profinite

Temporal Nonlocality descent, irreversibility/reconstructability

Weak Coupling Condensed and singular perfectoid time

ADS Bulk Six operations; Cond(D)

CFT diamond v-stacks; ΩnFcont(D�)
Nonlocality diamond profiniteness; profinitely copies of Spa(C)

Unitarity Diamond Descent; Diamond Localization

quantum topology étale cohomology of diamonds

What is parallel to the interrogatories and without particularity is the question of why is

time always assumed a total order with a connexity property, rather than being considered

perfectoid or even a diamond equivalence relation? Is temporal nonlocality instantiation

without reciprocitous advent? Is temporal nonlocality dialetheism time?

To reach our grand valiant goal of developing this reciprocity law, we begin with highly

simplified cases and construct a basic example of emergent time as a pro-emergence and

investigate (to forthcoming construct) temporal nonlocality from pro-emergence. We herein

outline our preliminary ideas and constructions.

4.1 Pro-Diamond

Recall our pro-diamond pro-object is constructed as follows [4]:

Conjecture 4.1.1. Let D�� be a small cofiltered category of diamonds with morphisms

the diamond product [13]. Two objects in D�� are diamonds (v-sheaves) and spatial v-

sheaves. The pro-diamond pro-object in the category of pro-objects of D�� is the formal
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cofiltered limit of objects of D��. The HomD�� (F (−), G(−)) for pro-objects F : D → C

and G : E → C is given by the pro-diamond functor, the pro version of the diamond

functor. Recall that

a pro-object of a category C is a formal cofiltered limit of objects of C [20].

A cofiltered category has the property that

for every pair of objects c1 and c2 of C, there is an object c3 of C such that

there exists an arrow c3 → c1 and there exists an arrow c3 → c2 [20].

Recall the category of pro-objects in C is defined as:

Definition 4.1.2 [Definition 2.2 [20]]. Let C be a category. The category of pro-objects

in C is the category defined as follows.

• The objects are pro-objects in C.

• The set of arrows from a pro-object F : D → C to a pro-object G : E → C is the

limit of the functor Dop × E → Set given by HomC(F (−), G(−)).

• Composition of arrows arises, given pro-objects F : D0 → C, G : D1 → C, and

H : D2 → C of C, by applying the limit functor for diagrams Dop × E → Set to

the natural transformation of functors HomC(F (−), G(−))×HomC(G(−),H(−))→
HomC(F (−), H(−)) given by composition in C.

• The identity arrow on a pro-object F : D → C arises, using the universal property

of a limit, from the identity arrow HomC(F (c), F (c)) for every object c of C.

As we note in [4], we could also construct the pro-diamond pro-object of the category of

diamonds by taking the isomorphism classes of diamonds under the diamond equivalence

relation as pro-objects

4.2 Pro-Emergence

We model local condensed time as formal spectra. Recall
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A formal spectrum is a generalization of prime spectrum to adic noetherian

rings, therefore containing information on all infinitesimal neighborhoods, cor-

responding to the ideal of completion...A formal spectrum is an example of a

formal scheme. Formal schemes in general form certain subcategory of the cate-

gory of ind-schemes...Adic completion is to have all infinitesimal neighborhoods

”at once” [22].

Definition 4.2.1 [22]: Assume R is a commutative ring and I ⊂ R is an ideal, such that

its powers make a fundamental system of neighborhoods of zero of a complete Hausdorff

topology (we say that R is an separated complete ring in the I-adic topology).The formal

spectrum SpfR of (R, I) is the inductive limit of the prime spectra:

• Spf(R) := colimSpec(R/In) where the connecting morphisms are the closed nilpo-

tent immersions Spec(R/In) ↪→ Spec(R/In+1) of affine schemes and the colimit is

taken in the category of topologically ringed spaces.

Conjecture 4.2.2. Let S be the category of spectra. Pro-emergence is an ind-object in

the category of ind-objects of S.

Recall that an ind-object

of a category C is a formal filtered colimit of objects of C...this means that in

particular chains of inclusions c12 ↪→ c2 ↪→ c3 ↪→ c4 ↪→ ... of objects in C are

regarded to converge to an object in Ind(C), even if that object does not exist

in C itself [21].

We need a 2-morphism connecting the pro-emergence and pro-diamond objects in their

respective categories of pro-objects.

Conjecture 4.2.3 HomD�� (F (−), G(−)) for pro-objects pro-emergence and pro-diamond

is a 2-localization 2-functor.

Remark 4.2.4. Therefore, our claim of pro-emergence being doubly emergence refers to

both pro-emergence and the pro-diamond being pro-objects in the category of pro-objects of

D��. In the category of pro-objects, there are arrows from objects in the pro-emergence pro-

object to objects in the pro-diamond pro-object, guaranteed by the cofiltered assumption.
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Figure 4: Pro-diamond in D��and Pro-Emergence in S

4.3 Temporal Nonlocality from Pro-Emergence

Our immediate goal is to construct a theory of temporal plurivocity that does not fail ob-

ject persistence. Given there are no ontic primitives, we construct the temporal plurivocity

as a pro-emergence with a diamond descent. Our formalism at least allows for a tempo-

ral multiplicity in the profinite condition of the diamond and the language of, at least,

idempotent infinity-categories to model object persistence.

Our theory of pro-emergence, profinitely many copies of emergence, which is a theory

of emergent time, features a double emergence that should be immediate from our dia-

mond holographic principle, wherein ADS/CFT [?] is modified by our proposed six opera-

tions/diamonds pro-duality. It remains to link the pro formalism above with the condensed

interior and six operations. The idea is that local time emerges from the six operations

which are translated into a condensed setting. Time is singular here given it is a condensed

set, which is a sheaf of sets over the pro-’etale site of a point [1]. Global time is in the

diamonds, where the profinite condition is translated into a form of nonlocality in the many

incarnations of possible quasi-pro-‘etale covers per each geometric point/mathematical im-

purity. There are implications for coupling in the following form: strong coupling refers

to many incarnations of Spa(C) → D in the nonlocality of time ; weak coupling refers to

condensed and singular perfectoid time.
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Incarnation of global time emerges from diamond nonlocality. Local time emerges from con-

densed sets. A 2-infomorphism, consisting of two pairs of adjoint functor’s from Scholze’s

‘etale cohomology of diamonds [13], connects local to global time to get temporal simul-

taneity and temporal nonlocality. In this construction, we are asking what is the difference

between simultaneity and temporal nonlocality? That is, what are the preconditions to

have either simultaneity as nonlocality or a difference between simultaneity and temporal

nonlocality.

To complete the coupling dictionary, we need to construct the six operations in condensed

setting, and link diamond profiniteness with nonlocality, diamond descent, and diamond

localization.

4.4 V -Stack Time and Profinite Temporal Nonlocality

We introduce our new model of emergent time, v-stack-time, and a concomitant theory of

condensed types, which are, proposedly, immediate from our recently introduced diamond

holographic principle. Connecting geometrized local Langlands-stacks with emergent time

is a new incarnation of a new reciprocity law.

Our model is a double emergence, but profinitely many copies of emergence, making it

a pro-emergence. Our model gives levels of nonlocality as a stackification. The move-

ment from local to global localization is by our conjectured diamond descent and diamond

localization. We recall that localization in the reflective subcategory is a descent condition.

The question immediate is how to construct diamond nonlocality for temporal multiplicity?

The hope is by diamond descent satisfied by v-stacks along all covers [13]. If the mathe-

matical essence of strong coupling is an intrinsic irreversibility, we show, forthcoming that

a diamond D is reconstructable up to irreversibility by diamond descent, where coupling

is in the levels of profinite nonlocality.

4.4.1 Emergent Time on ∗proét

Conjecture 4.4.1.1. Commensurate with our construction, there conjecturally follows

a theory of emergent time, which would be a geometrized theory of time emerging from
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condensed sets and locally spatial diamonds. We use a canonical example to model the

emergent property of time as a translation to a condensed structure.

Recall the definition of a condensed set and the category Cond(C) of condensed sets.

Definition 4.4.1.2. ([2] Definition 1.2). The pro-étale site ∗proét of a point is the category

of profinite sets S, with finite jointly surjective families of maps as covers. A condensed set is

a sheaf of sets on ∗proét. Similarly, a condensed ring/group/... is a sheaf of rings/groups/...

on ∗proét.

For C any category, the category Cond(C) of condensed objects of C is the category of

C-valued sheaves on ∗proét. This means a condensed set/ring/group/... is a functor

• T : {profinite sets}op → {sets/rings/groups/...}

• S → T (S)

which satisfies T (∅) = ∗ and the following two conditions equivalent to the sheaf condition.

• For any profinite sets S1, S2, the natural map T (S1 t S2) → T (S1) × T (S2) is a

bijection.

• For any surjection S′ → S of profinite sets with the fibre product S′×S S′ and its two

projections p1, p2 to S′, the map T (S) → {x ∈ T (S
′
)|p∗1(x) = p∗2(x) ∈ T (S

′ ×S S
′
) }

is a bijection.

Given a condensed set T , we sometimes refer to T (∗) as its underlying set.

There is a canonical example that illustrates topological structures translating to condensed

structures.

Example 4.4.1.3. ([2] Example 1.5.) Let T be any topological space. To T there is

associated a condensed set T , defined via sending any profinite set S to the set of continuous

maps from S to T . It follows that

• if T is a topological ring/group/..., then T is a condensed ring/group/... .
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Spa(Fq) Cond(D�) Spa(Qp)
�

Y�S,E = S × (SpaOE)� Y�S,E = S × (SpaOE)�

xb Ln Ln xb

Figure 5: V -Stack Time in Cond(D�)

Example 4.4.1.4. We consider the simplest case. An event (a topological localization of

any particular reference frame) is considered a point in a diamond topological space T . On

that point is the pro-étale site ∗proét, the category of profinite sets S. Global time emerges

as the set of continuous maps from all profinite sets S to T . So global time is constructed

as a sheaf of sets on ∗proét; that is, as a condensed set. Emergent time results in passing

to the larger category of sheaves to consider a condensed version of

• Fcont(Shv(Rn, C)) ' ΩnFcont(C).

4.4.2 V -stack Time in Cond(D�)

We can update the previous idea to v-stack time. The rough idea is the following:

Let C be the category of diamonds. Let Cond(C) be the category of condensed objects in

C; objects are condensed diamonds. Let R be the reflective full subcategory of Cond(C);

objects in R are reflections.

Let D� be the (∞, 1)-category of diamonds. We extend the formalism to Cond(D�), where

xb is a Fargues-like factorization [19] and Ln is topological localization depicted in Figure

5.

The goal forthcoming is to construct the fiber product of this diagram as a moduli space

and a diamond.

Conjecture 4.4.2.1. A second way to get an emergent time is to take diamond equivalence

relations of Y�(0,∞) to get v-stacks and consider the moduli space of v-stacks, wherein every

point is an incarnation of the Cond(D�) diagram (Figure 8), and we consider ∞-stacks

of incarnations of incarnations via a diamond descent condition. Regarding every point
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as a local emergence, structurally a formal condensed set, in the sense of formal schemes,

passing to ∞-stacks yields our conjectured pro-emergence.

4.4.3 Object Persistence as Descent

As stated above, the localization condition is already a descent condition. Therefore, our

conjecture is that the event of object persistence is built into the very structure of our

v-stack pro-emergence and is immediate from the diamond equivalence relation; diamond

descent takes place in the multiple incarnations of the covers of the geometric points and

allows the double reconstruction of object identity from the higher coherence datum.

4.4.4 Condensed Types

We introduce condensed types are objects weakly equivalent under condensed-equivalence

to give a condensed version of our localization sequence and continuous K-theory:

• K(D�)→ KEfimov(Y�S,E)→ KEfimov(Y(R,R+),E) and modification

• Fcont(Shv(Sn,D�)) ' ΩnFcont(D�), where:

• D� is a stable dualizable presentable (∞, 1)-category of diamonds.

• D� is the complex of v-stacks of locally spatial diamonds.

• Y(R,R+),E = Spa(R,R+)×SpaFq SpaFq[[t]] the relative Fargues-Fontaine curve [19].

4.5 Diapsalmata Interrogatory

We close our discussion of pro-emergence by revisiting the many glowing interrogatories

inspiring the formalism.

We first re-pose the grand interrogatory underlying our mathematics. How can we measure

emergent time without constructing it? When we assume time is emergent, must we ask
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from what is it emergent? What does it mean to ask of the eschatology of time? To assume

time has an eschatology assumes it is debatable whether time will always exist, in whatever

forms it does exist, with what properties and concomitant structure.

4.5.1 Dialetheism Time

In asking of the formalism object persistence, it is crucial to ask what is the shape and du-

ration of time accompanying this formalism. Is temporal nonlocality instantiation without

reciprocitous advent? Is temporal nonlocality dialetheism time? That is, does a diamond

construction of temporal nonlocality fail time as it fails all pro-incarnations of duration?

Can we construct, for instance, a profinite version of temporal nonlocality? If so, what are

the conditions for object persistence in a nonlocality that is profinite? In such a set up,

what could be the difference between temporal simultaneity and temporal nonlocality?

We contend that local/global movement at the levels of emergence is singular and assumes

continuity in the condensed setting, geometrically via sheaves over points and profinitely.

We contend that the space of information is globally a v-stack which locally works cate-

gorically. We contend that time is a multiplicity in two ways: at the local level of singular

information transfer and at the global level connecting the local levels. This double mul-

tiplicity beckons a double eschatology.

We revisit our opening interrogatories with a few conjectural answers whose derivation

is from our presented formalism. Even when we adamantly claim that there are no ontic

boundaries, the question that is immediate is ontic boundaries of what? If ontic boundaries

are replaced by topological localizations of condensed diamonds, then the ‘of what’ would

refer to the v-stack.

We ask how does object persistence work in a singular case such as anterograde amnesia?

This question is multiply profound, so we at least try to hold onto it with a small assess-

ment. This question perhaps has to do with the relation between thoughts and memory

recollection. We are interested in the relation between the stop mechanism and the stor-

age and recollection of profinitely many copies of information in the form of mathematical

impure geometric points. We have posited a model of the brain allowing various mathemat-
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ical partitions in the form of the profinitely many copies of the diamond structure [8]. If

neurons are geometric points which are morphisms of schemes, anterograde amnesia would

resemble a sustained truncation of diamond descent. Considering temporal nonlocality,

we can model thoughts as profinite reflections of pro-‘etale topological covers oriented in

nonlocality. This may help to model the state of being fully conscious during dreamless

sleep, which perhaps takes the form of sleeping in a diamond hourglass [6].

When we say two events take place at the same time, what time is that specifically? In our

formalism, we would say simultaneity is, at its most basic, a 2-morphism in an infinity-

category. It is so very exciting to consider what then is simultaneous in a 3-morphism, and

so on.

What would entail a discretization of time and what if time were singular or of a profinite

duration? Using the mathematics of adic perfectoid spaces, we are indeed modeling time

as singular and fractal-like. A discretization of time, more properly, a nonarchimedean

time, should accompany, in quantum mechanics, the same treatment of nonarchimedean

space.

Why can we not simultaneously sustain two different temporal experiences? In our formal-

ism, we construct an n-awareness that can do so. We must fully understand the duration

of time to understand the seemingly asymmetry of time, though we question how we can

measure temporal asymmetry without constructing it. If it is our ontic boundaries con-

tributing to the irreversibility of macro processes, we must fully explore the perfectoid

quality of those boundaries and what that means phenomenologically.

How can we measure time without therefore constructing it and making our measurement,

therein, antiphrastical? How can we measure emergence without constructing it? Our

formalism cannot yet answer these question, but hopes to provide the mathematical models

to do so.

How do we parse ’affordance’ with a boundary that is profinite? To truly model affordance

of totally disconnected boundary requires a new model of discretized time, which our

formalism provides in the condensed setting. The formalism of ’information to action’ is a

descent condition on Cond(D�) [5].
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Table 2: Dictionary between quantum physics over Hilbert space and over perfectoid space.

Quantum Physics Perfectoid Quantum Physics

Hilbert space perfectoid space

state vectors geometric points Spa(C)→ D⊗
product � product SpdQp ×� SpdQp

nonlocality profinitely copies of Spa(C)

superposition pro-étale sheaves on Perf; profinite sets

wavefunction collapse tilting; perfectoid modular curves SKp

holographic principal six functor formalism

quantum topology étale cohomology of diamonds

operator algebra non-Noetherian complete valuation ring

unitarity pro-étale descent datum

5 Diamond Nonlocality in Perfectoid Quantum Physics

We have recently introduced perfectoid quantum physics and diamond nonlocality, re-

stricted to the class of spatial diamonds [3]. Recall that spatial v-sheaves are a restricted

class of diamonds with |F| well-behaved. We proposed a dictionary between quantum

physics over Hilbert space and quantum physics over perfectoid space (Table 2).

Our main conjectures are the following:

Conjecture 5.1. Geometric points Spa(C) → D in the diamond are a geometrization of

entanglement entropy, taking values in Y�S,E = S × (SpaOE)�.

Remark 5.2. We are using ’geometerization’ in the sense of ’making Spec(E) geometric’

in a GAGA correspondence for Y�S,E = S × (SpaOE)� [1], [6]. The global ’visibility’ of the

geometric points is in the profinitely many copies of Spa(C). Multiple ’profinitely copies’

result from multiple quasi-pro-étale covers. Perfectoid entropy measures the number of

quai-pro-étale covers.

We propose perfectoid entanglement entropy as a profinite ‘up to’ restricted to the pro-

étale site and to pro-étale morphisms, which take values in Y�S,E = S× (SpaOE)�. The ’up
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to’ takes the form of Scholze’s six operations in the ’etale cohomology of diamonds [13].

For any map f : Y → X of small v-stacks that is compactifiable, representable in locally

spatial diamonds and with dim.trg f <∞, a functor

• Rf ! : D′et(X,Λ)→ D′et(Y,Λ)

that is right adjoint to Rf! [13].

Conjecture 5.3. There is a modularity property of nonlocality taking values in

Fcont(Shv(Sn,D�)) ' ΩnFcont(D�) [4].

Conjecture 5.4. Nonlocality is categorified using coherent sheaves and geometrized in

the étale cohomology of diamonds [13] [4].

Diamond nonlocality is a perfectoid version of nonlocality that arises from the nontrivial

geometry of the diamond product

• SpdQp ×� SpdQp
.

The moduli space of shtukas is a diamond fibered over

• SpaQp × ...×m SpaQp.

We give long-range entanglement the structure of fibering over these m-fold products.
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